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A commentary on

From ‘sense of number’ to ‘sense of magnitude’ – The role of continuous magnitudes in

numerical cognition

by Leibovich, T., Katzin, N., Harel, M., and Henik, A. (2016). Behav. Brain Sci.
doi: 10.1017/S0140525X16000960. [Epub ahead of print].

Insofar, the idea that the human brain is hardwired with the ability to quickly understand,
approximate, and manipulate discrete numerical quantities (i.e., the so-called “number sense”;
Dehaene, 1997) has received strong support from empirical research and has helped lay the
foundations for mainstream theoretical frameworks of numerical cognition (e.g., Feigenson et al.,
2004). It is only recently, however, that some studies have started to challenge this prevailing
view, by suggesting that processing continuous magnitudes may not only be more automatic, but
may also have earlier ontogenetic roots than processing discrete numerosities (e.g., Gebuis and
Reynvoet, 2012; Leibovich and Ansari, 2016). Along these lines, a considerable effort to support the
existence of such a “sense of magnitude” and to gather together this scattered empirical evidence
into a unified theory was done by Leibovich et al. (Leibovich et al., 2016; see also Henik et al., 2017).
In their theoretical model, in fact, Leibovich et al. argued that humans are born with the innate
ability to recognize, process and distinguish between continuous magnitudes, and not discrete
numerosities. The ability to process numerosities would thus not be innate, but rather acquired

via experience. In particular, because discrete and continuous magnitudes usually correlate in the
surrounding environment (e.g., the more the candies, the more the space occupied on the table),
the “number sense” would develop only once this association has been assimilated and understood.

Leibovich et al. suggest that infants can learn the natural correlation between number
and continuous magnitudes through “statistical learning” (e.g., Frost et al., 2015). But does
the learning of this correlation simply rely on a “mere” exposure to natural scene statistics?
Statistical learning implies the extraction of distributional properties from sensory input
across time and space to generate and update internal representations (Frost et al., 2015).
Yet, it is worth specifying that theories of statistical learning have emerged primarily in
the language domain and, as such, they do not emphasize the contribution of sensorimotor
transformations to internal representations. From a motor cognition standpoint, indeed,
perception, and action processes are functionally intertwined. Hence, not only perceiving but
also acting may help us to understand the surrounding environment and, in particular, to
extract from it information about magnitude. In fact, there is plenty of evidence suggesting
a primary role of sensorimotor experience in numerical and magnitude processing (e.g.,
Andres et al., 2008). Accordingly, we believe that the “sense of magnitude” theory should
acknowledge the unique contribution of the sensorimotor system in picking up and implicitly
assimilating the statistical properties related to mapping size to numerosities in our environment.
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GRAPHICAL ABSTRACT 1 | The active involvement of the sensorimotor system in learning magnitude-related statistics of natural scenes. The natural

correlation between numerosities and continuous magnitudes may be learned not only through passive viewing, but also from active exploration. For instance,

exploring visually more items or greater surfaces typically require more oculomotor resources (e.g., fixations and saccades) than exploring less items or smaller

surfaces (a). Similarly, action programming and online control of manual grasping significantly vary as a function of the object size (b). Sensorimotor estimates may

therefore provide a reliable source of the correlation between quantities and numerosities and, consequently, contribute to update the representation of magnitude in

the human brain (c).

The view that time, space, number, size, speed, and other
magnitudes are coupled metrics for action is certainly not new
(e.g., Walsh, 2003). Ocular scanning, motor reaching, grasping,
and object manipulation are indeed basic foundational bricks
for the development of magnitude processing (Bueti and Walsh,
2009). Accordingly, information about magnitude would be
processed by a generalized system located in the parietal cortex
because of the need to encode quantities for action (Walsh, 2003).
Critically, in phylogenetic terms, the capacity to manipulate
discrete quantities may have evolved from the abilities in
processing continuous quantities for action (Bueti and Walsh,
2009). Similarly, it has been very recently suggested that over
development not only language but also object exploration may
facilitate the differentiation of a generalized magnitude system
into distinct quantitative dimensions (Newcombe et al., 2015).
Support for this position may come from two independent lines
of evidence.

First, we pinpoint that, in many ecological situations,
exploring visually more items or greater surfaces may require
more fixations and saccades than exploring less items or smaller
surfaces (e.g., Watson et al., 2007; Gandini et al., 2008; see
Graphical Abstract 1a). As a consequence, a direct correlation

exists between the “size” of the visual scene and the oculomotor
involvement required to explore it, with the brain that may learn
to solve “more than–less than” comparisons by computing the
amount of sensorimotor resources involved in the task at hand.
Interestingly, prohibiting eye movements has a very negative
impact on enumeration of large numerical sets, indicating that
oculomotor resources are functional to numerical processing
(Watson et al., 2007).

Second, based on the paramount importance in development
to learn about the environment through motor interaction
(i.e., especially with the mouth and the hands), sensorimotor
transformation is not doubt crucial in establishing the correlation
between discrete and continuous magnitudes. For instance, the
size of the mouth opening increases with the size of the handled
object or of the edible food (Gentilucci et al., 2001). Similarly,
the grip aperture is known to correlate with the size of the object
to be grasped (Olivier et al., 2007; see Graphical Abstract 1b).
Estimates used by the motor system to program manual or
mouth movements may therefore represent a key mechanism
subserving the statistical learning process (see Grade et al., 2016).
In line with this view, not only the perception of numbers
(Ranzini et al., 2011; Gianelli et al., 2012; Girelli et al., 2016;
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Namdar and Ganel, 2016), but also of different continuums
that have a recurrent statistical mapping with visual size have
been recently shown to interfere with motor planning and
execution in adulthood. For example, the size and mass of an
object tend to naturally correlate with its resonant frequency
and loudness, with lower and louder sounds that are visually
associated with larger rather than smaller objects (Spence, 2011).
Critically, similar effects have been reported for action execution
(Sedda et al., 2011; Rinaldi et al., 2016). Although there is
evidence showing that even affordance, which refers to the
activation of action patterns from perceived objects (Gibson,
1979), interferes with numerical processing (e.g., Badets et al.,
2007; Ranzini et al., 2011), we believe that early in life real
movements may be the primary source for grasping the “sense
of magnitude.”

To sum up, despite renewed interest in how the body
bootstraps learning over development (Smith and Gasser, 2005),
the Leibovich et al.’s theoretical framework overlooks the role
of sensorimotor experience in the refinement of numerical
knowledge. Yet, as briefly reviewed, acting systematically on the
environment directly enriches the natural correlation between
numerosities and continuous quantities in the human mind (see
Graphical Abstract 1c). Accordingly, it seems highly reasonable
to suggest that the “sense of magnitude” develops on a self-
enforcing activation loop between perception and action.
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