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Abstract: In the last decade, significant progress has been made in estimating Solar-Induced
chlorophyll Fluorescence (SIF) by passive remote sensing techniques that exploit the oxygen
absorption spectral regions. Although the O2–B and the deep O2–A absorption bands present
a high sensitivity to detect SIF, these regions are also largely influenced by atmospheric effects.
Therefore, an accurate Atmospheric Correction (AC) process is required to measure SIF from oxygen
bands. In this regard, the suitability of a two-step approach, i.e., first an AC and second a Spectral
Fitting technique to disentangle SIF from reflected light, has been evaluated. One of the advantages of
the two-step approach resides in the derived intermediate products provided prior to SIF estimation,
such as surface apparent reflectance. Results suggest that errors introduced in the AC, e.g., related to
the characterization of aerosol optical properties, are propagated into systematic residual errors
in the apparent reflectance. However, of interest is that these errors can be easily detected in the
oxygen bands thanks to the high spectral resolution required to measure SIF. To illustrate this,
the predictive power of the apparent reflectance spectra to detect and correct inaccuracies in the
aerosols characterization is assessed by using a simulated database with SCOPE and MODTRAN
radiative transfer models. In 75% of cases, the aerosol optical thickness, the Angstrom coefficient
and the scattering asymmetry factor are corrected with a relative error below of 0.5%, 8% and 3%,
respectively. To conclude with, and in view of future SIF monitoring satellite missions such as FLEX,
the analysis of the apparent reflectance can entail a valuable quality indicator to detect and correct
errors in the AC prior to the SIF estimation.

Keywords: solar-induced chlorophyll fluorescence; atmospheric correction; oxygen bands;
apparent reflectance; spectral fitting method; FLEX

1. Introduction

Remote sensing measurement of Solar-Induced chlorophyll Fluorescence (SIF) provides a new
optical mean to track plant photosynthesis and gross primary productivity (GPP) of terrestrial
ecosystems [1]. SIF consists of photons of red and near infra-red light (650–850 nm) that are emitted
by chlorophyll foliar pigments in response to absorption of photosynthetically active radiation. At a
satellite level, the SIF signal is around two orders of magnitude lower than the reflected radiance,
which makes its detection by remote sensing instruments challenging. However, SIF emission can
still be detected by exploiting the fact that SIF is a proportionally larger fraction of the total radiance
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within dark lines and bands of the atmospheric spectrum [2]. These dark features include both solar
Fraunhofer and telluric absorption regions such as the O2–B and the O2–A bands. Taking advantage
of this fact, multiple SIF retrieval strategies have been developed in the last decade [3]. For instance,
some SIF retrieval strategies exploit the Fraunhofer solar lines, which are generally weak and narrow
but not as influenced by atmospheric effects as the oxygen bands [2,4–8]. Other SIF retrieval strategies
use the O2–A absorption band, which is deeper and wider but is more affected by the atmospheric
effects [9–18]. Some other strategies exploit both, the O2–A and some Fraunhofer lines in the retrieval
scheme [19,20], and recently, the O2–γ band has also been used in combination with some solar
Fraunhofer lines to anchor the O2–B band and to provide additional information on red SIF [21].

At global scale, first SIF maps were retrieved by the exploitation of the Fraunhofer lines from
atmospheric chemistry satellite missions (e.g., [2,4–8,20]). However, since these missions were not
designed for vegetation monitoring, SIF was detected with a coarse spatial resolution e.g., ∼10 km
for GOSAT-2 and 2.25 km for OCO-2. Conversely, the future ESA’s Fluorescence Explorer (FLEX)
mission [22], specifically designed to monitor the health status of terrestrial vegetation, is dedicated to
retrieve the full SIF signal from 650–800 nm at a spatial resolution of 300 m. FLEX will particularly
exploit the information at the oxygen absorption bands by measuring these regions at a very high
spectral resolution, i.e., 0.1 nm of Spectral Sampling Interval (SSI) and 0.3 nm of Spectral Resolution
(SR). See Appendix A for more details about the FLuORescence Imaging Spectrometer (FLORIS) on
board FLEX.

Although measurements in the O2–B and the deep O2–A absorption bands possess the maximum
sensitivity to detect SIF [22], these bands are also highly affected by atmospheric effects, especially by
multiple scattering of aerosols and molecules [23]. SIF at satellite level is about 1–2 orders of magnitude
(depending on the spectral region) lower than the reflected radiance, which implies that any inaccuracy
in the Atmospheric Correction (AC) can rapidly make SIF estimation prone to errors [3]. Thus, given the
importance of the AC as a prior step to the application of any SIF retrieval method, e.g., Spectral
Fitting (SF) [24], it is important to analyse how errors and assumptions on AC modify the inverted
apparent reflectance. Consequently, this paper begins with evaluating the mathematical formulation
of the FLEX data processing scheme [22], from the Atmospheric Inversion (AI) and to its coupling with
the at-surface level SF method. In the following, the spectral distortions on the apparent reflectance
caused by an inaccurate estimation of aerosol optical properties are also evaluated and analysed using
simulated data from the Soil Canopy Observation Photochemistry and Energy (SCOPE) [25] and
the MODerate resolution atmospheric TRANsmission (MODTRAN) [26] radiative transfer models.
As a result, this work proposes the use of the apparent reflectance as quality indicator to refine
the AC. Notice that while AC, atmospheric correction, includes the atmospheric characterization and
the mathematical inversion from Top-Of-Atmosphere (TOA) radiance to surface reflectance, AI,
atmospheric inversion, refers only to this last step.

The paper is structured as follows: Section 2 introduces and assesses the impact of the
mathematical assumptions considered in the FLEX AI, as well the steps to couple SF fluorescence
retrieval with inverted Top-of-Canopy (TOC) apparent reflectance. Section 3 analyses the errors in
the apparent reflectance caused by an inaccurate AC process, essentially by an inaccurate aerosol
characterization. Additionally, the predictive power of the apparent reflectance to detect and correct the
retrieved aerosols optical properties from the AC is also evaluated. Section 4 discusses the suitability of
the mathematical approximations assumed in the AI, highlights the limitations of the presented study
and subsequently proposes future in-depth analyses to establish the use of the apparent reflectance as
an indicator of inconsistencies in the AC. Finally, Section 5 provides the main conclusions.
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2. The AI Process: From TOA Radiance to SIF through the Apparent Reflectance Inversion

2.1. Assessment of Mathematical Approximations

The radiance reaching the sensor at satellite level can be simplified as the contribution of three
different fluxes (Figure 1) [27]:

1. The scattered light from the atmosphere or path radiance (thick dashed-dotted line).
2. The reflected light from the observed target which is transmitted to the sensor (solid line).
3. The light coming from multiple reflections between the surface and the atmosphere, not

necessarily produced at the observed target, but finally reaching the sensor (thin dashed line).

T T

E

S

T

L
0

TOA

TOC

T

Solar

irradiance

Figure 1. Contribution of distinct fluxes acquired at satellite level assuming a Lambertian surface
reflectance behaviour. The thick black area at the Top-of-Canopy (TOC) level represents the observed
target.

Assuming a Lambertian surface reflectance ρ, the radiance reaching the sensor (Lsen) can
consequently be formulated as the following (Equation (1)):

Lsen = L0 +
E
π
· T↑ · ρ +

E
π
· S · T↑ · ρ2 +

E
π
· S2 · T↑ · ρ3 + ..., (1)

where L0 is the path radiance (scattered light from the atmosphere), E is the total solar irradiance
reaching the surface, T↑ is the total upward transmittance and S is the atmospheric spherical albedo,
which accounts for the reflections occurred from the atmosphere to the surface. Likewise, E can be
understood as the contribution of the solar irradiance diffusely transmitted to the surface (Edi f ) and
the solar irradiance directly transmitted to the surface (Edir), corrected by the solar zenith angle (θ):

E = Edir · cos(θ) + Edi f . (2)

Equation (1) is mathematically known as a geometrical series expression, which converges into
Equation (3):

Lsen = L0 +
E · ρ · T↑

π(1− S · ρ) . (3)

Furthermore, in the particular case of vegetation, the SIF emission (F in the formulation for
brevity) can be included in Equation (3) as an additional source of energy. Since SIF is orders of
magnitude lower than the TOA radiance reaching the sensor, it can be physically considered as a small
perturbation of Equation (3):

Lsen = L0 +
( E

π · ρ + F·)T↑

(1− S · ρ) = L0 +
E · ρappT↑

π(1− S · ρ) , (4)
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where ρapp is the so-called apparent reflectance defined as Equation (5), which accounts for the
reflectance and the SIF emission normalized by the solar irradiance at surface level (Figure 2):

ρapp = ρ +
π · F

E
. (5)

680 700 720 740 760

Wavelength [nm]

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 [
-]

0

0.5

1

1.5

2

2.5

S
IF

 [
m

W
/m

2
/s

r/
n
m

]

app
@HR

app

760 765

Wavelength [nm]

0.45

0.5

 [
-]

0

1

2

S
IF

  
  
  
  
  
 

[m
W

/m
2
/s

r/
n
m

]O
2
-A

687 688

Wavelength [nm]

0.14

0.145

0.15

0.155

 [
-]

0

1

2

S
IF

  
  
  
  
  
 

[m
W

/m
2
/s

r/
n
m

]O
2
-B

O
2
-A

O
2
-B

Figure 2. Reference reflectance (ρ), fluorescence (F), and apparent reflectance (ρapp) spectra marked
as black dashed line, red solid line and black solid line, respectively. High resolution (HR) ρapp,
at 0.1 cm−1, is also shown as a thin grey solid line. The MODerate resolution atmospheric
TRANsmission (MODTRAN) inputs parameters used in the simulation and values used for the spectral
convolution are detailed in Appendix B. Reflectance and Solar-Induced Chlorophyll FLuorescence (SIF)
spectra are mean reference values defined in an internal FLEX technical note [28].

However, the impossibility of retrieving the reflectance (ρ) and the apparent reflectance (ρapp)
terms simultaneously from Equation (4) should be noted. To overcome this limitation, FLEX AI
assumes that S · ρ ≈ S · ρapp, which leads to the following Equation (6):

Lsen = L0 +
E · ρappT↑

π(1− S · ρapp)
. (6)

Thus, assuming the atmospheric transfer functions (L0, S, E and T↑) as known, it becomes
now possible to invert the apparent reflectance from the radiance acquired by a sensor, Lsen.
This approximation, however, comes with an associated error, which is illustrated in Figure 3a,b.
Here, the relative difference on TOA radiance (%) between using Equations (4) and (6) is evaluated for
the reference fluorescence and reflectance spectra used in Figure 2 and various atmospheric conditions
(low to high aerosol load). As it is demonstrated, the impact of this approximation on TOA radiance
is one order of magnitude lower than the impact caused by an increase of 10% in the SIF emission.
The selection of such a threshold for comparison, 10% of the emitted SIF, follows the criteria defined
by the FLEX mission [22].
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Figure 3. Relative difference on Top-Of-Atmosphere (TOA) radiance (%) between Equations (4) and
(6) for a range of aerosol loads in the O2–B (a) and the O2–A (b) spectral regions, i.e. 100 · (Lsen(Eq.4) −
Lsen(Eq.6))/Lsen(Eq.6). Relative difference on TOA radiance (%) between using the series expansion
(2nd or 3rd order) and the TOA radiance expression (Equation (6)) in the O2–B (c) and the O2–A (d)
spectral regions, i.e. 100 · (Lsen(2nd ,3rd) − Lsen(Eq.6))/Lsen(Eq.6). MODTRAN inputs parameters used in
the simulation and values used for the spectral convolution are detailed in Appendix B.

An additional factor to consider is that the radiance acquired by an instrument, Lsen, is spatially
and spectrally convolved by its instrumental response function. Consequently, the isolation of ρapp term
from Equation (6) would imply the convolution of each atmospheric transfer function independently,
which would derive a wrong apparent reflectance estimation:

ρapp 6=
Lsen − 〈L0〉

〈 E·T↑
π 〉+ (Lsen − 〈L0〉)〈S〉

. (7)

This inequality exists because the convolution of the product of two given functions is not
mathematically equivalent to the product of these functions convolved, i.e., 〈a · b〉 6= 〈a〉 · 〈b〉. This fact
becomes especially relevant when working with non-smooth functions, such as the atmospheric
transfer functions within the absorption regions and at high spectral resolution. In order to derive
ρapp and thereby avoid errors associated with the convolution of each individual atmospheric transfer
function, we can take the original series expansion in Equation (8). As such, the high spectral resolution
atmospheric transfer functions provided by a radiative transfer model (e.g., MODTRAN [26], 6S [29])
can now be multiplied and then convolved with the corresponding Instrument Spectral Response
Function (ISRF):

Lsen = 〈L0〉+ 〈
E
π
· T↑〉 · ρapp + 〈

E
π
· S · T↑〉 · ρ2

app + 〈
E
π
· S2 · T↑〉 · ρ3

app + . . . (8)

Hence, it is necessary to evaluate until which order the series expansion in Equation (8) must be
taken so that the errors in the inverted apparent reflectance are below a required threshold. In this
case, the threshold has been defined as the relative difference in ρapp caused by increasing the SIF
emission 10% of its value. Figure 3c,d evaluates the relative difference (%) on TOA radiance between
taking the series expansion expression (Equation (8)) until the 2nd and 3rd order and its convergence
(Equation (6)) in the O2–B and the O2–A regions, respectively. As can be observed, the error derived
from the 2nd order approximation is one order of magnitude lower than the impact caused by the
defined threshold. Consequently, FLEX AI inverts ρapp by resolving a second order equation:
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ρapp(atm) =
−〈E · T↑〉+

√
〈E · T↑〉2 − 4〈E · T↑ · S〉π(〈L0〉 − Lsen)

2〈E · T↑ · S〉
. (9)

Note that the suffix (atm) in Equation (9) distinguishes between the apparent reflectance obtained
from an AI process, ρapp(atm), and from the definition presented in Equation (5), ρapp.

2.2. Coupling Spectral Fitting and Apparent Reflectance

In order to couple consistently the AI with the SF, it is necessary to understand the difference
between ρapp (introduced in Equation (4)) and ρapp(atm) (after the AI from Equation (8)) [30]. Even in
the ideal case of a perfectly characterized atmosphere, the mathematical approximations presented in
Section 2.1 introduce discrepancies between these two apparent reflectance expressions (see Figure 4).
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Figure 4. Apparent reflectance ρapp (black) computed as ρ + πF/E, and apparent reflectance ρapp(atm)

(red) from an atmospheric inversion process where all the atmospheric parameters are perfectly known
for the O2–B (a) and O2–A (b) spectral regions. HR ρapp, at 0.1 cm−1, is also shown as a thin grey
solid line. MODTRAN inputs parameters used in the simulation and the values used for the spectral
convolution are detailed in Appendix B.

SF methods such as [17,24] are generally based on the minimization between: (1) the sensor
acquired radiance, measured at surface level; and (2) the simulated radiance, built from Ltoc =

Eρ
π + F

with parametric expressions for ρ and F. However, in the case of airborne or satellite scale, radiance at
surface level comes from an AI procedure. Thus, in order to couple consistently AI with SF,
two alternatives can be considered (Figure 5):

• Option 1: To perform the SF method at TOA level, thereby minimizing the difference between the
radiance acquired by the spaceborne instrument and the simulated radiance using Equation (4).

• Option 2: To perform the SF method at TOC level, thereby minimizing the difference between
the atmospherically corrected radiance (or apparent reflectance) and the simulated radiance (or
apparent reflectance) accounting for the AI procedure.

Note that in Figure 5 the inconsistent coupling process is also described and labelled as
Wrong Option 2. In this case, the discrepancy between the simulated, ρapp, and the inverted,
ρapp(atm), shown in Figure 4 would therefore lead to an inconsistent minimization process, and hence
to an erroneous SIF estimation.
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Figure 5. Processing scheme detailing the two possible consistent options described to couple
Atmospheric Correction (AC) and Spectral Fitting (SF) methods: (Option 1) at TOA, and (Option 2) at
the TOC level. In Option 2, the suffix sen and sim on ρapp(atm)sen

and ρapp(atm)sim
indicates if radiance in

the AI, Lsen(sim), is measured by the sensor or simulated according to Equation (4). Additionally, the
inconsistent coupling process is also described at the TOC level (Wrong Option 2).

Here, we focussed on analysing and assessing the coupling process performed at TOC. While
both options are valid (Option 1 and Option 2), coupling at TOC implies the retrieval of the ρapp(atm) as
an intermediate product, which has the additional advantage that it can be used as a quality indicator
of the atmospheric correction process (see Section 3.2). Therefore, we evaluated the impact of coupling
consistently (Option 2) and inconsistently (Wrong Option 2, from Figure 5) the AI process and the SF
method into the retrieved SIF in the O2–A absorption region. This evaluation was conducted in different
wavelength intervals labelled as R1, R2, R3 and R4 corresponding to (759.3–765) nm, (759.3–768) nm,
(759.3–770) nm and (759.3–772) nm, according to [24]. In addition, a range of atmospheric aerosol load
was simulated to test its influence under both coupling processes. Surface reflectance and SIF spectra,
ρ and F, were modelled as quadratic functions. The first guess of the ρ polynomial coefficients was
estimated by fitting the ρapp with a quadratic function in the spectral region around the O2–A but
avoiding the absorption band. The first guess of the F polynomial coefficients was estimated by fitting
the reference F spectrum to a quadratic function.

Figure 6 shows the relative error between the retrieved and the reference SIF spectrum evaluated
at the bottom of the O2–A absorption band for:

• An inconsistent coupling process, i.e., modelling ρapp at TOC as ρapp = ρ + π·F
E . The inconsistent

coupling causes a large relative error between the retrieved and the reference SIF values for all of
the minimization wavelength intervals considered (R1–R4). In addition, a slight dependency on
the Aerosol Optical Thickness (AOT) can also be observed.

• A consistent coupling between AI and SF as introduced in Figure 5 (Option 2). In this case, all of
the SIF retrieved values (i.e., for the different AOT) are overlapping, meaning that when the
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atmospheric state is perfectly known , the retrieved SIF is completely independent from the AOT
value. Consequently, the accuracy of the SF minimization process only depends on the wavelength
interval considered.

Figure 6. Relative error (εr) between retrieved and reference SIF values at the bottom of the O2–A
absorption band, 760.7 nm, covering different values of AOT at 550 nm and wavelength intervals
(R1–R4) for an inconsistent coupling process (a) and a consistent coupling process (b). The following
error statistics are provided: median (horizontal red line), 25th and 75th percentiles (blue boxes) and
extreme min/max values (black dashed lines).

Note that in both cases atmospheric transfer functions were assumed as known. Thus, the larger
error derived in the inconsistent coupling case is mainly caused by the different ρapp and ρapp(atm)

definitions. Consequently, because of the different definitions used, estimated SIF strongly depends
on AOT only in the inconsistent coupling process. Conversely, in both coupling strategies, residual
relative errors appear according to the wavelength interval defined.

3. Apparent Reflectance Error Analysis and Its Predictive Power

3.1. Spectral Error Analysis on Apparent Reflectance

This section analyses the spectral distortions in ρapp(atm) caused by an inaccurate AC,
fundamentally due to errors in the estimation of aerosol optical properties. We emphasized the aerosols’
optical properties since aerosol characterization can be considered as one of the main sources of
uncertainty when retrieving SIF from space [13]. However, it must be noted that distortions in ρapp(atm)

can also be caused by other factors such as: an inaccurate instrumental spectral characterization [31],
instrumental radiometric calibration errors or an inaccurate surface pressure estimation. While the
characterization of other key atmospheric parameters such as the Water Vapour (WV) or the ozone
(O3) are also crucial in any AC algorithm [32–34], their radiometric effect can be neglected in the
O2 absorption regions, whereas the aerosol radiometric effect cannot. Thus, we studied the spectral
distortions derived from an inaccurate estimation of:

• the AOT, which is directly related to the total aerosol load in a vertical atmospheric column,
becoming a greater aerosol load the higher the AOT value.

• the Angstrom exponent (α) [35], which accounts for the AOT spectral variation and is associated
with the aerosol size, becoming a higher (α) exponent with a smaller aerosol size.

• the asymmetry parameter (g) of the Henyey–Greenstein (HG) scattering phase function [36],
which indicates the anisotropy of the scattering pattern, this parameter being limited to [−1, 1].
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The g parameter takes the value −1 and 1 for a full backward and forward scattering respectively,
while taking the value 0 for an isotropic scattering pattern.

These three possible causes of distortions are evaluated over three different surfaces types
(see Figure 7): (a) a bare soil, (b) a mixture of vegetation and bare soil and (c) a dense vegetation.
We selected this variety of spectra to ascertain if errors derived from the AC produced a systematic
error in the surface apparent reflectance, ρapp(atm), regardless of the nature and shape of the
underlying surface.
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Figure 7. (a) bare soil, (b) mixed bare soil and vegetation, and (c) vegetation surface reflectance and
fluorescence spectra simulated with the version 1.53 of SCOPE model. The corresponding biophysical
parameters of Leaf Area Index (LAI) and Chlorophyll (Chl) content used in the simulations are detailed
in Appendix C.

This section thus performs an assessment of how an erroneous estimation of aerosol optical
properties leads to spectral distortion on the ρapp(atm). In particular, we want to quantify (a) how the
spectral distortion pattern depends on the evaluated aerosol optical variable, and more specifically,
(b) if these distortions can be totally disentangled from the underlying surface reflectance and SIF
emission. To account for that, TOA radiance spectra were simulated following Equation (4) using the
three surface reflectance and SIF emission spectra from Figure 7, and assuming a reference atmospheric
state defined by AOT = 0.16, α = 1.39 and g = 0.75. Afterwards, by using Equation (9), the AI was
performed by overestimating and underestimating the AOT, the α and the g values used as a reference
in the simulation. In Figures 8 and 9, the over-/under-estimation is represented as a percentage of the
initial values on the y-axis, while the differences in ρapp(atm) are shown in a color scale. Main findings
for the O2–B region are summarized as follows:

• The over-/under-estimation of the AOT causes an under-/over-estimation of ρapp(atm) in SIF
emitting surfaces, i.e., partially-mixed or dense vegetation, while the opposite effect is observed in
non-SIF emitting surfaces, i.e., bare soil.

• Errors in the the Angstrom parameter (α) hardly lead to errors in ρapp(atm). However, the spectral
distortion appears to be driven by the underlying surface reflectance, the spectral distortions
being more abrupt for the bare soil and the mixed vegetation and bare soil than in a full
vegetation spectrum.

• The asymmetry parameter (g) of the HG scattering phase function is clearly the driving parameter
that causes the strongest distortion in the ρapp(atm). Additionally, the spectral distortions mostly
follow a similar spectral pattern regardless of the surface reflectance spectra.
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Figure 8. Apparent reflectance spectral distortion caused by an over-/under-estimation of the AOT,
α and g aerosol optical properties for three different surfaces at the O2–B absorption band at FLORIS
spectral resolution. The dashed horizontal black line over the g parameter figures delimits the area
where the ρapp spectral distortions have been computed by extrapolating g values higher than 1.

The main findings for the O2–A region are summarized as follows (see Figure 9):

• Spectral distortions in the O2–A caused by each aerosol optical property follow a similar
distortion pattern regardless of the surface reflectance and the fluorescence emission. Due to
the deepest absorption in the O2–A band, this region seems spectrally more sensitive to aerosol
over-/under-estimation.

• Although distortions on ρapp(atm) produced by changes in the AOT and g, which are the driving
parameters, are approximately on the same order of magnitude, the spectral distortion pattern is
slightly different.

• As in the O2–B region, the over-/under-estimation of the α parameter produces a weaker spectral
distortion than those produced by the AOT and the g parameters.

Note that the spectral distortion patterns observed in both O2 regions are the result of: (1) the
specific shape of the reflectance and the fluorescence emission spectra, and (2) the distortions in the
atmospheric transfer functions.
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Figure 9. Apparent reflectance spectral distortion caused by an over-/under-estimation of the Aerosol
Optical Thickness (AOT), α and g aerosol optical properties for three different surfaces at the O2–A
absorption band for the FLORIS spectral resolution. The dashed horizontal black line over the g
parameter figures delimits the area, where the ρapp spectral distortions have been computed by
extrapolating g values higher than 1.

3.2. Spectral Distortions in the Apparent Reflectance as Quality Indicator of the Atmospheric Correction

In Section 3.1, we demonstrated that errors in the retrieved aerosol optical properties lead to
specific spectral distortions in the ρapp(atm). In this section, we explore the idea of using the retrieved
ρapp(atm) spectra to infer errors in the aerosol optical properties, i.e., ∆AOT, ∆α and ∆g. In this way,
for a given known instrumental response, ρapp(atm) could be used to refine the characterization of
atmospheric parameters. As a proof of concept, a database (DB) containing a set of simulated TOA
radiance spectra was created using MODTRAN and SCOPE. At the surface level, five reflectance and
SIF spectra were used (three of them shown in Figure 7 and two additional spectra between the mixed
vegetation and bare soil cases (b) and (c)). The corresponding LAI and Chl of the five spectra selected
are detailed in Appendix C. For the atmospheric transfer functions simulations, we covered all possible
combinations of reference values of the atmospheric parameters AOT = 0.16, α = [1.39, 1.54, 1.74],
g = [0.75, 0.8], WV = [1.2, 2.4] g/cm2 and surface elevation h = [100, 1500] m, assuming the viewing and
illumination geometric conditions detailed in Appendix B. The motivation of these reference values is
as follows:

• to select a medium AOT value to evaluate the aerosols effect but avoiding extreme cases [37];
• to range variations around the α and g values of 1.54 and 0.8, respectively, which corresponds to

typical values found for continental aerosol types [38];
• to simulate the effect of the surface pressure by including two different altitudes;
• to determine if the different WV content impacts the predictive power of the ρapp(atm) on the O2–B

absorption region.
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For each TOA radiance spectra, the surface apparent reflectance was atmospherically inverted
by over-/under-estimating the corresponding reference values of AOT, α and g by a factor of 0%,
±5%, ±15%, ±25% and ±50% (all possible combinations). Accordingly, the DB comprised a collection
of more than ∼8·104 wrongly corrected ρ′app(atm) spectra and its corresponding wrongly estimated
values of AOT′, α′ and g′. As an extra parameter, the Normalized Difference Vegetation Index (NDVI’)
was also computed from ρ′app and stored in the DB. The NDVI’ values were included to add an extra
source of information related to the surface reflectance spectral shape out of the oxygen absorption
regions. Therefore, following the multivariate linear regression formulation, Y = MX, the used input
values (X) were: ρ′app, AOT′, α′, g′, and the NDVI’ index. The output values (Y) were the ∆AOT, ∆α

and ∆g, i.e., the over-/under-estimation of each aerosol parameter in percentage [%]. In order to
accelerate the regression process, the spectral DB dimensionality was reduced by means of applying
a Principal Component Analysis (PCA) technique, taking the first 50 components. Then, 30% of the
DB was randomly selected to train, i.e., to obtain the multivariate linear regression coefficient matrix
M = (X> · X)−1 · X> · Y. Afterwards, the remaining 70% of the DB was used to test the retrieved
outputs ( ̂∆AOT, ∆̂α and ∆̂g) versus their reference counterparts (∆AOT, ∆α and ∆g). For clarification,
all steps concerning the DB simulation, regression training and testing are summarized in Figure 10.
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Figure 10. Database (DB) generation process: TOA radiance simulation (1st) and atmospheric
correction process (2nd). DB multivariate linear regression training (3rd) and validation (4th) processes.
Grey-shaded boxes correspond to the multivariate linear regression inputs.
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Regarding the predictive power of the ρapp to correct the estimation of the aerosols
optical properties retrieval, Figure 11 summarizes the results obtained for the O2–B and the O2–A
absorption bands.

Figure 11. (upper row) Scatter plots for the retrieved ( ̂∆AOT, ∆̂α, and ∆̂g) versus the reference
(∆AOT, ∆α and ∆g) parameters. (bottom row) Histograms showing the difference between the
retrieved and the reference parameters, i.e., ̂∆AOT − ∆AOT, ∆̂α− ∆α, and ∆̂g− ∆g.

For both oxygen regions, the applied method reduces in 75% of the validation cases the errors
below 0.5%, 8% and 3% for aerosol parameters AOT, α and g, respectively. As expected, and in
agreement with the results in Section 3.1, the predictions of the ∆̂α coefficient are much less sensitive
than predictions of the ̂∆AOT and the ∆̂g parameters. In addition, results suggest that the linear
regression predicts the over-/under-estimation of the aerosol optical properties precise enough despite
including different input values of WV and surface pressure. However, to quantify this effect, we
computed the same statistics as showed in Figure 11, but only considering one WV and surface
pressure value in the DB (not shown). As expected, obtained results were in 75% of the validation
cases slightly better than in the full DB case, deriving relative errors below 0.2%, 6% and 2% for aerosol
parameters AOT, α and g, respectively.

4. Discussion

This section discusses the most important messages derived from this work in the context
of current remote sensing fluorescence retrieval strategies. Limitations identified and proposed
improvements for futures studies are also addressed.

4.1. Suitability of the Mathematical Approximations Assumed in the FLEX AI

Over the last few years, various SIF retrieval strategies have been developed based on the
exploitation of different spectral regions, the solar Fraunhofer lines [2,4–8] or the telluric oxygen
absorption bands [9–18]. Alternatively, remote sensing SIF retrieval strategies can also be categorized
according to those which retrieve SIF directly from TOA level, e.g., [2,4,5], or those which retrieve
SIF from TOC after the AC of the signal, e.g., [9,10,17,18]. The latter are the so-called two-step
approximations and involve: (1) performing the AC, and (2) coupling an SF method to estimate SIF at
surface level. Two-step approaches have been used in the past to estimate SIF from airborne data [39,40],
and also a two-step strategy has been proposed in the context of the forthcoming FLEX/Sentinel-3
tandem mission [17,22]. Although there are many advantages about the use of this approximation,



Remote Sens. 2017, 9, 622 14 of 20

e.g., the derivation of the ρapp(atm) as an intermediate product to be analysed (discussed in Section 4.2),
it requires an accurate AI procedure.

To start with, when it comes to inverting non-smooth high spectral resolution functions, such as
the atmospheric transfer functions with their characteristic absorption regions, an important aspect
implies dealing with the convolution to the sensor instrumental spectral response function. On the
one hand, all the assumptions considered for the AI procedure of the FLEX mission were evaluated.
Although in general terms it follows the classical full physics atmospheric inversion procedures [32–34],
FLEX AI introduces two main approximations: (1) considering S · ρ ≈ S · ρapp , and (2) using the
second order series expansion. Assuming both, the independent convolution of each of the atmospheric
transfer functions is avoided, which would otherwise rapidly derive into errors in the estimated SIF.
Results suggest that the impact of these two approximations is at least one order of magnitude lower
than the impact on TOA radiance caused by varying 10% of the SIF signal. This implies that FLEX AI
formulation becomes suitable for fluorescence retrieval.

On the other hand, at the surface level, apparent reflectance (ρapp) must be disentangled from
emitted SIF and reflectance. As it was earlier noted by Verhoef et al. [30], ρapp = ρ + π·F

E and ρapp(atm)

from the AI are substantially different, particularly in the absorption regions. This bears consequences
to the SF method. In essence, SF strategies are based on minimizing the difference between simulated
and measured spectra to decouple ρ and SIF. In the case of spaceborne or even airborne scale, measured
data at the surface level is always derived from an AI procedure. Thus, in order to consistently couple
the atmospherically inverted and the simulated signal; the formulation used should be consistent
in both processes. Conversely, if a different formulation was used in the simulation and in the AI,
then the SF method would minimize the differences between two inconsistently defined spectra.
As demonstrated in Section 2.2, this would lead to errors depending on the atmospheric transfer
functions, i.e., depending on the atmospheric state.

To close this section, we should remark that reported error values are estimated under the
assumption of a Lambertian surface without considering instrument noise. Evaluating the formulation
under ideal conditions allows any other source of uncertainty to be discarded. Therefore, the errors
identified here must be understood as an error baseline, intrinsic to the AI and to the coupling processes.

4.2. Apparent Reflectance Spectral Distortion Analysis and Exploitation

An initial analysis was designed to evaluate the apparent reflectance spectral distortions produced
in the oxygen regions by over-/under-estimating three different aerosol optical properties. The selected
varying aerosol optical properties were the AOT, the Angstrom exponent (α) and the asymmetry
parameter of the HG scattering phase function (g), related to the aerosol load, aerosol size, and aerosol
scattering anisotropy. Among them, the AOT and the g are the driving aerosol optical parameters,
as they have a higher impact on the spectral distortions of the surface apparent reflectance (ρapp(atm)).
These results are in agreement with the aerosol sensitivity analyses performed in [41,42].

From this analysis, it was found that the spectral distortions produced by each evaluated aerosol
property differ not only in magnitude but also in the spectral shape. This suggests that spectral
distortions in the ρapp could be used to refine the estimation of atmospheric parameters in the
AC process.

Therefore, we investigated the possibility of using the apparent reflectance to detect inaccuracies
in the AC. A simple exercise was performed as a proof of concept, creating a DB of erroneously
corrected ρ′app(atm). Using a simple multivariate linear regression algorithm, 30% of the DB was used
for training and the remaining 70% of the DB was used for validation. Results suggest that the driving
aerosol optical properties, i.e., AOT and g, can be predicted with an error below 0.5% (for the AOT)
and 3% (for g) for 75% of the cases. Despite the low sensitivity to the Angstrom exponent, the proposed
method can still reduce its errors below 8% for 75% of the cases. However, some limitations are worth
noting. Although these results support the hypothesis that the retrieval of aerosol optical properties
from an inaccurate AC could be refined due to the distinct spectral pattern produced, the study should
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be extended to a more complex DB in a future work. Regarding expected improvements related
to atmospheric simulations, they should not be limited to the spectral distortions produced by the
AOT, α and g aerosol properties, but should be extended to other aerosol parameters such as the
aerosol vertical distribution or the single scattering albedo. In the particular case of the aerosol vertical
distribution, its radiometric effect on TOA radiance will strongly depend on the mathematical function
assumed to model the vertical distribution, e.g., Gaussian [13] or exponential [42]. Thus, a more
extensive aerosol sensitivity analysis would be beneficial to identify the driving aerosol parameters
to be included in a future DB simulation, i.e., to identify those parameters that highly distort the
TOA radiance at the oxygen regions under realistic scenarios. With respect to how other atmospheric
parameters affect the DB training statistics, e.g., WV or surface pressure, this will strongly depend on
the range of the values covered. While the used DB included two different WV and surface pressure
(surface height) values, in a new DB design, a wider range and a larger number of grid-points values
should be incorporated. Also regarding the surface level, not only simulated but real surface reflectance
and SIF spectra should be considered. Additionally, cases where each reflectance spectrum is associated
to a range of SIF spectra should also be incorporated. At the same time, more efforts are required
to study the impact of an inaccurate ISRF characterization on the predictive power of ρapp, as well
as other instrumental effects, such as radiometric noises, residual polarisation effects, or stray-light
contamination. In the particular case of the FLEX mission, a polarization scramble will be located in
front of the telescope to cover the full pupil. Thus, while the remaining polarisation effects are expected
to be within 1% of the threshold limit established by the FLEX mission [22], other effects such as
stray-light contamination can deserve more attention when the observed image presents bright objects.
In this respect, to make the apparent reflectance exploitation a solid strategy to improve the accuracy of
the atmospheric correction process, future work should also consider the spectral distortions generated
by each of these instrumental effects. In addition, this study assumed a Lambertian surface reflectance
to create the simulated DB. Future work should therefore consider using a non-Lambertian surface
reflectance. A more extensive analysis should also ascertain the most suitable regression algorithm to
avoid local minima or divergent solutions. In addition, with respect to the use of a dimensionality
reduction technique, it is necessary to determine which is the best method and the optimal number of
components to be considered that keep the key spectral features intact.

As a final remark, the regression algorithm was trained and validated here for the O2–A and O2–B
bands separately. In the future, the refinement of the atmospheric correction by using both regions
simultaneously to disentangle atmospheric distortions should also be investigated. For instance, while
spectral changes in the scattering phase function are typically smooth, others such as the stray-light
contamination will probably become stronger in the O2–A band than in the O2–B due to its dependency
on the radiance spectral contrast.

To the best of our knowledge, the use of the apparent reflectance is proposed here for the first time
as a quality indicator. Although this opens up possibilities to implement the quality check into the
processing of the FLEX/Sentinel-3 tandem mission, it requires a more in-depth inspection. Therefore,
follow-up analyses are foreseen by using the FLEX End-to-End simulator [43], which has the versatility
to assess the impact of all of the proposed improvements and subsequently quantify the impact on the
estimated SIF.

5. Conclusions

Remote sensing retrieval of Solar Induced chlorophyll Fluorescence (SIF) from
Top-Of-Atmosphere (TOA) is challenging due to the tininess of the SIF signal. For this reason, the
multiple strategies developed in the last few years to retrieve SIF from satellite data make use of
the solar and terrestrial absorption regions where radiance at TOA is considerably reduced. In the
particular case of the O2–B and O2–A bands, these are conveniently located in the SIF spectrum,
i.e., close to each of the typical SIF emission peaks, being wider and deeper than the solar lines and
thus more sensitive for SIF detection. However, oxygen bands are highly affected by atmospheric
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effects, especially by the aerosols scattering and surface pressure. For this reason, the FLuorescence
EXplorer (FLEX)/Sentinel-3 tandem space mission proposes an SIF retrieval strategy based on
a two-step approach: (1) performing the Atmospheric Correction (AC), and (2) applying a Spectral
Fitting (SF) technique to retrieve SIF. Given the tininess of the SIF signal, it is well-known that
any inaccuracy in the atmospheric state characterization can lead to errors in the estimated SIF.
However, just as important as the atmospheric parameters characterization is the use of an appropriate
formulation to infer surface apparent reflectance from TOA radiance and to apply a consistent
coupling process between the AC and SF strategies. Thus, assuming the atmospheric state as known,
we evaluated the mathematical formulation of the FLEX data processing scheme, from the TOA
radiance inversion to its coupling with the at-surface level SF method. It was shown that the impact
on TOA radiance of the approximations assumed by FLEX is around one order of magnitude lower
than an expected variation caused by increasing 10% of the value of a typically SIF emission spectrum.
It was also demonstrated that an inconsistent AC-SF coupling process derives errors that depend on
the atmospheric transfer functions because of the formulation involved in the process. One of the
advantages of using a two-step approach resides in the intermediate products generated, such as the
apparent reflectance (ρapp). Using simulated data with SCOPE and MODTRAN radiative transfer
models, we subsequently analysed the spectral distortions propagated to ρapp due to inaccuracies in
the estimation of aerosol optical properties. As it was expected, different distortion patterns appear in
the ρapp due to the over-/under-estimation of each of the key aerosol optical properties: the AOT,
the Angstrom exponent (α) and the Henyey–Greenstein (HG) scattering anisotropy parameter (g).
This leads us to proposing to exploit the use of the ρapp as a quality indicator of the AC. As a proof
of concept, a simple exercise was performed over ∼8·104 incorrectly atmospherically corrected ρapp

database by using a multivariate linear regression technique to predict the over-/under-estimation
of the aerosol optical properties. First, results showed that the AOT, α and the g parameters can be
corrected with a relative error lower than 0.5%, 8% and 3%, respectively, for 75% of the evaluated data.
In the context of the FLEX/Sentinel-3 tandem mission, the exploitation of the apparent reflectance
spectral distortions can open up new opportunities to refine the atmospheric parameters obtained
from the AC process.
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AC Atmospheric Correction
AI Atmospheric Inversion
AOT Aerosol Optical Thickness
DB DataBase
FLEX FLuorescence EXplorer
FLORIS FLuORescence Imaging Spectrometer
HG Henyey–Greenstein
HR High Resolution
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ISRF Instrumental Spectral Response Function
LAI Leaf Area Index
PCA Principal Components Analysis
SF Spectral Fitting
SIF Solar-Induced chlorophyll Fluorescence
SR Spectral Resolution
SSI Spectral Sampling Interval
TOA Top Of Atmosphere
TOC Top Of Canopy
WV Water Vapour

Appendix A

Table A1. FLORIS instrument Spectral Resolution (SR) and Spectral Sampling Interval (SSI) for each
spectral interval covered [22].

Band PRI Band Chl abs. O2–B Red-Edge O2–A

λ (nm) 500–600 600–677 677–686 686–697 697–740 740–755 755–759 759–762 762–769 769–780
SR (nm) 3 3 0.6 0.3 2 0.7 0.7 0.3 0.3 0.7
SI (nm) 2 2 0.5 0.1 0.65 0.5 0.5 0.1 0.1 0.5

Appendix B

Table A2. MODTRAN input parameters used to generate Figures 2–4. In the particular case of
Figure 3(a, b) the Aerosol Optical Thickness (AOT) values range from 0.05 (−) to 0.42 (−), as indicated
in the figure legend.

MODTRAN Input Parameter Value (Units)

Atmospheric parameter

Model of atmosphere Mid Latitude Summer
AOT at 550 nm 0.05 (−)

Angstrom exponent 0.79 (−)
Henyey–Greenstein asymmetry (g) 0.8 (−)

Water vapour 2.4 (g/cm2)

Geometry parameter

Surface elevation 100 (m)
Solar Zenith Angle 45 (◦)

Viewing Zenith Angle 0 (◦)
Relative Azimuth Angle between sun and sensor 0 (◦)

High Spectral Resolution Spectral Resolution at O2–B 0.005 (nm)
Spectral Resolution at O2–A 0.006 (nm)

Instrumental Spectral Response
Spectral function Double sigmoid ∗

Spectral Sampling Interval (SSI) 0.1 (nm)
Spectral bandwidth (σ) 0.3 (nm)

∗ The double sigmoid function used as the instrumental spectral response function corresponds to
Equation (A1):

fλ(c, σ, s) = sgm[−s · (λ− c + σ/2)]− sgm[−s · (λ− c− σ/2)]/sgm[x] =
1

1 + e−x , (A1)

where σ is the Full Width High Maximum (FWHM), s the slope and c is the barycentre in the
wavelength domain.
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Appendix C

Table A3. Biophysical parameters, Leaf Area Index (LAI) and Chl content used as input in the SCOPE
model (v1.53) to generate the simulated DB. Spectra labelled as (a), (b), and (c) corresponds to the
spectra showed in Figure 7.

LAI (−) Chl (g/cm2)

Bare soil (a) 0 0.47
Mixed bare soil and dense vegetation 0.5 40
Mixed bare soil and dense vegetation (b) 1.5 10
Mixed bare soil and dense vegetation 2.5 40
Dense vegetation (c) 4 70
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