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1. Introduction

Mixture models have attracted the increasing attention of numerous
researchers in the recent decades (for a survey see, e.g., Titterington, Smith
and Makov 1985, McLachlan and Peel 2000, Frühwirth-Schnatter 2006). In
this paper, we focus on a family of mixture models, called cluster-weighted
models (CWMs), proposed in a context of media technology under Gaussian
assumptions (Gershenfeld 1997, 1999; Gershenfeld, Schöner and Metois
1999; Schöner 2000; Schöner and Gershenfeld 2001). CWMs are called
saturated mixture regression models in Wedel (2002).

Let (X ′, Y )
′ be the pair of a vector of covariates X and a response

variable Y defined on some space Ω with values in X × Y . Assume that Ω
can be partitioned into G groups, say Ω1, . . . ,ΩG. The CWM models the
joint distribution p(x, y) of (X ′, Y )

′ as a convex combination, with weights
π1, . . . , πG, of the conditional distributions p(y|x,Ωg) times the marginal
distributions p (x|Ωg). Expressed as a formula,

p (x, y) =

G∑
g=1

p (y|x,Ωg) p (x|Ωg)πg. (1)

Quite recently, Ingrassia, Minotti and Vittandini (2012) reformulated the
CWM in a statistical setting and showed that it is a general and flexible
family of mixture models. In particular, they prove that, under suitable as-
sumptions, if both p (y|x,Ωg) and p (x|Ωg) are Gaussian, then mixtures of
Gaussian distributions on (X ′, Y )

′, mixtures of linear Gaussian regressions,
and mixtures of linear Gaussian regressions with concomitant variables, us-
ingX as the concomitant variable, can be considered as nested in the linear
Gaussian CWM. Moreover, in the same paper, the linear t-CWM was intro-
duced considering both p (y|x,Ωg) and p (x|Ωg) to be t-distributed; again,
mixture of t distributions and mixtures of regression models with t errors
can be considered as nested in the linear t-CWM. Subsequently, Ingrassia,
Minotti and Punzo (2014) presented a family of twelve CWMs, nested in
the linear t-CWM, for model-based clustering. Subedi, Punzo, Ingrassia,
and McNicholas (2013) addressed the problem of applicability of the CWM
in high-dimensionalX-spaces by assuming latent factors for the covariates
in each mixture component. Finally, to allow the model to also be applied
to groups having nonlinear dependencies of Y on x, Punzo (2014) proposed
the polynomial Gaussian CWM.

However, in many practical cases, we are faced with categorical or
discrete responses. For example, in healthcare studies, a typical response is
the length of stay, while in the educational framework, the response is often
the item-category chosen in some test. In the literature about mixture mod-
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els, such problems are usually approached considering mixtures of general-
ized linear models (see, e.g., McLachlan 1997, McLachlan and Peel 2000,
Wedel and De Sarbo 1995). We remark that Gershenfeld (1999) also coped
with the problem of discrete sets of values, such as events, patterns, or con-
ditions, but without really modeling the joint probability of the dependent
variable and the covariates. Moreover, we are often faced with covariates of
mixed-type (continuous and finite discrete).

The rest of the paper is organized as follows. In Section 2, we intro-
duce a broad family of CWMs where the component conditional distribu-
tions are assumed to belong to the exponential family, and where the covari-
ates are allowed to be of mixed-type (by using a Gaussian distribution for
the continuous covariates and the product of multinomial distributions for
the finite discrete covariates). In Section 3, we give sufficient conditions for
CWMs, with continuous covariates only, to be identifiable. In Section 4, we
describe an expectation-maximization (EM) algorithm for maximum likeli-
hood parameter estimation and, in Section 5, we analyze parameter recovery
via a broad simulation study. Likelihood-based information criteria can be
adopted to select the number of mixture componentsG, and the performance
of some of them is investigated in Section 6. A real data set is analyzed in
Section 7 and some concluding remarks are presented in Section 8.

2. The Model

Suppose that the vector of covariates can be written asX = (U ′,V ′)′,
where U is a p-variate vector of continuous covariates and V is a q-variate
vector of finite discrete covariates, with values c1, . . . , cq , respectively, be-
ing p + q = d. In this case, X = R

p × {1, . . . , c1} × · · · × {1, . . . , cq}.
Naturally, special cases concern either p = 0 or q = 0. Moreover, with
reference to (1) and based on the classical latent class model (LCM; see
Vermunt and Magidson 2002 and Hennig and Liao 2013), assume that U
and V are “locally” independent; that is, they are independent within each
mixture component. Model (1) can be so written as

p (x, y;ϑ) =

G∑
g=1

q(y|x; ξg)p(x;ψg)πg

=

G∑
g=1

q(y|x; ξg)p
(
u;ψ∗

g

)
p
(
v;ψ∗∗

g

)
πg, (2)

where q(y|x; ξg) denotes the conditional density of Y |x,Ωg with parame-
ter ξg, p(x;ψg) is the marginal distribution of X |Ωg with parameter ψg,
p
(
u;ψ∗

g

)
is the marginal distribution of U with parameter ψ∗

g, p
(
v;ψ∗∗

g

)
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is the marginal distribution of V with parameter ψ∗∗
g , g = 1, . . . , G, and ϑ

contains all of the parameters of the model.

2.1 Modelling for q(y|x; ξg)

In order to deal with various response types, we assume that q
(
y|x; ξg

)
belongs to the exponential family. Thus, in general,Y ⊆ R. It is well known
that the exponential family is strictly related to the generalized linear models
(see McCullagh and Nelder 2000), where a monotone and differentiable link
function h(·) is introduced to relate the expected value μg, of Y |Ωg, to the
covariatesX through the relation h(μg) = β0g+β′

1gx. Because the interest
is now in the parameters (β0g,β

′
1g)

′ = βg, the distribution of Y |x,Ωg will
be denoted by q(y|x;βg, λg), where λg is an additional parameter to take
into account when a distribution from a two-parameter exponential family is
considered.

Quite often, the interest is in modeling discrete responses. Therefore,
the following focuses mainly on two particular members of the exponential
family: the Poisson and the binomial.

The binomial CWM. Assume that Y takes values in Y = {0, 1, . . . ,M},
for some given M ∈ N, and that Y |x,Ωg is binomial with parameters(
M,μg

(
x;βg

)
/M

)
; that is, Y |x,Ωg ∼ Bin

(
M,μg

(
x;βg

)
/M

)
. In this

case,

q
(
y|x;βg

)
=

(
M

y

)[
μg

(
x;βg

)
M

]y [
1− μg

(
x;βg

)
M

]M−y

, (3)

where

μg

(
x;βg

)
= M

exp(β0g + β′
1gx)

1 + exp(β0g + β′
1gx)

.

Model (2), with conditional distributions (3), will be called the binomial
CWM. Note that, the repetition parameter M is the same for all mixture
components.

The Poisson CWM. Assume that Y takes values in Y = N and that
Y |x,Ωg is Poisson with parameter μg

(
x;βg

)
; that is, Y |x,Ωg ∼ Poi[

μg

(
x;βg

)]
. In this case,

q(y|x;βg) = exp
[−μg(x;βg)

] [μg

(
x;βg

)]y
y!

, (4)
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where
μg(x;βg) = exp

(
β0g + β′

1gx
)
.

Model (2), with conditional distributions (4), will be named the Poisson
CWM.

2.2 Modelling for p(x;ψg)

The term p
(
u;ψ∗

g

)
in (2) is modeled here according to a p-variate

Gaussian density with mean μg and covariance matrixΣg, i.e., p
(
u;ψ∗

g

)
=

φ
(
u;μg,Σg

)
. With respect to the term p(v;ψ∗∗

g ) in (2), assume that each
finite discrete covariate in V can be represented by a binary vector vr =(
vr1, . . . , vrcr

)′
, where vrs = 1 if vr is equal to the value s, with s ∈

{1, . . . , cr}, and vrs = 0 otherwise. Furthermore, assume that the q finite
discrete covariates are independent given the mixture component. Then, we
have

p(v;αg) =

q∏
r=1

cr∏
s=1

(αgrs)
vrs

, g = 1, . . . , G, (5)

where αg =
(
α′

g1, . . . ,α
′
gq

)′
, with αgr =

(
αgr1, . . . , αgrcq

)′
, αgrs > 0,

and
∑cr

s=1 αgrs, r = 1, . . . , q. In particular, the density p (v;αg) in (5) is
given by the product of q conditionally independent multinomial distribu-
tions of parameters αgr, r = 1, . . . , q.

2.3 The Resulting Overall Model

Based on the above assumptions, model (2) assumes the form

p (x, y;ϑ) =

G∑
g=1

q
(
y|x;βg, λg

)
φ
(
u;μg,Σg

)
p (v;αg) πg. (6)

It will be named the generalized linear mixed CWM hereafter; the prefix
“generalized linear” refers to the local relation of Y given x, while the term
“mixed” underlines the mixed-type nature of the random covariates. The
special case without finite discrete covariates, that is

p (u, y;ϑ) =

G∑
g=1

q(y|u;βg, λg)φ(u;μg,Σg)πg, (7)

will be hereafter referred to as generalized linear Gaussian CWM.
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2.4 Related Mixture Models

Some of the existing mixture models with covariates are related to
the generalized linear mixed CWM. Examples include i) mixtures of gener-
alized linear models (see, e.g., Wedel and De Sarbo 1995,McLachlan 1997),
having conditional distribution

q(y|x;ϑ) =
G∑

g=1

q(y|x;βg, λg)πg, (8)

where ϑ = {βg, λg, πg; g = 1, . . . , G}, and ii) mixtures of generalized lin-
ear models with concomitant variables (see, e.g., Grün and Leisch 2008b),
which use the covariates as concomitant variables, having conditional distri-
bution

q(y|x;ϑ) =
G∑

g=1

q(y|x;βg, λg)p (Ωg|x;w) , (9)

where the component weight p(Ωg|x;w) is now function of x through some
parameter w, and where ϑ = {βg, λg,wg; g = 1, . . . , G}. The probability
p(Ωg|x;w) is usually modeled by a multinomial logistic distribution

p(Ωg|x;w) =
exp(w0g +w′

1gx)

G∑
j=1

exp(w0j +w′
1jx)

,

wherewg = (w0g,w
′
1g)

′.

3. Identifiability

In order to estimate the parameters of model (6), it is important to
establish its identifiability. General conditions for identifiability of mixtures
of linear models can be found in Hennig (2000); based on such results, Grün
and Leisch (2008a) provided results about identifiability for model (8). Foll-
mann and Lambert (1991) and Wang (1994) established identifiability re-
sults for mixtures of logistic regression models (the latter paper considered
the case with concomitant variables). Related results are also summarized
in Frühwirth-Schnatter (2006).

Identifiability for mixture models can be defined as follows. Consider
a parametric class of density (probability) functionsF = {f(z;ψ) : z ∈ Z ,
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ψ ∈ Ψ} and then the class of finite mixtures of functions in F ,

H =

{
h(z;ϑ) : h(z;ϑ) =

G∑
g=1

f(z;ψg)πg, with πg > 0 and
G∑

g=1

πg = 1,

f(·;ψg) ∈ F , g = 1, . . . , G,ψg �= ψj for g �= j,G ∈ N,z ∈ Z,ϑ ∈ Θ

}
.

This class is identifiable if, given two members

h(z;ϑ) =

G∑
g=1

f(z;ψg)πg and h(z; ϑ̃) =

G̃∑
s=1

f(z; ψ̃s)π̃s

of H, the equality h(z;ϑ) = h(z; ϑ̃) implies that G = G̃ and for each g ∈
{1, . . . , G} there exists s ∈ {1, . . . , G} such that πg = π̃s and ψg = ψ̃s.

Here, we face with the identifiability issue for the generalized linear
Gaussian CWM defined in (7). In particular, we establish a sufficient condi-
tion for the identifiability of the class

C =

{
p(u, y;ϑ) : p(u, y;ϑ) =

G∑
g=1

q(y|u;βg, λg)φ(u;μg,Σg)πg,

with πg > 0,

G∑
g=1

πg = 1, (βg, λg) �= (βj , λj) for g �= j,
(
u′, y

)′ ∈ R
p × Y ,

ϑ = {βg, λg,μg,Σg, πg; g = 1, . . . , G} ∈ Θ, G ∈ N

}
, (10)

whereY depends on the component distribution q. In the following theorem,
we provide sufficient conditions for C to be identifiable in U × Y , where
U ⊆ R

p is a set having probability one according to the p-variate Gaussian
density φ. In other words, we prove that the class C is identifiable for almost
all u ∈ R

p and for all y ∈ Y .
Theorem 1. Let C be the class defined in (10) and assume that there exists
a set U ⊆ R

p having probability one according to the p-variate Gaussian
density such that the mixture of generalized linear models

G∑
g=1

q(y|u;βg, λg)αg(u), y ∈ Y, (11)
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is identifiable for each fixed u ∈ U , where α1(u), . . . , αG(u) are positive
weights summing to one for each u ∈ U . Then the class C is identifiable in
U × Y . Proof: The proof is given in the Appendix.

Note that, when the distribution q is binomial, the repetition parameter
M has to be checked becausemixtures of binomials with the same repetition
parameter M are identifiable if and only if G ≤ (M + 1)/2; see Teicher
(1963).

4. The EM Algorithm for Parameter Estimation

Let (x′
1, y1)

′, . . . , (x′
n, yn)

′ be a sample of n independent observa-
tion pairs drawn from model (6). The corresponding likelihood, for a fixed
number of componentsG, is given by

L(ϑ) =
n∏

i=1

p(xi, yi;ϑ) =
n∏

i=1

G∑
g=1

πgq(yi|xi;βg, λg)φ(ui;μg,Σg)p(vi;αg).

Define zi = (zi1, . . . , ziG)
′, with zig = 1 if (x′

i, yi)
′ comes from Ωg,

and zig = 0 otherwise, and consider the complete data {(x′
i, yi,z

′
i)
′; i =

1, . . . , n}. Then, the complete-data likelihood can be written as

Lc(ϑ) =

n∏
i=1

G∏
g=1

[
q(yi|xi;βg, λg)φ(ui;μg,Σg)p(vi;αg)πg

]zig . (12)

The corresponding complete-data log-likelihood, the logarithm of (12), can
be written as

lc(ϑ)

=

n∑
i=1

G∑
g=1

zig
[
ln q(yi|xi;βg, λg) + lnφ(ui;μg,Σg) + ln p(vi;αg) + lnπg

]
=

n∑
i=1

G∑
g=1

zig ln q(yi|xi;βg, λg) +

n∑
i=1

G∑
g=1

zig lnφ(ui;μg,Σg)+

+

n∑
i=1

G∑
g=1

zig ln p(vi;αg) +

n∑
i=1

G∑
g=1

zig lnπg. (13)

Maximization of L(ϑ), through Lc(ϑ), is here achieved by the EM algo-
rithm (Dempster, Laird and Rubin 1977). Each iteration of the EM algo-
rithm alternates between two steps, the E-step (expectation) and the M-step
(maximization), that will be described below for model (6).
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4.1 E-step

The E-step, on the (k + 1)th iteration, k = 0, 1, . . ., requires calcula-
tion of the expectation of lc(ϑ) given the observed data and the provisional
estimate ϑ(k), of ϑ, arising from the previous iteration. As lc(ϑ) is linear in
the unobservable data zig , the E-step simply requires calculation of the cur-
rent conditional expectation of Zig given the observed sample, where Zig is
the random variable corresponding to zig. In particular, for i = 1, . . . , n and
g = 1, . . . , G, it follows that

Eϑ(k)

[
Zig

∣∣∣(x′
i, yi

)′ ]
= τ

(k)
ig

=
q(yi|xi;β

(k)
g ,λ(k)

g )φ
(
ui;μ(k)

g ,Σ(k)

g

)
p(vi;α(k)

g )π(k)
g

p(xi,yi;ϑ
(k))

, (14)

which corresponds to the posterior probability that the unlabeled observation
(x′

i, yi)
′ belongs to the gth component of the mixture, using the current fit

ϑ(k) for ϑ.

4.2 M-step

In the M-step, on the (k+1)th iteration, k = 0, 1, . . ., the conditional
expectation of lc(ϑ) given the observed data, say Q(ϑ;ϑ(k)), is maximized
with respect to ϑ. To this end, the values zig in (13) are simply replaced by

their current expectations τ (k)ig obtained in (14), yielding

Q
(
ϑ;ϑ(k)

)
=

n∑
i=1

G∑
g=1

τ
(k)
ig lnπg +

n∑
i=1

G∑
g=1

τ
(k)
ig ln q(yi|xi;βg, λg)+

+

n∑
i=1

G∑
g=1

τ
(k)
ig lnφ

(
ui;μg,Σg

)
+

n∑
i=1

G∑
g=1

τ
(k)
ig ln p (vi;αg) .

(15)

As the four terms on the right-hand side have zero cross-derivatives, they
can be maximized separately. Let us set π = {πg; g = 1, . . . , G}, β =
{βg; g = 1, . . . , G}, and λ = {λg; g = 1, . . . , G}.

4.2.1 Mixture Weights

The maximum of Q(ϑ;ϑ(k)) with respect to π, subject to the con-
straints on these parameters, is achieved bymaximizing the augmented func-
tion
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n∑
i=1

G∑
g=1

τ
(k)
ig lnπg − η

⎛⎝ G∑
g=1

πg − 1

⎞⎠ , (16)

where η is a Lagrangian multiplier. Setting the derivative of equation (16)
with respect to πg equal to zero and solving for πg yields

π(k+1)
g = n(k)

g

/
n,

where n(k)
g =

∑n
i=1 τ

(k)
ig .

4.2.2 Parameters Related to Y

Maximizing (15) with respect to β (and possibly to λ) is equivalent
to independently maximizing each of the G expressions

n∑
i=1

τ
(k)
ig ln q

(
yi|xi;βg, λg

)
. (17)

The maximization of (17) is equivalent to the maximization problem of the
generalized linear models (for the complete data), with the only difference
being that each observation (x′

i, yi)
′ contributes to the log-likelihood with a

known weight τ (k)ig . Note that this part of Q(ϑ;ϑ(k)) is also shared by the
mixtures of generalized linear models in (8).

Maximization of (17), over βg (and possibly λg), can be carried out
numerically; details can be found in Wedel and De Sarbo (1995) and Wedel
and Kamakura (2001, pp. 120–124), where mixtures of generalized linear
models are discussed.

4.2.3 Parameters Related to U

Maximizing (15) with respect to μg and Σg, g = 1, . . . , G, is equiv-
alent to independently maximizing each of the G expressions

n∑
i=1

τ
(k)
ig lnφ

(
ui;μg,Σg

)
.

In particular, we obtain

μ(k+1)
g =

1

n
(k)
g

n∑
i=1

τ
(k)
ig ui

336



The Generalized Linear Mixed Cluster-Weighted Model

and

Σ(k+1)
g =

1

n
(k)
g

n∑
i=1

τ
(k)
ig

(
ui − μ(k+1)

g

)(
ui − μ(k+1)

g

)′
.

4.2.4 Parameters Related to V

Maximizing Q(ϑ;ϑ(k)) over αg , g = 1, . . . , G, subject to the con-
straints on these parameters, is equivalent to independentlymaximizing each
of the G expressions

n∑
i=1

τ
(k)
ig ln p (vi;αg) =

q∑
r=1

n∑
i=1

τ
(k)
ig

cr∑
s=1

vrs lnαgrs.

In turn, given the local independence assumption among finite discrete co-
variates, the maximization of this function with respect toαgr, g = 1, . . . , G
and r = 1, . . . , q, subject to the constraints on these parameters, is equiva-
lent to independently maximizing each of the q expressions

n∑
i=1

τ
(k)
ig

cr∑
s=1

vrsi lnαgrs − η

(
cr∑
s=1

αgrs − 1

)
, (18)

where η is a Lagrangian multiplier. Setting the derivative of equation (18)
with respect to αgr equal to zero and solving for αgr yields

α(k+1)
gr =

n∑
i=1

τ
(k)
ig vrsi

/
n(k)
g .

4.3 Computational Aspects

The EM algorithm described above is implemented in the flexCWM
package (Mazza, Punzo and Ingrassia 2013). As far as the response variable
is concerned, the present version of the code considers the following four
distributions: Gaussian, gamma, Poisson, and binomial. Note that, for the
gamma distribution, the noncanonical “log” link is considered to allow the
domain of the link function to be the same as the permitted range of the
mean of the gamma distribution.

EM initialization. Before running the EM algorithm, the choice of the
starting values of the EM algorithm is an important issue. Among the possi-
ble initialization strategies (see, e.g., Biernacki, Celeux and Govaert 2000,
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Karlis and Xekalaki 2003, and Bagnato and Punzo 2013 for details) a ran-
dom initialization of τ (0)

i = (τ
(0)
i1 , . . . , τ

(0)
iG )′, i = 1, . . . , n, is repeated t

times and the value maximizing the observed-data log-likelihood among
these t runs is selected. In each run, each of the n vectors τ (0)

i can be ran-
domly generated in a “soft” way, by generating G positive values summing
to one, or in a “hard” way, by randomly drawn a single observation from a
multinomial distribution with probabilities (1/G, . . . , 1/G)′.

EM convergence criterion. TheAitken acceleration (Aitken 1926) is used
to estimate the asymptotic maximum of the log-likelihood at each iteration
of the EM algorithm. Based on this estimate, a decision can be made re-
garding whether or not the algorithm has reached convergence, i.e., is the
log-likelihood sufficiently close to its estimated asymptotic value (see, e.g.,
McNicholas, Murphy, McDaid and Frost 2010 for details and implementa-
tion).

5. A Simulation Study for Parameter Recovery
and Classification Assessment

Following the schemes adopted by Hwang et al. (2010) and Punzo
(2013), Monte Carlo simulations were conducted to investigate parameter
recovery of the EM algorithm. For brevity’s sake, attention will only be
focused on the component regression coefficients β.

5.1 Simulation Design

The experimental conditions we considered in the simulation study
were the distribution of Y in each group (binomial and Gaussian), sample
size (n = 200 and n = 500), degree of overlap between continuous co-
variates (see below for details), number of finite discrete covariates (q = 1
and q = 2), and number of mixture components (G = 2 and G = 3). The
number of continuous covariates was fixed at p = 2.

We generated 500 samples, from a generalized linear mixed CWM,
at each level of experimental conditions. Subsequently, we fitted all 16,000
samples (2 response component distributions × 2 sample sizes × 2 values
of overlap between continuous covariates× 2 numbers of finite discrete co-
variates × 2 numbers of mixture components × 500 replications) with a
generalized linear mixed CWM with G = 2. The parameters of the generat-
ing model were defined as follows.

Mixture weights. Mixture weights were fixed to π1 = 0.35 and π2 = 0.65
when G = 2, and to π1 = 0.18, π2 = 0.32, and π3 = 0.50 when
G = 3.
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Continuous covariates. For the (bivariate) Gaussian distributions of U |Ωg,
g = 1, . . . , G, the covariance matrices were chosen to be identity
matrices and the means were selected to lie on the bisector, with μ1 =
(0, 0)′. The mean μ2 was computed, via a numerical procedure, to
guarantee a fixed overlap, with respect to the continuous covariates,
of group 1 with group 2. In line with Bagnato, Greselin and Punzo
(2014) and Greselin and Punzo (2013), we adopted

B = exp (−B∗)

as a normalized measure of overlap, where

B∗ =
1

8
(μ1 − μ2)

′Σ−1 (μ1 − μ2) +
1

2
ln

(
|Σ|√|Σ1|+ |Σ2|

)

is the (positive) measure of overlap of Bhattacharyya (1943), with
Σ = (Σ1 +Σ2) /2. We remark that B takes values between 0 (ab-
sence of overlap) and 1 (complete overlap). In our experiments, we
considered two scenarios: B = 0.05 andB = 0.35. This meansμ2 =
(3.46164, 3.46164)′ when B = 0.05, and μ2 = (2.04922, 2.04922)′

when B = 0.35. Furthermore, we set μ3 = 2μ2 when G = 3 so that
the overlap between groups 2 and 3 was equal to the overlap between
groups 1 and 2.

Finite discrete numerical covariates. We considered cr = 10 values for
each finite discrete numerical covariate, r = 1, 2. In each group g, the
probabilitiesαgr were defined according to a binomial distribution on
the support {0, 1, . . . , 9}: for G = 2, the probability of this binomial
was fixed to 0.2 for group 1 and to 0.8 for group 2; for G = 3, the
probabilities were 0.2, 0.5, and 0.8 for groups 1, 2, and 3, respectively.

Response variable. With regard to the local regressions, the intercepts were
fixed to β0g = 0 and the p + q slopes to β1g = (0.1, . . . , 0.1)′,
g = 1, . . . , G, for both the Gaussian and the binomial cases. The
conditional standard deviation σg was set to 0.1 in each group in the
Gaussian case, while the maximum value was fixed to M = 20 in
the binomial case. Thus, from a clustering point of view, the local
regression models cannot distinguish the clusters because they have
the same parameters in all groups. This is a “strong” version of the
configuration of assignment dependence discussed in Hennig (2000).

Figure 1 shows an example of a generated data set related to the following
combination of experimental conditions: n = 200,G = 3, q = 2,B = 0.35,
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Figure 1. Example of generated data in the scenario considering a binomial response in each
group (n = 200, G = 3, q = 2, and B = 0.35).

and binomial component response distribution. It is evident here that finding
groups in the data is quite difficult; this is an aspect that must be taken into
account in the evaluation of the quality of the clustering results.

5.2 Simulation Results

To evaluate the recovery of regression parameter estimates, we com-
puted the mean squared differences of parameters and their estimates as fol-
lows:

MSD =
1

P

P∑
h=1

(
β̂h − βh

)2
,

where β̂h and βh are an estimate and its parameter, respectively, and P =
G (1 + p+ q) is the number of regression parameters.

We performed an analysis of variance (ANOVA) that included MSD
as the dependent variable and the five experimental conditions as design
factors. For all 16,000 samples, convergence towards the true model was
attained and the value of MSD was not substantial. Table 1 presents the
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Table 1. ANOVA results for the mean squared differences of regression parameter estimates.

Source d.f. Sum of Squares Mean Square F value p-value

# of mixture components (G) 1 0.63778 0.63778 1199.08351 0.00000
# of finite discrete covariates (q) 1 0.05485 0.05485 103.11653 0.00000
overlap on U (B) 1 0.00047 0.00047 0.87508 0.34957
sample size (n) 1 0.67109 0.67109 1261.71648 0.00000
distribution of Y |x,Ωg (D) 1 1.98997 1.98997 3741.34600 0.00000

G× q 1 0.00188 0.00188 3.54397 0.05978
G×B 1 0.00042 0.00042 0.78819 0.37466
q ×B 1 0.00111 0.00111 2.09531 0.14777
G× n 1 0.11580 0.11580 217.71417 0.00000
q × n 1 0.00622 0.00622 11.68813 0.00063
B × n 1 0.00027 0.00027 0.50309 0.47816
G×D 1 0.32951 0.32951 619.51938 0.00000
q ×D 1 0.00268 0.00268 5.03664 0.02483
B ×D 1 0.00001 0.00001 0.01815 0.89283
n×D 1 0.35774 0.35774 672.59070 0.00000

G× q ×B 1 0.00327 0.00327 6.15688 0.01310
G× q × n 1 0.00009 0.00009 0.17333 0.67718
G×B × n 1 0.00031 0.00031 0.57464 0.44843
q ×B × n 1 0.00024 0.00024 0.45138 0.50169
G× q ×D 1 0.00243 0.00243 4.57593 0.03244
G×B ×D 1 0.00045 0.00045 0.84651 0.35755
q ×B ×D 1 0.00064 0.00064 1.19854 0.27363
G× n×D 1 0.05860 0.05860 110.17918 0.00000
q × n×D 1 0.00311 0.00311 5.84089 0.01567
B × n×D 1 0.00042 0.00042 0.79806 0.37169

G× q ×B × n 1 0.00260 0.00260 4.87974 0.02719
G× q ×B ×D 1 0.00229 0.00229 4.30485 0.03802
G× q × n×D 1 0.00020 0.00020 0.38500 0.53495
G×B × n×D 1 0.00042 0.00042 0.78729 0.37493
q ×B × n×D 1 0.00027 0.00027 0.51239 0.47412

G× q ×B × n×D 1 0.00221 0.00221 4.14636 0.04174

Residuals 15,968 8.49317 0.00053

results of the ANOVA. Except for the overlap, the other main effects of the
design factors were statistically significant. In particular, as we can see from
Figure 2, the average MSD values improved (decreased) when G decreased
(Figure 2(a)), q decreased (Figure 2(b)), n increased (Figure 2(d)), and un-
der component Gaussian responses (Figure 2(e)). Moreover, a number of
interaction effects of the design factors were also statistically significant.

5.3 Classification Assessment

The classification performance was also investigated. Table 2 reports
the average of the misclassification rates, under all considered experimen-
tal conditions, in comparison with model (8) and model (9). Estimates for
the latter two models were obtained using the R-package flexmix (Grün and
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Figure 2. Average MSD values across the two levels of each main effect.

Leisch 2008b). The CWM results were always the best while results from
mixtures of generalized linear models were the worst. Finally, as expected,
the misclassification rates for the CWM generally improved when the over-
lap B (on the continuous covariates) decreased and when the sample size n
increased (all other experimental conditions being fixed).

6. A Comparison Among Model Selection Criteria

So far, the number of mixture components G has been treated as
known. However, it must be selected in many practical applications. To
this end, several information criteria have been proposed in the literature
(see, e.g., Fonseca and Cardoso 2005 and Fonseca 2008; 2010); Table 3
lists some of the most commonly used. In this table, l(ϑ̂) is the (maxi-
mized) observed-data log-likelihood, m is the number of free parameters,
and MAP (ẑig) is the maximum a posteriori probability operator – assuming
a value of 1 if maxj=1,...,G {ẑij} occurs at component g and 0 otherwise –
and ϑ̂ and ẑig are the estimates for ϑ and zig , respectively, obtained with the
EM algorithm.

Here, we compare the performance of the information criteria in Ta-
ble 3 in selecting the correct number of latent groups for our model (6). The
simulation study is carried out along the same lines of the previous section.
In particular, we consider response variables Y |x,Ωg having either a Gaus-
sian distribution (results in Table 4 and Table 5) or a binomial distribution
(results in Table 6 and Table 7), and we consider 200 replications. Results
are reported as average values across replications.

Concerning the Gaussian scenario, Table 4 and Table 5 summarize
the obtained results for cases in which n = 200 and n = 500, respectively.
For each replication, the EM algorithm was run for G ∈ {1, 2, 3, 4}. The
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Table 2. Misclassification rates for three different model-based clustering approaches.Values
refer to the averages across 500 replications.

Y |x,Ωg n G q B
Mixt. of generalized
linear models (8)

Mixt. of generalized
linear models with

multinomial
concomitants (9)

Generalized linear
mixed CWM (6)

Gaussian 200 2 1 0.05 0.36355 0.18649 0.00087
0.35 0.36347 0.18840 0.00694

2 0.05 0.36214 0.19561 0.00013
0.35 0.36430 0.19450 0.00080

3 1 0.05 0.50363 0.32496 0.00691
0.35 0.49987 0.34182 0.06383

2 0.05 0.50311 0.32665 0.00406
0.35 0.50497 0.34517 0.03459

500 2 1 0.05 0.35928 0.14558 0.00065
0.35 0.35668 0.15836 0.00647

2 0.05 0.36010 0.16896 0.00006
0.35 0.36030 0.17379 0.00064

3 1 0.05 0.50050 0.31532 0.00598
0.35 0.50021 0.32740 0.05687

2 0.05 0.50316 0.33416 0.00364
0.35 0.50074 0.34410 0.03133

binomial 200 2 1 0.05 0.34396 0.14580 0.00080
0.35 0.34569 0.15542 0.00668

2 0.05 0.34935 0.15902 0.00008
0.35 0.34942 0.15358 0.00079

3 1 0.05 0.49156 0.27688 0.00660
0.35 0.49107 0.29979 0.06395

2 0.05 0.50634 0.33089 0.00377
0.35 0.50278 0.34818 0.03351

500 2 1 0.05 0.34539 0.10519 0.00081
0.35 0.34478 0.12331 0.00668

2 0.05 0.34636 0.12449 0.00008
0.35 0.34689 0.13561 0.00061

3 1 0.05 0.49539 0.26118 0.00616
0.35 0.49619 0.29164 0.05654

2 0.05 0.50108 0.32647 0.00356
0.35 0.50060 0.34313 0.03088

results concern the selection rate, defined here as the proportion of times in
which each value of G is selected by the corresponding criterion on the top
of the column. The rows related to the true value of G are highlighted in
gray; to facilitate performance evaluation, the last row in each table gives
the mean selection rate, of each criterion, computed over the true values
of G. Regarding Table 4, we first note the very poor performance of the
AWE, with a considerable tendency to underestimate the number of groups.
Although with an overall lower extent, this tendency is still maintained when
the sample size increases to n = 500 (see Table 5); in particular, the criterion
is unable to see the true number of latent groups whenG = 3 andB = 0.35.
On the other hand, the best performing criterion, when n = 200, is the AIC3

(see Table 4). In the case when n = 500, all criteria except the AWE and the

343



S. Ingrassia, A. Punzo, G. Vittadini, and S.C. Minotti

Table 3. Definition and key reference for the adopted likelihood-based information criteria.

Information Criterion Definition Reference

AIC 2l(ϑ̂)− 2m Akaike (1973)

AIC3 2l(ϑ̂)− 3m Bozdogan (1994)

AICc AIC− 2
m (m+ 1)

n−m− 1
Hurvich and Tsai (1989)

AICu AICc− n ln
n

n−m− 1
McQuarrie et al. (1997)

AWE 2l(ϑ̂)− 2m

(
3

2
+ lnn

)
Banfield and Raftery (1993)

BIC 2l(ϑ̂)−m lnn Schwarz (1978)

CAIC 2l(ϑ̂)−m (1 + lnn) Bozdogan (1987)

ICL BIC+
n∑

i=1

G∑
g=1

MAP (ẑig) ln ẑig Biernacki et al. (2000)

AIC performed satisfactorily (see Table 5). Obviously, the performance of
the criteria roughly improved for increasing sample size n and decreasing
overlap B.

Results concerning the binomial scenario are summarized in Table 6
and Table 7 for sample sizes of n = 200 and n = 500, respectively. Again
in this case, the AWE is the poorest performer.

7. Case Study: The Energy Efficiency Data Set

In this section, we present the results of an application of the gener-
alized linear mixed CWM in modeling the Energy Efficiency data set avail-
able at https://archive.ics.uci.edu/ml/datasets/Energy+efficiency. The data
set was introduced by Tsanas and Xifara (2012) to study the effect of eight
covariates (relative compactness, surface area, wall area, roof area, overall
height of the building, orientation, glazing area, glazing area distribution)
on two response variables (heating load, cooling load) on n = 768 residen-
tial buildings.

For our purposes, we assumed that data were unlabeled with respect
to the dichotomous variable overall height, considered here as the group
variable. Our interest was to analyze the performance of our model (6) in
comparison with model (8) and model (9).

Because there are two pairs of variables (heating load, cooling load)
and (relative compactness, surface area) that are strongly correlated (with
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Table 4. Comparison among model selection criteria: selection rates over 200 replications
for G ∈ {1, 2, 3, 4}. Response: Gaussian; sample size: n = 200.

G q B fitted G AIC AICc AICu AIC3 AWE BIC CAIC ICL

2 1 0.05 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.810 0.995 1.000 0.990 1.000 1.000 1.000 1.000
3 0.130 0.005 0.000 0.010 0.000 0.000 0.000 0.000
4 0.060 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.35 1 0.000 0.000 0.000 0.000 0.980 0.000 0.000 0.000
2 0.805 1.000 1.000 0.995 0.020 1.000 1.000 1.000
3 0.140 0.000 0.000 0.005 0.000 0.000 0.000 0.000
4 0.055 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.05 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.940 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.35 1 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.000
2 0.960 1.000 1.000 1.000 0.990 1.000 1.000 1.000
3 0.035 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 1 0.05 1 0.000 0.000 0.000 0.000 0.490 0.000 0.000 0.000
2 0.000 0.025 0.065 0.005 0.510 0.135 0.355 0.125
3 0.680 0.955 0.930 0.925 0.000 0.860 0.640 0.870
4 0.320 0.020 0.005 0.070 0.000 0.005 0.005 0.005

0.35 1 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
2 0.025 0.385 0.930 0.245 0.000 0.975 1.000 0.975
3 0.710 0.615 0.070 0.740 0.000 0.025 0.000 0.025
4 0.265 0.000 0.000 0.015 0.000 0.000 0.000 0.000

2 0.05 1 0.000 0.000 0.000 0.000 0.075 0.000 0.000 0.000
2 0.005 0.060 0.170 0.005 0.925 0.070 0.170 0.065
3 0.865 0.940 0.830 0.940 0.000 0.930 0.830 0.935
4 0.130 0.000 0.000 0.055 0.000 0.000 0.000 0.000

0.35 1 0.000 0.000 0.000 0.000 0.955 0.000 0.000 0.000
2 0.000 0.625 0.990 0.075 0.045 0.805 0.990 0.810
3 0.810 0.375 0.010 0.890 0.000 0.195 0.010 0.190
4 0.190 0.000 0.000 0.035 0.000 0.000 0.000 0.000

means over gray rows 0.823 0.860 0.730 0.935 0.376 0.751 0.685 0.753
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Table 5. Comparison among model selection criteria: selection rates over 200 replications
for G ∈ {1, 2, 3, 4}. Response: Gaussian; sample size: n = 500.

G q B fitted G AIC AICc AICu AIC3 AWE BIC CAIC ICL

2 1 0.05 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.770 0.965 1.000 0.995 1.000 1.000 1.000 1.000
3 0.150 0.035 0.000 0.005 0.000 0.000 0.000 0.000
4 0.080 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.35 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.770 0.945 1.000 0.995 1.000 1.000 1.000 1.000
3 0.140 0.050 0.000 0.005 0.000 0.000 0.000 0.000
4 0.090 0.005 0.000 0.000 0.000 0.000 0.000 0.000

2 0.05 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.915 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.065 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.35 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.955 0.990 1.000 0.995 1.000 1.000 1.000 1.000
3 0.030 0.010 0.000 0.005 0.000 0.000 0.000 0.000
4 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 1 0.05 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.345 0.000 0.000 0.000
3 0.770 0.960 0.985 0.970 0.655 1.000 1.000 1.000
4 0.230 0.040 0.015 0.030 0.000 0.000 0.000 0.000

0.35 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 1.000 0.085 0.295 0.175
3 0.805 0.980 0.995 0.995 0.000 0.915 0.705 0.825
4 0.195 0.020 0.005 0.005 0.000 0.000 0.000 0.000

2 0.05 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.180 0.000 0.000 0.000
3 0.865 0.980 0.980 0.980 0.820 0.990 0.990 0.990
4 0.135 0.020 0.020 0.020 0.000 0.010 0.010 0.010

0.35 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 1.000 0.015 0.015 0.015
3 0.880 0.985 0.985 0.985 0.000 0.985 0.985 0.985
4 0.120 0.015 0.015 0.015 0.000 0.000 0.000 0.000

means over gray rows 0.841 0.976 0.993 0.989 0.684 0.986 0.960 0.975
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Table 6. Comparison among model selection criteria: selection rates over 200 replications
for G ∈ {1, 2, 3, 4}. Response: binomial; sample size: n = 200.

G q B fittedG AIC AICc AICu AIC3 AWE BIC CAIC ICL

2 1 0.05 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.980 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.35 1 0.000 0.000 0.000 0.000 0.930 0.000 0.000 0.000
2 0.940 1.000 1.000 1.000 0.070 1.000 1.000 1.000
3 0.045 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.05 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.35 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 1 0.05 1 0.000 0.000 0.000 0.000 0.360 0.000 0.000 0.000
2 0.000 0.000 0.015 0.000 0.645 0.050 0.185 0.050
3 0.920 0.990 0.990 0.980 0.000 0.955 0.820 0.955
4 0.085 0.015 0.000 0.025 0.000 0.000 0.000 0.000

0.35 1 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
2 0.005 0.240 0.860 0.170 0.000 0.950 0.995 0.950
3 0.845 0.760 0.140 0.820 0.000 0.050 0.005 0.050
4 0.150 0.000 0.000 0.010 0.000 0.000 0.000 0.000

2 0.05 1 0.000 0.000 0.000 0.000 0.050 0.000 0.000 0.000
2 0.000 0.040 0.085 0.000 0.950 0.045 0.140 0.045
3 0.920 0.960 0.915 0.960 0.000 0.955 0.860 0.955
4 0.080 0.000 0.000 0.040 0.000 0.000 0.000 0.000

0.35 1 0.000 0.000 0.000 0.000 0.850 0.000 0.000 0.000
2 0.000 0.490 0.950 0.085 0.150 0.760 0.975 0.765
3 0.870 0.510 0.050 0.890 0.000 0.240 0.025 0.235
4 0.130 0.000 0.000 0.025 0.000 0.000 0.000 0.000

mean over the gray rows 0.934 0.903 0.762 0.956 0.384 0.775 0.714 0.774
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Table 7. Comparison among model selection criteria: selection rates over 200 replications
for G ∈ {1, 2, 3, 4}. Response: binomial; sample size: n = 500.

G q B fitted G AIC AICc AICu AIC3 AWE BIC CAIC ICL

2 1 0.05 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.980 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.35 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.935 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.055 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.05 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.35 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 1 0.05 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.180 0.000 0.000 0.000
3 0.880 0.970 0.980 0.975 0.820 0.995 1.000 1.000
4 0.120 0.030 0.020 0.025 0.000 0.005 0.000 0.000

0.35 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 1.000 0.035 0.245 0.115
3 0.920 0.995 0.995 0.995 0.000 0.965 0.755 0.885
4 0.080 0.005 0.005 0.005 0.000 0.000 0.000 0.000

2 0.05 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.125 0.000 0.000 0.000
3 0.940 0.965 0.980 0.965 0.875 0.985 0.985 0.985
4 0.060 0.035 0.020 0.035 0.000 0.015 0.015 0.015

0.35 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
3 0.955 0.995 0.995 0.995 0.000 1.000 1.000 1.000
4 0.045 0.005 0.005 0.005 0.000 0.000 0.000 0.000

mean over the gray rows 0.951 0.991 0.994 0.991 0.712 0.993 0.968 0.984
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Table 8. Description of the variables in the Energy Efficiency data set.

Variable description Original description Present notation
Number of values
(if finite discrete)

Heating Load Response Y
Cooling Load Response Not used

Relative Compactness Covariate U
Surface Area Covariate Not used
Wall Area Covariate V1 7
Roof Area Covariate V2 4
Orientation Covariate V3 4
Glazing Area Covariate V4 4
Glazing Area Distribution Covariate V5 6

Overall Height Covariate Group variable 2

Table 9. Energy Efficiency data set. Confusion matrices for three mixture-based approaches.

(a) Linear Gaussian
CWM
�������True

Est.
1 2

Low Height 384 –
High Height – 384

(b) Mixture of linear
(Gaussian) models
�������True

Est.
1 2

Low Height 350 34
High Height 191 193

(c) Mixture of linear
models with multino-
mial concomitants
�������True

Est.
1 2

Low Height 384 –
High Height 64 320

correlation coefficient of 0.976 and -0.992, respectively), we reduced the
number of considered variables by only taking into account the variables
heating load and relative compactness. Table 8 provides information about
the original variables and the variables taken into account in our case study
(according to the notation introduced in Section 2); for each finite discrete
variable, the number of values is also given.

Table 9 shows the confusionmatrices for all of the fitted models. They
were directly estimated with G = 2 and using a Gaussian response variable
in each group. As we can see from Table 9, our model produced a perfect
classification while the other competitive approaches did not work well.

8. Concluding Remarks

In this paper, we have introduced the generalized linear mixed cluster-
weighted model. Different from previous work about cluster-weighted mod-
els, it allows modelization of various types of response variables as well as
covariates of mixed-type (finite discrete and continuous). Furthermore, we
have described an EM algorithm for parameter estimation and have given
sufficient conditions for model identifiability under the assumption of Gaus-
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sian covariates. Broad simulation studies have been presented in order to
investigate the parameter recovery of the algorithm and the performance of
different model selection criteria in selecting the number of mixture com-
ponents. When the proposed model was applied to real data in Section 7, it
demonstrated optimal classification performance in contrast to other existing
mixture-based approaches.

Appendix

Proof of Theorem 1. The proof builds upon results given in Hennig (2000).
Consider the class of models defined in (10) and prove that the equality

G∑
g=1

q(y|u;βg, λg)φ(u;μg,Σg)πg =

G̃∑
s=1

q(y|u; β̃s, λ̃s)φ(u; μ̃s, Σ̃s)π̃s

(19)
holds for almost all u ∈ R

p and for all y ∈ Y if and only if G = G̃ and
for each g ∈ {1, . . . , G} there exists s ∈ {1, . . . , G} such that βg = β̃s,

λg = λ̃s, μg = μ̃s,Σg = Σ̃s and πg = π̃s.
Summing (or integrating) each side of the equality (19) over Y yields

G∑
g=1

φ(u;μg,Σg)πg =

G̃∑
s=1

φ(u; μ̃s, Σ̃s)π̃s. (20)

Let us set

p(u;μ,Σ,π) =

G∑
g=1

φ(u;μg,Σg)πg

and

p(u; μ̃, Σ̃, π̃) =

G̃∑
s=1

φ(u; μ̃s, Σ̃s)π̃s,

where μ =
{
μg; g = 1, . . . , G

}
, Σ = {Σg; g = 1, . . . , G}

and π = {πg, ; g = 1, . . . , G}; analogous notation applies for μ̃, Σ̃ and π̃.
Afterwards, based on Bayes’ theorem, we get

p(Ωg|u;μ,Σ,π) =
φ(u;μg,Σg)πg∑G
j=1 φ(u;μj ,Σj)πj

=
φ(u;μg,Σg)πg

p(u;μ,Σ,π)
, g = 1, . . . , G, (21)
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and thus rewrite model (7) as

p(u, y;ϑ) = p(u;μ,Σ,π)

G∑
g=1

q(y|u;βg, λg)p(Ωg|u;μ,Σ,π)

= p(u;μ,Σ,π)p(y|u;ϑ) (22)

where

p(y|u;ϑ) =
G∑

g=1

q(y|u;βg, λg)p(Ωg|u;μ,Σ,π), y ∈ Y. (23)

Now, the class of models defined by (23) is identifiable, for almost all u ∈
R
p, if the equality

G∑
g=1

q(y|u;βg, λg)p(Ωg|u;μ,Σ,π) =

G̃∑
s=1

q(y|u; β̃s, λ̃s)p(Ωs|u; μ̃, Σ̃, π̃)

implies thatG = G̃ and for each g ∈ {1, . . . , G} there exists s ∈ {1, . . . , G}
such that βg = β̃s, λg = λ̃s, μg = μ̃s, Σg = Σ̃s and πg = π̃s.

In Section 2.1, we remarked that the expected value μg of Y |Ωg is
related to the covariates X through the relation h(μg) = β0g + β′

1gx, g =
1, . . . , G. Let us introduce the set

U =
{
u ∈ R

p : for each g, j ∈ {1, . . . , G}, and s, t ∈ {1, . . . , G̃} :

β0g + β′
1gu = β0j + β′

1ju ⇒ (β0g,β
′
1g)

′ = (β0j ,β
′
1j)

′,

β0g + β′
1gu = β̃0s + β̃

′
1su ⇒ (β0g,β

′
1g)

′ = (β̃0s, β̃
′
1s)

′,

β̃0s + β̃
′
1su = β̃0t + β̃

′
1tu ⇒ (β̃0s, β̃

′
1s)

′ = (β̃0t, β̃
′
1t)

′
}
.

Since (β′
g, λg)

′ �= (β′
j , λj)

′ for g �= j according to (10), it follows that
the quantities (β0g + β′

1gu, λg), g = 1, . . . , G are pairwise distinct for all
u ∈ U and the set U has probability one according to the p-variate Gaussian
distribution (indeed, the complement of U , i.e. Rp \ U , is formed by a finite
set of hyperplanes of Rp and thus Rp \ U has null measure).

For any fixed u ∈ U , according to (21), {p(Ω1|u;μ,Σ,π), . . . ,

p(ΩG|u;μ,Σ,π)} and {p(Ω1|u; μ̃, Σ̃, π̃), . . . , p(ΩG̃|u; μ̃, Σ̃, π̃)} are sets
of positive numbers summing to one. It follows that, for each u ∈ U , the
density p(y|u;ϑ) given in (23) is a mixture of distributions of kind (11);
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then it is identifiable due to the assumptions of the theorem. Thus G = G̃
and there exists s ∈ {1, . . . , G} such that

βg = β̃s, λg = λ̃s and p(Ωg|u;μ,Σ,π) = p(Ωs|u; μ̃, Σ̃, π̃). (24)

Moreover, since p(Ωg|u;μ,Σ,π) and p(Ωs|u; μ̃, Σ̃, π̃) are defined accord-
ing to (21), from (24) and (20) we get:

πg =

∫
U
πgφ(u;μg,Σg)du

=

∫
U

πgφ(u;μg,Σg)∑G
j=1 φ(u;μj ,Σj)πj

⎛⎝ G∑
j=1

φ(u;μj ,Σj)πj

⎞⎠ du

=

∫
U
p(Ωg|u;μ,Σ,π)

⎛⎝ G̃∑
t=1

φ(u; μ̃t, Σ̃t)π̃t

⎞⎠ du

=

∫
U
p(Ωs|u; μ̃, Σ̃, π̃)

⎛⎝ G̃∑
t=1

φ(u; μ̃st, Σ̃t)π̃t

⎞⎠ du

=

∫
U

π̃sφ(u; μ̃s, Σ̃s)∑G̃
t=1 φ(u; μ̃t, Σ̃t)π̃t

⎛⎝ G̃∑
t=1

φ(u; μ̃t, Σ̃tπ̃t

⎞⎠ du

=

∫
U
π̃sφ(u; μ̃s, Σ̃s)du = π̃s.

Thus for the same pair (g, s) in (24), it results πg = π̃s. Finally, we get

φ(u;μg,Σg) =
p(Ωg|u;μ,Σ,π)

πg

⎛⎝ G∑
g=1

φ(u;μg,Σg)πg

⎞⎠
=

p(Ωs|u; μ̃, Σ̃, π̃)

π̃s

⎛⎝ G̃∑
s=1

φ(u; μ̃s, Σ̃s)π̃s

⎞⎠
= φ(u; μ̃s, Σ̃s).

From the identifiability of Gaussian distributions, again for the same pair
(g, s) in (24), it follows that

μg = μ̃s and Σg = Σ̃s.

This completes the proof.
�
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