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1 Introduction

BPS Wilson loops (WLs) in 3D supersymmetric Chern-Simons-matter (SCSM) theories

exhibit a rich spectrum of peculiar properties that need to be deeper understood.

Due to dimensional reasons not only scalar but also fermion matter together with

ordinary gauge connections can be used to construct WLs as the holonomy of generalized

(super)connections [1, 2]. This allows to define a large web of BPS operators with different

degrees of preserved supersymmetry (SUSY).

Even if protected from UV divergent corrections, BPS WLs can still feature non-

trivial vacuum expectation values that are often computed exactly by using localization

techniques [3, 4]. Localization predictions can then be directly checked at weak coupling in

perturbation theory. Moreover, in theories that allow for string theory or M-theory dual de-

scriptions, BPS WLs in fundamental representation were shown to be dual to fundamental

string or M2-brane configurations [5, 6]. Therefore, their expectation values at strong cou-

pling can be computed using the holographic description and the matching with localization

results expanded at strong coupling provides a crucial test of the AdS/CFT correspondence.
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Given a 3D SCSM theory it is therefore crucial to construct and classify the whole

spectrum of BPS WLs, identify their gravity duals and compute their expectation values

in diverse regimes. In this paper we aim at giving a complete classification of BPS WLs

in circular quiver N = 4 SCSM theories with alternating Chern-Simons levels. Our classi-

fication generalizes the one of [7] and we are also able to identify the precise gravity dual

configurations for a given sublcass of operators.

The present understanding on BPS WLs in SCSM theories can be summarized as

follows. BPS WLs operators in SCSM were first introduced in the seminal work [1]. There,

1/2 BPS operators for N = 2 SCSM theories and 1/3 BPS WLs in N = 3 SCSM theories

were defined as the holonomy of generalized connections that include couplings to the scalar

fields of the theories.

Later on, the construction was generalized to models with a higher degree of super-

symmetry. In N = 6 ABJ(M) theories [8–10] with U(N)k ×U(M)−k gauge group, dual to

M-theory in AdS4 × S7/Zk background, the whole classification of BPS WLs was carried

out in [7, 11] for timelike infinite straight lines in Minkowski spacetime and for maximal cir-

cles in Euclidean space. The most general WL is 1/6 BPS and corresponds to the holonomy

of a superconnection that includes parametric couplings to both scalars and fermions. For

particular values of the parameters it reduces to the bosonic 1/6 BPS WL with couplings

only to scalar fields [12–14], which is supposed to be dual to smeared M2-branes [12], and

to the fermionic 1/2 BPS WLs, dual to M2-/anti-M2-branes [2, 15]. The generalization

to fermionic BPS WLs with a reduced number of preserved supercharges was considered

in [16–20]. These are featured by non-trivial latitude angles in the internal R-symmetry

space plus possibly latitude deformations of the Euclidean closed contour.

N = 4 circular quiver SCSM theories with gauge group and levels
∏r
`=1[U(N2`−1)k ×

U(N2`)−k] were introduced in [21, 22]. In the general case of different group ranks they can

be obtained via decomposition of the U(N)k×U(M)−k ABJ theory with N =
∑r

`=1N2`−1

and M =
∑r

`=1N2` [15, 23]. In the special case of equal ranks one obtains the N = 4

orbifold ABJM theory with [U(N)k × U(N)−k]
r gauge group [23]. This theory has a dual

description in terms of M-theory in AdS4 × S7/(Zrk × Zr) background [23–25].

For a class of N = 4 SCSM theories corresponding to circular quivers with alternating

levels1 1/4 BPS WLs were constructed in [7], which are the holonomy of superconnections

that include parametric couplings to scalars and fermions. This was carried out under

the assumption that the superconnections can be always written as 2 × 2 block diagonal

matrices. As a consequence the corresponding WLs, when traced, can be expressed as

linear combinations of r double-node operators W (`) that are nothing but the holonomy of

the 2 × 2 block matrices. Therefore, their study reduces to the study of the generic W (`)

confined at two adjacent nodes. For a particular choice of the parameters they give rise

to the bosonic 1/4 BPS WL that includes couplings only to scalars and the fermionic 1/2

BPS WL with couplings also to fermions [27, 28].

1The N = 4 SCSM theories with vanishing levels [26, 27] or corresponding to linear quivers [21] are not

included in the discussion.
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In this paper we provide a more general construction of BPS WLs in N = 4 SCSM

theories using two different strategies. To begin with, we consider [U(N)k × U(N)−k]
r

ABJM orbifold models and construct BPS WLs by performing a direct decomposition of

BPS WLs classified in ABJM theory. Although this does not provide a full classification of

WLs in orbifold ABJM theory, it allows to obtain a class of BPS operators that is however

larger than the one known so far. Moreover, this method has the virtue to automatically

provide the M-theory dual description of these new operators as given by M2-/anti-M2-

branes wrapping some particular circles in the internal S7/(Zrk × Zr) space. The second

method is more systematic and leads to a full classification of 1/4 and 1/2 BPS WLs for

general circular quivers with alternating Chen-Simons levels. It is based on directly impos-

ing the invariance of the most general superconnection compatible with the symmetries of

the theory under a given fraction of SUSY charges.

Following these strategies, we find 1/4 and 1/2 BPS WLs already constructed in the

literature as the holonomy of double-node superconnections in [27, 28] and [7], but also new

ones that correspond to non-block-diagonal superconnections and are thus not ascribable

to straightforward generalizations of the previous ones. These new WLs are in general 1/4

BPS and they are enhanced to the usual 1/2 BPS for special choices of the parameters. As

we will discuss in details, they are all cohomological equivalent to the bosonic 1/4 BPS op-

erators whose expectation values can be in principle computed with localization techniques.

The paper is organized as follows. In section 2 we review the classification of known

BPS WLs in ABJ(M) theory by parametrizing the couplings to matter in the most general

way. In section 3 we determine the BPS WLs in the orbifold ABJM model that can be

obtained by decomposition of BPS WLs in ABJM theory. In particular, we find new BPS

WLs that were not present in the previous literature. Section 3.3 is devoted to a discussion

of the M2-/anti-M2-brane duals of BPS WLs in N = 4 orbifold ABJM theory. In section 4,

by studying the invariance of the most general superconnection under a given fraction of

SUSY transformations we give a complete classification of all possible 1/4 and 1/2 BPS

WLs in N = 4 circular quiver SCSM theories. Finally, a summary of our main results is

contained in section 5 where we also comment on the expected perturbative results for the

newly found WLs and their matching with the localization prediction. Technical details

about the general derivation of section 4 are collected in appendix A. As a completion to

the classification of BPS WLs in ABJ(M) and N = 4 SCSM theories, in appendix B we

study the overlapping of preserved supercharges for general 1/2 BPS WLs in both theories.

We find no new pairs of different operators preserving the same set of supercharges beyond

the ones already discovered in [27] and [15]. In the main body of the paper we focus on

timelike linear WLs in Minkowski spacetime, whereas circular 1/4 BPS WLs in Euclidean

space are discussed in appendix C.

2 Review of BPS WLs in ABJ(M) theory

In this section we review the general classification of 1/6 and 1/2 BPS WLs in ABJ(M)

theory given in [7, 11]. We present it in a way that turns out to be preparatory for the

study of BPS operators in N = 4 SCSM theories.

– 3 –
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The ABJ(M) lagrangian in Minkowski spacetime can be written as the sum of four

terms

LCS =
k

4π
εµνρTr

(
Aµ∂νAρ +

2i

3
AµAνAρ −Bµ∂νBρ −

2i

3
BµBνBρ

)
Lk = Tr

(
−Dµφ̄

IDµφI + iψ̄Iγ
µDµψ

I
)

Lp =
4π2

3k2
Tr
(
φI φ̄

IφJ φ̄
JφK φ̄

K+φI φ̄
JφJ φ̄

KφK φ̄
I+4φI φ̄

JφK φ̄
IφJ φ̄

K−6φI φ̄
JφJ φ̄

IφK φ̄
K
)

LY =
2πi

k
Tr
(
φI φ̄

IψJ ψ̄J − 2φI φ̄
JψI ψ̄J − φ̄IφI ψ̄JψJ + 2φ̄IφJ ψ̄Iψ

J

+ εIJKLφI ψ̄JφKψ̄L − εIJKLφ̄IψJ φ̄KψL
)

(2.1)

where the totally anti-symmetric Levi-Civita tensors εIJKL, εIJKL are defined as

ε1234 = ε1234 = 1. Here Aµ and Bµ are the connections of U(N) and U(M) gauge groups

respectively, φI , ψ
I (I = 1, 2, 3, 4) are complex scalars and Dirac fermions in the bifun-

damental representation of the gauge group and in the fundamental representation of the

SU(4) R-symmetry group, and φ̄I , ψ̄I their complex conjugates. Covariant derivatives are

defined as

DµφI = ∂µφI + iAµφI − iφIBµ

Dµφ̄
I = ∂µφ̄

I − iφ̄IAµ + iBµφ̄
I

Dµψ
I = ∂µψ

I + iAµψ
I − iψIBµ

Dµψ̄I = ∂µψ̄I − iψ̄IAµ + iBµψ̄I (2.2)

The ABJ(M) action is invariant under the following Poincaré SUSY transforma-

tions [9, 29–31]

δAµ = −2π

k

(
φI ψ̄Jγµθ

IJ + θ̄IJγµψ
J φ̄I
)

δBµ = −2π

k

(
ψ̄JφIγµθ

IJ + θ̄IJγµφ̄
IψJ

)
δφI = iθ̄IJψ

J , δφ̄I = iψ̄Jθ
IJ

δψI = γµθIJDµφJ +
2π

k
θIJ

(
φJ φ̄

KφK − φK φ̄KφJ
)

+
4π

k
θKLφK φ̄

IφL

δψ̄I = −θ̄IJγµDµφ̄
J − 2π

k
θ̄IJ
(
φ̄JφK φ̄

K − φ̄KφK φ̄J
)
− 4π

k
θ̄KLφ̄

KφI φ̄
L (2.3)

with the θIJ parameters satisfying

θIJ = −θJI , (θIJ)∗ = θ̄IJ , θ̄IJ =
1

2
εIJKLθ

KL (2.4)

N = 6 SUSY is realized explicitly.

The whole spectrum of BPS WLs defined along the timelike infinite straight line

xµ = (τ, 0, 0) can be described by a parametric family of operators [2, 7, 11]

W = P exp
(
− i

∫
dτL(τ)

)
(2.5)

– 4 –
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corresponding to a generalized U(N |M) superconnection that includes couplings to scalar

and fermion matter fields2

L =

 A0 + 2π
k U

I
JφI φ̄

J
√

4π
k (ᾱIψ

I
+ + γ̄Iψ

I
−)√

4π
k (ψ̄I−β

I − ψ̄I+δI) B0 + 2π
k U

I
J φ̄

JφI

 (2.6)

Here U IJ is a 4× 4 matrix with constant complex entries, whereas the fermionic couplings

are given by constant vectors ᾱI , γ̄I , β
I , δI in C4 (αI = (ᾱI)

∗, |α|2 = ᾱIα
I , etc.).

For special choices of the parameters, superconnection (2.6) gives rise to BPS WLs

preserving a certain amount of SUSY, as we will review below for 1/6 and 1/2 BPS cases.

2.1 1/6 BPS WLs

An exhaustive classification of 1/6 BPS WLs in ABJ(M) theory has been given in [7, 11].

These are operators that preserve two real Poincaré supercharges plus two real supercon-

formal charges out of the original 12 + 12 real supercharges.

In order to make the classification clearer, it is convenient to define two projectors P IJ
and QIJ in the SU(4) R-symmetry space that satisfy

P IJ +QIJ = δIJ , P IJQ
J
K = QIJP

J
K = 0

P IJP
J
K = P IK , QIJQ

J
K = QIK , P II = QII = 2 (2.7)

and break R-symmetry as SU(4)→SU(2)L×SU(2)R. We can rewrite the two projectors as

P IJ = µI µ̄J + νI ν̄J , QIJ = ρI ρ̄J + σI σ̄J (2.8)

in terms of four orthonormal vectors in C4 satisfying

µ̄Iµ
I = ν̄Iν

I = ρ̄Iρ
I = σ̄Iσ

I = 1

µ̄Iν
I = µ̄Iρ

I = µ̄Iσ
I = ν̄Iρ

I = ν̄Iσ
I = ρ̄Iσ

I = 0 (2.9)

The two projectors are not independent, as QIJ can be expressed in terms of P IJ using the

first equation in (2.7). Moreover, for fixed P IJ and QIJ there is some freedom in the choice

of the µ̄I , ν̄I , ρ̄I , σ̄I vectors, which are always determined up to a SU(2)L×SU(2)R rotation.

All 1/6 BPS WLs can be classified according to the choices of the parameters in table 1.

The U IJ couplings are given in terms of the two projectors written as in (2.8) and we have

expressed also the fermionic couplings as linear combination of the µ̄I , ν̄I , ρ̄I , σ̄I vectors

with four arbitrary constant complex parameters pI . Their particular decompositions follow

from the constraints ᾱIP
I
J = P IJβ

J = γ̄IQ
I
J = QIJδ

J = 0 [7, 11].

In general, 1/6 BPS WLs in the first four classes include non-trivial couplings both to

scalars and fermions. For this reason they are called fermionic 1/6 BPS WLs, in contrast

2In three-dimensional Minkowski spacetime, we use the gamma matrix γµ β
α = (iσ2, σ1, σ3) with σ1,2,3

being the Pauli matrices. For an arbitrary spinor θα, we define θ± = ±iuα±θα with the Grassmann even

spinors uα± = 1√
2
(∓i,−1) [15, 32].

– 5 –
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WL type Choice of the parameters

W I
1/6[µ̄I , ν̄I , pI ]

U IJ = µI µ̄J + νI ν̄J − (1− 2ᾱKβ
K)(δIJ − µI µ̄J − νI ν̄J)− 2βI ᾱJ

ᾱI = p1ρ̄I + p2σ̄I , βI = p3ρ
I + p4σ

I , γ̄I = δI = 0

W II
1/6[µ̄I , ν̄I , pI ]

U IJ = (1− 2γ̄Kδ
K)(µI µ̄J + νI ν̄J) + 2δI γ̄J − (δIJ − µI µ̄J − νI ν̄J)

γ̄I = p1µ̄I + p2ν̄I , δI = p3µ
I + p4ν

I , ᾱI = βI = 0

W III
1/6[µ̄I , ν̄I , pI ]

U IJ = −δIJ + 2µI µ̄J + 2νI ν̄J

ᾱI = p1ρ̄I + p2σ̄I , γ̄I = p3µ̄I + p4ν̄I , βI = δI = 0

W IV
1/6[µ̄I , ν̄I , pI ]

U IJ = −δIJ + 2µI µ̄J + 2νI ν̄J

βI = p1ρ
I + p2σ

I , δI = p3µ
I + p4ν

I , ᾱI = γ̄I = 0

W bos
1/6 [µ̄I , ν̄I ] U IJ = −δIJ + 2µI µ̄J + 2νI ν̄J , ᾱI = γ̄I = βI = δI = 0

Table 1. The four types of fermionic WLs and the bosonic 1/6 BPS WL in ABJ(M) theory. In

writing the U IJ matrices we have used ρI ρ̄J + σI σ̄J = δIJ − µI µ̄J − νI ν̄J , which follows from the

first identity in (2.7).

with W bos
1/6 that, including only couplings to scalars, is called bosonic 1/6 BPS WL. All the

1/6 BPS WLs preserve the same set of Poincaré supercharges,3 which correspond to

P IKP
J
Lθ

KL
− , QIKQ

J
Lθ

KL
+ (2.10)

Different classes of WLs give rise to independent operators, as they cannot be mapped

one into the other by R-symmetry rotations. In fact, W I
1/6 and W II

1/6 operators break the

original SU(4) R-symmetry down to SU(2)L and SU(2)R, respectively. For W III
1/6 and W IV

1/6,

the R-symmetry is broken completely. Finally, W bos
1/6 is invariant under the SU(2)L×SU(2)R

subgroup.

After fixing P IJ , QIJ in the R-symmetry space, i.e., fixing the preserved super-

charges (2.10), each of the four types of fermionic WLs depends on four independent

complex parameters pI , while the bosonic WL is totally fixed. The bosonic WL can be

obtained from any of the four fermionic WLs by setting pI = 0, I = 1, 2, 3, 4, and so it is

just one particular representative of the four families of 1/6 BPS WLs.

It is important to recall that all the fermionic 1/6 BPS WLs are cohomologically

equivalent to the bosonic 1/6 BPS WL, being expressible as [2, 7]

W I,II,III,IV
1/6 [µ̄I , ν̄I , pI ] = W bos

1/6 [µ̄I , ν̄I ] +QV I,II,III,IV[µ̄I , ν̄I , pI ] (2.11)

where Q is a linear combination of preserved supercharges (2.10). This property turns out

to be very important when computing vacuum expectation values (vev) of Euclidean circu-

lar BPS WLs in the ABJ(M) theory compactified on S3. In fact, using the Q supercharge

in (2.11) to localize the path integral, the cohomological relation implies that at quantum

level all the vev are identical and equal to 〈W bos
1/6 〉 computed by a matrix model [4, 33, 34].

3For WLs on an infinite straight line, Poincaré and conformal supercharges are separately and similarly

preserved. Therefore, it is sufficient to discuss WLs invariance under Poincaré supercharges.

– 6 –
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2.2 1/2 BPS WLs

For special values of the parameters in table 1, SUSY gets enhanced and we obtain operators

that preserve half of the supersymmetries [2]. Precisely, this happens in Class I by setting

βI = αI

|α|2 , |α|2 6= 0 and in Class II for δI = γI

|γ|2 , |γ|2 6= 0. In our notations of table 1 this

corresponds to choosing

p3 =
p̄1

p1p̄1 + p2p̄2
p4 =

p̄2

p1p̄1 + p2p̄2
p1p̄1 + p2p̄2 6= 0 (2.12)

We denote the corresponding 1/2 BPS WLs as W I
1/2[ᾱI ] and W II

1/2[γ̄I ], respectively. They

are manifestly invariant under a residual SU(3) R-symmetry subgroup.

Being particular cases of W I,II
1/6 [µ̄I , ν̄I , pI ] families, these operators have to preserve

supercharges (2.10). However, due to their SU(3) invariance, the corresponding sets of

preserved supercharges contain also supercharges that are SU(3) rotations of (2.10). It is

easy to prove that this enlarges the set of preserved SUSY’s to

W I
1/2[ᾱI ] : ᾱJθ

IJ
+ , εIJKLα

JθKL−

W II
1/2[γ̄I ] : γ̄Jθ

IJ
− , εIJKLγ

JθKL+ (2.13)

As long as we consider the two 1/2 BPS WLs as particular representatives of Class

I and Class II fermionic WLs, the corresponding parameters are necessarily orthogonal,

i.e. ᾱIγ
I = 0. However, at this point nothing prevents from relaxing these conditions and

freely rotating the two vectors in the SU(4) R-symmetry space. From (2.13) it then follows

that for a given representative of Class I selected by choosing a specific vector ᾱI in C4,

it is possible to select a representative in Class II corresponding to γ̄I = ᾱI that preserves

the complementary set of supercharges. For ABJM theory, they are in fact dual to a pair

of M2-/anti-M2-branes placed at the same position in AdS4 × S7/Zk spacetime [15]. For

a more general discussion on the overlapping of preserved supercharges for different values

of the parameters we refer to appendix B.

From identity (2.11) and R-symmetry, it follows that W I
1/2[ᾱI ] is cohomologically equiv-

alent to the bosonic 1/6 BPS WL W bos
1/6 [µ̄I , ν̄I ] for arbitrary µ̄I , ν̄I satisfying ᾱIµ

I = ᾱIν
I =

µ̄Iν
I = 0, µ̄Iµ

I = ν̄Iν
I = 1. Analogously, W II

1/2[γ̄I ] is cohomologically equivalent to the

bosonic 1/6 BPS WL W bos
1/6 [γ̄I/|γ|2, ν̄I ] for arbitrary ν̄I that satisfies γ̄Iν

I = 0, ν̄Iν
I = 1.

3 BPS WLs in N = 4 orbifold ABJM theory

As is well-known, a particular realization of Chern-Simons-matter theory with N = 4

supersymmetry can be obtained by orbifold projection of the ABJM theory [23]. Precisely,

starting from the ABJM theory with gauge group and levels U(rN)k×U(rN)−k and taking

a Zr quotient one obtains the N = 4 orbifold ABJM theory corresponding to a circular

quiver [U(N)k ×U(N)−k]
r with alternating levels.

– 7 –
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The study of BPS WLs in orbifold ABJM theory was initiated in [27, 28] and refined

in [7], both for straight line contours in Minkowski and circular contours in Euclidean space.

The presently known classification includes one bosonic and four classes of fermionic WLs

obtained by assuming that the corresponding superconnection can be always written as a

2× 2 block diagonal matrix. As a consequence, when traced, the WL can be written as a

linear combination of WLs connecting two adjacent quiver nodes.

Aimed at extending this classification, here we use an alternative approach to construct

WLs in orbifold ABJM that does not require making any particular ansatz on the structure

of the superconnection. Precisely, we construct a class of Wilson operators by performing

the orbifold decomposition of WLs of the ABJM theory.

The orbifold decomposition breaks the original SU(4) R-symmetry to SU(2)L×SU(2)R.

Correspondingly, we choose the following decomposition of the R-symmetry indices

I = 1, 2, 4, 3 → i = 1, 2, ı̂ = 1̂, 2̂ (3.1)

A generic vector ᾱI in C4 is then decomposed as

ᾱI → ᾱi, ᾱı̂ (3.2)

with complex conjugates αi = (ᾱi)
∗, αı̂ = (ᾱı̂)

∗. We also define |α|2 = ᾱiα
i + ᾱı̂α

ı̂.

In the U(rN)k×U(rN)−k ABJM model we consider the most general superconnection

of the form (2.6). Applying the orbifold decomposition the supermatrix gets decomposed

for r ≥ 3 as

L =



A(1) f
(1)
1 h

(1)
1 0 0 · · · h

(2r−1)
2 f

(2r)
2

f
(1)
2 B(2) f

(2)
1 h

(2)
1 0 · · · 0 h

(2r)
2

h
(1)
2 f

(2)
2 A(3) f

(3)
1

. . . 0 0

0 h
(2)
2 f

(3)
2 B(4) . . .

. . .
...

0
. . .

. . .
. . .

. . . h
(2r−3)
1 0

...
. . .

. . .
. . . f

(2r−2)
1 h

(2r−2)
1

h
(2r−1)
1 0 · · · 0 h

(2r−3)
2 f

(2r−2)
2 A(2r−1) f

(2r−1)
1

f
(2r)
1 h

(2r)
1 0 · · · 0 h

(2r−2)
2 f

(2r−1)
2 B(2r)


(3.3)

and for r = 2 as

L =


A(1) f

(1)
1 h

(1)
1 + h

(3)
2 f

(4)
2

f
(1)
2 B(2) f

(2)
1 h

(2)
1 + h

(4)
2

h
(3)
1 + h

(1)
2 f

(2)
2 A(3) f

(3)
1

f
(4)
1 h

(4)
1 + h

(2)
2 f

(3)
2 B(4)

 (3.4)
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where we have defined

A(2`−1) =A
(2`−1)
0 +

2π

k

(
U ijφ

(2`−2)
i φ̄j(2`−2)+U ı̂̂φ

(2`−1)
ı̂ φ̄̂(2`−1)

)
B(2`) =B

(2`)
0 +

2π

k

(
U ijφ̄

j
(2`)φ

(2`)
i +U ı̂̂φ̄

̂
(2`−1)φ

(2`−1)
ı̂

)
f

(2`−1)
1 =

√
4π

k

(
ᾱiψ

i
(2`−1)++γ̄iψ

i
(2`−1)−

)
, f

(2`)
1 =

√
4π

k

(
ψ̄

(2`)
ı̂− β ı̂−ψ̄(2`)

ı̂+ δ ı̂
)

f
(2`−1)
2 =

√
4π

k

(
ψ̄

(2`−1)
i− βi−ψ̄(2`−1)

i+ δi
)
, f

(2`)
2 =

√
4π

k

(
ᾱı̂ψ

ı̂
(2`)++γ̄ı̂ψ

ı̂
(2`)−

)
h

(2`−1)
1 =

2π

k
U ı̂jφ

(2`−1)
ı̂ φ̄j(2`), h

(2`)
1 =

2π

k
U ı̂jφ̄

j
(2`)φ

(2`+1)
ı̂

h
(2`−1)
2 =

2π

k
U i̂φ

(2`)
i φ̄̂(2`−1), h

(2`)
2 =

2π

k
U i̂φ̄

̂
(2`+1)φ

(2`)
i (3.5)

In superconnections (3.3) and (3.4) we have the usual gauge and scalar field couplings

in the diagonal blocks, fermion fields in the next-to-diagonal blocks, and also new scalar

field couplings in the next-to-next-to-diagonal blocks. The novelty here is the presence

of these next-to-next-to-diagonal blocks.4 These new blocks, present both in the bosonic

and fermionic WLs, together with generically non-vanishing f
(2`−1)
1,2 and f

(2`)
1,2 blocks define

superconnections that are outside the general class of 2×2 block diagonal superconnections

considered so far in the literature [7, 27, 28, 35]. They reduce to those ones for the particular

choice of the couplings U ı̂j = U i̂ = 0 and either f
(2`−1)
1,2 = 0 or f

(2`)
1,2 = 0, ∀ `.

In the next two subsections we give explicit examples of the construction of BPS

WLs in orbifold ABJM theory from orbifold reduction of 1/6 and 1/2 BPS operators in

ABJM theory.

3.1 From 1/6 BPS WLs in ABJM theory

We begin by considering the decomposition of the BPS WLs reviewed in subsection 2.1.

Decomposing the constant vector parameters of the general superconnection (2.6) according

to (3.2) and imposing constraints (2.9) we obtain generic WLs W [µ̄i, µ̄ı̂, ν̄i, ν̄ı̂, pI ] with

µ̄iµ
i + µ̄ı̂µ

ı̂ = ν̄iν
i + ν̄ı̂ν

ı̂ = 1, µ̄iν
i + µ̄ı̂ν

ı̂ = 0 (3.6)

and pI still labeling four constant complex numbers.

Imposing that the new operators in the N = 4 theory preserve some amount of SUSY

provides further constraints on the complex parameters. We find that the solution µ̄ı̂ = 0,

ν̄i = 0 leads to fermionic BPS WLs preserving two Poincaré and two conformal super-

charges.5 The resulting operators, obtained from the four classes of fermionic WLs in

table 1, and the corresponding parameters are classified in table 2.

It can be shown that all the four types of fermionic BPS WLs preserve the same set

of supercharges corresponding to

µ̄iν̄̂θ
i̂
−, εijεk̂l̂µ

iν k̂θjl̂+ (3.7)

4Non-vanishing next-to-next-to-diagonal blocks have been considered in [27] only for 1/2 BPS WLs in

N = 4 SCSM theories with some quiver nodes corresponding to vanishing CS levels.
5An alternative solution would be µ̄i = 0, ν̄ı̂ = 0, which leads to equivalent WLs. Without loss of

generality we discuss only one case.
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WL type Choice of the parameters

W I
1/4[µ̄i, 0, 0, ν̄ı̂, pI ]

U ij = µiµ̄j − (1− 2ᾱkβ
k − 2ᾱk̂β

k̂)(δij − µiµ̄j)− 2βiᾱj

U ı̂̂ = ν ı̂ν̄̂ − (1− 2ᾱkβ
k − 2ᾱk̂β

k̂)(δ ı̂̂ − ν ı̂ν̄̂)− 2β ı̂ᾱ̂

U i̂ = −2βiᾱ̂, U ı̂j = −2β ı̂ᾱj , γ̄i = γ̄ı̂ = δi = δ ı̂ = 0

ᾱi = p1εijµ
j , ᾱı̂ = p2εı̂̂ν

̂, βi = p3ε
ijµ̄j , β ı̂ = p4ε

ı̂̂ν̄̂

W II
1/4[µ̄i, 0, 0, ν̄ı̂, pI ]

U ij = (1− 2γ̄kδ
k − 2γ̄k̂δ

k̂)µiµ̄j + 2δiγ̄j − (δij − µiµ̄j)

U ı̂̂ = (1− 2γ̄kδ
k − 2γ̄k̂δ

k̂)ν ı̂ν̄̂ + 2δ ı̂γ̄̂ − (δ ı̂̂ − ν ı̂ν̄̂)

U i̂ = 2δiγ̄̂, U ı̂j = 2δ ı̂γ̄j , ᾱi = ᾱı̂ = βi = β ı̂ = 0

γ̄i = p1µ̄i, γ̄ı̂ = p2ν̄ı̂, δi = p3µ
i, δ ı̂ = p4ν

ı̂

W III
1/4[µ̄i, 0, 0, ν̄ı̂, pI ]

U ij = −δij + 2µiµ̄j , U ı̂̂ = −δ ı̂̂ + 2ν ı̂ν̄̂

U i̂ = U ı̂j = βi = β ı̂ = δi = δ ı̂ = 0

ᾱi = p1εijµ
j , ᾱı̂ = p2εı̂̂ν

̂, γ̄i = p3µ̄i, γ̄ı̂ = p4ν̄ı̂

W IV
1/4[µ̄i, 0, 0, ν̄ı̂, pI ]

U ij = −δij + 2µiµ̄j , U ı̂̂ = −δ ı̂̂ + 2ν ı̂ν̄̂

U i̂ = U ı̂j = ᾱi = ᾱı̂ = γ̄i = γ̄ı̂ = 0

βi = p1ε
ijµ̄j , β ı̂ = p2ε

ı̂̂ν̄̂, δi = p3µ
i, δ ı̂ = p4ν

ı̂

W bos
1/4 [µ̄i, 0, 0, ν̄ı̂]

U ij = −δij + 2µiµ̄j , U ı̂̂ = −δ ı̂̂ + 2ν ı̂ν̄̂

U i̂ = U ı̂j = ᾱi = ᾱı̂ = γ̄i = γ̄ı̂ = βi = β ı̂ = δi = δ ı̂ = 0

Table 2. The four types of fermionic WLs and the bosonic 1/4 BPS WL in circular quiver N = 4

SCSM theories with alternating levels. We have set µ̄ı̂ = ν̄i = 0, and thus µ̄iµ
i = ν̄ı̂ν

ı̂ = 1.

The important observation is that the classes of fermionic 1/4 BPS WLs found here through

the orbifolding projection are more general than the ones constructed in [7]. In fact,

for generic parameters superconnections (3.3), (3.4) are not block-diagonal and cannot

be mapped simply by R-symmetry rotations to the block-diagonal matrices previously

considered in the literature [7, 15, 27, 28, 35].

In order to better clarify this point, we focus on particular WL representatives in each

class selected by choosing for instance µ̄i = (0, 1) and ν̄ı̂ = (0, 1). As long as we keep the

four pI parameters generically different from zero, from (3.5) we read that superconnections

in Class I have non-trivial entries

f
(2`−1)
1 = p1

√
4π

k
ψ1

(2`−1)+ f
(2`)
1 = p4

√
4π

k
ψ̄

(2`)

1̂−

f
(2`−1)
2 = p3

√
4π

k
ψ̄

(2`−1)
1− f

(2`)
2 = p2

√
4π

k
ψ1̂

(2`)+

h
(2`−1)
1 = −4π

k
p1p4 φ

(2`−1)

1̂
φ̄1

(2`) h
(2`)
1 = −4π

k
p1p4 φ̄

1
(2`)φ

(2`+1)

1̂

h
(2`−1)
2 = −4π

k
p2p3 φ

(2`)
1 φ̄1̂

(2`−1) h
(2`)
2 = −4π

k
p2p3 φ̄

1̂
(2`+1)φ

(2`)
1 (3.8)

– 10 –



J
H
E
P
1
1
(
2
0
1
7
)
1
7
4

that prevent the superconnections to be written as block diagonal matrices. For Class II we

find a similar pattern. Although operators in Class III and IV always have h
(2`−1)
1,2 =h

(2`)
1,2 =0,

still they have non-vanishing f
(2`−1)
1 , f

(2`)
2 and f

(2`−1)
2 , f

(2`)
1 respectively,

Class III : f
(2`−1)
1 =

√
4π

k

(
p1ψ

1
(2`−1)++p3ψ

2
(2`−1)−

)
, f

(2`)
2 =

√
4π

k

(
p2ψ

1̂
(2`)++p4ψ

2̂
(2`)−

)
Class IV : f

(2`−1)
2 =

√
4π

k

(
p1 ψ̄

(2`−1)
1− −p3 ψ̄

(2`−1)
2+

)
, f

(2`)
1 =

√
4π

k

(
p2 ψ̄

(2`)

1̂− −p4 ψ̄
(2`)

2̂+

)
(3.9)

which do not allow to make them block-diagonal.

However, it can be easily realized that by choosing p2 = p4 = 0 we have h
(2`−1)
1,2 =

h
(2`)
1,2 = f

(2`)
1,2 = 0, and in all the cases the superconnections become block-diagonal

L = diag(L1, L2, . . . , Lr) , L` =

(
A(2`−1) f

(2`−1)
1

f
(2`−1)
2 B(2`)

)
(3.10)

The corresponding traced WL

TrP exp
(
− i

∫
dτL(τ)

)
(3.11)

can then be written as a linear combination of double-node operators W (`), which are the

holonomy of superconnections L` with ` = 1, 2, · · · , r.
Similarly, by choosing p1 = p3 = 0, in all the cases we have h

(2`−1)
1,2 = h

(2`)
1,2 = f

(2`−1)
1,2 = 0

and the superconnections become block-diagonal

L̃ = diag(L̃1, L̃2, . . . , L̃r), L̃` =

(
B(2`) f

(2`)
1

f
(2`)
2 A(2`+1)

)
(3.12)

Fermionic 1/4 BPS WLs with block-diagonal superconnections have been considered in [7].

Our classification generalizes the previous one, providing the previously found 1/4 BPS

WLs but also an infinite set of new 1/4 BPS operators.

To complete this picture we still need to consider the decomposition of the bosonic 1/6

BPS WL W bos
1/6 [µ̄I , ν̄I ] in table 1. We obtain an operator W bos

1/4 [µ̄i, 0, 0, ν̄ı̂] with supercon-

nections (3.3) or (3.4) and parameters given in table 2. It is a bosonic 1/4 BPS WL that

preserves supercharges (3.7). It can also be got from W I,II,III,IV
1/4 [µ̄i, 0, 0, ν̄ı̂, pI ] by setting

pI = 0. The bosonic 1/4 BPS WL has been constructed in [27, 28] and coincides with the

present ones up to a R-symmetry rotation.

Finally, it is easy to see that cohomological equivalence (2.11) survives the decomposi-

tion. Therefore, fermionic 1/4 BPS WLs in table 2 are equivalent to the bosonic 1/4 BPS

WL up to a Q-exact term

W I,II,III,IV
1/4 [µ̄i, 0, 0, ν̄ı̂, pI ] = W bos

1/4 [µ̄i, 0, 0, ν̄ı̂] +QV I,II,III,IV[µ̄i, 0, 0, ν̄ı̂, pI ] (3.13)

Therefore, their vev computed on the three sphere are expected to coincide.
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3.2 From 1/2 BPS WLs in ABJM theory

As a particular case of the previous analysis we now consider the decomposition of the 1/2

BPS WLs W I
1/2[ᾱI ], W

II
1/2[γ̄I ] in ABJM theory. This turns out to be particularly helpful

for studying possible enhancement of SUSY for operators in table 2, and for finding out

the cases for which gravity duals are known, as we discuss in the next section.

Decomposing W I
1/2[ᾱI ] in table 1, we obtain an operator W I[ᾱi, ᾱı̂] with superconnec-

tion (3.3) or (3.4) and parameters

U ij = δij−
2αiᾱj
|α|2

, U ı̂̂ = δ ı̂̂−
2αı̂ᾱ̂
|α|2

, U i̂ = −
2αiᾱ̂
|α|2

, U ı̂j = −2αı̂ᾱj
|α|2

(3.14)

βi =
αi

|α|2
, β ı̂ =

αı̂

|α|2
, |α|2 = ᾱiα

i + ᾱı̂α
ı̂ 6= 0, γ̄i = γ̄ı̂ = δi = δ ı̂ = 0

This operator can be seen as a special case of the fermionic 1/4 BPS WLs W I
1/4[µ̄i, 0, 0, ν̄ı̂, pI ]

in table 2, obtained by choosing the parameters as in (2.12). It can be 1/2 or 1/4 BPS

depending on the parameters. In fact, we can distinguish three cases.

1) When ᾱiα
i 6= 0, ᾱı̂ = 0, we obtain a 1/2 BPS WL W I

1/2[ᾱi, 0], with preserved

supercharges

ᾱiθ
ik̂
+ , εijα

iθjk̂− k̂ = 1̂, 2̂ (3.15)

as follows from (2.13). For ᾱi = δ1
i it coincides with the ψ1-loop in [27, 28], alter-

natively called W1 in [15], whereas for ᾱi = δ2
i it is the W2 operator of [15]. It is

cohomologically equivalent to the bosonic 1/4 BPS WL

W bos
1/4

[
εijα

j/
√
ᾱkαk, 0, 0, ν̄ı̂

]
(3.16)

for arbitrary ν̄ı̂, with ν̄ı̂ν
ı̂ = 1.

2) When ᾱi = 0, ᾱı̂α
ı̂ 6= 0, we have the 1/2 BPS WL W I

1/2[0, ᾱı̂] with preserved super-

charges

ᾱ̂θ
i̂
+, ε̂k̂α

̂θik̂− i = 1, 2 (3.17)

In [15] this operator was called W1̂ for ᾱı̂ = δ1̂
ı̂ and W2̂ for ᾱı̂ = δ2̂

ı̂ . It is cohomologi-

cally equivalent to the bosonic 1/4 BPS WL

W bos
1/4

[
µ̄i, 0, 0, εı̂̂α

̂/

√
ᾱk̂α

k̂

]
(3.18)

for arbitrary µ̄i with µ̄iµ
i = 1.

3) More interestingly, when ᾱiα
i 6=0 and ᾱı̂α

ı̂ 6= 0, we have the 1/4 BPS WL W I
1/4[ᾱi, ᾱı̂]

with preserved supercharges

ᾱiᾱ̂θ
i̂
+, εijεk̂l̂α

iαk̂θjl̂− (3.19)

It is cohomologically equivalent to the bosonic 1/4 BPS WL

W bos
1/4

[
εijα

j/
√
ᾱkαk, 0, 0, εı̂̂α

̂/

√
ᾱk̂α

k̂

]
(3.20)
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Repeating a similar analysis for the 1/2 BPS WL W II
1/2[γ̄I ] in ABJM theory we obtain

an operator W II[γ̄i, γ̄ı̂] in N = 4 SCSM theories. This is just a particular case of the

fermionic 1/4 BPS WL W II
1/4[µ̄i, 0, 0, ν̄ı̂, pI ] in table 2 corresponding to parameters (2.12).

When γ̄ı̂ = 0, γ̄iγ
i 6= 0 we have a 1/2 BPS WL, W II

1/2[γ̄i, 0], which for γ̄i = δ2
i coincides

with the ψ2-loop of [27] (or W̃2 in [15]). The corresponding conserved supercharges are

γ̄iθ
ik̂
− , εijγ

iθjk̂+ k̂ = 1̂, 2̂ (3.21)

For γ̄i ∼ εijα
j they coincide with the ones in (3.15). This is the degeneracy of WLs

discovered in [27] and further elaborated in [15, 36, 37]. When γ̄i = 0, γ̄ı̂γ
ı̂ 6= 0, we have a

1/2 BPS WL, W II
1/2[0, γ̄ı̂] that preserves supercharges

γ̄̂θ
i̂
−, ε̂k̂γ

̂θik̂+ i = 1, 2 (3.22)

For γ̄ı̂ ∼ εı̂̂α
̂ they are degenerate with the preserved supercharges of W I

1/2[0, ᾱı̂] defined

above. Finally, when γ̄iγ
i 6= 0 and γ̄ı̂γ

ı̂ 6= 0, we obtain a 1/4 BPS WL, W II
1/4[γ̄i, γ̄ı̂] with

preserved supercharges

γ̄iγ̄̂θ
i̂
−, εijεk̂l̂γ

iγk̂θjl̂+ (3.23)

All these WLs are cohomologically equivalent to bosonic 1/4 BPS WLs that can be easily

determined.

3.3 M2-/anti-M2-brane duals

According to the AdS/CFT correspondence, 1/2 BPS WLs in U(N)k × U(N)−k ABJM

theory are dual to M2-/anti-M2-branes in AdS4 × S7/Zk background [2, 15]

ds2 = R2

(
1

4
ds2

AdS4
+ ds2

S7/Zk

)
(3.24)

More precisely, choosing the AdS4 metric in the form

ds2
AdS4

= u2(−dt2 + dx2
1 + dx2

2) +
du2

u2
(3.25)

and the S7 embedded in C4 as

ds2
S7 =

1

4

[
dβ2 + cos2 β

2

(
dθ2

1 + sin2 θ1dϕ
2
1

)
+ sin2 β

2

(
dθ2

2 + sin2 θ2dϕ
2
2

)
+ sin2 β

2
cos2 β

2
(dχ+ cos θ1dϕ1 − cos θ2dϕ2)2

+

(
1

2
dζ + cos2 β

2
cos θ1dϕ1 + sin2 β

2
cos θ2dϕ2 +

1

2
cosβdχ

)2
]

(3.26)

with the Zk identification ζ ∼ ζ − 8π
k , the 1/2 BPS operator W I

1/2[ᾱI ] reviewed in sub-

section 2.2 is dual to a M2-brane embedded as t = σ0, x1 = x2 = 0, u = σ1, ζ = σ2 and

localized at a point specified by the complex vector [15]

αI = (ᾱI)
∗ =

(
cos

β

2
cos

θ1

2
e−

i
4

(2φ1+χ+ζ), cos
β

2
sin

θ1

2
e−

i
4

(−2φ1+χ+ζ),

sin
β

2
cos

θ2

2
e−

i
4

(2φ2−χ+ζ), sin
β

2
sin

θ2

2
e−

i
4

(−2φ2−χ+ζ)

)
(3.27)
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satisfying αI ᾱI = 1. The αI vector allows to identify the Killing spinors in AdS4 × S7/Zk
background corresponding to Poincaré and conformal supercharges preserved by the

M2-brane solution. One finds that they coincide with supercharges (2.13) preserved

by W I
1/2[ᾱI ].

6

Similarly, The 1/2 BPS WL W II
1/2[γ̄I ] is dual to an anti-M2-brane that wraps a circle

specified by a γ̄I vector similar to the one in (3.27). This configuration preserves super-

charges in the second line of (2.13). When ᾱI = γ̄I the brane and the anti-brane preserve

complementary sets of supercharges [15], in agreement with the field theory result.

The N = 4 orbifold ABJM theory is dual to M-theory in AdS4 × S7/(Zrk × Zr) back-

ground [23–25]. Since its 1/2 and 1/4 BPS WLs W I
1/2[ᾱi, 0], W I

1/2[0, ᾱı̂] and W I
1/4[ᾱi, ᾱı̂]

can be obtained from the orbifold decomposition of the 1/2 BPS WL W I
1/2[ᾱI ] in ABJM

theory, we can easily identify the M2-brane duals of these operators from the dual brane

configurations in ABJM theory.

The background can be still described by metrics (3.25), (3.26) with the quotient

Zrk×Zr realized by the identification ζ ∼ ζ− 8π
rk , χ ∼ χ− 4π

r and ζ ∼ ζ− 4π
r . Decomposing

the R-symmetry indices as in (3.2) we find that a M2-brane localized at

αi =

(
cos

β

2
cos

θ1

2
e−

i
4

(2φ1+χ+ζ), cos
β

2
sin

θ1

2
e−

i
4

(−2φ1+χ+ζ)

)
αı̂ =

(
sin

β

2
sin

θ2

2
e−

i
4

(−2φ2−χ+ζ), sin
β

2
cos

θ2

2
e−

i
4

(2φ2−χ+ζ)

)
(3.28)

with ᾱiα
i + ᾱı̂α

ı̂ = 1 and generically ᾱiα
i, ᾱı̂α

ı̂ 6= 0, is dual to the 1/4 BPS operator

W I
1/4[ᾱi, ᾱı̂] introduced in subsection 3.2. The (ᾱi, ᾱı̂) parameters select the set of super-

charges preserved by the corresponding M2-brane configuration [15], which turn out to

coincide with (3.19). Choosing β = 0, that is ᾱı̂ = 0, the set of preserved supercharges en-

hances to (3.15) and the M2-brane configuration is dual to W I
1/2[ᾱi, 0]. Similarly, choosing

β = π (ᾱi = 0) the set of preserved supercharges coincides with (3.17) and we obtain the

dual configuration of W I
1/2[0, ᾱı̂].

In a similar fashion, W II
1/4[γ̄i, γ̄ı̂], W

II
1/2[γ̄i, 0] and W II

1/2[0, γ̄ı̂] operators, arising from the

orbifold reduction of WL W II
1/2[γ̄I ] in ABJM theory, are dual to anti-M2-branes that wrap

circles specified by vectors (γ̄i, γ̄ı̂) of the form (3.28).

It is remarkable that the orbifold decomposition provides explicit gravity duals not

only for 1/2 BPS operators but also for the 1/4 BPS WLs W I
1/4[ᾱi, ᾱı̂] and W II

1/4[γ̄i, γ̄ı̂],

even in the absence of SUSY enhancement.

For generic fermionic 1/6 WLs in ABJM theory the precise gravity duals are not known.

Consequently, we are not able to identify precise gravity duals for the generic fermionic

1/4 WLs in N = 4 orbifold ABJM theory obtained by orbifold reduction.

To conclude this section we stress that the orbifold decomposition that leads from

U(rN)k × U(rN)−k ABJM to N = 4 orbifold ABJM theory can be generalized to a suit-

able decomposition of the U(N)k ×U(M)−k ABJ theory to obtain a N = 4 SCSM theory

with circular quiver
∏r
`=1[U(N2`−1)k×U(N2`)−k] [15]. Therefore, the general construction

6For details on this identification we refer the reader to section 4.3 of [15].
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Aμ
(2ℓ-1)

Bμ
(2ℓ)

-kk

ϕ

(2ℓ-1) ψ(2ℓ-1)

i

ϕ(2ℓ-1)
 ψ

i

(2ℓ-1)

ϕ
i

(2ℓ) ψ(2ℓ)


ϕ(2ℓ)
i

ψ

(2ℓ)

ϕ
i

(2ℓ-2) ψ(2ℓ-2)


ϕ(2ℓ-2)
i

ψ

(2ℓ-2)

Figure 1. A section of quiver diagram of the N = 4 circular quiver SCSM theories with alternating

levels. We have ` = 1, 2, · · · , r.

of WLs presented above can be applied also in the more general case of N = 4 SCSM quiver

theories. The structure of the superconnections is still the one in (3.3), (3.4) with defini-

tions (3.5). However, since for general circular quiver N = 4 SCSM theories the M-theory

dual description is not known, we cannot identify the gravity duals of the corresponding

BPS WLs.

4 BPS WLs in N = 4 SCSM theories: the general approach

Given the previous construction of BPS WLs obtained by direct orbifold decomposition of

BPS WLs in ABJM, the natural question arises whether the set of operators in table 2

exhausts the whole spectrum of possible 1/4 and 1/2 BPS WLs. To answer this question

we now approach the problem by applying a more systematic procedure, which consists in

studying directly the SUSY variation of a generic (super)connection L and imposing [32]

δL = ∂τG+ i[L,G] (4.1)

for a suitable supermatrix G.

To this end, we consider a N = 4 SCSM theory with gauge group and alternating

levels
∏r
`=1[U(N2`−1)k ×U(N2`)−k]. A section of its quiver is given in figure 1.

Superconformal transformations are related to Poincaré supercharges P îı, P̄îı and con-

formal supercharges S îı, S̄îı as

δ = i(θ̄îıPîı + ϑ̄îıSîı) = i(P̄îıθ
îı + S̄îıϑ

îı) (4.2)

The corresponding SUSY transformations on the fields are given in appendix A (see

eq. (A.1)).

In what follows we still restrict to WLs defined along the timelike infinite straight line

xµ = (τ, 0, 0) in Minkowski spacetime.

4.1 1/4 BPS WLs

In order to avoid clutter in the presentation we focus on the construction of the particular

class of 1/4 WLs preserving Poincaré supercharges

θ11̂
+ , θ22̂

− (4.3)
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These correspond to supercharges (3.7) where we choose

µ̄i = (0, 1), ν̄ı̂ = (0, 1) (4.4)

First, we observe that for this particular set of parameters, the bosonic 1/4 BPS WL

W bos
1/4 in table 2 has connection [27, 28]

Lbos = diag
(
A(1)

bos,B
(2)
bos, · · · ,A

(2r−1)
bos ,B(2r)

bos

)
(4.5)

A(2`−1)
bos =A

(2`−1)
0 +

2π

k

(
−φ(2`−2)

1 φ̄1
(2`−2)+φ

(2`−2)
2 φ̄2

(2`−2)−φ
(2`−1)

1̂
φ̄1̂

(2`−1)+φ
(2`−1)

2̂
φ̄2̂

(2`−1)

)
B(2`)

bos =B
(2`)
0 +

2π

k

(
−φ̄1

(2`)φ
(2`)
1 +φ̄2

(2`)φ
(2`)
2 −φ̄1̂

(2`−1)φ
(2`−1)

1̂
+φ̄2̂

(2`−1)φ
(2`−1)

2̂

)
To construct fermionic WLs we then consider the most general superconnection Lfer

of the form (3.3), (3.4) where we now allow for the couplings to scalars and fermions in

eqs. (3.5) to depend on the nodes. This choice enlarges the class of BPS WLs obtained

by orbifold decomposition and in principle allows for finding more general BPS opera-

tors. Moreover, for computational convenience in (3.5) we redefine the scalar couplings

as U(2`−1)
i
j = M(2`−1)

i
j − (σ3)ij , U(2`−1)

ı̂
̂ = M(2`−1)

ı̂
̂ − (σ3)ı̂ ̂, U(2`−1)

i
̂ = M(2`−1)

i
̂,

U(2`−1)
ı̂
j = M(2`−1)

ı̂
j , U(2`)

i
j = M(2`)

i
j−(σ3)ij , U(2`)

ı̂
̂ = M(2`)

ı̂
̂−(σ3)ı̂ ̂, U(2`)

i
̂ = M(2`)

i
̂,

U(2`)
ı̂
j = M(2`)

ı̂
j for all ` = 1, 2, · · · , r, with σ3 being the third Pauli matrix. Given the

structure of the quiver in figure 1 the superconnection entries then take the form

A(2`−1) = A(2`−1)
bos +

2π

k

(
M(2`−1)

i
jφ

(2`−2)
i φ̄j(2`−2) +M(2`−1)

ı̂
̂φ

(2`−1)
ı̂ φ̄̂(2`−1)

)
B(2`) = B(2`)

bos +
2π

k

(
M(2`)

i
jφ̄
j
(2`)φ

(2`)
i +M(2`)

ı̂
̂φ̄
̂
(2`−1)φ

(2`−1)
ı̂

)
f

(2`−1)
1 = i

√
4π

k

(
ᾱ

(2`−1)
i u+ − γ̄(2`−1)

i u−

)
ψi(2`−1), f

(2`)
1 = i

√
4π

k
ψ̄

(2`)
ı̂

(
u−β

ı̂
(2`) + u+δ

ı̂
(2`)

)
f

(2`−1)
2 = i

√
4π

k
ψ̄

(2`−1)
i

(
u−β

i
(2`−1) + u+δ

i
(2`−1)

)
, f

(2`)
2 = i

√
4π

k

(
ᾱ

(2`)
ı̂ u+ − γ̄(2`)

ı̂ u−

)
ψı̂(2`)

h
(2`−1)
1 =

2π

k
M(2`−1)

ı̂
jφ

(2`−1)
ı̂ φ̄j(2`), h

(2`)
1 =

2π

k
M(2`)

ı̂
jφ̄
j
(2`)φ

(2`+1)
ı̂

h
(2`−1)
2 =

2π

k
M(2`−1)

i
̂φ

(2`)
i φ̄̂(2`−1), h

(2`)
2 =

2π

k
M(2`)

i
̂φ̄
̂
(2`+1)φ

(2`)
i (4.6)

To make the fermionic WL BPS, we apply SUSY transformations (A.1) to the entries

in (4.6) and impose condition (4.1) with the choice

G =



0 g
(1)
1 g

(2r)
2

g
(1)
2 0 g

(2)
1

g
(2)
2

. . .
. . .

. . .
. . . g

(2r−2)
1

g
(2r−2)
2 0 g

(2r−1)
1

g
(2r)
1 g

(2r−1)
2 0


(4.7)
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The detailed structure of the BPS constraints are given in (A.3). Solving them for the

particular choice (4.3) of preserved supercharges, we obtain

ᾱ
(2`−1)
i = (ᾱ

(2`−1)
1 , 0), ᾱ

(2`)
ı̂ = (ᾱ

(2`)

1̂
, 0)

βi(2`−1) = (β1
(2`−1), 0), β ı̂(2`) = (β1̂

(2`), 0)

γ̄
(2`−1)
i = (0, γ̄

(2`−1)
2 ), γ̄

(2`)
ı̂ = (0, γ̄

(2`)

2̂
)

δi(2`−1) = (0, δ2
(2`−1)), δ ı̂(2`) = (0, δ2̂

(2`))

M(2`−1)
i
j = diag

(
2ᾱ

(2`−2)

1̂
β1̂

(2`−2),−2γ̄
(2`−2)

2̂
δ2̂

(2`−2)

)
M(2`−1)

ı̂
̂ = diag

(
2ᾱ

(2`−1)
1 β1

(2`−1),−2γ̄
(2`−1)
2 δ2

(2`−1)

)
M(2`)

i
j = diag

(
2ᾱ

(2`)

1̂
β1̂

(2`),−2γ̄
(2`)

2̂
δ2̂

(2`)

)
M(2`)

ı̂
̂ = diag

(
2ᾱ

(2`−1)
1 β1

(2`−1),−2γ̄
(2`−1)
2 δ2

(2`−1)

)
M(2`−1)

ı̂
j = diag

(
−2ᾱ

(2`−1)
1 β1̂

(2`), 2γ̄
(2`−1)
2 δ2̂

(2`)

)
M(2`−1)

i
̂ = diag

(
−2ᾱ

(2`)

1̂
β1

(2`−1), 2γ̄
(2`)

2̂
δ2

(2`−1)

)
M(2`)

ı̂
j = diag

(
−2ᾱ

(2`+1)
1 β1̂

(2`), 2γ̄
(2`+1)
2 δ2̂

(2`)

)
M(2`)

i
̂ = diag

(
−2ᾱ

(2`)

1̂
β1

(2`+1), 2γ̄
(2`)

2̂
δ2

(2`+1)

)
(4.8)

with the remaining parameters subject to

ᾱ
(2`−1)
1 δ2

(2`−1) = ᾱ
(2`−1)
1 δ2̂

(2`−2) = ᾱ
(2`−1)
1 δ2̂

(2`) = 0

ᾱ
(2`)

1̂
δ2

(2`) = ᾱ
(2`)

1̂
δ2̂

(2`−1) = ᾱ
(2`)

1̂
δ2̂

(2`+1) = 0

γ̄
(2`−1)
2 β1

(2`−1) = γ̄
(2`−1)
2 β1̂

(2`−2) = γ̄
(2`−1)
2 β1̂

(2`) = 0

γ̄
(2`)

2̂
β1

(2`) = γ̄
(2`)

2̂
β1̂

(2`−1) = γ̄
(2`)

2̂
β1̂

(2`+1) = 0 (4.9)

The most general solution depends on 8r parameters

ᾱ
(2`−1)
1 , ᾱ

(2`)

1̂
, β1

(2`−1), β
1̂
(2`), γ̄

(2`−1)
2 , γ̄

(2`)

2̂
, δ2

(2`−1), δ
2̂
(2`), ` = 1, 2, · · · , r (4.10)

constrained by (4.9). The solutions can be classified according to the number of free

parameters they depend on, as we now describe.

Classification of 1/4 BPS WLs.

1) First, we find four classes of solutions that depend on 4r free complex parameters, two

parameters for each even node and two for each odd one. They are explicitly given by

Class I : γ̄
(2`−1)
2 = γ̄

(2`)

2̂
= δ2

(2`−1) = δ2̂
(2`) = 0

Class II : ᾱ
(2`−1)
1 = ᾱ

(2`)

1̂
= β1

(2`−1) = β1̂
(2`) = 0

Class III : β1
(2`−1) = β1̂

(2`) = δ2
(2`−1) = δ2̂

(2`) = 0

Class IV : ᾱ
(2`−1)
1 = ᾱ

(2`)

1̂
= γ̄

(2`−1)
2 = γ̄

(2`)

2̂
= 0 (4.11)
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These solutions are in general non-block-diagonal and generalize the ones in table 2. In fact,

they reduce to the previous ones by imposing that the parameters are the same for every

even (odd) node. For example, solutions (4.11) in Class I are parametrized by (ᾱ
(2`)

1̂
, β1̂

(2`))

at even nodes and (ᾱ
(2`−1)
1 , β1

(2`−1)) at odd nodes. When

ᾱ
(2`−1)
1 = ᾱ1, β1

(2`−1) = β1, ᾱ
(2`)

1̂
= ᾱ1̂, β1̂

(2`) = β1̂ ` = 1, 2, · · · , r (4.12)

we obtain solution W I
1/4[µ̄i, 0, 0, ν̄ı̂, pI ] in Class I of table 2 corresponding to µ̄i = (0, 1),

ν̄ı̂ = (0, 1).

2) Beyond these four classes, there are additional solutions that depend on a smaller set

of parameters. For example, the solution obtained by setting

γ̄
(2`−1)
2 = γ̄

(2`)

2̂
= δ2̂

(2`) = 0 ` = 1, 2, · · · , r

ᾱ
(1)
1 = ᾱ

(2)

1̂
= ᾱ

(2r)

1̂
= δ2

(2`−1) = 0 ` = 2, 3, · · · , r (4.13)

depends on 4r − 2 complex parameters and corresponds to a new genuine WL that does

not have a counterpart in table 2.

To conclude this section we prove that the most general 1/4 BPS fermionic operator

W fer corresponding to superconnection Lfer in (3.3) or (3.4) with assignments (4.6), (4.8)

and (4.9) is cohomologically equivalent to the bosonic WL (4.5), that is

W fer −W bos
1/4 = QV (4.14)

where Q is a linear combination of preserved supercharges (4.3).

In order to prove it we first split the difference of the connections into a bosonic and

a fermionic part

Lfer − Lbos ≡ LB + LF (4.15)

Then, following the prescription in [2, 28], we look for a supercharge Q, one parameter κ

and one matrix Λ satisfying

κΛ2 = LB, QΛ = LF , QLbos = 0

QLF = ∂τ (iκΛ) + i[Lbos, iκΛ] (4.16)

A solution to these equations is given by Q = i(P 11̂
+ − P 22̂

− ), κ = 1 and

Λ =



0 λ
(1)
1 λ

(2r)
2

λ
(1)
2 0 λ

(2)
1

λ
(2)
2

. . .
. . .

. . .
. . . λ

(2r−2)
1

λ
(2r−2)
2 0 λ

(2r−1)
1

λ
(2r)
1 λ

(2r−1)
2 0


(4.17)
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where we have defined

λ
(2`−1)
1 = i

√
4π

k

(
ᾱ

(2`−1)
1 φ

(2`−1)

1̂
− γ̄(2`−1)

2 φ
(2`−1)

2̂

)
λ

(2`)
1 = i

√
4π

k

(
β1̂

(2`)φ̄
1
(2`) + δ2̂

(2`)φ̄
2
(2`)

)
λ

(2`−1)
2 = i

√
4π

k

(
− β1

(2`−1)φ̄
1̂
(2`−1) − δ

2
(2`−1)φ̄

2̂
(2`−1)

)
λ

(2`)
2 = i

√
4π

k

(
− ᾱ(2`)

1̂
φ

(2`)
1 + γ̄

(2`)

2̂
φ

(2`)
2

)
(4.18)

4.2 1/2 BPS WLs

We begin by constructing 1/2 BPS WLs that preserve Poincaré supercharges

θ1̂
+ , θ2̂

− , ̂ = 1̂, 2̂ (4.19)

Again, we consider ansatz (3.3) or (3.4) for the superconnection with definitions (4.6) and

require the validity of the BPS condition (4.1) for a suitable choice of the matrix G of the

form (4.7). Solving the corresponding constraints we obtain

ᾱ
(2`−1)
i = (ᾱ

(2`−1)
1 , 0), βi(2`−1) = (β1

(2`−1), 0)

γ̄
(2`−1)
i = (0, γ̄

(2`−1)
2 ), δi(2`−1) = (0, δ2

(2`−1)) (4.20)

ᾱ
(2`)
ı̂ = β ı̂(2`) = γ̄

(2`)
ı̂ = δ ı̂(2`) = 0

ᾱ
(2`−1)
1 δ2

(2`−1) = γ̄
(2`−1)
2 β1

(2`−1) = 0, ᾱ
(2`−1)
1 β1

(2`−1) + γ̄
(2`−1)
2 δ2

(2`−1) = 1

M(2`−1)
i
j = M(2`−1)

ı̂
j = M(2`−1)

i
̂ = M(2`)

i
j = M(2`)

ı̂
j = M(2`)

i
̂ = 0

M(2`−1)
ı̂
̂ = diag

(
2ᾱ

(2`−1)
1 β1

(2`−1),−2γ̄
(2`−1)
2 δ2

(2`−1)

)
M(2`)

ı̂
̂ = diag

(
2ᾱ

(2`−1)
1 β1

(2`−1),−2γ̄
(2`−1)
2 δ2

(2`−1)

)
Notably, all the solutions correspond to block-diagonal superconnections L1/2 with r inde-

pendent blocks of the form

L1/2 =



A(1) f
(1)
1

f
(1)
2 B(2)

. . .
. . .

. . .
. . .

A(2r−1) f
(2r−1)
1

f
(2r−1)
2 B(2r)


(4.21)

In each block we have two possible choices of the parameters

1st choice : ᾱ
(2`−1)
1 β1

(2`−1) = 1, γ̄
(2`−1)
2 = δ2

(2`−1) = 0

2nd choice : ᾱ
(2`−1)
1 = β1

(2`−1) = 0, γ̄
(2`−1)
2 δ2

(2`−1) = 1 (4.22)
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Therefore, there are in total 2r different 1/2 BPS WLs, each depending on r free complex

parameters. The 1/2 BPS WLs W I
1/2[ᾱi, 0] and W II

1/2[γ̄i, 0] in section 3.2, with respectively

ᾱi = (ᾱ1, 0) and γ̄i = (0, γ̄2), are just special cases of these general 1/2 BPS operators.

Similarly, we can construct operators that preserve Poincaré supercharges

θi1̂+ , θi2̂− , i = 1, 2 (4.23)

This time the couplings entering superconnection (3.3) or (3.4) with definitions (4.6) are

fixed by the following set of constraints

ᾱ
(2`)
ı̂ = (ᾱ

(2`)

1̂
, 0), β ı̂(2`) = (β1̂

(2`), 0) (4.24)

γ̄
(2`−1)
ı̂ = (0, γ̄

(2`)

2̂
), δ ı̂(2`−1) = (0, δ2̂

(2`))

ᾱ
(2`−1)
i = βi(2`−1) = γ̄

(2`−1)
i = δi(2`−1) = 0

ᾱ
(2`)

1̂
δ2̂

(2`) = γ̄
(2`)

2̂
β1

(2̂`)
= 0, ᾱ

(2`)

1̂
β1̂

(2`) + γ̄
(2`)

2̂
δ2

(2̂`)
= 1

M(2`−1)
ı̂
̂ = M(2`−1)

ı̂
j = M(2`−1)

i
̂ = M(2`)

ı̂
̂ = M(2`)

ı̂
j = M(2`)

i
̂ = 0

M(2`−1)
i
j = diag

(
2ᾱ

(2`−2)

1̂
β1̂

(2`−2),−2γ̄
(2`−2)

2̂
δ2̂

(2`−2)

)
M(2`)

i
j = diag

(
2ᾱ

(2`)

1̂
β1̂

(2`),−2γ̄
(2`)

2̂
δ2̂

(2`)

)
The corresponding superconnection is also block-diagonal with r independent blocks

L̃1/2 =



A(1) f
(2r)
2

B(2) f
(2)
1

f
(2)
2 A(3)

. . .
. . .

. . .
. . .

f
(2r)
1 B(2r)


(4.25)

and in each block the parameters can be chosen in two different ways

1st choice : ᾱ
(2`)

1̂
β1̂

(2`) = 1, γ̄
(2`)

2̂
= δ2̂

(2`) = 0

2nd choice : ᾱ
(2`)

1̂
= β1̂

(2`) = 0, γ̄
(2`)

2̂
δ2̂

(2`) = 1 (4.26)

Therefore, there are still 2r different operators, each one depending on r free complex pa-

rameters. The 1/2 BPS WLs W I
1/2[0, ᾱı̂] with ᾱı̂ = (ᾱ1̂, 0) and W II

1/2[0, γ̄ı̂] with γ̄ı̂ = (0, γ̄2̂)

in section 3.2 are special cases of this general class of 1/2 BPS WLs.

The 1/2 BPS WLs in this section correspond to superconnections that are simply direct

sums of the double-node 1/2 BPS superconnections already introduced in [27, 28, 35]. There

are in fact no new 1/2 BPS solutions.

Note that supercharges (4.3) are included in both (4.19) and (4.23), so the 1/2 BPS

WLs just found are special cases of the fermionic 1/4 BPS WLs constructed in the previous

subsection, as one can easily check.
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5 Summary and discussion

The main result of this paper is the construction of new 1/4 BPS WLs in N = 4 circular

quiver SCSM theories with gauge group and levels
∏r
`=1[U(N2`−1)k ×U(N2`)−k].

First of all, we have considered [U(N)k × U(N)−k]
r N = 4 orbifold ABJM models.

By performing the orbifold decomposition of 1/2 and 1/6 BPS WLs in ABJ(M) we have

not only recovered the already known WLs, but also found new WLs described by more

general superconnections that are not block-diagonal like the ones considered so far in the

literature [7, 15, 27, 28, 35]. As a consequence, the structure of the corresponding WLs is

more general and not reducible to ABJ(M)-like double-node operators. These new WLs are

1/4 BPS and get enhanced to the already known 1/2 BPS for special values of the matter

couplings appearing in the superconnection. They can be classified into four classes, and

each class is parametrized by four free complex numbers. Setting all the parameters to zero

we obtain the bosonic 1/4 BPS WL. Additionally, we have identified the corresponding M2-

/anti-M2-brane duals. The novelty here is that we find the explicit M2 configuration dual

to 1/4 BPS operators W I
1/4[ᾱi, ᾱı̂] and W II

1/4[γ̄i, γ̄ı̂], beyond the already known duals of 1/2

BPS WLs [15].

These findings have been confirmed and generalized by using a more systematic ap-

proach that consists in studying the SUSY transformations of the most general supercon-

nection in a N = 4 SCSM theory and imposing its invariance under a given subset of

supercharges. We have obtained the complete spectrum of 1/4 and 1/2 BPS WLs that

contains a generalization of the four classes already mentioned plus some extra operators

that fall outside these classes. The complete spectrum of fermionic 1/4 and 1/2 BPS WLs

in N = 4 circular quiver SCSM theories can be summarized as follows.

• 1/4 BPS WLs : with the set of preserved supercharges being fixed, the most general

1/4 BPS WL is the holonomy of a superconnection (3.3) or (3.4) that depends on

8r complex parameters subject to 12r non-linear constraints. There are four classes

of solutions to these constraints, and in each class the WL has 4r free complex

parameters. There are also other solutions that do not fall into the four classes, and

such WLs necessarily have fewer free parameters.

• 1/2 BPS WLs : 1/2 BPS WLs always correspond to block diagonal superconnec-

tions with r blocks. Fixing the set of preserved supercharges, there are 2r different

choices of the parameters, and for each choice the operator depends on r free complex

parameters.

Our investigation of the BPS nature of WLs has been carried out on operators defined

on timelike straight lines in Minkowski spacetime. Performing a Wick rotation followed by

a conformal transformation we can map them to WLs on circular contours in Euclidean

space. For completeness, we report in appendix C the explicit forms of the circular 1/4 BPS

WLs, which are particularly relevant for other purposes. Indeed, it is the expectation value

of circular bosonic 1/4 BPS WL W bos
1/4 [µ̄i, 0, 0, ν̄ı̂] in Euclidean space that can be computed

exactly using localization techniques [4]. In fact, given the circular bosonic 1/4 BPS WL

W bos
1/4 = TrPe−i

∮
dτLbos (5.1)
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where Lbos is of the form (C.4), being the theory invariant under SU(2)L × SU(2)R R-

symmetry, the expectation value is independent of the particular choice of the µ̄i, ν̄ı̂ pa-

rameters.Since it is block diagonal with blocks L
(a)
bos, a = 1, 2, · · · , 2r, the expectation value

reduces to a sum over the blocks

〈W bos
1/4 〉1 =

2r∑
a=1

〈W bos,(a)
1/4 〉1 (5.2)

The subscript “1” indicates that the result is at framing one, the regularization scheme

automatically selected by the localization procedure [4]. The weak coupling expansion of

the (a)-block reads [36, 37]

〈W bos,(a)
1/4 〉1 =Na

[
1+

(−)a+1iπ

k
Na+

π2

6k2
(−4N2

a+3NaNa−1+3NaNa+1+1)+O

(
1

k3

)]
(5.3)

This immediately leads to an interesting feature of the full family of WLs that we have

introduced. All the fermionic 1/4 and 1/2 BPS WLs are in the same Q-cohomological class

of W bos
1/4 [µ̄i, 0, 0, ν̄ı̂], where Q is the charge used to localize the path integral. Therefore, if

the cohomological equivalence in not broken by quantum anomalies, all the fermionic WLs

should have the same framing one expectation value (5.2), (5.3).

The weak coupling expansion (5.3) has to match the result obtained from perturbation

theory. Since the perturbative result is at trivial framing, this requires to correctly identify

and remove the framing factor from the matrix model result. In the ABJ(M) case, for the

bosonic 1/6 BPS WL this has been discussed in [38, 39] where it has been proved that

both gauge and matter sectors contribute to build up the correct framing phase.

In the case of N = 4 circular quiver SCSM theories, generalizing the results of [40, 41]

we can compute the two-loop expectation values of all 1/2 and 1/4 BPS WLs. We expect

the framing-zero results to depend non-trivially on the parameters [42]. Since the matrix

model prediction (5.2), (5.3) is parameter independent, we conclude that a perturbative

calculation done at framing one should enlighten a non-trivial conspiracy between gauge

and matter sectors, whose parameter dependent contributions should cancel each other.

We note that a similar pattern should arise also for parametric fermionic 1/6 BPS WLs in

ABJ(M) theory listed in table 1. We will report a detailed study of this issue in [42].

In N = 4 circular quiver SCSM theories a further related subtlety arises concerning

degenerate WLs, that is fermionic 1/2 BPS operators in Classes I and II that preserve

the same set of supercharges (see appendix B.2). Although at quantum level they are

expected to have the same framing-one expectation value, being both Q-equivalent to the

bosonic 1/4 BPS WL, it has been proved that at framing-zero they start being different at

three loops [36, 37], at least for quiver theories with different group ranks. More generally,

an all-loop argument proves that they are necessarily different at any odd order, unless

vanishing. This potential tension between the matrix model prediction and the perturbative

calculation is presently an open question that definitively requires further investigation.

Finally, BPS WLs have been shown to be related to physical quantities like the energy

radiated by a heavy quark slowly moving in a gauge background (Bremsstrahlung function)

and the cusp anomalous dimension that governs the UV divergent behavior of WLs close

to a cusp. In ABJM theory an exact prescription has been proposed [19, 43] that gives the
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Bremsstrahlung function for 1/2 BPS quark configurations in terms of the framing phase of

the 1/6 BPS bosonic WL. The cusp anomalous dimension and the Bremsstrahlung function

are in principle amenable of exact computation via integrability, along the lines of the N = 4

SYM case [44, 45]. This would require using the conjectural exact form of the interpolating

h(λ) function [46]. Therefore, BPS WLs turn out to be a potentially crucial tool to test the

exact h(λ) and, more generally, the integrability underlying the AdS/CFT correspondence

(see [47, 48] for some preliminary results). It would be interesting to compute the cusp

anomalous dimension for a cusp with generic fermionic 1/4 BPS operators on the two rays

and study its dependence on the parameters in N = 4 SCSM models. This would also open

the possibility to define and compute the corresponding Bremsstrahlung function along the

lines of [43] and [19, 49].
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A Technical details

Here we collect some technical details necessary to follow the general discussion of BPS

WLs in section 4.

Given a generic N = 4 SCSM theory with gauge group
∏r
`=1[U(N2`−1)k ×U(N2`)−k],

using the field labeling of figure 1 the SUSY transformations read explicitly

δA(2`−1)
µ =−2π

k

[(
φ
(2`−2)
i ψ̄

(2`−2)
ı̂ −φ(2`−1)

ı̂ ψ̄
(2`−1)
i

)
γµε

iı̂+ε̄iı̂γµ

(
ψı̂(2`−2)φ̄

i
(2`−2)−ψ

i
(2`−1)φ̄

ı̂
(2`−1)

)]
δB(2`)

µ =−2π

k

[(
ψ̄
(2`)
ı̂ φ

(2`)
i −ψ̄(2`−1)

i φ
(2`−1)
ı̂

)
γµε

iı̂+ε̄iı̂γµ

(
φ̄i(2`)ψ

ı̂
(2`)−φ̄

ı̂
(2`−1)ψ

i
(2`−1)

)]
δφ

(2`−1)
ı̂ =−iε̄iı̂ψ

i
(2`−1), δφ̄ı̂(2`−1) =−iψ̄

(2`−1)
i εiı̂, δφ

(2`)
i = iε̄iı̂ψ

ı̂
(2`), δφ̄i(2`) = iψ̄

(2`)
ı̂ εiı̂

δψi(2`−1) = γµεiı̂Dµφ
(2`−1)
ı̂ +ϑiı̂φ

(2`−1)
ı̂ − 4π

k
εj̂
(
φ
(2`−1)
̂ φ̄i(2`)φ

(2`)
j −φ(2`−2)

j φ̄i(2`−2)φ
(2`−1)
̂

)
+

2π

k
εiı̂
(
φ
(2`−1)
ı̂ φ̄̂(2`−1)φ

(2`−1)
̂ +φ

(2`−1)
ı̂ φ̄j(2`)φ

(2`)
j

−φ(2`−1)
̂ φ̄̂(2`−1)φ

(2`−1)
ı̂ −φ(2`−2)

j φ̄j(2`−2)φ
(2`−1)
ı̂

)
δψ̄

(2`−1)
i =−ε̄iı̂γµDµφ̄

ı̂
(2`−1)+ϑ̄iı̂φ̄

ı̂
(2`−1)+

4π

k
ε̄j̂

(
φ̄̂(2`−1)φ

(2`−2)
i φ̄j(2`−2)−φ̄

j
(2`)φ

(2`)
i φ̄̂(2`−1)

)
− 2π

k
ε̄iı̂

(
φ̄ı̂(2`−1)φ

(2`−1)
̂ φ̄̂(2`−1)+φ̄

ı̂
(2`−1)φ

(2`−2)
j φ̄j(2`−2)

−φ̄̂(2`−1)φ
(2`−1)
̂ φ̄ı̂(2`−1)−φ̄

j
(2`)φ

(2`)
j φ̄ı̂(2`−1)

)
δψı̂(2`) =−γµεiı̂Dµφ

(2`)
i −ϑiı̂φ(2`)i − 4π

k
εj̂
(
φ
(2`+1)
̂ φ̄ı̂(2`+1)φ

(2`)
j −φ(2`)j φ̄ı̂(2`−1)φ

(2`−1)
̂

)
− 2π

k
εiı̂
(
φ
(2`)
i φ̄̂(2`−1)φ

(2`−1)
̂ +φ

(2`)
i φ̄j(2`)φ

(2`)
j −φ(2`+1)

̂ φ̄̂(2`+1)φ
(2`)
i −φ(2`)j φ̄j(2`)φ

(2`)
i

)
δψ̄

(2`)
ı̂ = ε̄iı̂γ

µDµφ̄
i
(2`)−ϑ̄iı̂φ̄

i
(2`)+

4π

k
ε̄j̂

(
φ̄̂(2`−1)φ

(2`−1)
ı̂ φ̄j(2`)−φ̄

j
(2`)φ

(2`+1)
ı̂ φ̄̂(2`+1)

)
(A.1)

+
2π

k
ε̄iı̂

(
φ̄i(2`)φ

(2`+1)
̂ φ̄̂(2`+1)+φ̄

i
(2`)φ

(2`)
j φ̄j(2`)−φ̄

̂
(2`−1)φ

(2`−1)
̂ φ̄i(2`)−φ̄

j
(2`)φ

(2`)
j φ̄i(2`)

)
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where the SUSY parameters are

εîı = θîı + xµγµϑ
îı, ε̄îı = θ̄îı − ϑ̄îıxµγµ (A.2)

We apply these transformations to the most general superconnection of the form (3.3), (3.4)

and impose that the result can be written as in (4.1) with a matrix G given in (4.7). This

condition translates into a set of constraints on the superconnections entries (3.5) that read

δA(2`−1) = i(f
(2`−1)
1 g

(2`−1)
2 + f

(2`−2)
2 g

(2`−2)
1 − g(2`−1)

1 f
(2`−1)
2 − g(2`−2)

2 f
(2`−2)
1 )

δB(2`−1) = i(f
(2`)
1 g

(2`)
2 + f

(2`−1)
2 g

(2`−1)
1 − g(2`)

1 f
(2`)
2 − g(2`−1)

2 f
(2`−1)
1 )

δh
(2`−1)
1 = i(f

(2`−1)
1 g

(2`)
1 − g(2`−1)

1 f
(2`)
1 ), δh

(2`)
1 = i(f

(2`)
1 g

(2`+1)
1 − g(2`)

1 f
(2`+1)
1 )

δh
(2`−1)
2 = i(f

(2`)
2 g

(2`−1)
2 − g(2`)

2 f
(2`−1)
2 ), δh

(2`)
2 = i(f

(2`+1)
2 g

(2`)
2 − g(2`+1)

2 f
(2`)
2 )

δf
(2`−1)
1 = ∂τg

(2`−1)
1 + i(A(2`−1)g

(2`−1)
1 − g(2`−1)

1 B(2`) + h
(2`−1)
1 g

(2`)
2 − g(2`−2)

2 h
(2`−2)
1 )

δf
(2`)
1 = ∂τg

(2`)
1 + i(B(2`)g

(2`)
1 − g(2`)

1 A(2`+1) + h
(2`)
1 g

(2`+1)
2 − g(2`−1)

2 h
(2`−1)
1 )

δf
(2`−1)
2 = ∂τg

(2`−1)
2 + i(B(2`)g

(2`−1)
2 − g(2`−1)

2 A(2`−1) + h
(2`−2)
2 g

(2`−2)
1 − g(2`)

1 h
(2`−1)
2 )

δf
(2`)
2 = ∂τg

(2`)
2 + i(A(2`+1)g

(2`)
2 − g(2`)

2 B(2`) + h
(2`−1)
2 g

(2`−1)
1 − g(2`+1)

1 h
(2`)
2 )

h
(2`−1)
1 g

(2`+1)
1 − g(2`−1)

1 h
(2`)
1 = h

(2`−1)
2 g

(2`−2)
2 − g(2`)

2 h
(2`−2)
2 = 0

h
(2`−2)
1 g

(2`)
1 − g(2`−2)

1 h
(2`−1)
1 = h

(2`)
2 g

(2`−1)
2 − g(2`+1)

2 h
(2`−1)
2 = 0 (A.3)

These constraints allow for non-trivial solutions depending on the number of preserved

SUSY charges, as discussed in section 4 (see eqs. (4.8), (4.9) and (4.20)).

B Supercharge overlapping of 1/2 BPS WLs

This appendix is a supplement to [15], and we discuss the amount of overlapping super-

charges for general 1/2 BPS WLs both in ABJ(M) theory and general N = 4 circular

quiver SCSM theories with alternating levels.

B.1 ABJ(M) theory

Given the two classes of 1/2 BPS WLs W I
1/2[ᾱI ], W

II
1/2[γ̄I ] reviewed in subsection 2.2, we

can distinguish three different cases.

• W I
1/2[ᾱI ] and W I

1/2[ᾱ′I ]. When ᾱ′I ∝ ᾱI they are in fact the same WL and trivially

preserve the same supercharges. Otherwise, when ᾱ′I /∝ᾱI , they share 1/3 of the

preserved supercharges

ᾱI ᾱ
′
Jθ

IJ
+ , εIJKLα

Iα′JθKL− (B.1)

• W I
1/2[ᾱI ] and W II

1/2[γ̄I ]. When ᾱIγ
I = 0, they share 2/3 of the preserved supercharges

ᾱIR
J
Kθ

IK
+ , γ̄IR

J
Kθ

IK
− (B.2)

with RJK = δJK −
αJ ᾱK
|α|2 −

γJ γ̄K
|γ|2 . Otherwise, when ᾱIγ

I 6= 0, there is no overlapping

of preserved supercharges. In particular, for ᾱI = γ̄I they preserve complementary

sets of supercharges.

– 24 –



J
H
E
P
1
1
(
2
0
1
7
)
1
7
4

• W II
1/2[γ̄I ] and W II

1/2[γ̄′I ]. When γ̄′I ∝ γ̄I , they trivially preserve the same supercharges.

Otherwise, when γ̄′I /∝γ̄I , they share 1/3 of the preserved supercharges

γ̄I γ̄
′
Jθ

IJ
− , εIJKLγ

Iγ′JθKL+ (B.3)

All these results are consistent with the examples discussed in [15]. In particular, in

ABJ(M) theory, there are no non-trivial cases of different 1/2 BPS WLs preserving the

same set of supercharges.

B.2 N = 4 circular quiver SCSM theories with alternating levels

As discussed in the main text, in this case we have four classes of 1/2 BPS WLs, W I
1/2[ᾱi, 0],

W I
1/2[0, ᾱı̂], W

II
1/2[γ̄i, 0] and W II

1/2[0, γ̄ı̂]. We need then to distinguish ten different cases.

• W I
1/2[ᾱi, 0] and W I

1/2[ᾱ′i, 0]. When ᾱ′i ∝ ᾱi they are basically the same operator and

trivially preserve the same supercharges. Otherwise, when ᾱ′i /∝ᾱi they do not share

any preserved supercharges.

• W I
1/2[ᾱi, 0] and W I

1/2[0, ᾱ′ı̂]. They share 1/2 of the preserved supercharges

ᾱiᾱ
′
̂θ
i̂
+, εijεk̂l̂α

iα′k̂θjl̂− (B.4)

• W I
1/2[ᾱi, 0] and W II

1/2[γ̄i, 0]. When ᾱiγ
i = 0, they preserve the same supercharges

ᾱiθ
i̂
+ ∼ εikγkθ

i̂
+, γ̄iθ

i̂
− ∼ εikαkθ

i̂
− (B.5)

Otherwise, when ᾱiγ
i 6= 0, they do not share any preserved supercharge.

• W I
1/2[ᾱi, 0] and W II

1/2[0, γ̄ı̂]. They share 1/2 of the preserved supercharges

εı̂̂ᾱkγ
ı̂θk̂+ , εijα

iγ̄k̂θ
jk̂
− (B.6)

• W I
1/2[0, ᾱı̂] and W I

1/2[0, ᾱ′ı̂]. When ᾱ′ı̂ ∝ ᾱı̂, they trivially preserve the same super-

charges. Otherwise, they do not share any preserved supercharge.

• W I
1/2[0, ᾱı̂] and W II

1/2[γ̄i, 0]. They share 1/2 of the preserved supercharges

εijᾱk̂γ
iθjk̂+ , εı̂̂α

ı̂γ̄kθ
k̂
− (B.7)

• W I
1/2[0, ᾱı̂] and W II

1/2[0, γ̄ı̂]. When ᾱı̂γ
ı̂ = 0, they preserve the same supercharges

ᾱ̂θ
i̂
+ ∼ ε̂k̂γ

k̂θi̂+, γ̄̂θ
i̂
− ∼ ε̂k̂α

k̂θi̂− (B.8)

Otherwise, when ᾱı̂γ
ı̂ 6= 0, they do not share any preserved supercharge.

• W II
1/2[γ̄i, 0] and W II

1/2[γ̄′i, 0]. When γ̄′i ∝ γ̄i, they trivially preserve the same super-

charges. Otherwise, when γ̄′i /∝γ̄i, they do not share any preserved supercharge.
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• W II
1/2[γ̄i, 0] and W II

1/2[0, γ̄′ı̂]. They share 1/2 of the preserved supercharges

γ̄iγ̄
′
̂θ
i̂
−, εijεk̂l̂γ

iγ′k̂θjl̂+ (B.9)

• W II
1/2[0, γ̄ı̂] and W II

1/2[0, γ̄′ı̂]. When γ̄′ı̂ ∝ γ̄ı̂, they trivially preserve the same super-

charges. Otherwise, they do not share any preserved supercharge.

These results are consistent with the examples in [15]. We conclude that the only

non-trivial pairs of different 1/2 BPS WLs preserving the same supercharges are

(W I
1/2[ᾱi, 0],W II

1/2[γ̄i, 0]) with ᾱiγ
i = 0

(W I
1/2[0, ᾱı̂],W

II
1/2[0, γ̄ı̂]) with ᾱı̂γ

ı̂ = 0 (B.10)

C Circular 1/4 BPS WLs in Euclidean N = 4 SCSM theories

Linear WLs have constant expectation values, so they cannot be used to check non-trivially

the matching between matrix model, field theory and holographic predictions. Non-trivial

expectation values can be obtained for WLs on closed contours. However, since there are

no spacelike BPS WLs in Minkowski spacetime [50], we have to build-up circular BPS WLs

in Euclidean space.

In this appendix, we generalize the procedure used for linear WLs in Minkowski space-

time to obtain the explicit form of euclidean circular 1/4 BPS WLs in N = 4 circular

quiver SCSM theories.

We use coordinates xµ = (x1, x2, x3), metric δµν = diag(+ + +) and choose gamma

matrices as

γµ β
α = (−σ2, σ1, σ3) (C.1)

For the circle xµ = (cos τ, sin τ, 0), we define the following Grassmann even spinors

u+α =
1√
2

(
e−

iτ
2

e
iτ
2

)
, u−α =

i√
2

(
−e−

iτ
2

e
iτ
2

)

uα+ =
1√
2

(
e

iτ
2 ,−e−

iτ
2

)
, uα− =

i√
2

(
e

iτ
2 , e−

iτ
2

)
(C.2)

SUSY transformations and supercharges for N = 4 SCSM theories in Euclidean space

are formally the same as those in Minkowski spacetime (see eqs. (A.1), (4.2)).

To be definite, we construct BPS WLs preserving supercharges

ϑ11̂ = −iγ3θ
11̂, ϑ22̂ = iγ3θ

22̂ (C.3)

We find the bosonic 1/4 BPS WL Wbos with connection [27, 28]

Lbos = diag(A(1)
bos,B

(2)
bos, · · · ,A

(2r−1)
bos ,B(2r)

bos )

A(2`−1)
bos = A(2`−1)

µ ẋµ +
2πi

k

(
φ

(2`−2)
1 φ̄1

(2`−2) − φ
(2`−2)
2 φ̄2

(2`−2)

+ φ
(2`−1)

1̂
φ̄1̂

(2`−1) − φ
(2`−1)

2̂
φ̄2̂

(2`−1)

)
|ẋ| (C.4)

B(2`)
bos = B(2`)

µ ẋµ +
2πi

k

(
φ̄1

(2`)φ
(2`)
1 − φ̄2

(2`)φ
(2`)
2 + φ̄1̂

(2`−1)φ
(2`−1)

1̂
− φ̄2̂

(2`−1)φ
(2`−1)

2̂

)
|ẋ|
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For fermionic WLs we find superconnections Lfer of the form (3.3) or (3.4) with definitions

A(2`−1) = A(2`−1)
bos +

4πi

k

[
− ᾱ(2`−2)

1̂
β1̂

(2`−2)φ
(2`−2)
1 φ̄1

(2`−2) + γ̄
(2`−2)

2̂
δ2̂

(2`−2)φ
(2`−2)
2 φ̄2

(2`−2)

− ᾱ(2`−1)
1 β1

(2`−1)φ
(2`−1)

1̂
φ̄1̂

(2`−1) + γ̄
(2`−1)
2 δ2

(2`−1)φ
(2`−1)

2̂
φ̄2̂

(2`−1)

]
|ẋ|

B(2`) = B(2`)
bos +

4πi

k

[
− ᾱ(2`)

1̂
β1̂

(2`)φ̄
1
(2`)φ

(2`)
1 + γ̄

(2`)

2̂
δ2̂

(2`)φ̄
2
(2`)φ

(2`)
2

− ᾱ(2`−1)
1 β1

(2`−1)φ̄
1̂
(2`−1)φ

(2`−1)

1̂
+ γ̄

(2`−1)
2 δ2

(2`−1)φ̄
2̂
(2`−1)φ

(2`−1)

2̂

]
|ẋ|

f
(2`−1)
1 = i

√
4π

k

(
ᾱ

(2`−1)
i u+ − γ̄(2`−1)

i u−

)
ψi(2`−1)|ẋ|

f
(2`)
1 = −i

√
4π

k
ψ̄

(2`)
ı̂

(
u−β

ı̂
(2`) + u+δ

ı̂
(2`)

)
|ẋ|

f
(2`−1)
2 = −i

√
4π

k
ψ̄

(2`−1)
i

(
u−β

i
(2`−1) + u+δ

i
(2`−1)

)
|ẋ|

f
(2`)
2 = i

√
4π

k

(
ᾱ

(2`)
ı̂ u+ − γ̄(2`)

ı̂ u−

)
ψı̂(2`)|ẋ|

h
(2`−1)
1 =

4πi

k

(
ᾱ

(2`−1)
1 β1̂

(2`)φ
(2`−1)

1̂
φ̄1

(2`) − γ̄
(2`−1)
2 δ2̂

(2`)φ
(2`−1)

2̂
φ̄2

(2`)

)
|ẋ|

h
(2`)
1 =

4πi

k

(
ᾱ

(2`+1)
1 β1̂

(2`)φ̄
1
(2`)φ

(2`+1)

1̂
− γ̄(2`+1)

2 δ2̂
(2`)φ̄

2
(2`)φ

(2`+1)

2̂

)
|ẋ|

h
(2`−1)
2 =

4πi

k

(
ᾱ

(2`)

1̂
β1

(2`−1)φ
(2`)
1 φ̄1̂

(2`−1) − γ̄
(2`)

2̂
δ2

(2`−1)φ
(2`)
2 φ̄2̂

(2`−1)

)
|ẋ|

h
(2`)
2 =

4πi

k

(
ᾱ

(2`)

1̂
β1

(2`+1)φ̄
1̂
(2`+1)φ

(2`)
1 − γ̄(2`)

2̂
δ2

(2`+1)φ̄
2̂
(2`+1)φ

(2`)
2

)
|ẋ| (C.5)

They depend on 8r parameters

ᾱ
(2`−1)
1 , ᾱ

(2`)

1̂
, β1

(2`−1), β
1̂
(2`), γ̄

(2`−1)
2 , γ̄

(2`)

2̂
, δ2

(2`−1), δ
2̂
(2`), ` = 1, 2, · · · , r (C.6)

subject to the following constraints

ᾱ
(2`−1)
1 δ2

(2`−1) = ᾱ
(2`−1)
1 δ2̂

(2`−2) = ᾱ
(2`−1)
1 δ2̂

(2`) = 0

ᾱ
(2`)

1̂
δ2

(2`) = ᾱ
(2`)

1̂
δ2̂

(2`−1) = ᾱ
(2`)

1̂
δ2̂

(2`+1) = 0

γ̄
(2`−1)
2 β1

(2`−1) = γ̄
(2`−1)
2 β1̂

(2`−2) = γ̄
(2`−1)
2 β1̂

(2`) = 0

γ̄
(2`)

2̂
β1

(2`) = γ̄
(2`)

2̂
β1̂

(2`−1) = γ̄
(2`)

2̂
β1̂

(2`+1) = 0 (C.7)

As in Minkowski case, solutions can be classified in terms of the number of free parameters

they depend on. First, we find four classes of solutions depending on 4r free complex

parameters

Class I : γ̄
(2`−1)
2 = γ̄

(2`)

2̂
= δ2

(2`−1) = δ2̂
(2`) = 0

Class II : ᾱ
(2`−1)
1 = ᾱ

(2`)

1̂
= β1

(2`−1) = β1̂
(2`) = 0

Class III : β1
(2`−1) = β1̂

(2`) = δ2
(2`−1) = δ2̂

(2`) = 0

Class IV : ᾱ
(2`−1)
1 = ᾱ

(2`)

1̂
= γ̄

(2`−1)
2 = γ̄

(2`)

2̂
= 0 (C.8)
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In addition, we find extra solutions that do not fall into the previous four classes, being

functions of a smaller number of parameters. All the considerations concerning the struc-

ture of superconnessions being block or non-block-diagonal apply in this case exactly in

the same manner as in Minkowski spacetime.

Also in the euclidean case fermionic 1/4 BPS WLs are cohomologically equivalent

to the bosonic 1/4 BPS WLs. In fact, it is easy to prove that they satisfy the set of

conditions (2.11) with

Q = −ζ(P 11̂ − iγ3S
11̂)− ζ(P 22̂ + iγ3S

22̂), ζα = (1, 0), κ = 2e−iτ (C.9)

and Λ of the form (4.17) with

λ
(2`−1)
1 =

√
4π

k
e

iτ
2
(
iᾱ

(2`−1)
1 φ

(2`−1)

1̂
+ γ̄

(2`−1)
2 φ

(2`−1)

2̂

)
λ

(2`)
1 =

√
4π

k
e

iτ
2
(
β1̂

(2`)φ̄
1
(2`) − iδ2̂

(2`)φ̄
2
(2`)

)
λ

(2`−1)
2 =

√
4π

k
e

iτ
2
(
− β1

(2`−1)φ̄
1̂
(2`−1) + iδ2

(2`−1)φ̄
2̂
(2`−1)

)
λ

(2`)
2 =

√
4π

k
e

iτ
2
(
− iᾱ

(2`)

1̂
φ

(2`)
1 − γ̄(2`)

2̂
φ

(2`)
2

)
(C.10)
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