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1 Introduction

The study of four-dimensional anti-de Sitter solutions of string/M-theory is of considerable

interest both in the context of flux compactifications and of the AdS/CFT correspondence.

The prototypical class of such solutions is the Freund-Rubin class [1] in M-theory, where

the flux is along the anti-de Sitter spacetime and the internal manifold is Einstein. This

class allows for various amounts of supersymmetry, which further constrain the geometry

of the internal manifold M7. Maximal supersymmetry imposes M7 ' S7, while with N = 2

supersymmetry, which is the focus of this paper, M7 is Sasaki-Einstein. Outside of this

class very few solutions are known in M-theory [2–4].

From a holographic perspective, AdS4 solutions are dual to Chern-Simons-matter field

theories in three dimensions. A good control of the correspondence typically requires

extended supersymmetry, and N = 2 provides a nice balance between control and variety.

– 1 –



J
H
E
P
1
0
(
2
0
1
8
)
0
7
1

When in M-theory (and its type IIA reduction), the sum of the Chern-Simons levels of

the gauge groups that characterize the field theory is zero. A non-zero sum corresponds

to a non-zero Romans mass in type IIA string theory [5, 6]. So far, almost all known

N = 2 solutions of massive type IIA supergravity are numerical [7–10], with one notable

exception being the Guarino-Jafferis-Varela solution [11]. In this paper, we overturn this

status, finding a vast number of analytic solutions.

We will analyze the constraints imposed by supersymmetry by employing the “pure

spinor” method, originally devised for N = 1 solutions [12, 13]. Adapting this method

to N = 2 is not entirely straightforward. Until recently, in most of the literature one

has resorted to imposing, on top of N = 1 supersymmetry, the presence of a vector field

that leaves all fields but the supersymmetry parameters invariant, thus representing the

R-symmetry action. This has proven useful, but has to be supplemented by an inspired

Ansatz, and so far has resulted in the aforementioned numerical solutions.

A different approach has been put forward in [14], based on the work of [15]. In the

latter reference, the conditions for supersymmetry were expressed in terms of differential

forms in the spirit of generalized geometry, without further assumptions on the form of the

solution. In [14], these were adapted to the specific case of N = 2 AdS4 ×M6 solutions of

type IIB supergravity, obtaining a set of N = 2 pure spinor equations. After some work

this resulted in a system of partial differential equations which characterize all possible

solutions. In this paper we apply the same idea to type IIA supergravity.

The set of N = 2 pure spinor equations we obtain superficially resembles that of [14]

in IIB; as is the case for N = 1, it is obtained by exchanging odd with even pure spinors.

However, the geometric constraints that follow differ early on in the analysis. While in IIB

the structure group on M6 is exclusively the identity, in IIA it can be either the identity or

SU(2).1 In this paper we will focus on the SU(2) structure case, leaving the identity struc-

ture for future work.2 The set of constraints we obtain from supersymmetry on the SU(2)

structure also imply the Bianchi identities for the form fields, and all equations of motion.

Within the SU(2) structure case, we find two classes which we call “class K” and

“class HK”, because the internal manifold M6 contains a four-dimensional subspace M4

equipped with either a Kähler or a hyper-Kähler metric. We work out the supersymmetry

constraints in full detail for both classes. Class HK leads to one local metric. On the other

hand, class K leads to a very rich structure of solutions.

In particular, a simple and natural Ansatz (inspired by [18]) is that M6 admits a

complex structure. After imposing this, the problem of finding solutions reduces to a single

ordinary differential equation (ODE) of Riccati type. The analysis is further subdivided

according to whether M4 is Kähler-Einstein, or is a product of two Riemann surfaces. In

both cases we find the most general solution to the ODE analytically.

This results in two new families of analytic solutions. The fully regular ones are

identified with the numerical solutions we mentioned above [7–10]. In the massless limit,

they result in the IIA reduction of various previously-known Sasaki-Einstein manifolds:

1This parallels what happens for N = 1: IIA solutions can have SU(3) or SU(2) structure, while in IIB

only the latter is allowed [16].
2N = 2 solutions with SU(2) structure have been previously studied in [17].
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the so-called Y p,k [19], a generalization thereof called Ap,q,r [10, 20, 21], and the older

M3,2 [22, 23], Q1,1,1 [24], as well as the Fubini-Study metric on CP3. As already suggested

by numerical evidence in [9], a certain “maximal” massive deformation exists, which results

(when M4 = CP2) in the Guarino-Jafferis-Varela solution [11].

Beyond this maximal deformation, the solutions still exist, but develop singularities

that have a physical interpretation as corresponding to the presence of various orientifold

planes. In most cases these are smeared in some directions and localized in others; some

limits of the parameters however produce solutions with fully localized O8-planes.

The rest of the paper is structured as follows. In section 2 we specialize the system of

ten-dimensional equations obtained in [15] to N = 2 AdS4 IIA solutions. As we mentioned,

the analysis is similar to the one in IIB [14, section 2,3], but some differences begin to

emerge already here, and in particular we see that the SU(2) structure case is admissible,

which we then focus on. In section 3 we analyze the system for this case by eliminating

redundancies and obtaining the geometrical consequences of the system; the two classes K

and HK are analyzed in turn. Being class HK rather limited, we devote section 4 to class

K, under the assumption that M6 admits a complex structure. As anticipated, we obtain

two main families of analytic solutions, depending on several parameters. We summarize

our findings in section 4.3.

2 Reduction of the ten-dimensional supersymmetry equations

In this section we will specialize the system of equations obtained in [15] as a set of necessary

and sufficient conditions for any ten-dimensional solution of type II supergravity to preserve

superymmetry, to the case of an AdS4 background of type IIA supergravity preserving

N = 2 supersymmetry. The process is similar to the one followed for type IIB supergravity

in [14] and we refer the reader there for more details, especially on conventions.

We begin by reviewing the system of equations of [15], which are summarized in section

3.1 of that paper, focusing on the following subset of equations:

dH(e−φΦ) = −(K̃ ∧+ιK)F(10d) , (2.1a)

dK̃ = ιKH , ∇(MKN) = 0 . (2.1b)

Here φ is the dilaton, H is the NS-NS three-form field strength, dH ≡ d−H∧, and F(10d) is

an even form obtained as a formal sum of all the R-R field strengths. λ(Fp) ≡ (−1)bp/2cFp,

for Fp a p-form.

Moreover, Φ in (2.1) is an even form that corresponds via the Clifford map γM1...Mk 7→
dxM1∧. . .∧dxMk to the bispinor ε1⊗ε2, where ε1,2 are the parameters of the supersymmetry

transformations (which we take to be two Majorana-Weyl spinors of positive and negative

chirality respectively). The vector K and the one-form K̃ are defined by

K ≡ 1

64
(ε1ΓM ε1 + ε2ΓM ε2)∂M , K̃ ≡ 1

64
(ε1ΓM ε1 − ε2ΓM ε2)dxM . (2.2)

As we see in the second equation of (2.1b), K is a Killing vector and is in fact a symmetry

of all fields in a solution.
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We will apply (2.1) to AdS4 solutions, meaning that we will take all fields to preserve

its SO(3, 2) isometry group. In particular we will take the metric to be of the warped

product form:

ds2
10 = e2Ads2

AdS4
+ ds2

M6
. (2.3)

The symmetry requirement also implies that the H field will only be a form on M6, while

the R-R field strengths will be decomposed as

F(10d) = e4Avol4 ∧ ?6λ(F ) + F , F = F0 + F2 + F4 + F6 . (2.4)

The supersymmetry parameters ε1,2 will also be sums of tensor products of spinors on

AdS4 and M6. For N = 2 supersymmetry, the decomposition reads

ε1 =

2∑
I=1

χI+ ⊗ ηI1+ +

2∑
J=1

χJ− ⊗ ηJ1− , (2.5a)

ε2 =
2∑
I=1

χI+ ⊗ ηI2− +
2∑

J=1

χJ− ⊗ ηJ2+ . (2.5b)

The χ’s are a basis of AdS4 Killing spinors:

∇µχI± =
1

2
γµχ

I
∓ , ∇µχI± = −1

2
χI∓γµ , (2.6)

where µ = 0, . . . , 3. We will assume χ1
+ and χ2

+ to be linearly independent, since otherwise

we would only have N = 1 supersymmetry. The gamma matrices decompose according to

Γµ = eAγµ ⊗ I , Γm+3 = γ5 ⊗ γm , Γ11 ≡ Γ0 . . .Γ9 = γ5 ⊗ γ7 , (2.7)

with m = 1, 2, . . . 6. γ5 and γ7 are the external and internal chirality operators.

Let us now reduce (2.1) for this case of N = 2 AdS4 solutions. We start with (2.1b):

K̃, K decompose as

K̃µ =
eA

32

2∑
I,J=1

χI+γµχ
J
+(ηI1+η

J
1+ − ηI2−η

J
2−) , K̃m = − 1

16
Re(χ1

+χ
2
−ξ̃m) , (2.8a)

Kµ =
e−A

32

2∑
I,J=1

χI+γ
µχJ+(ηI1+η

J
1+ + ηI2−η

J
2−) , Km = − 1

16
Re(χ1

+χ
2
−ξ

m) , (2.8b)

where

ξ̃m ≡ η1
1+γmη

2
1− − η1

2−γmη
2
2+ , ξm ≡ η1

1+γ
mη2

1− + η1
2−γ

mη2
2+ . (2.9)

We thus find that (2.1b) gives

η
(I
1+η

J)
1+ = η

(I
2+η

J)
2+ ≡

1

2
cIJeA , −iη[I

1+η
J ]
1+ = −iη[I

2+η
J ]
2+ ≡ ε

IJf , (2.10)

where cIJ are constants, and

d(eAf) = −1

2
Imξ̃ , dξ̃ = iξH , Im(ξ) = 0 , ∇(nξm) = 0 . (2.11)
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Hence ξ is a Killing vector and in fact realizes the R-symmetry, acting on the I index

in (2.5). Notice that there are subtle sign differences in these formulas with respect to

similar ones in IIB [14].

To reduce (2.1a), we write Φ as a wedge product of external and internal forms:

Φ =
∑
IJ

(
−χI+χJ+∧ηI1+η

J
2−+χI+χ

J
−∧ηI1+η

J
2++χI−χ

J
+∧ηI1−ηJ2−+χI−χ

J
−∧ηI1−ηJ2+

)
. (2.12)

Again we use bispinors to denote the corresponding polyform under the Clifford map. Us-

ing (2.6) we can derive the exterior differential of the four-dimensional spacetime polyforms:

d(χI±χ
J
±) = 2

∑
k

(
1− 1

4
(−1)k(4− 2k)

)
Re(χI∓χ

J
±)k , (2.13a)

d(χI±χ
J
∓) = 2i

∑
k

(
1 +

1

4
(−1)k(4− 2k)

)
Im(χI∓χ

J
∓)k , (2.13b)

where k is the form degree. Using this in (2.1a) and factoring spacetime forms, we get

purely internal equations:

dH

(
e2A−φφ

(IJ)
+

)
− 2eA−φReφ

(IJ)
− = 0 , (2.14a)

dH

(
e3A−φReφ

[IJ ]
−

)
= 0 , (2.14b)

dH

(
eA−φImφ

[IJ ]
−

)
− e−φImφ

[IJ ]
+ =

1

8
eAfFεIJ ; (2.14c)

and

dH

(
e3A−φImφ

(IJ)
−

)
− 3e2A−φImφ

(IJ)
+ =

1

16
cIJe4A ? λ(F ) , (2.14d)

dH

(
e−φφ

[IJ ]
+

)
= − 1

16
(
¯̃
ξ ∧+ιξ)Fε

IJ , (2.14e)

dH

(
e4A−φφ

[IJ ]
+

)
− 4e3A−φReφ

[IJ ]
− = − i

16
(
¯̃
ξ ∧+ιξ)e

4A ? λ(F )εIJ , (2.14f)

where

φIJ+ ≡ ηI1+η
J
2+ , φIJ− ≡ ηI1+η

J
2− , (2.15)

and
¯̃
ξ is the complex conjugate of ξ̃.

As was the case for the corresponding system of equations in type IIB supergravity [14],

the system (2.14), although alarmingly large, has a high degree of redundancy. For instance,

we will see soon that cIJ can be set proportional to the identity; after that one can see

that the equations that involve the R-R fields are redundant, except for (2.14c). Also,

the I 6= J components are redundant, since the I = J ones furnish two copies of the

pure spinor equations [12, 13] for N = 1 AdS4 solutions. Finally, the remaining “pairing

equations” [15, (3.1c,d)] are redundant as for [14].

In spite of this redundancy, (2.14) will be more convenient for our analysis than a

repeated application of the N = 1 equations [13].

– 5 –
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2.1 Parametrization of the pure spinors

In this section we will parametrize the pure spinors φIJ± in terms of a set of differential forms.

Before introducing the parametrization, we will fix the constants cIJ of (2.10) as

cIJ = 2δIJ , (2.16)

where δIJ is the Kronecker delta. This is permitted as the decomposition Ansatz (2.5) sets

the internal spinors only up to a GL(2,R) transformation that leaves invariant the norms

‖ηIi+‖ (which are equal to eA, by (2.10)). The details of this transformation can be found

in [14]. Since c12 = η
(1
i+η

2)
i+ = 0, from η

[1
i+η

2]
i+ = η1

i+η
2
i+ and |η1

i+η
2
i+| ≤

√
‖η1
i+‖‖η2

i+‖ it

follows that

|f | ≤ eA . (2.17)

Furthermore, instead of ηIi+ we will work with

η±i+ =
1√
2

(η1
i+ ± iη2

i+) (2.18)

which have charge ±1 under the U(1) ' SO(2) R-symmetry. From (2.10) and (2.16) we

then have

η±i+η
∓
i+ = 0 , η±i+η

±
i+ = f∓ ≡ eA ∓ f . (2.19)

The internal spinors η±i+ can be parametrized in terms of a chiral spinor η+ of positive

chirality (and its complex conjugate η− ≡ (η+)c) as follows:

η+
1+ =

√
f−η+ , η+

2+ =
√
f−

(
aη+ +

1

2
bw3η−

)
, (2.20a)

η−1+ =
√
f+

1

2
w1η− , η−2+ =

√
f+

1

2
cw2

(
a∗η− −

1

2
bw3η+

)
, (2.20b)

where the wi are one-forms, a is a function taking value in C and b, c are real functions.

The latter satisfy

|a|2 + b2 = 1 , c−1 =
(
|z1|2b2 + |a|2

)1/2
, z1 ≡

1

2
w2 · w3 , (2.21)

where · denotes the inner product.

The chiral spinor η+ defines an SU(3) structure, characterized by a real two-form J

and a holomorphic three-form Ω, as

η+η+ =
1

8
e−iJ , η+η− = −1

8
Ω , (2.22)

with J , Ω satisfying J ∧ Ω = 0 and J ∧ J ∧ J = 3
4 iΩ ∧ Ω.

When they are not all linearly dependent, the one-forms wi parametrize an identity

structure and are holomorphic with respect to the almost complex structure J defined by

η+. We will leave this generic case to future work; in this paper, we will limit ourselves to

analyzing the case of an SU(2) structure, for which the wi are all linearly dependent. Such

a case is not guaranteed to be compatible with the supersymmetry equations a priori, and

– 6 –
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indeed it is not allowed in type IIB supergravity [14]. However, as we will see, in type IIA

supergravity solutions with N = 2 supersymmetry and an SU(2) structure do exist.

We will thus take

w2 = z3w1 , w3 = z∗2w1 , {z2 , z3 ∈ C(M6,C) : |z2| = |z3| = 1} , (2.23)

and set w1 ≡ w, with normalized norm ||w||2 = 2. Note that z1 ≡ 1
2w2 · w3 = z∗2z

∗
3 , hence

|z1|2 = 1 and c = 1. The SU(2) structure is defined by the one-form w, a real two-form j

and a holomorphic two-form ω, with

J = j +
i

2
w ∧ w , Ω = w ∧ ω , (2.24)

and w, j and ω satisfying ιwj = 0 = ιwω, j ∧ ω = 0 and j ∧ j = 1
2ω ∧ ω.

We can now express the pure spinors

φ±±+ ≡ η±1+η
±
2+ , φ±±− ≡ η±1+η

±
2− , (2.25)

in terms of forms:

φ++
+ =

1

8
f−

[
a∗
(
e−ij +

1

2
w ∧ w ∧ e−ij

)
+

1

2
bz2(w ∧ w ∧ ω − 2ω)

]
, (2.26a)

φ++
− =

1

8
f−
[
−aw ∧ ω − bz∗2w ∧ e−ij

]
, (2.26b)

φ+−
+ =

1

8

√
f+f−

[
1

2
az∗3(w ∧ w ∧ ω − 2ω)− bz∗3z∗2

(
e−ij +

1

2
w ∧ w ∧ e−ij

)]
, (2.26c)

φ+−
− =

1

8

√
f+f−

[
−a∗z3w ∧ e−ij + bz3z2w ∧ ω

]
, (2.26d)

φ−+
+ =

1

8

√
f+f−

[
1

2
a∗(w ∧ w ∧ ω + 2ω) + bz2

(
eij +

1

2
w ∧ w ∧ eij

)]
, (2.26e)

φ−+
− =

1

8

√
f+f−

[
aw ∧ eij − bz∗2w ∧ ω)

]
, (2.26f)

φ−−+ =
1

8
f+

[
az∗3

(
eij +

1

2
w ∧ w ∧ eij

)
− 1

2
bz∗3z

∗
2(w ∧ w ∧ ω + 2ω)

]
, (2.26g)

φ−−− =
1

8
f+

[
−a∗z3w ∧ w ∧ ω − bz3z2w ∧ eij

]
(2.26h)

We also have

(ξ)[ = i
√
f+f− (w + z3w) , (2.27a)

ξ̃ = i
√
f+f− (w − z3w) , (2.27b)

where (ξ)[ is the one-form dual to the vector ξ.

– 7 –



J
H
E
P
1
0
(
2
0
1
8
)
0
7
1

2.2 System of equations

In terms of the pure spinors φ±±± introduced in (2.25), the system of supersymmetry equa-

tions (2.14) reads

dH

[
e2A−φφ+−

+

]
− eA−φ(φ++

− + φ−−− ) = 0 , (2.28a)

dH

[
e2A−φ(φ++

+ + φ−−+ )
]
− 2eA−φRe(φ+−

− + φ−+
− ) = 0 , (2.28b)

dH

[
e2A−φφ−+

+

]
− eA−φ(φ++

− + φ−−− ) = 0 , (2.28c)

dH

[
e3A−φIm(φ+−

− − φ−+
− )

]
= 0 , (2.28d)

dH

[
e3A−φ(φ++

− − φ−−− )
]
− 3e2A−φ(φ+−

+ − φ−+
+ ) = 0 , (2.28e)

dH

[
eA−φRe(φ+−

− − φ−+
− )

]
− e−φRe(φ++

+ − φ−−+ ) =
1

4
eAfF , (2.28f)

and

dH

[
e3A−φIm(φ+−

− + φ−+
− )

]
− 3e2A−φIm(φ++

+ + φ−−+ ) =
1

4
e4A ? λ(F ) , (2.29a)

dH

[
e−φ(φ++

+ − φ−−+ )
]

=
i

8
(
¯̃
ξ ∧+ιξ)F , (2.29b)

dH

[
e4A−φ(φ++

+ − φ−−+ )
]
− 4ie3A−φIm(φ+−

− − φ−+
− ) = −1

8
(
¯̃
ξ ∧+ιξ)e

4A ? λ(F ) . (2.29c)

We also have

Im(ξ) = 0 , (2.30a)

d(eAf) +
1

2
Im(ξ̃) = 0 , (2.30b)

dξ̃ − iξH = 0 , (2.30c)

∇(nξm) = 0 , (2.30d)

which were obtained from (2.1b) and the condition that the ten-dimensional vector K

is Killing.

We are showing (2.29) separately because they are in fact implied by (2.28). Even if

they are redundant, (2.29a) and (2.29b) are useful to show that the equations of motion and

the Bianchi identities of the R-R fields are automatically satisfied; see also our comment

after (2.15).

Acting with dH on (2.29a), and using the imaginary part of (2.28b) it follows that

dH(e4A ? λ(F )) = 0 , (2.31)

which are the equations of motion. Acting with dH on (2.28f), using (2.30b), and subtract-

ing the real part of (2.29b), it follows that

dHF = 0 , (2.32)

which are the Bianchi identities of the R-R fields. This holds under the assumption that

the Bianchi identity for H, dH = 0, is satisfied. Although it is not immediately obvious,

we shall see that the NS-NS Bianchi identity is in fact implied by the supersymmetry

equations.

– 8 –



J
H
E
P
1
0
(
2
0
1
8
)
0
7
1

3 Analysis of the supersymmetry equations

In this section we analyze the supersymmetry equations obtained in section 2. As we

anticipated, not all the equations are independent, and we will be able to reduce them to a

significantly smaller set which characterizes the SU(2) structure on the internal manifold.

We will distinguish two cases. This is because certain equations, such as the zero-form

component of (2.28c), have an overall factor of b, and can thus be solved either by setting

b = 0 or by keeping b 6= 0 and setting to zero the remaining factor. It turns out that these

two cases are qualitatively different, and we will consider them in separate subsections.

We will refer to the first case as “Class K” and the second one as “Class HK”, because

in these two cases M6 will turn out to contain respectively a Kähler and a hyper-Kähler

four-dimensional submanifold.

3.1 Class K

In this section we look at the case b = 0. The condition (2.30a), Im(ξ) = 0, fixes z3 = −1,

while (2.30b) gives

d(eAf) = −
√
f+f−Rew . (3.1)

We define y ≡ eAf , which we will use as a coordinate, so that

Rew = − 1√
f+f−

dy , (3.2)

where now f+f− = e2A − f2 = e2A − e−2Ay2. We will also introduce a coordinate ψ,

adapted to the Killing vector as

ξ = 4∂ψ . (3.3)

From (2.27a) it follows that

Imw =
1

2

√
f+f−(dψ + ρ) , (3.4)

where ρ is a one-form on the four-dimensional subspace orthogonal to w.

The zero-form component of (2.28f) yields

Rea = −e−A+φyF0 , (3.5)

while the one-form part of (2.28a)–(2.28e) give

d(e3A−φIma) = 0 . (3.6)

We can thus write

a = e−A+φ(−yF0 + ie−2A`) , ` = constant . (3.7)

Note that from the above expression and (2.21), which for b = 0 yields |a|2 = 1, it follows

that F0 and ` cannot be simultaneously zero.
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Given the above we find that the two-form part of (2.28a)–(2.28e) is automatically

satisfied, while the three-form part yields:

F0d(e2Ayj − y2Rew ∧ Imw) + `H = 0 , (3.8a)

`d(e−2Ay−1j − y−2Rew ∧ Imw)− F0H = 0 , (3.8b)

d(e2A−φ√f+f−aω) + 2e−φ(−yRew + ie2AImw) ∧ aω = 0 . (3.8c)

We can combine the first two of the above equations so as to obtain one which does not

involve the NS-NS field strength H:

d
[
(F 2

0 e
2Ay + `2e−2Ay−1)j − (F 2

0 y
2 + `2y−2)Rew ∧ Imw

]
= 0 . (3.9)

As pointed out earlier, F0 and ` cannot be simultaneously zero, and hence when either of

the two is, it follows from (3.8a) and (3.8b) that H = 0.

We will proceed by making a 2 + 4 split of the internal manifold, with coordinates

{y, ψ} on the two-dimensional subspace. The differential operator is decomposed as

d = dy ∧ ∂y + dψ ∧ ∂ψ + d4 , (3.10)

and the metric takes the form

ds2
M6

=
1

e2A − e−2Ay2
dy2 +

1

4
(e2A − e−2Ay2)(dψ + ρ)2 + g

(4)
ij (y, xi)dxidxj , (3.11)

with xi, i = 1, 2, 3, 4 coordinates on the four-dimensional subspace, M4.

We can now decompose the three-form equations (3.9) and (3.8c):

∂ψj= 0 , ∂y(y
−1|â|2j) =

1

2
(F 2

0 y
2+`2y−2)d4ρ, d4(y−1|â|2j) = 0 , (3.12)

∂ψω=−iω , ∂y(
√
f+f−âω) =−2

e−2Ay√
f+f−

âω , d4(
√
f+f−âω) =−iρ∧

√
f+f−âω ,

where we have introduced

â ≡ e2A−φa = −F0e
Ay + ie−A` . (3.13)

To further analyze the above equations it is convenient to rescale the data of the

four-dimensional base as follows:

j = y|â|−2̂ , ω = y|â|−2e−i(ψ+θ)ω̂ , g
(4)
ij = y|â|−2ĝ

(4)
ij , (3.14)

where θ ≡ arg(â). Then (3.12) becomes

∂ψ ̂ = 0 , ∂y ̂ =
1

2
(F 2

0 y
2 + `2y−2)d4ρ , d4̂ = 0 ,

∂ψω̂ = 0 , ∂yω̂ = −1

2
(F 2

0 y
2 + `2y−2)T ω̂ , d4ω̂ = iP̂ ∧ ω̂ ,

(3.15)
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where

P̂ ≡ −ρ+ i
2e4A(`2 + F 2

0 y
4)

(e4A − y2)(`2 + F 2
0 e

4Ay2)
d4A , (3.16a)

T ≡ ∂y(e
4Ay2)

(e4A − y2)(`2 + F 2
0 e

4Ay2)
. (3.16b)

The last condition, d4ω̂ = iP̂ ∧ ω̂, suggests that the almost complex structure defined by

ω̂ is independent of ψ and y and integrable on the four-dimensional subspace M4, i.e. the

latter is a complex manifold. In addition, d4̂ = 0, and thus ĝ(4) is a family of Kähler

metrics parametrized by y. Furthermore, P̂ is the canonical Ricci form connection defined

by the Kähler metric with the Ricci form R̂ = d4P̂ .

It is worth noting the similarity of the SU(2) structure we are studying here with the

one that characterizes N = 1 supersymmetric AdS5 solutions of M-theory, studied in [18].3

This close resemblance allows us to draw upon certain results of the latter reference.

There are certain identities and conditions that derive from the system (3.15), to which

we now turn. The equation for ∂yω̂ determines the dependence of the volume of M4 on y:

∂y log

√
ĝ(4) = (F 2

0 y
2 + `2y−2)T . (3.17)

Given that the complex structure is independent of y the following identity holds:

(∂y ̂)
+ =

1

2
∂y log

√
ĝ(4) ̂ , (3.18)

where a plus superscript denotes the self-dual part of a two-form on M4. Combining with

the second equation of (3.15) we arrive at

(d4ρ)+ = −T ̂ . (3.19)

Finally, the restrictions below hold as consequences of (3.15):

d4ρ ∧ ω̂ = 0 ,

[
8y

(e2A − e−2Ay2)2
d4A+ i∂yρ

]
∧ ω̂ = 0 . (3.20)

The four- five- and six-form parts of (2.28a)–(2.28e) are automatically satisfied given

the conditions we have derived so far.

Let us now look at the rest of the fields. The dilaton is determined by (3.7) and the

condition |a|2 = 1 descending from (2.21):

e2φ =
e2A

y2F 2
0 + e−4A`2

. (3.21)

The NS-NS field strength H is given by either (3.8a) or (3.8b), and its Bianchi identity

dH = 0 is manifestly satisfied. The R-R fields are determined by (2.28f) and are given by

3A similar resemblance occurs in the study of AdS3 solutions [25].

– 11 –



J
H
E
P
1
0
(
2
0
1
8
)
0
7
1

the expressions

F2 = `
(
α2 + e−2Ay−1j

)
, (3.22a)

F4 = −F0

(
e2Ayj +

1

2
y2dy ∧Dψ

)
∧ α2 −

1

2
F0j ∧ j , (3.22b)

F6 = −3`e−4Avol6 , (3.22c)

where we have introduced the auxiliary two-form

α2 ≡ −
1

2
d
(
e−4Ay(dψ + ρ)

)
+

1

2
y−1dρ (3.23)

and vol6 = Rew ∧ Imw ∧ 1
2j ∧ j.

For future reference, let us also note the following B-twisted fluxes F̃ ≡ e−BF , which

will play a role when we examine flux quantization. This necessitates differentiating be-

tween the cases with the constants `, F0 either generic or vanishing. We will consider the

twisted fluxes only for the generic case with F0 6= 0, ` 6= 0. Local expressions for the NS-NS

potential B are easily read off from (3.8a) or (3.8b),

B1 = −F0

`

(
e2Ayj +

1

2
y2dy ∧Dψ

)
, (3.24a)

B2 =
`

F0

(
e−2Ay−1j +

1

2
y−2dy ∧Dψ

)
. (3.24b)

While B2 leads to shorter expressions for the remaining potentials, it has a singularity at

y = 0; we will thus work with B1. We thus find the following expressions

F̃2 =
`

2
d
((
y−1 − e−4Ay

)
Dψ
)
− F0(B1 −B2) , (3.25a)

F̃4 =
1

2

F0

`2

(
e4Ay2

F 2
0 e

4Ay2 + `2
̂ ∧ ̂+ y2dy ∧Dψ ∧ ̂

)
, (3.25b)

F̃6 =
y2

4`3
F 2

0 e
4Ay2 + 3`2

F 2
0 e

4Ay2 + `2
dy ∧Dψ ∧ ̂ ∧ ̂ , (3.25c)

where explicitly F̃4 ≡ F4−B1∧F2 + 1
2F0B1∧B1 and F̃6 ≡ F6−B1∧F4 + 1

2B
2
1∧F2− 1

6F0B
3
1 .

We will come back to these expressions in section 4.

3.2 Class HK

In this section we look at the case b 6= 0. We find that in contrast to Class K this class of

solutions is rather restricted and determined up to constant parameters.

The condition (2.30a), Im(ξ) = 0, fixes z3 = −1, while (2.30b) gives d(eAf) =

−
√
f+f−Rew. Similar to section 3.1, we define the coordinate y ≡ eAf by

Rew = − 1√
f+f−

dy , (3.26)
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where once again f+f− = e2A− f2 = e2A− e−2Ay2, and a coordinate ψ such that ξ = 4∂ψ.

From (2.27a) it follows that

Imw =
1

2

√
f+f−(dψ + ρ) , (3.27)

where ρ is a one-form on the four-dimensional subspace orthogonal to w.

The zero-form component of (2.28f) yields Rea = −e−A+φyF0 while the one-form

component of (2.28b) gives d(e3A−φIma) = 0. We can thus write

a = e−A+φ(−yF0 + ie−2A`), ` = constant . (3.28)

So far things are akin to section 3.1.

From now on, however, analysis of the rest of the equations (2.28) puts strong con-

straints on the SU(2) structure and the functions that determine the solution. We find:4

ρ = dϕ , dj = 0 , d(ei(ψ+ϕ)ω) = 0 , (3.29)

where ϕ is defined via z2 = ei(ϕ+ψ) and satisfies ∂yϕ = 0 = ∂ψϕ. We thus conclude

that the four-dimensional base of the internal manifold is hyper-Kähler5 and its metric is

independent of y. Also, the connection of the fibration of the U(1) isometry generated by

ξ over the base is flat. Furthermore, for the warp factor and the dilaton we find

eA = Ly−1/2 , eφ = gsy
−3/2 , (3.30)

where L and gs are constants. b is also constant and is fixed by the relation |a|2 + b2 = 1

which becomes L−2g2
s(F

2
0 + L−4`2) + b2 = 1.

The metric on the internal manifold, after a coordinate transformation y = L cos1/2(α),

reads

ds2
M6

=
1

4
e2A(dα2 + sin2(α)Dψ2) + ds2

HK(x), e2A =
L

cos1/2(α)
. (3.31)

Here Dψ ≡ dψ + ρ and ds2
HK(x) is the line element on the hyper-Kähler base, with x

denoting its coordinates.

Turning to the rest of the fields, the NS-NS field strength H is zero, while the R-R

fields can be read from (2.28f). Their expressions are:6

F2 = −1

2

`

L
d
(

cos3/2(α)
)
∧Dψ +

`

L2
j + Le−φ0bReω , (3.32a)

F4 =
1

2
Ld
(

cos3/2(α)
)
∧Dψ ∧

(
F0j − Le−φ0bImω

)
− 1

2
F0j ∧ j , (3.32b)

F6 = −3
`

L2
cosαvol6 , (3.32c)

where vol6 = Rew ∧ Imw ∧ 1
2j ∧ j.

4In particular, these constraints are implied by the remaining one-form constraint and the three-form

constraints. The two-, four-, five- and six-form constraints are trivially satisfied.
5The phase ei(ψ+ϕ) can be absorbed in ω.
6The ω appearing here is the one following the redefinition ei(ψ+ϕ)ω → ω.
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4 Class K: complex Ansatz

In this section we explore an Ansatz for the Class K of solutions consisting of

d4A = 0 , ∂yρ = 0 . (4.1)

This Ansatz is equivalent to requiring that the holomorphic three-form Ω = w ∧ ω that

characterizes the SU(3) structure on the internal space M6 satisfies dΩ = V ∧ Ω for a

one-form V , which in turn is equivalent to requiring that M6 is a complex manifold.

From (4.1) and the definition (3.16a) it follows that ρ = −P̂ . The Ricci form R̂ = d4P̂

then reads R̂ = −d4ρ, and the second equation of (3.15) and (3.19) can be rewritten as

R̂ = − 2

F 2
0 y

2 + `2y−2
∂y ̂ , (4.2a)

R̂+ = T ̂ . (4.2b)

From the above it can be inferred [18] that the Ricci tensor on M4, at fixed y, has two pairs

of constant eigenvalues. For compact M4, which is the case of interest, we can invoke [26]

stating (under the assumption that the Goldberg conjecture is true) that a compact Kähler

four-manifold whose Ricci tensor has two distinct pairs of constant eigenvalues is locally

the product of two Riemann surfaces of constant curvature. If the two pairs of eigenvalues

are the same, then by definition the manifold is Kähler-Einstein. There are thus two classes

to consider: either M4 is Kähler-Einstein or is the product of two Riemann surfaces.

4.1 Kähler-Einstein base

In this class

R̂ =
κ

Q(y)
̂ . (4.3)

with κ = 0 or κ = ±1. The case κ = 0, corresponds to M4 being hyper-Kähler and turns

out to be the b = 0 limit of the Class HK of solutions we examined in the previous section.

We will thus restrict to κ = ±1. The dependence of the metric of M4 on y is given by

ĝ(4)(y, xi) = Q(y)gKE4(xi) , (4.4)

where gKE4 is a Kähler–Einstein metric of constant curvature R = 4κ.

When combined with (4.2a), and the fact that ∂yR̂ = −d4∂yρ = 0 which is part of the

Ansatz (4.1), the condition (4.3) fixes

Q

κ
=

1

6
(3`2y−1 − F 2

0 y
3) + ν , ν = constant . (4.5)

In combination with (4.2b), (4.3) gives the ordinary differential equation (ODE) T = κ/Q,

which determines the warp factor A. Given the expression (3.16b) for T and defining

p(y) ≡ e4Ay2 , (4.6)

this becomes a Riccati:

y2Q

κ

dp

dy
= F 2

0 p
2 + (`2 − F 2

0 y
4)p− `2y4 . (4.7)
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We were able to solve this Riccati equation analytically:

p = `2y2 3`2µ− 9`2y2 − 12νy3 + F 2
0 y

6

9`4 + 36`2νy + (36ν2 − 3`2F 2
0 µ)y2 + 3`2F 2

0 y
4
, (4.8)

where µ is a constant parameter. Note that in this parametrization the limit ` → 0 is

not well-defined since the solution becomes trivial. The ` → 0 limit is well-defined after

shifting µ→ 12ν2/(F 2
0 `

2) + µ.

4.1.1 Regularity and boundary conditions

We now turn to the analysis of the geometry of the solutions, which we will carry out in

terms of a rescaled coordinate x ∝ y. We will specify the constant rescaling factor later

on, for the cases (i) F0 6= 0 and ` 6= 0 (generic), (ii) ` = 0, and (iii) F0 = 0, separately.

The metric (3.11) on the internal manifold takes the form:

e−2Ads2
M6

= −1

4

q′

xq
dx2 − q

xq′ − 4q
Dψ2 +

κq′

3q′ − xq′′
ds2

KE4
, (4.9a)

where q = q(x) is a polynomial (of degree 6 if F0 6= 0), and a prime denotes differentiation.

The warp factor is given by

L−2e2A =

√
x2q′ − 4xq

q′
. (4.9b)

The dilaton is given by

g−2
s e2φ =

xq′

(3q′ − xq′′)2

(
x2q′ − 4xq

q′

)3/2

. (4.9c)

L and gs are two integration constants which we will specify in terms of the constants

appearing in p later on.

Positivity of the metric and the dilaton requires

q < 0 , xq′ > 0 , κ(3xq′ − x2q′′) > 0 . (4.10)

These conditions will only be realized on an interval of x. What happens to q at an endpoint

x0 of this interval dictates the physical interpretation of the solution around that point.

We summarize our conclusions in table 1. For example, we see from there that if q has a

simple zero at a point x0 6= 0, the S1 parametrized by ψ shrinks in such a way as to make

the geometry regular, provided that the periodicity ∆ψ is chosen to be 2π. If this happens

at both endpoints of the interval, the solution is fully regular.

Here are some details about each of these cases.

Simple zero: regular endpoint. Near a simple zero x = x0 of q, the warp factor and

dilaton go to constants, while the internal metric behaves as

1

L2|x0|
ds2
M6
∼ 1

x0

(
1

4

dx2

x0 − x
+ (x0 − x)Dψ2

)
+

κq′0
3q′0 − x0q′′0

ds2
KE4

, (4.11)
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x0 q(x0) q′(x0) q′′(x0) interpretation

0 regular

0 O4

0 0 0 conical CY

0 0 0 O8

Table 1. Various boundary conditions for the polynomial q at an endpoint x0, and their interpre-

tation. Empty entries are meant to be non-zero.

where q′0 ≡ q′(x0), q′′0 ≡ q′′(x0) (x0 will never be zero). Positivity of the metric requires

that if x0 > 0⇒ x < x0, and if x0 < 0⇒ x > x0. Choosing for definiteness the first case,

and introducing r =
√
x0 − x we see that the parenthesis in (4.11) becomes dr2 + r2Dψ2,

which is the metric of R2 (fibred over the Kähler-Einstein base), with the condition that

the periodicity of ψ is taken to be ∆ψ = 2π.

Extremum: O4-plane. At a point x0 6= 0 where q′(x0) = 0, the ten-dimensional metric

and dilaton behave as

1

2L2

√
− q′′0
x0q0

ds2∼ 1√
x−x0

(
ds2

AdS4
+

1

4
Dψ2

)
+
√
x−x0

(
−q
′′
0dx

2

4x0q0
− κ

x0
ds2

KE4

)
, (4.12)

g−2
s e2φ∼ 1

x0q′′0

(
−4x0q0

q′′0

)3/2 1√
x−x0

, (4.13)

where q0≡q(x0). Positivity of the metric and the dilaton requires that if x0q
′′
0 >0⇒x>x0,

and if q′′0x0 < 0 ⇒ x < x0 (in the above equation we have recorded the first case). It also

requires κq′′0 < 0. One recognizes the usual structure H−1/2ds2
‖ + H1/2ds2

⊥ for extended

objects, with H ∼ x−x0. Since there are five parallel directions, this signals the presence of

a four-dimensional object; the fact that the function is linear matches with the behavior of

an O4-plane near the point where its harmonic function goes to zero. The dilaton matches

the behavior e2φ ∝ H(3−p)/2 of an Op-plane again for p = 4. Thus we conclude that this

singularity corresponds to the presence of an O4-plane extended along AdS4.

We should also point out, however, that the local structure of the singularity does not

clarify if the orientifold is smeared over KE4. Suppose one places a fully localized O4-plane

at the tip of a cone C(Y4) of metric dx2 + x2ds2
Y4

. Near the tip, the backreacted metric is

then of the form

ds2 = H
−1/2
O4 ds2

‖ +H
1/2
O4 (dx2 + x2ds2

Y4) , HO4 = 1−
(x0

x

)3
. (4.14)

On the other hand, an O4-plane that is partially smeared along a four-dimensional manifold

Y4 would have a metric

ds2 = H
−1/2
smO4ds

2
‖ +H

1/2
smO4(dx2

9 + ds2
Y4) , HsmO4 = a+ b|x9| ; (4.15)

since HsmO4 is now a harmonic function of one dimension only, it is piecewise linear.
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The metric (4.14) ceases to make sense at x = x0. Expanding around this point,

HO4 ∼ (x − x0), and we would obtain (4.12) (up to constants that can be reabsorbed).

On the other hand, (4.15) for a = 0 also gives (4.12), upon identifying x − x0 = |x9|. In

this sense, it is not entirely clear if (4.12) should be considered as smeared over KE4 or

not. (Such considerations also apply to Op-planes for p 6= 4.) For Y4 = S4, (4.14) is the

simplest interpretation; for Y4 a Kähler-Einstein manifold, the singularity C(Y4) would be

bad (in that for example it would not be Ricci-flat, as one would expect before placing an

object on it), and (4.15) seems the simplest interpretation. We thus conclude (4.12) is an

O4-plane that is smeared over KE4.

Of course smeared orientifolds have rather limited physical validity; nevertheless, for

completeness, we will include them in our analysis.

Triple zero: conical Calabi-Yau singularity. Near a triple zero x = x0 of q, the warp

factor and dilaton go to constants, while the internal metric behaves as

1

L2|x0|
ds2
M6
∼ 3

x0

[
1

4

dx2

x0 − x
+ (x0 − x)

(
1

9
Dψ2 +

κ

6
ds2

KE4

)]
. (4.16)

Positivity works as in the case of a simple zero, but it also requires κ = 1. Upon introducing

r =
√
x0 − x, (4.16) becomes proportional to

dr2 + r2

(
1

9
Dψ2 +

1

6
ds2

KE4

)
. (4.17)

The metric in parenthesis is a regular Sasaki-Einstein metric, built as U(1) bundle over the

Kähler-Einstein base (KE4). Thus (4.17) represents a conical Calabi-Yau singularity. In

the particular case that KE4 is CP2, this is in fact an orbifold singularity.

We can be a little more precise. d(Dψ) is the Ricci form of KE4, which in de Rham

cohomology represents the first Chern class c1. The integral of the latter over the two-

cycles Ci of KE4 is 2πni, ni ∈ Z. If the periodicity of the S1 coordinate is ∆ψ = 2π, the

total space is the U(1) bundle associated to the canonical bundle over KE4. In that case

the conical singularity (4.17) is the complex cone over KE4. If gcd(ni) ≥ 1, there is also

the possibility of taking the periodicity to be 2π × gcd(ni).

For example, if KE4 = CP2, there is only one cycle C with n = 3; taking ∆ψ = 2π

gives the orbifold singularity

C3/Z3 , (4.18)

but one can also consider ∆ψ = 6π, for which (4.17) in fact becomes the fully regular

space C3. This possibility is not available if at the other endpoint one has a single zero,

where ∆ψ is necessarily 2π. However, as we will see, in one case there is a triple zero is

present at both endpoints, and in that case ∆ψ = 6π is possible. This will correspond to

the Guarino-Jafferis-Varela (GJV) solution [11].

If KE4 = CP1 × CP1, there are two Ci with ni = 2. With ∆ψ = 2π, (4.17) becomes

a Z2 quotient of the conifold singularity; one also has the possibility of taking ∆ψ = 4π,

for which one obtains the original conifold singularity. Again this option is only available

if a triple zero appears at both endpoints. We will see later, when considering the product

base class in section 4.2, that this case has in fact a richer array of possibilities.
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Inflection point at the origin: O8-plane. When q′(0) = q′′(0) = 0, around x = 0,

the metric and dilaton behave as

1

L2

√
− q3

8q0
ds2

10 ∼
1√
x

(
ds2

AdS4
+

1

4
Dψ2 + κds2

KE4

)
− q3

8q0

√
x dx2 , (4.19)

g−2
s e2φ ∼ 2

q3

(
−8q0

q3

)3/2

x−5/2 . (4.20)

where q0 ≡ q(0) and q3 ≡ q(3)(0). This time we recognize an O8-plane localized at x = 0.

4.1.2 Generic case

We now turn to examining the parameter space of solutions for the generic case, by which

we mean F0 6= 0 and ` 6= 0. The rescaling of the coordinate y that we mentioned at the

beginning of 4.1.1 is

x =

√
F0√
3`
y . (4.21)

We will also rescale the constant parameters that appeared in (4.8) and introduce

β =
F0

2
√

3`
µ , γ =

1

`2

√√
3`

F0
ν . (4.22)

The polynomial q that determines the solution then reads

q = x6 + 3(2γ2 − β)x4 + 8γx3 + 3x2 − β , (4.23)

while the constants L, gs introduced in the previous section are:

L4 =

√
3`

F0
, g2

s =
37/4 · 8√
`F 3

0

. (4.24)

For later use, we note that the Riccati ODE (4.7) implies an ODE directly on the

polynomial q:
1

24
(3q′ − xq′′)2 = (xq′ − 4q)(1 + 3x4) + 4q . (4.25)

It is also useful to notice that in this case

3q′ − xq′′ = 12x(1 + 2γx− x4) . (4.26)

We now have to study for which values of the parameters β, γ the positivity condi-

tions (4.10) are satisfied. First of all, in order for q < 0 we need to require β > 0. We then

have to subdivide this region according to the nature of the zeros of q, and the presence of

maxima or minima. To identify these subregions, it is useful to look at the discriminant of q:

∆(q) = 21036
(
β4 − 6γ2β3 − (2− 12γ4)β2 − γ2(10 + 8γ4)β + γ4 + 1

)2
β . (4.27)

For every β, ∆(q) = 0 has two solutions β = β±, β− ≤ β+. (This can be seen by consid-

ering the discriminant of ∆(q) with respect to β, which is always negative.) Notice that
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β < β-

β = β-

β = β+
β > β+

β- < β < β+

β =1 γ=0

Figure 1. Plots of q(x) corresponding to various regions of parameter space.

β∆(q′)2 ∝ ∆(q), and that res(q, q′′) divides ∆(q′); this implies a double zero is in fact also

a triple zero. This also follows from (4.25).

There are six different cases, which we discuss in turn and describe in figure 1. For

definiteness, we will consider γ ≥ 0; the discussion for γ ≤ 0 is similar.

• For β < β−, q has two simples zeros x±; in the interval [x−, x+], the conditions (4.10)

are met with κ = +1. According to our discussion in section 4.1.1, at both simple

zeros the S1 circle shrinks in such a way that the solution is regular. Thus the internal

space is smooth and the solution is fully regular.

The solutions previously found numerically fall in this region. The first to be found

were the ones in [7], which should correspond to γ = 0, β ≤ 1, with KE4 = CP2. In [8]

it was later suggested that the CP2 could be replaced by an arbitrary regular KE4.

This was worked out explicitly in [10] for KE4 = CP1 × CP1; our regular solutions

corresponds to the q1 = q̃1 slice in [10, figure 3]. (We will see later how the rest of

that figure is reproduced.)

• At β = β−, the discriminant ∆(q) = 0, and as we remarked also ∆(q′) = 0; so the

simple zero x− becomes a triple zero. As we discussed in section 4.1.1, this means that

one of the regular points becomes a conical Calabi-Yau singularity; if KE4 = CP2,

this is a Z3 singularity.

• For β− < β < β+, the triple zero x− splits into a single zero x−, a local minimum x1

and a local maximum x2 (x− < x1 < x2). Now the positivity conditions (4.10) are

met for κ = +1 between the maximum and the zero: x ∈ [x2, x+]. However, a new

possibility also appears: for κ = −1, the positivity conditions are met in the interval

x ∈ [x−, x1]. Both of these correspond to solutions with a single O4-plane singularity.
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• At β = β+, the other simple zero x+ becomes a triple zero. Thus the solution with

κ = +1 develops a Calabi-Yau singularity, besides the O4-plane singularity it already

had; the solution with κ = −1 still has a single O4-plane singularity.

• For β > β+, the new triple zero splits into a local maximum x3, a local minimum

x4 and a simple zero x+. Now the κ = +1 interval is x ∈ [x2, x3], and corresponds

to a solution with two O4-plane singularities. Moreover there are two intervals that

are allowed for κ = −1: x ∈ [x−, x1] and x ∈ [x4, x+]. Both correspond to a solution

with a single O4-plane singularity.

• Finally, at β = 1, γ = 0 we have that β− = β+. In this case the two triple zeros

appear together; the allowed interval is between them and works for κ = +1. The

solution has two Calabi-Yau singularities. When KE4 = CP2, with ∆ψ = 2π these

are two orbifold singularities (4.18). (This is the periodicity originally considered

in [7].) As we discussed there, in this case one can also take the periodicity of the S1

to be ∆ψ = 6π, in which case the space becomes fully smooth again; this is the GJV

solution [11].7 For more general KE4, this solution was discussed in [27].

4.1.3 Flux quantization for the generic case

Let us now discuss flux quantization for the generic solutions of section 4.1.2.

First we need to return to the B-twisted fluxes (3.25) and introduce potentials Ck−1

such that dCk−1 = F̃k. Explicitly,

C1 = f2Dψ , C3 = f4Dψ ∧ jKE , C5 = f6Dψ ∧ jKE ∧ jKE , (4.28)

where

f2 = 2`

√
F0√
3`

(
1

x

q

4q − xq′
− 3q′ − xq′′

48x2

)
, (4.29a)

f4 =
`

16
√

3
κ(4q − xq′) , (4.29b)

f6 =
`

16

√√
3`

F0

[
q′

24
(3 + x4)− q

6
x3 +

x

9

(
3 + x4 +

3q′ − xq′′

8x

)2
]
. (4.29c)

The fluxes F̃k are closed; they have been defined using a particular choice B1 for the B

field. In fact it is also possible to add to it a closed two-form b, so that B = B1 + b; this

defines new fluxes

F̃ b ≡ ebF̃ , (4.30)

which are also closed. Explicitly, F̃ b2 ≡ F̃2 + bF0, F̃ b4 ≡ F̃4 + bF̃2 + 1
2b

2F0, F̃ b6 ≡ F̃6 +

bF̃4 + 1
2b

2F̃2 + 1
6b

3F0. Flux quantization now imposes that the periods of these should be

7The coordinate transformation that brings the solution to the form of [11] is x = cosα and

Dψ = 3η. The parameters eφ0 and L of [11] are identified as eφ0 = 3−3/821/4`−1/4F
−3/4
0 and

L2 = 3−1/162−5/8`5/8F
−1/8
0 . Note also that the solution in [11] is in the Einstein frame, whereas we

work in the string frame.
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quantized, as well as that 2πF0 ≡ n0 ∈ Z (working in string units ls = 1). It constrains

the parameters `, β, γ of the solution, as well as the two-form b.

We will now work out more precisely what this implies for regular generic solutions.

In particular, we will assume ∆ψ = 2π and β < β−, in the language of section 4.1.2;

topologically, M6 is an S2-bundle over KE4.

The second homology of M6 is given by the fiber C0 ≡ S2
ψ,x spanned by ψ and x, and by

the two-cycles Ci, i = 1, . . . , h2(KE4). More precisely, a lift of these two-cycles is given by

a section of the fibration obtained by setting x to one of the endpoints, say x+. (x− would

also work, but a random value would not define a cycle in M6, because of the topological

non-triviality of the fibration of the ψ coordinate.) A basis for the cohomology H2 can

be taken to be ωI , I = 0, . . . , h2(KE4); ω0 ≡ d(s(x)Dψ), where s(x) is a function which

at the two simple zeros x± has second-order expansion s ∼ ±(1 + (x − x±)2) + . . ., and

ωi are the elements of a basis for H2(KE4). We will expand the closed two-form b in this

basis: b = bIω
I . Similarly, a basis of four-cycles can be obtained by the C̃i ≡ S2

ψ,x×Ci and

by C̃0 ≡ KE4. Finally, the triple intersection form dIJK of M6 will have non-zero entries

d0JK = cJK , the intersection form of KE4.

We can now define the periods

nb2I ≡
1

2π

∫
CI
F̃ b2 , nI b4 ≡

1

(2π)3

∫
C̃I
F̃ b4 , nb6 ≡

1

(2π)3

∫
M6

F̃ b6 . (4.31)

The periods at b = 0, n2I ≡ nb=0
2I , nI4 ≡ nI b=0

4 , n6 ≡ nb=0
6 , are computed more directly as in-

tegrals of the F̃k. The two are related by the b-transform (4.30): this gives nb2I = n2I − bIn0,

nI b4 = nI4+dIJKbJ
(
n2K + 1

2bKn0

)
, nb6 = n6+bIn

I
4+ 1

2d
IJKbIbJ

(
n2K+ 1

3bKn0

)
. From (4.28),

(4.29) we can now compute the relevant integrals:

n20 = f2+ − f2− , n2i = Kif2+ ,

ni4 =
Ki

2πκ
(f4+ − f4−) , n0

4 = − K
2

2πκ
f4+ , n6 =

K2

4π2
(f6+ − f6−) ,

(4.32)

where fk± ≡ fk(x±) the Ki are the Chern class integers of the canonical bundle; 2πKi

are the integrals of the Ricci form over the two-cycles Ci of the KE4. We also defined

K2 ≡ KiKjc
ij . (4.32) can be further evaluated using the expressions for the fk in (4.29).

In doing so, it is useful to note that (4.25) implies that at a single zero x0 of q:

(3q′0 − x0q
′′
0)2 = 24q′0x0(1 + 3x4

0) . (4.33)

So in particular

f2(x0) = −`

√
F0√
3`

√
q′0(1 + 3x4

0)

24x3
0

, f4(x0) = − `

16
√

3
κx0q

′
0 ,

f6(x0) =
`

16

√√
3`

F0
(3 + x4

0)

[
1

6
q′0 −

1

3
√

6

√
x0q′0(1 + 3x4

0) +
x0

9
(3 + x4

0)

]
.

(4.34)

The n2I now determine bI = 1
n0

(nb2I − n2I); one can then eliminate them from the

remaining quantization conditions. A practical way of doing this is to introduce some
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combinations of the flux quanta that are invariant under b-transform F̃ → F̃ b, generalizing

slightly results in [9]:

II4 ≡ dIJKn2Jn2K − 2n0n
I
4 , I6 ≡ dIJKn2In2Jn2K + 3n2

0n6 − 3n0n2In
I
4 . (4.35)

(These come from the expansion in form basis of F̃ 2
2 − 2F0F̃4 and F̃ 3

2 + 3F 2
0 F̃6− 3F0F̃2F̃4.)

Indeed one can check that the II4 and I6 remain the same if one replaces n2I → nb2I ,

nI4 → nI b4 , n6 → nb6. For us these invariants evaluate to

I0
4 =K2

(
f2

2++
n0

πk
f4+

)
, I i4 = 2Ki

[
−f2+(f2+−f2−)− n0

2πκ
(f4+−f4−)

]
I6 = 3K2

[
f2

2+(f2+−f2−)+
n0

2πκ
(2f4+f2+−f4+f2−+f4−f2+)+

3n0

4π2
(f6+−f6−)

]
.

(4.36)

Once a set of flux quanta is specified, solving these equations will specify the parameters

`, β, γ of the solution.

4.1.4 ` = 0

We will now examine the solutions with ` = 0. The rescaling of the coordinate y, appro-

priate for this case, is

x =
y

y0
, y0 ≡

(
6ν

F 2
0

)1/3

, (4.37)

and we will also introduce

σ = −3µ

y2
0

. (4.38)

The solution is then in the form (4.9) with

q = x6 +
σ

2
x4 + 4x3 − 1

2
, (4.39)

which gives

3q′ − xq′′ = −12x2(x3 − 1) . (4.40)

The constants that appear in the warp factor and the dilaton are L2 = |y0| and

g2
s = 72/(|y0|F 2

0 ).

In this case, the analysis is easier, because there is only one parameter, σ, to vary. The

discriminant of q is 2(σ3 + 93)2; thus there always two simple zeros, except for σ = −9,

when one of the two becomes a triple zero. q′ always has a double zero at the origin, but

the discriminant of q′/x2 is −192(σ3 + 93) (so again we have ∆(q) ∝ ∆(q′)2), and the sign

shows that there is a single extremum x1 for σ > −9, and three extrema x1, x2, x3 for

σ < −9. In addition, there is a inflection point at x = 0, which from section 4.1.1 we know

to correspond to an O8-plane.

We divide the analysis in three cases:

• For σ > −9, between the two zeros x− < 0 and x+ > 0, q has a minimum at

x = x1 < 0 and the inflection point at x = 0. The intervals where (4.10) are realized

are x ∈ [x−, x1] with κ = −1, and x ∈ [0, x+] with κ = +1. The former corresponds

to a solution with a single O4-plane singularity; the latter to a solution with a single

O8-plane singularity.
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• For σ = −9, the zero x+ becomes triple; the allowed intervals remain the same as in

the previous case, but the κ = +1 case now develops a Calabi-Yau conical singularity

at x = x+.

• For σ < −9, the zero x+ splits in a maximum x2, a minimum x3 and a simple zero

x+ (all three greater than zero). There are now three allowed intervals: the old one

x ∈ [x−, x1], still for κ = −1, an interval x ∈ [0, x2] for κ = +1, and a new one

x ∈ [x2, x+] for κ = −1. These two new possibilites correspond to a solution with

an O8-plane and an O4-plane singularity, and to a solution with a single O4-plane

singularity, respectively.

4.1.5 F0 = 0

In this limit, the rescaling of the coordinate y to the coordinate x is

y =
`2

ν
x . (4.41)

Furthermore the constant parameter µ is rescaled to s as µ = 3(`4/ν2)s. From (4.22) we see

s =
3

2
βγ2 . (4.42)

The massless limit is now obtained by taking β → 0 with s constant. We obtain (4.9) with

q = x4 +
4

3
x3 +

1

2
x2 − s

4
, L2 =

`2

ν
, g2

s =
4`4

ν3
. (4.43)

These solutions uplift to M-theory AdS4 × Y p,k solutions, where Y p,k are the well-known

Sasaki-Einstein seven-manifolds of [19]. To see this, one has to perform the further change

of coordinate

x = ρ2 − 1

2
, (4.44)

and set the constants in [19, section 2] as {Λ, κ, λ} = {8, 12s− 1, 2`/ν}.
In the limit s → 0, the interval of definition for x shrinks to zero. However, one can

define S ≡ s/ν2 and take S → 0; in this limit the solution remains well-defined. After

introducing the coordinate θ by cos θ ≡
√

2/s x, it becomes (for KE4 = CP2) the IIA

reduction of M3,2 [22, 23], as worked out in [7, (2.10)].

4.2 Product base

In this class the metric of M4 splits as

ĝ(4) = ĝ1 + ĝ2 . (4.45)

Accordingly, ̂ = ̂1 + ̂2 and R̂ = R̂1 + R̂2, with

R̂1 =
κ1

Q1(y)
̂1 , R̂2 =

κ2

Q2(y)
̂2 , κ1, κ2 = ±1, 0 . (4.46)
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The dependence of the metric of M4 on y is given by

ĝ(4)(y, xi) = Q1(y)gΣ1 +Q2(y)gΣ2 , (4.47)

where gΣ1 , gΣ2 are the metrics of the two Riemann surfaces Σ1, Σ2 of scalar curvature

R1 = 2κ1 and R2 = 2κ2 respectively.

When combined with (4.2a), and the fact that ∂yR̂ = 0 the condition (4.46) fixes

Q1 =
κ1

6
(3`2y−1 − F 2

0 y
3) + ν1 , (4.48)

Q2 =
κ2

6
(3`2y−1 − F 2

0 y
3) + ν2 , (4.49)

where ν1, ν2 are constants. In combination with (4.2b), (4.46) gives the ODE 2T = (κ1Q2+

κ2Q1)/(Q1Q2) which, given the expression (3.16b) for T and defining again p(y) = e4Ay2,

becomes a Riccati:

y2 2Q1Q2

κ1Q2 + κ2Q1

dp

dy
= F 2

0 p
2 + (`2 − F 2

0 y
4)p− `2y4 . (4.50)

This is solved by:

p = `2y2 3`2µ− 9κ1κ2`
2y2 − 6(κ1ν2 + κ2ν1)y3 + κ1κ2F

2
0 y

6

9κ1κ2`4 + 18`2(κ1ν2 + κ2ν1)y + (36ν1ν2 − 3`2F 2
0 µ)y2 + 3κ1κ2`2F 2

0 y
4
, (4.51)

where µ is a constant parameter. The ` → 0 limit is well-defined after shifting µ →
12ν1ν2/(F

2
0 `

2) + µ.

4.2.1 Regularity and boundary conditions

We now turn to the analysis of the geometry of the solutions, in a manner similar to the

one in the previous section.

The metric (3.11) on the internal manifold takes the form:

e−2Ads2
M6

= −1

4

q′

xq
dx2 − q

xq′ − 4q
Dψ2 +

κ1q
′

xu1
ds2

Σ1
+
κ2q
′

xu2
ds2

Σ2
, (4.52a)

where q, u1, u2 are polynomials. The warp factor is given by

L−2e2A =

√
x2q′ − 4xq

q′
. (4.52b)

The dilaton is given by

g−2
s e2φ =

q′

xu1u2

(
x2q′ − 4xq

q′

)3/2

. (4.52c)

The above is valid for κ1, κ2 6= 0. When one of the two Riemann surfaces is flat, a slight

modification is required and we will treat the case κ2 = 0 separately.

Notice that

3q′ − xq′′ = x

2
(u1 + u2) ; (4.53)

so we see that for u1 = u2 we recover (4.9).
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Positivity of the metric and the dilaton now requires either

q < 0 , xq′ > 0 , κaua > 0 , u1u2 > 0 , (4.54a)

or

q > 0 , xq′ < 0 , κaua < 0 , u1u2 < 0 , (4.54b)

a = 1, 2 (no summation over repeated indices). (4.54a) generalizes (4.10), while (4.54b) is

a new possibility.

Given the similarity between (4.52) and (4.9), most of the analysis leading to table 1 is

the same. There is the additional possibility of the occurrence of a double zero. Moreover,

the case of an inflection point now ramifies into three different branches. See table 2.

Double zero: orbifold singularity. This did not occur in section 4.1, because a multi-

ple zero was always a triple zero. This is no longer the case in the present section: a double

zero which is not also triple can occur, and we must analyze it separately. A crucial fact

is that ∆(q) ∝ res(q, u1)res(q, u2). Thus when a double zero occurs either u1 or u2 has a

zero. Choosing the latter, one finds the local expression for the metric

1

L2|x0|
ds2
M6
∼ 1

2x0

[
dx2

x0 − x
+ (x0 − x)

(
Dψ2 − 2κ1q

′′
0

u10
ds2

Σ1

)]
+

κ2q
′′
0

x0u′20

ds2
Σ2
, (4.55)

while the warp factor and dilaton are constant. Here u10 ≡ u1(x0) and u′20 ≡ u′2(x0).

From (4.53) we see that −2q′′0/u
′
10 = 1. Positivity of the metric requires that x0(x0−x) > 0,

and κ1 = 1, which selects Σ1 = S2. With the choice r =
√
x0 − x, the parenthesis becomes

proportional to dr2 + 1
4r

2(Dψ2 + ds2
S2). If the S1 periodicity is ∆ψ = 2π, this is the local

metric for an R4/Z2 singularity; if ∆ψ = 4π, it is R4, and we have a regular point.

Inflection point at the origin: O4-, O6- or O8-plane. In section 4.1, at an inflection

point at the origin the denominator of the coefficient of ds2
KE4

has a double zero, canceling

the double zero of the numerator, so that the full coefficient remains constant. In (4.52a),

however, the functions ua in the denominator are independent of q. If neither of ua vanishes,

the local metric and dilaton read

1

L2

√
− q3

8q0
ds2

10∼
1√
x

(
ds2

AdS4
+

1

4
Dψ2

)
− q3

8q0

√
x

(
dx2− 4q0κ1

u10
ds2

Σ1
− 4q0κ2

u20
ds2

Σ2

)
,

g−2
s e2φ∼ −4q0

u10u20

√
−8q0

xq3
,

(4.56)

According to the discussion underneath (4.14), this locus describes an O4-plane smeared

over Σ1 × Σ2.

If only one of the ua, say u1, vanishes,8 we have

L−2

√
− q3

8q0
ds2

10∼
1√
x

(
ds2

AdS4
+

1

4
Dψ2+

q3κ1

2u′10

ds2
Σ1

)
− q3

8q0

√
x

(
dx2− 4q0κ2

u20
ds2

Σ2

)
,

g−2
s e2φ∼ q3

2u′10u20

(
−8q0

xq3

)3/2

.

(4.57)

8Equation (4.53) appears to imply that at an inflection point either the ua both vanish or both do not

vanish. However, we will see in section 4.2.4 that for κ2 = 0 this formula is modified, so that only u1 needs

to vanish.
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x0 q(x0) q′(x0) q′′(x0) q′′′(x0) u1(x0) u2(x0) interpretation

0 0 0 R4/Z2

0 0 0 O4

0 0 0 0 O6

0 0 0 0 0 O8

0 0 0 0 0 0 O8/O4

Table 2. Additional singularities that occur in the product base case. The O8-plane one, which

already appeared in table 1, is repeated for comparison.

This locus corresponds to an O6-plane singularity. Adapting our discussion below (4.14),

we conclude that it is localized if Σ2 = S2 (κ2 = 1), while it is smeared over Σ2 if κ2 = −1.

Finally, if both ua vanish at the inflection point, there is an O8-plane singularity as

in (4.19), with the KE4 base replaced by Σ1 × Σ2.

Quartic maximum at the origin: O4/O8-plane. When q ∼ q0 + 1
4!q4x

4, then both

ua have a single zero. We have

L−2

√
− q4

24q0
ds2

10∼
1

x

(
ds2

AdS4
+

1

4
Dψ2

)
+
q4

6

(
κ1

u′10

ds2
Σ1

+
κ2

u′20

ds2
Σ2

)
− q4

24q0
xdx2 ,

g−2
s e2φ∼ 8

√
6

u′10u
′
20

√
−q

3
0

q4
x−3 .

(4.58)

which is the appropriate behavior for an O4/O8-plane singularity. This case occurs only if

κa have opposite signs, so the O4-plane is smeared over one of the Σa.

4.2.2 Generic case

Here we define new parameters

γa =
1

κa

1

`2

√√
3`

F0
νa , β =

1

κ1κ2

F0

2
√

3`
µ , (4.59)

a=1, 2, and a new coordinate x=
√

F0√
3`
y. The solution is then cast in the form (4.52), with

q = x6 + 3(2γ1γ2 − β)x4 + 4(γ1 + γ2)x3 + 3x2 − β ,
u1 = 12(1 + 2γ1x− x4) , u2 = 12(1 + 2γ2x− x4)

(4.60)

and the constants L, gs determined by (4.24).

We again note that the Riccati ODE (4.50) implies an ODE directly on q, u1, u2:

x

12
(3q′ − xq′′)2 = −

(
1

u1
+

1

u2

)[
(xq′ − 4q)(1 + 3x4) + 4q

]
, (4.61)

similar to (4.25).
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In this case we will not give an exhaustive discussion as in section 4.1.2 for the Kähler-

Einstein base. There are many different possibilities, and a full discussion would be rather

tedious. Let us instead give here a summary of the main features of the parameter space.

As in the Kähler-Einstein base case, the interpretation of the solution depends on

the properties of the polynomial q, and less importantly on u1, u2. The most important

features are the presence of extrema, and the presence of zeros. These can be decided

again by looking at the discriminants of q and q′. Unlike in section 4.1, these are un-

related, and vanish on different loci of parameter space. It is also useful to notice that

226310∆(q) = β res(q′, u1)res(q′, u2) ∝ ∆(q); thus, the sign of u1, u2 at an extremum of q

(which has to do with the sign of κ1, κ2) changes on the discriminant of q. The expressions

of the resultants are

res(q′, u1) = −21839
(
β4 − 6γ1γ2β

3 + (12γ2
1γ

2
2 − 2)β2

− 2(2γ2
1 + γ1γ2 + 2γ2

2 + 4γ3
1γ

3
2)β + 1− γ4

1 + 2γ3
1γ2

)
,

res(q′, u2) = res(q′, u1) + 21839(γ1 + γ2)(γ1 − γ2)3 . (4.62)

Depending on the signs of κa, there are three possibilities to consider: (i) For κa = −1

there are solutions with a regular endpoint and an endpoint with an O4-plane singularity.

(ii) For κa = +1 there are regular solutions and ones with orbifold singularities which were

found numerically in [10]. There are also solutions which for ∆ψ = 4π have CP3 topology

and were found numerically in [9]. There are also solutions with one or two O4-plane

singularities. (iii) For κ1 = +1, κ2 = −1 (or viceversa) there are solutions with one or two

O4-plane singularities, as well as solutions with an orbifold singularity.

The flux potentials are again defined by (3.25), now with ̂ = Q1j1 + Q2j2. Using

ρ = ρ1 + ρ2, with d4ρa = −κaja (no summation), we find

C1 = f2Dψ+
1

2
(κ1ν1− κ2ν2)(ρ1− ρ2) , C3 = Dψ ∧ (g1j1 + g2j2) , C5 = f6Dψ ∧ j1 ∧ j2 ,

(4.63)

where

f2 = 2`

√
F0√
3`

(
1

x

q

4q − xq′
− 3q′ − xq′′

48x2

)
, (4.64a)

ga =
`3

8
√

3F0

∫
xuadx , (4.64b)

f6 =
`

72

√√
3`

F0

[
q′ − x

768
(3u2

1 − 10u1u2 + 3u2
2) + x

(
3 + x4 +

u1 + u2

16

)2
]
. (4.64c)

The integration constant in the indefinite integral for the ga is chosen such that

ga(x = 0) = − `3

8
√

3F0

β

3
. (4.65)

4.2.3 ` = 0

In this case we introduce

σ = −3µ

y2
0

, t =
κ2ν1

κ1ν2
, x =

y

y0
, y0 ≡

(
6ν2

κ2F 2
0

)1/3

. (4.66)
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The solution is now (4.52) with

q = x6 +
σ

2
x4 + 2(1 + t)x3 − t

2
, u1 = 12x(1− x3) , u2 = 12x(t− x3) , (4.67)

and the constants L2 = |y0|, g2
s = 72/(|y0|F 2

0 ).

For t = 1, we recover the solutions in section 4.1.4, with KE4 = CP1 ×CP1. For other

values of t, the analysis is similar.

Define

σ1 ≡ −9 · 4−1/3|1 + t|2/3 , σ+ ≡ −3(2 + t) , σ− ≡ −3t−1/3(1 + 2t) . (4.68)

The discriminant ∆(q) = 2t3(σ3 − σ3
+)(σ3 − σ3

−), while ∆
(
q′/x2

)
= −192(σ3 − σ3

1). In

terms of these, the following solutions are possible:

• κa = +1: With a single O4-plane singularity for t < 0, σ < σ−, and also for t > 0 and

any σ. With an O8-plane singularity for t > 0; for σ > σ− it also has an O4-plane

singularity, for σ = σ− it has an orbifold singularity, for σ < σ− no other singularity.

• κa = −1: With a single O4-plane singularity for σ < σ+ and any t.

• κ1 = +1, κ2 = −1: With two O4-plane singularities for σ+ < σ < σ−; with an

O4-plane singularity and an orbifold singularity for σ = σ+; with a single O4-plane

singularity for t > 0, σ− < σ < σ+, or for t < 0, σ < σ+.

With an O8-plane singularity for −1 < t < 0; for σ > σ− it also has an O4-plane

singularity, for σ = σ− it has an orbifold singularity, for σ < σ− no other singularity.

With an O8/O4-plane singularity for t = −1; for σ < 0 it also has an O4-plane

singularity, for σ = −1 an orbifold singularity, for σ < −1 no other singularity.

4.2.4 κ2 = 0

In this case we need to adjust the form of the solution as presented in 4.2.1, by replacing

the factor κ2 in front of the line element of Σ2 by a constant m, to be specified below. The

functions that determine the solution read:

q = 3x4 − 4x3 + n , u1 = −24x , u2 = 3˜̀2(1− x) + nx− x4 (4.69)

where the coordinate x = y/L2, with L2 related to the constant parameters appearing

in (4.51) as:

L2 =
6`2κ1ν2

F 2
0 `

2µ− 12ν1ν2
. (4.70)

For n, ˜̀ and m we have the following relations:

˜̀=
`

L4F0
, n =

6ν1

κ1L6F 2
0

+ 3`2 , m = −4F 2
0L

6

ν2
. (4.71)

Finally, g2
s = 2/(

√
3F 2

0L
8).

– 28 –



J
H
E
P
1
0
(
2
0
1
8
)
0
7
1

t1 = β γ1

t 2
=

β
γ
2

Figure 2. The parameter space of regular solutions with F0 = 0 for the product base case.

In this case:

• κ1 = +1: there is a solution with an O6-plane smeared along the T 2, for ˜̀ 6= 0. This

becomes an O8-plane for ˜̀ = 0. For n > 1 it also has an O4-plane singularity; for

n = 1 it has an orbifold singularity; for n < 1, n 6= 0 no other singularity.

• κ1 = −1: there is a solution with a single O4-plane singularity for n < 1.

4.2.5 F0 = 0

Similarly to section 4.1.5, we define the coordinate x = ν2
`2
y; this differs from the x defined

in section 4.1.2 by a factor γ2, recalling the definitions in (4.59). Let us define ti ≡ γi
√
β.

Taking the limit β → 0 with ti kept constant yields now the solution (4.52) with

q =
t1
t2
x4 +

2

3

(
1 +

t1
t2

)
x3 +

1

2
x2 − t22

6
, u1 = 2 + 4x , u2 = 2 + 4

t1
t2
x . (4.72)

Moreover L2 = `2κ1t2/(ν1t1), gs = 2L3/`.

Regular solutions exist for κa = +1. The parameter space is obtained by considering

the equations for the resultants in (4.62), after taking β → 0 with ti kept constant; this

gives two cubics, and the allowed parameter space is enclosed by them. The result is

shown in figure 2. (Points related by inversion t1 ↔ t2 correspond to the same solution.)

These correspond to the solutions found in [20, section 4.5] and [21], more or less in the

coordinates of the first reference. They were studied in more detail in [10, section 3] where

they were referred to as Ap,q,r solutions. For t1 = t2 we recover the case of section 4.1.5

for KE4 = CP1 × CP1. At the boundary of the region in figure 2, M6 no longer has the

topology of an S2-fibration over CP1 × CP1. For example, the solution at t1 = −t2 =
√

3
2
√

2

is the Fubini-Study solution on CP3. We refer to [10, section 3] for a detailed discussion.
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1

12

s =
2

3
β γ2

1

β

Figure 3. The allowed parameter space for regular solutions in the generic case with KE4 base is

the interior of the purple region.

4.3 Summary

We will now summarize the physically meaningful solutions we have found. This means

we will exclude the solutions with smeared orientifolds, which are of dubious physical

significance. The only fully-localized orientifolds we could find are O8-planes. We will first

discuss solutions without any O8-planes, and then solutions with O8-planes.

Solutions with KE4 base and without orientifolds. The parameter space is shown

in figure 3, which is a different version of figure 1. In all this subsection the ψ periodicity

is ∆ψ = 2π, unless otherwise stated.

• The purple region corresponds to fully regular solutions. It is given by β > 0 and

β6 − (2 + 9s)β4 + (1− 15s+ 27s2)β2 +
9

4
s2(1− 12s) > 0 . (4.73)

Recall that s is related to β and γ by (4.42).

Topologically, M6 is an S2-fibration over KE4.

These solutions realize the numerical solutions found in [7] and later generalized

by [8, 10].

• The boundary β = 0 of the purple region gives F0 = 0; these are IIA reductions of the

Y p,k Sasaki-Einstein solutions in [19]. Indeed from (4.73) we see that 0 < s < 1
12 , as

derived there. The limit s→ 0 can be taken only after rescaling s→ s/ν2, in which

case it leads to the IIA reduction [7, (2.10)] of the M3,2 Sasaki-Einstein [22, 23],

generalized by replacing CP2 with an arbitrary KE4.

• The green boundary (obtained by replacing the inequality with equality in (4.73))

corresponds to solutions with a conical Calabi-Yau singularity. For KE4 = CP2, this

is an orbifold singularity C3/Z3.
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Figure 4. The allowed moduli space for regular solutions in the generic case with product base is

between the plotted surface and the plane β = 0.

• The point at β = 1, s = 0 has two conical Calabi-Yau singularities. For KE4 = CP2,

these are both orbifold singularities C3/Z3. In this case, however, it is also possible

to take ∆ψ = 6π, in which case the space becomes fully regular; this is the Guarino-

Jafferis-Varela solution [11], whose generalization for arbitrary KE4 was considered

in [27].

Solutions with product base and without orientifolds. There are regular solutions

with κa = +1. The parameter space is shown in figure 4, which is defined by certain

branches of res(q′, ua) = 0 (see (4.62)). This time we use the original parameters γ1, γ2, β.

These solutions were discussed in [10, section 5] in detail, although they were only known

numerically in that paper; thus we will be brief.

• The region in figure 4 between the plotted surface and β = 0 corresponds to regular

solutions with the topology of an S2-bundle over CP1 × CP1.

• The limit β → 0, with ta = γa
√
β kept constant, reproduces the Ap,q,r massless

solutions whose parameter space was shown in figure 2.

• The boundary of figure 4 corresponds to solutions with a Z2 orbifold singularity.

• The locus {γ1 = γ2} is a particular case of the solutions with KE4 base, where

KE4 = CP1 × CP1. At the boundary, there is a conifold/Z2 singularity.

• The intersection of the boundary with the locus {γ1 = −γ2} (visible as the ridge in

figure 2) corresponds to solutions with topology CP3/Z2. In this case one also has

the option of taking ∆ψ = 4π, thus making the topology directly CP3. These are the

solutions studied in [9].

• The point β = 1, γa = 0 is a variant of the solution in [11], with CP2 replaced by

CP1 × CP1.
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Solutions with O8-planes. There are many solutions which are regular except for a

single O8-plane singularity. They occur for ` = 0, both for KE4 and for product base. Here

is a list of possibilities:

• KE4 base with κ = +1, and σ > −9 in (4.39).

• Product base with κ1 = +1, κ2 = ±1, and σ > σ−; see (4.67), (4.68).

• Product base with κ1 = +1, κ2 = 0, and n < 1; see (4.69).
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