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Abstract: Airborne dust extracted from deep ice core perforations can provide chemical and
mineralogical insight into the history of the climate and atmospheric conditions, with unrivalled
temporal resolution, time span and richness of information. The availability of material for research
and the natural complexity of the particulate, however, pose significant challenges to analytical
methods. We present the developments undertaken to optimize the experimental techniques, materials
and protocols for synchrotron radiation-based analysis, in particular for the acquisition of combined
Synchrotron Radiation X-Ray Fluorescence and X-ray Absorption Spectroscopy data.
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1. Introduction

The same phenomena that make deep ice cores precious archives of environmental information are
at the source of the technical challenges that studies of chemical, isotopic, mineralogical composition
face. This is particularly true where ice cores are used for the acquisition of data aiming at accurate
reconstructions of the temporal evolution of atmospheric conditions. Glacier location, atmospheric
circulation patterns, ice accumulation rates and the local meteorological conditions determine whether
ice preserves, in a time-ordered sequence, samples of the deposited snow. The combined effect of
accumulation rate, glacier dynamic, local climatic conditions and geothermal heat flux define the
maximum timespan of the preserved ice. The low deposition rates and overall low temperature
conditions in Antarctica guarantee, therefore, maximal time span records, but this impacts on the
achievable temporal resolution; at the same time, the long distance from sources of airborne particulates
and the snow capture mechanisms limit the overall concentration of atmospheric components that
precipitate and get stored in ice. Snow deposition rates in Antarctica can be as low as 50 mm equivalent
water per year, and this allows deep ice cores to cover past climates back to several hundred ka [1].
Because of the coverage thickness, the accumulation usually leads to unperturbed storage which are less
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affected by lateral ice movements (when compared e.g., to alpine environments). Also, the provenance
of solid material found in ice is atmospheric or meteoric, so Antarctic ice collects non-local information.

Climate and atmospheric information from deep ice cores is first obtained from accurate analysis of
ice itself, in particular through the measurement of deuterium and oxygen stable isotope composition,
ionic concentrations and gas analysis (e.g., Petit [1]). These parameters provided a direct measurement
of temperature across the last few climatic cycles.

Solid (insoluble) particulate represents a significant fraction among the ice core components, as
its compositional analysis can reveal temporal variations of the activity of dust sources and of their
environmental conditions. Those have consequences on global bio geochemical cycles, and influence
mineral alteration under different climatic conditions [2].

Dust content and grain size measurements performed using liquid counter methods [1,3] have
indicated that the dust deposition rate also has a close correlation with climate. The rate reflects the
evolution of dust sources and of the atmospheric circulation patterns. Comparative analyses with
samples from potential source areas, using TIMS (Thermal Ionization Mass Spectrometer) isotopic
analysis on the ratios 87Sr/86Sr and 143Nd/144Nd, has indicated a South American provenance of dust
deposited in inner East Antarctica [4] in cold periods.

Beyond elemental composition information, obtaining a mineralogical analysis of the particulate
would naturally complement these results with the potential of giving much richer insight into both
the source and the transport phenomena across the last climatic periods [5–8]

Technical challenges clearly come from the small amounts of solid material available for analysis.
The particulate concentration in ice [9,10] in deep ice cores from Antarctic drilling locations, for example,
oscillates, depending on the climatic period samples, with dramatic variations from 500 ng/g down to
20 ng/g during glacial and interglacial periods, respectively. These concentrations of particulate in ice,
however, are well below the detection limits of modern mineralogical analytical techniques. Extracting
significant amounts of the insoluble fraction for chemical and mineralogical analysis therefore requires
careful handling and clean protocols; at the same time, it is necessary to minimize the ice core sections
used for extraction, considering both the sample rarity (deep ice core drilling present significant
challenges involving international collaborations [4]) and the need to preserve the time resolution,
directly linked to the ice core section depth profile being sampled. The amounts of particulate extracted
will be necessarily minimal. We will introduce here the development in instrumentation and protocols
undertaken by our group to optimize the collection of synchrotron radiation X-ray Fluorescence (XRF),
X-ray Absorption Spectroscopy (XAS) and X-ray Powder Diffraction (XRD) data on such samples.

2. Methods

2.1. Elemental Composition Analysis

Elemental composition analysis of particulate from deep ice cores has been undertaken before,
using Particle-Induced X-ray emission (PIXE) [11,12]. Similar to other X-ray emission detection
methods, PIXE analysis provides concentration information for most elements (in practice all elements
heavier than Na), has a high sensitivity so is suitable for detecting components in low concentration and
is non-destructive for mineral samples. However, PIXE information is limited to elemental analysis, and
the exposure to high-energy proton beams has direct effects on the stability of the supports. This possibly
precludes re-using the samples in further analyses. As an alternative to proton-induced emission,
X-ray based methods can overcome these limitations. Lab-based instrumentation makes it possible
to detect trace element concentrations in particular, with the Total Reflection X-Ray Fluorescence
configuration, exploiting the advantage that such a configuration minimizes the contribution from
sample supports and enhances the signal coming from the materials deposited on flat surfaces. The
growing importance of XRF and related techniques is demonstrated by the continuous development
and size of its community; advances on materials, technology and procedures are regularly reported in
contributions published on J. Anal. At. Spectrom. [13]. The use of synchrotron-based instrumentation



Condens. Matter 2019, 4, 61 3 of 11

clearly provides substantial advantages due to the availability of intense, highly collimated and, most
importantly, tunable monochromatic beams, at the expense of beam time availability and limited access
due to intense competition for access to synchrotron beamlines. Finally, X-ray based analyses have
the important characteristics that they don’t alter the sample (radiation damage in mineral systems
is not as critical as for other sample matrices).Multiple techniques, make it possible to get structural
rather than elemental information, and they can be applied on the same sample, provided that sample
preparation is compatible with different experimental needs. The increasing importance of synchrotron
radiation is evidenced by the increasing list of instruments dedicated to XRF and related methods.
A comprehensive list of XRF beamlines is reported in the recent paper from Karydas et al. [14]. It is
worth mentioning, however, that recent beamline development efforts are mostly aimed at reducing
the beam sizes, due to the scientific potential of microscopic methods e.g., in the environmental and life
sciences. Those experiments are particularly demanding in terms of beamtime allocation times, and do
not guarantee the efficient use of beam times when average XRF and XAS information is needed, as in
our case.

2.2. Sample Preparation and Handling

Dust extraction from ice core samples was undertaken in a clean room environment at the
EuroCold Lab facility, University Milano-Bicocca. After the removal with three successive baths in
ultra-pure water of the contaminated core surface, ice samples were melted at room temperature in a
laminar flow bench and dust was extracted by filtration [5]. All materials used during this procedure
are rinsed with ultrapure water and undergo a deep cleaning with hyper-pure nitric acid. The choice
of materials and the cleaning procedures have been developed over time, and a detailed analysis of
the filter materials using Neutron Activation Analysis has been recently reported in the papers of
Baccolo et al. [12]. For our synchrotron experiments dust was deposited on polycarbonate filters with
0.45 µm pore size. Filters were mounted on clean polytetrafluoroethylene holders. The effectiveness
of the cleaning protocol was verified on the beamline by comparing XRF measurements on filters
as-bought, after the cleaning procedure and filtering the ultrapure water used for container rinsing.

Considering that beamline measurement spaces are not usually prepared to operate in clean-room
conditions, we developed a protocol to minimize sample contamination during transport and handling
after filtration and during the preparation carried out in the EuroCold laboratory [15]. The samples
were transported in triple containment, in heat-sealed clean polyethylene bags. Outer and intermediate
containments were removed in Diamond clean room and sealed samples transferred to the beamline in
clean sealed containers. To allow a clean introduction of samples into the experimental chamber, the
latter was extended with an ambient pressure glove box (built in-house), nitrogen-filled, with internal
access to the experimental chamber sample load door. The last containment layer was removed just
before insertion of the PTFE filter support to the chamber holder with the help of clean tweezers. After
measurement, the samples were again sealed in the original envelopes before being returned to the clean
chamber for long-term storage. While this handling sequence is probably not critical for experiments
programmed in individual batches, it allows repeated measurements to be undertaken in different
experimental runs. Considering the intrinsic variability (including seasonal oscillations) of natural
dust composition deposited in ice cores, running acquisition campaigns in separate experimental visits
has allowed us to refine the sample selection on the basis of previous measurements, and to assess
the nature of outliers in the temporal sequence being analyzed. Maintaining clean sample conditions
after measurement has therefore allowed cross-checking of the experimental setups to occur, ensuring
compatibility of the results across different experiments.

For each experimental run, blank filters were prepared using the same methods as the dust
samples, and SR-XRF data were collected to validate the experimental run and ensure that during
transport or storage, no significant contamination occurred. Also, a calibration batch of reference
standards prepared with comparable amounts of NIST reference soil (NIST 2709a, San Juaquin soil [16])
was regularly measured.
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2.3. Experimental

For this work, we had access to two facilities: the Stanford Synchrotron Radiation Lightsource
(beamlines 6-2 and 7-2) and Diamond Light Source (beamline B18). In both cases, the beamlines were
equipped with double-crystal monochromators, equipped with Si(111) crystals. At SSRL the beam, the
liquid-nitrogen cooled monochromators were focused with mirrors in the vertical direction to give
a line beam profile of the sample for grazing-incidence data collection, with a beam vertical size of
approximately 200 µm. The experimental chamber for total reflection fluorescence and GI-XAS in
vertical deflection geometry was developed under the CRYOALP [12] program. Data were acquired
using a Silicon Drift detector from KETEK GmbH (Munchen, UK) with Canberra (now Mirion
technologies, Meriden, CT, USA) electronics. On B18, the beam was focused horizontally with a
FWHM of 200 µm for Total reflection X-Ray Fluorescence and Grazing Incidence X-ray Absorption
Spectroscopy acquisitions in the horizontal plane, and defocused to give a 1 × 1 mm2 beam footprint
on the sample. Membrane samples were aligned for conventional 45◦ incidence measurements. Data
were acquired with a Vortex 4-elements silicon drift detector from SII (Hitachi High Technologies
Science America, Nothridge, CA, USA), and Xmap (XIA LLC, Hayward, CA, USA) and XSPRESS3
(Quantum Detectors, Didcot, UK) electronics.

3. Results and Discussion

3.1. X-Ray Fluorescence and X-Ray Absorption Spectroscopy in Grazing Incidence Geometry

When the critical information to be extracted from a sample is coming from a surface, as in the case
of particulate deposited on a solid flat substrate, orienting the latter so the incoming beam is in grazing
incidence geometry substantially reduces the interaction with the support thanks to X-ray total external
reflection. In particular, the substrate does not generate diffuse scattering if its surface roughness is
low. The reflection critical angle, which allows the total reflection regime to be established, depends on
the substrate composition and X-ray beam energy. This setup takes advantage of a two-fold increase
in the amplitude signal obtainable from the creation of a stationary wave on the reflecting surface.
Finally, in this geometry, the beam footprint on the support gets significantly increased, allowing for
the detection of large surface sections.

We collected our initial set of data on Antarctic particulate samples at SSRL (beamlines 6-2 and
7-2) using a dedicated experimental chamber [17], and at Diamond Light Source (beamline B18). In
Figure 1 we compare XRF results from samples deposited on filters and analyzed through normal
incidence geometry with the ones deposited on Si wafers and measured in total reflection geometry.
The single measurement efficiency and data quality obtainable in total reflection mode are significantly
improved, as expected. The total reflection X-ray Fluorescence (TXRF) geometry allows us to probe
a large surface area, as the beam footprint on the sample is extended thanks to the 1/sin(θ) (θ being
the grazing incidence angle) geometrical factor; however, several considerations come into play. First,
this setup requires dedicated experimental systems, and total reflection setups are not commonly
available at XAS beamlines. This means that for long term programs, specialised chambers must be
developed and integrated with different synchrotron radiation facilities, and logistics aspects thus
have to be considered.

Other limitations of the TXRF method are: the need of focusing the beam down to a few hundred
microns; time consumption for the sample alignment, and the importance of keeping the beam position
extremely stabile during the measurements, in particular during XAS scans. In addition, the grazing
incidence angle must be adjusted with high accuracy, as the fluorescence line intensity of elements
present in the support is critically dependent on the angle. This is clearly essential in our case, as the
XRF analysis must include an accurate quantification of Silicon, which is present in the common clean
materials used as supports for TXRF analysis (commonly used are quartz and Si wafers). Alternative
materials to avoid interference with Si and most of the elements of interest for natural particulate
analysis are in practice not available; in particular, we found that plastic-based supports with had
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contaminations, inferior surface quality and the total reflection angles were significantly lower than
Si. Significantly heavier elements present lower energy absorption edges (L and M) that always fall
into the region of interest for major element analysis in natural systems. The deposition of particulate
on substrates requires additional manipulation steps, such as removal from filters with ultrapure
water and re-deposition on substrates, with additional risks of contamination. This deposition method
causes a visible “coffee stain” pattern on the substrate, which could lead to a fractionation of different
components leading to different results, depending on the part of the sample illuminated by the
beam [17].
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Figure 1. Comparison between TXRF and normal incidence XRF acquired on reference NIST soil
samples, with same amounts deposited. Apart from the overall higher intensity, the TXRF measurement
displays a significantly different Si signal intensity due to the substrate contribution, and at the
same time a lower elastic scattering contribution to the spectrum. The remaining signal from other
elements is consistent across the two measurements, indicating the background contribution from filter
contamination is negligible.

3.2. Normal Incidence Geometry

On the opposite side, the use of polymer membrane filters presents issues coming from the
nature of the material and the experimental arrangements. The incoming beam probes the whole
support thickness, so composition contamination of the filters will be more important than in total
reflection geometry (Figure 2 reports a comparison between XRF acquired on two blank filters—PMMA
and metacrylate—and a standard soil sample prepared depositing the smallest amount used in our
research). Minimizing the filter thickness is important as well. This does not only help with the direct
contamination signal, but helps reducing the overall diffuse beam scattering (a limiting factor for
fluorescence detectors for dilute components analysis). It is expected that most of the fluorescence
signal also from the low Z components should come from the front filter surface, so corrections for the
low energy efficiency are considered minor.

Regarding the sample preparation, filtering does not pose the same problems regarding potential
separation between components due to coffee stain. However, if the sample is deposited approximately
on the same surface (as with the use of common lab filtering systems, with a deposition diameter of
13 mm), the sample density “seen” by the beam will be significantly lower, as discussed.

At the same time, filtration on samples characterized by small particle numbers does not guarantee
a homogeneous deposition. In Figure 3, we present the composition profile acquired on a filter prepared
with this method. It is clear that significant variations across the sample diameter are present, i.e., up
to 50% for the Ca/Fe ratio.
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Figure 2. (a) Variation of background signal in vacuum and atmospheric pressure conditions from the
experimental chamber. The atmospheric pressure measurement shows, beyond the strong contribution
of Ar and direct scattering, a strong enhancement of signals coming from fluorescence from steel
components present in the experimental chamber materials, excited by the diffuse scattering. Visible lines
are Ar Kα and Kβ emission lines (main and escape peaks at low energy), Cr, Fe and Ni. (b) Comparison
between the experimental chamber background, spectra from one of many the polymer supports
considered (PMMA, polymethyl metacrilate) showing traces of sulfur contamination, a Nuclepore
polycarbonate blank filter before acid cleaning and a dilute NIST 2709a sample, consisting in 0.59 µg
mineral particles deposited on Nuclepore filter.
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Figure 3. Intensity ratios between different elemental components extracted from XRF spectra taken
at different vertical positions on a low concentration (0.59 µg/cm2) sample, deposited on nuclepore
filtersover a 13 mm diameter area. The total beam footprint on the sample was adjusted to match the
experimental step (1 × 1 mm2). The variability in the concentration ratios highlights that potential
composition variation artifacts could be introduced if the sample deposition happens on large surfaces.

This can be moderated with a reduction of the deposition area, and a change of the deposition
method to concentrate the sample in the smallest possible area of the filter surface. An additional step
in this direction has been undertaken by considering automated deposition systems [18], which proved
to be efficient in minimizing the amount of ice necessary to reach a desired sample concentration
on small areas (few mm2) that are directly comparable with the beam sizes attainable on modern
focused beamlines. This deposition could dramatically improve the homogeneity of the deposited
material and, at the same time, reduce both the deposition time and sample consumption, and increase
the local concentration of the sample on the filter. For XRF analysis, a limiting factor for reducing
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the detection limit is the presence of an experimental background signal. Several aspects affecting
the signal quality were taken into consideration. The general source for the background was found
to be diffuse scattering, causing secondary emission from the experimental chamber wall materials,
while contamination coming from the filters’ support was dealt with by using filter supports and
sample holders all manufactured in PTFE. Reduction of the scattering intensity and minimization of
the background signal has been obtained by:

(a) Reducing the low level, diffuse, out-of-focus contribution from the beamline optics (caused by
mirror coatings roughness and vacuum windows) using beam stripping slits placed just before
the ionization chamber monitoring the incoming beam intensity;

(b) Reducing further contributions from small angle scattering by the ionization chamber windows
(Kapton, thickness: 50 µm), by modifying the position of the ion chamber, increasing its distance
to the entrance of the experimental chamber and adding a plastic collimator at the entrance of the
chamber. The collimator, while still allowing for scanning the experimental chamber to map the
sample position, ensured any diffuse beam to propagate through the sample position to the end
aperture of the vacuum chamber (Figure 4);

(c) Reducing diffuse scattering from the residual gas in the vacuum chamber, improving the pumping
system (experiments were always run under turbo-molecular pumping, ensuring a measurement
pressure lower than 1 mbar);

(d) Filtering the fluorescence from the chamber walls by covering the internal walls with a 2 mm-thick
polycarbonate lining and ensuring the beam exit path is free from metal sections close to the
diffuse scattering from the sample support;

(e) Finally, minimizing the collection field of view by adding a clean PTFE collimator placed in front
of the 4-elements SDD detector.
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Figure 4. Layout of the experimental setup. In black are indicated the beam collimation components
(cleanup slits, experimental chamber and fluorescence detector collimator), reducing the spatial
distribution of beam diffused by optical elements and windows (in light blue). In light grey, the
vacuum chamber lining in polycarbonate used to minimize contributions of X-ray fluorescence from
the experimental chamber, excited from beam scattered from the filter and sample support.

3.3. X-Ray Absorption Spectroscopy

The optimization of the experimental setup for XRF measurements allowed us to collect, in an
efficient way, a full set of X-ray Absorption Spectroscopy data at the edge of elements of interest to
obtain the information on oxidation states and element-specific coordination that XAS provides to
support, in particular, through direct comparison with relevant standards, the identification of the
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mineral composition of our samples [11]. In particular, we were able to collect data at the Fe, Ti and Ca
K edges on a significant set of samples, across the last climatic transition, during a long-term proposal
on B18 (Figure 5). These elements are important in the case of ice core particulate in Antarctica, as
information on Fe speciation can lead to an identification of the dust sources. The relationship between
Ti and Fe chemistry brings information on local vs. long range transport in Antarctica, and Ca can be
of continental or marine origin. The samples’ concentration was optimized to give a significant total
photon count rate on the fluorescence detector, which was limited to approximately 200 kcps/element
over all the project run to ensure all samples data were acquired in the same experimental conditions
(in particular, the same maximum detector dead time fraction which is dependent on the total count
rate). The total signal from polycarbonate filters at the energies corresponding to the Fe K edge
absorption edge measurements (up to 7.8 keV) was found to always be in the ideal detector range,
with samples containing total amounts of particulate in the range of ~3–17 µg, distributed over an
approximate surface of 0.25 cm2. It is worth noting that this indicates (at least for the Fe K edge)
that no significant advantages would be attainable from the use of more intense sources, such as
wiggler/undulator based beamlines, as the experiment duration would be detector-limited. An optimal
acquisition time efficiency was obtained using a continuous energy scanning mechanism—already
developed on B18—so minimal dead times during acquisitions were present. For the Fe K edge, a
total acquisition time of up to ~15 min was sufficient for extended XANES spectra (data were collected
usually up to 7500 eV to ensure accurate normalization, and up to 7800 eV for a reduced number of
concentrated samples to allow for EXAFS evaluation).
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Figure 5. X-ray Absorption spectra collected at the Fe, Ti and Ca K-edge on a representative sample
(1.2 µg/cm2 of Antarctic dust on a polycarbonate membrane) from Talos Dome. The energy axis is
relative to respective absorption edges. The total acquisition time for Fe K-edge was 12 min, while for
Ti and Ca we collected data for 30 and 45 min, respectively.

Using continuous scans [19], we could collect several measurement repetitions over short time
periods (approximately 3 min/scan), which allowed us to monitor potential radiation-induced effects
such as photoreduction/oxidation, and to adjust the total acquisition time per sample to obtain a
homogeneous data quality across the whole sample set. With the SDD detector placed at ~50 mm
from the sample surface, it was possible during the same experimental session to acquire XANES data
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from lower energy edges (Ca and Ti), with sufficient quality to allow for a good recognition of the
coordination environment of those two elements. It is important to note that the signal drops rapidly at
low energies, because of the lower fluorescence yield, so acquisition times were proportionally longer
(we limited our collection time to 1 h/sample).

This setup allowed us to collect a full set of XRF and XAS data on the whole timespan covered by
the Talos Dome perforation, located on the East Antarctic Ice Sheet [20]. This is a set of over 200 XRF and
XAS individual acquisitions, which includes a significant fraction of data taken on background, blanks,
and repetition measurements made necessary by the need to ensure that reproducible experimental
conditions are met for all the experiments, split across several visits over a long-term project at
Diamond Light Source. The first experiments were dedicated exclusively to the development and
optimization of the acquisition and sample preparation, and determined, for example, the strategy of
acquiring only data from filter samples, excluding the route of grazing-incidence measurements given
the experimental uncertainties evidenced in the first runs.

4. Conclusions

The analysis of the insoluble fraction deposited in deep ice cores requires the development of
techniques and protocols which are specific to this field. The small amounts of material available for
analysis represent only one of the aspects to be taken into consideration when planning experimental
campaigns, in particular if they rely on instrumentation available at large scale facilities. Instrumentation
development in close collaboration with the facility staff substantially reduces the detection limits of
the techniques, but careful sample preparation must be taken into consideration from the beginning,
and must be an integral part of the experimental plans. The facts that access to beamtime is restricted
and experimental campaigns could be divided in successive experimental visits, which are necessary
to collect enough experimental points in the timescale covered by deep ice core to give statistically
significant results, challenge the reproducibility of the instrumentation and of the preparation procedure,
and require careful cross-checking and validation. We achieved a robust analysis set of consistent
data on deep ice cores by incrementally developing these methods, thanks to a long term and
close collaboration of all the parties involved, both from the scientific and technical sides, and by
dedicating significant part of the beamtime to the analysis of instrument performance via long-term
experimental campaigns.
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