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Abstract: In factor analysis, factor contributions of latent variables are assessed conventionally by the
sums of the squared factor loadings related to the variables. First, the present paper considers issues
in the conventional method. Second, an alternative entropy-based approach for measuring factor
contributions is proposed. The method measures the contribution of the common factor vector to the
manifest variable vector and decomposes it into contributions of factors. A numerical example is also
provided to demonstrate the present approach.
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1. Introduction

Factor analysis is a statistical method for extracting simple structures to explain inter-relations
between manifest and latent variables. The origin dates back to the works of [1], and the single factor
model was extended to the multiple factor model [2]. These days, factor analysis is widely applied in
behavioral sciences [3]; hence, it is important to interpret the extracted factors and is critical to explain
how such factors influence manifest variables, that is, measurement of factor contribution. Let Xi be
manifest variables; ξ j latent variables (common factors); εi unique factors related to Xi; and let λij be
factor loadings that are weights of factors ξ j to explain Xi. Then, the factor analysis model is given
as follows:

Xi = ∑ m
j=1 λijξ j + εi, i = 1, 2, . . . , p, (1)

where
E(Xi) = E

(
ξ j
)
= E(εi) = 0, var

(
ξ j
)
=1, cov

(
ξ j, εi

)
= 0,

cov(εi, εk) = 0 for i 6= k and var(εi ) = σ2
i > 0

For the simplicity of discussion, common factors ξ j are assumed to be mutually independent in this
section, that is, we first consider an orthogonal factor analysis model. In the conventional approach,
the contribution of factor ξ j to all manifest variables Xi, Cj, is defined as follows:

Cj = ∑ p
i=1 cov

(
Xi, ξ j

)2
= ∑ p

i=1λ2
ij (2)

The above definition of factor contributions is based on the following decomposition of the total of
variances of the observed variables Xi [4] (p. 59):

∑ p
i=1 var(Xi) = ∑ m

j=1 ∑ p
i=1λ2

ij + ∑ p
i=1σ2

i
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What physical meaning does the above quantity have? Applying it to the manifest variables observed,
however, such a decomposition leads to scale-variant results. For this reason, factor contribution
is usually considered on the standardized versions of manifest variables Xi. What does it mean to
measure factor contributions by (2)? For standardized manifest variables Xi, we have

λij = cor
(
Xi, ξ j

)
(3)

Then, (2) is the sum of the coefficients of determination for all standardized manifest variables Xi with
respect to a single latent variable ξ j. The squared correlation coefficients (3), that is, cor

(
Xi, ξ j

)2, are the
ratios of explained variances of a manifest variable Xi, and in this sense, they can be interpreted as
the contributions (effects) of factors ξ j to the manifest variable Xi. Although, what does the sum of
these with respect to all manifest variables Xi, that is, (2), mean? The conventional method may be
intuitively reasonable for measuring factor contributions; however, we think it is sensible to propose
a method measuring factor contributions as the effects of factors on the manifest variable vector
X =

(
X1, X2, . . . , Xp

)
, which are interpretable and have a theoretical basis. There is no research on this

topic as far as we have searched. The present paper provides an entropy-based solution to the problem.
Entropy is a useful concept to measure the uncertainty in the systems of random variables and sample
spaces [5] and it can be applied to measure multivariate dependences of random variables [6,7].

This paper proposes an entropy-based method for measuring factor contributions of ξ j to the
manifest variable vector X =

(
X1, X2, . . . , Xp

)
concerned, which can treat not only orthogonal factors,

but also oblique cases. The present paper has five sections in addition to this section. In Section 2,
the conventional method for measuring factor contributions is reviewed. Section 3 considers the
factor analysis model in view of entropy and makes a preliminary discussion on measurement of
factor contribution. In Section 4, an entropy-based path analysis is applied as a tool to measure factor
contributions. Contributions of factors ξ j are defined by the total effects of the factors on the manifest
variable vector, and the contributions are decomposed into those to manifest variables and subsets
of manifest variables. Section 5 illustrates the present method using a numerical example. Finally,
in Section 6, some conclusions are provided.

2. Relative Factor Contributions in the Conventional Method

In the conventional approach, for the orthogonal factor model (1), the contribution ratio of ξ j is
defined by

RC j =
Cj

∑m
l=1 Cl

=
∑

p
i=1λ2

ij.

∑m
l=1 ∑

p
k=1 λ2

kl
(4)

The above measure is referred to as the factor contribution ratio in the common factor space. Let Ri
be the multiple correlation coefficient of latent variable vector ξ = (ξ1, ξ2, . . . , ξm)

T and manifest
variable Xi. Then, for standardized manifest variable Xi, we have

R2
i = ∑ m

j=1 λ2
ij (5)

The above quantity can be interpreted as the effect (explanatory power) of latent variable vector
ξ =

(
ξ j
)

on manifest variable Xi; however, the denominator of (4) is the sum of those effects (5) and
there is no theoretical basis to interpret it. Another contribution ratio of ξ j is referred to as that in the
whole space of X = (Xi), and is defined by

R̃C j =
Cj

∑
p
i=1var(Xi)

=
∑

p
k=1 λ2

kj

∑
p
k=1

(
∑m

l=1 λ2
kl + σ2

k
) (6)

If the manifest variables are standardized, we have
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R̃C j =
Cj

p
=

∑
p
k=1 λ2

kj

p

Here, there is an issue similar to (4), because the denominator in (6) does not express the variation
of the manifest variable vector X = (Xi). Indeed, it is the sum of the variances of manifest variables
and does not include covariances between them. In the next section, the factor analysis model (1) is
reconsidered in the framework of generalized linear models (GLMs), and the effects (contributions) of
latent variables ξ j on the manifest variable vector X = (Xi), that is, factor contributions, are discussed
through entropy [8].

3. Factor Analysis Model and Entropy

It is assumed that factors εi and ξ j are normally distributed, and the factor analysis model (1)
is reconsidered in the GLM framework. Let Λ =

(
λij
)

be a p × m factor loading matrix; let Φ be
an m× m correlation matrix of common factor vector ξ = (ξ1, ξ2, . . . , ξm)

T ; and let Ω be the p× p
variance-covariance matrix of unique factor vector ε =

(
ε1, ε2, . . . , εp

)T . The conditional density
function of X given ξ, f (x|ξ), is normal with mean Λξ and variance matrix Ω, and is given as follows:

f (x|ξ ) =
1

(2π)
p
2 |Ω|

1
2

exp

(
XTΩ̃Λξ − 1

2 ξTΛTΩ̃2Λξ

|Ω| −
1
2 XTΩ̃X
|Ω|

)

where Ω̃ is the cofactor matrix of Ω. Let f (x) and g(ξ) be the marginal density functions of X and ξ,
respectively. Then, a basic predictive power measure for GLMs [9] is based on the Kullback–Leibler
information [6], and applying it to the above model, we have

KL(X, ξ ) =
x

f (x|ξ)g(ξ) log
f (x|ξ)
f (x)

dxdξ +
x

f (x)g(ξ) log
f (x)

f (x|ξ)dxdξ =
trΩ̃ΛΦΛT

|Ω| (7)

The above measure was derived from a discussion on log odds ratios in GLMs [9], and is scale-invariant
with respect to manifest variables Xi. The numerator of (7) is the explained entropy of X by ξ, and the
denominator is the dispersion of the unique factors in entropy, that is, the generalized variance of
ε =

(
ε1, ε2, . . . , εp

)T . Thus, (7) expresses the total effect (contribution) of factor vector ξ =
(
ξ j
)

on
manifest variable vector X = (Xi) in entropy, and is denoted by C(ξ → X) in the present paper.
The entropy coefficient of determination (ECD) is calculated as follows [9]:

ECD(X, ξ ) =
trΩ̃ΛΦΛT

trΩ̃ΛΦΛT + |Ω|
(8)

The denominator of the above measure is interpreted as the variation of manifest variable vector
X = (Xi) in entropy and the numerator is the explained variation of random vector X in entropy.
In this sense, ECD (8) is the factor contribution ratio of ξ =

(
ξ j
)

for the whole entropy space of
X = (Xi), and it expresses the standardized total effect of ξ = (ξ1, ξ2, . . . , ξm)

T on the manifest variable
vector X =

(
X1, X2, . . . , Xp

)T , which is denoted by eT(ξ → X) [8,10]. As for (6), in the present paper,
the ECD is denoted by R̃C(ξ → X), that is, the relative contribution of factor vector ξ for the whole
space of manifest variable vector X in entropy.

Remark 1. Let Σ be the p × p variance-covariance matrix of manifest variable vector X =(
X1, X2, . . . , Xp

)T and let Φ be the m×m correlation matrix of ξ. Then, we have

Σ = ΛΦΛT + Ω (9)
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For assessing the goodness-of-fit of the models, the following overall coefficient of determination
(OCD) is suggested ([11], p. 60) on the basis of (9):

OCD(X, ξ ) = 1− |Ω||Σ|

(
=
|Σ| − |Ω|
|Σ|

)

Determinant |Ω| is the generalized variance of unique factor vector ε =
(
ε1, ε2, . . . , εp

)T and |Σ|
is that of manifest variable vector X =

(
X1, X2, . . . , Xp

)T . Then, OCD is interpreted as the ratio of

the explained generalized variance of manifest variable vector X =
(
X1, X2, . . . , Xp

)T by common
factor vector ξ = (ξ1, ξ2, . . . , ξm)

T in the p-dimensional Euclidian space. On the other hand, from (8),
it follows that

ECD(X, ξ ) = 1− |Ω|
trΩ̃ΛΦΛT + |Ω|

Hence, ECD is viewed as the ratio of the explained variation of the manifest variable vector in entropy.

Cofactor matrix Ω̃ is diagonal and the (i, i) elements are ∏
k 6=i

σ2
k , i = 1, 2, . . . , p. If common factors

are statistically independent, it follows that

trΩ̃ΛΦΛT = ∑
p
i=1 ∏

k 6=i
σ2

k ∑ m
j=1λ2

ij

= ∑
p
i=1 ∑ m

j=1λ2
ij ∏

k 6=i
σ2

k

Thus, (7) is decomposed as

KL(X, ξ ) = ∑ p
i=1 ∑ m

j=1

λ2
ij

σ2
i

As detailed below, in the present paper, the contribution of factor ξ j to X, C
(
ξ j → X

)
, is defined by

C
(
ξ j → X

)
= ∑ p

i=1

λ2
ij

σ2
i

(10)

Remark 2. The above contribution is different from the conventional definition of factor
contribution (2); unless σ2

i = 1, i = 1, 2, . . . , p. In this sense, we may say that the standardization of
manifest variables in entropy is obtained by setting all the unique factor variances to one.

In the next section, the contributions (effects) of factors ξ j to manifest variable vector X are
discussed in a general framework through an entropy-based path analysis [8].

4. Measurement of Factor Contribution Based on Entropy

A path diagram for the factor analysis model is given in Figure 1, in which the single-headed
arrows imply the directions of effects of factors and the double-headed curved arrows indicate the
associations between the related variables. In this section, common factors are assumed to be correlated,
that is, we consider an oblique case, and an entropy-based path analysis [8] is applied to make a general
discussion in the measurement of factor contributions.
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Figure 1. Path diagram for factor analysis model (1) (m = 2).

Theorem 1. In the factor analysis model (1),

KL(X, ξ ) = ∑ p
i=1KL(Xi, ξ)

Proof. Let fi( xi|ξ) be the conditional density functions of manifest variables Xi, given factor vector
ξ; let fi(xi) be the marginal density functions of Xi; let f (x) be the marginal density function of X;
and let g(ξ) be the marginal density function of common factor vector ξ. As the manifest variables are
conditionally independent, given factor vector ξ, the conditional density function of X is

f (x|ξ ) = ∏ p
i=1 fi( xi|ξ)

From (7), we have

KL(X, ξ ) =
x

∏ p
i=1 fi( xi|ξ)g(ξ) log

∏
p
k=1 fk( xk|ξ)

f (x)
dxdξ +

x
f (x)g(ξ) log

f (x)
∏

p
k=1 fk( xk|ξ)

dxdξ

=
s (

∏
p
i=1 fi( xi|ξ)g(ξ)− f (x)g(ξ)

)
log ∏

p
k=1 fk( xk|ξ)dxdξ

=
s

∏
p
i=1 fi( xi|ξ)g(ξ) log ∏

p
k=1 fk( xk |ξ)

∏
p
k=1 fk(xk)

dxdξ

+
s

f (x) g(ξ) log ∏
p
k=1 fk(xk)

∏
p
k=1 fk( xk |ξ)

dxdξ

= ∑
p
k=1

s
∏

p
i=1 fi( xi|ξ)g(ξ) log fk( xk |ξ)

fk(xk)
dxdξ + ∑

p
k=1

s
f (x)g(ξ) log fk(xk)

fk( xk |ξ)
dxdξ

= ∑
p
k=1

s
fk( xk|ξ)g(ξ) log fk( xk |ξ)

fk(xk)
dxkdξ

+ ∑
p
k=1

s
fk(xk)g(ξ) log fk(xk)

fk( xk |ξ)
dxkdξ

= ∑ p
i=1

(x
fi( xi|ξ)g(ξ) log

fi( xi|ξ)
fi(xi)

dxidξ +
x

fi(xi)g(ξ) log
fi(xi)

fi( xi|ξ)
dxidξ

)
= ∑ p

i=1KL(Xi, ξ)

�

In model (1) with correlation matrix Φ =
(

ϕij
)
, we have

KL(Xi, ξ ) =
∑m

k=1 ∑m
l=1 λik ϕklλil

σ2
i

The above quantity is referred to as the contribution of ξ to Xi, and is denoted as C(ξ → Xi). Let Ri be
the multiple correlation coefficient of Xi and ξ =

(
ξ j
)
. Then,
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C(ξ → Xi ) =
R2

i
1− R2

i
(= KL(Xi, ξ)) (11)

From Theorem 1, we then have

C(ξ → X ) = ∑ p
i=1

R2
i

1− R2
i
(= KL(X, ξ)) (12)

Hence, Theorem 1 gives the following decomposition of the contribution of ξ on X into those on the
single manifest variables Xi (11):

C(ξ → X ) = ∑ p
i=1C(ξ → Xi) (13)

Remark 3. Notice that in the denominator of (4), the total contribution of all factors ξi is simply defined
as the total sum assessed:

∑ m
l=1 Cl = ∑ p

i=1R2
i

On the other hand, in the present approach, the total effect (contribution) of factor vector ξ on manifest
variable vector X is decomposed into those of manifest variables Xi, (12) and (13).

Let Xsub be any sub-vector of manifest variable vector X =
(
X1, X2, . . . , Xp

)T. Then, the contribution
of factor vector ξ to Xsub is defined by

C(ξ → Xsub ) = KL(Xsub, ξ)

From Theorem 1, we have the following corollary.

Corollary 1. Let X(1) =
(

Xi1 , Xi2 , . . . , Xiq

)T
and X(2) =

(
Xj1 , Xj2 , . . . , Xjp−q

)T
be a decomposition of

manifest variable vector X =
(
X1, X2, . . . , Xp

)T , where q < p. Then, for factor analysis model (1), it follows that

C(ξ → X) = C
(

ξ → X(1)

)
+ C

(
ξ → X(2)

)
C
(

ξ → X(1)

)
= ∑

q
k=1 C

(
ξ → Xik

)
, C

(
ξ → X(2)

)
= ∑

p−q
k=1 C

(
ξ → Xjk

)
Proof: From a similar discussion to the proof of Theorem 1, we have

KL(X, ξ) = KL
(

X(1), ξ
)
+ KL

(
X(2), ξ

)
KL
(

X(1) , ξ
)
= ∑

q
k=1 KL

(
Xik , ξ

)
, KL

(
X(2), ξ

)
= ∑

p−q
k=1 KL

(
Xjk , ξ

)
Hence, the corollary follows.

Next, the standardized total effects of single factors ξ j on manifest variable vector X, that is,

eT
(
ξ j → X

)
, are calculated [8,10]. Let ξ/j =

(
ξ1, ξ2, . . . , ξ j−1, ξ j+1, . . . , ξm

)T ; f
(

x, ξ/j
∣∣∣ξ j

)
be the

conditional density function of X and ξ/j given ξ j; f
(
x
∣∣ξ j
)

be the conditional density function of X

given ξ j; g
(

ξ/j
∣∣∣ξ j

)
be the conditional density function of ξ/jgiven ξ j; and gj

(
ξ j
)

be the marginal
density function of ξ j. Then, we have

KL
(

X, ξ/j
∣∣∣ξ j

)
=

s
f (x, ξ) log

f (x,ξ/j|ξ j)
f (x|ξ j )g(ξ/j|ξ j)

dxdξ/jdξ j

+
s

f
(
x
∣∣ξ j
)

g
(

ξ/j
∣∣∣ξ j

)
gj
(
ξ j
)

log
f (x|ξ j )g(ξ/j|ξ j)

f (x,ξ/j|ξ j)
dxdξ/jdξ j =

trΩ̃Λcov(ξ,X|ξ j)
|Ω|
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where cov
(
ξ, X

∣∣ξ j
)

is a m× p covariance matrix given ξ j, of which the (k, i) elements are cov
(
ξk, Xi

∣∣ξ j
)
.

The standardized total effect eT
(
ξ j → X

)
is given by

eT
(
ξ j → X

)
=

KL(X, ξ)−KL
(

X, ξ/j
∣∣∣ξ j

)
KL(X, ξ) + 1

=
trΩ̃Λ

(
cov(ξ, X)− cov

(
ξ, X

∣∣ξ j
))

trΩ̃Λcov(ξ, X) + |Ω|

The standardized total effect eT
(
ξ j → X

)
[8] is interpreted as the contribution ratio of factor ξ j in the

whole entropy space of X, and in the present paper, it is denoted by R̃C
(
ξ j → X

)
. The contribution of

factor ξ j measured in entropy is defined by

C
(
ξ j → X

)
= KL(X, ξ)−KL

(
X, ξ/j

∣∣∣ξ j

)
=

trΩ̃Λcov(ξ, X)

|Ω| −
trΩ̃Λcov

(
ξ, X

∣∣ξ j
)

|Ω|

As for (6), the relative contribution of factor ξ j on X is given by

RC
(
ξ j → X

)
=

R̃C
(
ξ j → X

)
R̃C(ξ → X)

=
C
(
ξ j → X

)
C(ξ → X)

Concerning factor contributions of ξ j on the single manifest variables Xi, that is, C
(
ξ j → Xi

)
,

the following theorem can be stated.

Theorem 2. In the factor analysis model (1),

C
(
ξ j → X

)
= ∑ p

i=1C
(
ξ j → Xi

)
Proof: From Theorem 1, it follows that

KL
(

X, ξ/j
∣∣∣ξ j

)
= ∑ p

i=1KL
(

Xi, ξ/j
∣∣∣ξ j

)
Then, we have

C
(
ξ j → Xi

)
= KL(Xi, ξ)−KL

(
Xi, ξ/j

∣∣∣ξ j

)
and,

C
(
ξ j → X

)
= KL(X, ξ)−KL

(
X, ξ/j

∣∣∣ξ j

)
= ∑

p
i=1KL(Xi, ξ)−∑

p
i=1KL

(
Xi, ξ/j

∣∣∣ξ j

)
= ∑

p
i=1

(
KL(Xi, ξ)−KL

(
Xi, ξ/j

∣∣∣ξ j

))
= ∑

p
i=1C

(
ξ j → Xi

)
From the above theorem, we have the following corollary.

Corollary 2. Let X(1) =
(

Xi1 , Xi2 , . . . , Xiq

)T
and X(2) =

(
Xj1 , Xj2 , . . . , Xjp−q

)T
be decomposition of manifest

variable vector X =
(
X1, X2, . . . , Xp

)T , where q < p.

C
(
ξ j → X

)
= C

(
ξ j → X(1)

)
+ C

(
ξ j → X(2)

)
C
(

ξ j → X(1)

)
= ∑

q
k=1 C

(
ξ j → Xik

)
, C

(
ξ j → X(2)

)
= ∑

p−q
k=1 C

(
ξ j → Xjk

)
Proof: From a similar discussion in the proof of Theorem 2, the corollary follows. �

Remark 4. Let Xsub be any sub-vector of manifest variable vector X =
(
X1, X2, . . . , Xp

)T .
By substituting X for Xsub in the above discussion, C(ξ → Xsub), C

(
ξ j → Xsub

)
, R̃C

(
ξ j → Xsub

)
,

and RC
(
ξ j → Xsub

)
can be defined.
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For orthogonal factor analysis models, the following theorem holds true.

Theorem 3. In factor analysis model (1), if common factors ξ j are statistically independent, then

C(ξ → X ) = ∑ m
j=1 ∑ p

i=1C
(
ξ j → Xi

)
.

Proof: From model (1), we have

C
(
ξ j → Xi

)
= KL(Xi, ξ)−KL

(
Xi, ξ/j

∣∣∣ξ j

)
=

λ2
ij

σ2
i

This completes the theorem. �

From the above discussion, if common factors ξ j are statistically independent, (10) is derived.
Moreover, we have

R̃C
(
ξ j → X

)
=

KL(X, ξ)−KL
(

X, ξ/j
∣∣∣ξ j

)
KL(X, ξ) + 1

=
∑

p
i=1

λ2
ij

σ2
j

KL(X, ξ) + 1

This measure is the relative contribution ratio of ξ j for the variation of X in entropy. The relative
contributions of ξ j on X in entropy are calculated as follows:

RC
(
ξ j → X

)
=

C
(
ξ j → X

)
C(ξ → X)

=
∑

p
i=1

λ2
ij

σ2
i

∑ m
j=1 ∑

p
i=1

λ2
ij

σ2
i

Remark 5. It is difficult to use OCD for assessing factor contributions, because |Σ| cannot be
decomposed as in the above discussion.

5. Numerical Example

In order to illustrate the present method, we use the data shown in Table 1 [12]. In this table,
manifest variables X1, X2, and X3 are subjects in liberal arts and variables X4 and X5 are those in
sciences. First, orthogonal factor analysis (varimax method by S-PLUS ver. 8.2) is applied to the data
and the results are illustrated in Table 2. From the estimated factor loadings, the first factor is interpreted
as an ability relating to liberal arts, and the second factor as that for sciences. According to the factor
contributions C

(
ξ j → X

)
shown in Table 3, the contribution of factor ξ2 is about twice as big than that

of factor ξ1 from a view point of entropy, and from the relative contributions R̃C
(
ξ j → X

)
, about 30% of

variation of manifest variable vector X in entropy is explained by factor ξ1 and about 60% by factor ξ2.
The relative contribution R̃C(ξ → X) in Table 3 implies about 90% of the entropy of manifest variable
vector X is explained by the two factors. On the other hand, in the conventional method, the measured
factor contributions of ξ1 and ξ2, that is, Cj, are almost equal (Table 4). As discussed in the present paper,
the conventional method is intuitive and does not have any logical foundation for multidimensionally
measuring contributions of factors to manifest variable vectors. Table 5 decomposes “the contribution
of ξ to X” into components C

(
ξ j → Xi

)
. The contribution of ξ2 to X5 is prominent compared with the

other contributions.
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Table 1. Data for illustrating factor analysis.

Subject Japanese X1 English X2 Social X3 Mathematics X4 Science X5

1 64 65 83 69 70
2 54 56 53 40 32
3 80 68 75 74 84
4 71 65 40 41 68
5 63 61 60 56 80
6 47 62 33 57 87
7 42 53 50 38 23
8 54 17 46 58 58
9 57 48 59 26 17
10 54 72 58 55 30
11 67 82 52 50 44
12 71 82 54 67 28
13 53 67 74 75 53
14 90 96 63 87 100
15 71 69 74 76 42
16 61 100 92 53 58
17 61 69 48 63 71
18 87 84 64 65 53
19 77 75 78 37 44
20 57 27 41 54 30

Table 2. Factor loadings of orthogonal factor analysis (χ2 = 0.55, d f = 1, P = 0.45).

X1 X2 X3 X4 X5

ξ1 0.60 0.75 0.65 0.32 0.00
ξ2 0.39 0.24 0.00 0.59 0.92

uniqueness 0.50 0.38 0.58 0.55 0.16

Table 3. Factor contributions based on entropy (orthogonal case).

ξ1 ξ2 Total

C
(

ξ j → X
)

3.11 6.23 9.34 = C(ξ → X)

R̃C
(

ξ j → X
)

0.30 0.60 0.90 = R̃C(ξ → X)

RC
(

ξ j → X
)

0.33 0.67 1

Table 4. Factor contributions with the conventional method.

ξ1 ξ2 Total

Cj 1.44 1.39 2.83
R̃Cj 0.29 0.28 0.57
RCj 0.51 0.49 1

Table 5. Decomposition of factor contribution C(ξ → X) into C
(

ξ j → Xi

)
.

X1 X2 X3 X4 X5 Total = C
(

ξj → X
)

ξ1 0.72 1.49 0.72 0.19 0.00 3.11
ξ2 0.30 0.15 0 0.63 5.14 6.23

total = C(ξ → Xi) 1.01 1.64 0.72 0.82 5.14 9.34

From the discussion in the previous section, the contributions of factors are flexibly calculated.
For example, it is reasonable to divide the manifest variable vector into X(1) = (X1, X2, X3) and
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X(2) = (X4, X5), because the first sub-vector is related to the liberal arts and the second one to the
sciences. First, the contributions of ξ1 and ξ2 to X(1) are calculated according to the present method,
and the details are given as follows:

C
(

ξ1 → X(1)

)
= C(ξ1 → X1) + C(ξ1 → X2) + C(ξ1 → X3) = 0.72 + 1.49 + 0.72 = 2.93

C
(

ξ2 → X(1)

)
= 0.30 + 0.15 + 0.00 = 0.45

C
(

ξ → X(1)

)
= C

(
ξ1 → X(1)

)
+ C

(
ξ2 → X(1)

)
= 2.93 + 0.45 = 3.38

R̃C
(

ξ → X(1)

)
=

C(ξ→X(1))
C(ξ→X(1))+1

= 3.38
3.38+1 = 0.77

(14)

R̃C
(

ξ1 → X(1)

)
=

C
(

ξ1 → X(1)

)
C
(

ξ → X(1)

)
+ 1

=
2.93

3.38 + 1
= 0.67 (15)

R̃C
(

ξ2 → X(1)

)
=

0.45
3.38 + 1

= 0.10 (16)

RC
(

ξ1 → X(1)

)
=

C
(

ξ1 → X(1)

)
C
(

ξ → X(1)

) =
2.93

2.93 + 0.45
= 0.87 (17)

RC
(

ξ2 → X(1)

)
=

0.45
2.93 + 0.45

= 0.13 (18)

From (14), 77% of the entropy of manifest variable sub-vector X(1) are explained by the two factors,
in which 67% of that are explained by factor ξ1 (15) and 10% by factor ξ2 (16). From the relative
contributions (17) and (18), 87% of the total contribution of the two factors are made by factor ξ1 and
13% by factor ξ2.

On the other hand, the contributions of ξ1 and ξ2 on X(2) = (X4, X5) are calculated as follows:

C
(

ξ1 → X(2)

)
= C(ξ2 → X4) + C(ξ2 → X5) = 0.19 + 0.00 = 0.19

C
(

ξ2 → X(2)

)
= 0.63 + 5.14 = 5.77

C
(

ξ → X(2)

)
= C

(
ξ1 → X(2)

)
+ C

(
ξ2 → X(2)

)
= 0.19 + 5.77 = 5.96

R̃C
(

ξ → X(2)

)
=

C(ξ→X(2))
C(ξ→X(2))+1

= 5.96
5.96+1 = 0.86

(19)

R̃C
(

ξ1 → X(2)

)
=

C
(

ξ1 → X(2)

)
C
(

ξ → X(2)

)
+ 1

=
0.19

5.96 + 1
= 0.03 (20)

R̃C
(

ξ2 → X(2)

)
=

5.77
5.96 + 1

= 0.83 (21)

RC
(

ξ1 → X(2)

)
=

C
(

ξ1 → X(2)

)
C
(

ξ → X(2)

) =
0.19
5.96

= 0.03 (22)

RC
(

ξ2 → X(2)

)
=

5.77
5.96

= 0.97 (23)

From (19), 86% of entropy of manifest variable sub-vector X(2) is explained by the two factors, in which
3% of the entropy are explained by factor ξ1 (20) and 83% by factor ξ2 (21). The contribution ratios of
the factors to sub-vector X(2) are calculated in (22) and (23). Ninety-seven percent of the entropy was
made by factor ξ2.
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Second, factor contributions in an oblique case are calculated. The estimated factor loadings
and the correlation matrix of factors based on the covarimin method are shown in Tables 6 and 7,
respectively. Based on factor loadings in Table 6, factor ξ1 is interpreted as an ability for subjects
in the liberal arts and factor ξ2 as an ability for subjects in sciences. The results are similar to those
in the orthogonal case mentioned above, because the correlation between the factors is not strong.
Table 8 shows the decomposition of C(ξ → X) based on Theorems 1 and 2. In this case, it is noted
that C(ξ → X) 6= C(ξ1 → X) + C(ξ2 → X); however, C(ξ → X) = ∑5

i=1 C(ξ → Xi). According to the
table, the contributions of ξ1 and ξ2 to sub-vectors of manifest variable vector X can also be calculated
as in the above orthogonal factor analysis. Table 9 illustrates the contributions of factors on manifest
variable vector X. Factor ξ1 explains 42% of the entropy of X and factor ξ2 explains 71%.

Table 6. Factor loadings of oblique factor analysis (χ2 = 0.55, d f = 1, P = 0.45).

X1 X2 X3 X4 X5

ξ1 0.59 0.77 0.68 0.29 0
ξ2 0.24 0.00 −0.12 0.52 0.92

uniqueness 0.50 0.41 0.58 0.55 0.16

Table 7. Correlation matrix of factors.

ξ1 ξ2

ξ1 1 0.315
ξ2 0.315 1

Table 8. Decomposition of factor contribution C(ξ → X) into C
(

ξ j → Xi

)
(oblique case).

X1 X2 X3 X4 X5 Total = C
(

ξj → X
)

ξ1 0.90 1.44 0.70 0.37 0.54 3.95
ξ2 0.37 0.14 0.01 0.68 5.43 6.65

C(ξ → Xi) 1.01 1.44 0.73 0.82 5.43 C(ξ → X) = 9.43

Table 9. Factor contributions based on entropy (oblique case).

ξ1 ξ2 Effect of ξ on X

C
(

ξ j → X
)

3.95 6.65 C(ξ → X) = 9.43

R̃C
(

ξ j → X
)

0.38 0.64 R̃C(ξ → X) = 0.90

RC
(

ξ j → X
)

0.42 0.71

6. Discussion

For orthogonal factor analysis models, the conventional method measures factor contributions
(effects) by the sums (totals) of squared factor loadings related to the factors (2); however, there is no
logical foundation for how they can be interpreted. It is reasonable to measure factor contributions
as the effects of factors on the manifest variable vector concerned. The present paper has proposed a
method of measuring factor contributions through entropy, that is, applying an entropy-based path
analysis approach. The method measures the contribution of factor vector ξ to manifest variable vector
X and decomposes it into those of factors ξ j to manifest variables Xi and/or those to sub-vectors of X.
Comparing (2) and (10), for standardization of unique factor variances σ2

i = 1, the present method
equals to the conventional method. As discussed in this paper, the present method can be employed
in oblique factor analysis as well, and it has been illustrated in a numerical example. The present
method has a theoretical basis for measuring factor contributions in a framework of entropy, and it is a
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novel approach for factor analysis. The present paper confines itself to the usual factor analysis model.
A more complicated model with a mixture of normal factor analysis models [13] is excluded, and a
further study is needed to apply the entropy-based method to the model.
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