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The critical role of angiogenesis in promoting tumor growth and metastasis is strongly 
established. However, tumors show considerable variation in angiogenic characteristics 
and in their sensitivity to antiangiogenic therapy. Tumor angiogenesis involves not only 
cancer cells but also various tumor-associated leukocytes (TALs) and stromal cells. TALs 
produce chemokines, cytokines, proteases, structural proteins, and microvescicles. 
Vascular endothelial growth factor (VEGF) and inflammatory chemokines are not only 
major proangiogenic factors but are also immune modulators, which increase angio-
genesis and lead to immune suppression. In our review, we discuss the regulation of 
angiogenesis by innate immune cells in the tumor microenvironment, specific features, 
and roles of major players: macrophages, neutrophils, myeloid-derived suppressor 
and dendritic cells, mast cells, γδT cells, innate lymphoid cells, and natural killer cells. 
Anti-VEGF or anti-inflammatory drugs could balance an immunosuppressive microenvi-
ronment to an immune permissive one. Anti-VEGF as well as anti-inflammatory drugs 
could therefore represent partners for combinations with immune checkpoint inhibitors, 
enhancing the effects of immune therapy.
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iNTRODUCTiON

The “gradient” of phenotype, genetic, and epigenetic features of transformed cells inside the tumor 
gives rise to the most known and studied tumor heterogeneity, the “intrinsic” one. However, increas-
ing attention is devoted to “extrinsic” heterogeneity, i.e., all those cellular and molecular “players” that 
include the non-cancerous hosting environment. Cancers develop in complex tissue environments, 
both in the primary and in the target organs of metastasis. A “hostile” setting is elicited, such as 
low oxygen, acidity, and altered metabolic conditions. Cancer cells adapt more rapidly than healthy 
ones to the adverse conditions that paradoxically sustain growth, invasion, and metastasis. In such 
an “infernal” environment, interactions between tumor cells and the associated stroma represent a 
dangerous relationship that reciprocally influences disease initiation, progression and, in the end, 
determines patient prognosis (1).

The confirmed theory that the presence of inflammatory cells plays a crucial role within the 
tumor microenvironment (TME) is a very old one (2). “Evading immune destruction” and “tumor-
promoting inflammation” are recognized host-dependent tumor hallmarks as defined by Hanahan 
and Weinberg (3). Among the tumor-friendly phenomena generated through the activity of the 
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FigURe 1 | Phenotype switch of innate immune cells in cancer. Antitumor/antiangiogenic (green text) and protumor/proangiogenic (red text) features are listed for 
macrophages, neutrophils, dendritic cells (DC), myeloid precursor cells (MPC), mast cells, natural killer cells (NK), innate lymphoid cells (ILCs), and γδT cells.
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inflammatory cells in the microenvironment, there is the orches-
tration of angiogenesis, a biological phenomenon necessary to 
bring oxygen, nutrition to the tumors, and last but not least, to 
transport the cancer cell to metastatic sites (4–7). Innate immune 
cells, as a consequence of their plasticity, have been reported 
to acquire an altered phenotype that can be proangiogenic. For 
many immune cells, both from innate and adaptive immunity, 
the release of proangiogenic cytokines is accompanied by a switch 
to a tolerogenic/immunosuppressive behavior (4, 7–9). In this 
review, we choose to describe the role in angiogenesis of selected 
major classes of inflammatory cells: macrophages, neutrophils, 
myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), 
mast cells (MCs), gammadelta (γδ)T type 17 cells (γδT17), innate 

lymphoid cells (ILCs), and natural killer (NK) cells (Figure 1). 
We also sustain the rationale behind using antiangiogenic drugs 
before the onset of immunotherapy and we propose as an innova-
tive, low-cost strategy the use of “repurposed” anti-inflammatory/
chemopreventive drugs to assist immunotherapies.

MACROPHAgeS

Macrophages constitute professional phagocytes of the innate 
immune cell compartment with different specialized functions, 
depending on the type of danger signals and endogenous mol-
ecules to which they are exposed (10). They act as sentinels in 
all tissues of the body against invading pathogens, are able to  
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FigURe 2 | Contribution of innate immunity to tumor angiogenesis. Soluble mediators (chemokines, cytokines, and enzymes) within the tumor microenvironment 
act directly or indirectly as proangiogenic factors produced by macrophages [M2-like tumor-associated macrophages (TAMs)], neutrophils [tumor-associated 
neutrophil (TAN), N2-like], myeloid-derived-suppressor cells (MDSCs), mast cells, and natural killer (NK) cells.
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trigger an inflammatory response, and collaborate with other 
immune cells to activate adaptive T  lymphocyte responses 
through antigen processing and presentation. These activi-
ties are related to a classical activation state, which is type 1 T 
helper (TH1) cell associated and INFγ and/or LPS-dependent, 
and is referred to as M1. This condition is favorable to immune 
response. Macrophages can be alternatively activated by IL-4 and/
or IL-13 signals from TH2 cells, eosinophils, and/or basophils in 
the surrounding microenvironment. This polarization is involved 
in parasite control and wound healing and is termed M2 (11). 
M2 macrophages are associated with chemical and physical tissue 
damage in which they mediate tissue homeostasis and repair via 
remodeling and angiogenesis, in a spectrum of differentiation 
states. In vivo, the plasticity and diversity of macrophages are 
responsible of a spectrum of different activation states strictly 
depending on an array of concordant but also discordant stimuli, 
such as hypoxia, chemokines, colony-stimulating factor 1 (CSF1), 
TGFβ, adenosine, and prostaglandin E2 (PGE2), that do not fit 
with the M1/M2 classification (12). For these reasons, M1-like 
is the preferred term used in this review and indicate a polariza-
tion state of macrophages that are able to orchestrate cytotoxic 
antipathogen and antitumor responses, whereas M2-like are cells 

that have the common functional feature of favoring tumor cell 
fitness, new blood vessel formation, as well as suppressive activi-
ties toward adaptive immune cells (13, 14). Tumor-associated 
macrophages (TAMs), which share many features with M2-like 
macrophages (Figure 2), represent the major cell population of 
tumor-infiltrating leukocytes (15). TAMs also show consistent 
differences between diverse types of cancers (16, 17). Elevated 
TAM infiltration has been correlated with poor clinical outcome 
in many types of cancers, such as ovarian, breast, prostate, 
cervical, and thyroid cancers, Hodgkin’s lymphoma, cutaneous 
melanoma, lung, and hepatocellular carcinomas (14, 18–22). 
Conversely, other reports on colorectal, prostatic, and lung 
cancers have detected a positive role of infiltrating macrophages 
favoring increased patient survival (23–25). During cancer 
development, macrophages are recruited in the tumor stroma 
by several inflammatory mediators, such as chemokines: CCL2 
(also known as MCP-1), CCL5, CXCL12 (also known as SDF-1), 
cytokines: vascular endothelial growth factor (VEGF), CSF1, 
and activated complement elements. Blood monocytes, blood 
monocytic MDSCs, cells, or tissue-resident macrophages (26–28) 
are subverted in their phenotype and functions to differentiate 
into TAMs (14). However, TAMs are not fixed in an irreversible 
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phenotype, they maintain their plasticity and eventually could be 
targeted by specific therapeutic approaches to re-educate them to 
M1-like antitumor functions (29). Accumulating evidence have 
shown that TAMs can act as key cellular mediators, intercon-
necting chronic inflammation with cancer development and 
progression (3, 30).

Several lines of research have pointed out the role of TAMs in 
the regulation of tumor cell invasion, angiogenesis, lymphangi-
ogenesis, and metastasis (11, 19). In primary tumors (Figure 2), 
they can promote angiogenesis (the “angiogenic switch”) trig-
gering the activation and the recruitment of endothelial cells 
(ECs), essentially by producing multiple proangiogenic factors, 
including VEGFA, epidermal growth factor (EGF), basic fibro-
blast growth factor 2 (FGF2), chemokines CXCL8 (also known 
as IL-8), CXCL12, TNFα, semaphorin 4D, adrenomedullin, 
and thymidine phosphorylase (31–34). These factors produced 
by TAMs are responsible for the proliferation of ECs and the 
induction of sprouting, tube formation, and maturation of new 
vessels. Macrophages have been shown to play a critical role in 
tumor lymphangiogenesis by producing VEGFC and VEGFD 
(35–37). TAM activities can also have an impact on degradation 
and remodeling of the extracellular matrix (ECM), through the 
production of different classes of enzymes and proteases, such 
as matrix metalloproteinases (MMPs in particular MMP2 and 
MMP9), plasmin, urokinase plasminogen activator (uPA), and 
cathepsins, thereby influencing tumor invasion and the meta-
static process (38–40).

Tumor-associated macrophages are also associated with 
resistance to different chemotherapeutic agents, involving the 
activation of distinct molecular pathways. In breast cancers, 
TAMs are able to inhibit apoptosis of cancer cells upon paclitaxel 
treatment via induction of IL-10/signal transducer and activator 
of transcription (STAT)3/Bcl-2 signaling (41). In patients with 
non-small cell lung cancer, TAMs or M2-like TAMs dampen the 
responsiveness to targeted therapy with EGF receptor–tyrosine 
kinase inhibitors (42, 43).

A highly proangiogenic M2-like TAM subset is represented by 
angiopoietin responsive Tie2+ perivascular macrophages (35–37),  
which are able to induce chemotherapeutic drug resistance, 
favoring decreasing cancer cell responsiveness to radiotherapy 
(44). Specific inhibition of the angiopoietin/Tie2 axis can act in 
synergy with antiangiogenic treatments (45). Apart from their 
proangiogenic features, TAMs also play a crucial role in promot-
ing an immunosuppressive milieu helping different tumors to 
escape immunosurveillance (46). Their contribution to tumor 
progression act also through crosstalk with other leukocytes 
and inflammatory and stromal cells (7, 47) within the TME. In 
the establishment of the immunosuppressive milieu, TAMs can 
directly recruit T regulatory (Treg) cells, by producing CCL20 (48) 
and CCL22 chemokines (49) and can activate them by secreting 
IL-10 and TGFβ (26). TAMs also represent an important factor 
for the establishment of the premetastatic niche (50, 51).

Different TAM-targeted therapeutic strategies have been 
developed with the aim to inhibit macrophage recruitment, 
to induce cell death, and to re-educate killer functions. These 
innovative therapeutic approaches could behave as a complement 
strategy in combination with antiangiogenic, cytoreductive, and/

or immune checkpoint inhibitor treatments, and preclinical and 
clinical trial results are promising (14, 30, 52). CCL2-specific 
inhibition by antibodies has proven efficacious in mouse models 
of prostate, breast, lung, and melanoma, and this approach was 
synergistic with chemotherapy (53, 54). Different antibodies 
targeting CCL2 have entered phase I and II clinical trials (55). 
A CCR5 antagonist has been approved for the treatment of 
patients with liver metastases from advanced colorectal cancers 
and experimental data indicate that CCL5/CCR5 axis targeting 
could be suitable for clinical responses (56). Diverse compounds 
and antibody inhibitors that have been developed to inhibit the 
CSF1–CSF1R axis, could target TAM, and were evaluated in 
mouse models and in patients with different types of cancer (57). 
In diffuse-type tenosynovial giant-cell tumor showing overex-
pression of CSF1R, after treatment with CSF1R-blocking agents, 
patients experienced relevant clinical regressions (57, 58). In 
preclinical glioblastoma multiforme model, CSF1R blockade did 
not affect the TAM numbers but the M2-like TAM polarization 
markers were lowered, thus was associated with improvement 
of survival (59). Bisphosphonates, that are used to treat osteo-
porosis and to prevent bone metastases-related complications, 
can also be used to target macrophages inside the tumor (60). 
Moreover, bisphosphonates in combination with chemotherapy 
or hormonal therapy have been shown clinical synergistic effects, 
in different types of cancer patients, in particular for patients with 
breast cancer (61). In a murine model of pancreatic ductal adeno-
carcinoma (PDAC), the anti-CD40- and gemcitabine-treated 
mice induced re-education of M2-like TAM toward an M1-like 
macrophage and elicit effective antitumor responses (62). This 
lead to a phase I clinical trial in PDAC patients, the combination 
was well tolerated and provided some antitumor efficacy (63). A 
recently identified potent compound that targets TAMs is tra-
bectedin, a synthetic form of a molecule isolated from the marine 
tunicate Ecteinascidia turbinata, which has found application in 
the treatment of soft tissue sarcomas and ovarian cancer patients. 
Trabectedin induces selective TRAIL-dependent apoptosis of 
monocytes, macrophages, and the monocytic component of 
MDSCs in blood, spleen, and tumors with the reduction of TAM 
numbers and angiogenesis (64, 65).

NeUTROPHiLS

Neutrophils are the most abundant innate immune cells in 
the peripheral blood, they act as a first line of defense against 
invading pathogens and are crucial effectors in the acute phase 
of inflammation. Neutrophils are recruited in the damaged area 
by chemokines, in particular CXCL8, and the cognate receptors 
CXCR1 and CXCR2 (66). These leukocytes exert important func-
tions such as phagocytosis, production and release of antimicro-
bial ROS, peptides, enzymes, and neutrophil extracellular traps 
(NET). Neutrophils can release a substantial quantity of different 
reactive soluble factors, including cytokines and chemokines (67), 
and are able to recruit and activate other immune cells, playing an 
important role in the regulation of chronic inflammation, tumor 
angiogenesis, and progression. Inflammatory CD66b+ neutrophils 
can be found in high numbers in either blood or TME of different 
cancers and correlated with poor clinical outcome (68–74).
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Neutrophils produce either proangiogenic or antiangiogenic 
factors (75–79), and in some cases, such as in the early phases 
of lung cancers, they can exert important T  cell stimulatory, 
antitumor functions (80). Although they are characterized by a 
terminally differentiated phenotype and a short half-life, these 
cells are endowed with a certain kind of plasticity and in murine 
tumor models they are able to differentiate in two distinct subsets: 
neutrophils type 1 (N1) with antimicrobial functions, and tumor-
associated neutrophils (TANs or N2) endowed with protumor 
and proangiogenic features (Figure 2) in response to TGFβ (81, 
82). In response to IFNβ, TAN/N2 neutrophils can be converted 
to N1 type in both mouse lung cancers and human melanomas 
(83, 84).

Accumulating evidence has indicated TANs as key players 
involved in tumor angiogenesis and metastatic process in both 
mice and humans (Figure 2). The complex role of TANs in tumor 
angiogenesis and metastasis resides mainly in the capacity of 
these cells to secrete an array of diverse immunosuppressive or 
proangiogeneic molecules such as IL-1β, VEGF, FGF2, TGFα, 
hepatocyte growth factor (HGF), and angiopoietin 1 (ANG1) 
different chemokines such as CXCL1, CXCL8, CXCL9, CXCL10, 
CCL3, and CCL4 (6) and enzymes involved in ECM remodeling 
(MMP9). Production and expansion of neutrophils is dependent 
on CSF3 (G-CSF) and its receptor CSF3R. A crucial signaling 
pathway for cancer inflammation is STAT3 (85), which is down-
stream of activated CSF3R. In response to CSF3, neutrophils 
upregulate the expression of BV8 (also known as prokineticin-2) 
that induce myeloid cell mobilization and myeloid-dependent 
tumor angiogenesis (86). This production of BV8 depends on the 
activation of STAT3 (87). The tumor angiogenesis stimulation 
in mice by TANs and other myeloid cells is regulated by STAT3 
signaling and involves VEGFA, FGF2, and MMP9 (88). MMP9-
secreting neutrophils can directly contribute in the acceleration 
of tumorigenesis acting on skin premalignant epithelial cells in 
a mouse model (89). During the early stages of carcinogenesis, 
TANs can mediate the initial angiogenic switch in RIP1–Tag2 
transgenic mice model of pancreatic neuroendocrine tumor. The 
MMP9-positive neutrophils were mainly found inside angiogenic 
islet dysplasia as well as in tumors (90). The neutrophil depletion 
by GR1 or Ly6G antibodies in both transgenic and tumor trans-
planted mice resulted in lower levels of VEGF/VEGF receptor 
(VEGFR) signaling and a delay of the angiogenic switch (90). 
TANs lack expression of tissue inhibitors of metalloproteinases 
(TIMP1), rendering neutrophil-derived MMP9 more potent as 
angiogenesis driver in the TME than cells which produce MMP9/
TIMP1 complexes (91). Neutrophils with antiangiogenic features 
have been reported to be able to release the endogenous angio-
genesis inhibitor thrombospondin-1 in peroxisome proliferator-
activated receptor (PPAR)α-deficient mice, thus preventing 
angiogenesis and tumor growth (92). These reports suggest that 
PPARα is a central transcriptional suppressor of inflammation 
and tumor development and could be a valuable target. Group 
V secreted phospholipase A2 enzymes are released by human 
neutrophils and enhance the proangiogenic molecules VEGFA, 
ANG1, and CXCL8 in an autocrine mechanism (93), but also 
stimulate production of the antiangiogenic isoform of VEGFA, 
VEGFA165b (94). The functional outcome probably depends on 

the balance between proangiogenic and antiangiogenic factors 
and is still matter of investigation.

The ability of neutrophils to release several proangiogenic 
factors, MMPs, and other proteases (95) and to trap cancer cells 
via NET secretion (96) could promote cancer metastasis. TANs 
are required for the development of the premetastatic niche and 
metastases in murine models (97–99).

Recently, new data have brought clarity on the role of TANs 
and TAMs in the resistance to antiangiogenic therapy. Tumors 
activate PI3K signaling in all CD11b+ cells (both neutrophils and 
monocytes) (100). Inhibition of one of these cell types induces a 
compensatory phenomenon by the other cell types, which over-
comes the angiogenic blockade. Hindering PI3K in all CD11b+ 
myeloid cells generate a long-lasting angiostatic effect (100).

iMMATURe MYeLOiD CeLLS  
(MDSC AND DC)

Immature myeloid cells are innate immunity cells that infiltrate 
the TME, having a critical role in the proangiogenic activities 
and in tumor immune evasion (Figure 1). The immature myeloid 
cells include MDSCs and DCs, also indicated as regulatory (reg)
DCs (101, 102). The immature phenotype is due to constitutive 
activation of STAT3 that perturbs the differentiation process of 
these cells. MDSCs comprise in mice and humans two distinct 
immature myeloid cell types: the polymorphonuclear MDSC 
(PMN-MDSC) characterized by neutrophil features, and the 
monocytic MDSC (M-MDSC) having markers of monocytes. 
Recently, several articles have described exhaustively both MDSC 
and DC phenotypic characteristics and they will not be discussed 
here (103–105). Several tumor-derived factors, among which 
CSF3, IL-1β, and IL-6, have been implicated in recruitment, 
activation, and expansion of MDSCs. These molecules contribute 
to the STAT3 activation of immature MDSCs, rendering them 
potent proangiogenic and immunosuppressive cells (106).

Monocytic MDSCs have been intensively studied and rec-
ognized as immunosuppressive cells as well as proangiogenic 
effectors in cancer (107). Murine data suggested that MDSCs are 
also able to differentiate into ECs (108, 109). Recent data have 
suggested that MDSCs in human peripheral lymphoid organs are 
mainly represented by PMN-MDSCs, with immunoregulatory 
role and are involved in the tumor-specific T cell tolerance. In 
the TME, there is accumulation of the M-MDSC counterpart, 
which is more suppressive and can rapidly differentiate to TAMs. 
These events might imply that targeting only one myeloid cell 
subset (macrophages vs. granulocytes or vice versa) may not be 
sufficient for obtaining a long-lasting immunotherapeutic effect. 
An investigation performed in two transplantable and two trans-
genic tumor murine models has shown that the tumor-induced 
hypoxia triggers the upregulation of CD45 tyrosine phosphatase 
activity in TME residing MDSCs, resulting in downregulation of 
STAT3 and differentiation of MDSCs into TAMs (106). There is 
no hypoxia in the spleens, thus CD45 downregulation of STAT3 
does not occur in this organ. Use of STAT3 inhibitors in tumor-
bearing mice resulted in depletion of MDSCs in the spleen but 
not in tumors.
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Myeloid-derived suppressor cells and TAMs are regulated 
by metabolic constraints within the TME, and this represents 
a crucial factor of the signaling network regulating the expres-
sion of specific transcriptional programs with distinct protumor 
functions (110). Several amino acids in the TME are converted to 
immunomodulatory molecules such as nitric oxide, polyamines, 
and kinurenines. Amino acids consumption by myeloid cells 
decrease the availability of essential nutrients for T cells (111). 
The energetic metabolism of tumor-infiltrating MDCSs showed 
peculiar features in both mouse and human samples, such as 
a preferential augmented fatty acid uptake and their oxidation 
rather than glycolysis (112, 113). Targeting fatty acid oxida-
tion inhibited tumor growth and combination with low dose 
chemotherapy blocked the MDSC immunosuppression (113). 
Myeloid cells in the TME produce increased fatty acid synthase 
in response to CSF1, which causes PPARβ/δ-dependent expres-
sion of genes, like VEGF, IL-10, and arginase 1 (Arg1), involved 
in the proangiogenic and immunosuppressive responses (114).  
A promising therapeutic approach is based on the reprogram-
m ing and the re-education of the metabolism of MDSCs in the 
TME, with appropriate drugs in combination with immune 
checkpoint inhibitors (115).

Myeloid-derived suppressor cells are also characterized by 
the ability to express high amounts of NADPH oxidase, which is 
responsible for the production of ROS in the form of superoxide 
anion, hydrogen peroxide, and peroxynitrite. MDSCs present 
also an increased expression of Arg1 and of inducible forms of 
nitric oxide synthase 2 genes, and they release diverse inhibitory 
cytokines, contributing to the immunosuppressive effects in the 
TME (116).

Myeloid DCs, also known as conventional (c)DCs, consists of 
multiple cell subsets with potent antigen-presenting cell capacity, 
therefore playing a fundamental role in the activation of T-cell 
adaptive responses against pathogens and tumor cells. However, 
tumor-associated cDCs or regulatory DC (regDCs) in the TME 
display altered functions with impaired cross-presentation 
capacity, express low levels of co-stimulatory molecules, and have 
high-proangiogenic abilities. These changes depend on diverse 
conditions that are established during tumor progression, for 
example, hypoxia, production of PGE2, IL-10, adenosine, and 
increased levels of lactate (117–119).

One of the major mechanisms contributing to DC dysfunction 
in tumor-bearing animals and in patients with different cancers 
is the abnormal accumulation of lipids (120). Growing evidence 
shows that cDCs can drive either immunosurveillance or acceler-
ated tumor progression depending on the environment. In both 
mouse and human ovarian cancers, CCR6+ cDCs are recruited 
massively in the TME through the tumor-derived β-defensins 
and are induced to become proangiogenic cells, favoring tumor 
vascularization, and growth in response of tumor VEGF (121).

Depleting DC numbers in the tumor-bearing host at early 
stages of the disease correlates with faster tumor development 
in a murine model of ovarian cancer. DC inhibition at advanced 
stages induces on the contrary significant delays in the malignant 
progression (122).

During tumor progression, the hypoxia-induced regDCs remain 
in an immature state and acquire tolerogenic immunosuppressive 

properties and proangiogenic activities, for instance, by secretion 
of galectin-1 (123, 124). Galectin 1 is able to bind VEGFR2 and 
neuropilin-1, mirroring the effect of VEGF on ECs, thereby pro-
moting angiogenesis (123–125). Moreover, regDCs are involved in 
the expansion and activation of Treg cells through TGFβ release, 
reinforcing the induction of the immunosuppressive functions 
of the TME (126–128). Induction of adenosine receptor A2b is 
triggered by the hypoxia-induced factor (HIF)-regulated elements 
during tumor hypoxia and is involved in skewing DCs to TH2 
triggering phenotype, sustaining M2-like macrophage induction, 
and reinforcing tumor angiogenesis (129). Although regDCs 
and MDSCs have cell-type specific functional properties, their 
capability of regulating tumor angiogenesis in the TME appears 
similar to the one of M2-like TAMs and N2 neutrophils, leading 
to production of several soluble factors such as VEGF, FGF2, BV8, 
and MMP9 (130).

MAST CeLLS

Mast cells (MCs) are bone marrow-derived multifunctional 
immune cells first identified in human tumors by Paul Ehrlich in 
the 1870s (69, 131). MCs and their mediators exert a host protec-
tive immune response against noxious agents, viral and microbial 
pathogens (132–135), but are also associated with a detrimental 
role in allergic diseases (69). Increased number of MCs have 
been observed in tumor and peritumor tissues of cancer patients 
(136); their role in cancer insurgence and progression is tumor 
dependent (69, 131). Contrasting roles of MCs in supporting or 
inhibiting tumor progression have been reported (131). In solid 
neoplasms including thyroid, gastric, pancreatic, bladder cancers, 
prostate adenocarcinomas, and hematological malignancies, MCs 
have been associated with protumorigenic activity (69, 131, 137). 
In breast cancer (131) and in murine model of prostatic neu-
roendocrine tumors (137), MCs have antitumor activities. These 
data clearly suggest that the role of MCs in cancer is tumor-type 
dependent and is tuned by the local microenvironment (Figures 1 
and 2). Antitumor activities by MCs are related to their ability to 
induce target cell cytotoxicity by releasing TNFα or by induction 
of ROS. Protumorigenic activities of MCs include contribution to 
the induction of an acidic and immunosuppressive TME, through 
adenosine production in the extracellular milieu. Prometastatic 
functions of MCs are mediated by the release of TGFβ, which 
induce tumor cells to undergo epithelial to mesenchymal transi-
tion. MC releases proangiogenic factors including FGF2, VEGFA, 
TNFs, CXCL8 (69, 131), diverse proteases, such MMPs (MMP9 
mostly), as well as chymase and tryptase that modify pro-MMPs 
to their active forms (5, 138). MC deficient tumor-bearing mice 
show a reduced angiogenesis and metastatic capacity (138, 139). 
In renal cell carcinoma, infiltrating MCs have been found to sup-
port angiogenesis by modulating PI3K/AKT/GSK3β/AM signal-
ing (140). Following activation of c-KitR/SCF, MCs can release 
tryptase that, acting on PAR2 in tumor cells, induce endothelial 
and tumor cell proliferation in a paracrine manner, leading to 
tumor cell invasion and metastasis (141). Tryptase released by 
MCs sustain angiogenesis in pancreatic cancers by activating the 
angiopoietin-1 pathway. Tryptase producing MCs correlate with 
angiogenesis in locally advanced colorectal cancer patients (142). 
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Immunohistochemical analysis showed that tryptase-positive 
MCs in multiple myeloma were associated with higher levels of 
MMP9, ANG2, and angiogenin (143) and could contribute to 
vasculogenic mimicry (144). Tryptase appears the key mediator 
for protumor activity of MCs, since it is involved in cell growth, 
tumor-induced angiogenesis, and invasion (145, 146), thus it 
appears to be a promising target for MC-related angiogenesis. 
Tryptase inhibitors originally designed as anti-allergic drugs 
could exert promising antitumor and antiangiogenic activity and 
could be proposed as repurposed drugs also in combination with 
immune therapy.

γδT17 CeLLS

Gammadelta T cells are lymphoid cells characterized by unique 
features resembling innate cells in their capacity to recognize 
conserved non-peptide antigens expressed by stressed cells. They 
also resemble adaptive cells because of their ability to undergo 
clonal expansion and to develop antigen-specific memory (147). 
These cells are involved in the early phase of immune responses 
and produce pro-inflammatory factors such as IFNγ and TNFα 
and IL-17, activating other effector immune cells against virus, 
bacteria, and tumor cells but also stimulating inflammation and 
exacerbation of autoimmune diseases. They comprise different 
functional subsets.

Although there are some conflicting data on the role of 
γδT  cells inside the TME, it is believed that the subset γδT17 
cells, specialized in the IL-17 release, can actively participate 
in the angiogenic process (147, 148) (Figures  1 and 2). It has 
been shown that γδT17 cells release IL-17, CXCL8, CFS2 (also 
known as GM-CSF), and TNFα, and are able to support survival 
of MDSCs (149). Tumor cells over-expressing IL-17 showed 
significant tumor growth and new vessel formation (150). Since 
IL-17 has no direct effect on the proliferation of ECs, the proan-
giogenic effect is likely to be exerted through the enhancement of 
VEGF and/or CXCL8 by tumor cells (151). On the contrary, mice 
lacking IL-17 showed limited tumor growth and the vascular 
density in tumor tissues was decreased (152). There is evidence 
that IL-17 responsiveness can be an independent prognostic fac-
tor for overall survival in colorectal patients (153), high expres-
sion of IL-17 was shown to be associated with high microvessel 
density and was associated with VEGF production from tumor 
cells. More recently, it has been shown that IL-17 activates STAT3 
in non-small cell lung carcinomas (NSCLC) cells and that treat-
ment of HUVECs with IL-17 in vitro promoted the formation of 
vessel-like tubes in a dose-dependent manner (154). The GIV 
protein (Gα-interacting vesicle-associated protein, also known 
as Girdin) modulates the crucial signaling pathways in processes 
including macrophage chemotaxis, wound healing, and cancer 
metastasis and can be a target of STAT3 activation in NSCLC 
cell lines. IL-17-dependent STAT3/GIV signaling pathway is 
responsible for VEGF release from cancer cells and promotion 
of tumor angiogenesis, and GIV expression positively correlates 
with IL-17+ cell presence and increased microvessel densities 
and predicts poor survival of NSCLC patients (154).

IL-17 in the TME in the CMS-G4 fibrosarcoma tumor 
model was largely derived from tumor-infiltrating γδT  cells, 

and anti-cytokine mAb treatment revealed that the γδT  cells 
require the presence of IL-6, IL-23, and TGFβ signaling (152). 
In gallbladder cancer (GBC) patients, γδT17 cells are increased 
in peripheral blood and in the population of tumor-infiltrating 
lymphocytes (155). GBC patients with high γδT17, TH17, and 
Treg cells showed poor overall survival (155). A GBC (OCUG-1) 
cell line that is responsive to IL-17, treated with cell-free super-
natant from γδT17 cells, upregulates VEGF production, and 
this effect is IL-17 dependent (155). The proangiogenic action 
of γδT17 cells on GBC was confirmed by protein angiogenesis 
array performed on cell-free supernatants derived from these 
cells. The assay showed IL-17-dependent upregulation of several 
important angiogenesis factors in OCUG-1 cells, such as VEGF, 
angiogenin, uPA, MMP9, CCL2, CXCL16, CSF2, and coagulation 
factor III, but also stimulation of production of antiangiogenic 
factors, including thrombospondin-1, TIMP1, serpine-1, and 
platelet factor 4. A recent report has shown that IL-17-secreting 
γδT cells are dependent on CCR6 for homing to inflamed skin 
(156). Drugs targeting CCR6 or factors involved in γδT17 cell 
proangiogenic polarization should be studied for potential use in 
addition with immunotherapy.

iNNATe LYMPHOiD CeLLS

Innate lymphoid cells represent a recently identified heterogene-
ous family of mononuclear hematopoietic cells, found mostly in 
solid tissues (157–160). Based on their lymphoid morphology, 
surface antigens, transcription factor expression, and cytokine 
productions (TH1, TH2, and TH17-like), ILCs have been clas-
sified into three major groups, termed as ILC1, ILC2, and ILC3 
(161). ILC1s are characterized by IFNγ release and are Tbet 
dependent; ILC2 produce type 2-cytokines, such as IL-5 and 
IL-13, and require GATA3 expression; ILC3s produce IL-17 and/
or IL-22 and are dependent on RORγt (162). ILCs are endowed 
with potent pleiotropic effects in early responses against infec-
tions and are involved in several pathologies including cancer. 
Aberrant activation, proliferation, and functions of ILCs support 
severe inflammation and damages in diverse organs, including 
the gut, lung, liver, and skin (163–168). Whether ILCs can be 
defined as friends or foes in cancer insurgence and progression 
is still a matter of debate (157, 158, 160). ILCs are characterized 
by high-cell plasticity and can be easily interconverted into their 
different subsets upon TME stimuli [especially ILC1–ILC3 inter-
conversion (169)].

IFNγ+ ILC1s have been associated with both antitumor and 
protumor effects (Figure 1), the latter induced by triggering of 
MDSCs and inducing indoleamine 2,3-dioxygenase activity 
(157). A protective role exerted by a novel type of ILC1-like cells 
has been shown in a murine model of mammary carcinogen-
esis (170). NK cells, that will be discussed, later have also been 
included in the ILC1 subclass.

ILC2s can release type 2 cytokines, such as IL-5 and IL-13, 
and CSF2 in response to IL-25 and IL-33. IL-13/IL-13R 
interaction in breast cancer and cholangiocarcinoma cells in 
association with recruitment and induction of TGFβ-producing 
MDSCs and Treg has been reported to induce tumor cell growth 
and migration (171), and tumor immune escape (172). Release 
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of IL-13 by ILC2s promotes M2-like TAM polarization and 
amplification (172).

Among the ILC subgroups, ILC3s are the more investigated 
for their contribution to carcinogenesis. They comprise several 
subsets: lymphoid tissue inducer (LTi) cells, first discovered 
for their function in the formation of lymphoid tissue during 
organogenesis, NCR (NKp46, NKp44)+ ILC3 and NCR− ILC3. 
Overall, the pro-tumor activities of ILC3s are mainly linked to 
the induction of chronic inflammation by secretion of IL-17 
and IL-22, in particular in the gut, through their response to 
IL-23 (173).

ILC3s preserve epithelial integrity and maintain tissue 
homeostasis by secretion of IL-22. Production of IL-17 by ILC3s 
can have a role in promoting tumorigenesis, tumor growth, 
and angiogenesis (174–176). Growing evidence from mouse 
tumor models marks ILC3s as cells involved in the recruitment 
of MDSCs, Treg cells, and in the promotion of M2-like mac-
rophages in the TME. At the moment, the real contribution in 
human cancers remains to be fully elucidated (177, 178). ILC3s 
have also been shown to play a role in carcinogenesis in models 
of bacteria-induced colorectal cancer, through the release of 
IL-22 (179). The involvement of LTi-like ILC3s has been shown 
in the induction of tumor migration via lymphatics in patients 
with triple-negative breast cancers (180). In the 4T1.2 syngeneic 
mouse breast model, ILC3s are recruited in the primary tumor 
through CCL21, and then they trigger tumor stromal cells to 
release CXCL13, which leads to the induction of lymphotoxin 
and receptor activator of nuclear factor 𝜅-B ligand, that in 
turn promotes lymphangiogenesis and stimulate tumor cell 
motility (180). A correlation exists between invasive aggressive 
behavior in breast cancer patients and gene expressed by ILC3s 
such as CXCL13, CCL19, CCL21, and CXCR5 and CCR7 (181). 
ILC3s have been shown to promote the formation of tertiary 
lymphoid structures (TLS), involved in tumor progression and 
lymph nodal metastasis (182). The protumor or antitumor roles 
of TLS are still debated (183, 184). NKp46+ NKp44+ LTi-like 
ILC3s are present in the TME near intra-tumor TLS and may 
interact directly with tumor cells by sensing and recognizing 
transformed cells through the NKp44 receptor. Tumor-
infiltrating NKp46+ NKp44+ LTi-like ILC3s are endowed with 
ability to release several types of pro-inflammatory cytokines 
and chemokines, and their increased numbers correlated with 
intra-tumor TLS and predict favorable clinical outcome (185). 
Accumulation of neuropilin (NRP)1+ LTi-like ILC3s has been 
found in inflamed tissues of patients with chronic obstructive 
pulmonary disease and in smokers, in association with VEGF 
production (186). Immunohistochemistry analysis of inflamed 
tissues revealed that the majority of RORγτ+NRP1+ cells were 
co-localized with blood vessels and in the alveolar parenchyma, 
suggesting their contribution to angiogenesis and induction of 
lung TLS. Apart from IL-22 and IL17, the pro-inflammatory 
LTi-like NRP1+ ILC3 subset was also found to release CSF2, 
TNFα, B-cell-activating factor, and CXCL8, possibly contribut-
ing to angiogenesis.

Due to the recent discovery of the non-NK ILCs and the 
incomplete knowledge of the role in tumor and angiogenesis, 
targeting strategies have not been yet developed.

NK CeLLS

Natural killer cells are bone marrow-derived large granular effec-
tor lymphocytes of the innate immune system that can potentially 
control tumor growth by their cytotoxic activity (187), which are 
now classified as a subset of ILC1 (161). Based on surface density 
expression of CD56, an isoform of the human neural cell adhesion 
molecule, and of CD16, the low-affinity Fcγ receptor, two main 
subpopulations of peripheral blood NK cells have been identi-
fied in humans: the CD56dimCD16+ and the CD56brightCD16−/low  
NK cell subset, representing about 90–95% of peripheral blood 
NK cells and about 5–10% of peripheral blood NK cells, respec-
tively. CD56dimCD16+ NKs can release high quantity of perforin 
and granzymes and are cytotoxic when encountering cells with 
high-activating ligands and low inhibitory (mostly class I MHC) 
ligands or when mediating antibody-dependent cell cytotoxicity 
(187). Although weak long-term cytokine producers, these cells 
have the ability to quickly (2–4 h) secrete high amounts of cytokines 
(188, 189). CD56brightCD16−/low NKs, are poorly cytotoxic, but can 
release several cytokines, including IFNγ, TNFα, and GM-CSF. 
However, there is an increasing awareness of the complexity 
of NK cell subsets and the role of the TME (190–193). Mature 
NK  cells express the PD-1 receptor, and engagement with the 
programmed death-ligand 1 (PD-L1) ligand results in impaired 
antitumor NK cell activity (194, 195). Disruption of this PD-1/
PD-L1 by blocking antibodies partially restores their antitumor 
activity (194, 195). Another recently identified NK checkpoint is 
the IL-1R8 (also known as SIGIRR, or TIR8), which is expressed 
on human and murine NK cells (196). Mice lacking IL-1R8 are 
protected against chemically-induced tumors and metastatic 
dissemination (196). Mice lacking the cytokine-induced SH2-
containing protein CIS also had protection toward chemically 
induced tumors and metastatic disease (197).

A third NK  cell subset has been identified in the decidua 
during pregnancy, termed decidual or uterine NK cells (dNK). 
dNK  cells acquire the CD56superbrightCD16−KIR+ phenotype 
(198), are poorly cytotoxic, and secrete proangiogenic cytokines, 
including VEGF, placental growth factor (PlGF), CXCL8, and 
IL-10 (198–200) and are critical for decidual vascularization 
and spiral artery formation (199, 201). Early on in pregnancy, 
dNK increase up to 70% of the local lymphocytes and 30–40% 
of all decidual cells (202). While it has been exhaustively dem-
onstrated that NK  cells have important proangiogenic roles in 
the uterine vasculature, their contribution to tumor angiogenesis 
still represent a poorly explored topic (Figure 1). The TME has 
been extensively reported to be crucial in shaping NK cell func-
tions (203). We were the first to report a proangiogenic NK cell 
polarization in peripheral blood (TANKs) and tumor-infiltrating 
NK cells (TINKs) (204) in NSCLC patients. We showed that the 
CD56brightCD16− NK  cells, the predominant subset infiltrating 
NSCLC tissues and a minor subset in adjacent lung and periph-
eral blood, are associated with VEGF, PlGF, and IL-8 production 
(Figure 2). Functional assays indicated that supernatants derived 
from NSCLC CD56brightCD16− NK  cells induce EC chemotaxis 
and formation of capillary-like structures in vitro, and that these 
effects were even stronger in TANKs isolated from subset of 
squamous carcinoma patients than in adenocarcinoma.
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TGFβ is associated with dNK polarization (205, 206) and is 
present in the TME. A combination of TGFβ, hypoxia, and a 
demethylating agent induces a dNK-like phenotype in healthy 
donor NK  cells (207). A recent report indicated that TGFβ 
converted NK  cells into other ILC1 subpopulations that were 
unable to control local tumor growth and metastasis (208). We 
observed that TGFβ1 upregulates VEGF and PlGF in healthy 
donor NK cells (204).

Tumor-infiltrating NK cells operate within a hypoxic TME. 
Hypoxia has been extensively reported to modulate immune 
cell response as well as driving angiogenesis (209). Murine 
NK  cells genetically depleted of HIF1α continued to have 
impaired cell cytotoxicity, yet tumors grew more slowly in these 
mice (210). Tumors in these mice had numerous immature ves-
sels with hemorrhages that resulted in severe hypoxia, which 
favored metastasis. Genetic inactivation of STAT5, which is 
necessary for NK  cell-mediated cancer immunosurveillance, 
increases VEGFA in NK  cells and stimulates angiogenesis 
in mouse lymphoma models and on healthy donor-derived 
NK  cells (211). The aminobiphosphonate zoledronic acid, 
largely employed as an immunomodulatory agent and able to 
decrease VEGF levels, has been surprisingly found to synergize 
with IL-2 in inducing proangiogenic features in TINKs, acting 
on VEGF/VEGFR1 axis (212). Thus, therapeutic interven-
tion could act as a double edge sword in NK cell response to  
tumors.

PHARMACOLOgiCAL AND 
iMMUNOTHeRAPeUTiC COMBiNATiON 
TARgeTiNg THe TMe

Extensive studies on TME led to a shift from a tumor-centered 
view of cancer onset to the role of a more complex tumor 
ecosystem in which cellular and molecular components are as 
influential as cancer cells themselves for cancer development 
and metastatic behavior. This knowledge led to the rapid devel-
opment of therapeutic approaches aimed at restoring altered/
aberrant host immune cell response, by accelerating/pushing 
efficient tumor eradication, stimulating immune cells of the host 
(213). The use of immune checkpoint blockers (ICBs) induces 
reactivation of key immune cell players and has been demon-
strated to have great clinical benefits in several tumors (214). 
Available ICBs target cytotoxic T lymphocyte-associated protein 
4 (CTLA-4), programmed cell death 1 (PD-1) receptor, and its 
ligand PD-L1. Known ICBs are: Ipilimumab, a mAb-blocking 
CTLA4, approved in patients with unresectable or metastatic 
melanoma. Pembrolizumab, a mAb-blocking PD-1, initially 
licensed for use in patients with unresectable or metastatic 
melanoma experiencing disease progression on ipilimumab. 
Pembrolizumab has been recently made available for other types 
of cancer (metastatic Non-Small Cell Lung Cancer, Head and Neck 
Cancer, Hodgkin’s Lymphoma, Urothelial Carcinoma and Gastric 
Cancer). Nivolumab is another mAb directed to PD-1 approved 
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for use in individuals with unresectable or metastatic melanoma 
non-responding to other treatments, as well as in patients with 
metastatic NSCLC, or after platinum-based chemotherapy. 
Atezolizumab is a PD-L1-blocking antibody for the treatment of 
locally advanced or metastatic urothelial carcinoma. Despite the 
strong clinical success of cancer immunotherapy with checkpoint 
inhibitors and other immune modulating agents, most patients 
still do not experience a durable response (215) and many do not 
respond at all. To overcome this issue, several strategies combin-
ing immune to targeted therapy have been developed.

The gut microbiome, which has a significant influence on 
the local and systemic immune system, can influence the out-
come of ICB therapy in preclinical mouse models and humans 
(216–219). A recent study on the gut and oral microbiome of a 
cohort of melanoma patients undergoing an anti-PD-1 therapy 
revealed crucial differences in the diversity and composition of 
the patients’ gut microbiome of responders vs. non-responders 
(216). Analysis of patient fecal microbiome in responding mela-
noma patients indicated significantly higher relative abundance 
of bacteria of the Ruminococcaceae family that also correlated 
with presence of CD8+ T  cells in the TME. Fecal microbiota 
transplantation in germ-free recipients showed that mice which 

had been transplanted with stool from responders to anti-PD-1 
therapy had significantly reduced tumor size and higher density 
of CD8+ T  cells in comparison to mice receiving stool from 
non-responders to PD-1 blockade (216). Another recent study 
on different epithelial tumors in mice and patients indicated 
correlations between clinical responses to ICBs and the relative 
abundance of Akkermansia muciniphila (217). Hence, the gut 
microbiome can strongly influence the outcome of cancer patients 
receiving PD-1 blockade therapy. However, the mechanisms 
related to these immunomodulatory effects of A. muciniphila 
remain elusive. It is conceivable that an integral intestinal barrier 
is associated with a minor systemic inflammation, and specific 
bacterial families such as Ruminococcaceae and/or A. mucin-
iphila may induce beneficial bacterial metabolites that prevent 
leaky colon and systemic immunosuppression, paving the way 
to the possibility to manipulate the gut ecosystem to implement 
ICB therapy (218).

All recent preclinical and clinical data suggest that the locali-
zation, quality, and quantity of non-cancerous cells, including 
lymphoid and myeloid cells, within the TME play a major role 
in shaping response to immune checkpoint blockade (Figures 3 
and  4). Other TME cells, such as fibroblast and ECs, could 
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contribute to shaping the immune contest. An emerging role is 
demonstrated for the angiogenic factor VEGF.

Vascular endothelial growth factor blocks T  cell infiltration 
into the tumor by inhibition of adhesion molecules on ECs (220). 
VEGF has also been reported to inhibit antigen presentation by 
DCs, to enhance the Treg expansion, and to mediate PD-1 upreg-
ulation on tumor-infiltrated T  cells (221, 222). Antiangiogenic 
treatments such as anti-VEGF antibody bevacizumab and the 
diverse multi-tyrosine kinase receptor inhibitors targeting the 
VEGFR family have been largely employed in the clinic, combined 
with chemotherapy, in particular in colorectal and renal cancer. 
They have shown significant but moderate benefits in patients’ 
overall survival (223). Excessive pruning of vessels following anti-
VEGF treatment has been reported to associate with increased 
hypoxia that, through upregulation of CXCL12/CXCR4 axis 
and HIF1α, supports M2-like TAM, MDSC, and Treg recruit-
ment, thus supporting tumor progression (223). Tumors show 
considerable variation in their responses to antiangiogenic 
therapy, however, given the immunosuppressive action of VEGF 
(47, 222, 224), VEGF inhibitors could combine with the ICBs to 
enhance therapeutic effects.

Therefore, combination with antiangiogenic agents, and/or 
anti-inflammatory drugs has a strong rationale (47, 225, 226) but 
it is still in its infancy. Preclinical and clinical studies in renal can-
cer showed that the combination of anti-CTLA-4 with sunitinib 
(227) resulted in decreased Treg and increased CD8+ T cell infil-
tration (Figure 4). Conversely, increased PD-L1 expression has 
been observed following treatments with sorafenib, sunitinib, or 
bevacizumab in a HIF1α-dependent and -independent manner 
(228). Growing evidence supports the notion that the targeting of 
VEGF signaling could result in the induction of tumor vascula-
ture normalization, enhancement of immune cells extravasation, 
and synergy with immunotherapy (229–231). The combination 
of bevacizumab and ipilimumab has been reported to be asso-
ciated with clinical benefits in patients with melanoma (232), 
and has been found to target Galectin-1 (233–235). Blocking of 
VEGFA and angiopoietin-2 using a bispecific antibody in murine 
models resulted in activation of cytotoxic T lymphocytes, which 
upregulated PD-L1, and inhibition of PD-1 axis further improved 
the efficacy of this therapy (236). Another rationale for the com-
bination of ICBs and antiangiogenic agents is that antiangiogenic 
agents “normalize” the tumor vasculature, inducing intra-tumor 
high endothelial venules, thus favoring enhanced T-cell infiltra-
tion, antitumor CTL activity, and tumor cell destruction (236, 
237). ICBs in combination with antiangiogenic agents may act as 
a promising strategy also to dampen the proangiogenic features of 
immune-infiltrating cells, such as TAMs, MDSCs, and NK cells, 
acting as re-polarizing agents (226, 238, 239).

Chronic inflammation, another relevant hallmark of cancer 
(3), directly stimulates angiogenesis to support tumor progres-
sion (5, 7) and immune suppression (16, 17, 107, 225, 226). The 
immunosuppressive inflammatory TME is a key obstacle to can-
cer immunotherapy (Figures 3 and 4). Thus, targeting chronic 
inflammation could be one strategy to combat the immunosup-
pressive TME and enhance the activities of ICBs. One example is 
targeting the PI3Kγ, which has a strong effect on myeloid cells, 
preventing immune suppression and enhancing the effects of 

ICBs in vivo (240, 241) (Figures 3 and 4). Another example of 
therapy that could synergize with ICBs is targeting the CXCR2 
axis, which recruits neutrophils into the premetastatic niche (98).

The combination of anti-inflammatory agents with ICBs can 
be exploited to support immunotherapy. Regular use of aspirin, 
the most commonly employed nonsteroidal anti-inflammatory 
drug, has been widely reported to reduce incidence and mortal-
ity of colorectal cancer (242) and many other adenocarcinomas 
(243). A recent U.S. population-based study reported a stronger 
survival association of post-diagnosis aspirin use in CRC patients 
with lower-level PD-L1 expression when compared with those 
with higher-level of PD-L1 expression (244). Experimental data 
supported a synergistic effect between aspirin and anti-PD1 
antibody in mutant Braf(V600E) melanoma cells (245). The 
synergistic effects resulted also in increased T  cell-mediated 
immune responses and decreased PGE2 production (245). In 
experimental models, we showed that aspirin or the beta-blocker 
agent atenolol can augment the activity of metformin, a biguanide 
largely employed in type 2 diabetes management and that have 
been associated to reduced risk of developing diverse cancers, 
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including breast cancers (Figure  4), targeting both neoplastic 
cells and the TME (246, 247). Metformin and phenformin affect 
the angiogenesis pathway (248–250) and modulate the immune 
response and the microbiome (251, 252). Phenformin enhances 
PD-1 immunotherapy (115). CDDO-Im (a synthetic triterpe-
noid: 1[2-Cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imida-
zole) has an extensive documentation as an immunomodulation 
agent (253–255), and xanthohumol (XN) (a prenylated chalcone 
flavonoid) is an antileukemia agent (256–259) and is a polarizing 
agent in murine models of breast cancer (260). Phytocompounds 
and their synthetic derivatives are able to polarize macrophages 
inducing anti-tumorigenic phenotype/functions (253, 260–262). 
For example, we show that NSCLC patient TANKs treated with 
metformin, CDDO-Im, and XN decreases VEGF production 
(Figure 5) and increases perforin content. Thus, we would like to 
indicate the use of non-toxic or low-toxic re-polarization agents 
endowed with anti-inflammatory chemopreventive properties to 
be combined with ICBs.

CONCLUSiON

The immune checkpoint inhibitors have posed a distinct mile-
stone in cancer therapy. However, several patients do not respond 
to the ICBs, or have a relapse, with eventual long-term toxicity 
(i.e., autoimmune diseases). The polarized TME is crucial in 
the outcome of the patient response to an ICB, thus treating 
an inflamed or vascularized TME, could theoretically enhance 

the efficacy of these drugs. We suggest to combine ICBs with 
drugs that inhibit VEGF (232) or to employ drugs that eliminate 
the protumor inflammatory cells (for example, trabectedin to 
eliminate TAMs) or to treat with anti-inflammatory agents that 
will “re-polarize” the immune cells, for example, the repurposed 
drugs (metformin) and phytochemicals and their synthetic 
derivatives (CDDO-Im and XN) or both. Since phytochemicals 
and their synthetic derivatives often protect the cardiovascular 
system from chemotherapy induced damage (248, 263, 264), 
we propose, as a first-line therapy for difficult and metastatic 
tumors, to pretreat with phytochemicals or synthetic derivatives, 
then continue treatment and add sequentially a VEGF blocker, 
ICBs, and chemotherapy (to trigger the immunogenic cell death). 
This will set the stage for the ICBs to become highly effective in 
additional patients.
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