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1 Introduction and summary

The study of 3d supersymmetric gauge theories and their dualities has received a great

deal of attention in the last decade. Thanks to important achievements in the study of

supersymmetric localisation (for a review see [1]), it has been possible to calculate exactly
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quantities such as partition functions of N ≥ 2 theories on various 3-manifolds, and test a

plethora of old and new IR dualities.

Much progress stemmed from the idea of obtaining 3d dualities from 4d Seiberg-like

dualities, which was revamped in [2]. 3d dualities obtained from 4d have been in turn

observed to generate old and new dual pairs when subject to various types of real mass

deformations. Identifying a common ancestor of various apparently unrelated 3d dualities

seems a useful organizing principle to attempt charting the vast landscape of 3d dualities.

For recent results in this direction see [3, 4] and references therein.

In this paper we are interested in a different type of 3d dualities: we will consider

mirror and spectral dualities for which we can identify a 5d ancestor, and not a 4d one.

Our starting point is the so-called T [SU(N + 1)] quiver theory of [5], depicted in the

figure 1.1. This is a 3d N = 4 supersymmetry theory which can be realised on a set of D3

branes stretched between NS5 and D5 branes. The action of S-duality on Type IIB three-

and five-branes can then be used to show that T [SU(N + 1)] has a mirror dual, denoted

by T [SU(N + 1)] ‹, which is described by the same T [SU(N + 1)] quiver with Higgs and

Coulomb branch swapped. We will later decorate such a setup by turning on various mass

deformations preserving N = 2∗ supersymmetry.

Our first observation is that T [SU(N + 1)] has two more dual descriptions, which

we denote by FFT [SU(N + 1)] and FFT [SU(N + 1)] ‹. In more detail, FFT [SU(N +

1)] is obtained from the very same quiver of T [SU(N + 1)], by adding two extra sets

of gauge singlets which couple linearly to the moment maps of the Coulomb and Higgs

branches. Pictorially, FFT [SU(N + 1)] is the T [SU(N + 1)] theory with flipped Coulomb

and Higgs branches. Similarly, FFT [SU(N + 1)] ‹ is the T [SU(N + 1)] ‹ theory with flipped

Coulomb and Higgs branches. From our construction follows the diagram of dualities shown

here below.

. . .1 2 N N+1 . . . 2 1NN+1

. . .1 2 N N+1 . . . 2 1NN+1

T [SU(N + 1)]

FFT [SU(N + 1)]

T [SU(N + 1)] ‹

FFT [SU(N + 1)] ‹

(1.1)

Horizontal arrows correspond to mirror dualities, while vertical arrows are new dualities

which, as we will explain in more details, can be regarded as a generalization of Aharony

duality [6]. We will refer to these new duality as Flip-Flip dualities. In section 2, we discuss

the map between operators across the four dual frames. Particularly interesting is the way

nilpotent orbits are mapped under Flip-Flip duality.
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In section 4 we show equality of the partition functions on S3
b . Contrary to the case of 4d

and 3d Seiberg-like dualities, where the equality of localised partition functions reduces to

well studied integral identities in the mathematical literature, [7–9] and [10], for T [SU(N +

1)] and its dual partition functions there are no analogous results. So we follow the strategy

of [11] regarding our partition functions as eigenfunctions of a set of Hamiltonians.

In section 3 we consider the effect of deforming T [SU(N + 1)] by a linear monopole

superpotential as in [12, 13]. Applying the monopole duality of [15], we show that this

deformation has the effect of confining sequentially all the nodes but the last one. The

result is a U(N) theory with (N + 1) flavors and several gauge singlets, which we call

theory A. We then follow the monopole deformation across the duality frames and obtain

four new dual theories. This is the inner ABCD square shown in the picture below.

N N+1
...

1 N+1
...

1

1

N N -1 . . . 1

1 1 1 . . . 1 1
...

T [SU(N + 1)]

FFT [SU(N + 1)]

T [SU(N + 1)] ‹

FFT [SU(N + 1)] ‹

A B

CD

Interestingly enough, the horizontal lines in the ABCD diagram also correspond to

mirror dualities, while the vertical line connecting A and D is precisely Aharony duality.

Mirror symmetry relates A and B in very much the same way of [13], but the connection

among theories A, D and C is more involved. In particular, the original monopole defor-

mation on T [SU(N + 1)] translates in FFT [SU(N + 1)] ‹ into a nilpotent vev for the Higgs

branch flipping fields. By studying in detail the low energy theory on such nilpotent vev

we show that it corresponds to the abelian quiver C in the picture. Then we obtain the

same theory by performing piece-wise mirror symmetry to theory D.

In section 5 we move on to the construction of our 3d spectral dualities. Several

ingredients goes into it. Firstly, we realise our 3d theories TX as codimension-two defect

theories coupled to a (trivial) 5d N = 1 bulk theory. In particular, TX is generated

by the so-called Higgsing prescription [17], meaning that TX is generated by turning on

appropriate vevs in 5d N = 1 linear quiver theories which is geometrically engineered

by (p, q)-web of NS5 and D5’ branes. This higgsed configuration can be recognize as a

variation of the construction given by [16], and it involves D3-branes stretching between

NS5 and D5’ branes, on which our defect theories live.

– 3 –
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Secondly, we also realise our 5d linear quiver theory by the compactification of M-theory

on a toric CY three-fold X, with the toric diagram given by the (p, q)-web. This leads to

direct interpretation of the 5d instanton partition function as the refined topological string

partition function ZX
inst,top. In this language, the Higgsing prescription amounts to tuning

the values of the Kähler parameters of the CY X to special quantized values in order to

obtain the “Higgsed CY” X , and typically it reduces the instanton partition function to

an instanton-vortex partition function for the coupled 3d–5d system [18–23].

In the cases we are going to consider we have a “complete Higgsing”, by which we

mean that starting from 5d we are left with a 3d theory coupled to a trivial 5d the-

ory of free hypers. In this way we can unambiguously identify the Higgsed instanton-

vortex/topological string partition function as the vortex partition function of the defect

theory Zα0
vort,TX = ZXvort,top. More precisely, we can relate the D2 × S1 partition function

of theory TX evaluated in a certain vacuum α0, i.e. the holomorphic block Bα0
TX , to the

partition function of the Higgsed topological string:1

Bα0
TX = ZXtop. (1.2)

Our 5d linear quiver theories admits a spectral dual description which can be equiva-

lently stated as the invariance of the topological string partition function under a fiber-base

transformation: ZX
top = ZX′

top, where we denote by X′ the fiber-base dual CY. Of course X

and X′ are just two equivalent description of the same toric CY, hence the equality of the

partition functions. Therefore, our main idea is to combine Higgsing and fiber-base duality

to obtain new 3d spectral pairs which descend from 5d. Summarizing, we first follow the

Higgsing process on X down to X , which yields a 3d theory TX . Then we follow this same

Higgsing on the fiber-base dual, X′ down to X ′, and we obtain another 3d theory TX ′ which

we call the 3d spectral dual theory. The fiber-base invariance of the Higgsed topological

string partition function implies the equality of the holomorphic blocks Bα0
TX = Bα0

TX′
of the

3d spectral dual theories TX and TX ′ .
In this paper we propose two examples of spectral dual theories and together with the

topological string construction, we support our proposals by providing purely field theory

arguments. A third example of spectral duality has been recently discussed in [24].

The first spectral dual pair we construct follows from the duality on the SE-NW di-

agonal of the T [SU(N + 1)] diagram, namely FFT [SU(N + 1)] ↔ T [SU(N + 1)] ‹. We

denote with FT [SU(N + 1)] the T [SU(N + 1)] theory with an extra set of singlets which

flip only the moment map operator on the Higgs branch. Then, upon flipping the SE-NW

T [SU(N+1)] frames, we obtain the spectral dual pair, FT [SU(N+1)]↔ FT [SU(N+1)] ‹.
Notice that FT [SU(N + 1)] has been realised previously in [25] as a defect theory in the

square (p, q)-web with (N + 1) D5’ and NS5 branes, and there it was also shown that the

equality of the holomorphic blocks Bα0

FT [SU(N+1)] = Bα0

FT [SU(N+1)] ‹ follows indeed from the

equality of the topological string partition functions for the fiber-base dual diagrams.

The second spectral dual pair T ↔ T ′ is obtained within the ABCD diagram by

flipping the SE-NW diagonal D ↔ B. We discuss the operator map and check the equality

1For illustration, we have dropped a prefactor depending on contact terms, however keep track of it

when presenting the actual matching of partition functions in section 5.3.
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of the sphere partition functions. We then show how T and T ′, can be realised as defect

theories inside spectral dual 5d theories and obtain their holomorphic blocks Bα0
T , Bα0

T ′ by

tuning the Kähler parameters in the fiber-base dual CYs. Again we prove that our 3d

spectral pair descends from fiber-base duality in topological strings.

The main novelty of our construction is to provide two completely independent and

quantitative tools to check spectral dualities. Indeed, it is quite remarkable that both a

field theory computation based on the localised supersymmetric partition function, and

the refined vertex of the topological string, exactly agree.

We add an intriguing outlook to our story: both the inner diagram ABCD, and the

spectral dual pairs we have constructed, descend, by various flips and deformations, from

the self-mirror tail of T [SU(N + 1)], which can be realised with a brane construction. It

would be interesting to understand better the interplay between these two types of dualities

in string theory. For example, a simple generalization we might consider is to study other

Higgsing patterns in the toric diagrams, corresponding to more general nilpotent vevs for

T [SU(N+1)], or even more interestingly, corresponding to coupled 3d−5d systems in which

the 5d theory is non trivial. As in the examples we have proposed, performing fiber-base

duality on a generic Higgsing pattern will produce a new duality for the 3d-5d system. We

also point out that our analysis of the nilpotent vev is reminiscent of the discussion about

T-branes and 3d N = 2 quiver theories [14].

In this paper we have focused on spectral duality, or fiber-base duality, which is just

one element of the S-duality group of the (p, q)-web. It would be interesting to investigate

the interplay between Higgsing and the action of the other elements. Some investigations

along these lines have been proposed in [24].

2 T [SU(N + 1)] dualities

T [SU(N + 1)] is the 3d N = 4 quiver theory arising from the study of S-duality and

Dirichlet boundary conditions in four-dimensional N = 4 SYM [5]:

2 31 N N + 1
(2.1)

Each one of the N round gauge nodes, labelled by its rank k = 1, . . . , N , is associated to

a vector multiplet decomposed into an N = 2 vector multiplet and an adjoint chiral field

Φk, represented by a loop. Bifundamental chiral fields Qab, and antichiral fields Q̃ãb̃ are

represented by lines connecting adjacent nodes and pair up into hypermultiplets2. The

N + 1 rectangular node is ungauged. In the quiver rapresentation, the flavor node is what

we call ‘head’ of T [SU(N + 1)]. In N = 2 notation the superpotential of the theory is

W T [Φ,Q] ≡
N∑
k=1

Trk

[
Φk

(
Trk+1Q(k,k+1) − Trk−1Q(k−1,k)

)]
(2.2)

2In our conventions the bifundamentals Q
(k,k+1)
ab transform in the reps � ⊗ � of U(k) × U(k + 1), and

the bifundamental Q̃
(k,k+1)

ãb̃
transform in the reps �⊗� of U(k + 1)×U(k)
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where we defined the matrix of bifundamentals Q(L,R) = Q
(L,R)
ab Q̃

(L,R)

ãb̃
, labelled by the pair

(L,R) attached to the link between a left (L) and a right (R) node. On the first node

Q(0,1) = 0. Traces Trk are taken in the adjoint of U(k).

The global symmetry of T [SU(N + 1)] is SU(N + 1)flavor × SU(N + 1)top. The flavor

symmetry SU(N + 1)flavor rotates the fundamental hypers at the head of the tail. The

non abelian SU(N + 1)top is an IR symmetry, and the UV Lagrangian only manifests a

U(1)Ntop topological symmetry, coming from the dual photons on the gauge nodes. For each

Cartan in the flavor symmetry group and each U(1)top we can turn on a real masses, Mp

and Tp, respectively.

The R-symmetry of a 3d N = 4 theory is SU(2)C × SU(2)H with Cartans U(1)C ⊂
SU(2)C and U(1)H ⊂ SU(2)H . We will work with a family of N = 2∗ theories obtained by

introducing a real mass parameter for the anti-diagonal combination U(1)A = C −H [26].

We take the UV R-charge equal to the combination R0 = C + H. In the IR, the R-

symmetry can mix with other abelian symmetries, but since the topological symmetry is

non-abelian, R0 will only mix with U(1)A. Thus we introduce a trial R-charge, defined by

R = C+H+α(C−H) for some α ∈ R. For the bifundamental fields we find R = 1−α
2 ≡ r,

in agreement with the assignment C = 0, H = 1
2 . For the adjoint fields R[Φk] = 2(1− r) iff

the superpotential has R-charge 2. Notice also that R[Φk] = 1 + α = 2(1− r) is consistent

with C = 1 and H = 0. The exact value of r can be fixed by F-extremization [27].

We define the gauge invariant (N + 1)× (N + 1) meson matrix:

Qij ≡ TrNQ(N,N+1), R[Qij ] = 2r . (2.3)

The dynamics might impose additional relations on Qij , thus restricting the set of genera-

tors of the Higgs branch (HB) chiral ring. Classical relations follow from the F-terms, and

for T [SU(N + 1)] the F-terms of the fields Φk imply that Q is nilpotent [5]. The argument

goes as follows: Q = Q̃(N,N+1)Q(N,N+1) has rank at most N by definition. Then, the

F-term of ΦN can be used to rewrite

Q2 = Q̃(N,N+1)Q(N,N+1)Q̃(N,N+1)Q(N,N+1) (2.4)

=
(
Q̃(N,N+1)Q̃(N−1,N)

)(
Q(N−1,N)Q(N,N+1)

)
(2.5)

which implies Q2 has at most rank N−1. Iterating this computation we find that certainly

QN+1 = 0. The Higgs branch is related to the nilpotent cone N for matrices in SL(N+1,C).

This space can be organized as the union of all the orbits S ·Jλ ·S−1 where S ∈ SL(N+1,C)

and J is the Jordan form associated to a partition λ of N + 1, see [28] for a review on

related topics.

The meson Q comes along with the moment map operator ΠQ, which is better suited

to describe global symmetries of the theory. Indeed, ΠQ is the half-BPS primary in a

supermultiplet which contains conserved global currents. In our case, ΠQ is defined as

ΠQ ≡ Q− 1

N + 1
TrQ . (2.6)

Coulomb branch (CB) operators can be obtained from Tr Φk and monopole operators

M f1...fN carrying fi units of flux for the topological U(1) on the i-th node. The R-charge

– 6 –
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of a (BPS) monopole operator is determined by the R-charges of all the fermions ψ of the

theory by the formula:

R[M f1,...fN ] = −1

2

∑
fermions ψ

R[ψ]
∣∣ρψ(f1, . . . fN )

∣∣ , (2.7)

where ρψ(f1, . . . fN ) is the monopole charge of ψ [5, 29, 30]. 3 We find that monopole

operators defined by a string of fluxes of the form [0n(±1)m0p], where 0 and 1 are repeated

with integer multiplicities n, m, and p constrained by n + m + p = N , have the same R-

charge of the adjoint fields, i.e. R[Φk] = 2(1− r). These monopole operators are N(N + 1)

and together with the Φk=1,...N can be arranged into a (N +1)× (N +1) matrix, analogous

to the meson matrix. For N = 3 this matrix reads

Mij ≡


0 M [1,0,0] M [1,1,0] M [1,1,1]

M [-1,0,0] 0 M [0,1,0] M [0,1,1]

M [-1,-1,0] M [0,-1,0] 0 M [0,0,1]

M [-1,-1,-1] M [0,-1,-1] M [0,0,-1] 0

+

3∑
i=1

TrΦiDi (2.8)

where Di are traceless diagonal generators of SU(N + 1)top. The generators of the CB

chiral ring can be obtained from such an Mij upon imposing further relations.

In the rest of the paper we will refer to a matrix assembled as in (2.8), as the monopole

matrix of the theory under consideration.

The moment map ΠQ and the monopole matrix belong to the adjoint of SU(N + 1).

2.1 Mirror simmetry

It is well known that T [SU(N+1)] is self-dual under mirror symmetry [5]. The dual theory,

hereafter T [SU(N + 1)] ‹, has quiver diagram

23 1NN + 1
(2.9)

and the same field content as T [SU(N + 1)]. In T [SU(N + 1)] ‹ we denote the adjoint

chirals by Ωk, the monopoles operators by N f1...fN , and the bifundamental fields by Pab
and P̃ãb̃. The indexes k and f1 . . . fN have the same meaning as in T [SU(N + 1)]. We

introduce the matrix P(L,R) = P
(L,R)
ab P̃

(L,R)

ãb̃
for each pair of nodes (L,R). Then the dual

the superpotential reads

W T ‹

= W T [Ω,P] . (2.10)

Mirror symmetry exchanges the Higgs and Coulomb branch. Therefore the bifunda-

mental fields have now R-charge R[Pab] = 1 − r. Consequently the monopole operators

have R-charge R[N ij ] = 2r. It follows from the superpotential that R[Ωk] = 2r for any k.

3Example: consider a U(N) theory with 2N flavors Q, Q̃, an adjoint Φ ∈ U(N), and superpotential

W = ΦQQ̃. The monopoles M±1 have R[M±1] = 2N(1−RQ) + (N − 1)(1−RΦ)− (N − 1), which in our

case becomes R[M±1] = 2− 2r.
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0 1 2 3 4 5 6 7 8 9

NS5 − − − − − −
D5 − − − − − −
D3 − − − −

Table 1. The brane setup giving rise to the 3d N = 4 T [SU(N + 1)] gauge theory.

On the Higgs branch we define the meson P and its moment map ΠP . The meson is

Pij ≡ TrNP(N+1,N), R[Pij ] = 2− 2r . (2.11)

On the Coulomb branch we consider the monopole matrix Nij , which similarly to the

previous section, is obtained from TrΩk and from monopole operators with fluxes valued

in [0n1m0p]. For N = 3 we have

Nij ≡


0 N [1,0,0] N [1,1,0] N [1,1,1]

N [-1,0,0] 0 N [0,1,0] N [0,1,1]

N [-1,-1,0] N [0,-1,0] 0 N [0,0,1]

N [-1,-1,-1] N [0,-1,-1] N [0,0,-1] 0

+
3∑
i=1

TrΩiDi (2.12)

where again Di are traceless diagonal generators of SU(N + 1).

Mirror symmetry exchanges

Mij ↔ ΠPij ; ΠQij ↔ N ij . (2.13)

and therefore HB and CB.

The fact that T [SU(N + 1) is self-dual under mirror symmetry can be neatly derived

from the IIB brane engineering of the T [SU(N + 1)]. More precisely, T [SU(N + 1)] can be

understood as the low energy theory of a system of D3 branes suspended between (N + 1)

D5 and NS5 branes [32]. The brane configuration is summarized in table 1 and goes as

follows. The NS5 extend along directions 012789, and the D5 branes along directions

012456. The NS5 and D5 branes are separated in the third direction, where (N + 1) D3

branes are stretched in between, so that each NS5 brane is connected to a distinct D5 brane.

These D3 branes extend along directions 0123, but since they are bounded in the third

direction by D5 and NS5 branes, the low energy dynamics on their wordlvolume is three-

dimensional. In fact it is precisely the T [SU(N+1)] theory. The R-symmetry group factors

SU(2)C and SU(2)H correspond to the rotation symmetry of the NS5 and D5 branes in

the directions transverse to the D3 branes, i.e. to SO(3)456 and SO(3)789 respectively. The

action of mirror symmetry, which exchanges CB and HB, is precisely that of IIB S-duality,

which exchanges the NS5 and D5 branes (leaving the system invariant). Equivalently, one

can think of this transformation as the exchange of the 456 and 789 directions.

2.2 Flip-flip duals

In this section we propose new duals for T [SU(N + 1)] and its mirror. We name them

Flip-Flip dualities for reasons that will become soon clear.

– 8 –
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Let us begin by describing the Flip-Flip dual of T [SU(N + 1)], which we denote by

FFT [SU(N+1)]. This theory has the content of T [SU(N+1)] plus two extra sets of fields,

the flipping fields. We represent FFT [SU(N + 1)] by the quiver

2 31 N N + 1
(2.14)

where the horizontal loops attached on the flavor node indicate the addition of flipping

fields. We have adjoint chiral fields Θk, bifundamental fields Rab and R̃ãb̃, with R[Rab] =

R[R̃ãb̃] = 1 − r, and monopoles operators. Out of them, we define the meson Rij , its

moment map ΠRij , and the monopole matrix m ij . The flipping fields are elementary fields,

singlet of gauge groups, and transform respectively in the adjoint of SU(N + 1)flavor and

SU(N + 1)top., in particular they are traceless. These are denoted by FRij and F m
ij , since

they will couple to Rij and m ij in the superpotential:

WFFT = W T [Θ,R]− FRij ΠRij − m ijF
m
ij . (2.15)

From WFFT we deduce the R-charge assigment, R[F m
ij ] = 2−2r and R[FRij ] = 2r. We then

discover that the Flip-Flip duality between T [SU(N + 1)] and FFT [SU(N + 1)] maps:

ΠQ ↔ FR ; M↔ F m . (2.16)

The F-terms of FRij and F m
ij imply ΠRij = 0 and m ij = 0. As a result, the HB and

CB will now be described by FRij and F m
ij , respectively. In this sense, FRij is the flip of the

moment map, i.e. the meson Rij , and F m
ij that of the monopole matrix.

It is interesting to look at the description of the HB. The F-terms of the bifundamentals

R(k,k+1) and R̃(k,k+1) imply the equations

R̃(k,k+1)Θk = Θk+1R̃
(k,k+1) (2.17)

ΘkR
(k,k+1) = R(k,k+1)Θk+1 (2.18)

where we defined ΘN+1 ≡ FR so to have a uniform notation in (2.17) and (2.18). The

F-terms of the diagonal component of the monopole matrix give TrΘk = 0 for all k ≤ N , in

particular Θ1 = 0. Furthermore, it is always possible to use SU(N)gauge × SU(N + 1)flavor

to put one of the bifundamentals on the last link in a diagonal form. For concreteness

we take,

〈R̃(N,N+1)〉 =


v1 0 . . . 0

0 v2 . . . 0

0 0 . . . 0

0 0 . . . vN
0 0 . . . 0

 . (2.19)

with arbitrary vi. The constraint ΠRij = 0 trivializes (2.18). Let us discuss the case N = 1

to start with. From (2.17) we find

0 = R̃(1,2)Θ1 = Θ2

[
v1

0

]
, (2.20)
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therefore R̃(1,2) is in the kernel of Θ2. The flipping fields Θ2 are in the adjoint of SU(2)

and we shall take TrΘ2 = 0. It follows that a traceless matrix in the adjoint with a one

dimensional kernel can be put into the form,

Θ2 =

[
0 θ2

0 0

]
. (2.21)

i.e. Θ2 is nilpotent. More in general, we can use a recursive argument to show that ΘN+1

can be taken to be nilpotent. So let us assume that ΘN is nilpotent, and consider the

matrix R
(N,N+1)
aux such that R

(N,N+1)
aux 〈R̃(N,N+1)〉 = IN×N . This matrix can be explicitly

constructed in the gauge (2.19). Then (2.17) becomes

ΘN = R(N,N+1)
aux ΘN+1〈R̃(N,N+1)〉 . (2.22)

Considering ΘN is in its Jordan Form we introduce a basis {~wi} such that:

ΘN ~w1 = 0

ΘN ~wi =
∑
j<i

cji ~wj i ≥ 2 (2.23)

for given coefficients cji which depend on the partition associated to ΘN as nilpotent matrix.

Equations (2.22) now imply the relations

R(N,N+1)
aux ΘN+1〈R̃(N,N+1)w1〉 = 0

R(N,N+1)
aux ΘN+1〈R̃(N,N+1)wi〉 =

∑
j<i

cjiwj . (2.24)

Since ~wi=1,...N is a basis, the span of ~ui = 〈R̃(N,N+1) ~wi〉 is by construction an N -dimensional

subspace in N + 1 dimensions. The solution of (2.24) is then

ΘN+1〈R̃(N,N+1)w1〉 = θ2K

ΘN+1〈R̃(N,N+1)wi〉 =
∑
j<i

cji 〈R̃
(N,N+1)wj〉+ θi+1K i ≥ 2 (2.25)

where K parametrizes the one dimensional kernel of R
(N,N+1)
aux , and the coefficients θi are

arbitrary. It is straightforward to plug (2.25) back into (2.24) and check that the equations

are satisfied by using R
(N,N+1)
aux 〈R̃(N,N+1)〉 = IN×N . Moreover, this relation implies that

K and the set of vectors {~ui} are independent, and therefore we can use them to span a

basis in N + 1 dimensions. Thus we fix completely ΘN+1 by specifying its action on such

an basis, i.e. by adding ΘN+1K to the list in (2.25). The nilpotent solution is given by

ΘN+1K = 0

ΘN+1〈R̃(N,N+1)w1〉 = θ2K

ΘN+1〈R̃(N,N+1)wi〉 =
∑
j<i

cji 〈R̃
(N,N+1)wj〉+ θi+1K i ≥ 2 (2.26)

where the θj play a role analogous to θ2 appearing in (2.21).
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The outcome of our computation is interesting for two reasons: on one hand we ob-

tained nilpotent solutions for the vev of the flipping fields, which in turn supports our

duality, i.e. our identification ΠQ ↔ FR. On the other hand, this nilpotency condition on

the flipping fields shows up in a totally opposite way compared to the case of the meson Q
in T [SU(N + 1)]. As reviewed in the Introduction, in order to show that Q is nilpotent in

T [SU(N +1)] we used the F -term constraints starting from the head of the tail back to the

first gauge node. For the flipping fields, instead, we used F -term constraints recursively

from the first gauge node up to the head of FFT [SU(N + 1)]. We will have more to say

about this in section 3.3.

In the case of N = 1, our duality relates T [SU(2)] to a U(1) theory with two flavors

and various singlets. This case can be understood as a version of the Aharony duality, as

we now argue. Let us recall that Aharony duality maps N = 2 SQED theory with two

electric flavors (Qi, Q̃j) and no superpotential, to an abelian theory with two magnetic

flavors (qi, q̃j), and extra singlets Mij and S±. The magnetic superpotential is non trivial:

Wmagn. =
∑

ijMij qiq̃j +V −S+ +V +S−. In our language, Mij and S± are “flipping” fields

for the magnetic mesons qiq̃j , and for the dual monopoles V ±, respectively. Notice that Mij

belongs to the adjoint of U(2), so it is not yet our flipping field. In order to get T [SU(2)]

out of the electric side of Aharony duality, we introduce an extra singlet φ, and we add a

cubic superpotential of the form Wel. = φ
∑

iQiQ̃i. This is indeed the tail superpotential

for T [SU(2)]. Adding a corresponding singlet field φ′ also on the magneric side, Aharony

duality maps our deformation to the mass term φ′Tr(M). Integrating out these two fields

in the full magnetic superpotential, we obtain:

W ′magn. =

(
M − Tr(M)

2
I
)
ij

qiq̃j + V −S+ + V +S−.

At this point the meson qiq̃j can be replaced by its moment map without changing W ′magn..

Then, W ′magn. will be precisely what turns out to be the superpotential of FFT [SU(2)].

The expression of WFFT in this case is,

WFFT = W T [Θ,R]−RijFRij − m ijF
m
ij

= θ
∑
i

rir̃i − FRij ΠRij − m+F m
+ − m−F m

− − θF m
3 , (2.27)

where θF m
3 is the coupling due to the σ3 generator in (2.8). Similarly for m±F m

± . Integrating

out F m
3 , we recover W ′magn. upon a trivial field redefinition.

The Flip-Flip duality on the mirror side works in a similar fashion: the starting point

is T [SU(N + 1)] ‹ and its quiver diagram (2.9). The quiver diagram of FFT [SU(N + 1)] ‹ is
essentially (2.9), except for the flavor node on which the new flipping fields are attached.

On FFT [SU(N+1)] ‹ we will use the following notation: Ψk for the adjoint chirals, Sab and

S̃ãb̃ for the bifundamental fields, with R[Sab] = R[S̃ãb̃] = r, Sij for the mesons and n ij for

the monopole matrix. The flipping fields are denoted by FSij and F n
ij . The superpotential is

WFFT ‹

= W T [Ψ, S]− FSij ΠSij − n ijF n
ij , (2.28)
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from which we read the R-charges R[F n
ij ] = 2r and R[FSij ] = 2− 2r. According to the Flip-

Flip duality between T [SU(N + 1)] ‹ and FFT [SU(N + 1)] ‹ the operators are mapped as

ΠP ↔ FS ; N ↔ F n . (2.29)

2.3 A commutative diagram

We can represent our four dualities through the following commutative diagram:

. . .1 2 N N+1 . . . 2 1NN+1

. . .1 2 N N+1 . . . 2 1NN+1

ΠQ M

FR F m

ΠP N

FS F n

T [SU(N + 1)]

FFT [SU(N + 1)]

T [SU(N + 1)] ‹

FFT [SU(N + 1)] ‹

(2.30)

Horizontal arrows connect mirror dual theories while vertical arrows connect flip-flip

dual theories.

We stress an important property of the commutative diagram: if we turn off real axial

mass deformations, both T [SU(N + 1)] and T [SU(N+1)] ‹ are strictly N = 4 theories, and

our duality web implies that both FFT [SU(N + 1)] and FFT [SU(N +1)] ‹ have to acquire

an emergent N = 4 symmetry in the IR (even though their UV superpotentials preserve

only N = 2). In section 4.1 we provide further evidence about the diagram (2.30), hence

of the emergent N = 4, by showing that the partition functions of the four dual theories

are all equal as function of the fugacities for the global symmetries. A first indication

of this fact comes from F-extremization [27]. Indeed, when we extremize the partition

functions we set to zero the fugacities for the non-abelian symmetries, since these can’t

mix with the R-charge. But, as we will see later, if we turn-off the non-abelian fugacities,

the contribution of the two sets of flipping fields cancel-out, hence the extremal R-charges

for FFT [SU(N + 1)] and T [SU(N+1)] are the both equal to 1/2, which is the N = 4 value.

In section 5.1 we will argue that the FFT [SU(N + 1)] ‹ theory can be realised on a

brane set-up consisting of D3 branes suspended between NS5’ and D5’ branes preserving

N = 4 supersymmetry.

3 Deformations of the commutative diagram

In this section we consider a certain monopole deformation of T [SU(N + 1)] and follow its

RG-flow across the commutative diagram. This computation offers an interesting and novel

consistency check about the (mother) T [SU(N + 1)] commutative diagram, and produces
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another set of dual theories, named ABCD, themselves organized as a (daughter) commu-

tative diagram. The final picture is presented in section 3.4 and summarized as follows:

A B

CD

T [SU(N + 1)]

FFT [SU(N + 1)]

T [SU(N + 1)] ‹

FFT [SU(N + 1)] ‹

(3.1)

The monopole deformation we are interested in turns on the following components of the

monopole matrix Mij ,

LT{1,...,N−1} = M [10···00] + M [010···00] + · · ·+ M [00···10] . (3.2)

The last gauge node is underformed.4 We denote the deformed superpotential in T [SU(N+

1)] by W T
def , namely

W T
def = W T + LT{1,...,N−1} (3.3)

More generally we will define W T ‹

def and WFFT ‹

def for theories B and C, respectively.

3.1 Theory A: monopole deformed T [SU(N + 1)]

The quiver diagram for T [SU(N + 1)] was introduced in section 2,

2 31 N N + 1
(3.4)

It will be convenient to decompose the adjoint fields on a basis of hermitian generators

of U(k), namely Φk =
∑
φakT

a, and extract from the superpotential (2.2), the abelian

components, defined hereafter as,

W T ⊃ Wk ≡
1

k
TrΦk

[
TrkTrk+1Q(k,k+1) − TrkTrk−1Q(k−1,k)

]
(3.5)

The reason is that abelian and non-abelian components decouple.5

In the presence of the monopole deformation L{1,...,N−1}, we can burn M [10···00] on the

first gauge node and dualize the fields as follows:

U(1)⊕ 2 flavors and W = M + ↔ 4⊕ 1 singlets Mij ⊕ γ and W = γ detM (3.6)

4This condition is relevant for the stability of the IR dualities [13].
5Consider T 0 = I, the identity. Thus, Tr(T 0A) = TrA for any matrix A, and it follows that TrΦk = kφ0

k,

i.e. φa=0
k = 1

k
TrΦk.
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where the magnetic fields Mij replace the electric meson. This is the first instance of a

family of electric-magnetic dualities introduced in [15]:

U(Nc)⊕ Nflav. and W = M + ↔ N2
f ⊕ 1 singlets Mij ⊕ γ and W = γ detM (3.7)

The map (3.7) does not include adjoint fields, which instead are present on the quiver

tail. However, on the first node, Φ1 is just a singlet, thus it can be taken into account

afterwards. Similarly, we add the coupling γ detM on top of W T .

Since the magnetic dual of a U(1) gauge theory with two flavors is a Wess-Zumino

model, the U(1) dynamics has confined in the IR. The presence of W T allows for a

sequence of iterations of this procedure, where at each step the duality (3.7) is used for

an increasing value of Nc. This is the content of the sequential confinement introduced

by [12]. Here we generalize it to the case of T [SU(N + 1)], building on previous work done

in [13]. Before presenting results for the final low energy theory, we discuss in detail the

confinement of the first two nodes.

Move # 1. Consider the restriction of T [SU(N + 1)] to the first and the second gauge

node. Locally, the theory is described by the quiver

1 2 3
(3.8)

with superpotential

W
T [SU(3)]
def = W1 +W2 +

3∑
a=1

φa2 Tr2

[
T a
(

Tr3Q(2,3) − Tr1Q(1,2)
)]

+ M [10···00]

W1 +W2 = TrΦ1

[
Tr1Tr2Q(1,2)

]
+

1

2
TrΦ2

[
Tr2Tr3Q(2,3) − Tr2Tr1Q(1,2)

]
(3.9)

where in (3.9) we have specified the abelian component. Notice the property Tr1Tr2Q(1,2) =

Tr2Tr1Q(1,2), i.e. we can commute the two traces.

We use the monopole duality (3.6) on the first gauge node. Accordingly, we replace

the electric meson, Tr1Q(1,2) → M2, where M2 is in the adjoint of U(2), the second gauge

node. In the dual theory the superpotential has become:

W
T [SU(3)]
def =W1 +W2 +

3∑
a=1

φa2 Tr2

[
T a
(

Tr3Q(2,3) −M (2)
)]

+ γ2 detM2 + M [01···00]

(3.10)

where the abelian superpotential reads,

W1 +W2 = TrΦ1TrM2 +
1

2
TrΦ2

[
Tr2Tr3Q(2,3) − TrM2

]
(3.11)

The interaction term, γ2 detM2, is part of the duality map. It is convenient to rotate the

abelian adjoints to

ϕ−2 ≡
(

TrΦ1 −
1

2
TrΦ2

)
ϕ+

2 ≡
(

TrΦ1 +
1

2
TrΦ2

)
(3.12)
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in such a way that

W1 +W2 = ϕ−2

(
TrM2 −

1

2
Tr2Tr3Q(2,3)

)
+

1

2
ϕ+

2 Tr2Tr3Q(2,3) (3.13)

An important remark is that M2 is an elementary field in the dual theory. Then the F-

term of ϕ−2 and φa=1,2,3, determine a vev for M2. In particular, 〈M2〉 depends on Tr3Q(2,3)

as follows

Tr〈M2〉 −
1

2
Tr2Tr3Q(2,3) = 0, Tr2

[
T a=1,2,3

(
〈M2〉 − Tr3Q(2,3)

)]
= 0 (3.14)

Equations (3.14) imply that 〈M2〉 has the same non abelian components of Tr3Q(2,3) but

differ by a factor of 1
2 in the abelian component. In matrix form, the solution is

〈M2〉 = Tr3Q(2,3) − Tr2Tr3Q(2,3)

2 ∗ 2
I2×2 (3.15)

Expanding the superpotential around M2 = 〈M2〉+ δM2, we find mass terms for ϕ−2 , δM2,

and for the non abelian adjoint fields φa. This is obvious from (3.10) and (3.13). Below

a common mass scale, all these fields can be integrated out. As a result, the second node

has now only a light U(1) adjoint scalar ϕ+
2 , and the bifundamentals on the (2, 3) link.

On the vacuum 〈M2〉 there is a novel effective superpotential, which we determine in the

next paragraph.

To proceed further, we would like to express det〈M2〉 in terms of traces over matrices

in the adjoint of U(3). The reason is that a matrix in the adjoint of U(3) plays the role

of the meson matrix for T [SU(3)]. Thinking about iterating the duality (3.7) on node (2),

this rewriting is clearly necessary. To achieve the desired result, we first expand

detM2 =
1

2
[TrM2]2 − 1

2
Tr [M2M2] (3.16)

Then, we rewrite

Tr [M2M2] = Tr2

[
Tr3Q(2,3) · Tr3Q(2,3)

]
− Tr2Tr3Q(2,3)

2
Tr2

[
Tr3Q(2,3)

]
+

(Tr2Tr3Q(2,3))2

8
(3.17)

Finally, two additional manipulations: in the abelian case we interchange the traces in the

obvious way, Tr2Tr3Q(2,3) = Tr3Tr2Q(2,3). In the non-abelian case, we notice the property

Tr2

[
Tr3Q(2,3) · Tr3Q(2,3)

]
=

2∑
x,y=1

3∑
n=1

QxnQ̃ny

3∑
m=1

QymQ̃mx

=

3∑
m,n=1

2∑
x=1

QxnQ̃mx

2∑
y=1

QymQ̃ny

= Tr3

[
Tr2Q(2,3) · Tr2Q(2,3)

]
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The resulting theory has the following quiver diagram,

γ2, 2 3
(3.18)

where the blue loop stands now for ϕ+
2 , instead of the full adjoint, and we remind ourselves

of γ2 by displaying it on the l.h.s. of the diagram. The effective superpotential associated

to (3.18) is,

W
T [SU(3)]
eff =

1

2
ϕ+

2 Tr3Tr2Q(2,3)

+
1

2
γ2

[
−Tr3

[(
Tr2Q(2,3)

)2]
+

5

8

(
Tr3Tr2Q(2,3)

)2]
+ M [01···00] (3.19)

Had we chosen N = 2, there would be no monopole deformation in (3.19). Renaming

Tr2Q(2,3) as the meson matrix Q introduced in section 2, this would be the final result.

Move # 2. We glue (3.18) back to T [SU(N + 1)], and move forward. On nodes (2) and

(3), the theory is now described by the modified quiver

γ2, 2 3 4
(3.20)

The superpotential includes the terms

W
T [SU(4)]
def ⊃ W

T [SU(3)]
eff +W3 +

8∑
a=1

φa Tr3

[
T a
(

Tr4Q(3,4) − Tr2Q(2,3)
)]

(3.21)

The gauged matter content attached at node (2) is again of the form (3.7), plus singlets.

We dualize by replacing Tr2Q(2,3) → M3 and add the superpotential term γ3 detM3. As

before we study abelian and non abelian contributions separately. In the abelian sector

we find,

1

2
ϕ+

2 Tr3M3 +
1

3
TrΦ3

[
Tr3Tr4Q(3,4) − Tr3M3

]
, (3.22)

which upon performing the rotation

ϕ−3 =
1

2
ϕ+

2 −
1

3
TrΦ3, ϕ+

3 =
3

2
ϕ+

2 + TrΦ3, (3.23)

becomes

ϕ−3

(
TrM3 −

1

2
Tr3Tr4Q(3,4)

)
+

1

2 ∗ 3
ϕ+

3 Tr3Tr4Q(3,4). (3.24)

Very much as in move #1, the F-terms of φa=1,...8
3 and ϕ−3 imply that 〈M3〉 has the same

non abelian components of Tr4Q(3,4) but differs in the trace. The solution for 〈M3〉 is

〈M3〉 = Tr4Q(3,4) − Tr3Tr4Q(3,4)

3 ∗ 2
I3×3 (3.25)
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By integrating out the massive fields, ϕ−3 , φa=1,...8
3 , and fluctuations of δM3, we obtain a

low energy theory with light ϕ+
3 and bifundamentals Q(3,4),

γ2, γ3, 3 4
(3.26)

As in the previous case, we would like to express the superpotential couplings which are lin-

ear in γ2 and γ3, in terms of traces over matrices in the adjoint of U(4). When detM3 is ex-

panded out in Tr3, both γ2 and γ3 terms can be rearranged by using the following formulas,

Tr3

[(
M3

)2]
= Tr4

[(
Tr3Q(3,4)

)2]− 3(Tr3Tr4Q(3,4))2

4 ∗ k = 3
(3.27)

Tr3

[(
M3

)3]
= Tr4

[(
Tr3Q(3,4)

)3]− 3Tr3Tr4Q(3,4)

2 ∗ k = 3
Tr4

[(
Tr3Q(3,4)

)2]
+

5(Tr3Tr4Q(3,4))3

72
(3.28)

For the couplings to γ2 we obtain

−1

2
Tr3

[(
M3

)2]
+

5

16

(
Tr3M3

)2
= −1

2
Tr4

[(
Tr3Q(3,4)

)2]
+

13(Tr3Tr4Q(3,4))2

64

≡ p2,3[Tr4,Tr3Q(3,4)] (3.29)

and for the couplings to γ3

detM3 =
1

3
Tr3

[(
M (3)

)3]− Tr3Tr4Q(3,4)/2

2
Tr3

[(
M (3)

)2]
+

(Tr3Tr4Q(3,4))3/23

6

=
1

3
Tr4

[(
Tr3Q(3,4)

)3]− 5Tr3Tr4Q(3,4)

12
Tr4

[(
Tr3Q(3,4)

)2]
+

23(Tr3Tr4Q(3,4))3

216

≡ p3,3[Tr4,Tr3Q(3,4)] (3.30)

In both cases, the final results can be expressed in terms of polynomials p3,3 and p2,3 in the

variable Tr3Q(3,4), which is indeed in the adjoint of U(4). Collecting these contributions,

the effective superpotential is determined by

W
T [SU(4)]
eff =

1

6
ϕ+

3 Tr4Tr3Q(3,4) + γ2 p2,3[Tr4,Tr3Q(3,4)] + γ3 p3,3[Tr4,Tr3Q(3,4)] + . . . (3.31)

where . . . stands for the remaining monopole superpotential L{3,...,N−1}.

Duality moves: from # 1 up to # N −1. Repeating the reasoning in move #1, and

#2, we proceed up to #N − 1. The final gauge theory, which we refer to as theory A, has

quiver diagram

γ2, . . . γN , N N + 1
(3.32)
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and superpotential

WA =
1

N !
ϕ+
N TrQ+

N∑
m=2

γm pm,N [Tr,Q] (3.33)

where TrNQ(N,N+1) = Q is the meson matrix, and pm,n are polynomials generalizing (3.29)

and (3.30) at each step. Recall that we did not turn on the monopole superpotential on

the last gauge node, therefore (3.33) is the final result. Let us summarize the sequential

confinement up to #N − 1. In the order:

1) After each dualization, labelled hereafter by k − 1, we derived an equation for 〈Mk〉
which we solved explicitly. In each case, the non abelian components of 〈Mk〉 are

fixed by the F-terms of φa=1,...k2−1 to be equal to Trk+1Q(k,k+1). As in move #1, and

#2, the abelian equation turns out to be always:

Tr〈Mk〉 =
1

2
TrkTrk+1Q(k,k+1) (3.34)

The solution for 〈Mk〉 is

〈Mk〉 = Trk+1Q(k,k+1) − TrkTrk+1Q(k,k+1)

2k
Ik×k (3.35)

2) Having found the solution (3.35), we integrate the massive fields at node k and we

write the superpotential for the light fields. These are TrkQ(k,k+1), ϕ
(k)
+ and the

collection of {γm}km=2. This step is the most involved, since it requires rearranging

the expression of {detm}km=2 in terms of traces. The final result is packaged into

the polynomials pm,k. The structure of traces of such polynomials is fixed, i.e. by

construction it coincides with that of detm in its Laplace expansion. In particular,

pm,k[Trk+1, O] =
∑

n1,...nm

ck{n1,...nm}
[
Trk+1O

1
]n1
[
Trk+1O

2
]n2 . . . [Trk+1O

m]nm

(3.36)

where O = TrkQ(k,k+1), and the sum runs over all m-tuple n1, . . . , nm ≥ 0 which

solve the constraint
∑m

l=1 lnl = m.6 From the original detm formula, the polynomials

pm,k inherit the property of having degree m in O. However, powers of 〈Mk〉 will

produce an admixture of powers of O, therefore a generic coefficients ck will depend

on k in a non trivial way. Only the top element TrOm has coefficient fixed to be

ck{0m−1,1} = (−1)m−1/m from the original detm formula. Perhaps, the best description

of the coefficients ck is given in terms of recursion relations. For illustration we quote

6The expression of ck{n1,...nm} in the case of detm is: ckn1,...nm
→ (−)m

∏m
l=1

(−l)−nl

nl!
, and it is independent

of k.
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some simple examples:

c1
{1,1} = +

1

2
, ck{1,1} =

1

4
ck−1
{1,1} +

3

8k
∀k ≥ 2

c2
{1,1,0} = −1

2
, ck{1,1,0} =

1

2
ck−1
{1,1,0} −

1

2k
∀k ≥ 3 (3.37)

c2
{1,0,0} = +

1

6
, ck{1,0,0} =

1

8
ck−1
{1,0,0} +

5

24k2
− 3

8k
ck−1
{1,1,0} ∀k ≥ 3

cm−1
{1,0m−3,1,0} =

(−)m

2
, ck{1,0m−3,1,0} =

1

m− 1
ck−1
{1,0m−3,1,0} +

(−)m

2k
∀k ≥ m ≥ 3

In particular, the first three recursions determine p2,k and p3,k for any k.

Final remarks. It is important to emphasize some features of the superpotential WA. A

gauge theory U(N) with N + 1 flavors and no superpotential would have flavor symmetry

SU(N + 1)flavor×SU(N + 1)flavor. This is reduced to a single SU(N + 1)flavor because of the

superpotential. Even in the absence of γm contributions, the presence of ϕ+
NTrQ guarantees

the correct amount of flavor symmetry. In this respect, ϕ+
N plays a distinguished role.

Since the superpotential has R-charge 2, the R-charges of the singlets γm acquire a

dependence on m,

R[γm] = 2(1−mr) . (3.38)

The F-terms of ϕ+
N and γm=2,...N imply sequentially that TrQ1≤k≤N = 0. Then, from

the Cayley-Hamilton theorem it also follows TrQN+1 = 0.7 This set of conditions is in

fact equivalent to the statement that 〈Q 〉 is nilpotent. At this point it is useful to redefine

ϕ+
N = N !γ1 and simplify WA by invoking chiral stability arguments [31]. This amounts to

drop terms containing TrQ. The final form of the superpotential is then

WA = −
N∑
m=1

(−)m

m
γm Tr[Qm] , (3.39)

In our discussion there will be no difference between these two versions of WA. However,

we should note that this prescription amounts to drop multi-trace contributions to the

effective superpotentials, which might affect other details of the theory.

3.2 Theory B: monopole deformations on the mirror

In this section we follow the monopole deformation in the mirror frame T [SU(N + 1)] ‹,
which is represented by the quiver diagram below,

123NN + 1
(3.40)

Our notation in section 2.1 used bifundamentals P and P̃ on each link, and adjoints Ω

on each gauge node. The monopole deformation LT{1,...,N−1} we considered in (3.2) can

7Recall that det〈Q〉 = 0 because 〈Q〉 has at most rank N .
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actually be written, more suggestively, in terms of the Jordan matrix

JN ⊕ J1 =

[
JN 01×N

0N×1 01×1

]
, JN =


0 1 . . . . . . 0

0 0 1 . . . 0
...

...
...

0 0 . . . 0 0


︸ ︷︷ ︸

N

(3.41)

where Jk is a single Jordan block of size k and zero eigenvalue. It follows that LT{1,...,N−1}
is mirror to a nilpotent mass deformation for the meson Pij . By introducing the vectors

P (N+1,N) =
(
p1, p2, . . . , pN+1

)
P̃ (N+1,N) =


p̃1

p̃2

...

p̃N+1

 (3.42)

we find indeed

LT ‹

{1,...,N−1} = TrN+1

[
JN ⊕ J1 · P

]
= p̃2 · p1 + . . . p̃N · pN−1 . (3.43)

and the total superpotential is thus

W T ‹

def = LT ‹

{1,...,N−1} +

N∑
k=1

Trk

[
Ωk

(
Trk+1P(k+1,k) − Trk−1P(k,k−1)

)]
. (3.44)

The discussion next will closely follow [13].

The F-term equations of p̃a=2,...,N and pb=1,...,N−1 are non trivial due to the mass

deformation. Let us begin from the F-terms of the fields p̃a=2,...,N , which read

pa−1 + ΩN pa = 0 (3.45)

The solution is expressed in terms of pN as follows:

〈pb〉 = (−)N−b ΩN · · · ΩN︸ ︷︷ ︸
N−b times

pN b = 1, . . . , N − 1 . (3.46)

Equivalently, the F-terms of the fields pb=1,...,N−1 are solved by

〈p̃a〉 = (−)a−1 p̃1 ΩN · · · ΩN︸ ︷︷ ︸
a−1 times

a = 2, . . . , N (3.47)

On the vacuum pb → 〈pb〉 + δpb, and p̃a → 〈p̃a〉 + δp̃a, the pair of field (p̃1, pN ), and

(pN+1, p̃N+1) do not get a mass terms from the deformation (3.43), thus they remain in

the low energy spectrum.8 The effective superpotential for these light fields is

W T ‹

eff = (−)N−1

p̃1 ΩN · · ·ΩN︸ ︷︷ ︸
N times

pN

 + p̃N+1ΩNpN+1 (3.48)

8Notice that we started with 2N(N + 1) d.o.f in the bifundamentals P and P̃ . Then we have N mass

(terms) for each of the N − 1 terms in LB . So 2N(N + 1)− 2N(N − 1) = 4N fields are light.
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The low energy theory is then described by the quiver,

1

123N1

(3.49)

where we have isolated the fields (d, d̃) ≡ (p1, p̃N ) on the bottom of the diagram. Compared

to the tail, these fields are the ones with a special superpotential interaction. The matrix

P(1,N) is now truncated to a one flavor component pN+1p̃N+1, and the total superpotential

of theory B is

WB = (−)N−1

d̃ ΩN · · ·ΩN︸ ︷︷ ︸
N times

d

+ p̃N+1ΩNpN+1 − TrN

[
ΩNTrN−1P(N,N−1)

]

+

N−1∑
k=1

Trk

[
Ωk

(
Trk+1P(k+1,k) − Trk−1P(k,k−1)

)]
(3.50)

From the expression of WB we deduce that the R-charge assignment is modified com-

pared to T [SU(N + 1)] ‹. The newly generated term, d̃ΩNd, implies

R[Ωk] = 2r; R[P ] = R[P̃ ] = (1− r); R[d] = R[d̃] = 1−Nr (3.51)

where R[Ωk] +R[P] = 2. Consequently

R[d̃ ΩN · · ·ΩN︸ ︷︷ ︸
i times

d] = 2(1− r(N − i)) . (3.52)

We then have the following map between the singlets of theory A and dressed mesons of

theory B:

γ1 ↔ d̃ ΩN · · ·ΩN︸ ︷︷ ︸
N−1 times

d ;


γ2 ↔ d̃ ΩN · · ·ΩN︸ ︷︷ ︸

N−2 times

d

...

γN ↔ d̃d

(3.53)

The duality between theories A and B is a particular case of the SQCD mirror dual

discussed in [13] with a minor difference, i.e. we have kept the fields γi on the side of

theory A.

3.3 Theory C: nilpotent Higgsing from monopoles

The theory FFT [SU(N + 1)] ‹ introduced section 2.2 is described by the quiver

2 31 N N + 1
(3.54)
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where we denoted the bifundamentals on each link by S and S̃, the adjoint chiral on each

gauge node by Ψ, and finally the flipping fields by F n
ij and FSij . The deformation L ‹

{1,...,N−1}
in T [SU(N + 1)] ‹ maps in FFT [SU(N + 1)] ‹ to

LFFT ‹

{1,...,N−1} = TrN+1

[
JN ⊕ J1 · FSij

]
. (3.55)

The total superpotential is then

WFFT ‹

def = WFFT ‹

+ LFFT ‹

(3.56)

WFFT ‹

=
N∑
k=1

Trk

[
Ψk

(
Trk+1S(k,k+1) − Trk−1S(k−1,k)

)]
− SijFSij − n ijF n

ij

It will convenient to momentarily modify our notation, and denote FSij by ΨN+1. Then

SijFSij fits with the pattern of the N = 4 superpotential, and will allow us to display some

recursions in a neat way.

We first consider the F-term of ΨN+1, which set

TrNS(N,N+1) = +JN ⊕ J1 (3.57)

This equation shows that the bifundamentals on the last link of the tail acquire a non trivial

vev.9 By definition, our bifundamentals are rectangular matrices. However, it is convenient

to describe the vev in terms of square matrices where we specify which column/row has to

be dropped. In this way, the solution of (3.57) is

〈S̃(N,N+1)〉 = JN ⊕ J1 drop the last column

〈S(N,N+1)〉 = (J1 ⊕ IN−1)⊕ J1 drop the last row
(3.58)

Up to gauge and flavor rotations, the natural strategy to solve an equation of the form (3.57)

is to take 〈S̃〉 equal to the nilpotent vev on the r.h.s, and 〈S〉 such that the equation is

satisfied. In particular, 〈S〉 has an identity block of rank N − 1 [34]. The solution when

N = 1 reduces to zero, since there is no monopole potential in this case.

The F -terms of the fields Ψk≤N have two types of contributions. One is coming from

the superpontential of the tail, i.e. W T [Ψ, S], and a second one originates from the coupling

n ijF n
ij : indeed, recall from the definition (2.8) that the monopole matrix has traceless

diagonal components of the form TrΨkDk. We will study a vacuum for which 〈F n
ij〉 = 0.

Therefore the F -term of Ψk will be

Trk−1S(k−1,k) = Trk+1S(k,k+1) (3.59)

Reading (3.59) from right to left, we conclude that the nilpotent vev (3.58) propagates

along the quiver, from the last node towards the left. The solution of this recursion is

〈S̃(k−1,k)〉 = J1 ⊕ Jk−1 drop the first column

〈S(k−1,k)〉 = J1 ⊕ (J1 ⊕ Ik−2) drop the first row
(3.60)

Note that for k > 2 the vev 〈S̃(k−1,k)〉 is always next to a maximal Jordan matrix Jk. At

the terminating value k = 2 both vevs vanish. These correspond to the bifundamentals on

the first link (1, 2).

9Let us recall that in matrix notation, with standard multiplication, our definitions reduce to

TrkS(k,k+1) = S̃(k,k+1) · S(k,k+1), and TrkS(k−1,k) = S(k−1,k) · S̃(k−1,k)
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Nilpotent vevs. A supersymmetric nilpotent vev should satisfy the F-terms of the bifun-

damentals, and finally D-terms. In matrix notation, the F -terms of the bifundamentals are

S̃(k,k+1)Ψk = Ψk+1S̃
(k,k+1) (3.61)

ΨkS
(k,k+1) = S(k,k+1)Ψk+1 (3.62)

These equations put constraints on the fields Ψk, and before proceeding, let us recall that

an additional constraint comes from the F-terms equations for the diagonal generators of

Fnij , which imply the condition TrΨk = 0 for any k ≤ N .

A trivial solution to (3.62) is 〈Ψk〉 = 0 for any k. However, this solution will not be

consistent with vanishing of D-terms, as we now explain.

Notice that equations (3.61) and (3.62) don’t fix a solution, rather they impose a

constraint on Ψk+1 which depends on S(k,k+1), S̃(k,k+1) and Ψk. In this new recursion, the

starting point is the beginning of the tail, i.e. the U(1) gauge node, and the first link (1, 2).

Consistency of this recursion requires that the solution in the case of T [SU(k)] uplifits to

T [SU(N +1)] for any k ≤ N . The study of the first few cases will be enough to understand

the nilpotent vev in the adjoint sector.

Consider T [SU(2)]. The D-term on the U(1) gauge node is

SRSR† − S̃R†S̃R = ξ1, R = (1, 2), (3.63)

with ξ1 an FI parameter. This equation reduces always to ξ1 = 0, because 〈S(1,2)〉 =

〈S̃(1,2)〉 = 0. The solution is then compatible with 〈Ψ1〉 = 0. From equations (3.61)

and (3.62) it follows 〈Ψ2〉 = 0, and we are back to the nilpotent vev for the flipping fields

we started with, for this case.

Consider now T [SU(3)]. The D-term on the U(2) gauge node is

SRSR† − S̃R†S̃R + SL†SL − S̃LS̃L† = [Ψ2,Ψ
†
2] + ξ2I2,

{
R = (2, 3)

L = (1, 2)
. (3.64)

A short computation shows that the terms labelled by ‘R’ cancel each other. Since

〈S(1,2)〉 = 〈S̃(1,2)〉 = 0, the terms labelled by ‘L’ do not contribute. The case of T [SU(3)]

is again special and the solution 〈Ψ2〉 = 0, ξ2 = 0 is consistent. In particular T [SU(2)]

uplifits to T [SU(3)]. Finally equations (3.61) and (3.62) imply the relations

Ψ3S̃
(2,3) =

 0 0

0 0

0 0

 , S(2,3)Ψ3 =

[
0 0 0

0 0 0

]
. (3.65)

These equations do not fix all the components of 〈Ψ3〉. The trivial solution is possible, but

we claim that the actual solution, compatible with T [SU(4)], is a nilpotent vev for 〈Ψ3〉, i.e.

〈Ψ3〉 = J2 ⊕ J1 . (3.66)

Again, we are back to the nilpotent vev for the flipping fields we started with.
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The lesson from the previous case is the following: by moving forward to the right of

a longer quiver tail we will have to deal with D-term equations of the form

SRSR† − S̃R†S̃R + SL†SL − S̃LS̃L† = [Ψk,Ψ
†
k] + ξkIk, (3.67)

for any R = (k, k + 1) and L = (k − 1, k). We show in appendix A that terms labelled by

‘R’ always cancel each other. On the other hand, terms labelled by ‘L’ do not, and give a

non zero commutator [Ψk,Ψ
†
k].

The solution of F- and D-terms induced by the next-to-maximal nilpotent vev (3.57) is:

〈Ψk〉 = J1 ⊕ Jk−1, 〈ΨN+1〉 = JN ⊕ J1. (3.68)

It is important to point out that D-terms equations are automatically solved by the SU(2)

relation, ρk(σ3) = [Ψk,Ψ
†
k] which follows from the construction of the nilpotent vev. In

our case the embedding ρk of the σ3 element is

ρk(σ3) ≡ SL†SL − S̃LS̃L† = diag(0,−1, 0k−3,+1), L = (k − 1, k). (3.69)

In this solution, the FI parameters ξk are zero for any k.

The list of scalar vevs includes the real scalars in the vector multiplets, which do not

play any role, i.e. 〈σk〉 = 0.

The low energy theory. Given the nilpotent vevs found in the previous section, we can

explicitly study the Higgs mechanism and obtain the massless field content.

Let us begin from the gauge sector. It is useful to recall that a generic gauge transfor-

mation on the quiver acts on the matter fields in the following fashion:

G[{Ψk, S
(k,k+1), S̃(k,k+1)}Nk=1] =

N⊕
k=1

Gk (3.70)

where Gk is the action restricted to a single gauge node U(k). Taking the connection

Ak =

k2∑
a=1

gkaT
a (3.71)

we will find

Gk =
k2∑
a=1

gak

(
[T a,Ψk],−S(k−1,k)T a, T aS(k,k+1), T aS̃(k−1,k),−S̃(k,k+1)T a

)
(3.72)

where we listed all the different matter representations.

A broken generator does not leave the vev invariant, therefore T aR〈z〉 6= 0. Here z

stands (at least) for one among all the fields of the tail and the various representation

have been indicated by R. Unbroken generators annhilate the vevs. The determination of

unbroken generators is equivalent to the study of the kernel of the mass matrix obtained

from the expansion of the covariant derivatives. More details on such a matrix are collected

in the appendix A. In conclusion, fixing a basis of T a we find a solution for the coefficients
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gak , which corresponds to a single unbroken generator Ak for gauge group U(k). Its explicit

form is very simple,

Ak ≡ diag(1, 0, . . . , 0︸ ︷︷ ︸
k−1 zeros

) . (3.73)

As far as the gauge groups are concerned, the quiver (3.54) is Higgsed to

1 1 1 1︸ ︷︷ ︸
N nodes (3.74)

The next task will be to deduce the massless matter content by the studying the ker-

nel of the mass matrix for all the scalar fields. We focus on the chiral multiplets.10 The

mass matrix is hermitian and admits an eigenvector decomposition, which we split into

ker ⊕ ker⊥, where the latter describes massive fields. The massless sector will contain

bifundamentals charged under (L,R) gauge groups, fundamentals and anti-fundamentals

charged under a single gauge group, other massless neutral fields, and finally Goldstone

bosons. The ‘physical’ massless fields of the IR theory correspond to those vectors in

ker which cannot be written only as linear combination of Goldstone bosons. On the

other hand, a physical configuration might still have components along the directions

parametrized by the Goldstone bosons.

The deformation LFFT ‹

breaks explicitly the non abelian flavor symmetry, therefore all

the Goldstone bosons we will find correspond only to the action of broken gauge generators

on the nilpotent vev. In the field variables S, S̃, and Ψ, these Goldstone bosons are

described by independent field configurations, of the form,

Gk =
k2−1∑
a=1

gak

(
[T a, 〈Ψk〉],−〈S(k−1,k)〉T a, T a〈S(k,k+1)〉, T a〈S̃(k−1,k)〉,−〈S̃(k,k+1)〉T a

)
for parameters {ga=1,...k2−1}Nk=1 corresponding to broken gauge generators.

We computed the mass matrix generated from the superpotential. Holomophy implies

the existence of
∑N

k=2(k2 − 1) = 1
6(N − 1)N(2N + 5) complex Goldstone bosons. The

resulting ker can be quite cumbersome at first, but the physical massless fields can be

brought to a simple form by taking linear combinations with Goldstone bosons, i.e. setting

to zero unwanted components. We checked all our computations with computer algebra up

to N = 6. After all this work is done, we find that most of the final answer can presented

in a more intuitive way. This is the case for charged fields, as we now argue. IR flipping

fields will have instead a more complicated description.

Let us begin from bifundamental fields in the abelian quiver (3.74), i.e. fields simulta-

neously charged under a left and right gauge node. Considering the UV S(k,k+1), we want

10Real scalar fields {σ1 . . . σN} in the vector multiples have the same mass matrix as the gauge fields.

This follows from unbroken susy and it is obvious from a 4d perspective. In the 3d Lagrangian is manifests

in matter couplings of the type z†σ2
Rz. In particular, on the vacuum 〈σk〉 = 0 there are no non trivial

off-diagonal mass terms with chiral multiplets.
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to select those components which transform non trivially under Ak and Ak+1, where the

gauge field is given explicitly in (3.73). It is simple to see that the first row of S(k,k+1)

transforms non trivially under Ak, while the first column transforms non trivially under

Ak+1. For k = 1, . . . N − 1 the low energy bifundamentals, s(k,k+1) and s̃(k,k+1), embedded

into S(k,k+1) and S̃(k,k+1), are indeed in the (1, 1) entry,

S(k,k+1) →

[
s(k,k+1) 01×k
0k−1×1 0k−1×k

]
S̃(k,k+1) →

[
s̃(k,k+1) 01×k−1

0k×1 0k×k−1

]
(3.75)

The nilpotent vev (3.60) restricted on the the first two gauge nodes is vanishing. Indeed

both S(1,2) = (s(1,2), f1) and S̃(1,2) = (S̃(1,2), f̃1)T are massless in the IR. However the

fields f1 and f̃1 are not charged under the U(1) on the second gauge node, so they become

a pair of fundamental/antifundamental attached to the first gauge node. On the flavor

node at the end of the tail we also find a pair of fundamental/antifundamental fields, fN
and f̃N . In the case of S(N,N+1) we know from previous discussion that fN will lie on the

first row, since this transforms under AN . However, differently from the bifundamentals

S(k,k+1) in (3.75), the location of fN inside S(N,N+1) depends on the form of the nilpontent

vev (3.58). A similar reasoning holds for f̃N ⊂ S̃(N,N+1). The solution is,

S(N,N+1) →

[
01×N fN

0N−1×N 0N−1×1

]
S̃(N,N+1) →

[
0N×1 01×N−1

f̃N 0N×N−1

]
(3.76)

The IR quiver theory until now is described by the diagram

1 1 1 1 1︸ ︷︷ ︸
N nodes (3.77)

We move on to the study of neutral fields. The simplest case is represented by singlet

fields on each gauge node, which we denote by ψk. These are given by the following embed-

ding: Ψk = diag(ψk, 0
k−1), k = 1, . . . N , as it could have been anticipated. The analysis

of IR massless fields originating from the flipping fields ΨN+1 is less straighforward, and

there is a novelty: it is not possible to localize such fields on components of ΨN+1, but the

corresponding vectors in ker will have components on both ΨN+1 and Ψi≤N . Furthermore,

the latter cannot be eaten up by taking linear combinations with Goldstone bosons.

We begin by assuming ΨN+1 ∈ U(N + 1) for simplicity, and we will obtain the case

ΨN+1 ∈ SU(N + 1), which is of interest for our duality web, by a minor modification. This

procedure is instructive since it will have a counterpart in the next section.

Let us introduce first the IR fields Γi=2,...N . In terms of components of ΨN+1, we find

ΨN+1 ⊃



0 Γ2 Γ3 . . . ΓN 0

0 0 Γ2 . . . ΓN−1 0
...

...
...

... Γ2 0

0 0 0 0 0 0

0 0 0 0 0 0


=
[
Γ2JN ⊕ Γ3J2

N . . .⊕ ΓNJN−1
N

]
⊕ J1 (3.78)
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where the rewriting on the r.h.s. makes manifest that these fields parametrize nilpotent

directions inside ΨN+1. The configuration (3.78) extends on the UV adjoint fields Ψi≤N ,

as follows

ΨN+1−k ⊃ J1 ⊕
[
Γ2J1+k

N−k ⊕ Γ3J2+k
N−k . . .⊕ ΓN−kJN−k−1

N−k

]
k = 1, . . . N − 2. (3.79)

Matrices are multiplied a number of times defined by the upper index, i.e. J#
N−k =

JN−k · · · JN−k # times. For example, notice that Γ2 extends backwards to Ψ3, Γ3 ex-

tends backwards to Ψ4, and so on. (Ψ1 and Ψ2 vanish in this case.) On a similar footing

we find the field ∆, which has the following UV embedding,

ΨN+1 ⊃ ∆ [IN ⊕ J1] , ΨN+1−k ⊃ ∆ [J1 ⊕ IN−k] . (3.80)

Finally, there are three other fields, Σ± and δ. These ones are localized on specific compo-

nents of ΨN+1, 
01×N−1 0 Σ+

02×N−1 0 0
...

...
...

0N×N−1 0 0

01×N−1 Σ− δ

 (3.81)

The IR flipping fields presented so far have been obtained by refining the output of

ker. We now explain how to see explicitly that these fields do not get a mass term from the

superpotential. For each link (L,R) of the quiver, consider the mass terms coming from

fluctuations δΨL, δΨR and δS(L,R), on top of the nilpotent vev. We find

δWFFT ‹ ⊃ Tr
[ (
〈S̃(L,R)〉δΨL − δΨR〈S̃(L,R)〉

)
δS(L,R)

+
(
δΨL〈S(L,R)〉 − 〈S(L,R)〉δΨR

)
δS̃(L,R)

]
(3.82)

We have to show that when looking at the components of δΨk≤N+1 parametrized by Γi=2,...

or ∆, each term in (3.82) vanishes for any (L,R). Indeed, because of the form of the

nilpotent vev (3.60), the equation

〈S̃(k,k+1)〉δΨk = δΨk+1〈S̃(k,k+1)〉 k = 1, . . . N, (3.83)

δΨk〈S(k,k+1)〉 = 〈S(k,k+1)〉δΨk+1 k = 1, . . . N. (3.84)

are solved precisely by (3.78)–(3.79) and (3.80). Moreover, on the link (N,N + 1), this

same computation shows that the directions parametrized by Σ± and δ are also massless,

since when we multiply by the vev, these matrix elements are shifted either to the right,

or to the bottom, by two units, i.e. they disappear from the equations.

The case of interest, ΨN+1 ∈ SU(N + 1), is quite simple to deduce. Indeed only the

IR fields ∆ and δ parametrize directions which overlap with the identity. Therefore, out of
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these two, we should consider the traceless combination and drop the other. We associate

to such a combination the IR field Γ1, whose UV embedding is

ΨN+1 ⊃
Γ1√

N2 +N

[
IN×N 0

0 −N

]
ΨN+1−k ⊃

Γ1√
N2 +N

[ J1 ⊕ IN−k] . (3.85)

Collecting all the fields, the final low energy theory, which we denote by Theory C, is

described by the abelian quiver

1 1 1 1 1 Γ1, . . .ΓN , Σ±︸ ︷︷ ︸
N nodes (3.86)

A simple counting shows that we have determined 4(N + 1) chiral fields.

3.4 The ABCD of monopole deformed T [SU(N + 1)]

In this section we define theory D as the Aharony dual of theory A, and we show that

the mirror of theory D is precisely theory C. Quite remarkably, mirror symmetry between

T [SU(N + 1)] ↔ T [SU(N + 1)] ‹ and FFT [SU(N + 1)] ↔ FFT [SU(N + 1)] ‹ descends

to mirror symmetry between AB and CD. The IR commutative diagram, initiated from

T [SU(N + 1)] through the monopole deformation, is thus complete:

N N+1
...

1 N+1
...

1

1

N N -1 . . . 1

1 1 1 . . . 1 1
...

T [SU(N + 1)]

FFT [SU(N + 1)]

T [SU(N + 1)] ‹

FFT [SU(N + 1)] ‹

A B

CD

Let us remind that theory A is U(N) SQCD with N + 1 flavors coupled to additional

singlets γm through the superpotential

WA = −
N∑
m=1

(−)m

m
γm TrN+1[Qm] . (3.87)

We apply Aharony duality [6] to Theory A and obtain Theory D, which is a U(1) gauge the-

ory with N + 1 flavors Ui and Ũj , flipping fields F Uij for the meson Uij = UiŨj , and flipping
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fields σ± for the U(1) monopoles m±. (For simplicity we borrow from the FFT [SU(N +1)]

the notation for the monopoles). In addition we denote by θm the dual of the singlets γm.

The quiver diagram is

θ1, . . . θN , 1 N + 1
(3.88)

The flipping fields F Uij of theory D are dual to the electric meson of Theory A, so the

superpotential WD becomes

WD = m±σ± + UijFUij −
N∑
m=1

(−)m

m
θm Tr

[
FU . . . FU︸ ︷︷ ︸
m times

]
. (3.89)

Both Uij and FU belong to adjoint of U(N +1), since they originate from Aharony duality.

The mirror of theory D, which we will identify with theory C, is now obtained by

applying piecewise mirror symmetry [35]. This procedure amounts to replace each flavor

Ui, Ũi with an SQED theory coupled to a singlet χi, and do the functional integration on

the U(1) gauge node of (3.88). For each SQED theory, there is a cubic superpotential is of

the form χss̃, where we use schematically s and s̃ to denote the flavors. We redefine the

set of χi as follows,

∑
i

χi = (N + 1)δ ;


χ1 = δ − ψ1,

χ2 = δ + ψ2 + ψ1,
...

χN+1 = δ + ψN .

(3.90)

Then the cubic superpotentials can be presented in the form

N∑
i=0

s(i,i+1)δ s̃(i,i+1) +

N∑
i=1

ψi
(
s(i,i+1)s̃(i,i+1) − s(i−1,i)s̃(i−1,i)

)
(3.91)

and the resulting theory is the abelian quiver [36]

1 1 1 1 1︸ ︷︷ ︸
N nodes (3.92)

As usual, we are attaching to the flavors s, s̃, the label (L,R). In particular, the fields

s(0,1) and s̃(0,1) are a pair of fundamental/anti-fundamental on the first link, while the

fields s(i,i+1) and s̃(i,i+1) for i = 1, . . . N are bifundamentals. The change of variable from

χi=1,...N+1 to {δ, ψi=1,...N} can be understood as the arrangement of U(1)N+1 into a diagonal

U(1), parametrized by δ, and the Cartan of SU(N + 1)top. Then, we can think of ψi as

a singlet attached to the i-th gauge node of the quiver (3.92). Note that the second term

of the superpotential (3.91) is N = 4. Finally, the field δ has been represented with the

horizontal loop on the last flavor node in (3.92).
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The mirror of theory D is completed once we map the superpotential WD. In order

to do so we should refine the map of the operators. Mirror symmetry would relate the

meson Uij to the monopole matrix n ij . But since the meson Uij is not traceless, there

is a mismatch of representations we have to take care of. More precisely, we claim that

the SU(N + 1) degrees of freedom of Uij are mirror to the monopole matrix n ij , which is

traceless, while the trace TrU is in correspondence with δ. The rest of the dictionary is

standard: the monopole fields m± of theory D are mirror to the long meson L+ =
∏N
i=0 si

and L− =
∏N
i=0 S̃i, and the flipping fields FUij , σ± and θm are mapped to an equivalent

number of singlets, F n
ij , Σ′±, and Γ′m.

The superpotential W ‹

D is

W ‹

D =

N∑
i=0

s(i,i+1)δ s̃(i,i+1) +

N∑
i=1

ψi
(
s(i,i+1)s̃(i,i+1) − s(i−1,i)s̃(i−1,i)

)
+L±Σ′± +

(
δTrF n

ij + n ijF n
ij

)
−

N∑
m=1

(−)m

m
Γ′m Tr

[
F n
ij . . . F

n
ij︸ ︷︷ ︸

m times

]
(3.93)

The terms Γ′1TrF n
ij and δTrF n

ij combine into the mass term (Γ′1 + δ)TrF n
ij . Then, both

(Γ′1 + δ) and TrF n
ij can be integrated out, while the field Γ1 ≡ (Γ′1 − δ) remains massless.

After trivial redefinitions,

W ‹

D =

N∑
i=0

s(i,i+1)Γ1 s̃
(i,i+1) +

N∑
i=1

ψi
(
s(i,i+1)s̃(i,i+1) − s(i−1,i)s̃(i−1,i)

)
+L±Σ± + n ijF n

ij −
N∑
m=2

(−)m

m
Γm Tr

[
F n
ij . . . F

n
ij︸ ︷︷ ︸

m times

]
≡WC (3.94)

The notation ψi, s
(i,i+1), F n

ij and n ij should be familiar from the study of theory C. We

have found F n
ij ∈ SU(N+1), n ij ∈ SU(N+1), and other 4(N+1) fields. These corresponds

to bifundamentals, and fundamentals on the right and and left of (3.92), in addition to

the singlets ψi=1,.N , the fields Σ±, and Γi=1,...N . Remarkably, this number is precisely the

same number we determined in section 3.3 from the nilpotent Higgsing.

We have not discussed how the deformation LFFT brings FFT [SU(N + 1)] down to

Theory D. This would require a study of the Higgsing process on monopole fields, a

challenge which is the behind the immediate scope of this paper.

Operator map. We conclude this section by recording the chiral ring generators which

we are able to map across the four dual frames ABCD:

• Theory A:

— Two monopoles with R[M±A ] = 2− r(N + 1)r

— HB moment map, (N + 1)× (N + 1) traceless, with R[ΠQA ] = 2r

— Flipping fields with R[γm] = 2− 2rm, m = 1, · · ·N
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• Theory B:

— Two mesons with R[dp̃N+1] = R[d̃pN+1] = 2− (N + 1)r

— Monopoles matrix, (N + 1)× (N + 1) traceless, with R[NB] = 2r

— Dressed mesons with R[d̃Ωid] = 2(1− r(N − i)), i = 0, · · ·N − 1

• Theory C:

— Two flipping fields with R[Σ±] = 2− r(N + 1)

— Flipping fields, (N + 1)× (N + 1) traceless, with R[F n
C ] = 2r

— Flipping fields with R[Γm] = 2− 2rm, m = 1, · · ·N

• Theory D:

— Two Flipping fields with R[σ±] = 2− (N + 1)r

— Flipping fields, (N + 1)× (N + 1) traceless, with R[FUD ] = 2r

— Flipping fields with R[θm] = 2− 2rm, m = 1, · · ·N .

4 Partition functions

In this section we study partition functions of our theories on the squashed three-sphere

S3
b , and we show that they are all equal as we move in the commutative diagram:

A B

CD

T [SU(N + 1)]

FFT [SU(N + 1)]

T [SU(N + 1)] ‹

FFT [SU(N + 1)] ‹

(4.1)

We follow the notation of [37]. We introduce the vectors ~M = (M1, . . .MN+1) and ~T =

(T1, . . . TN+1) of real mass parameters for the flavor and topological symmetries and the

real mass mA associated to the U(1)A symmetry. We also define Q ≡ b + b−1, where b is

the squashing of the three-sphere. Then, the partition function of T [SU(N + 1)] can be

obtained by the following set of rules:

• Each one of the N gauge nodes, labelled by (k) with k = 1, . . . N , carries a measure

dx(k) =
∏k
i=1 dx

(k)
i

/
k! where the set {x(k)

i } represents the Coulomb Branch coordi-

nates on the localizing locus.
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• The contribution from vector multiplets and adjoint chirals attached to a node (k) is

Z(k)
vec =

k∏
i<j

1

sb

(
iQ
2 ± (x

(k)
i − x

(k)
j )
) , (4.2)

Z
(k)
adj =

k∏
i,j

sb

(
mA ± (x

(k)
i − x

(k)
j )
)
. (4.3)

• The contribution of bifundamentals on a link (k, k + 1) is

Z
(k,k+1)
bif =

k∏
i=1

k+1∏
j=1

sb

(
iQ

4
− mA

2
± (x

(k)
i − x

(k+1)
j )

)
. (4.4)

As pointed out in [27], the partition function depends holomorphically on the combination

of the real mass parameter mA, and the coefficient determining the IR R-symmetry. Then,

we will take Im(mA) = −Q
2 α with α parametrizing the mixing R = C + H + α(C − H).

In this conventions, a chiral multiplet of R-charge r contributes with sb(
iQ
2 (1− r)− . . .) to

the partition function [37], and from Zbif and Zadj we read off

Rbif =
1− α

2
= r, RΦ = 1 + α = 2(1− r). (4.5)

This is indeed the same assignment we discussed in section 2. Putting all together the

partition function of the tail (2.1) is:

ZT [N,mA; ~M, ~T ] = e+2πiTN+1
∑N+1
i=1 Mi

∫ N∏
k=1

dx(k)e2πi ξ(k)
∑k
i=1 x

(k)
i Z(k)

vec Z
(k)
adj Z

(k,k+1)
bif (4.6)

where ξ(k) = Tk − Tk+1, and ~x(N+1) ≡ ~M a constant vector, i.e. not integrated over.

The exponential factors in (4.6) correspond in the field theory to mixed Chern-Simons

terms. Those inside the integral couple the topological and the gauge symmetry, while

those in front of the integral are mixed background Chern-Simons terms coupling the

topological and the flavor symmetry. These terms are related to contact terms in the two-

point function of the associated conserved currents and their importance in the context of

dualities has been pointed out in [38, 39] (see also for a review [40]).

Finally, the partition function of T [SU(N + 1)] is a specification of ZT to the case∑N+1
i=1 Ti =

∑N+1
i=1 Mi = 0, consistent with the non-abelian global symmetry SU(N +

1)flavor × SU(N + 1)top. Notice that when this condition is imposed the contribution of

Chern-Simons contact terms in (4.6) vanishes. However it is important to keep track of

all contact terms when gauging a flavor symmetry, because in such a case the background

Chern-Simon terms become dynamical, and play a crucial role.

4.1 Difference operators and dual partition functions

In this section we consider the outer diagram (4.1), in which T [SU(N + 1)] is dual to

FFT [SU(N+1)] and mirror to T [SU(N+1)] ‹, and show that the various partition functions

are all equal, as function of the global symmetry parameters: Mp, Tp and mA.
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The partition function T [SU(N + 1)] ‹ is related in a straighforward way to ZT . The

action of mirror symmetry on T [SU(N + 1) defines

ZT ‹

[N,mA; ~M, ~T ] = ZT [N,−mA; ~T , ~M ]. (4.7)

In particular ZT ‹
is given by the same matrix integral as T [SU(N + 1)], where masses Ma

and FI parameters Ta are swapped, and the sign of the axial mass mA inverted. This is

consistent with the fact that mirror symmetry exchanges HB and CB.

Our prescription for the partition function of FFT [SU(N + 1)] is

ZFFT [N,mA; ~M, ~T ] = K[ ~M,−mA]K[~T ,mA]ZT [N,−mA; ~M, ~T ] (4.8)

where

K[~x,mA] = Z
(N)
adj =

N∏
i,j

sb (mA ± (xi − xj)) = K[~x,−mA]−1 . (4.9)

The factor K[~x,±mA] are used to introduce the contribution of flipping fields FRij and F m
ij ,

for the moment map and the monopole, respectively. The two signs of mA in K[ ~M,−mA]

and K[~T ,mA] are consistent with the fact that in FFT [SU(N + 1)] the HB flipping fields

FRij have R-charge 2r, while the CB flipping fields F m
ij have R-charge 2 − 2r. Notice

that the diagonal elements i = j in the product K[ ~M,−mA]K[~T ,mA] simplify to unity.

Therefore we can understand this product as the contribution of (singlets) adjoint fields in

the SU(N + 1)flavor × SU(N + 1)top..

Proving our dualities is equivalent to show that:

ZT ‹

[N,mA; ~M, ~T ] = ZT [N,−mA; ~T , ~M ] = ZT [N,mA; ~M, ~T ] , (4.10)

ZFFT [N,mA; ~M, ~T ] = K[ ~M,−mA]K[~T ,mA]ZT [N,−mA; ~M, ~T ]

= ZT [N,mA; ~M, ~T ] (4.11)

Our proof is based on [11] where, building on the results of [33], it was shown that ZT is

eigenfunctions of two sets of trigonometric Ruijsenaars-Schneider (RS) Hamiltonians. We

introduce a first set of RS Hamiltonians,

Hr( ~M,mA) =
∑

I⊂{1,··· ,n},|I|=r

∏
i∈I,j 6∈I

sinhπb(iQ2 −mA +Mi −Mj)

sinhπb(Mi −Mj)

∏
i∈I

eib∂Mi . (4.12)

(the other is obtained by exchanging b→ 1
b ). Then,

Hr( ~M,mA)ZT [N,mA; ~M, ~T ] = χr(~T )ZT [N,mA; ~M, ~T ] (4.13)

where r = 1, · · · , N , and χr(~T ) are eigenvalues. Due to a peculiar property of the RS

system, the same eigenfunction ZT satisfies also the so-called p-q dual equation:

Hr(~T ,−mA)ZT [N,mA; ~M, ~T ] = χr( ~M)ZT [N,mA; ~M, ~T ] . (4.14)

– 33 –



J
H
E
P
0
4
(
2
0
1
9
)
1
3
8

Upon a redefinition of parameters, the two eigenvalue equations imply the identity:

ZT [N,mA; ~M, ~T ] = ZT [N,−mA; ~T , ~M ] . (4.15)

The same steps can be repeated for the RS Hamiltonian in which b → 1
b , thus mirror

symmetry is proven [11]. Quite interestingly, by considering the action of K[ ~M,mA] on

the Hamiltonians 11:

Hr( ~M,−mA) = K[ ~M,mA]Hr( ~M,mA)K[ ~M,mA]−1 , (4.17)

we can also show from (4.14) that

Hr( ~M,−ma) ZT [N,−mA; ~M, ~T ] =

K[ ~M,mA]Hr( ~M,ma)K[ ~M,mA]−1ZT [N,−mA; ~M, ~T ] =

= χr(~T )ZT [N,−mA; ~M, ~T ] (4.18)

Furthermore, using that K[~T ,mA] commutes with Hr( ~M,ma) we find that the second and

third terms in (4.18) provides the additional relation

Hr( ~M,ma)
(
K[ ~M,−mA]K[~T ,mA]ZT [N,−mA; ~M, ~T ]

)
= χr(~T )

(
K[ ~M,−mA]K[~T ,mA] ZT [N,−mA; ~M, ~T ]

)
. (4.19)

Therefore we conclude that ZT [N,mA; ~M, ~T ] and ZFFT [N,mA; ~M, ~T ] satisfy the same RS

eigenvalue equation. Of course, the same argument can be used for the RS Hamiltonians

in which b→ 1/b. Thus we conclude that ZT [N,mA; ~M, ~T ] = ZFFT [N,mA; ~M, ~T ].

4.2 Sequential confinement: from T [SU(N + 1)] to Theory A

We now discuss the effect of the monopole deformation

LT{1,...,N−1} = M [10···00] + M [010···00] + · · ·+ M [00···10] . (4.20)

on the partition function of T [SU(N+1)]. First, let us observe that on each node where the

monopole potential is turned on, the symmetry U(1)A ×U(1)top is broken to the diagonal

and consequently the FI parameters take special values related to the axial mass:

ξ(k) = Tk − Tk+1 = mA +
iQ

2
, k = 1, · · · , N − 1 . (4.21)

The last node is underformed, so there is no constraint on ξ(N).

Following the logic of the sequential confinement, spelled out in section 3.1, we dualize

the first gauge node, and sequentially all the nodes, by using the duality [15] between

U(k) with k + 1 flavors and W = M + ↔ WZ model with W = γ detM. (4.22)

11To see this we use the following property of the double sine function

sb(mA ± x)eib∂xsb(−mA ± x) =
sinhπb(mA + x+ iQ

2
)

sinhπb(−mA + x+ iQ
2

)
. (4.16)
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At the level of the partition functions this duality is obtained from the following evaluation

formula:∫
dx(k)e−πi(η−iQ)

∑k
j=1 x

(k)
j Z(k)

vec Z̃
(k,k+1)[ ~M, ~µ ] (4.23)

= (−)ke−πi
∑k+1
a=1(η−iQ+2µa)Masb

(
iQ

2
− η
) k+1∏
i,j=1

sb

(
iQ

2
− µi − µj −Mi +Mj)

)
with the definition

Z̃(Nc,Nf )[ ~M, ~µ ] =

Nc∏
i=1

Nf∏
j=1

sb

(
iQ

2
− µj ± (x

(Nc)
i −Mj)

)
(4.24)

and the constraint from the monopole superpotential

η = iQ− 2
k+1∑
a=1

µa . (4.25)

We will actually need the identity (4.23) specialised to the case in which in the electric

theory the fundamental chirals couple to the adjoint breaking the SU(k + 1) × SU(k + 1)

global symmetry to the diagonal and consequently the parameters µa are specialised to

µa = iQ
4 + mA

2 for a = 1, · · · , k + 1. The constraint now reads,

η = iQ− (k + 1)

(
mA +

iQ

2

)
(4.26)

and we find∫
dx(k)eπi(k+1)(mA+iQ/2)

∑k
j=1 x

(k)
j Z(k)

vec Z
(k,k+1)
bif (4.27)

= (−)keπik(mA+iQ/2)
∑k+1
a=1 Masb

(
− iQ

2
+ (k + 1)

(
mA +

iQ

2

))(
Z

(k+1)
adj

)−1

where we identified
∏k+1
a,b=1 sb(−mA + ya − yb) = (Z

(k+1)
adj )−1. At this point, we can apply

this identity to ZT [N,mA; ~M, ~T ], with ~T specialised as in eq. (4.21), starting from the

first node, where the adjoint is a (gauge) singlet, and sequentially by promoting each time

the real mass parameters to dynamical variables, i.e. Mi → xi. Consider the first few

dualizations as a warm-up, we will highlight some crucial simplifications. Focusing on the

integrands, the partition function reads∫
dx(1)e2πi(mA+iQ/2)x

(1)
1 sb(mA)Z

(1,2)
bif

×
∫
dx(2)e2πi(mA+iQ/2)(x

(2)
1 +x

(2)
2 )Z(2)

vecZ
(2)
adjZ

(2,3)
bif . . . (4.28)

which becomes

∼ sb(mA)

∫
dx(2)e3πi(mA+iQ/2)(x

(2)
1 +x

(2)
2 )Z(2)

vecZ
(2,3)
bif

×
∫
dx(3)e2πi(mA+iQ/2)(x

(3)
1 +x

(3)
2 +x

(3)
3 )Z(3)

vecZ
(3)
adjZ

(3,4)
bif . . . (4.29)
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The effect of the confinement of the U(1) node has been to cancel the adjoint on the U(2)

node and shift the FI. Both these modifications are such that we can apply (4.27) to the

U(2) node. This procedure goes on sequentially.

After confining all nodes but the last one we obtain:

e+2πiTN+1
∑N+1
i=1 Mi

N−1∏
l=0

sb

(
− iQ

2
+ (l + 1)

(
mA +

iQ

2

))
×
∫
dx(N)e2πi[N−1

2
(mA+iQ/2)+ξ(N)]

∑N
j=1 x

(N)
j Z(N)

vec Z
(N,N+1)
bif (4.30)

On the first line we recognize the contribution of the fields γl. Indeed, as explained around

eq. (4.5), we can read out the R-charges by looking at the arguments of the sb functions

and we find: (1 − Rγl) = −1 + (1 − α)(l + 1), from which follows the solution Rγl =

2−2(l+ 1)r. This is the same assignment of R-charges we read off from the superpotential

WA =
∑N

m=1
(−1)m

m γmTr((ΠQ)m), if we identify the indexes as l + 1 = m.

The partition function of theory A is finally obtained by making explicit the values of

T1, . . . TN , using the constraint
∑N

i=1 Ti = 0. Then

Ti =
(N + 1)− 2i

2

(
mA +

iQ

2

)
, i = 1, . . . N (4.31)

and

TN+1 = TN − ξ(N) = −(N − 1)

2

(
mA +

iQ

2

)
− ξ(N) . (4.32)

The result is

ZA[N,mA; ~M, TN+1] = e+2πiTN+1
∑N+1
i=1 Mi

N−1∏
l=0

sb

(
− iQ

2
+ (l + 1)

(
mA +

iQ

2

))
×
∫
dx(N)e−2πiTN+1

∑N
j=1 x

(N)
j Z(N)

vec Z
(N,N+1)
bif . (4.33)

4.3 Nilpotent mass deformation: from T [SU(N + 1)] ‹ to Theory B

In T [SU(N + 1)] ‹ the parameters Ti become real masses for the flavor symmetry and mA

changes sign, according to mirror symmetry. The identity between partition functions

is indeed

ZT [N,mA; ~M, ~T ] = ZT [N,−mA; ~T , ~M ] ≡ ZT ‹

[N,mA; ~M, ~T ] (4.34)

The new FI parameters entering the mirror partition function are ζ(a) = Ma − Ma+1.

The values of the Ti we fixed in (4.31) lead to a telescopic cancellation of the one-loop
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contributions of N − 1 flavors. In more details,

N∏
i=1

N+1∏
j=1

sb

(
iQ

4
+
mA

2
± (x

(N)
i − Tj)

)

=

N∏
i=1

sb

(
iQ

4
+
mA

2
± (x

(N)
i − TN+1)

)

×
N∏
j=1

sb

(
iQ

4
+
mA

2
±
(
x

(N)
i − (N + 1)− 2j

2

(
mA +

iQ

2

)))
(4.35)

=
N∏
i=1

sb

(
iQ

4
+
mA

2
± (x

(N)
i − TN+1)

) sb

(
x

(N)
i + N

2

(
mA + iQ

2

))
sb

(
x

(N)
i − N

2

(
mA + iQ

2

))
where we highlighted the cancellations in the last line. The partition function of theory B

is then

ZB[N,mA; ~M, TN+1] = e2πiMN+1TN+1

∫ N−1∏
k=1

dx(k)e2πiζ(k)
∑k
a=1 x

(k)
a Z(k)

vec Z
(k)
adj Z

(k,k+1)
bif

×
∫
dx(N)e2πiζ(N)

∑N
a=1 x

(N)
a Z(N)

vec Z
(N)
adj Z̃(N,1)

[
TN+1,

iQ

4
− mA

2

]
Zd

(4.36)

where we used
∑N

i=1 Ti = 0 in the prefactor, and defined

Zd =

N∏
i=1

sb

(
N

2

(
mA +

iQ

2

)
± x(N)

i

)
(4.37)

The contributions Zd corresponds to the fundamentals fields d and d̃. Looking at the

coefficient of iQ
2 we see that 1 − Rd = N

2 (1 − α) so Rd = 1 − Nr as expected. The

contribution Z̃(N,1) originates from two fundamentals chirals with R-charge (1− r), which

are still part of the tail in the quiver diagram.

4.4 Partition functions on the A-to-D side

We obtain theory D from theory A by applying Aharony duality. As reviewed in ap-

pendix B, Aharony duality is implemented by the following integral identity,∫
dx(Nc)e−πiλ

∑
j x

(Nc)
j Z(Nc)

vec Z̃(Nc,Nf )[ ~M, ~µ ]

= e−iπλ
∑Nf
a=1 Masb

(
iQ

2
(Nc −Nf ) + |~µ| ± λ

2

)

×
Nf∏
a,b=1

sb

(
iQ

2
− µa − µb −Ma +Mb

)
(4.38)

×
∫
dx(Nf−Nc)e−πiλ

∑
j x

(Nf−Nc)
j Z

(Nf−Nc)
vec Z̃(Nf−Nc,Nf )

[
− ~M,

iQ

2
− ~µ

]
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with Z̃(Nc,Nf ) defined in (4.24). Notice that here we have a background Chern-Simon

term (the exponential prefactor in the second line) coupling the topological and the

flavor symmetry.

For Nc = N , Nf = N + 1 and λ = 2TN+1 , the l.h.s. of (4.38) coincides with the

integrand of ZA. However, since theory A has a non trivial superpotential, which breaks

SU(Nf )×SU(Nf ) to SU(Nf )×U(1)A, we need to consider the identification µa = iQ
4 + mA

2

for a = 1, · · · , Nf . Finally, we obtain ZD upon including the prefactor associated to the

dual of the fields γl≥0 of theory A. We find:

ZD[N,mA; ~M, TN+1]

= sb

(
− iQ

2
+
N + 1

2

(
mA +

iQ

2

)
± ξ
) N+1∏
a,b=1

sb
(
−mA +Ma −Mb

)
×
N−1∏
l=0

sb

(
− iQ

2
+ (l + 1)

(
mA +

iQ

2

))
×
∫
dxe−2πiTN+1x Z̃(1,N+1)

[
− ~M,

iQ

4
− mA

2

]
(4.39)

Some comments on ZD are in order. There is a cancellation of contact terms when us-

ing (4.38) on the integrand of theory A. This is so because the FI of theory A, compared

to T [SU(N + 1)], has been reduced to TN+1 during the sequential confinement.

In the notation of section 3.4, we recognize in the first line of ZD the contribution of

the two singlets, σ±, and that of (N + 1)2 singlets FUD . The fields σ± are flipping fields for

the monopoles, and the fields FUD flip the meson. From the arguments of the sb we read out

(1−Rσ±) = −1 + N+1
2 (1− α), or Rσ± = 2− (N + 1)r. We then find that (1−RFUD ) = α,

or RFUD
= 1 − α = 2r. Notice also that the contribution of θ1 (the coefficient with l = 0

in the product) cancels the diagonal contributions of the singlets FUD , effectively enforcing

the tracelessness of FUD .

4.5 T [SU(2)]

The case of T [SU(2)] is simple enough to compute the partition function explicitly. In

this case, our monopole deformation is empty, thus the partition function of theory A is

directly that of T [SU(2)], with the specification T1 = 0. The presence of flipping fields,

and the non trivial mapping of parameters across the commutative diagram, makes the

equalities of partition functions a nice exercise to go through. In these computations we

will keep M1 6= M2.

The integrand of the T [SU(2)] partition function can be quickly evaluated by residue

integration [41]. The full partition function will also include a factor of Z
(1)
adj = sb(mA),

and an exponential prefactor. In our conventions, ξ = T1 − T2,

ZT [1,mA, ~M, ~T ] = e2πiT2(M1+M2)sb(mA)

∫ +∞

−∞
dx e2πixξ

2∏
i=1

sb(+
iQ
4 −

mA
2 + (x−Mi))

sb(− iQ
4 + mA

2 + (x−Mi)

(4.40)
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We pick poles of the two sb functions at the numerator, and assign to the set of poles

labelled by Mi, the series Si defined as,

Si = e2πiξMieiπξ(iQ/2+mA) sb(
iQ
2 + (−)i(M2 −M1))

sb(mA)sb(mA + (−)i(M2 −M1))

× 2ϕ
(q)
1

[
q

1
2 e2πbmA , q

1
2 e2πb((−)i(M2−M1)+mA); qe(−)i2πb(M2−M1); q

1
2 e−2πb(ξ+mA)

]
× 2ϕ

(q̃)
1

[
q̃

1
2 e

2π
b
mA , q̃

1
2 e

2π
b

((−)i(M2−M1)+mA); q̃e(−)i 2π
b

(M2−M1); q̃
1
2 e−

2π
b

(ξ+mA)
]

(4.41)

Recall the definitions q = e2πibQ and q̃ = e2πiQ/b. The hypergeometric function 2ϕ
(q)
1

admits the series representation

2ϕ
(q)
1 [a, b; c; z] =

∑
n

(a; q)n(b; q)n
(q; q)n(c; q)n

zn , |q| < 1. (4.42)

If |q| < 1 and |q̃| > 1 we use the relation

2ϕ
(q̃)
1 [a, b; c; z] = 2ϕ

(1/q̃)
1

[
a−1, b−1; c−1; abz/(q̃c)

]
, (4.43)

where the r.h.s. can be expanded out as in (4.42). The partition function is invariant under

b ↔ 1/b and can be written as the sum
∑2

i=1 e
2πiT2(M1+M2)sb(mA) Si. We will work with

its factorized expression [45], namely

ZT [1,mA, ~M, ~T ] = e2πiP
[
B(q̃)

1 ,B(q̃)
2

] [ 1 0

0 e2πi(M2−M1)(ξ+mA−iQ/2)

][
B(q)

1

B(q)
2

]
(4.44)

In (4.44) we isolated the following exponential prefactor

P = (T1M1 + T2M2) +
(T1 − T2)(mA + iQ/2) + (M1 −M2)(mA − iQ/2)

2

+
(m2

A +Q2/4)

4
(4.45)

and defined the holomorphic blocks Bi=1,2 associated to the series Si=1,2:12

B(q)
2 [ ~M, ~T ] = B(q)

1 [− ~M, ~T ], (4.46)

B(q)
1 [ ~M, ~T ] =

(qe2πb(M1−M2), q)∞

(q
1
2 e2πb(M1−M2+mA), q)∞

(4.47)

×2ϕ
(q)
1

[
q

1
2 e2πbmA , q

1
2 e2πb(M1−M2+mA); qe2πb(M1−M2), q

1
2 e2πb(T2−T1−mA)

]
The holomorphic blocks of theory A, BAi=1,2, can be defined from Bi=1,2 by setting T1 = 0.

Whenever needed we will understand b→ b−1 in the conjugate blocks B(q̃)
i=1,2.

12Compared to [45] we do not introduce Θ-functions to factorize exponential terms, but we use the

‘factorization’ matrix (4.44).
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Aharony duality. The partition function of theory D is given by (4.39),

ZD[1,mA; ~M,−ξ] = sb (mA ± ξ)
2∏

a,b=1

sb
(
−mA +Ma −Mb

)
×sb (mA)

∫ +∞

−∞
dx e2πixξ

2∏
i=1

sb(+
iQ
4 + mA

2 + (x+Mi))

sb(− iQ
4 −

mA
2 + (x+Mi)

(4.48)

The FI parameter ξ should be fixed to be −T2, but we are keeping it generic for com-

parison with ZFFT in the next section. The integrand (4.48) can be evaluated by residue

integration, as in (4.41). The modifications are minors so we will not repeat them. Instead,

after writing the partition function in the factorized form, we show how the blocks map

into each other when going from theory A to theory D. The factorization of the partition

function is

ZD[1,mA; ~M,−ξ] = e2πiP
[
BD(q̃)

1 ,BD(q̃)
2

] [ e2πi(M2−M1)(ξ+mA−iQ/2) 0

0 1

][
BD(q)

1

BD(q)
2

]
(4.49)

where P is the same prefactor (4.45) and the holomorphic blocks are

BD(q)
2 [ ~M, ~T ] = BD(q)

1 [− ~M, ~T ], (4.50)

BD(q)
1 [ ~M, ~T ] =

(qe−2πb(M1−M2), q)∞

(q
1
2 e−2πb(M1−M2−mA), q)∞

(q
1
2 e−2πb(ξ−mA), q)

(q
1
2 e−2πb(ξ+mA), q)

(4.51)

×2ϕ
(q)
1

[
q

1
2 e−2πbmA , q

1
2 e2πb(M2−M1−mA); qe2πb(M2−M1), q

1
2 e2πb(−ξ+mA)

]
By using the second of the Heine’s identities [44],

2ϕ
(q)
1 [a, b; c; z] =

(abz/c)∞
(z)∞

2ϕ
(q)
1 [c/a, c/b; c; abz/c] (4.52)

and its q̃ analog, which in this case coincides with (4.52), we find[
BD(q)

1

BD(q)
2

]
=

[
0 1

1 0

][
BA(q)

1

BA(q)
2

]
(4.53)

Thus, we have shown the equality

ZD[1,mA; ~M, T2] = ZA[1,mA; ~M, T2]. (4.54)

Flip-Flip duality. In order to compute ZFFT we follow our prescription (4.8). Consid-

ering ZT [1,−mA; . . .], with ZT given in (4.40), we obtain

ZFFT [1,mA, ~M, ~T ] = K[ ~M,−mA]K[~T ,mA] sb(−mA) (4.55)

×e2πiT2(M1+M2)

∫ +∞

−∞
dx e2πixξ

2∏
i=1

sb(+
iQ
4 + mA

2 + (x−Mi))

sb(− iQ
4 −

mA
2 + (x−Mi)
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Recall that K[~x,mA] =
∏
i,j sb (mA ± (xi − xj)), therefore

ZFFT [1,mA, ~M, ~T ] = sb (mA ± ξ) sb
(
−mA ± (M1 −M2)

)
sb(−mA) (4.56)

×e2πiT2(M1+M2)

∫ +∞

−∞
dx e2πixξ

2∏
i=1

sb(+
iQ
4 + mA

2 + (x−Mi))

sb(− iQ
4 −

mA
2 + (x−Mi)

Very similarly to the TSU(2) computation, we evaluate the integrand in (4.56) and factorize

the result into

ZFFT [1,mA, ~M, ~T ] = e2πiP
[
BFF (q̃)

1 ,BFF (q̃)
2

] [ 1 0

0 e2πi(M2−M1)(ξ+mA−iQ/2)

][
BFFT (q)

1

BFFT (q)
2

]

where, by using again (4.52) on the holomorphic blocks BFFi=1,2, we find[
BFF (q)

1

BFF (q)
2

]
=

[
1 0

0 1

][
B(q)

1

B(q)
2

]
(4.57)

Thus we have shown that

ZFFT [1,mA, ~M, ~T ] = ZT [1,mA, ~M, ~T ] (4.58)

Notice that our definition of ZFFT in (4.8), which was strongly motivated by the use of

difference operators, has correctly captured possible field theory contact terms.

In section 2.2 we used a field theory argument to show that Aharony duality applied to

T [SU(2)] is related to Flip-Flip duality. This is consistent with the observation that (4.58)

and (4.54) follow from the same Heine’s identity (4.52), i.e. they are not independent.

However, we did not obtain Flip-Flip duality directly, and we insisted on some additional

manipulations. These manipulations will also be visible at the level of the partition func-

tion: consider the action of Aharony duality on T [SU(2)] by implementing (4.38) on the

integrand of ZT . We denote this by A ◦ ZT . Then, we find the relation

ZFFT [1,mA,− ~M, ~T ] = e−2πT1(M1+M2)A ◦ ZT [1,mA, ~M, ~T ] (4.59)

The contribution of the SU(2)flavor × SU(2)top flipping fields in FFT [SU(2)] comes out as

follows: on the r.h.s, of (4.59) we find

sb(mA)×

[
sb(±ξ +mA)

2∏
a,b=1

sb(−mA +Ma −Mb)

]
(4.60)

where the terms in parenthesis [. . .] are introduced by the Aharony duality. Then, one

of the diagonal contributions, i.e. a = b = 1 or a = b = 2, simplifies with the original

sb(mA) of T [SU(2)], and we recover the same prefactors as in (4.56). Furthermore, when

the constraint M1 +M2 = 0 is imposed, the relation (4.59) implies the equalities

ZFFT [1,mA] = A ◦ ZT [1,mA] = ZD[1,mA;T2 − T1] , (4.61)

as expected from the field theory argument.
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Mirror symmetry. Explicit computations about the partition functions of T [SU(2)] and

T [SU(2)] ‹ have been done in [45]. For sake of completeness, we repeat them in our notation

to show consistency. We shall refer directly to theory A and theory B, since the monopole

deformation is empty.

We write ζ = M1 −M2 and

ZT ‹

[1,mA; ~M, ~T ] = e+2πiM2(T1+T2)sb(−mA)

∫ +∞

−∞
dxe−2πiζx

2∏
i=1

sb(
iQ
4 + mA

2 + (x+ Ti))

sb(− iQ
4 −

mA
2 + (x+ Ti))

(4.62)

Notice the change of variables x → −x compared to (4.34). In its factorized form we can

then extract the same prefactor P, given in (4.45), and obtain,

ZT ‹

[1,mA; ~M, ~T ] = e2πiP
[
BB(q̃)

1 ,BB(q̃)
2

] [ 1 0

0 e2πi(M2−M1)ξe−iπ(m2
A+Q2/4)

][
BB(q)

1

BB(q)
2

]
(4.63)

where the blocks are

BB(q)
1 [ ~M, ~T ] =

(qe−2πb(T1−T2), q)∞

(q
1
2 e−2πb(T1−T2+mA), q)∞

(4.64)

×2ϕ
(q)
1

[
q

1
2 e−2πbmA , q

1
2 e2πb(T2−T1−mA); qe2πb(T2−T1), q

1
2 e2πb(M1−M2+mA)

]
BB(q)

2 [ ~M, ~T ] =
(e−2πb(T1−T2), q)−1

∞

(q
1
2 e−2πb(T1−T2−mA), q)−1

∞
(4.65)

×2ϕ
(q)
1

[
q

1
2 e−2πbmA , q

1
2 e2πb(T1−T2−mA); qe2πb(T1−T2), q

1
2 e2πb(M1−M2+mA)

]
The map between blocks under mirror symmetry is more involved than (4.53). It can be

derived from the use of the first Heine’s identity

2ϕ
(q)
1 [a, b; c; z] =

(b)∞(az)∞
(c)∞(z)∞

2ϕ
(q)
1 [c/b, z, az; b] (4.66)

and the analitic continuation formulas [45]. The result is[
BB(q)

1

BB(q)
2

]
=

[
1 0

c
(q)
21 c

(q)
22

][
BA(q)

1

BA(q)
2

]
(4.67)

with

c
(q)
22 =

(q
1
2 e2πb(M1−M2−mA), q)∞(q

1
2 e−2πb(M1−M2−mA), q)∞

(e2πb(M1−M2), q)∞(qe−2πb(M1−M2), q)∞
(4.68)

c
(q)
21 =

e−2πb(T1−T2)(e2πb(T1−T2+M1−M2), q)∞(qe−2πb(T1−T2+M1−M2), q)∞(q
1
2 e±2πbmA , q)∞

(e−2bπ(T1−T2), q)∞(qe2bπ(T1−T2), q)∞(e2πb(M1−M2), q)∞(qe−2πb(M1−M2), q)∞
(4.69)

For the conjugate blocks we get[
BB(q̃)

1

BB(q̃)
2

]
=

[
1 −c(q̃)

22 /c
(q̃)
21

0 c
(q̃)
22

][
BA(q̃)

1

BA(q̃)
2

]
(4.70)

The connection matrix in (4.70) is essentially the inverse of (4.67), transposed.
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5 Spectral dualities

In this section we connect the dualities discussed in the first part of the paper to a class

of 3d dualities which we call spectral dualities since they have their origin in 5d spectral

dualities, or fiber-base duality in topological string.

In the introduction we claimed that 3d spectral dual pairs can be regarded as 3d N = 2

theories living on a codimension-two defect which is coupled to a (trivial) 5d N = 1 theory.

The starting point of this construction is a toric CY three-fold X which engineers a 5d

N = 1 linear quiver theory. A 3d − 5d coupled system can be obtained via Higgsing, by

tuning the Kähler parameters of the CY X in a specific way. The resulting CY will be

denoted by X 13 and since we will be considering a complete Higgsing it will correspond

to the 3d theory TX coupled to 5d free hypermultiplets. In particular the topological

string partition function we started with reduces to the partition function of our 3d theory

TX . From the original fiber-base duality of the CY, we can then infer the existence of 3d

dualities, which we will discuss in the next section.

More precisely, we have found the following relation between the holomorphic block

(D2 × S1 partition function) Bα0
TX evaluated on a contour α0 and the partition function of

the Higgsed topological string on X :

Bα0
TX = ETXZ

α0
cl,TXZ

α0
1−loop,TXZ

α0
vort,TX = GZX1−loop,topZ

X
vort,top . (5.1)

We have separated the topological string partition function on the r.h.s. of eq. (5.1) into

two pieces, ZX1−loop,top and ZXvort,top which coincide with the vortex part of the 3d partition

function. ZX1−loop,top is independent of the 3d FI parameters, and hence of the corresponding

Kähler parameters of the CY, while ZXvort,top does depend on them. Finally G denotes a

possible fiber-base invariant prefactor and ET a contact term.

The choice of contour α0 on which the holomorphic block is evaluated corresponds

to a particular way of tuning the Kähler parameters to implement the Higgsing. More

concretely, the different contours correspond to Higgsed toric CY’s, in which the spectral

parameters in the external legs of the toric diagram are fixed, while the internal ones can

vary. For example, two Higgsed CY’s corresponding to two contours (or vacua) of the

FT [SU(2)] theory are shown in figure 1 (see section 5.3 for notations).

In the following we present our two main spectral dual pairs:

1) FT [SU(N + 1)]↔ FT [SU(N + 1)] ‹, which is obtained from the T [SU(N + 1)] com-

mutative diagram, upon flipping the edge FFT [SU(N + 1)]↔ T [SU(N + 1)] ‹.

2) T ↔ T ′, which is obtained from the D ↔ B duality in the ABCD framework.

After discussing the field theory evidence of these dualities we will see how the holo-

morphic blocks of each theory can be obtained via Higgsing from a topological string

partition function and we will then explicitly see how the spectral duality descends from

the fiber-base duality.

13We denote by X or X the toric graphs together with the values of complexified Kähler parameters of the

corresponding CY manifold. In particular X has generic Kähler parameters whereas in X they are tuned

to special quantised values.
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τ1

τ2
[k]

µ1µ2

∅

a)

τ1

τ2
[k]

µ1µ2

∅

b)

Figure 1. Two toric CY diagrams corresponding to two vacua of the 3d FT [SU(2)] theory. Notice

that the spectral parameters of external legs are the same in both cases.

5.1 FT [SU(N + 1)] and its spectral dual

Our starting point is the duality FFT [SU(N + 1)] ↔ T [SU(N + 1)] ‹, on the SW-NE

diagonal of the diagram 2.30. Recall that FFT [SU(N +1)] has two sets of singlets FRij and

Fm
ij which flip the HB and CB moment maps:

WFFT [SU(N+1)] = W T [Θ,R] + ΠRijF
R
ij + mijF

m
ij . (5.2)

We now add another set of (N + 1)2 singlets F Tij and deform the FFT [SU(N + 1)]

theory by the superpotential δW = F TijF
m
ij . We are basically flipping twice the Coulomb

branch of T [SU(N + 1)] and since flip2 = 1, as it is easy to see by using the equations of

motion, we find a new theory, which we call FT [SU(N + 1)], where only the Higgs branch

moment map is flipped:

WFT [SU(N+1)] = W T [Θ,R] + ΠRijF
R
ij . (5.3)

On the dual side FT [SU(N+1)] ‹, we proceed similarly. We add new (N+1)2, singlets

which we call FPij , and the superpotential deformation δW = FPij ΠPij . This deformation is

dual to that for FT [SU(N + 1)], since in the commutative diagram the singlets Fm
ij are

mapped into the mesons moment map ΠPij . The resulting FT [SU(N + 1)] ‹ theory has

WFT [SU(N+1)] ‹ = W T [Ω,P] + ΠPijF
P
ij . (5.4)

If we assign R-charge r to the quarks, on the side of FT [SU(N+1)] we find a monopole

matrix with R[mij ] = 2−2r on the CB, and R[FRij ] = 2−2r. On the side of FT [SU(N+1)] ‹

we again assign R-charge r to the quarks so that again we will find a monopole matrix

with R[Nij ] = 2− 2r, and R[FPij ] = 2− 2r. The operator map will be:

FRij ↔ Nij , mij ↔ FPij . (5.5)

The first evidence of this duality was obtained in [25] using difference operators acting on

the holomorphic blocks. The argument is similar to our discussion in section 4.1.

The partition function of the FT [SU(N + 1)] theory is simply obtained by multiplying

the partition function of T [SU(N + 1)] by the contribution of the flipping singlets which

transform in the adjoint of the SU(N + 1) flavor symmetry:

ZFT [N,mA; ~M, ~T ] ≡ K ′[ ~M,mA]ZT [N,mA; ~M, ~T ] , (5.6)

where the prime indicates that we removed the trace part from the singlet contribution.
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Considering the map of operators in (5.5) we see that flavor and topological fugacities

will be swapped in the partition function of the dual theory, but the sign of mA will not

change, consistently with our R-charge assignment. We have:

ZFT ‹

[N,mA; ~M, ~T ] ≡ ZFT [N,mA; ~T , ~M ] . (5.7)

Proving our spectral duality at the level of partition functions requires to prove the following

identity:

ZFT ‹

[N,mA; ~M, ~T ] = ZFT [N,mA; ~T , ~M ] = ZFT [N,mA; ~M, ~T ] . (5.8)

But this is immediate if we consider the identity for the duality between FFT [SU(N + 1)]

and T [SU(N + 1)] ‹:14

ZFFT [N,mA; ~M, ~T ] = K ′[~T ,mA]K ′[ ~M,−mA]ZT [N,−mA; ~M, ~T ] = ZT [N,−mA; ~T , ~M ] .

(5.9)

The additional flipping, which lead us to the spectral dual pair, is trivially implemented

by moving the contribution of the singlets from the left to the right:

K[ ~M,−mA]ZT [N,−mA; ~M, ~T ] = K[~T ,−mA]ZT [N,−mA; ~T , ~M ] , (5.10)

which up to mA → −mA is the identity we were looking for.

It is interesting to observe that FT [SU(N + 1)] and its spectral dual, similarly to

T [SU(N + 1)] and its mirror dual, describe the low energy theory on a stack of D3 branes

suspended between NS5 and D5 branes. Crucially, however, the IIB brane setup for

FT [SU(N + 1)] involves D5 branes spanning the 012478 directions as shown in table 2

(see also figure 2), so we call them D5’ to distinguish them from the ones relevant for

T [SU(N+1)] in figure 3. The difference between the two set-up is a “brane flip” — the D5’

and D5 branes are transformed into each other under the exchange of directions 56 ↔ 78.

The set-up in table 2 and figure 2, which preserves N = 2 supersymmetry, is also invari-

ant under the action of Type IIB S-duality which turns the NS5 branes into D5’ branes

leaving the D3 branes invariant and explains the spectral self-duality of FT [SU(N + 1)].

Notice also that in the brane-realisation the (N + 1)2 singlets fields which flip the mesons

correspond to the degrees of freedom of the D3 branes moving in directions 78 between

two D5’ branes (one hyper for each D3 segment) and between a D5’ and an NS5 [46].

At this point it is tempting to speculate that performing also the flip of the CB moment

map to obtain FFT [SU(N+1)] corresponds to rotating also the NS5 into NS5’. This would

give a new N = 4 set-up with NS5’ and D5’ equivalent to the one in table 1 as consistent

with the duality FFT [SU(N + 1)]↔ T [SU(N + 1)].

Coming back to the N = 2 setup for FT [SU(N + 1)] now an interesting possibility

arises. Consider the set-up in table 2 but without D3 branes. We assume for a moment

14In the FFT [SU(N + 1)] partition function we can equivalently use K or K′ since the trace part will

cancel out between the two set of singlets.
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0 1 2 3 4 5 6 7 8 9

NS5 − − − − − −
D5’ − − − − − −
D3 − − − −

Table 2. The brane setup giving rise to the 3d FT [SU(N + 1)] gauge theory.

D3

D3

D3

D5’ D5’ D5’NS5 NS5 NS5

x3

x8

Figure 2. The brane setup giving rise to the 3d FT [SU(3)] gauge theory. Notice that the NS5

and D5’ branes form a (p, q)-brane web in the directions (4, 9) (not shown) and coincide in the

directions (7, 8) (x8 is vertical in the picture).

D3

D3

D3 D5

D5

D5

NS5 NS5 NS5

x3

x8

Figure 3. The brane setup giving rise to the 3d T [SU(3)] gauge theory. The NS5 and D5 branes

are perpendicular in all non-spacetime directions.

that all the five-branes sit at the same point in x3 direction. The NS5 and D5’ branes will

form a (p, q) web in the 49 plane, as shown in figure 4(a) for the simplest example of N = 1.

The worldvolume theory on the five-branes is the 5d N = 1 gauge theory living in

the 01278 space. The positions of the five-branes in the 49 plane correspond to Coulomb

moduli, couplings and masses of the gauge theory. In particular for the “square” (p, q)-web

formed by (N+1) NS5 and (N+1) D5’ the worldvolume theory is the U(N+1)N 5d linear

quiver theory with (N + 1) fundamental hypermultiplets at each end.

If we now go to the Higgs branch of this 5d theory where the NS5 and D5’ branes are

separated in the x3 direction we can stretch D3 branes between them as in figure 4(b),

arriving precisely at the setup of table 2. Hence we explicitly realize the FT [SU(N + 1)]

theory as a defect theory appearing in the Higgs branch of the 5d theory. This realisation

of FT [SU(N + 1)] as a defect theory has been discussed extensively in section 3 of [25],

here we summarize the salient points.
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x9

x4

D5’

D5’

D5’

D5’

NS5 NS5

NS5 NS5

D3

D3

D5’

D5’

NS5 NS5

x9

x4

x3

τ1
τ2

µ1

µ2

(a) (b)

Figure 4. a) The (p, q) five-brane web formed by pairs of intersecting D5’ and NS5 branes in the 49

plane, corresponding to the 5d N = 1 SU(2) gauge theory with four fundamental hypermultiplets.

b) The Higgs branch of the 5d theory corresponds to the configuration of five-branes separated

along the x3 direction. Here we consider the case where two D3 branes (here depicted as dashed

lines) are stretching between the five-branes.

First of all there it was explicitly shown how the Higgsing prescription can be imple-

mented starting from the topological string partition function for the toric CY S with

square toric graph (with (N + 1) vertical and (N + 1) horizontal legs). In particular the

partition function of FT [SU(N + 1)] on D2 × S1, evaluated on a reference contour α0

Bα0

FT [SU(N+1)](~µ, ~τ , t) where the parameters µi, τj , t are exponentiated versions of Mi, Tj ,

mA, is obtained from ZStop when the complete Higgsing pattern (eqs. (3.8) and (3.9) in [25])

S→ S is implemented:

Bα0

FT [SU(N+1)](~µ, ~τ , t) = GZS1−loop,topZ
S
vort,top(~µ, ~τ , t) , (5.11)

where G is a fiber-base invariant factor. The parameters µi, τj are identified with Kähler

parameters while the exponentiated axial mass t is identified with one of the equivariant

Ω-background parameters on R4
q,t × S1.

Then in [25] it was observed that the topological string partition function is invariant

under fiber-base duality (which in the case of the square diagram S is self -duality) even

after Higgsing:

ZS1−loop,topZ
S
vort,top(~µ, ~τ , t) = ZS

′
1−loop,topZ

S′
vort,top(~µ, ~τ , t) , (5.12)

which implies the 3d spectral self-duality of the 3d blocks:

Bα0

FT [SU(N+1)](~µ, ~τ , t) = Bα0

FT [SU(N+1)](~τ , ~µ, t) = Bα0

FT [SU(N+1)] ‹(~µ, ~τ , t) . (5.13)

Fiber-base duality exchanges the Kähler parameters of the base with that of the fiber, thus

it exchanges µi and τj , but t is left untouched since it is the parameter of the Ω-background

(or, equivalently, the refinement parameter of refined topological string).
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5.2 A new spectral dual pair

The reasoning that led us to state the spectral duality between FT [SU(N + 1)] and

FT [SU(N + 1)] ‹ can be used on theory D and theory B to obtain a daughter spectral

duality. Recall that theory D is SQED with (N + 1) flavors, Ui and Ũi, mesonic and

monopole flipping fields, and superpotential

WD = m±σ± + Uij(FUD)ij −
N∑
m=1

(−)m

m
θm Tr

[
FUD . . . F

U
D︸ ︷︷ ︸

m times

]
. (5.14)

The flipping fields σ± and FUij originated from Aharony duality on theory A.

To arrive at theory T we flip the singlets σ± and θm≥2, since flip2 = 1 we arrive at:

WT = φ(FUD)ii + Uij(FUD)ij , (5.15)

where we redefined θ1 = φ, for simplicity. We then can use the F-terms of φ and consider

traceless flipping fields.

Theory T ′ is obtained from theory B upon repeating the same two operations that

define theory T . From the operator map given in section 3.4, we see that the fields θm≥2

correspond to dressed mesons of theory B:

θ2 ↔ d̃ ΩN · · ·ΩN︸ ︷︷ ︸
N−2 times

d

...

θN ↔ d̃d

(5.16)

while the monopoles σ± are mapped to the two mesons d̃p and dp̃. So we have:

WT ′ = WB + F+d̃ p+ F−d p̃+

N−2∑
k=0

Fk d̃ Ωk
N d (5.17)

The equality of the partition functions ZT = ZT ′ follows from the equality ZD = ZB

simply by reshuffling the flipping fields and we obtain:15

ZT = sb(mA)

N+1∏
a,b=1

sb
(
−mA +Ma −Mb

) ∫
dx e−2πiξx

N+1∏
a=1

sb

(
iQ

4
+
mA

2
± (xj −Ma)

)

= e−2πiMN+1ξsb

(
iQ

2
− N + 1

2

(
mA +

iQ

2

)
± ξ
)N−1∏

l=1

sb

(
iQ

2
− (l + 1)

(
mA +

iQ

2

))

×
∫ N−1∏

k=1

dx(k)e−2πiζ(k)
∑k
a=1 x

(k)
a Z(k)

vecZ
(k)
adjZ

(k,k+1)
bif

∫
dx(N)e−2πiζ(N)

∑N
a=1 x

(N)
a Z(N)

vec Z
(N)
adj

×
N∏
i=1

sb

(
iQ

4
+
mA

2
± (x

(N)
i − ξ)

) N∏
i=1

sb

(
N

2

(
mA +

iQ

2

)
± x(N)

i

)
= ZT ′ (5.18)

In the first line we can notice the cancellation of the trace-part of the flipping fields with

the singlet φ.

15For later convenience we have changed the sign of ξ in ZT . On the dual side ZT ′ we on top replacing

ξ → −ξ, we also change the signs of the integration variables x
(k)
i → −x(k)

i .
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Holomorphic blocks. In this section realise theory T and T ′ as defect theories via

Higgsing. First of all we need the holomorphic blocks, i.e. D2 × S1 partition functions

evaluated on a reference contour.

The block integrands ΥT and ΥT ′ can be easily obtained by taking the “square-root”

of the S3
b integrand as observed in [42], and reviewed in [43]. Their explicit expression can

be found in eqs. (C.1) and (C.3) in the appendix.

We then evaluate the block integrands on a basis of contours Γα with α = 1, · · ·N + 1

which are in one-to-one correspondence withe the (N + 1) SUSY vacua of the theory.

Similarly we will evaluate the block integrand for the spectral dual theory on a basis of

contour to obtain the blocks BβT ′ :

BαT =

∮
Γα

ΥT , BβT ′ =

∮
Γβ

ΥT ′ . (5.19)

Testing the the spectral duality at the level of the blocks requires to establish a map

between each element of the basis of theory T and T ′. In terms of field theory objects, the

matrix elements of this map are partition functions of 2d theories living on the interface

between theory T in vacuum α and T ′ in vacuum β. Geometrically the interface is a torus

∂(D2×S1) = T 2, the equivariant parameter q of the D2×S1 background plays the role of

the complex structure of the boundary torus and the 2d partition function is a version of

elliptic index, hence expressed in terms of Jacobi theta-functions θq. However we will not

be concerned with evaluating fully the matrix of transition coefficients.

We limit ourselves to the evaluation of the blocks of T on a reference contour Γα0 . On

the dual side we are able to identify the corresponding contour which we also call Γα0 . The

details of the calculations can be found in the appendix, here we give the final result:

Bα0
T =

∮
Γα0

ΥT = ET Zα0
cl,T Z

α0
1−loop,T Z

α0
vort,T . (5.20)

The explicit forms of Zα0
cl,T Z

α0
1−loop,T and Zα0

vort,T are given in in eqs. (C.11), (C.10). On the

dual side we have:

Bα0
T ′ =

∮
Γα0

ΥT ′ = ET ′Zα0
cl,T ′Z

α0
1−loop,T ′Z

α0
vort,T . (5.21)

The explicit forms of Zα0
cl,T ′Z

α0
1−loop,T ′ and Zα0

vort,T ′ are given in eqs. (C.17), (C.15).

5.3 Spectral duality from fiber-base

In this section we explain how the 3d spectral duality between theories T and T ′ follows

from fiber-base duality of refined topological string. First of all we need to establish the

Higgsing prescription which allows us to obtain BαT and BαT ′ from refined topological string

partition functions with tuned Kähler parameters.

Refined topological strings provide a deformation of the topological A-model partition

function on toric CY threefolds. Apart from the exponentiated string coupling q = e−gs

the deformation depends on an additional parameter t, so that for t = q the conventional
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partition function is recovered. The rules for computing partition were introduced in [47].

Here we briefly recall that the main ingredient is the trivalent refined vertex

CABC(t, q) =

C

B
A

t
q

= q
||B||2+||C||2

2 t−
||BT||2+||CT||2

2 M
(q,t)
C

(
t−ρ
)

×
∑
D

(q
t

) |D|+|A|−|B|
2

χAT/D

(
q−Ct−ρ

)
χB/D

(
t−C

T
q−ρ
)
, (5.22)

associated to a vertex of the toric diagram, i.e. to a C3 patch. A, B and C are Young

diagrams assigned to the intermediate legs of the toric diagram. In a generic toric diagram

obtained gluing trivalent vertices, each intermediate leg is geometrically a compact 2-cycle

P1, to which corresponds a Kähler parameter k =
∫
P1 ω, where ω is the Kähler form on

the CY X . k, together with the integral of the B-field b =
∫
P1 B defines the exponentiated

complexified Kähler parameter Q = e−b+ik. The partition function is given by the sum

of the product of refined topological vertices with additional weights of the form Q|A| for

each intermediate leg. The sum is carried over all Young diagrams on the intermediate legs

with empty diagrams assigned to the external legs.

It will be more convenient for us to use spectral parameters, assigned to all the legs

of the diagram, instead of Kähler parameters associated only with the intermediate edges.

Figure 5 explains the identification for the basic example we will need in our setup, the re-

solved conifold geometry. The piece of the partition function corresponding to the resolved

conifold from figure 5 is given by

Zconifold

(
P

A B
R

∣∣∣Q, q, t)
=
∑
C

(−Q)|C|CACR(t, q)CBTCTPT(q, t)

= Z
( ∅

∅ ∅
∅

∣∣∣Q, q, t) q ||R||2−||P ||22 t
||PT||2−||RT||2

2

(q
t

) |A|−|B|
2

×M (q,t)
R (t−ρ)M

(t,q)

PT (q−ρ)G
(q,t)
RP

(√
q

t
Q

)
×
∑
C

(−Q)|C|χAT/CT

(
pn(t−ρq−R)− pn

(√
q

t
Qt−ρq−P

))
× χB/C

(
pn(q−ρt−P

T
)− pn

(√
t

q
Qq−ρt−R

T

))
(5.23)

In what follows we normalize Zconifold so that it is an identity when all the external

legs are empty, i.e. we divide by Z
( ∅∅ ∅∅

∣∣Q, q, t).
The crucial point for our Higgsing construction is that for quantized Q the func-

tion (5.23) actually vanishes for a large subset of “boundary conditions” (external Young
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B

P

A

R

Q

t
q

t q
=

B

P

A

R

v

Qv

Qu

u

Figure 5. Resolved conifold geometry in refined topological strings. The double ticks denote the

preferred direction, and t and q indicate the respective legs of the refined topological vertices. Q is

the exponentiated complexified Kähler parameter of the base P1 (drawn as an intermediate diagonal

edge). A, B, P and R are Young diagrams associated with the outer legs. The right picture is

the simplification of the left one with spectral parameters on the legs playing the roles of Kähler

parameters.

QL

√
q
t
QL

QD

√
t
q
QD

t
q

t q
def
=

QL

QD

=
D5’

NS5

(a)

QL

√
q
t
t−1QL

QD

√
t
q
tQD

t
q

t q
def
=

QL

QD

=
D5’

NS5

D3

(b)

Figure 6. Higgsing of the resolved conifold geometry leading to two different types of crossings.

Notice the particular values of the Kähler parameters on the legs. (a) An “empty” crossing, i.e.

without D3 branes stretched between the NS5 and D5’. (b) a “full” crossing, i.e. with one D3 brane

stretched between the NS5 and D5’.
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diagrams). Namely for the situation pictured in figure 6, the lengths of the diagrams on

the vertical leg before and after the crossing are constrained as follows:

for
QL

QDY

W

l(W ) ≤ l(Y ), (5.24)

for
QL

QDY

W

l(W ) ≤ l(Y ) + 1. (5.25)

These constraints are valid irrespective of the diagrams propagating on the horizontal leg.

For example if the resolved conifold fragment (5.24) sits in the lowest part of the diagram,

then Y = ∅ since it corresponds to an external leg, and therefore W is constrained to be

empty. The block (5.25) in the same situation would constraint the diagram W to have

just one column, i.e. W = [k], k ∈ Z≥0. The integers k in this construction will correspond

to the summation variables in the 3d vortex series.

We will denote the “Higgsed” CY manifold (i.e. the CY with discrete choice of Kähler

parameters) corresponding to the 3d theory T by Y and that corresponding to T ′ by Y ′.
Of course, Y ′ is the fiber-base dual (the mirror image along the diagonal) of Y. Below we

give some details of the topological string computations for Y and Y ′.

CY Y. The toric diagram for the CY Y in the case N = 4 looks as follows:

ZYtop(~µ, ~τ , q, t) =
τ1

τ2
[k]

µ1µ2µ3µ4µ5

∅ ∅ ∅ ∅

= ZYtop,1−loop(~µ, ξ, q, t)ZYvortex(~µ, ξ, q, t). (5.26)

where τ1 = e2πbξ, τ2 = t
1−N

2 . Here we have explicitly indicated the Young diagrams

propagating on the intermediate vertical legs. These diagrams are constrained by the

rules, (5.24), (5.25), so that [k] is the single column Young diagram. It is this variable over

which the summation in the vortex series is performed. We normalize our partition function

so that ZYvortex(~µ, ξ, q, t) is a series in e2πbξ which starts with identity. The partition function

can then be computed explicitly e.g. using the resolved conifold formula from eq. (5.23)16

and the result coincides with the series vortex series (C.10).

The relative prefactor ZYtop,1−loop(~µ, ξ, q, t) is easy to calculate — it is what remains of

the partition function when τ1
τ2

goes to zero. This limit corresponds to an infinitely large

16There is, however, a more compact and convenient operator product technique [48–50], which we don’t

present here not to overcomplicate the presentation with technicalities.
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Kähler parameter between the two horizontal legs in (5.26), so that the diagram splits

into a product of two horizontal strip partition functions. Indeed, in this limit only k = 0

contributes and we have:

ZYtop,1−loop(~µ, ξ, q, t) =

µ1µ2µ3µ4µ5

√
t
q
µ2

√
t
q
µ3

√
t
q
µ4

√
t
q
µ5

√
t
q
tµ1. (5.27)

Here we have written out the spectral parameter of the vertical legs explicitly. The well-

known formula for the refined strip partition function gives [51]:

ZYtop,1−loop(~µ, ξ, q, t) =

N+1∏
i=2

N+1∏
j=i+1

(
q
t
µi
µj

; q
)
∞(

t µiµj ; q
)
∞

N+1∏
k=2

(
q µ1

µk
; q
)
∞(

tµ1

µk
; q
)
∞

. (5.28)

CY Y ′. The toric diagram for the spectral dual CY Y ′ is simply the mirror image along

the diagonal of that of Y (5.26), so that:

ZY
′

top,1−loop(~µ, ~τ , q, t)ZY
′

vortex(~µ, ~τ , q, t) =

µ1 µ2

[k
(2)
1 ]

[k
(3)
2 k

(3)
3 ]

[k
(4)
2 k

(4)
3 k

(4)
4 ]

∅[k
(1)
1 ]

[k
(2)
1 ]

[k
(3)
1 ]

[k
(4)
1 ]

τ5

τ4

τ3

τ2

τ1

(5.29)

Here we have again used the rules (5.24), (5.25) to constraint the Young diagrams on the

vertical legs. The integers k
(a)
i are precisely the integers in the 3d vortex sum and ZY

′

vortex

can be checked to reproduce (C.15).

The computation of the one-loop factor is similar to section 5.3: the toric diagram in

the limit τa
τa+1

→ 0 splits into (N + 1) horizontal strips. Using the result for the strips

we obtain

ZY
′

top,1−loop(~µ, ~τ , q, t) =

(
qt

N−1
2 e2πβξ; q

)
∞(

t
N+1

2 e2πβξ; q
)
∞

. (5.30)

The fiber-base duality of the topological string partition function (after Higgsing) yields

the following equality:

ZY1−loop,topZ
Y
vort,top = ZY

′

1−loop,topZ
Y ′
vort,top (5.31)

A simple brute force check of eq. (5.31) to lower orders in the Kähler parameters is given

in appendix D.
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Match of field theory with Ztop. Finally we relate our gauge theory results for the

holomorphic blocks with the results of the Higgsing prescription. We find that:

Bα0
T = ET Zα0

cl,T Z
α0
1−loop,T Z

α0
vort,T = GT Z

Y
1−loop,topZ

Y
vort,top (5.32)

and

Bα0
T ′ = ET ′Zα0

cl,T ′Z
α0
1−loop,T ′Z

α0
vort,T ′ = GT ′Z

Y ′
1−loop,topZ

Y ′
vort,top , (5.33)

where GT , GT ′ denote fiber-base invariant prefactors.

Since we checked the fiber-base duality of the refined string eq. (5.31))we are left to

check that:
GT
GT ′

= 1, (5.34)

or
ET Zα0

cl,T Z
α0
1−loop,T

ET ′Zα0
cl,T ′Z

α0
1−loop,T ′

ZY
′

1−loop,top

ZY1−loop,top

= 1. (5.35)

In fact eqs. (5.35), (5.34) can be relaxed slightly: the r.h.s. can be a q-periodic function, e.g.

a combination of θq-functions which also becomes an identity when glued into the S3
b par-

tition function. Notice that the topological string partition function lacks the classical (i.e.

power function) part, so the relation (5.35) is essentially the requirement that the classical

part of the field theory holomorphic block be fiber-base duality invariant on its own.

We evaluate (5.35) in two steps. We combine eqs. (C.2), (C.8), (5.28) to get

Zα0
cl,T Z

α0
1−loop,T

ZY1−loop,top

=
FT Iα0

0,T (~µ, ξ, q, t)

ZY1−loop,top

=
1

(t)N∞
e−2πibM1ξ−πbβ(N+1)M1

N+1∏
k=2

θq

(
tµkµ1

)
θq

(
µk
µ1

) N+1∏
i>j

θq

(
q
t
µi
µj

)
θq

(
t µiµj

)
∼ e−2πibM1ξ+πbβ(N+1)M1−2πbβ

∑N+1
k=1 Mk+2πb(1−2β)

∑N+1
j=1 Mj(N+2−2j)

(t)N∞
. (5.36)

where the last equality is up to q-periodic function of µk. Similarly we combine

eqs. (C.5), (C.14), (5.30) and obtain

Zα0
cl,T ′Z

α0
1−loop,T ′

ZY
′

1−loop,top

=
FT ′Iα0

0,T ′(~µ, ξ, q, t)

ZY
′

1−loop,top

=
1

(t)N∞
eπib

2β2N(N2−1)
6

+πbβ(N+1)M1+πbβ
∑N+1
a=1 (2a−3−N)Ma

× e−2πiξ(M1−MN+1−ibβN)
θq

(
t
N+1

2 e2πbξ
)

θq

(
qt

N−1
2 e2πbξ

)
∼ 1

(t)N∞
eπib

2β2N(N2−1)
6

+πbβ(N+1)M1+πbβ
∑N+1
a=1 (2a−3−N)Ma

× e−2πiξ(M1−MN+1−ibβN)+2πbξ(1−β) . (5.37)
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Dividing eq. (5.36) by eq. (5.37) we get

Zα0
cl,T Z

α0
1−loop,T

ZY1−loop,top

ZY
′

1−loop,top

Zα0
cl,T ′Z

α0
1−loop,T ′

∼ e−πib2β2N(N2−1)
6

+πbβ
∑N+1
a=1 (N+1−2a)Ma−2πiξ(MN+1+ibβN)

× e−2πbξ(1−β)+2πb(1−2β)
∑N+1
j=1 Mj(N+2−2j) . (5.38)

Thus, to get the invariance we need to have

ET ′
ET

= exp

[
− 2πiξMN+1 − πbβ

N+1∑
k=1

(2k −N − 1)Mk

+ 2πb(1− 2β)

N+1∑
j=1

Mj(N + 2− 2j) + 2πb(β(N + 1)− 1)ξ − πib2β2

6
N(N2 − 1)

]
.

(5.39)

And indeed we obtained the ratio of the contact terms as a determined from the gauge

theory partition function calculation in eq. (C.6) in the appendix C.

We have thus established the spectral duality for theories T and T ′ using topologi-

cal string computation. It is remarkable that the field theory computation matches the

topological string not only qualitatively but with such a quantitative finesse.
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A More details on nilpotent Higgsing

We describe some additional details of the Higgsing process studied in section 3.3.

Let us recall our notation for Theory C: bifundamentals of type S transform in the

(�,�) of U(k)×U(k+ 1). Bifundamentals of type S̃ transform in the (�,�) of U(k+ 1)×
U(k). In matrix notation, the reps are

� =

 v1

...

vk

 � =
[
v1, . . . , vk+1

]
(A.1)

Covariant derivatives DS(k,k+1) and DS̃(k,k+1), on a link (k, k + 1), with U(k) connection

on the left and U(k + 1) on the right, are defined as usual as

DS(k,k+1) = dS − iAkS(k,k+1) + S(k,k+1)iAk+1, (A.2)

DS̃(k,k+1) = dS + S̃(k,k+1)iAk − iAk+1S̃
(k,k+1). (A.3)
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The two objects DµS
(k,k+1) and DµS̃

(k,k+1), are themselves bifundamentals. The covariant

derivative for the adjoint scalars on a node U(k) is

DΨk = dΨk − i[Ak,Ψk]. (A.4)

Nilpotent vev and D-terms. We discussed in the main text the role of D-terms in

the solution of our nilpotent vev. Our notation for a D-term there was the following: for

a gauge node U(k), with bifundamentals on the left, L = (k − 1, k), and on the right,

R = (k, k + 1), we have

Da = Da
∣∣∣
hyper

+ Trk
(
T a[Ψ†k,Ψk]

)
(A.5)

Da
∣∣∣
hyper

= Trk

(
T a
(
SRSR† − S̃R†S̃R + S̃LS̃L† − SL†SL

))
(A.6)

Then, it is straightforward to compute on the nilpotent vev (3.60) the following matrix

products

S(k−1,k)†S(k−1,k) = diag(02, 1k−2), (A.7)

S(k−1,k)S(k−1,k)† = diag(01, 1k−2) = S̃(k,k−1)†S̃(k,k−1) (A.8)

S̃(k−1,k)S̃(k−1,k)† = diag(0, 1k−2, 0) (A.9)

Gauge multiplets mass matrix. Given the Lagrangian of the theory, the mass matrix

for spin-1 fields can be obtained from the covariant derivatives of the charged fields. We

expect that the bifundamentals S and S̃, whose kinetic term is

Trk+1

[
(DµS)†(DµS) + (DµS̃)(DµS̃)†

]
will be responsible for mass terms between different gauge nodes. We quote the form of

the mass matrix coming from the bifundamentals S(k,k+1), since it is instructive:

N∑
k=1

[
Aak, A

a
k+1

]
Tr⊗

[
Tak S

(k,k+1)S(k,k+1)†T bk S(k,k+1)†Tak S
(k,k+1)T bk+1

T bkS
(k,k+1)Tak+1S

(k,k+1)† Tak+1S
(k,k+1)†S(k,k+1)T bk+1

][
Abk
Abk+1

]
(A.10)

In this formula AN+1 = 0 since the last node is a flavor node, i.e. it is ungauged. Matrix

elements are understood on the nilpotent vev. The contribution of S̃-type bifundamentals

is similar to (A.10). Then, if we split the total mass matrix into the contributions of S, S̃,

and Φ, adjoint fields will not couple different gauge nodes.

The total mass matrix has the following block structure,
U(1) 0 0 0 0 0 . . .

0 U(2) × 0 0 0 . . .

0 × U(3) × 0 0 . . .

0 0 × U(4) × 0 . . .

0 0 0 × . . . . . . . . .

 (A.11)

with non zero crossed blocks. This structure resemble indeed that of the quiver: all but

the first gauge node get two contributions, one from bifundamentals on the left, one from

the right.
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After careful evaluation of (A.11) we were able to double-check the solution quoted

in (3.73). This same solution can then be understood in a simpler way by thinking about

the action of broken gauge generators, along the lines of what we stated in section 3.3.

A basis for massive chiral fields. When discussing Theory C we described, within the

set of UV fields, an explicit basis for the massless fields on the nilpotent vev. This basis

contained two subspaces: physical IR massless fields and goldstone bosons. In the physical

sector we then had a further splitting: bifundamentals, and adjoints. This splitting is

orthogonal by default. However, physical massless fields are not orthogonal to goldstone

bosons. (This is OK, since both are in the kernel of the matrix, and it might happen that is

just convenient, but not needed, that physical massless are taken to be orthogonal among

themselves).

In order to obtain a basis for massive chiral fields we can adopt the following strategy.

• We split the set of UV fields, call them B, into the set of physical IR fields and

its orthogonal, hereafter denoted by K⊥. (This is not ker⊥). The only non trivial

construction in K⊥ regards the adjoints, since as we mentioned, bifundamentals and

adjoints are orthogonal by default. In practise we construct

B = {v1 . . . , v#ir
} ∪ {v#ir+1

, . . . v#uv} (A.12)

where the first set contains only physical massless fields in the IR. We check that

{v1 . . . , v#ir
} ∪ { goldstone bosons } is a set of independent fields.17 Given K⊥ =

{v#ir+1
, . . . v#uv}, then we know that {goldostone bosons} ⊂ K⊥. We do not impose

orthogonality among the vectors in {v#ir+1
, . . . v#uv}.

• For each goldstone boson, call it Gk, we impose the orthogonality condition

Gkv = 0 v =
∑
j∈K⊥

αjvj (A.13)

These linear equations fix a number of parameters equal to the number of goldstone

bosons. The resulting free parameters provide a span for the massive fields, i.e. the

actual ker⊥. Vectors in this basis are not orthogonal among themselves, but they are

automatically orthogonal to physical massless fields which is what we were looking

for. Concluding we have splitted B in the form

B = K ⊕G︸ ︷︷ ︸
ker

⊕ ker⊥ (A.14)

Let us come back on the first part of this construction, i.e. a convenient basis for adjoint

fields. Note indeed that massless IR fields in the adjoint are not directly aligned with a

basis of hermitian matrices for U(N), so it is better to use an alternative basis. Consider

the map ιk : Rd×d → Rk with k ≤ d defined as

ιk ·

 a1,1 a1,2 . . . . . . a1,d

a2,1 a2,2 a2,3 . . . a2,d
...

...
...

...
...

 =

 a1,d−k+1

a2,d−k+2
...

 (A.15)

17For example we show that there is no non trivial solution to
∑#ir
i=1 xivi +

∑N
k=2 Gk = 0.
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For example, if k = d, the map ιd returns the diagonal of the matrix. We can find a basis

for Rd×d by considering for each k ≤ d an orthogonal basis of Rk of the form,
1

1
...

1

 ,


+1

−1

0
...

 , . . . (A.16)

Then, for each node U(n) we construct a basis Φn of the adjoint rep recursively. Define

Φn−1 to be the basis of U(n− 1) built out of ιk for k ≤ n− 1. We can embed Φn−1 in Φn

in two ways

Φn ⊃

(
0 0

0 Φn−1

)
or Φn ⊃

(
Φn−1 0

0 0

)
(A.17)

The embedding on the right of (A.17) will be needed for the U(N + 1) flavor node. The

other one is used on the gauge nodes of the tail. In order to find a complete orthogonal

basis we only need elements parametrizing the remaining row and a column of Φn. Finally

we normalize. The basis ⊕N+1
n=1 Φn parametrize the 2N+3 fields {Γi, ψk,Σ±, δ}, in a natural

way. A basis orthogonal to these 2N+3 fields is also simple to construct.

More general nilpotent deformations. The nilpotent vev we studied, together with

the Higgsing, can be generalized outside next-to-extremality. For example, let us label the

F-term deformation generated by the monopoles using a partition, i.e. the following set

of integers: I = {n1, . . . , nN} with ni ≥ 0 and
∑N

l=1 lnl = N . In (3.57) we considered

I = (0N−1, 1), which naturally generalize to,

TrNS(N,N+1) =
N⊕
l=1

J⊕nll ⊕ J1 (A.18)

This equation is solved block by block in the same way as in (3.58). Then

〈S̃(N,N+1)〉 =

N⊕
l=1

J⊕nll ⊕ J1 drop the last column.

〈S(N,N+1)〉 =
N⊕
l=1

(J1 ⊕ Il−1)⊕nl ⊕ J1 drop the last row. (A.19)

and

〈S̃(N−k,N+1−k)〉 =
N⊕
l=1

(J⊕k1 ⊕ Jl−k)⊕nl drop the first k column and k − 1 rows

〈S(N−k,N+1−k)〉 =

N⊕
l=1

(J⊕k1 ⊕ J1 ⊕ Ik−2)⊕nl drop the first k row and k − 1 columns

(A.20)
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B Bookkeeping integrals

In this appendix we collect some useful results about hyperbolic integrals.

Double-sine function. The double-sine function, sb, appeared in the very first compu-

tation of [37], as a building block for the localized partition function of 3d N = 2 theories

on the squashed sphere S3
b . It can be introduced with an infinite product representation,

which is perhaps familiar to the physics literature,

sb =
∏

m,n≥0

mb+ n/b+Q/2− ix
mb+ n/b+Q/2 + ix

, Q = b+ b−1. (B.1)

It satisfies the following non trivial properties

sb(x)sb(−x) = 1 (B.2)

sb

(
ib

2
− x
)
sb

(
ib

2
+ x

)
=

1

2 cosh(πbx)
(B.3)

sb(x) = e+ iπ
2
B22[Q/2−ix](e2πib(Q/2−ix), q)∞(e2πi/b(Q/2−ix), q̃)∞ (B.4)

= e−
iπ
2
B22[Q/2+ix](e2πib(Q/2+ix), q)−1

∞ (e2πi/b(Q/2+ix), q̃)−1
∞ (B.5)

where q ≡ e2iπb2 = e2iπbQ, q̃ ≡ e
2iπ
b2 = e2iπ/bQ. The Bernulli numbers relevant to the

factorization formulas are

B22(x) = (x−Q/2)2 − (b2 + b−2)/12. (B.6)

A slightly more compact notation distinguishes sb with argument x± iQ/2, i.e.

sb ≡ sb
(
x+

iQ

2

)+1

, sb ≡ sb
(
x− iQ

2

)−1

. (B.7)

Then, we find

sb(x+ mi
b + nib)

sb(x)
=

(−)nm+n+mq
n(n+1)

4 q̃
m(m+1)

4 e+πnbx+πmx
b

(qe2πbx, q)n(q̃e
2πx
b , q̃)m

(B.8)

sb(x+ inb+ im
b )

sb(x)
=

(e2πbx, q)n(e
2πx
b , q̃)m

(−)nm+m+nq
n(n+1)

4 q̃
m(m+1)

4 eπb(x−iQ)n+
πm(x−iQ)

b

(B.9)

Abelian integrals. In section 4.5 we studied in details the commutative diagram for

T [SU(2)]. The computations involving T [SU(2)] reduce to abelian integrals of the form∫
dx zx

Nf∏
i=1

sb(x+Mi + ui + iQ
2 )

sb(x+Mi − ui − iQ
2 )

(B.10)

where z = eiπλ and ui are arbitrary. For example, if we take ui = − iQ
4 −

mA
2 , we find Zbif

as defined in the main text with a minus sign for the masses.
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In order to compute such a generic abelian integral, we pick poles from the two sb
functions at the numerators: let us focus first on the computation involving the first set of

poles, i.e X1 = x+M1+u1 = inb+im
/
b, belonging to the contour C1, since the computation

on the other contours Ci=2,...,Nf will be very similar. When X1 = x+M1 +u1 = inb+ im
/
b

we find a series made out of∑
n,m≥0

zX1−M1−u1Res[sb(X1)]
∏
j 6=1

sb(Dj1 +X1)
∏
j

sb(Cj1 +X1) (B.11)

which upon evaluation gives

z−M1−u1
∏
j

[
sb[Dj1 +

iQ

2
]/sb[Cj1 −

iQ

2
]

]

×
∑
n≥0

[
(e2πbC11)n(e2πbC21)n

(q)n(qe2πbD21)n

] [
zibe2πb

∑
j(uj+iQ/2)

]n
×
∑
m≥0

[
(e2πC11/b)m(e2πC21/b)m

(q̃ )m(q̃e2πD21/b)m

] [
zi/be2π/b

∑
j(uj+iQ/2)

]m
(B.12)

We defined the quantities,

Cij = (Mi −Mj)− (ui + uj) Dij = (mi −mj) + (ui − uj) . (B.13)

Here ui = −µi if we want to compare with Z̃:

Z̃(Nc,Nf )[ ~M, ~µ ] =

Nc∏
i=1

Nf∏
j=1

sb

(
iQ

2
− µj ± (x

(Nc)
i −Mj)

)
(B.14)

BC tranformations and its real mass deformations. The integral identities (4.27)

and (4.38) have been derived in [15] starting from the master relation between multivariate

integrals with BC symmetry. The transformation between BCn and BCm hyperbolic

integrals has been proved by E.Rains in Corollary 4.2 of [8]. For convenience, we repeat

here below the main statement. Consider the integral

I(m)
n [~µ;ω1, ω2] (B.15)

=
1

(−4ω1ω2)n/2n!

∫
Cn

n∏
i=1

dxi

∏n
i=1

∏2m+2n+4
r=1 Γh(µr ± xi;ω1, ω2)∏

i<j Γh(±xi ± xj ;ω1, ω2)
∏n
i=1 Γh(±2xi, ω1, ω2)

where the contour C can be closed on the ‘positive’ poles of the form µr + iω1 + iω2,

excluding the ‘negative’ poles, or viceversa. Equivalently C is a Barnes contour which

agrees with R. Then,

I(m)
n [~µ;ω1, ω2] =

2m+2n+4∏
s>r≥1

Γh[µr + µs;ω1, ω2]

 I(n)
m [

ω1 + ω2

2
− ~µ;ω1, ω2] (B.16)
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with the constraint ∑
r

µr = (m+ 1)(ω1 + ω2) . (B.17)

Notice that (B.16) provides an evaluation formula when m = 0. Gauge theory parameters

Nc and Nf enter with the following dictionary: Nc = n and Nf = (m + n + 2), thus

m = Nf−Nc−2. The background parameter b, which measures the squashing of the three-

sphere, enters through ω1 = ib and ω2 = i/b, thus ω1+ω2 = iQ. Finally Γh(x) = sb(
iQ
2 −x).

Summary. In the notation of [15], the equality ZTM = ZTM′ is obtained from (B.16) by

taking the limit

µi = mi + s, µ i+Nf = m̃i − s, s→∞, 1 ≤ i ≤ Nf (B.18)

Then [15] find other two results:

? Derive the monopole duality [section 8 of [15]], which we used in this paper,

U(Nc)⊕ Nflav. and W = M + ↔ N2
f ⊕ 1 singlets Mij ⊕ γ and W = γ detM

• Recover Aharony duality,

The corresponding integral identities can be deduced from (B.16) as follows,

? t→∞, mNf+1 =
ζ

2
+ t, m̃Nf+1 =

ζ

2
− t, (B.19)

constraint becomes

Nf∑
a=1

(ma + m̃a) + ζ = iQ(Nf −Nc) (B.20)

• t→∞,
mNf+2 =

ζ − λ
4
− t, m̃Nf+2 =

ζ − λ
4

+ t,

mNf+1 =
ζ + λ

4
+ t, m̃Nf+1 =

ζ + λ

4
− t,

(B.21)

constraint becomes

Nf∑
a=1

(ma + m̃a) + ζ = iQ(Nf −Nc + 1) (B.22)

In the next paragraphs we present some important details on contact terms involved in

these computation.

Details on (B.18). Starting from (B.16), it is trivial to substitute the m,n dependence

with gauge theory parameters Nc and Nf . The strategy of [15] is to rewrite the integrals as∫ ∞
−∞

dσf(σ) = 2

∫ ∞
−s

dxf(x+ s) (B.23)

and take the limit (B.18) on s with the asymptotics expansion of the sb,

lim
x→±∞

sb(x) = e±iπx
2/2 . (B.24)
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In terms of Nf , the vector ~µ has 2Nf component, and s enter with different signs, specified

in (B.18). Since the integration variables are also shifted by +s, it will happen that out of

the combinations, µr ± xi and ±xi ± xj , which appear in (B.15), some are invariant and

the others are shifted twice. For example

µi+Nf + xj → m̃i + xj µi − xj → mi − xj (B.25)

Instead ±2xi → ±2xi ± 2s.

Taking into account these shifts, and the asymptotics expansion (B.24), we find two

(different) prefactor in (B.16), one for the l.h.s. and one for r.h.s. These two prefactors

depend on mi, m̃j , the integration variables, and s. In particular there is a divergent part.

However, upon imposing the constraint, the dependence on the integration variables drops,

and the simplified prefactors cancels each other from r.h.s. to l.h.s. It follows that

ZTM = ZTM′ (B.26)

where

ZTM =
1

Nc!

∫ Nc∏
i=1

dxi

∏Nc
j=1

∏Nf
a=1 sb(

iQ
2 + xj −ma)sb(

iQ
2 − xj − m̃b)∏Nc

i<j sb(
iQ
2 ± (xi − xj))

(B.27)

and

ZTM′ =
1

(Nf −Nc − 2)!

Nf∏
a,b=1

sb

(
iQ

2
− (ma + m̃b)

)

×
∫ Nf−Nc−2∏

i=1

dxi

∏Nf−Nc−2
j=1

∏Nf
a=1 sb(xj +ma)sb(−xj + m̃b)∏Nf−Nc−2

i<j sb(
iQ
2 ± (xi − xj))

(B.28)

Details on (B.19). On the electric side, i.e. ZTM with Nf + 1 flavors, we consider the

following manipulations on the integrand: split the product over j = 1, . . . Nf + 1 into

1 ≤ j ≤ Nf and the last one, and take the limit (B.19),

sb

(
iQ

2
+xi−mNf+1

)
sb

(
iQ

2
− xi−m̃Nf+1

) Nf∏
j=1

sb

(
iQ

2
+xi−mj

)
sb

(
iQ

2
−xi−m̃j

)

→ eiπt(iQ−ζ)eiπ(ζ−iQ)xi

Nf∏
j=1

sb

(
iQ

2
+ xi −mj

)
sb

(
iQ

2
− xi − m̃j

)

The total prefactor will be
∏Nc
i=1 e

iπt(iQ−ζ)eiπ(ζ−iQ)xi . On the magnetic side, i.e. ZTM′ , the

same kind of manipulations lead to

Nf−Nc−1∏
i=1

sb
(
mNf+1 + xi

)
sb
(
m̃Nf+1 − xi

) Nf∏
j=1

sb (mj + xi) sb (m̃j − xi) (B.29)

×
Nf−Nc−1∏

i=1

eiπζ(t+xi)
Nf∏
j=1

sb (mj + xi) sb (m̃j − xi)
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Additionally, on the magnetic side the prefactors produce extra terms,∏Nf+1
a,b=1 sb

(
iQ
2 −ma−m̃b

)
∏Nf
a,b=1 sb

(
iQ
2 −ma−m̃b

) → sb

(
iQ

2
− η
) Nf∏
a=1

e
iπ
2

(ma−m̃a)(ma+m̃a+ζ−iQ)eiπt(iQ−ζ−ma−m̃a)

(B.30)

Comparing the divergences on the electric and magnetic side, we find that they are equal

and cancel out due to the constraint, i.e.

eiπNct(iQ−ζ) = eiπt
∑
a(iQ−ζ−ma−m̃a)eiπ(Nf−Nc−1)tζ (B.31)

We can finally re-introduce the notation

mi = µi −Mi m̃i = µi +Mi (B.32)

and get the relation used in the main text∫
dx(Nc)e+iπ(ζ−iQ)

∑Nc
a=1 xaZ(Nc)

vec Z̃(Nc,Nf )[− ~M, ~µ] (B.33)

= e−iπ
∑Nf
a=1 Ma(2µa+ζ−iQ)sb

(
iQ

2
− η
) Nf∏
a,b=1

sb

(
iQ

2
− µa − µb +Ma −Mb

)

×
∫
dx(Nf−Nc−1)e+iπζ

∑Nf
a=1 xaZ

(Nf−Nc−1)
vec Z̃(Nf−Nc−1,Nf )

[
~M,

iQ

2
− ~µ

]
where

Z̃(Nc,Nf )[ ~M, ~µ ] =

Nc∏
i=1

Nf∏
j=1

sb

(
iQ

2
− µj ± (x

(Nc)
i −Mj)

)
(B.34)

Details on (B.21). On the electric side, i.e. ZTM with Nf + 2 flavors, we single out the

two extra flavors and take the limit, thus producing

2∏
a=1

sb

(
iQ

2
+ xi −mNf+a

)
sb

(
iQ

2
− xi − m̃Nf+a

)

×
Nf∏
j=1

sb

(
iQ

2
+ xi −mj

)
sb

(
iQ

2
− xi − m̃j

)

→ eiπt(2iQ−ζ)eiπλxi
Nf∏
j=1

sb

(
iQ

2
+ xi −mj

)
sb

(
iQ

2
− xi − m̃j

)
(B.35)

Then, the total prefactor is
∏Nc
i=1 e

iπt(2iQ−ζ)eiπλxi . Similarly on the magnetic side,

Nf−Nc∏
i=1

2∏
a=1

sb
(
mNf+a + xi

)
sb
(
m̃Nf+a − xi

) Nf∏
j=1

sb (mj + xi) sb (m̃j − xi) (B.36)

×
Nf−Nc∏
i=1

eiπ(ζt+λxi)

Nf∏
j=1

sb (mj + xi) sb (m̃j − xi)
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and the extra prefactors,∏Nf+2
a,b=1 sb

(
iQ
2 −ma − m̃b

)
∏Nf
a,b=1 sb

(
iQ
2 −ma − m̃b

) (B.37)

→ e2iπt(iQ−ζ)sb

(
iQ− ζ ± λ

2

) Nf∏
a=1

e
iπ
2
λ(ma−m̃a)+iπ(2iQ−ζ−2ma−2m̃a)t

By using the constraint, the divercences cancel each other, i.e

eiπNct(2iQ−ζ) = eiπ(Nf−Nc)ζte2iπt(iQ−ζ)eiπ
∑
a(2iQ−ζ−2ma−2m̃a)t (B.38)

We can finally re-introduce the notation

mi = µi −Mi m̃i = µi +Mi (B.39)

The result is∫
dx(Nc)eiπλ

∑
a=1 x

(Nc)
i Z(Nc)

vec Z̃(Nc,Nf )[− ~M, ~µ] (B.40)

= sb

(
iQ− ζ ± λ

2

) Nf∏
a,b=1

sb

(
iQ

2
− µa − µb +Ma −Mb

)

×e−iπλ
∑Nf
a=1 Ma

∫
dx(Nf−Nc)eiπλ

∑
a=1 x

(Nf−Nc)
i Z

(Nf−Nc)
vec Z̃(Nf−Nc,Nf )

[
~M,

iQ

2
− ~µ

]

C Holomorphic blocks calculations for T and T ′

In this section we evaluate the holomorphic blocks for T and T ′ over the reference contours.

We first list the integrals obtained via factorisation of the S3
b partion function, which

is a consequence of the factorisation property of the double sine (B.2).

For theory T we have

ΥT = ET FT
[
z(1)
]− iξ

b
−β 1+N

2

(
tµiz
)
∞(µi

z

)
∞

(C.1)

where

FT =
(q)∞
(t)N∞

N+1∏
i>j

(
q
t
µi
µj

)
∞(

t µiµj

)
∞

(C.2)

is the contribution of the flipping fields and ET is a contact term. We have also introduced

the exponentiated variables µi = e2πbMi and q = e2πib2 , t = qβ .

On the dual side, for theory T ′ we have:

ΥT ′ = ET ′FT ′
N∏
a=1

a∏
i=1

[
z

(a)
i

]−iMa−Ma+1
b

−β
Btail

N∏
i=1

(
te2πbξ

z
(N)
i

)
∞(

e2πbξ

z
(N)
i

)
∞

(
t(1+N)/2

z
(N)
i

)
∞(

t(1−N)/2

z
(N)
i

)
∞

(C.3)
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with

Btail =
(q)

N(N+1)
2∞

(t)
N(N+1)

2∞

N∏
a=1

a∏
i=1

a∏
k=1&k 6=i

(
z

(a)
k

z
(a)
i

)
∞(

t
z

(a)
k

z
(a)
i

)
∞

N−1∏
a=1

a∏
i=1

a+1∏
j=1

(
t
z

(a+1)
j

z
(a)
i

)
∞(

z
(a+1)
j

z
(a)
i

)
∞

(C.4)

and

FT ′ =

(
qt−

N+1
2 e−2πbξ; q

)
∞(

t
1+N

2 e−2πbξ; q
)
∞

N−1∏
l=1

1

(tl+1)∞
. (C.5)

The factorization procedure gives rather complicated expressions for the contact terms

ET and ET ′ . However, all we need to check the spectral duality is the ratio of the contact

terms which is comparatively easy to write down:

ET ′
ET

= Re2πb(−iξ/bMN+1+(β(N+1)−1)ξ− 1
2
β
∑N+1
k=1 (2k−N−1)Mk+(2β−1)

∑N+1
k=1 (2k−N−2)Mk) (C.6)

where R = R(N, b, β) is a prefactor which we henceforth discard.

We would like to evaluate the block integrals, i.e. integrals of ΥT and ΥT ′ on the

reference contours, which for both theories we denote by Γα0 .

Let’s start with the theory T . We focus on the part of ΥT which does depend on the

integration variables and take as the reference contour Γα0 as the contour C1,0,...,0 encircling

the poles at z(1) = µ1q
k, k ∈ Z≥1. We find:

Iα0
T (~µ, ~τ , q, t) =

∮
C1,0,...,0

dz(1)

z(1)

(
z(1)
)− iξ

b
−βN+1

2
N+1∏
i=1

(
t µi
z(1) ; q

)
∞(

µi
z(1) ; q

)
∞

= Iα0
0,T (~µ, ~τ , q, t)Zα0

vort,T (~µ, ~τ , q, t) , (C.7)

where factored out the contribution of the first pole at z(1) = µ1:

Iα0
0,T (~µ, ξ, q, t) = Resz(1)=µ1

(
z(1)
)− iξ

b
−βN+1

2
−1

N+1∏
i=1

(
t µi
z(1) ; q

)
∞(

µi
z(1) ; q

)
∞

(C.8)

=
(t; q)∞
(q; q)∞

e−2πibM1ξ−πbβ(N+1)M1

N+1∏
i=2

(
t µiµ1

; q
)
∞(

µi
µ1

; q
)
∞

, (C.9)

and the vortex series

Zα0
vort,T (~µ, ξ, q, t) =

∑
k≥0

(
t
N+1

2 e2πbξ
)k N+1∏

i=1

(
qµ1

tµi
; q
)
k(

q µ1

µi
; q
)
k

. (C.10)

Taking into account also the contribution of the flipping fields FT we have:

Zα0
cl,T Z

α0
1−loop,T ≡ FT I

α0
0,T (~µ, ξ, q, t) . (C.11)
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For the dual theory we argue that the reference contour Γα0 is described iteratively as

a sequence of contours {C1,0, C1,1, C1,2, . . . , C1,N−1}:

Iα0
T ′ =

∮
C1,0

dz
(1)
1

∮
C1,1

d2z(2)

∮
C1,2

d3z(3) · · ·
∮
C1,N−1

dNz(N)
N∏
a=1

a∏
i=1

(
z

(a)
i

)−iMa−Ma+1
b

−β−1

×


N∏
a=2

a∏
i 6=j

(
z

(a)
i

z
(a)
j

; q

)
∞(

t
z

(a)
i

z
(a)
j

; q

)
∞



N−1∏
a=1

a∏
i=1

a+1∏
j=1

(
t
z

(a+1)
j

z
(a)
i

; q

)
∞(

z
(a+1)
j

z
(a)
i

; q

)
∞


×


N∏
i=1

(
t e

2πbξ

z
(N)
i

; q

)
∞(

e2πbξ

z
(N)
i

; q

)
∞

(
t

1+N
2

z
(N)
i

; q

)
∞(

t
1−N

2

z
(N)
i

; q

)
∞

 . (C.12)

The pole structure is complicated: at each “level” a of integration (a running from 1

to N) corresponding to the gauge group U(a) the poles split into two groups encoded

by to two Young diagrams (a)Y (1) and (a)Y (2). The first group consists of one variable

z
(a)
1 = e2πbξq

(a)Y
(1)
1 , while the second one has (a − 1) variables z

(a)
i = t

1−N
2 q

(a)Y
(2)
i−1ta−i,

i = 2, . . . , a. Similarly to the previous section we have the decomposition:

Iα0
T (~µ, ξ, q, t) = Iα0

0,T ′(~µ, ξ, q, t)Z
α0
vort,T ′(~µ, ξ, q, t) , (C.13)

with

Iα0
0,T ′(~µ, ξ, q, t) = Res

z
(a)
1 =e2πbξ

z
(a)
i =t

1−N
2 +a−i, i=2,...,a

{integrand}

= eπib
2β2N(N2−1)

6
+πbβ(N+1)M1+πbβ

∑N+1
a=1 (2a−3−N)Ma−2πiξ(M1−MN+1−ibβN)

×
N∏
i=1

(ti; q)∞
(t; q)∞

(
t
N+1

2 e−2πbξ; q
)
∞(

t
1−N

2 e−2πbξ; q
)
∞

. (C.14)

One can also write down the vortex series explicitly as a sum over a set of Young diagrams
(a)Y 1 and (a)Y 2, but it is probably easier and definitely more compact to notice that the

integral (C.12) can be obtained from that of T [SU(N+1)] theory given in eq. (2.16) of [25].

Indeed, if we set the T [SU(N + 1)] mass parameters τ
T [SU(N+1)]
1 = e2πbξ, τ

T [SU(N+1)]
a =

ta−2t
1−N

2 for a = 2, . . . , (N + 1) we obtain precisely the integral representation (C.12), and

even the contour of integration (the sequence C1,0, C1,1 etc.) is neatly matched. We thus
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have

Zα0
vort,T ′(~µ, ξ, q, t) =

∑
kai

N∏
a=1

(t µaµa+1

)∑a
i=1 k

(a)
i

a∏
i 6=j

(
t τiτj ; q

)
k

(a)
i −k

(a)
j(

τi
τj

; q
)
k

(a)
i −k

(a)
j

(C.15)

×
a∏
i=1

a+1∏
j=1

(
q
t
τi
τj

; q
)
k

(a)
i −k

(a+1)
j(

q τiτj ; q
)
k

(a)
i −k

(a+1)
j


τ1=e2πbξ,

τi=t
i−2t

1−N
2 , i≥2

where k
(a)
i satisfy

k
(1)
1 ≥ k

(2)
1 ≥ k

(3)
1 ≥ · · · ≥ k

(N)
1 ≥ 0

k
(2)
2 ≥ k

(3)
2 ≥ · · · ≥ k

(N)
2 ≥ 0

k
(3)
3 ≥ · · · ≥ k

(N)
3 ≥ 0

. . .
...

k
(N)
N ≥ 0

(C.16)

The integers k
(a)
i are of course just another way of writing the sequence of Young diagrams

(a)Y 1 and (a)Y 2. And as before we define:

Zα0
cl,T ′Z

α0
1−loop,T ′ = FT ′Iα0

0,T (~µ, ξ, q, t) . (C.17)

D Fiber-base invariance and Higgsing

In this appendix we check the equality of topological string partitions, for fiber-base dual

pairs, after Higgsing, and for the first nontrivial case of N = 2. We write down the first

terms of the vortex series and then expand the partition functions in a double expansion

in masses and FI parameters to check the equality (5.31) for the first few orders.

For the topological string on CY Y) we have following eqs. (5.28) and (C.10)

ZY1−loop,topZ
Y
vort,top =

(
q
t
µ2

µ3
; q
)
∞(

tµ2

µ3
; q
)
∞

(
q µ1

µ2
; q
)
∞(

tµ1

µ2
; q
)
∞

(
q µ1

µ3
; q
)
∞(

tµ1

µ3
; q
)
∞

(D.1)

×

1 + tN
τ1

τ2

(
1− q

t

) (
1− q

t
µ1

µ2

)(
1− q

t
µ1

µ3

)
(1− q)

(
1− q µ1

µ2

)(
1− q µ1

µ3

) +O

((
τ1

τ2

)2
) .

On the dual side we have (see eqs. (5.30) and (C.15))

ZY
′

1−loop,topZ
Y ′
vort,top =

(
q τ1τ2 ; q

)
∞(

t τ1τ2 ; q
)
∞

[
1 + t

µ1

µ2

(
1− q

t

) (
1− q

t
τ1
τ2

)
(1− q)

(
1− q τ1τ2

) + t
µ2

µ3

(
1− q

t2

)
(1− q)

+ t2
µ1

µ3

(
1− q

t

) (
1− q

t2

) (
1− τ1

tτ2

)
(1− q)2

(
1− τ1

τ2

) +O

((
µa
µa+1

)2
)]

(D.2)
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Expanding eqs. (D.1) and (D.2) to first order in τ1
τ2

, µ1

µ2
and µ2

µ3
we get

ZY1−loop,topZ
Y
vort,top = 1 +

µ1(t+ 1)τ1

(
q2t− q2 + q − t2

)
(q − t)2

µ3(q − 1)3t2τ2

+
µ1τ1

(
q2t− q2 + q − t2

)
(q − t)

µ2(q − 1)2tτ2
+
µ2τ1

(
q − t2

)
(q − t)

µ3(q − 1)2tτ2

+
µ2

(
q − t2

)
µ3(q − 1)t

+
µ1(t+ 1)(q − t)2

µ3(q − 1)2t
+
µ1(q − t)
µ2(q − 1)

+
τ1(q − t)
(q − 1)τ2

+O

((
µa
µa+1

)2

,

(
τ1

τ2

)2
)

= ZY
′

1−loop,topZ
Y ′
vort,top. (D.3)

The equality (5.31) can be checked to higher orders quite easily on a computer and turns

out to be valid.
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