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Whether pattern-parsing mechanisms are specific to language or apply across multiple
cognitive domains remains unresolved. Formal language theory provides a mathematical
framework for classifying pattern-generating rule sets (or “grammars”) according to
complexity. This framework applies to patterns at any level of complexity, stretching
from simple sequences, to highly complex tree-like or net-like structures, to any Turing-
computable set of strings. Here, we explored human pattern-processing capabilities in
the visual domain by generating abstract visual sequences made up of abstract tiles
differing in form and color. We constructed different sets of sequences, using artificial
“grammars” (rule sets) at three key complexity levels. Because human linguistic syntax
is classed as “mildly context-sensitive,” we specifically included a visual grammar at
this complexity level. Acquisition of these three grammars was tested in an artificial
grammar-learning paradigm: after exposure to a set of well-formed strings, participants
were asked to discriminate novel grammatical patterns from non-grammatical patterns.
Participants successfully acquired all three grammars after only minutes of exposure,
correctly generalizing to novel stimuli and to novel stimulus lengths. A Bayesian analysis
excluded multiple alternative hypotheses and shows that the success in rule acquisition
applies both at the group level and for most participants analyzed individually. These
experimental results demonstrate rapid pattern learning for abstract visual patterns,
extending to the mildly context-sensitive level characterizing language. We suggest that
a formal equivalence of processing at the mildly context sensitive level in the visual
and linguistic domains implies that cognitive mechanisms with the computational power
to process linguistic syntax are not specific to the domain of language, but extend to
abstract visual patterns with no meaning.

Keywords: artificial grammar learning, working memory, formal language theory, long-distance dependencies,
mildly context sensitive grammars
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INTRODUCTION

Recent years have seen the rise of a new approach to investigating
higher cognition in humans and other animals, specifically the
ability to recognize patterns of various types and complexity
(Saffran et al., 1996; Marcus et al., 1999; Fitch and Friederici, 2012;
ten Cate and Okanoya, 2012).

These studies have examined patterns at different levels
of complexity (Fitch and Hauser, 2004; Uddén et al., 2012),
across different sensory and cognitive domains including spoken,
musical or visual stimuli (Saffran et al., 1999, 2007), across
different categories of humans [e.g., infants, normal adults, or
patients (Reber and Squire, 1999; Saffran et al., 1999)], and
across different species of birds and mammals (e.g., Gentner
et al., 2006; Murphy et al., 2008; Stobbe et al., 2012; Wilson
et al., 2013; Sonnweber et al., 2015). Most of these studies
use some variant of “artificial grammar learning” (AGL: Reber,
1967), in which some specific rule, chosen by the experimenter,
is used to generate stimuli which are then presented to
participants during an exposure stage. Then, during a test
stage, novel stimuli that either follow the chosen pattern or
violate it in some way are used to probe what (if anything)
the participant learned about the stimuli and the underlying
pattern.

Because different pattern-generating rule systems (technically
termed “grammars”) can be objectively ranked using the
mathematical framework of formal language theory (Jäger
and Rogers, 2012), patterns of success or failure can be
used to evaluate the abilities of different species or human
populations to recognize and generalize rules at different
levels of complexity (Fitch and Friederici, 2012; Wilson et al.,
2013) along with the brain circuitry used to process different
types of patterns (Friederici et al., 2006; Pulvermüller, 2010).
Similarities in human pattern processing across different sensory
domains suggest that pattern-processing abilities generalize
across domains and modalities and are not specific to language
(Saffran et al., 1999, 2007). Furthermore, comparative analyses
have led to the proposal that (adult) humans possess the
ability to process rule systems at a higher formal level of
complexity than do animals (Fitch and Hauser, 2004; Fitch,
2014). However, the degree to which pattern perception is
domain-specific or modality-general remains debated (Frost
et al., 2015), as does the degree to which failures of non-
human species to master certain rule types truly reflects cognitive
limitations at the rule-learning level (ten Cate and Okanoya,
2012).

There are several core empirical issues that hinder resolution
of these multiple open debates. The first concerns whether
differences found between species truly represent differences in
rule appreciation, or could result from simpler differences such
as working memory limitations (a core issue for any type of
complex auditory stimulus). The second concerns the type of
items used to generate stimuli, which vary considerably across
studies. For acoustic stimuli, human syllables may be more
salient or discriminable to people than to animals; similarly
bird or monkey calls elements may be more meaningful or
arousing to conspecifics (Chen et al., 2015). Furthermore,

the use of auditory stimuli intrinsically limits the population
tested (e.g., deaf participants can only be tested with visual
stimuli). In the visual domain, a screen image that represents
a dog or flower to human eyes will be off-color for most
animals due to retinal differences in color vision and cone
opsins (D’Eath, 1998). Letter shapes will be more familiar
to adult literate humans than to infants or animals, while
handshapes may be more meaningful to signers than non-
signers.

In this study we introduce a new visual AGL paradigm
to help resolve these empirical issues. We use stimuli made
up of abstract visual tiles that can be presented sequentially
(at differing rates) or simultaneously, granting us tight control
over working memory issues. The tiles are non-representational,
and thus equally unfamiliar to all participants (unlike the
recorded speech syllables, letter strings, images, or animal calls
used in most previous studies). As visual stimuli, they can
be used to test deaf participants. Finally, and crucially, the
visual elements can be flexibly arranged to examine all of the
grammar types and complexity levels used in previous AGL
studies, a capability we illustrate in the current study by testing
all linguistically relevant levels of the formal language hierarchy
[aka the extended “Chomsky hierarchy” (Jäger and Rogers,
2012)].

We exposed normal adults to grammatical sequences
(“exposure phase”), and then examined the generalizations they
made by presenting an assortment of novel test stimuli (“test
phase”). Stimuli were generated with grammars at three key
levels: a finite-state grammar, ABNA (Ravignani et al., 2013),
possessing long-distance dependencies (where N indicates one or
more Bs, so stimuli included “ABBA,” “ABBBBA,” etc.), a context-
free “mirror” grammar, with nested dependencies (“AAB BAA”),
and a mildly-context-sensitive “copy grammar” with crossed
dependencies (“AAB AAB”).

Since Chomsky (1956) it has been widely recognized
that human linguistic syntax requires computations that go
beyond the simplest level of complexity (“regular” or “finite-
state” grammars) in the formal language hierarchy. However,
precisely what level supra-regular power linguistic syntax
requires remained controversial until Shieber (1985) presented
convincing empirical arguments that computations at the
next complexity level, context-free grammars, are also not
adequate to explain certain forms of crossing dependencies
observed in natural languages, including Dutch and Swiss
German. Computational linguists today agree that human
syntactic competence must extend into the so-called “mildly
context sensitive” level, that allows both nested and crossing
dependencies (Stabler, 2004). In formal terms the mirror
grammar (WWR) used here is located at the context free level
(CFG) and the copy grammar (WW) at the mildly context-
sensitive level (MCS) (Joshi et al., 1991; Jäger and Rogers,
2012).

Successful recognition of each grammar type requires the
storage of at least one item in working memory, and our
paradigm permits precise control over the length and complexity
of the stimuli. We assessed mastery of the rules with two tests
in our experiment: (a) whether participants could generalize to
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new numbers of syllables (N lower or higher than previously
experienced) and (b) whether stimuli with missing elements (e.g.,
ABB AB) could be detected as erroneous.

All three grammars tested here contain at least one long-
distance dependency (two dependent elements separated by at
least one intervening element). In ABNA, the dependency exists
solely between the first and last A, while in the other two
grammars the number of dependencies is equal to the length of
the first half of the sequence, and the corresponding dependencies
in the second half are either nested or “mirrored” (in the case of
WWR) or crossed (WW), and thus increase with N.

Both intuition and previous research suggest that crossing
dependencies, as found in the copy grammar, although
theoretically requiring more challenging computations, might
be easier to process. For example, Bach et al. (1986) compared
the abilities of Dutch and German speakers to process crossing
and nested (center-embedded) dependencies, respectively, and
documented an advantage for Dutch speakers, which they
interpreted as reflecting a significant preference for the (Dutch-
style) crossing dependency type for complex sentences. They
interpreted these data as ruling out a push-down stack model
of sentence processing (a push-down stack is the simplest
computational mechanism that can generate and parse center-
embedding). This prompted the introduction of embedded
pushdown automata (EPDA, Joshi, 1990), which allow the
processing of crossed dependencies using multiple embedded
stacks. EPDAs can process both crossed and nested dependencies,
but the latter are computationally more costly (in terms of
numbers of items that have to be stored during computation).
This would theoretically justify the intuition that crossed
dependencies, despite being formally more complex, might
nonetheless be processed more easily by humans, since load
on working memory may be less than for nested dependencies.
However, since these seminal experiments were based on natural
language sentences, they had to leave other key variables
(such as semantic content and lexical access) uncontrolled.
While artificial stimuli do not have the richness of natural
language, they allow key experimental variables to be more
easily controlled, which is one of the reasons why they are
predominantly used in AGL experiments. Both crossing and
nested dependencies require the perceiver to maintain an
item in memory while searching for its match later in the
stimulus, and the number of remembered items increases with
more dependencies. However, even simple finite-state grammars
can have non-adjacent dependencies (Chomsky, 1956), so
this “holding time” in working memory can and should be
controlled in experiments seeking to understand structural
processing.

Visual stimuli allowed us to minimize working memory load:
in all conditions, abstract visual “tiles” appeared sequentially
in both space and time and remained onscreen thereafter.
Our stimuli also allow us to separate syntactic from semantic
complexity, which were intertwined in Bach et al. (1986).
By minimizing meaningfulness and titrating memory load
we aimed to gain a clearer view of the syntactic processing
differences between different types of long-distance dependencies
independent of semantic interpretation.

MATERIALS AND METHODS

Stimuli
Video stimuli in mp4 format were generated using Python
(v. 2.7)1 and Quicktime (v. 7.6.6, Apple Inc.). Sequences consisted
of small square non-representational elements that appeared
sequentially on a black background at a rate of 6 frames per
second, that is, a new element appeared every 166 milliseconds
(ms), directly adjacent to the location of the previous element,
so the entire sequence was completed one by one, akin to
a word being typed. We also conducted an experiment (see
Supplementary Material) where only one element was ever shown
at a time, which posed a larger strain on working memory.
Performance for this condition was very poor however, with
failure to generalize to novel N for both copy and mirror
grammars.

The individual elements were 20 × 20 pixels. In the middle
of the sequence (for Copy and Mirror) or between As and Bs (for
ABNA) a black rectangle (16× 20 pixels) was presented, resulting
in a temporal pause of 166 ms and a spatial gap of 16 pixels per
black rectangle. Pilot work suggested that participants were not
easily able to solve the Mirror and Copy tasks without such an
overt marker of sequence structure (cf. Morgan and Newport,
1981).

The twelve A tile elements (Figure 1) used a gray/purple
color scheme and had rounded, nested shapes, while the twelve
B elements were reddish and greenish and consisted of un-nested
angular shapes [similar to stimuli used in (Stobbe et al., 2012)].
Similar nested shapes as in our A shapes have been used by Pothos
and Bailey (2000), however, in our case the order within the
nested shapes themselves was not meaningful. For each sequence,
shapes were randomly chosen without replacement (Figure 2
gives examples of complete sequences).

Participants
We recruited 20 Italian speaking participants (Mage = 25.5 years,
14 females, 6 males) from the University of Milan-Bicocca
community. One additional participant was excluded as he did
not reach the training criterion (see below). Participants gave
their written informed consent prior to taking part and received
course credit. The study was approved by the ethics committee of
the University of Milan-Bicocca (approval number Prot. 204).

Procedure
Training
Prior to testing, participants completed a training session using
simple ABN sequences (used in many previous studies, Fitch and
Hauser, 2004) to familiarize them with the procedure. They had
to reach a criterion of at least 12 correct choices out of 15 in
this training session (Exact binomial test, p = 0.02); participants
could repeat the training twice. If they did not reach this criterion
after three training runs, they were excluded from further testing
(N = 1). Only during the warm-up grammar was the prompt “Si o
No” (Yes or No) displayed after each sequence. Participants also

1www.python.org
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FIGURE 1 | Examples of sequence elements (top rows: (A) elements, bottom rows: (B) elements).

received oral instructions: “Ora il tuo compito è decidere se ogni
nuovo video che vedi segue lo stesso schema di quelli della fase
di familiarizzazione oppure no” (Roughly: “Now your task is to
decide if each new video that you see follows the same schema as
those of the familiarization phase or not”).

Exposure
Each participant was tested on each grammar in random order.
The exposure phase for each grammar lasted about 2 min. During
the exposure phase participants saw 30 grammatical sequences
with N = 2, N = 3, and N = 5. All participants saw the same
sequences, but in a different randomized order.

Testing
In the test phase we showed individual sequences. After the
final sequence element had appeared, the screen went blank (to
discourage explicit counting or other slow conscious comparison
strategies) and participants were prompted to indicate whether
they thought the sequences followed the same schema as those
they had seen during the exposure phase. Using a keyboard,
participants pressed a key labeled with a green “Si” (Yes) if
they thought the sequence followed the same rule, or a key
marked with a red “No” if not. The response keys were C and
N, and the placement of the stickers was counterbalanced across
participants. Participants could not submit an answer before the
sequence was completed. Response time was not limited and no
feedback was given.

In total, there were 87 test stimuli for each grammar,
summarized in Table 1. Twenty were novel exemplars of N = 2
and N = 3 stimuli. Participants were also tested on N = 4
and N = 6 sequences. N = 6 sequences required spontaneous

generalization beyond the previously encountered N. N = 4
sequences were also novel to the participants, but did not require
generalizing beyond the observed Ns (suggested by Zuidema
(2013) as a control for failure due to increased stimulus length].

The most critical test requires participants to distinguish
valid extensions from extensions with missing elements (i.e.,
incomplete dependencies). Grammatical extensions can be
accepted, and those with missing elements rejected, only if a
generative form of the underlying grammar has been acquired. As
distractor trials, we also included strings with the correct number
of elements, but incorrect category members, for example
ABB ABA.

Analyses
Statistical analyses were conducted in the R statistical
environment (v 3.3.3). For the Bayesian analysis, the consistency
between participants’ responses and those expected for the
hypothesized suite of possible grammars was assessed using
Generalized Linear Mixed Models (GLMMs) fit with the
‘MCMCglmm’ package (Hadfield, 2010). Participants’ responses
per trial were coded as being either consistent or inconsistent
with the hypothesized grammars for each experimental session,
and we subsequently fit univariate GLMMs for each set of
trial-level responses (Bernoulli distribution, logit link function,
average participant intercept term, and a participant-level
random intercept effect). Model parameters were estimated using
Markov Chain Monte Carlo (MCMC) sampling to facilitate
unbiased estimation of marginal parameter densities, as well as to
effectively quantify parameter uncertainty for hypothesis testing
(Zhao et al., 2006). Weakly informative parameter expanded
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FIGURE 2 | Examples of stimuli sequences for all three grammars with N = 3.

priors were specified for the participant random effect variance
component to enhance MCMC mixing properties (Gelman,
2006), and diffuse normal priors were specified for the average
participant intercept. Given that overdispersion cannot be
estimated for repeated measures of a binary response variable
(Skrondal and Rabe-Hesketh, 2007), the residual variance was
fixed at 1 during model estimation. The posterior distribution of
variance components and predicted intercepts were subsequently
rescaled to approximate posterior distributions with 0 residual
variance (Diggle et al., 2002). The size of the MCMC chain
was adjusted to produce effective sizes of at least 1,000 samples
for all intercept terms. To enhance the precision of parameter

estimates, we did not thin MCMC chains (cf. Link and Eaton,
2012).

We first examined whether responses across the set of
grammars were consistent with randomly consistent responses.
If most participants induced the intended “target” grammar, then
the target grammars would exhibit the highest probability of
a consistent response, while most alternative grammars would
be consistent with chance performance (50%). We then formed
log odds ratios (logORs) comparing the logit-scale average
participant intercept posteriors for the target grammar with
that of each alternative model, again predicting that the target
grammars would exhibit higher relative odds than the alternates.
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TABLE 1 | Summary of test stimuli.

Condition ABNA Mirror Copy

Correct (N = 2,3) 20 20 20

Generalization (N = 4) 10 10 10

Generalization (N = 6) 6 6 6

Generalization with missing element (N = 4) 10 10 10

Generalization with missing element (N = 6) 6 6 6

Generalization with mismatched element (N = 4) 10 10 10

Missing element (N = 2,3) 10 10 10

Mismatched element (N = 2,3) 15 15 15

Total 87 87 87

Log odds estimates were used for these analyses to correct for the
skewness of the raw OR distribution.

After considering average performance across participants,
we further investigated performance within each participant by
calculating logORs between the predicted participant intercepts
for each grammar model. For each target grammar, we
considered an effect statistically significant if the 95% highest
posterior density credibility interval (95% CI) for that grammar
excluded alternative hypotheses. Note that the Bayesian GLMMs
used here reduce the inferential risks of these multiple
comparisons through partial pooling of the random effect
estimates toward the average participant intercept (Gelman et al.,
2012).

After comparing the target and alternative grammars across
and within participants, we further assessed whether participants
exhibited consistent individual differences in their ability to
acquire and/or appropriately apply the target grammars. The
degree of consistent among-participant variance in performance
across trials was quantified using the intraclass correlation
coefficient for the latent logistic distribution (Nakagawa and
Schielzeth, 2010). We then further investigated the degree
to which consistent responses for the three target grammars
correlated across participants by specifying a multi-response
GLMM with grammar-specific intercepts and unstructured
covariance between the participant identity random effects.
If positive correlations are detected across the experimental
sessions, among-participant variance for the target grammars
may reflect individual differences in some more generalized
aspect of their performance. A more detailed theoretical overview
of our statistical analyses with accompanying R code and a brief
tutorial are provided in the Electronic Supplementary Material
(ESM) to assist other researchers interested in applying our
methods in future AGL studies. Our data, stimuli and code are
available on request from the senior author (WTF).

RESULTS

Overall Performance
We first analyzed basic metrics of successful grammar
acquisition. For each grammar, we used Wilcoxon signed
rank tests to compare the responses to grammatical and
ungrammatical stimuli (the latter violating the experimenters’

intended grammar). At the group level, we analyzed the
percentage of “same” responses (i.e., the participant found it
congruent with the exposure stimuli) for grammatical and
ungrammatical stimuli. For ABNA, “same” responses were made
to 94.3% of grammatical and only 14.6% of ungrammatical
strings (W = 400, p < 0.001, effect size: Cohen’s d = 4.97).
For the mirror grammar, participants responded “same” to
90.7% of grammatical and 19.5% of ungrammatical strings
(W = 397, p < 0.001, effect size d = 4). For the copy grammar,
“same” responses were given to 91.8% of grammatical and
26.9% of ungrammatical strings (W = 397, p < 0.001, effect
size d = 3.5). Thus, overall, participants successfully rejected
ungrammatical foils and accepted novel grammatical strings
for all three grammars. These results show that participants
learned to recognize the exposure pattern, and were able to
generalize beyond the previously seen exposure sequences to
novel sequences.

We next examined generalization to novel sequences with
lengths different from those in the training set. Tile number was
N = 2, 3, and 5 in the exposure stimuli (yielding total string
length of N + 2 for ABNA and N∗2 for Mirror and Copy, e.g.,
for N = 3 sequences for ABNA total length was 5, while it was 6
for Mirror and Copy). Participants again showed a significantly
higher percentage of “same” answers to grammatical N = 4
sequences than for incorrect “foil” sequences with incomplete
dependencies (Figure 3, ABNA: W = 388.5, p < 0.001, d’ = 2.88,
Mirror: W = 378, p < 0.001, d’ = 2.29, Copy: W = 385, p < 0.001,
d’ = 2.23). Thus, participants readily generalized to stimulus
lengths intermediate between those observed in exposure, and
rejected ill-formed incomplete stimuli.

Participants also had a significantly higher percentage of
correct “same” answers to novel N = 6 sequences than for
sequences with incomplete dependencies (Figure 4, ABNA:
W = 398, p < 0.001, d’ = 2.32, Mirror: W = 313.5, p = 0.002,
d’ = 1.1, Copy: W = 344, p < 0.001, d’ = 1.07).

FIGURE 3 | Percentage of “same” response (±SEM) for novel grammatical
N = 4 sequences and ungrammatical sequences with incomplete
dependencies.

Frontiers in Psychology | www.frontiersin.org 6 July 2018 | Volume 9 | Article 1210

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-01210 July 23, 2018 Time: 18:10 # 7

Westphal-Fitch et al. Visual Artificial Grammar Learning

FIGURE 4 | Percentage of “same” responses (±SEM) for novel grammatical
N = 6 sequences and ungrammatical sequences with incomplete
dependencies.

Individual Performance
We next analyzed individual performance by asking, for each
participant, whether their number of “correct” answers exceeded
a criterion value (determined by the minimal number to achieve
a binomial test p < 0.05; this actual p varied from 0.01 to 0.049
depending upon the sample size). Table 2 gives the number
of participants who exceeded this criterion, and shows that
all participants for all grammars could distinguish grammatical
from ungrammatical stimuli that were length N = 2 and 3
(the lengths encountered during training). For ABNA and copy
grammars, most participants successfully generalized to N = 4
(19/20 and 16/20, respectively), while only 7/20 did so for
the mirror grammar. Generalization to N = 6 (beyond the
previously encountered sequence lengths) occurred only for
about a third of participants for copy and mirror grammars (8/20
and 7/20, respectively), while individual performance remained
high for ABNA for N = 6 (18/20). Thus, although all individuals
detected the underlying pattern and could apply it to same-length
stimuli, there was considerable variability in the degree to which
participants generalized beyond these lengths.

Since each participant was tested on each grammar, but in
different orders, we also tested whether the sequence of testing
had an effect. There was a significant difference between the
performance for sessions run first, second or third only for
the mirror grammar (Kruskal–Wallis test; χ2 = 6.46, df = 2,
p = 0.04), but post hoc pairwise comparisons did not reach
significance for Bonferroni-corrected p-values. This suggests that
prior experience with one type of sequence pattern does not
greatly influence the processing of other types of patterns.

Performance declined significantly as stimulus length
increased for multi-dependency Copy and Mirror strings, but
not for ABNA strings. We found no performance differences
between the string lengths for ABNA (Kruskal-Wallis rank sum
test, χ2 = 2.85, df = 2, p = 0.24). Strings with missing elements
in the mirror and copy conditions had lengths 3, 5, 7, and 11,

TABLE 2 | Individual participant performance on novel stimuli in the test phase
(number of participants successful, out of 20 participants total for each grammar).

Condition ABNA Mirror Copy

N = 2,3 and mismatches 20 (100%) 20 (100%) 20 (100%)

N = 4 and mismatches 19 (95%) 7 (35%) 16 (80%)

N = 6 and mismatches 18 (90%) 7 (35%) 8 (40%)

Success was evaluated by the following criteria: Grammatical N = 2 and 3
sequences and incomplete dependencies (at least 20/30 trials correct, binomial
p = 0.049). Grammatical N = 4 sequences and incomplete dependencies (at least
15/20 correct, p = 0.02). Grammatical N = 6 and sequences and incomplete
dependencies (at least 10/12 correct, p = 0.02). Strings of the copy grammar
consisted of a repetition of the first half of the string (AABAAB), while strings of the
mirror grammar contained a repetition of the first half in reversed order (AABBAA).
ABNA strings began and ended with an A, with a varying number of B in the middle
(ABBBA).

TABLE 3 | Individual performance (number successful, out of 20 participants total)
on the distracter task (sequence with a single incorrect tile) for N = 2, 3, and 4.

Condition ABNA Mirror Copy

N = 2,3 14 (70%) 15 (75%) 11 (75%)

N = 4 14 (70%) 11 (75%) 11 (75%)

Success criterion was at least 9/10 correct (N = 4, binomial p = 0.01) or 12/15
correct (N = 2, 3, p = 0.02).

while the lengths for ABNA were 3, 5, and 7. For the mirror
and copy grammars we found significant differences among
the string lengths (χ2 > 12.66, p < 0.005). For the mirror
grammar, the significant differences lay between lengths 3/4 and
11/12 (W = 316.5, p = 0.001, effect size d = 5.75) and 5/6 and
11/12 (W = 327, p = < 0.001, effect size d = 5.72). For the copy
grammar, the significant difference lay between lengths 3/4 and
11/12 (W = 318.5, p = 0.001, Bonferroni-corrected α = 0.008,
Effect size d = 5.01). Performance in the distracter task (sequence
had the correct number of tiles, but one tile had the wrong
category membership) is summarized in Table 3.

Bayesian Model Selection Analysis
A key issue in AGL is that participants may show above-chance
performance, but nonetheless have induced a grammar different
from the exact intended “target” grammar the experimenters
used to generate the stimuli (van Heijningen et al., 2009; Fitch
and Friederici, 2012; Ravignani et al., 2015). This would be
particularly problematic if an alternate grammar at a lower
level of grammatical complexity could be adopted and still yield
“successful” performance, as observed in previous experiments
with animals (van Heijningen et al., 2009; Ravignani et al.,
2015). To evaluate this possibility we analyzed our data using a
multilevel Bayesian modeling framework, implemented in R (see
ESM for a detailed description of our statistical framework). The
consistency of responses for each particular test string with a large
set of possible alternative grammars was first computed for each
participant (for a description of this alternate set see the ESM).
The probability of each of these possible grammars being the one
adopted by that participant could then be computed, using Monte
Carlo Markov Chain (MCMC) simulations to fit parameters and
quantify uncertainty in parameter values. Finally, we computed

Frontiers in Psychology | www.frontiersin.org 7 July 2018 | Volume 9 | Article 1210

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-01210 July 23, 2018 Time: 18:10 # 8

Westphal-Fitch et al. Visual Artificial Grammar Learning

the odds ratio, relative to our intended target grammar, for each
of these possible alternatives. Because of skewness, the natural log
odds ratio (base e log, “logOR” hereafter) is presented (so logOR
of 2 means the odds of utilizing the target grammar are e2 or 7.4
times larger than the alternative).

We first examined whether responses across the set of
grammars were consistent with random responses. If most
participants induced the intended “target” grammar, then the
target grammars would exhibit the highest probability of a
consistent response per trial, while most alternative grammars
would be consistent with chance performance (p = 0.50).
If there is no overlap between the 95% credibility intervals
for the target grammar and any of the other grammars, we
can confidently conclude that the participants’ behavior was
significantly more likely to be consistent with that target
relative to any of the alternatives. We further estimated the
posterior probability of utilizing each grammar by quantifying
the proportion of MCMC samples that overlapped alternative
hypotheses (hereafter pMCMC). In particular, pMCMC represents
the proportion of posterior samples ≤ 0.50 for the probability
of a consistent response and ≤0 for the target to alternative
grammar logOR. In the case that an alternative grammar on
average received stronger posterior support than the target, we
computed the proportion of samples where logOR ≥ 0 as a
measure of support for the alternative grammar.

Average participant responses provided strong support for
successful induction of the target grammars (see Figure 5).
As predicted, high probabilities of success were found for the
copy (Mp = 0.85, 95% CI [0.78, 0.92], pMCMC < 0.001), mirror
(Mp = 0.89, 95% CI [0.83, 0.95], pMCMC < 0.001), and ABNA
(Mp = 0.95, 95% CI [0.90, 0.99], pMCMC < 0.001) target
grammars. For the mirror session, all of the alternative grammars
were consistent with random responses. For copy, the BFirst
grammar exhibited a low but above chance probability of success
(M = 0.55, 95% CI [0.52, 0.57], pMCMC < 0.001). Nonetheless,
the odds of the average participant responding consistently with
the copy grammar are 5 times larger than the odds for BFirst
(MLogOR = 1.61, 95% CI [1.03, 2.18], pMCMC < 0.001; see
ESM Figure S4.1). In ABNA, many of the alternative grammars
exhibited above chance probabilities of success, but the logORs
all suggested significantly higher odds for ABNA (ranging from
AEdge∗ and AEdge + : MLogOR = 1.54, 95% CI [0.60, 2.54],
pMCMC < 0.001; to BFirst: MLogOR = 3.68, 95% CI [2.75, 4.68],
pMCMC < 0.001), see ESM Figure S4.1.

Individual Participant Model Selection
Analysis
After considering average performance across participants, we
further investigated individual performance (within participant)
by calculating logOR between the predicted participant intercepts
for each grammar model. Again, for each target grammar, we
computed pMCMC values and considered an effect statistically
significant if the 95% highest posterior density credibility interval
(95% CI) for that grammar excluded all alternative hypotheses.
For both copy and mirror, we found that the majority of
participants were significantly more likely to have utilized

the target rather than alternative grammars, although some
participants exhibited marginally lower differences in their odds
of using the target or an alternative grammar (see ESM Figures
S4.2 and S4.3). For ABNA, however, we could not exclude the
possibility that some participants induced a different finite-state
grammar, as five participants’ responses were significantly more
consistent with the AEdge+ and AEdge∗ alternative grammars
(pMCMC < 0.05; see ESM Figure S4.4), which require As at the
beginning and end, but ignore anything in between (this could be
empty, or contain any other combination of As or Bs).

Finally, after comparing the target and alternative grammars
between and within participants, we further assessed whether
participants exhibited consistent individual differences in
their ability to acquire and/or appropriately apply the target
grammars. The degree of consistent among-participant variance
in performance across grammars was quantified using the
intraclass correlation coefficient. Participants exhibited
consistent between-individual differences across the copy
(ICC = 0.30, 95% CI [0.16, 0.46]), mirror (ICC = 0.34, 95%
CI [0.17, 0.53]), and ABNA (ICC = 0.50, 95% CI [0.30, 0.72])
target grammars. We then utilized a multi-response model
to quantify correlations in participants’ performance across
target grammars, and we calculated pMCMC as the proportion
of posterior correlation estimates ≤ 0. We found relatively high
correlations, indicating that some participants were consistently
better than others across all grammars. Because our participants
performed no tasks other than pattern perception, we cannot
determine whether these consistent individual differences reflect
some general motivational or attentional variable, or a cognitive
mechanism more specific to pattern perception.

Among-participant correlation between copy and mirror
grammars was 0.47 (0.08, 0.81)∗, 0.59 (0.25, 0.89)∗∗ between
copy and ABNA and 0.52 (0.15, 0.85)∗ between mirror and
ABNA (∗ = pMCMC < 0.05; ∗∗ = pMCMC < 0.01). We report
posterior correlations with corresponding 95% highest posterior
density credibility intervals. Correlations were derived from the
estimated covariance between participant random effects across
the three target grammars in a multi-response multilevel model.

DISCUSSION

To forestall confusion, note that we use the term “grammar”
here in a specific technical manner, to indicate any rule system
that generates stimuli possessing some type of pattern. This is
consistent with a voluminous literature on AGL dating back
to Arthur Reber’s work (Reber, 1967) where use of the term
“grammar” by itself carries no implications about the relevance
of the rule system to human language. Furthermore, the type
of items used to construct stimuli, whether visual, auditory,
or tactile, are irrelevant to the underlying patterns that are
investigated in these experiments, and a series of ones and
zeros could be used without loss of generality (Nowak et al.,
2002): the theory remains the same and the same descriptive
machinery applies. One could perform the same experiment with
images of cats and dogs, following Saffran et al. (1996), and
the same principles would apply (though in that case it would
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FIGURE 5 | Probability of each alternative grammar. Each dot represents the mean probability of the grammar given on the y axis given all participants’ responses
combined, with error bars representing 95% credibility intervals, as calculated by Monte Carlo Markov Chain simulations in a Bayesian framework (see text for
details). The line at 50% shows the success expected by chance in our two-alternative forced-choice paradigm. Left panel: Results for ABNA grammar (finite-state).
Middle panel: Results for mirror grammar (context-free). Right panel: Results for copy grammar (mildly context-sensitive).

be more likely that participants relied on verbal categorization,
e.g., “cat, dog, dog, cat”). Second, while we can be certain about
the precise grammar (set of rules) we used to generate a set
of stimuli, we can never be certain what participants exposed
to these stimuli take away: this is the empirical question we
seek to answer, and the answer may well vary from participant
to participant. We thus use the phrase “learn a grammar”
in this precise technical sense: that after exposure to a set
of well-formed exemplars, participants are able to correctly
reject novel stimuli violating the rules of the experimental
grammar, and correctly accept novel stimuli conforming to it,
at a level significantly exceeding that expected by chance or
predicted by alternative models. To yield convincing results,
the set of “correct” stimuli tested must include novel stimuli
differing in length from the exposure stimuli (to avoid template
matching), while incorrect stimuli (“foils”) should include items
designed to be consistent with various alternative grammars
the participants might have induced (Fitch and Friederici,
2012).

In the present AGL paradigm, based on visual stimuli, our
participants rapidly learned grammars of varying complexity
levels after exposure only to grammatical exemplars and without
explicit feedback. For the simple finite state grammar, ABNA,
generalization occurred for lengths higher than the exposure
N. For the two supra-regular grammars, performance was less
impressive: for the copy grammar, the majority of participants
were able to generalize to novel N beyond those encountered
during exposure, while this was only true for a third of
participants with the mirror grammar. Thus, we found a slight
advantage for the copy grammar over the mirror grammar for
N = 4. This is in agreement with, for example, a processing
advantage for crossing over nested dependencies in Chinese
tones (Li et al., 2013). However, in our study no advantage
for crossing dependencies was observed for strings of length
N = 6, where a similar proportion of participants was successful

in mirror and copy grammars. This is partially consistent
with Bach et al. (1986), who found an advantage for crossed
over nested dependencies for three (but not two) levels of
embedding, as well as with the processing advantage for crossed
dependencies that de Vries et al. (2012) report for strings
with three (but not two) dependencies. The somewhat puzzling
inconsistency is that these studies found an advantage for
crossing dependencies for longer strings, while we did so for
shorter strings.

Furthermore, such a processing advantage for crossed
dependencies is not reported by all studies. Uddén and colleagues,
for example, reported no qualitative differences in performance
for crossed and nested dependencies using visual sequences after
acquisition of the basic rule (Uddén et al., 2012). Similarly
Öttl and colleagues found no significant performance differences
while processing crossing and nested dependencies (Öttl et al.,
2015) in the auditory domain. Neither of these studies tested
for generalization to new N. Thus, the processing advantage for
crossing dependencies seems to be slight and does not manifest
itself in all published experimental setups. The lack of any
advantage for mirror or copy grammar with N = 6 in our data
may result from working memory constraints specific to longer
sequences being alleviated in our visual stimuli. One reason for
this inconsistency might be that our stimuli consisted of novel
abstract shapes while Bach et al. used actual meaningful sentences
and de Vries et al. (2012) used spoken syllables, which would both
have been highly familiar to the hearer. The processing load may
thus have been higher in our study, with a concomitant decrease
in performance for longer strings.

In our experiment, failure with higher N seems unlikely to
result solely from memory constraints or stimulus length, since
performance for ABNA remained high even for the longest
sequences. Instead, we suggest that the failure at higher N is
a result of the increasing number of dependencies that must
be processed for the copy and mirror grammars, in contrast to
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ABNA. There appears to be a critical difference between four
and six dependencies in these two grammars that may reflect
an upper limit for the number of dependencies that can be
processed under these conditions (rather than total number
of items, since ABNA is not affected). At length N = 4, and
thus within the posited upper limit of dependency processing,
we found an advantage of Copy over Mirror strings, possibly
due to mechanisms akin to embedded pushdown automata.
This advantage seems to disappear for longer strings, however,
where such mechanisms may be overtaxed by the number of
dependencies.

The underlying intent of our experiment is that participants
processed the strings incrementally rather than all at once,
which was encouraged by the sequential presentation modality.
Consistent with this intent, if the strings had been processed
all at once, Mirror strings should have been processed more
accurately due to their mirror symmetric structure (Wagemans,
1997; Treder, 2010), but this was not the case. Furthermore,
we found no significant effect of session order on performance,
suggesting that brief exposure to different grammars does not
yield improvements in performance on others, across a single 1-h
session.

One open issue concerns our use of a center marker in the
two symmetrical grammars (mirror and copy grammars). This
intuitively makes the online task easier, in the sense that a viewer
can recognize immediately when the center of a stimulus has been
reached, and indeed our pilot data suggested that participants
found the task more challenging without such a marker. Of
course, once the entire stimulus is visible, it is relatively trivial to
identify the center point visually, so we suspect that participants
would still be able to learn these grammars based on unmarked
strings.

From a theoretical viewpoint having a center marker in
our stimuli does not change the level of formal power needed
to learn our different grammars, but it does change the
precise nature of the automaton corresponding to that formal
level. Specifically, unmarked strings require non-deterministic
automata, while with center-marked strings the automaton
can be deterministic (Parkes, 2002). The non-deterministic
version must entertain multiple possibilities about where the
center point might be, in parallel, and thus intuitively seems
more difficult (unless implemented on a parallel processing
machine). This possibility could be examined empirically in
future research by directly comparing the time required to
master marked vs. unmarked strings. However, because the
current study compares deterministic pushdown automata
(for the context-free grammar) with deterministic embedded
pushdown automata (for mildly context-sensitive grammar),
the presence or absence of center markers does not affect our
main conclusion: that participants in our study were able to
master grammars at all three levels of the formal language
hierarchy.

In summary, those of our participants who were successful
with large N spontaneously generalized to lengths greater
than those encountered during exposure for mirror and copy
grammars, showing for the first time that it is possible to
learn and generalize complex visual grammars (context-free and

mildly-context sensitive grammars) after only a few minutes
of exposure. Success in our visual paradigm occurred without
any explicit instructions about the nature of the sequence
(e.g., instructions to notice or count the dependencies), and
was independent of any semantic content or interpretation,
which were absent in our stimuli. It is widely agreed that
phrasal syntax in natural language requires processing at
the mildly-context sensitive level; Jäger and Rogers, 2012),
although other components of language such as phonology
have been argued to require only regular (finite-state) level
processing (Heinz and Idsardi, 2011, 2013). Participants in
the current study successfully mastered rule systems at both
of these levels of complexity in the non-linguistic domain
of vision, specifically using abstract visual tiles (rather than
words, syllables or phonemes). In the terms of formal
language theory, these results suggest that the pattern-processing
mechanisms in the visual processing domain attain equivalent
computational power to those used to process spoken or
written language. Although it remains unknown whether the
same specific neural mechanisms are deployed across these
different domains, our results suggest that human pattern-
processing capabilities extend across multiple sensory domains,
and thus are properties of the human mind in general and
not limited to language processing. These results suggest
that pattern-processing mechanisms are available in the visual
processing domain, with equivalent computational power as
those underlying the perception and production of spoken
language.

OUTLOOK

The current study opens a conceptual door to further research
in at least three domains. The first is to extend these results
to nonhuman animals, as already attempted with simpler
grammars in several previous studies (Stobbe et al., 2012;
Ravignani et al., 2013; Sonnweber et al., 2015). These studies
demonstrated that various animal species, including pigeons,
keas, and chimpanzees, are able to process visual patterns at
the finite-state level, but found no evidence for supra-regular
processing. The stimuli and paradigm tested here would support
further research in this direction. The second would be to
investigate the neural basis for complex grammar processing,
both in patients (e.g., Broca’s aphasics) or in brain imaging
studies (e.g., fMRI). While there is considerable work on patients
using simple finite-state grammars (e.g., Knowlton and Squire,
1996) and a large body of neurolinguistic work with more
complex grammars using specifically linguistic stimuli (e.g.,
(Friederici et al., 2002; Hagoort, 2005; Pallier et al., 2011),
there is little work examining the neural basis of supra-regular
grammar processing in non-verbal domains. The final, and
to us most exciting, research direction would be to examine
the development of pattern-processing abilities across the life-
span (e.g., in pre-verbal infants and young children) and in
atypical populations (e.g., in deaf individuals). In particular,
deaf signers, whose default mode of linguistic communication
is visual, would be a fascinating population to study in this
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context. It seems plausible that their greatly increased experience
with complex visual sequences relative to hearing individuals
(Geraci et al., 2008) might lead to increased performance with
our complex visual grammars.
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