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At the end of 2017 roughly 1.8% of the worldwide electricity came from solar

photovoltaics (PV), which is foreseen to have a key role in all major future energy

scenarios with an installed capacity around 5 TW by 2050. Despite silicon solar cells

currently rule the PV market, the extremely more versatile thin film-based devices (mainly

Cu(In,Ga)Se2 and CdTe ones) have almost matched them in performance and present

room for improvement. The low availability of some elements in the present commercially

available PV technologies and the recent strong fall of silicon module price below 1 $/Wp

focused the attention of the scientific community on cheap earth-abundant materials. In

this framework, thin film solar cells based on Cu2ZnSnS4 (CZTS) and the related sulfur

selenium alloy Cu2ZnSn(S,Se)4 (CZTSSe) were strongly investigated in the last 10 years.

More recently, chalcogenide PV absorbers potentially able to face TW range applications

better than CZTS andCZTSSe due to the higher abundance of their constituting elements

are getting considerable attention. They are based on both MY2 (where M = Fe, Cu, Sn

and Y = S and/or Se) and Cu2XSnY4 (where X = Fe, Mn, Ni, Ba, Co, Cd and Y = S

and/or Se) chalcogenides. In this work, an extensive review of emerging earth-abundant

thin film solar cells based on both MY2 and Cu2XSnY4 species is given, along with some

considerations on the abundance and annual production of their constituting elements.

Keywords: earth-abundant elements, binary chalcogenides, quaternary chalcogenides, low-cost solar cells, thin

film PV

INTRODUCTION

In the last decades, the fast increase of the global energy demand and the progressive run-up in
the world oil price, along with the growing global pollution strongly pointed out the need of an
affordable and sustainable clean energy supply. As a matter of fact, the main energy sources since
the Industrial Revolution were coal, oil, and natural gas, whose combustion is primarily blamed on
the CO2 emission into the Earth’s atmosphere responsible for many global climate changes. In order
to face the 28 TW global energy demand foreseen for 2050 (Hoffert et al., 1998) without affecting
the environment, a wider employment of renewable energies is therefore mandatory.

In the last 15 years, all renewable energies grew strongly in many end-use sectors (power,
heating/cooling, and transport), in particular, at the end of 2017, roughly 1.8% of the worldwide
electricity came from solar photovoltaics (PV), which was the main source of new power capacity
in many countries, including China, India, Japan, and United States. Globally, the newly installed
capacity of solar PV in 2017 was around 98 GW (about 29% more than the record additions in
2016), which raised the cumulative total up to 402 GW (REN21, 2018). In order tomeet a noticeable
portion of the global energy demand foreseen for 2050 (Hoffert et al., 1998), the installed capacity
of solar PV will have to expand at least to 5 TW. However, almost all of the present commercially
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available PV technologies suffer from material or resource
constraints that will likely limit their future role in TW scale
applications. Currently, crystalline-Si (c-Si) based devices rule the
solar PV market, accounting for about 94% of the total annual
production vs. 6% for all alternative PV technologies (namely,
thin-film CdTe, thin-film Cu(In,Ga)Se2 (CIGS), and thin-film
Si) (Fraunhofer ISE, 2017). The above mentioned limitations
include the relevant energy amount required to fabricate c-Si
solar cells and the low availability of one or more elements
present in CdTe (i.e., Te), CIGS (i.e., In and Ga), c-Si and
thin-film Si (i.e., Ag used as contact) PV devices (Tao et al.,
2011) (see also Figure 1, USGS; WebElements). To overcome
this problem, in the last 10 years thin films based on earth
abundant elements were strongly investigated as PV absorbers,
in particular, Cu2ZnSnS4 (CZTS) and the related sulfur selenium
alloy Cu2ZnSn(S,Se)4 (CZTSSe). CZTS and CZTSSe, in the stable
crystalline kesterite form (tetragonal, space group I4, unit cell: a
= 5.427 Å, c= 10.871 Å; Z = 2), have direct bandgap around 1.5
and 1.1 eV, respectively, and high absorption coefficient (over 104

cm−1) (Ito, 2014; Liu et al., 2016). They both showed promising
performance, namely 9.2% record efficiency for CZTS (Sun et al.,
2016) and 12.6% for CZTSSe (Wang et al., 2014). Although there
has been considerable progress in the performance of kesterite
solar cells, further improvements are needed to achieve the high
efficiency required for the practical application of these types
of devices. First of all, the defects inside the material must be
reduced to limit the recombination processes and the formation
of band tail. But although several processes have been tested, such
as the increase in doping and various treatments after deposition,
still the defectiveness and the presence of deleterious secondary
phases have not been sufficiently reduced. In fact, during the
growth of CZTS films, given the complexity of the phase diagram,
numerous secondary phases and intrinsic defects are produced.
Complex and not yet fully understood are the relationships
between growth process, chemical composition, and transport or
recombination properties of photo-generated carriers. Moreover,
the architecture of the most commonly used device is the same
used for the realization of CIGS devices, although it is not actually
optimized for kesterite (Ito, 2014). For example, the CdS/CZTS
interface does not have an optimal band bending: an alternative
layer would improve the charge transport and free the process
of CZTS device realization from the use of cadmium (Santoni
et al., 2013; Kumar et al., 2015). To overcome this problem,
alternative buffer layers have been proposed, for instance ZnCdS
(Congiu et al., 2018) and a Zn1−xCdxS film that is able to optimize
the conduction band offset, therefore diminishing the charge
recombination (Sun et al., 2016).

As a matter of fact, a cheap PV technology requires both low-
cost raw materials and low-cost production processes. As far
as the cost of raw materials is concerned, elements with high
abundance in the Earth’s crust are good candidates for TW range
PV applications, however both mining and processing of the
minerals must be cheap as well. As an example, Ga is relatively
abundant in the upper continental crust (roughly comparable
to Cu, Ni, Co, and Sn) (WebElements), nevertheless producing
100 tons of Ga would imply in the best scenario the handling of
2,000,000 tons of bauxite (Tao, 2014), which makes Ga expensive.

Getting to the heart of the present matter, Zn is widely known
as element under serious threat of extinction in the next 100
years (Harland et al., 2013), due to the combination of limited
abundance in the earth crust, limited annual production and
huge employment in many applications. As a consequence, in
a TW scale PV scenario also CZTS will suffer from material or
resource constraints, even if to a lower extent with respect to
the present commercial PV devices. Therefore, CXTS absorbers
based on significantly abundant elements must be developed and
used along with CZTS to face the need of a 5 TW PV installed
capacity by 2050. As shown in Figure 1, Fe, Mn, Ni, Ba, Co, and
Cd are good and/or possible alternatives to Zn in Cu2XSn(S, Se)4
materials as well as Cu, Sn, and Fe are good candidates for M(S,
Se)2 chalcogenides, since they all show a convenient abundance
to annual production ratio (USGS; WebElements). As far as the
production cost is concerned, the development of cheap and
easily scalable PV absorber layers strongly depends on growth
techniques, which are usually classified as either vacuum or non-
vacuum. About the vacuum methods, the sputtering technique
is suitable to up-scaling the system in terms of active area and
efficiency, while maintaining a good control of the deposition
rate, while evaporation is one of the meritorious techniques
to grow absorber layers without impurities. The non-vacuum
methodologies, on the other hand, are lately attracting more and
more attention in order to lower the production cost.

In this work, an extensive review of emerging earth-abundant
thin film solar cells based on both MY2 and Cu2XSnY4 (whereM
= Fe, Cu, Sn;X= Fe,Mn, Ni, Ba, Co, Cd;Y = S and/or Se) species
is given, along with some considerations on the abundance and
annual production of their constituting elements.

EARTH-ABUNDANT ELEMENTS FOR
CHALCOGENIDE PV ABSORBERS

Iron
Iron provides top abundance to annual production ratio, that
is 63000 ppm vs. 1.15 × 109 tons (USGS). Iron in fact makes
up about 5% of the Earth’s crust, being therefore the fourth
most abundant element after oxygen, silicon and aluminum

FIGURE 1 | Abundance in the Earth’s crust (left green y axis) and annual

production (right blue y axis) of several elements (USGS; WebElements).
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(WebElements). The iron is found in Nature mainly as iron
oxide minerals such as siderite (FeCO3), magnetite (Fe3O4),
and hematite (Fe2O3). Moreover, the lower mantle of the Earth
mainly consists of iron based compounds, that is ferropericlase
(Mg,Fe)O and silicate perovskite (Mg,Fe)SiO3 (Murakami et al.,
2012). Industrial iron production uses iron ores, mainly
magnetite and hematite, and it involves a carbothermic reaction
to reduce the sources to the metal (Remus et al., 2013).

Manganese
Manganese is the 12th most abundant element, making up
about 0.1% (1100 ppm) of the Earth’s crust (WebElements). This
value coupled with the high annual production of 1.6 × 107

tons (USGS) makes manganese a cheap element. Manganese
occurs in the Earth’s crust principally as pyrolusite (MnO2),
rhodochrosite (MnCO3), psilomelane (Ba,H2O)2Mn5O10,
and braunite ((SiO4)Mn6O8), the most important ore being
pyrolusite (Bhattacharyya et al., 1984). In the 70s, it was
estimated that the ocean floor had 500 billion tons of Mn
nodules, however they were never exploited due to the absence
of economically viable extraction methods (United Nations
Ocean Economics Technology Office, 1978). Many manganese
deposits are spread around the world, about 80% of them being
located in South Africa. Other important producers are Ukraine,
Australia, India, China, Gabon, and Brazil (Corathers, 2009).
Pure Mn is produced by leaching manganese ore with sulfuric
acid and subsequently employing an electrochemical process
(Zhang and Cheng, 2007).

Barium
Barium is the 14th most abundant element in the Earth’s crust
making up a 0.0425% of it (340 ppm) (WebElements). The main
commercial source of barium is barite (BaSO4), a mineral with
deposits in many parts of the world, principally in England,
Romania, and Russian Federation (Kresse et al., 2007). The
mined ores are washed, crushed, and separated from quartz.
Barite with at least 95% purity undergoes a series of chemical
reactions to produce pure Ba. No precise estimations of the
annual Ba production are available, which has few industrial
applications. However, it is known that about 8× 106 barite tons
are annually produced (Kuck, 2012).

Sulfur
Sulfur is the 17th most common element in the Earth’s crust
(420 ppm) and generally the fifth most common on Earth
(WebElements). Although it is also present on Earth in its pure,
native form, sulfur usually occurs as sulfide and sulfate minerals,
such as pyrite (iron sulfide), galena (lead sulfide), sphalerite (zinc
sulfide), cinnabar (mercury sulfide), stibnite (antimony sulfide),
alunite (potassium aluminum sulfate), gypsum (calcium sulfate),
and barite (barium sulfate) (Anthony et al., 1990). Presently,
elemental sulfur is mainly obtained as a byproduct of purifying
natural gas and fossil fuels (Eow, 2002). Around 69’300’000 tons
of sulfur are produced annually worldwide (USGS), which allows
to fulfill the large sulfur demand related to its application in
many fields.

Nickel
Nickel is the 24th most abundant element in the Earth’s crust
(80 ppm) (WebElements). The most important sources of nickel
are limonite (FeO(OH)·nH2O), pentlandite ((Fe,Ni)9S8), and
garnierite (H2O(Mg,Ni)3Si4O10(OH)2) (Anthony et al., 1990).
The world’s largest nickel producers are Philippines, Indonesia,
Russian Federation, Canada, and Australia (Kuck, 2012). Nickel
is produced using ore by extractive metallurgy, employing
conventional roasting and reduction processes which generate a
metal with purity over 75% (Nickel Institute). Around 2’250’000
tons of nickel are produced annually worldwide (USGS), however
Ni is used in a plethora of applications: about 68% of world
production for stainless steel, 9% for corrosion-resistant nickel
plating, 10% for nickel and copper -based alloys, 7% for alloy
steels, 3% in foundries, and 4% in other applications, including
the fast-growing battery sector (Nickel Institute).

Elements With Limited Abundance in the
Earth’s Crust
Zinc, copper, cobalt, tin, cadmium, silver and selenium are,
respectively, the 25th (79 ppm), 26th (68 ppm), 32nd (30 ppm),
49th (2.2 ppm), 64th (0.15 ppm), 65th (0.08 ppm), and 67th (0.05
ppm) most abundant elements in the Earth’s crust, with annual
production around 12’000’000 tons, 19’400’000 tons, 123’000
tons, 280’000 tons, 23’000 tons, 27’000 tons, and 2’200 tons,
respectively (USGS; WebElements). The abundance to annual
production ratios of zinc, cobalt, cadmium, silver, and selenium
and their large use in many sectors make them less suitable than
the previously described elements for TW range PV applications.
Conversely, the significant annual production of copper and
tin, which may be properly recycled as well (Scott et al., 1997;
Kasper et al., 2011), relieves their relatively limited abundance
and accounts for the extensive research activity on Cu and Sn
based alloys.

EMERGING EARTH-ABUNDANT
CHALCOGENIDE PV ABSORBERS

Binary Chalcogenides
FeS2, FeSe, and FeSe2
Iron sulfide, FeS2 (iron(II) disulfide), is a mineral called pyrite,
or iron pyrite, and also called fool’s gold for its metallic luster
and pale brass-yellow hue, that makes it looks like gold. Due to
its abundance in nature and its low toxicity, FeS2 is a possible
PV material. Its extraction cost is so low that a pyrite-based
solar cell with only 4% efficiency could be as economical as a
monocrystalline silicon solar cell with 20% efficiency (Wadia
et al., 2009). Pyrite has a very high absorption coefficient (∼5
× 105 cm−1) and an energy bandgap (Eg ∼ 0.95 eV) suitable
for converting PV energy. XRD pattern and Raman spectrum
are reported in Figures 2A,B, respectively1. Various methods for
the synthesis of thin films of pyrite have been adopted, such
as Fe2O3 sulphuration, sputtering, spray pyrolysis (SP), vacuum
evaporation (VE), chemical bath deposition (CBD), molecular

1RRUFF database. Available online at: http://rruff.info/chem=FeS/notchem=all/
display=default/R100166
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FIGURE 2 | (A) XRD pattern and (B) Raman spectrum of FeS2.

beam epitaxy (MBE), electrochemical deposition, and colloidal
NC synthesis (Bi et al., 2011; Puthussery et al., 2011; Morrish
et al., 2012; Bai et al., 2013; Prabukanthan et al., 2017).

FeS2 has a high potential in the large-scale production of
PV modules, but for a long time, it was hard to obtain well
workable thin-film devices that use pyrite as an absorber (Bi et al.,
2011). Indeed, a significant PV efficiency value (8.39%) (Huang
et al., 2015) was obtained by using the FeS2 not as absorber
material, but as a counter electrode in a DSC solar cell (Kilic and
Turkdogan, 2017). The limiting factors are the high dark current,
due to phase impurities, and a high density of acceptor surface
states (Cabán-Acevedo et al., 2014). Moreover, FeS2 is affected
by thermal instability (Yu et al., 2011). Lately, Prabukanthan
et al. (2017) synthesized FeS2 thin films by electrochemical
deposition at 70◦C and reported efficiency of 1.98% for a solar
cell with architecture ITO/FeS2/ZnSe/Au (PV parameters in
Table 1). With the aim of enhancing the photoresponse and
stabilize the structure, they have introduced 3 mole% Co2+ as a
dopant, reaching a remarkable efficiency of 5.42%. They suggest
that substituting Co2+ for Fe2+ makes the bandgap decrease,
improving the charge separations at the interface with ZnSe. X-
ray diffraction and Raman spectra confirmed that doped and
undoped FeS2 thin films have a cubic pyrite structure; the atomic
force microscopy revealed that the 3 mole% of Co2+ doped FeS2
thin film exhibits a smoother surface and lower roughness values
(Prabukanthan et al., 2017).

Iron selenides can be found in two stoichiometric phases,
FeSe and FeSe2. This last one, also called ferroselite, has been
investigated as an electrode material in tandem PV; it is a p-type
semiconductor material with a 1.0 eV bandgap (Qurashi, 2014).

CuS, Cu2S, and Cu2Se
Cuprous chalcogenide films, CuS, Cu2S, Cu2Se, are p-type
semiconductors. They can be considered ideal materials for
use in low-cost and non-toxic solar cells. Cu2S, for example,
is an indirect gap semiconductor with a bandgap of 1.21 eV,
which is optimal for use as a light absorber (Liu et al., 2003).
Since the early 80s, thin-film solar cells based on a CdS/Cu2S
junction were produced, reaching efficiencies of 9.15%, with open
circuit voltage (Voc) of 516mV, short circuit current density (Jsc)
equals to 19.3 mA/cm2 and fill factor (FF) of 71.4% under a

sunlight intensity of 87.9 mW/cm2 (Bragagnolo et al., 1980).
Subsequently, the research on these devices was abandoned
due to the diffusion of Cu+ in CdS, to the high electron-hole
recombination, and to the possibile coexistence of mixed phases
ranging fromCuS2, that has ametallic conduction (Munson et al.,
1967), to Cu2S, which could give to the material a quasi-metallic
behavior (Moitra and Deb, 1983; Niemegeers and Burgelman,
1986; Page et al., 2009). Nowadays, Cu2S is successfully employed
as sensitizer in DSCs: Mousavi-Kamazani et al. (2016) employed
Cu2S quantum dots as a barrier layer in DSCs, showing a
considerable improvement in the efficiency of about 37%. In
thin film architecture, the last efforts are devoted to stabilizing
the solar cells: Wu et al. (2008) presented the synthesis of
colloidal Cu2S nanocrystals and realized a solution-processed
solar cell, coupled with CdS nanorods, with 1.6% efficiency and
4 months stability. CuxS shows at room temperature five stable
phases, ranging from the more stable structure chalcocite (x =

2), to the defective structure djurleite (x = 1.94), digenite (x =

1.80), anilite (x = 1.75), and covellite (x = 1.00); mixed phases
has been observed in the intermediate compositions. Congiu
et al. (Congiu et al., 2016), have indeed proposed an ink-based
method for realize Cu2−xS counter electrode for DCS, showing
high stability using ferrocene as redox shuttle. Various grown
methods are reported: CBD (Loferski et al., 1979), successive
ionic layer adsorption and reaction (SILAR) (Mani et al., 2014),
MBE (Gautier et al., 1998), VE (Nair et al., 1998), solid state
reaction (Sanchez Ranjel et al., 2015), SP (Sabah et al., 2015),
hydrothermal method (Patil et al., 2018), atomic layer deposition
(ALD), and chemical vapor deposition (CVD) (Ye et al., 2015).
CuS is 2D metal chalcogenide (Karthick Kannan et al., 2015)
mostly employed as a hole transport material in solar cells, rather
than as a light absorber (Lei et al., 2014; Rao et al., 2016), and
thanks to the high catalytic activity, proved to guarantee high
performing DSCs (Li et al., 2014; Zhang et al., 2016a,b).

Copper selenides exist in many phases and structural forms,
such as CuSe (klockmannite), Cu2Sex, CuSe2 (marcasite), α-
Cu2Se (bellidoite), Cu3Se2 (umagnite), Cu5Se4 (athabaskite),
Cu7Se4, and in isometric form as Cu2−xSe (berzelianite). They
may also have different crystallographic forms (monoclinic,
cubic, tetragonal, hexagonal, etc.). Copper selenides are p-
type semiconductors, with both direct and indirect bandgap
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TABLE 1 | Conductivity, performance, grain size (large grains LG or nanocrystals NC), concomitant reference and publication year for all of the PV devices reported in this

work.

Material Conductivity Efficiency (%) Voc (V) Jsc (mA/cm2) FF (%) Grain size References

FeS2 p-type 1.98 0.57 6.55 53 NC Prabukanthan et al., 2017

Co2+ (3% mol) doped FeS2 p-type 5.42 0.83 10.71 61 NC Prabukanthan et al., 2017

Cu2S p-type 9.15 0.52 19.3 71.4 LG Bragagnolo et al., 1980

Cu2S p-type 1.6 0.57 5.625 49.4 NC Wu et al., 2008

SnS p-type 4.4 0.372 20.2 58 LG Sinsermsuksakul et al., 2014

heterostructure SnS/SnS2 p-type/n-type 0.51 0.12 10.87 39 LG Gedi et al., 2016

heterostructure SnS/SnS2 p-type/n-type 1.4 0.53 5.7 46.5 NC Degrauw et al., 2017

SnSe p-type 1.42 0.299 11.6 41 LG Minnam Reddy et al., 2018

CFTS p-type 2.95 0.61 9.3 52 NC Chatterjee and Pal, 2017

CFTS p-type 0.11 0.13 3.25 26.6 LG Meng et al., 2016

CMTS p-type 0.49 0.308 4.7 33.9 LG Chen et al., 2015b

CMTS p-type 0.38 0.359 2.95 35.8 LG Chen et al., 2016a

CMTS p-type 0.73 0.381 4.95 38.6 LG Prabhakar et al., 2016

CMTS p-type 0.33 0.23 4 36.3 LG Marchionna et al., 2017

CMTS p-type 0.83 0.35 5.8 40 LG Le Donne et al., 2017

CBTS p-type 1.54 0.699 4.1 53.5 LG Shin et al., 2016

CBTS p-type 5.2 0.611 17.4 48.9 LG Shin et al., 2017

CBTSSe p-type 1.57 0.613 6.78 37.7 LG Ge et al., 2016

CCdTS p-type 2.7 0.513 12.7 42 LG Timmo et al., 2013

CCdTSSe p-type 3.1 0.356 20.89 41.6 LG Zhao et al., 2015

AZTSe n-type 5 0.5 22 49 LG Gershon et al., 2016a

(AgxCu1−x)2ZnSnSe4 p-type 10.2 0.423 38.4 62.9 LG Gershon et al., 2016b

(Petrović et al., 2017), which may be potentially employed as
PV absorbers. CuSe at room temperature has a hexagonal
structure and undergoes an orthorhombic transition at 48◦C
and a hexagonal transition at 120◦C. At higher temperatures,
CuSe decomposes into Cu2−xSe and selenium. Cu2−xSe, at room
temperature, has a cubic structure with faces centered with 0.15
≤×≤ 0.2 and; when x= 0.2, it shows a direct bandgap of 2. 2 eV
and an indirect bandwidth of 1.4 eV (Qurashi, 2014).

SnS and SnSe
Tin can form sulfides with different Sn/S ratio, such as: SnS2,
Sn2S3, Sn3S4, Sn4S5, SnS (Jiang and Ozin, 1998). The most
investigated are tin(II) sulfide (SnS), with a distorted GeS
structure and tin(IV) sulfide (SnS2) with a PbI2 structure
(Rimmington et al., 1972). Tin(IV) sulfide can be found in 70
polytype structures, with a hexagonal close-packed structure and
different c parameters (Pałosz et al., 1990). Tin monosulphide
(SnS) is a mineral called herzenbergite, and the synthesized SnS
is a p-type semiconductor material, as the tin vacancies generate
acceptor levels (Thangaraju and Kaliannan, 2000). Figure 3

shows the XRD pattern (a) and the Raman spectrum (b) for
single-crystal SnS (Raadik et al., 2013).

When then tin to sulfur ratio is SnS0.8, it has a bandgap
of 1.16 eV (Price et al., 1999), which is like that of silicon,
but with a higher optical absorption coefficient. Although the
maximum theoretical efficiency of SnS thin-film solar cells is 32%,
the maximum efficiency is 4.4%, reported by Sinsermsuksakul
et al. (2014). They deposited, by ALD, SnS films (400 nm), using

alternating doses of tin precursor vapor and a gas mixture of 4%
H2S in N2, to enlarge the grains and reduce the recombination at
the boundaries. Additionally, they engineered the n-type Zn(O,S)
buffer layer (30 nm), reducing the sulfur and adding nitrogen as
a dopant, to improve the rectifying quality of the p-n junction,
and introduced a 1 nm thick SnO2, to enhance the quality of
the SnS/Zn(O,S) interface (Sinsermsuksakul et al., 2014). The
low solar cells performance can be due also to phase impurity
and off-stoichiometry (Sinsermsuksakul et al., 2014). Kim and
coworkers (Kim et al., 2018) investigated the presence of Sn-
S polytypes (SnS, SnS2, Sn2S3) and their effect on the solar
cells performance. SnS requires high sulfurization temperature,
500◦C, meanwhile, the transition to SnS2 and Sn2S3 happens
between 150 and 300◦C (Banu et al., 2017). Unfortunately, SnS2
shows n-type conductivity and its presence affects the open
circuit voltage. Sn2S3 has an energy gap of 1.09 eV, like the of
SnS one, but a phase mixture can influence the carrier transport,
generating a type II junction between Sn2S3 and SnS (Burton
et al., 2013). Kim et al. (2018) did not verify the presence of Sn2S3,
but they found out that the SnS2 phase can be predominant on
the thin film surface and in the shallow bulk area. Therefore,
another key point is the selection of an adequate buffer layer for
the SnS absorber: lately, many researchers are focused on the
realization of SnS/SnS2 p-n junction, with the aim to improve
the SnS/buffer interface. Firstly, Sanchez-Juarez et al. (2005)
fabricated an SnS/SnS2 thin film hetero-junction by plasma-
enhanced chemical vapor deposition, verifying the PV effect.
More recently, Gedi et al. (2016) fabricated SnS/SnS2 solar cells

Frontiers in Chemistry | www.frontiersin.org 5 April 2019 | Volume 7 | Article 297

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Le Donne et al. New Earth-Abundant Chalcogenides Thin-Film PV

FIGURE 3 | (A) XRD pattern and (B) Raman spectrum of SnS.

by CBD, the efficiency of 0.51%, proving that the junction is a
type-II heterostructure. Degrauw et al. (2017) grown nanowire
arrays of SnS/SnS2 heterojunction, by chemical vapor transport
(CVT) catalyzed by Cu particles, and fabricated devices with the
efficiency of 1.4 %.

Tin and selenium form tin(II) selenide (SnSe), also called
stannous selenide, which is a p-type semiconductor, with both
an indirect bandgap at 0.90 eV and a direct bandgap at 1.30 eV
(Lefebvre et al., 1998). It is receiving increasing attention
for potential applications in low-cost PV, as it is an easy
processable two-dimensional layered material (Wang et al.,
2016; Jeong et al., 2017; Razykov et al., 2018; Ul Haq et al.,
2018). fabricated SnSe thin films by chemical molecular beam
deposition, using synthesized polycrystalline SnSe as precursors:
XRD analysis proves that SnSe films can be grown in the
orthorhombic crystalline structure. The realized films displays
a direct optical bandgap of 1.1–1.2 eV and a remarkable high
absorption coefficient of about 105 cm−1. The authors have
proven that the physical properties of SnSe thin films are strongly
affected by the growth conditions, and that a proper develop
of the deposition methodology can lead to a material suitable
for thin film solar cells. Lately Minnam Reddy et al. (2018),
have fabricated a SnSe solar cells a power conversation efficiency
of 1.42%.

Quaternary Chalcogenides
Cu2FeSnS4

As mentioned above, iron shows top abundance to annual
production ratio, therefore p-type Cu2FeSnS4 (CFTS) is a very
good candidate as cheap chalcogenide PV absorber layer. In
addition, CFTS shows bandgap (1.28–1.50 eV) and absorption
coefficient (>104 cm−1) suitable for PV applications.

The crystal structure of CFTS, which is a lustrous dark gray
mineral, is basically stannite, however early X-ray diffraction
(XRD) studies demonstrated that the tetragonal stannite phase
I (−42m) is stable in the temperature range between 420
and 500◦C (Quintero et al., 1999). At higher temperature,
cubic polymorphous modifications with disordered sphalerite-
like structure I (−43m) were also observed (Evstigneeva and
Kabalov, 2001). XRD pattern and Raman spectrum (widely

used for the identification of possible secondary phases in
the fabricated films) of typical stannite CFTS2 are depicted in
Figures 4A,B, respectively.

So far, variousmethods have been reported for the preparation
of CFTS absorber layers (Guan et al., 2014; Kevin et al., 2015;
Khadka and Kim, 2015; Meng et al., 2015a, 2016; Chatterjee
and Pal, 2017; Chen et al., 2017; Miao et al., 2017). Most
of them are based on non-vacuum techniques, since they are
simple, low-cost, often efficient and do not require sophisticated
deposition set-up. Very few efficiency values were reported up
to now for CFTS based PV devices, the best one being recently
obtained by Chatterjee and Pal (2017) through SILAR method.
SILAR is a low temperature non-vacuum technique, which
offers a good balance between fabrication cost and phase purity,
while being easily scalable for large area depositions. The as-
formed CFTS thin films prepared in Chatterjee and Pal (2017)
showed stannite structure with high crystallinity and a lower
limit of crystallite size around 10 nm, as confirmed by XRD,
Scanning Electron Microscopy (SEM), and cross-sectional SEM.
The optical bandgap calculated through the Tauc’s plot obtained
from transmittance measurements was 1.5 eV, in agreement with
the literature. Several n-type semiconductors were considered
to complete the heterojunction, all of them obtained by SILAR
as well. The best conversion efficiency of 2.95% was achieved
with promising reproducibility in CFTS/Bi2S3 heterojunctions
(Chatterjee and Pal, 2017).Meng et al. (2015a, 2016) also reported
PV device efficiencies, obtained by solar cells based on CFTS
prepared by sulfurization of the sputtered metal precursors. They
showed that CFTS thin films sulfurized under fast heating rate
around 40◦C/min were S-poor and showed a bilayer structure
with many micro-grains at the bottom of the CFTS thin film. By
reducing the heating rate to 20◦C/min, CFTS isolated grains were
formed and the in general the grain size increases, most probably
since a lower heating rate gives enough time and energy to favor
the precursor crystallization and alloying. The best sputtering
based CFTS solar cell prepared in Meng et al. (2016) showed a
0.11% efficiency (Voc = 129mV, Jsc = 3.25mA/cm2, FF= 26.6%).

2RRUFF database. Available online at: http://rruff.info/chem=Cu%20Fe%20Sn
%20S/display=default/R050187
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FIGURE 4 | (A) XRD pattern and (B) Raman spectrum of typical stannite CFTS.

Guan et al. (2014) reported for the first time on the preparation
of CFTS thin films by the SILAR method, obtaining CFTS layers
with large agglomeration of rod-shaped grains, a bandgap of
1.22 eV and an absorption coefficient higher than 104 cm−1.
Khadka and Kim (Khadka and Kim, 2015) employed electrostatic
field assisted spray pyrolysis followed by sulfurization to produce
stannite structured CFTS and CFTSe. Both the structural
quality (i.e., crystalline texture and grain size) and the carrier
mobility of CFTS/CFTSe thin films improved after the sulfur
addition. Kevin et al. (2015) reported on CFTS, CFTSe, and
CFTSSe thin films deposited by Aerosol Assisted Chemical Vapor
Deposition (AACVD) at 350◦C using mixtures of molecular
precursors. More recently, CFTS thin films were prepared by
doctor blade deposition of oxides (CuO, Fe2O3, and SnO2)
on glass followed by sulfurization (Chen et al., 2017) and by
electrochemical deposition followed by annealing at 500–550◦C
(Miao et al., 2017).

Incidentally, beside its role as low-cost photo-absorber layer
in thin film solar cells, CFTS was recently considered both as
counter electrodes and as cheaper alternative to platinum (Pt) in
dye sensitized solar cells. An extensive review on these topics is
reported in Vanalakara et al. (2018).

Cu2MnSnS4

As mentioned above, Mn provides relevant abundance to annual
production ratio, therefore p-type Cu2MnSnS4 (CMTS) is also
a good candidate as cheap chalcogenide PV absorber layer.
CMTS was investigated above all as single crystal (Podsiadlo
et al., 2015) or nanocrystal (Cui et al., 2012; Liang et al., 2012)
for the diluted magnetic semiconductor characteristic, while,
in the last few years, some papers reported on CMTS thin
films for PV applications (Chen et al., 2015a,b, 2016a; Wang
et al., 2015; Prabhakar et al., 2016; Le Donne et al., 2017;
Marchionna et al., 2017; Yu et al., 2017). Wang et al. (2015)
obtained stannite CMTS thin films by sulfurization of different
precursor (Cu,Sn)S/MnS and (Cu,Sn,Mn)S films, all deposited on
glass by chemical methods. The surface morphologies basically
consisted of small and irregular crystalline grains (size around
18–22 nm) with a few voids. The optical bandgap values ranged
between 1.15 and 1.26 eV, while the occurrence of a p-type
conductivity was confirmed. Chen et al. (2015a) reported on

the synthesis and the properties of stannite CMTS thin films
grown by direct liquid coating and by annealing in nitrogen
atmosphere, which were employed in Chen et al. (2015b) as
photo-absorbers in solar cells achieving 0.49% of maximum
efficiency. Some of the same authors showed also that CMTS thin
films can be prepared by direct liquid coating and combining the
annealing in nitrogen atmosphere and the post-sulfurization in
sulfur vapors, reporting a 0.38% efficiency (Chen et al., 2016a).
The same group recently investigated CMTS thin films grown
by sulfurization of electrodeposited Cu-Sn/Mn metal precursors
(Yu et al., 2017), which are a promising starting point for
the preparation of CMTS layers by a simple, environmentally
friendly and low-cost method. Prabhakar et al. (2016) presented
a study on thin film solar cells based on stannite CMTS and
Cu2MnSn(S,Se)4 (CMTSSe) layers, fabricated by spray pyrolysis
using water as solvent. Proof-of-concept PV devices with
structure Mo/CMTS/CdS/TCO provided the best performance
(i.e., 0.73% efficiency) when CMTS layers were doped with Na
in the form of NaCl during the spray process. Na in fact is
widely known to improve grain growth and reduce non-radiative
recombination both in CIGS and CZTS thin films. Through a
careful electrical analysis (Hall measurements on exfoliated films
and J-V curves under illumination of the PV devices), a very
high carrier density in the CMTS/CMTSSe layers was identified
as responsible for the low Voc and FF values.

Some of the present authors reported on CMTS PV absorber
synthesized by a two-step process: firstly the metal precursor
stacks have been deposited by thermal evaporation, and then
they have been annealed in nontoxic sulfur vapors (Le Donne
et al., 2017; Marchionna et al., 2017). Of the many possible
stoichiometries, Cu-poor/Mn-rich CMTS films with Mn/Sn ratio
around 1 were chosen to avoid the arise of both highly conductive
(e.g., Cu2−xS) and insulating (e.g., MnS) secondary phases. In
(Marchionna et al., 2017), an extensive characterization of both
CMTS and any possible secondary phases by SEM, Energy
Dispersive Spectroscopy, Raman, XRD, and Photoluminescence
(PL) was presented. Large grain size (see Figure 5), direct band
suitable for PV applications and high absorption coefficient
have been reported for Cu-poor/Mn-rich samples synthesized by
sulfurization with temperatures between 500 and 585◦C, starting
the annealing process at 115◦C to trigger the alloy formation.
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FIGURE 5 | (a) SEM image of CMTS samples grown by sulfurization at 115 + 585◦C; (b) cross sectional SEM image of a CMTS sample grown by sulfurization at 115

+ 585◦C [Reprinted from (Marchionna et al., 2017) with copyright permission from Elsevier].

Limited electrical performance were reached (efficiency 0.33%,
Voc = 226mV, Jsc = 4 mA/cm2, FF 36.3%) (Marchionna et al.,
2017), mainly due to the presence of Cu7.38(11)Mn4Sn12S32, a
spinel-type insulating secondary phase.

Cu-poor/Mn-rich CMTS layers with better homogeneity of
the metal ratios were presented in Le Donne et al. (2017), reached
through an enhanced control of the precursor evaporation
rate; PV devices showed improved performance compared to
(Marchionna et al., 2017): efficiency 0.5 vs, 0.33%, Voc =

302 vs, 226mV, Jsc = 4.6 vs. 4 mA/cm2, FF 36 vs. 36.3%.
Considering the beneficial consequences of low temperature
post-deposition thermal treatments on kesterite based solar cells
(Neuschitzer et al., 2015; Jiang et al., 2016), the effect of annealing
temperature ranging from 200 to 275◦C on the same CMTS
devices was investigated, too. The best annealing in air at
225◦C for 40min led to a significant reduction of recombination
losses without a strong increase of CdS absorption, allowing
for a remarkable improvement of CMTS solar cell performance
(Jsc = 5.8 mA/cm2, FF 40%, Voc = 354mV, efficiency 0.83%)
(Le Donne et al., 2017).

Cu2BaSnS4/Cu2BaSn(S,Se)4
As it is known in the literature, Voc in CZTS/CZTSSe is mainly
limited by the band tailing related to cation-cation antisite
disorder and by the following potential fluctuations (Gokmen
et al., 2013). The main antisite defects, responsible of the
antisite disorder, are copper-on-zinc (CuZn) and zinc-on-copper
(ZnCu) (Chen et al., 2013). Furthermore, Sn multivalency could
induce deep levels in the bandgap, which in turn could cause
non-radiative recombination, when Sn2+ occupies a Zn2+ site
(Chen et al., 2013). Thanks to the distinct electronic properties
exhibited by Cu, Sn and Ba, the formation of cation–cation
antisite defects in Cu2BaSnS4 (CBTS)/Cu2BaSn(S,Se)4 (CBTSSe)
has been proven to be difficult (Xiao et al., 2017). Therefore,
in addition to the good abundance to annual production
ratio provided by Ba, CBTS/CBTSSe could potentially lead
to better optoelectronic properties than CZTS/CZTSSe. Up to
now, very few works reported on CBTS/CBTSSe, which mainly
deal with vacuum deposition methods (Ge et al., 2016; Shin
et al., 2016, 2017). Shin et al. investigated Cu2BaSnSexS4−x

films with different Se contents prepared by co-sputtering
followed by sulfurization/selenization (Shin et al., 2016). Of
the different examined stoichiometries, combined experimental
and theoretical analyses showed that Cu2BaSnSexS4−x thin films
with 0<x≤3 compositions are isostructural to CBTS with space
group P31 and display a tunable bandgap in the 1.6–2 eV
range, which well fits the optimal values for being employed
both in single junction (i.e., 1–1.6 eV) and top solar cell in
multijunction (i.e., 1.7–2.0 eV) PV devices. Furthermore, optical
absorption, External Quantum Efficiency and PL data confirmed
the expected absence of band tailing in CBTS. Last but not
least, prototype CBTS-based thin-film solar cells with 1.54%
average efficiency have been prepared and tested (Voc = 699mV,
Jsc = 4.1 mA/cm2, FF = 53.5%) (Shin et al., 2016). Some of
the same authors obtained further improvements by combining
the bandgap tuning related to the introduction of Se with a
post-deposition annealing in air, producing a CBTSSe-based
PV device with 5.2% efficiency (Shin et al., 2017). Ge et al.
(2016) studied polycrystalline Cu2BaSn(Se0.83S0.17)4 (CBTSSe)
thin films grown on fluorine tin oxide (FTO) by co-sputtering
of a sulfide precursor followed by selenization. In contrast to
the XRD results reported in (Shin et al., 2016), these layers
(Ge et al., 2016) are isostructural to CBTSe with space group
Ama2. Conversely, they exhibit, as expected, an optical bandgap
around 1.85 eV, absorption coefficient higher than 104 cm−1,
and p-type conductivity. A proof-of-concept PV device with
FTO/BCTSSe/CdS/ZnO/AZO structure showed 1.57% efficiency
(Voc = 613mV, Jsc = 6.78 mA/cm2, FF= 37.7%) (Ge et al., 2016).

Cu2NiSnS4

Theoretical calculations claim that the substitution of Zn with
Ni in CZTS could reduce the optical bandgap and potentially
enhance electrical conductivity (Ghosh et al., 2014). These
attractive features along with the sufficient abundance to annual
production ratio provided by Ni make Cu2NiSnS4 (CNTS) worth
to be considered for TW range PV applications. Currently, few
works on CNTS are present in the literature, most of them
reporting on thin films prepared by non-vacuum techniques,
namely electrodeposition followed by sulfurization (Chen et al.,
2016b; Yang et al., 2016), spray sandwich method (Dridi et al.,
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2017; Bitri et al., 2018) and direct solution coating followed
by sulfurization (Mokurala et al., 2017). As expected, the layer
morphology was generally found to be strongly dependent on the
substrate, the larger grain size being obtained on SLG due to the
higher diffusion of Na from the substrate. Hall measurements
showed that after sulfurization an increase in mobility and a
decrease in resistivity occur (Mokurala et al., 2017), which were
attributed to the passivation of defects (mainly VS) and to the
enhanced crystallization and in the CNTS thin films. The high
absorption coefficient (>104 cm−1) and the suitable optical
bandgaps (i.e., 1.29–1.50 eV) generally obtained, along with some
preliminary low resistivity values [∼= 0.14 �cm (Mokurala et al.,
2017)], suggest that cubic p-type CNTS thin films are promising
for PV applications.

Cu2CoSnX4, Cu2CdSnX4, and Ag Related Quaternary

Alloys (X = S and/or Se)
Among the chalcogenide thin film absorbers based on less
abundant elements (i.e., Co, Cd, and Ag), most of the
studies reported in the literature deals with Cu2CdSnS4
(CCdTS)/Cu2CdSn(S,Se)4 (CCdTSSe). In fact, despite the low
abundance to annual production ratio provided by cadmium, the
replacement of Zn by the bigger Cd atom leads to a reduced
presence of detrimental ZnCu antisite defects, which could
enhance the conductivity (Hussain et al., 2016). Furthermore,
the CCdTS bandgap is nearer than the CZTS one to the optimal
value calculated by Shockley and Queisser (i.e., 1.34 eV) (Smets
et al., 2016), which could potentially lead to more efficient
PV devices. CCdTS, which more stable crystalline form is
stannite, shows p-type conductivity related to the presence of
Cu vacancies (VCu) and/or CuCd antisites (Meng et al., 2015b).
So far, CCdTS/CCdTSSe was mainly investigated in the form
of nanocrystal (Fan et al., 2011; Ramasamy et al., 2013), while
few works reported on the deposition of CCdTS/CCdTSSe thin
films (Timmo et al., 2013; Nie et al., 2015; Zhao et al., 2015;
Henry et al., 2016; Xu et al., 2016; Rouchdi et al., 2017) and
in particular on CCdTS/CCdTSSe based PV devices (Timmo
et al., 2013; Zhao et al., 2015). Among the latter, Timmo et al.
prepared CCdTS monograin powders with 1.4 eV bandgap from
molten CdI2 or KI as flux materials sealed in quartz ampoules at
610◦C, reaching a 2.7% efficiency (Timmo et al., 2013). Zhao et al.
(2015) reported on stannite CCdTSSe thin films prepared by a
chemical solution approach, which showed large densely packed
grains and suitable bandgap around 1 eV. Solar cell prototypes
based on them showed a 3.1% efficiency. However, it should
be remarked that Cd as well as many Cd based compound are
toxic, making CCdTS/CCdTSSe not fully compatible with a green
energy supply.

Finally, few literature works explored Cu2CoSnS4 and Ag
related quaternary alloys as thin film PV absorbers, namely
(Krishnaiah et al., 2015; Gershon et al., 2016a,b; Ghosh
et al., 2016). Particularly attractive results were obtained
for Ag2ZnSnSe4 (AZTSe) (Gershon et al., 2016a) and for
(AgxCu1−x)2ZnSnSe4 (Gershon et al., 2016b), which both
showed efficiencies much higher than those reported in most of
the previous paragraphs (see Table 1). Most probably, the reason
is that the introduction of Ag in CZTSe was demonstrated to
strongly reduce the band-tailing effect responsible for the Voc

loss in kesterite thin film solar cells, which was discussed above
in the CBTS section. Theoretical calculations (Chagarov et al.,
2016) showed in fact that the formation energy of I-II antisite
in AZTSe is significantly higher than in CZTSSe, which reduces
the I-II antisite density by at least one order of magnitude.
The band-tailing reduction is particularly relevant for pure-Ag
materials (i.e., AZTSe), however Gershon et al. (2016b) showed
that introducing only 10% Ag in CZTSe allows to obtain a
remarkable 10.2% efficiency. Despite a further optimization could
potentially improve the performance of (AgxCu1−x)2ZnSnSe4
based solar cells (Gershon et al., 2016b), silver is a further element
under serious threat of extinction in the next 100 years (Harland
et al., 2013), so most probably they will have a marginal role in
the PV TW challenge.

CONCLUSION AND PROSPECTS

In this work, an extensive review of emerging sulfide/selenide
materials with abundant and non-toxic elements is given. We are
aware that the success of such emerging chalcogenide materials
in the PVmarket will depend on many variables. Economic ones,
including costs in $/Wp and added value for both consumers and
architects, andmainly scientific ones. As discussed here, although
in the last few years the performance of emerging chalcogenide
solar cells was significantly progressing, further improvements
are needed to achieve the efficiency required for the practical
use. In fact, of the many absorbers reviewed here, very few
provided efficiencies over 5%, as clearly summarized in Table 1.
Some points were identified as critical: (a) the band-tailing effect
responsible for the Voc loss in kesterite thin film solar cells
has to be reduced. Up to now, this goal was encouragingly
achieved in CBTS and mainly in (AgxCu1−x)2ZnSnSe4, however
silver is under serious threat of extinction in the next 100 years,
so further solutions must be explored; (b) the recombination
has to be reduced, for example, by passivating the defects at
the grain boundaries of the photo-absorber and at the photo-
absorber/buffer interface; (c) the chemical composition and the
manufacturing methods must be designed to avoid secondary
phases and to manage the bulk defects; (d) the architecture
of the device must be adapted to the characteristics of the
absorber material. As we have reviewed, the research in the
field is addressing these issues but is in a preliminary phase
and many efforts are necessary to reach the goal. However,
the technical and environmental profile of each new discussed
material as well as the easy way of production are very promising.
In fact, the recent advances in emerging solutions-based PV
research have opened new paths, which could soon lead to
some of these limitations being overcome. Moreover, several
materials have been tested to optimize the device architecture
and improve the interfaces. Lately, more and more research
teams from different backgrounds are joining the efforts to make
thin film photovoltaics based on chalcogenides available for
commercialization. Because the limits of the discussed materials
are many-sided, involving issues for chemistry, physics and
engineering, in order to push ahead the research on new earth-
abundant thin film solar cells based on chalcogenides a more
interdisciplinary research approach should be promoted. The
final aim is to deliver versatile and efficient solar cells with
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clean and sustainable materials and that can hold a key role in
energy production in the develop of that applications, such as
building integration PV, outdoor recreational, and low-power
consumer electronics, where the conventional solar materials
cannot be applied.
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