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A B S T R A C T

Background: The right occipital face area (rOFA) is known to be involved in face discrimination based on local
featural information.Whether this region is also involved in global, holistic stimulus processing is not known.
Objective: We used fMRI-guided transcranial magnetic stimulation (TMS) to investigate whether rOFA
is causally implicated in stimulus detection based on holistic processing, by the use of Mooney stimuli.
Methods: Two studies were carried out: In Experiment 1, participants performed a detection task in-
volving Mooney faces and Mooney objects; Mooney stimuli lack distinguishable local features and can
be detected solely via holistic processing (i.e. at a global level) with top-down guidance from previously
stored representations. Experiment 2 required participants to detect shapes which are recognized via
bottom-up integration of local (collinear) Gabor elements and was performed to control for specificity
of rOFA’s implication in holistic detection.
Results: In Experiment 1, TMS over rOFA and rLO impaired detection of all stimulus categories, with no
category-specific effect. In Experiment 2, shape detection was impaired when TMS was applied over rLO
but not over rOFA.
Conclusions: Our results demonstrate that rOFA is causally implicated in the type of top-down holistic
detection required by Mooney stimuli and that such role is not face-selective. In contrast, rOFA does not
appear to play a causal role in detection of shapes based on bottom-up integration of local components,
demonstrating that its involvement in processing non-face stimuli is specific for holistic processing.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The occipital face area (OFA), located in the lateral inferior oc-
cipital gyrus, is a key component of the face-processing network
(e.g. References 1–5) typically showing a more robust face-response
in the right hemisphere [6–8]. In particular, OFA is involved in the
encoding of face parts (or so-called facial featural information) such
as eyes, nose and mouth (e.g. References 9–11). Accordingly, stimu-
lating right OFA (rOFA) with transcranial magnetic stimulation (TMS)
has been found to impair participants’ ability in discriminating faces
(but not objects) differing by single components (such as the shape

of the eyes and the mouth), without affecting the processing of
configural information such as the spacing between face parts [12].
These findings suggest that rOFA is important for building up an
initial structural representation based on local properties, prior to
subsequent processing of more complex aspects occurring in higher-
level face areas such as the fusiform face area (FFA) [2,8]. Nonetheless,
FFA can be activated even in the absence of input from rOFA, sug-
gesting that OFA may rather respond to re-entrant feedback from
higher-level face areas where an initial coarse representation would
be constructed [4,13–15]. In line with this, following TMS over rOFA,
participants were impaired in face identity discrimination but not
in distinguishing intact from scrambled faces [16].

Notwithstanding the important role played by rOFA at differ-
ent stages of face processing, there is also evidence suggesting that
rOFA may be important in processing of non-face stimuli (e.g. Ref-
erences 17–20). Furthermore, prior TMS evidence has shown that

* Corresponding authors. Tel.: +44 (0)20 7911 5000 (J. Silvanto).
E-mail addresses: zaira.cattaneo@unimib.it (Z. Cattaneo), j.silvanto@

westminster.ac.uk (J. Silvanto).

1935-861X/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
http://dx.doi.org/10.1016/j.brs.2016.04.003

Brain Stimulation 9 (2016) 594–600

Contents lists available at ScienceDirect

Brain Stimulation

journal homepage: www.brainst imjrnl .com

mailto:zaira.cattaneo@unimib.it
mailto:j.silvanto@westminster.ac.uk
mailto:j.silvanto@westminster.ac.uk
http://www.sciencedirect.com/science/journal/1935861X
http://www.brainstimjrnl.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.brs.2016.04.003&domain=pdf


rOFA plays a causal role in symmetry discrimination, both in faces
and in dot patterns [21], raising the possibility that this region is
important for extracting global “Gestalt” stimulus properties. Such
attributes play an important role in holistic processing, which refers
to stimulus detection in which recognition of the “whole” pre-
cedes detection of the single elements (e.g. Reference 22). Holistic
processing is believed to be based on top-down guidance by pre-
viously stored representations (as opposed to bottom-up extraction
of local features) (e.g. Reference 23). Such holistic processing is re-
quired for the detection of Mooney stimuli [24] which are two-
tone (black-and-white) images lacking in distinguishable local facial
features and which can be recognized solely on the basis of their
global Gestalt [22,25–27].

Whether rOFA is involved in such holistic detection is not known.
In the present study, we used online fMRI-guided transcranial mag-
netic stimulation (cf. Reference 28; for a review, see References
29–31) to investigate this issue. In Experiment 1 we tested three
Mooney stimulus categories: faces, guitars and objects. TMS was
applied either over the rOFA, the rLO or vertex (control site) while
participants performed the Mooney detection task. In a second ex-
periment we used the same TMS parameters but during a shape
detection task based on integration of local elements (collinear Gabor
patches): this experiment was a direct replication of the experi-
ment reported in Reference 21 and aimed to control for specificity
of rOFA involvement in holistic processing.

Experiment 1

Materials and methods

Participants
Fifteen students (8 males, mean age = 24.3, SD = 2.07) from Aalto

University, Espoo (Finland) took part in Experiment 1. All partici-
pants were right-handed [32] and had normal or corrected-to-
normal vision. The studywas approved by the local ethics committee
and participants were treated in accordance with the Declaration
of Helsinki. Participants provided a written informed consent and
were screened for contraindications to fMRI and TMS. Each partic-
ipant underwent three sessions: in the first session, the fMRI
localization was carried out. The TMS experiments were per-
formed in the remaining two sessions: specifically, Experiment 1
was performed in the second session and Experiment 2 in the third
session.

fMRI localization of LO and OFA
A 3T MAGNETOM Skyra whole-body scanner (Siemens Health-

care, Erlangen, Germany) equipped with a 30-channel head–neck
coil was used to acquire the functional volumes. The session con-
sisted of 3 runs (one run for LO and two runs for OFA). Stimuli for
the LO localizer were gray-scale images of common objects and
scrambled objects; for OFA localizers, faces and objects were used.
Scrambled objects were obtained by randomly selecting an equal
number of square tiles from the original object images and arrang-
ing them in a 16 × 16 grid of the same dimensions as the object
images. All stimuli were presented in the middle of the screen on
an 18-inchmonitor with a display resolution of 1280 × 1024. Viewing
distance was 40 cm. rLOwas defined as the activation peak of cluster
of voxels that responded more to objects versus scrambled objects
(see References 21,33 for similar procedure). Functional images were
acquired in a single run lasting 432 sec with gradient echo se-
quence (23 slices with 3.5 mm slice thickness, RT = 2 s, echo
time = 30ms, voxel size = 3.125 × 3.125 × 3mm3, flip angle = 75). rOFA
was defined as the activation peak of the cluster of voxels that re-
sponded more to faces versus objects. Functional images were
collected over 2 runs, each lasting 271.2 sec. Otherwise, the same

parameters as for rLO localization were used. For each participant,
a high resolution T1 weighted MPRAGE anatomical scan was also
collected. Data preprocessing, parameter estimation and visualiza-
tion were performed with SPM8 MatlabTM toolbox (http://
www.fil.ion.ucl.ac.uk/spm, cf. Reference 34). The first four slices of
each run were removed to ensure a stable magnetization and sub-
sequent functional images were corrected for slice acquisition order
and head movements. During the parameter estimation, the data
were high-pass filtered with 128 s cutoff, and noise autocorrelation
was modeled with AR(1) model. The data were coregistered with
the high-resolution anatomical images. The mean MNI coordi-
nates were: rOFA: 39 (SD 4.7), −81 (SD 9.7), −10 (SD 2.8); rLO: 46
(SD 3.5), −75 (SD 4.1), −4 (SD 6.7); these coordinates are consis-
tent with those found in prior fMRI-guided TMS studies on rOFA
and rLO function (e.g. References 35,36). Fig. 1 shows the rOFA and
rLO sites in a representative participant.

TMS stimulation
TMS pulses were delivered through a biphasic figure-of-eight coil

connected to a Nexstim stimulator (Nexstim Ltd., Helsinki, Finland).
The eXimia NBS neuronavigation system (Nexstim Ltd., Helsinki,
Finland), a co-registration software that allows real-time fMRI-
guided positioning of the coil (e.g. References 37,38), was used to
localize the stimulation sites. In each trial, participants received 3
pulses of TMS at a frequency of 10 Hz and an intensity of 40% of
the maximum stimulator output over the stimulation sites, con-
currently with visual target onset. These parameters were chosen
on the basis of our previous study where we stimulated the same
brain regions [21]. This stimulation intensity corresponds to ap-
proximately 80% of the phosphene threshold of the early visual
cortex, which is in the region of 45–50% with the Nexstim stimu-
lator and has been used in previous work in our laboratory [21,33,39].
A fixed TMS intensity has been used in most prior studies of OFA
function (e.g. References 12,21,35). During the stimulation, the coil
was held tangentially over the activation peaks obtained from par-
ticipants’ fMRI localizers, with the coil handle pointing upwards and
parallel to the midline (e.g. References 36,40). Vertex was identi-
fied as the halfway point between the inion and the nasion and
equidistant from the left and right intertragal notches [12,41] and
was selected as control site to ensure that any TMS effect was not
due to somatosensory sensations related to the stimulation (e.g.
Cattaneo et al, 2012, 2015; Cattaneo & Silvanto, 2008).

Procedure
Participants performed a detection task with Mooney stimuli.

The different Mooney categories (faces, guitars, objects) were tested
in separated blocks.

Stimuli. We used 120 two-tone (black and white) Mooney images
(40 Mooney faces, 40 Mooney guitars and 40 Mooney objects; see
Fig. 2 for an example of each stimulus type). Each stimulus was ap-
proximately 15° in height and 10° in width. Mooney faces were
drawn from the original set of “Mooney faces” created by Mooney
[24]. Mooney guitars were selected from the original set of
Castelhano et al. [42]; Mooney objects were selected from the orig-
inal set of Imamoglu et al. [43] and consisted of pictures of animals,
fruits and man-made objects. Mooney guitars are similar to faces
in that they are a homogeneous stimulus class exhibiting clear pro-
totypical shapes. Additionally, 40 meaningless images (i.e. non-
face/guitar/object stimuli) were created for each of the three stimulus
categories by dividing each item into a grid and randomly moving
the positions of the squares.

Task. The time line of an experimental trial is shown in Fig. 2E.
Stimuli were presented on an 18-inch monitor with a display
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Figure 1. Axial, sagittal and coronal views (from bottom left in clockwise direction) of the activation peak for faces versus objects in rOFA (A) and objects versus scrambled
objects in rLO (B).

Figure 2. Experiment 1: Detection of Mooney stimuli. Example of A) a Mooney face; B) a Mooney guitar; C) a Mooney object (here a shoe); D) a scrambled Mooney stim-
ulus (used for “target absent” trials); E) time line of an experimental trial. On each trial, participants were required to indicate whether or not a face/guitar/object was present.
The different Mooney categories were tested in different blocks. On “target absent” trials, a scrambled Mooney stimulus was presented. The TMS pulse train (3 pulses, 10 Hz)
began concurrently with the target onset.

596 S. Bona et al. / Brain Stimulation 9 (2016) 594–600



resolution of 1600 × 1200 and participants were seated at a viewing
distance of 60 cm, with their heads stabilized using a chin rest.
Stimuli and task were controlled by E-Prime v2.0 (Psychology Soft-
ware Tools Inc., Pittsburgh, USA). The different Mooney categories
(faces, guitars and objects) were tested in different blocks, of which
participants were informed in advance. Each trial startedwith a black
fixation cross appearing in the middle of the screen for 500ms, fol-
lowed by either a target stimulus (i.e. a Mooney face, aMooney guitar
or a Mooney object, depending on the experimental block) or a
scrambled Mooney stimulus. Faces and guitars were displayed for
150 ms, whereas objects appeared for 200 ms in order to reach a
similar level of accuracy (80–90%) as with the other stimulus cat-
egories (stimulus durations were based on a prior behavioral pilot).
Participants were asked to indicate, with a button press (using their
right index and middle finger), whether the displayed stimulus was
either a target stimulus (i.e. a face, guitar or object, depending on
the experimental block) or a meaningless image. Both accuracy and
response speed were emphasized. At target onset, a TMS pulse train
(3 pulses at 10 Hz, i.e. pulse gap of 100 ms) was delivered over the
rLO, the rOFA or vertex (baseline). For each stimulus category (faces,
guitars and objects), participants performed three blocks, i.e. one
block for each stimulation site (rLO, rOFA, and vertex). Therefore,
nine blocks were carried out in total. Each block consisted of 80 trials
(40 target stimuli and 40meaningless pictures, presented in random
order). The order of TMS blocks and the order of stimulus catego-
ries were randomized across participants, with the constraint that
the three blocks of each stimulus category were always per-
formed in a row, before moving to the next category. Prior to the
experiment, participants carried out a brief practice session (with
no TMS) for each stimulus category consisting of 20 trials (10 target
stimuli and 10 meaningless pictures).

Results

Performance level was high in all conditions. Mean accuracies
were:Mooney faces: 86% (SD = 1.01),Mooney guitars: 86% (SD = 1.74)
andMooney objects: 81% (SD = 2.47). Statistical analyses were carried
out on reaction times (RT) of correct responses. Fig. 3 shows the
mean reaction times of correct responses for each TMS condition
in each stimulus category. A 3 × 3 repeated-measure ANOVA with
TMS site (rLO, rOFA, vertex) and stimulus category (Mooney faces,
Mooney guitars and Mooney objects) as within-subjects variables
revealed a significant main effect of TMS (F(2,34) = 11.48, p < .001,
ƞp2= .41). The main effect of stimulus category was not significant

(F(2,34) = 3.09, p = .06, ƞp2= .15), nor was the interaction TMS site
by stimulus category (F(4,68) = 1.98, p = .12, ƞp2= .11). Post-hoc t-tests
(Bonferroni–Holm correction applied) showed that, relative to vertex,
both rOFA TMS (t(14) = 4.03, p = .002) and rLO TMS (t(14) = 4.03,
p = .003) impaired performance. Performance with rOFA TMS was
worse than with rLO TMS (t(14) = 2.34, p = .03).

Experiment 2

The key finding of Experiment 1 is that rOFA plays a causal role
in stimulus detection based on holistic encoding and that such
involvement is not tied to any specific stimulus category. In Exper-
iment 2 we aimed to assess whether the involvement of rOFA in
object detection is restricted to holistic processing (as in the case
of Mooney stimuli) or whether it extends also to circumstances
when detection is mediated by other mechanisms (such as pro-
cessing collinearity of single elements composing the pattern). To
this purpose, participants performed a shape detection task on
stimuli which was defined by a closed contour of similarly ori-
ented Gabor elements (see Fig. 4). Shape perception in these stimuli
arises via bottom-up integration of local components (namely sim-
ilarly oriented line segments) and has been shown to involve the
LO region [44]. This task was adapted from our previous TMS
studies [21,33].

Materials and methods

Participants
Thirteen participants (from the fifteen participants who took part

in Experiment 1, 7 males, mean age = 24.5, SD = 2.11) participated
in Experiment 2.

fMRI localization and TMS
The fMRI localization procedure and the TMS parameters were

the same as used in Experiment 1. The mean MNI coordinates in
Experiment 2 were: rOFA: 39 (SD 4.5), −80 (SD 9.1), −10 (SD 2.9);
rLO: 46 (SD 3.4), −75 (SD 4.1), −3 (SD 5.7).

Procedure
Stimuli. The stimuli consisted of Gabor patch (GP) patterns (gray
scale values ranging from 13 to 165) appearing on a gray back-
ground (gray value 89) (see References 21,33). Each Gabor element
was defined as the product of a sine wave luminance grating (fre-
quency of 3.75 cycles/deg) and a two-dimensional Gaussian envelope

Figure 3. The mean (n = 15) reaction times of correct responses for each TMS condition in Experiment 1 for A) Mooney faces; B) Mooney guitars; C) Mooney objects. Error
bars represent ±1 SEM.
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(standard deviation of .19” in both dimensions). The diameter of each
pattern was of 16” of visual angle and the GP diameter was .8”. The
number of GPs in the patterns ranged from 120 to 210 and
were distributed on an invisible 20 × 20 grid. The minimum center-
to-center distance between the Gabor elements was .8”. A first set
of 40 stimuli was created in which GPs were distributed and ori-
ented to delineate a closed contour embedded in a random GP
background (similar to Reference 45). The contour was created
from a variable number of GPs that always corresponded to the
40% of the total number of GPs present on-screen (the remaining
60% of GPs were random background). A second set of 40 stimuli
was generated consisting of randomly distributed and oriented GPs;
for each stimulus of the first set, a corresponding random pattern
was created for the second set, so that GP patterns in the two sets
were carefully matched in terms of the total number of GPs they
contained.

Task. Fig. 4C shows the time line of an experimental trial. Each trial
started with a black fixation cross appearing in the middle of the
screen for 500 ms, followed by the stimulus for 75 ms. Partici-
pants were required to indicate, with a button press, whether there
was a shape present in the display. TMS site and parameters were
the same with Experiment 1. Each participant carried out three
blocks, one for each TMS site (rOFA, rLO and vertex). Each block con-
tained 80 stimuli (40 with a visible shape and 40 with no shape,
randomly presented). Prior to the experiment, participants under-
went a brief practice (with no TMS) consisting of 20 trials (10 with
a visible shape and 10 without). Both accuracy and response speed
were emphasized.

Results

Statistical analyses were performed on reaction times of correct
responses as in Experiment 1. Mean accuracy was 87% (SD = 2.9).

Fig. 5 shows the mean reaction times of correct responses for
each TMS condition. A repeated-measures ANOVAwith TMS site (rLO,
rOFA, vertex) as within-subjects variable showed a significant main
effect of TMS, F(2,24) = 10.71, p < .001, ƞp2 = .47. Post-hoc t-tests
(Bonferroni–Holm correction applied) showed that TMS over rLO
significantly impaired participants’ ability to detect shapes com-
pared to vertex stimulation (control condition), t(12) = 3.41, p = .01,
and to rOFA stimulation, t(12) = 3.39, p = .015. TMS over rOFA did
not affect performance compared to vertex, t(12) = .05, p = .96.

Discussion

This study aimed to investigate the role of rOFA in detection of
faces and objects based on holistic processing, as required byMooney
stimuli (in which recognition of the “whole” precedes detection of
the single elements; see Reference 22). In Experiment 1 we applied
fMRI-guided TMS over the rOFA, rLO and vertex while partici-
pants were asked to detect Mooney stimuli, which are two-tone
images missing distinguishable local features and can be recog-
nized solely with the aid of top-down guidance from previously
stored representations (e.g. References 15,22,25,26,46,47). The key
finding of our study is that TMS applied over rOFA impaired the de-
tection of Mooney stimuli without category-specificity. Specifically,
rOFA was found to play a role in detecting Mooney faces and guitars
(which are both a homogeneous stimulus class in terms of a pro-
totypical shapes) as well as objects of different types. Experiment
2 showed that the role of rOFA in stimulus detection may be re-
stricted to the kind of holistic processing required byMooney stimuli.
Interfering with rLO but not with rOFA activity impaired partici-
pants’ ability to detect meaningless shapes defined by a closed
contour of similarly oriented Gabor elements (replicating Bona et al.’s
[21] findings), whose detection is mediated by bottom-up process-
ing of the collinearity of the single elements. The lack of rOFA effect
in Experiment 2 also demonstrates that the spatial specificity of TMS
was sufficient to selectively target rOFA, also in line with previous
studies employing fMRI-guided TMS [12,21,35]. The statistical anal-
ysis of Experiment 1 indicates that the role of rLO in holistic detection
of Mooney stimuli is not tied to any stimulus category. However,
although statistical analysis did not reveal an object-selective re-
sponse in rLO, a visual inspection of Fig. 3 indicates that the rLO
effect was driven by an impairment of object and guitar stimuli.

Figure 4. Experiment 2: Shape detection based on bottom-up featural processing.
A) Example of a “shape present” trial; B) example of a “shape absent” trial; C) time
line of an experimental trial. As in Experiment 1, participants were asked to indi-
cate on each trial whether or not a shape was presented. TMS was applied as in
Experiment 1.

Figure 5. The mean (n = 13) reaction time of correct responses for each TMS con-
dition in Experiment 2. Error bars represent ±1 SEM. Relative to vertex, TMS
significantly impaired shape detection when applied over rLO but not over rOFA.
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The key challenge in perceiving Mooney images is that they do
not contain cues to differentiate object contours from illumina-
tion effects such as shadows, unless the structure of the object has
been already encountered. Accordingly, 2-tone images of unfamil-
iar objects cannot be perceived [23]. Object templates are crucial
in Mooney stimuli detection because their recognition precedes
figure-ground segregation (e.g. References 48,49). While the actual
template is likely to be stored at higher-level regions, rOFA and rLO
might provide input to those higher levels, andmay also receive top-
down guidance by the activated memory representation. The
presence of certain fundamental visual features (e.g. symmetry,
T-junctions for faces) that are indicative of meaningful stimulus struc-
ture can generate testable hypotheses of object identity based on
existing templates (e.g. References 50,51). The key point is that many
of such features are not tied to a specific category but rather could
be indicators of objects of various stimulus types, such as a face, a
guitar or an apple.

Our results are consistent with previous work implicating rOFA
in holistic processing of faces [52–54]. For example, Jonas and col-
leagues [52] showed that electrical stimulation of rOFA impaired
the perception of the face as a whole. Schiltz and Rossion [53] found
that both FFA and OFA process face stimuli in a holistic manner, al-
though the holistic response of OFA was weaker and less consistent
across studies (cf. Reference 55). At first sight, our results appear
to be inconsistent with a previous fMRI study reporting no signif-
icant BOLD response to Mooney faces in rOFA, suggesting that the
detection of these stimuli might rely exclusively on higher-order
visual areas such as FFA [15]. However, that conclusion relied on a
contrast between upright and inverted Mooney faces (which are
usually not detected as faces); this contrast would not reveal any
activation that is not face selective. In other words, the role of rOFA
in encoding Mooney stimuli in a non-face-selective manner would
not be revealed by such analysis. Thus, our finding of rOFA’s in-
volvement in the processing of a wide range of Mooney stimuli is
not in contradiction with that study.

Our results are also consistent with previous evidence pointing
to a role of rOFA in processing of non-face stimuli (e.g. References
17–20; see also 56). In particular, our data fit with previous evi-
dence suggesting that rOFA is causally involved in detection of
symmetry both in faces [21,57] and in dot configurations [21,58],
with symmetry discrimination being essentially holistic (e.g. Ref-
erences 59–61). Finally, Pitcher et al. [62] reported that TMS applied
over rOFA at an early latency (40/50 ms after stimulus onset) im-
paired both face and body detection, whereas TMS at a later time
window induced face-specific effects. The authors interpreted the
earlier effect of TMS over rOFA as possibly reflecting preparatory
activity in rOFA rather than target-related processing per se. In our
study we did not use a chronometric approach so we cannot de-
termine whether rOFA involvement in face and object detection
reflected preparatory activity or occurred at a later stage of stim-
ulus processing: future studies using chronometric paradigms (like
References 12,35) andMooney stimuli are needed to clarify this issue.

In conclusion, our results shed new light into the function of rOFA
by showing that this region is causally involved in top-down ho-
listic detection of Mooney stimuli and that this involvement extends
beyond faces.
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