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Background: Platinum-based drugs such as Cisplatin are commonly employed for cancer treatment. Despite an initial therapeutic
response, Cisplatin treatment often results in the development of chemoresistance. To identify novel approaches to overcome
Cisplatin resistance, we tested Cisplatin in combination with Kþ channel modulators on colorectal cancer (CRC) cells.

Methods: The functional expression of Ca2þ -activated (KCa3.1, also known as KCNN4) and voltage-dependent (Kv11.1, also
known as KCNH2 or hERG1) Kþ channels was determined in two CRC cell lines (HCT-116 and HCT-8) by molecular and
electrophysiological techniques. Cisplatin and several Kþ channel modulators were tested in vitro for their action on Kþ currents,
cell vitality, apoptosis, cell cycle, proliferation, intracellular signalling and Platinum uptake. These effects were also analysed in a
mouse model mimicking Cisplatin resistance.

Results: Cisplatin-resistant CRC cells expressed higher levels of KCa3.1 and Kv11.1 channels, compared with Cisplatin-sensitive
CRC cells. In resistant cells, KCa3.1 activators (SKA-31) and Kv11.1 inhibitors (E4031) had a synergistic action with Cisplatin in
triggering apoptosis and inhibiting proliferation. The effect was maximal when KCa3.1 activation and Kv11.1 inhibition were
combined. In fact, similar results were produced by Riluzole, which is able to both activate KCa3.1 and inhibit Kv11.1. Cisplatin
uptake into resistant cells depended on KCa3.1 channel activity, as it was potentiated by KCa3.1 activators. Kv11.1 blockade led to
increased KCa3.1 expression and thereby stimulated Cisplatin uptake. Finally, the combined administration of a KCa3.1 activator
and a Kv11.1 inhibitor also overcame Cisplatin resistance in vivo.

Conclusions: As Riluzole, an activator of KCa3.1 and inhibitor of Kv11.1 channels, is in clinical use, our results suggest that this
compound may be useful in the clinic to improve Cisplatin efficacy and overcome Cisplatin resistance in CRC.

*Correspondence: Professor A Arcangeli, E-mail: annarosa.arcangeli@unifi.it
9These authors contributed equally to this work.

Received 29 July 2017; revised 25 September 2017; accepted 2 October 2017; published online 21 November 2017

r 2018 Cancer Research UK. All rights reserved 0007 – 0920/18

FULL PAPER

Keywords: Riluzole; SKA-31; E4031; Cisplatin uptake; preclinical mouse models

British Journal of Cancer (2018) 118, 200–212 | doi: 10.1038/bjc.2017.392

200 www.bjcancer.com | DOI:10.1038/bjc.2017.392

mailto:annarosa.arcangeli@unifi.it
http://www.bjcancer.com


Platinum-based drugs and, in particular, cis-diamminedichlorido-
platinum (II), best known as Cisplatin, are employed for the
treatment of a wide range of solid malignancies, including
colorectal cancer (CRC). Cisplatin exerts anticancer effects by
inducing the formation of platinum–DNA adducts (Huang et al,
1995), which in turn trigger the apoptotic process (Wang and
Lippard, 2005). Cisplatin also produces ‘non-genomic effects’,
affecting plasma membrane proteins, including ion channels and
transporters, and cytoskeletal components. Such effects are often
related to Cisplatin side effects, such as peripheral neuropathy
(Carozzi et al, 2015).

Despite a consistent rate of initial responses, Cisplatin treatment
often results in the development of resistance, leading to
therapeutic failure. Intense research has identified several mechan-
isms underlying Cisplatin resistance (Galluzzi et al, 2014). Among
them, reduced uptake of Cisplatin through the plasma membrane
is one of the most critical ‘pretarget’ steps of resistance
development. Cisplatin is taken up by both simple and facilitated
diffusion (Yoshida et al, 1994; Ishida et al, 2002). Relevant in the
latter process are the copper (Cu) transporters CTR1 and CTR2,
encoded by the SLC31A genes 1 and 2, respectively. Altered levels
or mis-functionality of CTR1 and CTR2 are consistently associated
with Cisplatin resistance (Katano et al, 2002; Huang et al, 2014).
Moreover, extrusion of the drug by two P-type ATPases, ATP7A
and ATP7B is also operant. Altered expression and cellular
localisation of such ATPases has been linked to the occurrence of
Cisplatin resistance in ovarian cancer (Kalayda et al, 2008). Plasma
membrane transporters are not only involved in the transport of
the drug but can also be affected by Cisplatin itself (Shimizu et al,
2008). For example, when apoptosis is triggered, an early persistent
shrinkage (named apoptotic volume decrease) results as a
consequence of efflux of Kþ and the activation of an outwardly
rectifying Cl� current. The latter has the electrophysiological and
pharmacological characteristics of volume regulated anion chan-
nels (VRAC) (Lang and Hoffmann, 2012). Recently, VRAC, and in
particular the LRCC8A and LRCC8D molecular components, have
been shown to influence Cisplatin uptake (Jentsch et al, 2016). Not
surprisingly, a reduction of anion currents through VRAC has been
linked to Cisplatin chemoresistance (Lee et al, 2008; Poulsen et al,
2010).

Kþ channels are frequently dysregulated in cancer (Arcangeli
et al, 2009; D’Amico et al, 2013). In particular, KCa3.1 and Kv11.1
are upregulated during tumour progression (Lastraioli et al, 2004;
Muratori et al, 2016) and contribute to malignancy, which includes
chemoresistance (Pillozzi et al, 2011). Interestingly, Cisplatin
sensitivity is related to Kþ channel expression and activity in
several cancer cell lines (Lee et al, 2008; Zhang et al, 2012; Leanza
et al, 2014; Hui et al, 2015; Samuel et al, 2016). For example,
increased activity of intermediate-conductance KCa3.1 (KCNN4)
calcium-activated Kþ currents (IIK) contributes to Cisplatin
sensitivity in epidermoid cancer cells (Lee et al, 2008) and IIK

activation consistently potentiates Cisplatin-induced cytotoxicity.
In contrast, expression of large-conductance KCa1.1 (KCNMA1,
BK) calcium-activated channels is reduced in Cisplatin-resistant
ovarian cells (Samuel et al, 2016). In patients with ovarian cancer
treated with Cisplatin-based adjuvant chemotherapy, decreased
expression of Kv10.1 (KCNH1, Eag1) correlates with favourable
prognosis and predicts Cisplatin sensitivity in ovarian cancer cells
(Hui et al, 2015). Kv11.1 (hERG1) channels have been found to be
upregulated by Cisplatin in gastric cancer cells, and their silencing
decreases the cytotoxic effects of the drug (Zhang et al, 2012).
Moreover, a clear correlation between Kþ channel expression and
Cisplatin sensitivity was shown in cancer cell lines of different
histogenesis (Leanza et al, 2014).

Here we investigated the role of Kþ channels in Cisplatin
resistance in CRC and tested the possibility of overcoming
Cisplatin resistance with Kþ channel-modulating agents.

MATERIALS AND METHODS

Chemicals and antibodies. Unless otherwise indicated, all che-
micals, drugs and antibodies were from Sigma-Aldrich, Milan,
Italy. For in vitro experiments Riluzole, SKA-31 and TRAM-34
were dissolved in DMSO, at a concentration of 5 mM, whereas for
in vivo experiments Riluzole was dissolved in 5% Kolliphor in 0.9%
NaCl. E4031 dihydrochloride, Cisplatin and Oxaliplatin were
dissolved in bi-distilled water. All stock solutions were stored at -
20 1C. The list of antibodies and the concentrations used for
western blotting (WB) experiments are reported in Supplementary
Methods.

Cell culture. All the CRC cell lines were cultured in RPMI-1640
medium (Euroclone; Milan, Italy), supplemented with 2% L-Glut,
10% foetal bovine serum (Euroclone) and 1% penicillin/strepto-
mycin (complete medium). HCT-116 cells were obtained from the
American Type Culture Collection ATCC (Manassas, VA, USA);
HT-29 cells were kindly provided by Dr R Falcioni (Regina Elena
Cancer Institute, Roma, Italy); HCT-8 and H630 were kindly
provided by Dr E Mini (University of Florence, Florence, Italy).

Total RNA extraction, reverse transcription and RQ-PCR. RNA
extraction, reverse transcription (RT) and RQ-PCR were as
described in Pillozzi et al, 2007. The primers relative to ATP7A,
ATP7B, KCNA3, KCNH1, KCNH2, KCNMA1, KCNN3, KCNN4,
SLC31A1, SLC31A2, LRCC8A and LRCC8D are shown in
Supplementary Table S1.

Silencing of HCT-116 cells. Silencing of HCT-116 cells was
carried out as in Crociani et al, 2013, using the following siRNAs:
(1) KV11.1/KCNH2-siRNAs (44858 anti-Kv11.1 siRNA1 and
44762 anti-Kv11.1 siRNA3, Ambion; Austin TX, USA) (total
100 nM final concentration) and (2) KCa3.1/KCNN4-siRNAs (7801
anti-kcnn4 siRNA1 and 7803 anti-kcnn4 siRNA3, Ambion) (total
5 nM final concentration). As negative controls, cells were treated
with Lipofectamine only.

Cell viability assay, IC50 and Combination Index (CI) calcula-
tion. Cell viability was measured through the Trypan Blue
exclusion test, following the procedure described in Pillozzi et al,
2016. IC50 and CI calculations are as in Pillozzi et al, 2011. Cells
were seeded at 1� 104 per well in 96-well plates (Costar Corning,
Cambridge, MA, USA) in complete medium; Cisplatin and the
other drugs were added at their final concentration after 24 h
incubation and further incubated for different times.

Cell cycle analysis. Cell cycle distribution was assessed by flow
cytometry after staining cells with propidium iodide (PI) as in
Pillozzi et al, 2016.

Annexin/PI assay. Apoptosis was determined using the Annexin
V/PI test (Annexin-V FLUOS Staining Kit; Roche Diagnostics,
Mannheim, Germany) as described in Pillozzi et al, 2011.
According to this procedure, (i) viable cells are negative for both
Annexin V and PI (Q3 quadrant gate in the dot plots); (ii) cells that
are in the early phases of apoptosis are Annexin V positive and PI
negative (Q4 quadrant gate in the dot plots); (iii) cells that are in
the late phases of apoptosis are both Annexin V and PI positive
(Q2 quadrant gate in the dot plots); and (iv) dead (necrotic) cells
are Annexin V negative and PI positive (Q1 quadrant gate in the
dot plots).

Patch-clamp experiments. Membrane currents were recorded at
room temperature (25 1C) with the whole-cell configuration of the
patch-clamp technique. Kv11.1 currents were elicited by a two-step
protocol, conditioning the cell at 0 mV and testing the tail current
at -120 mV (Gasparoli et al, 2015). KCa3.1 currents were elicited by
200-ms voltage ramps from � 120 to þ 40 mV applied every 10 s,
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and the fold increase of slope conductance by drug was taken as an
indication of channel activation (Sankaranarayanan et al, 2009).
All the solutions are mentioned in Supplementary Table S2. The
effects of Riluzole, SKA-31 and Cisplatin were determined on
maximal Kv11.1 tail currents. The effects of Cisplatin and TRAM-
34 were determined on the maximal KCa3.1 activation induced by
Riluzole and SKA-31. Drugs were applied at the concentrations
indicated in the figure legends for 2 min before recording their
effects. Resting potential (VREST) values were measured in I¼ 0
mode, in the presence of the extracellular solution No. 1 (see
Supplementary Table S2).

Immunofluorescence. Immunofluorescence was performed
applying the procedures detailed in Lastraioli et al, 2015, using
the antibodies reported in Supplementary Methods.

Protein extraction and WB. Protein extraction and WBs relative
to cell lines and tumour masses were performed as described in
Crociani et al, 2013, using the antibodies reported in
Supplementary Methods.

Cisplatin uptake measurement. HCT-116 cells were incubated in
complete medium containing the different compounds as reported
in the legend of Figure 4 for 3 or 24 h. For incubation in high
extracellular Kþ , NaCl in the RPMI medium was substituted in
part (to obtain 40 mM KCl) or totally (to obtain 108 mM KCl) with
KCl. At the end of the uptake period, cells were quickly washed
three times with ice-cold PBS, collected, gently spun down (1.000 g
for 5 min at 4 1C), and the pellet suspended in 1 ml ice-cold PBS.
Part (50 ml) of this suspension was taken for protein concentration
determination and part (50 ml) for cell viability assay. The
remaining 900 ml were spun down at 400 g for 5 min and processed
for ICP-AES analysis as described in Marzo et al, 2015.

In vivo experiments. Experiments were performed at the Animal
House of the University of Florence (CESAL). Mice were housed in
filter-top cages with a 12 h dark–light cycle and had unlimited
access to food and water. Procedures were conducted according to
the laws for experiments on live animals (Directive 2010/63/EU)
and approved by the Italian Ministry of Health (1279/2015-PR).
All the procedures are detailed in Supplementary Methods.

Statistical analysis. Unless otherwise indicated, data are given as
mean values±s.e.m., with n indicating the number of independent
experiments. Statistical comparisons were performed with Origi-
nPro 2015 (Origin Lab, Northampton, MA, USA). The normality
of data distribution was checked with Kolmogorov–Smirnov test.
In case of unequal variances, the Welch correction was applied. For
comparisons between two groups, we used Student’s t-test. For
multiple comparisons, one-way ANOVA followed by Bonferroni’s
post hoc test was performed to derive P-values. The individual
P-values are reported in the Figures.

RESULTS

Effects of Cisplatin on different CRC cell lines: identification of
Cisplatin-resistant and -sensitive cell lines. We investigated the
response of four CRC cell lines (HCT-116, HCT-8, HT-29 and
H-630) to Cisplatin treatment by measuring the cell viability by
Trypan Blue exclusion test. The inhibiting concentration 50 (IC50)
values determined after 24 h of treatment (Figure 1A) show that
HCT-116 cells are the most resistant and HCT-8 the most sensitive
(see also Table 1A and Supplemetary Table S3). Cisplatin, added at
its IC50 value to the two cell lines, triggered apoptosis (with a
higher percentage of cells in late apoptosis in HCT-8 cells than in
HCT-116 cells (Figure 1B, Table 1A) and increased the percentage
of G0/G1 cells in both cell types (Table 1A and Supplementary
Figure S1) after 24 h of treatment. Cisplatin blocked cell

proliferation in HCT-8 at 1 mM (Figure 1C, left panel), while in
HCT-116 at 20 mM (Figure 1C, right panel). In summary, HCT-116
is a Cisplatin-resistant line, while HCT-8 is Cisplatin sensitive.

We next determined the expression of different Kþ channel
genes (Spitzner et al, 2007; D’Amico et al, 2013; Huang and Jan,
2014) and Cisplatin transporter systems (Owatari et al, 2007;
Pedersen et al, 2015; Barresi et al, 2016; Jentsch et al, 2016) in the
two CRC cell lines, focussing on those already reported to be
expressed in CRC cells and primary samples. RQ-PCR data are
shown in Figure 1D. Kv11.1 (KCNH2, hERG1) was expressed at
higher levels in HCT-116 than HCT-8 cells. The KCa3.1 (KCNN4)
transcript was also highly expressed in HCT-116 cells and much
less so in HCT-8 cells. All other tested Kþ channel transcripts
were negligible in both cell lines. The copper transporter CTR1
(SLC31A1) was highly expressed in both cell lines; the two P-type
ATPases, ATP7A (ATP7A) and ATP7B (ATP7B) displayed a higher
amount in HCT-8 cells; the LRRC8A/D (LRCC8A and LRCC8D)
components of VRAC were only found in HCT-116 cells.

The higher expression of both Kv11.1 (KCNH2, hERG1) and
KCa3.1 (KCNN4) in HCT-116 compared with HCT-8 cells was
confirmed by WB (Figure 1E), immunofluorescence (Figure 1F)
and patch-clamp experiments. Larger Kv11.1 currents were
previously reported in HCT-116 than in HCT-8 cells (Crociani
et al, 2013, and Supplementary Figure S2). A calcium-activated Kþ

current with characteristics of KCa3.1 was detected only in HCT-
116 cells but only after the channel was activated by Riluzole or
SKA-31 (Figure 2A). HCT-116 cells showed a significantly
hyperpolarised VREST (� 38.5±2.9 mV, n¼ 11) compared with
HCT-8 cells (� 13.1±2.5 mV, n¼ 12, po0.01), consistent with
their higher expression of Kþ channels.

Modulators of KCa3.1 and Kv11.1 channels affect viability,
apoptosis and cell cycle phases of CRC cells. Next, we tested on
our cell lines the effects of activators or inhibitors of KCa3.1 and
inhibitors of Kv11.1. Riluzole was used as a broad modulator of ion
channels, as it activates KCa currents (both intermediate-con-
ductance KCa3.1 and small-conductance KCa2.1, KCa2.1 and KCa2.3
currents) and inhibits Kv11.1 (Sankaranarayanan et al, 2009),
voltage-gated sodium (Wang et al, 2008) and voltage-gated calcium
channels (Stefani et al, 1997). SKA-31 is a specific KCa3.1 activator
(Sankaranarayanan et al, 2009) and TRAM-34 a specific KCa3.1
inhibitor (Wulff et al, 2000). E4031 inhibits Kv11.1 (Sanguinetti
and Jurkiewicz (1990)). We first tested these compounds on HCT-
116 cells. Both Riluzole and SKA-31 increased the KCa3.1 current
(reversal potential at � 80 mV; inhibition by TRAM-34)
2.11±0.46 (n¼ 9) and 4.36±1.67 (n¼ 10) fold, respectively
(Figures 2A and C) and induced cell hyperpolarisation (Figure 2A).
Riluzole also inhibited Kv11.1 currents (by 23 and 44%, with 10
and 45 mM, respectively) (Figures 2B and C), in keeping with
previous reports (Sankaranarayanan et al, 2009). SKA-31 had no
effect on Kv11.1 currents (Figures 2B and C).

In current-clamp experiments, both Riluzole and SKA-31
strongly hyperpolarised VREST (Figure 2E, right panel). In contrast,
TRAM-34 (Figure 2D) and E4031 (Figure 2E) depolarised VREST.
Cisplatin did not significantly affect KCa3.1 currents either in
control conditions or after SKA-31 stimulation (Figures 2B and F)
and slightly inhibited Kv11.1 (Figures 2B and G). Cisplatin addition
rapidly and reversibly depolarised VREST (Figure 2H).

Next, we tested the effects of Riluzole, SKA-31, E4031 and
TRAM-34 on cell viability, apoptosis and cell cycle phases of HCT-
116 and HCT-8 cells. All these compounds reduced cell viability,
but differently from Cisplatin, their IC50 values were generally
lower in HCT-116 than in HCT-8 cells, except for TRAM-34
(Table 1A and Supplementary Table S3). All the Kþ channel
modulators triggered apoptosis in HCT-116 cells, and the effect
was smaller in HCT-8 cells (Table 1A). They also increased the
percentage of cells in G0/G1 phase, in both cell lines, with the
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exception of Riluzole, which caused a strong G2/M block in HCT-8
cells (Table 1A), as reported by Khan et al (2011). All drugs
reduced HCT-116 cell proliferation when added at time zero at
their specific IC50 values (Figure 3A). Less evident effects were
observed in HCT-8 cells (Supplementary Figure S3).

KCa3.1 activation and Kv11.1 block have a synergistic activity
with the pro-apoptotic effects of Cisplatin. We tested the
different Kþ channels modulators in combination with Cisplatin
in HCT-116 and HCT-8 cells and measured the CI to assess
synergistic, antagonistic or additive effects of the different
combinations (Pillozzi et al, 2011). Riluzole, SKA-31 and E4031
synergised with Cisplatin in decreasing viability of HCT-116 cells
after a 24 h incubation, whereas TRAM-34 was antagonistic
(Table 1B and Figure 3B and Supplementary Table S4). A
synergistic effect of Riluzole, SKA-31 and E4031 was also observed
with Oxaliplatin (Table 1B and Supplementary Table S6), which
was weakly efficacious when tested alone on HCT-116 cells
(Table 1A). All drugs increased the pro-apoptotic effect of
Cisplatin in HCT-116 cells (Table 1B), while the effects of the

combination treatments on cell cycle were less homogeneous
(Supplementary Table S7). TRAM-34, which was antagonistic in
HCT-116 cells, only slightly increased the percentage of cells in
early apoptosis and the percentage of cells in G2/M
(Supplementary Table S7). In HCT-8 cells, all the Kþ channel
modulators were antagonistic to Cisplatin (Supplementary Table
S5) and decreased apoptosis (Supplementary Table S8).

Next, we studied the signalling pathways underlying such
effects, focussing on Caspase 3 activation and the inhibition of
antiapoptotic molecules, such as ERK1/2 and Akt (Wong, 2011).
Cisplatin activated Caspase 3, with no or only a small effect on
ERK and Akt phosphorylation. The combination of Cisplatin with
KCa3.1 activators (Riluzole or SKA-31) further activated Caspase 3
and reduced Akt phosphorylation, without affecting the ERK1/2
pathway. Cisplatin and TRAM-34 decreased ERK1/2 phosphoryla-
tion and increased Caspase 3 activation but did not affect Akt
phosphorylation. The combination of Cisplatin with E4031
strongly decreased ERK1/2 and Akt phosphorylation and activated
Caspase 3 (Figure 3C). Overall, the synergistic pro-apoptotic effects
of Cisplatin with Riluzole, SKA-31 and E4031 were mediated by
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Figure 2. Effects of Riluzole, SKA-31, TRAM-34 and Cisplatin on KCa3.1 and Kv11.1/hERG1 currents in HCT-116 cells. (A) KCa3.1 currents in HCT-
116 cells: effects of Riluzole and SKA-31 after 1 min of perfusion, and effects of TRAM-34 on elicited currents. The results are representative of 20
cells analysed in 5 different experiments. The dotted lines represent the zero value of the current (left and middle panels). (B) Kv11.1 currents in
HCT-116 cells: effects of Riluzole and SKA-31 after 3 min of perfusion. Eight representative cells were analysed for Riluzole and 14 for SKA-31 in 3
different experiments. The dotted lines represent the zero value of the current. (C) Effects of Riluzole, SKA-31, TRAM-34, E4031 and Cisplatin on
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Material. (D) Effect of TRAM-34 and of E4031 on the time course of VREST of HCT-116 cells, measured in current-clamp mode. In both cases, five
representative cells were analysed in three different experiments. (E) VREST hyperpolarisation of HCT-116 cells produced by Riluzole and SKA-31 in
current-clamp experiments. (F) Left panel. Effect of Cisplatin on SKA-31 elicited KCa3.1 currents in HCT-116 cells. Eight representative cells were
analysed in three different experiments. Right panel. Effect of Cisplatin on Kv11.1 currents in HCT-116 cells. Ten representative cells were analysed
in three different experiments. The dotted line represents the zero value of the current. (G) Effect of Cisplatin (25 and 200mM) on the time course of
VREST of HCT-116 cells, measured in current-clamp mode. Five representative cells were analysed in two different experiments. (H) D (mV)
depolarisation of the HCT-116 cells VREST induced by Cisplatin, TRAM-34 or E4031 in current-clamp experiments. Unless otherwise indicated in the
figure, the drugs were used at the following doses: Riluzole 10mM, SKA-31 5 mM, TRAM-34 1 mM, E4031 10mM, Cisplatin 25mM.
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Figure 3. Effects of Riluzole (Ril), SKA-31 (SKA), E4031(E) and TRAM-34 (T34) on proliferation of HCT-116 cells. (A) Effects of Riluzole, SKA-31,
E4031 and TRAM-34 on proliferation of HCT-116 cells after a single treatment. Drugs were added 24 h after cell seeding, indicated as time 0 in the
figure. Data are given as the number of Trypan Blue-negative cells. Data are means±s.e.m. of three independent experiments. (B) Cell viability
after 24 h of treatment with Cisplatin in combination with Riluzole, SKA-31, E4031 and TRAM-34. Data are means±s.e.m. of four independent
experiments. (C) WB analysis of the protein levels of p-ERK1/2Thr202/Tyr204 (42/44 KDa), p-AktThr308(62 KDa) and Caspase 3 (19–17 KDa) in HCT-116
cells treated for 24 h with Cisplatin alone or in combination with Riluzole, TRAM-34, SKA-31 and E4031. The membranes were then reprobed with
an anti-ERK1/2, anti-Akt or anti-tubulin antibody. Representative of three independent experiments; the corresponding densitometric results are
given in the bar graph. P-values were calculated with respect to Cisplatin-treated cells, by Student’s t test. (C) Effects of different Cisplatin on
proliferation (expressed as the number of live, Trypan Blue-negative cells) of HCT-8 and HCT-116 cells. Data are means±s.e.m. of six independent
experiments. Arrow¼ addition of the drug. White circle=control, black circle¼Cisplatin 1 ?M, black triangle¼Cisplatin 10 ?M, black rhombus=
Cisplatin 20 ?M. For statistical analysis, the one-way ANOVA was applied. (D) Effects of Cisplatin in combination with Riluzole, SKA-31 and E4031
on HCT-116 cell proliferation. Drugs were added after 24 h of cell seeding, indicated as time 0 in the figure. Data are given as the number of
Trypan Blue-negative cells. Data are means±s.e.m. of three independent experiments. White circle=Cisplatin 1mM, white triangle¼Cisplatin
10mM, white rhombus¼Cisplatin 20mM; black circle¼Cisplatin 1mM+IC50 of the relative combined drug, black triangle¼Cisplatin 10mM+IC50 of
the relative combined drug; black rhombus¼Cisplatin 20mM+IC50 of the relative combined drug. Statistical analysis was performed by Student’s
t-test and P-values are reported in Supplementary Material.
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both the Akt and Caspase 3 pathways. E4031 also modulated the
MAPK pathway. Cisplatin and TRAM-34 were antagonistic
because of a lack of convergence on the Akt pathway, which could
impair completing the apoptotic process (see the relatively low
percentage of cells in late apoptosis observed in cells treated with
Cisplatin and TRAM-34 in Table 1B).

Riluzole, SKA-31 and E4031 had a synergic effect with Cisplatin
also on the inhibition of HCT-116 cell proliferation. This effect was
particularly evident with low Cisplatin concentrations, and the
strongest effect was obtained with E4031 (Figure 3D).

We then studied whether the antiproliferative effects and the
synergy with Cisplatin of drugs that activate KCa3.1 (Riluzole,
SKA-31) or inhibit Kv11.1 (E4031) depended on their effects on
either KCa3.1 or Kv11.1 currents. Hence the drugs were tested in
Kv11.1- and KCa3.1-silenced HCT-116 cells. The silencing of
Kv11.1 and KCa3.1 by specific siRNAs is shown in Supplementary
Figure S4. Silencing Kv11.1 potentiated the Cisplatin effects in
combination with Riluzole or SKA-31 while it abrogated the effects
of E4031 (Figure 3E, left panel). Conversely, silencing KCa3.1

reversed the effects of both Riluzole and SKA-31 (Figure 3E, right
panel). We conclude that specific activation of KCa3.1 and/or
inhibition of Kv11.1 underlie the synergistic antiproliferative effects
of Riluzole, SKA-31 or E4031 in combination with Cisplatin.

Kþ channel modulators increase Cisplatin uptake in CRC
cells. We next tested whether Riluzole, SKA-31 or E4031 affected
Cisplatin uptake, measured as intracellular accumulation of
Platinum (Pt), in HCT-116 cells. We first analysed the role of
Cu transporters, determining the dose dependence of Cisplatin
accumulation in the absence or presence of 1 mM CuSO4 to inhibit
Cu transporters (Matsumoto et al, 2007). Unexpectedly, CuSO4

had no effect. Hence, Cu transporters do not have a significant role
in the intracellular accumulation of Cisplatin in these cells. The
same experiment was performed in the presence of 25 mM TRAM-
34, a dose that fully inhibits KCa3.1, without affecting cell viability
after a 3 h incubation (Supplementary Figure S5A). Blocking
KCa3.1 channels reduced Cisplatin uptake (Figure 4A). This result
was confirmed by incubating the cells for 3 h with the IC50 dose
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BRITISH JOURNAL OF CANCER Kþ channels and Cisplatin resistance

206 www.bjcancer.com | DOI:10.1038/bjc.2017.392

http://www.bjcancer.com


(22 mM) of Cisplatin (Figure 4B). Hence, the activity of KCa3.1
channels determines or at least contributes to the uptake of
Cisplatin in HCT-116 cells. Consistently, Riluzole increased
Cisplatin accumulation (Figure 4B). A similar mechanism was
observed for Oxaliplatin uptake (Figure 4B). Recalling the
opposing effects of TRAM-34 (depolarisation) and Riluzole
(hyperpolarisation) on VREST of HCT-116 cells (Figure 2), we also
evaluated the effect of membrane depolarisation on Cisplatin
uptake. Cells were depolarised by exposure to a high Kþ medium
(either 40 or 108 mM), which increased Pt uptake. The effect
depended on KCa3.1 activity (as it was reduced by TRAM-34) but
not on Ca2þ influx through voltage-gated Ca2þ channels (as
200 mM CdCl2 had no effect; Becchetti et al, 1992).

Cisplatin uptake was then determined after longer (24 h)
treatment with Cisplatin (at the IC50 dose), alone or in
combination with our Kþ current modulators. Riluzole, SKA-31
and E4031 increased, while TRAM-34 decreased, Cisplatin
accumulation (Figure 4C). TRAM-34 inhibited the potentiation
of Cisplatin uptake induced by SKA-31 or Riluzole, while it did not
affect the potentiation by E4031. Finally, the combination of SKA-
31 and E4031 induced the largest increase in Cisplatin uptake
(Figure 4C). These data suggest that Cisplatin uptake in HCT-116
cells is facilitated by KCa3.1 channels, being increased by their
activation and reduced by their inhibition.

To determine why Kv11.1 inhibition alone increased Cisplatin
uptake, we examined whether Kv11.1 activity was related to KCa3.1
expression and/or activity. KCa3.1 channel activity (Figure 4D) and
expression (Figure 4E) were analysed in HCT-116 cells treated for
24 h with E4031. Treatment with TRAM-34 was included as a
control. E4031 augmented both KCa3.1 current amplitude
(Figure 4D) and membrane expression (Figure 4E), both when it
was applied alone and in the presence of Cisplatin (Figure 4E).
TRAM-34 blocked KCa3.1 activity, as expected (Figure 4D), but

scarcely affected its surface expression (Figure 4E). Neither TRAM-
34, nor E4031 altered Kv11.1 expression (Supplementary Figure
S5B). Hence, in HCT-116 cells, inhibition of Kv11.1 currents was
compensated by the increased expression of KCa3.1. TRAM-34
(25 mM) did not completely block KCa3.1 currents in E4031-treated
cells (Figure 4D), as it did not completely block Cisplatin uptake in
E4031-treated cells (Figure 4C). Overall, we attribute the increase
in Cisplatin uptake in the presence of Kv11.1 inhibitors to the
upregulation of KCa3.1 currents less sensitive to TRAM-34
inhibition, possibly a splice variant or a posttranslationally
modified form (see Discussion section).

Kþ channel modulators overcome Cisplatin resistance
in vivo. We next hypothesised that combining a KCa3.1 activator
and a Kv11.1 inhibitor could potentiate the effect of low doses of
Cisplatin (1 mM). Using Cisplatin in the presence of SKA-31, or
E4031, or a compound with both effects (Riluzole) reduced cell
viability to a greater extent than observed with each compound
alone (Figure 5A). The most effective combination was Cisplatinþ
Riluzoleþ E4031 (see also the CI in Table 1B; note that both
Riluzole and E4031 are Kv11.1 inhibitors, and their effects are likely
to be additive, Figure 2C).

Finally, we tested whether the above synergistic effects also
occurred in a preclinical in vivo model of chemoresistance. HCT-
116 cells were xenografted subcutaneously into immunodeficient
nude mice. Both Cisplatin (0.35 mg kg� 1, twice a week) and
Riluzole (10 mg kg� 1, daily) reduced HCT-116 tumour growth,
when added as single agents (Figure 5B and inset). The inhibitory
effects of E4031 on tumour growth in the same mouse model have
already been reported (Crociani et al, 2013). Moreover, we tested
Riluzole and E4031 in a mouse model we have developed to mimic
chemoresistance (see Supplementary Materials and Methods). To
this purpose, xenografted mice were first treated with Cisplatin

Table 1A. IC50 values and effects on apoptosis and cell cycle distribution of Cisplatin, Riluzole, SKA-31, TRAM-34 and E4031 in
HCT-116 and HCT-8 cells

Apoptosis Cell cycle

IC50 (lM) Concentration of the drug (lM) Early apoptosis (%) Late apoptosis (%) G0/G1 (%) S (%) G2/M (%)

HCT-116
Control — 1.0±0.6 0.8±0.5 27.7±7.7 55.5±3.7 16.9±6.4
Cisplatin 25.2±2.1 25 5.9±1.0

P¼ 0.001
5.3±1.5

P¼ 0.009
48.0±4.5
P¼0.009

39.2±2.5
P¼ 0.018

12.8±3.3

Riluzole 9.5±1.0 10 13.6±3.7
P¼ 0.004

10.3±4.1
P¼ 0.028

51.6±6.0
P¼0.004

26.1±8.8
P¼ 0.021

22.3±3.1

SKA-31 5.3±0.3 5 7.0±0.9
P¼ 0.000

3.5±0.9
P¼ 0.015

55.3±2.4
P¼0.006

31.4±7.7
P¼ 0.028

13.3±5.7

TRAM-34 24.4±1.8 25 9.6±2.1
P¼ 0.001

6.6±0.9
P¼ 0.000

50.5±3.2 34.2±5.0 15.4±7.6

E4031 6.6±1.6 7 5.2±1.2
P¼ 0.005

4.1±1.0
P¼ 0.010

51.4±4.3
P¼0.010

26.4±4.1
P¼ 0.012

22.3±6.1

HCT-8
Control — 0.8±0.3 1.2±0.3 30.7±2.4 53.8±3.3 15.5±1.9
Cisplatin 8.7±1.4 9 5.5±1.4

P¼ 0.008
13.4±7.2
P¼ 0.018

46.9±1.3
P¼0.019

43.4±1.9
P¼ 0.002

9.7±3.1
P¼ 0.041

Riluzole 12.9±0.7 13 3.6±0.9
P¼ 0.008

4.0±1.2
P¼ 0.035

8.5±3.4
P¼0.003

6.7±4.3
P¼ 0.000

84.6±5.6
P¼ 0.000

SKA-31 46.9±1.4 45 3.0±0.4
P¼ 0.001

10.2±5.0
P¼ 0.011

47.5±3.4
P¼0.021

39.9±8.7
P¼ 0.046

12.6±10.0

TRAM-34 20.1±1.1 20 3.2±1.2
P¼ 0.012

2.7±1.0
P¼ 0.019

62.9±3.2
P¼0.026

28.9±4.5
P¼ 0.026

8.2±7.6

E4031 13.3±1.3 13 2.8±1.9 2.8±0.7
P¼ 0.015

25.2±0.4
P¼0.012

57.1±2.2 17.7±2.4

IC50 values were determined after 24 h of treatment by the Trypan Blue exclusion test, using the Origin Software. Apoptosis and cell cycle distributions were evaluated by treating the cells with
the drug concentrations indicated in the third column for 24 h. The percentage of cells in early (Annexin þ /PI� cells) and late apoptosis (Annexin þ /PIþ cells) was determined by Annexin/PI
assay as detailed in the Materials and Methods section. Cell cycle distribution was assessed by flow cytometry after staining the cells with propidium iodide (PI) and is indicated as the
percentage of cells in the different cell cycle phases. Data are means±s.e.m. of three independent experiments, each carried out in triplicate. For statistical analysis, Student’s t-test was
applied.
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(0.35 mg kg� 1, twice a week) for 1 week (Phase 1) and then with a
10 times lower dose (0.035 mg kg� 1) for a further 2 weeks (Phase
2). During Phase 2, Riluzoleþ E4031 were included in the
treatment schedule (see the scheme in Figure 5C). Tumours
decreased their growth by Cisplatin treatment during Phase 1 but
recovered their growth during Cisplatin treatment in Phase 2, with
approximately the same rate as displayed by the controls. In
contrast, when both Riluzole and E4031 were included in the
treatment schedule of Phase 2, both the growth rate and the final
volume of tumours were significantly reduced (Figure 5C).
Consistently, such treatment induced a strong decrease of ERK1/

2 and Akt phosphorylation and an increased activation of caspase 3
(Figure 5D).

DISCUSSION

In search of novel strategies to overcome Cisplatin resistance in
CRC, we tested the effects of Kþ channel modulators in
combination with Cisplatin. We show that compounds that
activate KCa3.1 (SKA-31) or inhibit Kv11.1 (E4031) or have
both effects (Riluzole) promote Cisplatin uptake and enhance
apoptosis of Cisplatin-resistant cells both in vitro and in a
preclinical mouse model. Our results highlight the translational
potential of using Kþ channel modulators to overcome Cisplatin
resistance in CRC.

Among the different Kþ channel-encoding gene tested,
Cisplatin-resistant (HCT-116) cells exhibited higher functional
expression of KCa3.1 and Kv11.1 (hERG1, KCNH2) channels,
compared with Cisplatin-sensitive HCT-8 cells. Moreover, the two
channels are functionally related in these cells: (1) they set VREST in
HCT-116 cells to more hyperpolarised (� 38.5 vs � 13 mV) values
compared with HCT-8 cells; and (2) their expression is
coordinated in HCT-116 cells, one compensating for the other.
In fact, prolonged (24 h) inhibition of Kv11.1 currents leads to
upregulation of functional KCa3.1 channels (Figure 4D and E). As
all described CRC cell lines express Kv11.1 (D’Amico et al, 2013)
and KCa3.1 inhibition has no effect on Kv11.1 (Supplementary
Figure S5B), we hypothesise that Kv11.1 drives the expression of
the other Kþ channel. The coordinated and balanced expression of
the two Kþ channels has two consequences in HCT-116 cells: (A)
blocking Kv11.1 increases the uptake of Cisplatin, which relies on
the activity of KCa3.1 channels, and (B) the concomitant activation
of KCa3.1 and inhibition of Kv11.1 potentiates the pro-apoptotic
activity of Cisplatin. Cisplatin uptake into HCT-116 cells is
reduced by TRAM-34, a specific KCa3.1 blocker, and it is increased
by SKA-31 and Riluzole, which activate KCa3.1. These
results suggest a requirement for KCa3.1 in Cisplatin uptake.
Blocking Kv11.1 (hERG1) with E4031 also enhances Cisplatin
uptake, an effect that can be explained by E4031-induced
upregulation of KCa3.1 (Table 2). Notably, the KCa3.1 upregu-
lation triggered by E4031 is not completely blocked by
TRAM-34. This decreased TRAM-34 sensitivity may be due to
upregulation of a posttranslationally modified KCa3.1 protein
(see KCa3.1 band of higher molecular weight, that is, more
glycosylated, in Figure 4D) or a KCa3.1 splice variant with reduced
TRAM-34 sensitivity as reported in the rat colon (Barmeyer et al,
2010). This could also explain why increased Cisplatin uptake in
cells treated with E4031 was not completely reversed by TRAM-34
addition.

Moreover, the inhibitory effect of TRAM-34 was not related to
its depolarising action. In fact, exposing the cells to high

Table 1B. Combination index and percentage (%) of
apoptotic HCT-116 cells after different treatment
combinations

Apoptosis

Drug (concentration
lM)

Combination
index at IC50 Effect

Early
apoptotic
cells (%)

Late
apoptotic
cells (%)

Cisplatin (25) — 5.9±1.0 5.3±1.5

Cisplatin
(25)þRiluzole (10)

0.70±0.08 S 10.6±1.3
P¼ 0.021

17.6±3.3
P¼0.016

Cisplatin (25)þ SKA-
31 (5)

0.64±0.11 S 12.5±3.9 10.1±2.4

Cisplatin
(25)þTRAM-34 (25)

2.66±0.78 A 13.8±3.6
P¼ 0.016

8.7±1.6

Cisplatin (25)þ
E4031 (7)

0.68±0.07 S 8.0±0.3 13.2±3.4
P¼0.042

Cisplatin
(25)þRiluzole
(10)þE4031 (7)

0.47±0.05 S ND ND

Cisplatin (25)þSKA-
31 (5)þE4031 (7)

0.69±0.14 S ND ND

Oxaliplatin
(60)þRiluzole (10)

0.98±0.01 S ND ND

Oxaliplatin
(60)þSKA-31 (5)

0.71±0.05 S ND ND

Oxaliplatin
(60)þTRAM-34 (25)

3.36±0.34 A ND ND

Oxaliplatin
(60)þE4031 (7)

0.83±0.01 S ND ND

Abbreviation: ND¼ not determined. CI41, antagonism (A); CI¼ 1, additivity (Ad); CIo1,
synergy (S). HCT-116 cells were exposed to Cisplatin or Oxaliplatin in combination with
Riluzole, SKA-31, TRAM-34 and E4031 for 24 h as described in Pillozzi et al, 2011. All the
drugs were used at drug concentrations indicated in the first column. Data are
means±s.e.m. of three independent experiments, each carried out in triplicate. CI values
were calculated using the Calcusyn software Version 2 (Biosoft). For statistical analysis,
Student’s t-test was applied.

Table 2. Summary of the effects of Kþ channel modulators (Riluzole, SKA-31, TRAM-34 and E4031) on different biological
processes of HCT-116 cells

Cisplatin

Drug VREST Platinum uptake Cell viability Apoptosis Cell cycle
Riluzole Hyperpolarisation m k (S) mm mm % of cells in G2/M

SKA-31 Hyperpolarisation m k (S) mm m % of cells in G2/M

TRAM-34 Depolarisation k (A) mm mm % of cells in G2/M

E4031 Depolarisation m k (S) mm m % of cells in G2/M

Abbreviations: k¼decrease, m¼ increase, mm¼ strong increase, (A)¼ antagonism, (S)¼ synergy. VREST was determined in cells treated with the single Kþ channel modulators alone; Platinum
uptake, cell viability, apoptosis and cell cycle data are relative to treatments in combination with Cisplatin (25 mM). Experimental data and concentrations used are from Table 1B, Figures 2–4 and
Supplementary Table S7.
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Figure 5. KCa3.1 activation and Kv11.1 block cooperate with Cisplatin in vitro and in vivo. (A) Effects of combined treatment with Cisplatin (1 mM),
alone or in combination with Riluzole, SKA-31 or E4031 at their respective IC50 values. Data are reported as in Figure 3 and are means±s.e.m. of
three independent experiments. (B) Time course of tumour growth in control, Cisplatin (0.35 mg kg� 1) and Riluzole (10 mg kg� 1) treated nude
mice, subcutaneously injected with HCT-116 cells (3�106). Inset: volume of tumour masses at the killing. Data are reported as the mean±s.e.m. of
the number of masses shown in the figure. Statistical analysis was performed by one-way ANOVA. (C) Left panel: Time course of tumour growth in
control, Cisplatin-, Cisplatin þRiluzole- and CisplatinþRiluzole þE4031-treated mice. Cisplatin was administered at 0.35 mg kg� 1 for the first week
and then lowered to 0.035 mg kg� 1 for the following 2 weeks to mimic resistance (see scheme of treatment on the bottom). The slopes of the curves
were: Cisplatin¼ 0.056; CisplatinþRiluzole¼ 0.036; CisplatinþRiluzoleþE4031¼ 0.033. Right panel: Volume of tumour masses was measured at
killing and calculated by applying the ellipsoid equation. Data are reported as the mean±s.e.m. of the number of masses shown in the Figure.
Statistical analysis was performed by one-way ANOVA. (D) WB analysis of the protein levels of p-ERK1/2Thr202/Tyr204 (42/44 KDa), p-AktThr308(62 KDa)
and Caspase 3 (19–17 KDa) in tumour masses (the number of masses analysed is reported on the top of the bars) obtained from the injection of HCT-
116 cells in nude mice. The membranes were then reprobed with an anti-ERK1/2, anti-Akt or anti-tubulin antibody. The corresponding densitometric
results are given in the bar graph. P-values were calculated with respect to the mice treated with Cisplatin, one-way ANOVA.
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extracellular Kþ concentrations (40 and 108 mM, which set VREST

at � 10 and 0 mV, respectively) increased Cisplatin uptake. One
possibility to explain this effect is that KCa3.1 modulates VRAC,
which was found to mediate Cisplatin uptake (Jentsch et al, 2016).
HCT-116 cells do show a substantial expression of LRRC8D, the
main molecular component of VRAC implicated in cell volume
regulation (Planells-Cases et al, 2015; Syeda et al, 2016). In
this case, Cisplatin uptake through VRAC would be modu-
lated by the activity of KCa3.1. Another possibility is that the
depolarisation caused by high extracellular Kþ also decreases the
driving force for Cl� , leading to a smaller ratio between the
outward and the inward flux. The consequent relative increase of
inward Cl- flux would facilitate Pt entry, compared with the basal
conditions.

In Cisplatin-resistant CRC cells, KCa3.1 activators (SKA-31),
Kv11.1 inhibitors (E4031) and compounds with both activities
(Riluzole) displayed a synergistic action with Cisplatin. In fact, they
restored the pro-apoptotic and cytotoxic effects of Cisplatin, even
when the latter was tested at very low doses. The effect of E4031 in
CRC cells is the opposite of that observed after silencing Kv11.1/
hERG1 in gastric cancer cells (Zhang et al, 2012), suggesting that
different channel-dependent mechanisms are operant in CRC cells.
The effects of our Kþ channel-modulating drugs on apoptosis and
cell cycle phases were generally stronger in Cisplatin-resistant cells.
Moreover, in these cells, only KCa3.1 activators and Kv11.1
inhibitors were synergistic with Cisplatin, thus increasing the
percentage of apoptotic cells, and affecting the relative intracellular
signalling pathways (Table 2).

Although we studied mainly Cisplatin, the effects we observed
were also evident with Oxaliplatin, stressing the translatability of
our data. Overall, we believe that the results discussed herein may
be of relevance for overcoming chemoresistance to Pt-based drugs,
one of the major challenges in cancer treatment (Kartalou and
Essigmann, 2001; Siddik, 2003; Wang and Lippard, 2005).

In our CRC model, HCT-116 cells, although expressing KCa3.1,
have a low Cisplatin uptake because the activity of KCa3.1 is kept
low by the concomitant Kv11.1 activity. The combination of KCa3.1
activation with Kv11.1 inhibition, improving Cisplatin uptake,
allows also low doses of the drug to trigger apoptosis and reduce
HCT-116 cell growth. This interpretation explains why a KCa3.1
activator and a Kv11.1 inhibitor can be combined to trigger a
cooperative effect with Cisplatin. The best combination includes
Riluzole, which has a mild Kv11.1 inhibitory activity, besides
activating KCa3.1. In the present paper, we provide evidence that
such cooperation occurs both in vitro and in vivo and in preclinical
models (subcutaneous xenografts of HCT-116 cells into immuno-
deficient mice) and contributes to overcome Cisplatin resistance.
In these models, we tested Riluzole and E4031 applying dosages
and routes of administrations already used and proven to be
efficacious (Yip et al, 2009; Crociani et al, 2013; Speyer et al, 2016).
We showed the capacity of the combination of the two drugs to
improve Cisplatin antineoplastic effects. In particular (Figure 5C),
we mimicked in mice the onset of chemoresistance in mice,
treating the xenografted animals with full Cisplatin doses first and
then with very low doses. In the latter case, tumours started to
grow again, except when Riluzole and E4031 were included in the
chemotherapeutic regimen. It is worth noting that the mouse
model of chemoresistance we produced allowed us to unravel the
effects of the combination, which was however masked by the
intense effect of Cisplatin at full doses.

During CRC adjuvant therapy, the combination of Cisplatin
(Oxaliplatin) with drugs that activate KCa3.1 and inhibit Kv11.1,
such as Riluzole, may improve Cisplatin (Oxaliplatin) efficacy and
overcome resistance in the clinical setting. Such combination
would represent an example of personalised medicine in those
patients who co-express KCa3.1 and Kv11.1 (Muratori et al., 2016).
Importantly, Riluzole is already in clinical use for the treatment of

amyotrophic lateral sclerosis and is being investigated for the
treatment of solid tumours in several clinical trials (https://
clinicaltrials.gov/, NCT00903214 and NCT0086684). Of interest,
Riluzole, showed preliminary benefit in a Phase 0 trial in patients
with advanced melanoma and is currently in Phase 2 clinical trials
(NCT0086684; Yip et al, 2009) and in Phase 1 for breast cancer
(NCT00903214). Besides its effect on KCa3.1 and Kv11.1 in CRC
cells, Riluzole may also enhance antitumour T-cell activity by
overcoming the recently described ionic immune checkpoint (Eil
et al, 2016). A combination of Riluzole with Cisplatin may show
clinical benefit.
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