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Abstract

Non–small cell lung cancer (NSCLC) harboring chromo-
somal rearrangements of the anaplastic lymphoma kinase
(ALK) gene is treated with ALK tyrosine kinase inhibitors
(TKI), but the treatment is successful for only a limited amount
of time; most patients experience a relapse due to the devel-
opment of drug resistance. Here, we show that a vaccine
against ALK induced a strong and specific immune response
that both prophylactically and therapeutically impaired the
growth of ALK-positive lung tumors in mouse models. The ALK
vaccine was efficacious also in combination with ALK TKI

treatment and significantly delayed tumor relapses after TKI
suspension. We found that lung tumors containing ALK rear-
rangements induced an immunosuppressive microenviron-
ment, regulating the expression of PD-L1 on the surface of
lung tumor cells. High PD-L1 expression reduced ALK vaccine
efficacy, which could be restored by administration of anti–
PD-1 immunotherapy. Thus, combinations of ALK vaccine
with TKIs and immune checkpoint blockade therapies might
represent a powerful strategy for the treatment of ALK-driven
NSCLC. Cancer Immunol Res; 3(12); 1333–43. �2015 AACR.

Introduction
Lung cancer is the leading cause of cancer-related mortality

worldwide. In recent years, the identification of key genetic
alterations in non–small cell lung cancer (NSCLC) has prompted
the use of rationally targeted therapies, which showed unprece-
dented clinical benefits (1, 2). Approximately 5% to 6% of
NSCLCs have chromosomal rearrangements of the anaplastic
lymphoma kinase (ALK) gene that generate different chimeric
proteins, such as EML4-ALK, TFG-ALK, and KIF5b-ALK (3–5). In
all such fusions, constitutively active ALK acts as a potent tumor-

igenic driver that activates downstreamoncogenic signals, leading
to increased cell proliferation and survival (4).

Experimental and clinical data show thatALK-rearrangedNSCLCs
respond to treatment with specific tyrosine kinase inhibitors (TKI),
such as crizotinib (6, 7). Despite a high rate of initial response, the
development of resistance to crizotinib almost invariably leads to
tumor relapse and eventually to the patient's death (8, 9). Next-
generation ALK TKIs, such as ceritinib and alectinib, have been
developed to overcome crizotinib resistance and can further extend
survival in crizotinib-resistant patients (10–12). Resistance to ALK
TKIs is mediated by point mutations of the ALK kinase domain, by
ALK gene amplification, or by activation of other compensatory
pathways, so-called bypass tracks, such as EGFR, c-KIT, c-MET, and
IGF-R1 (8, 13–16). Thus, additional therapies to be combined with
ALK TKIs are needed to further prolong remission or clinical
response in NSCLC patients with ALK rearrangements.

Immunotherapy aimed at enhancing the immune response
against tumor cells shows promising efficacy in a fractionofNSCLC
(17, 18). In this context, the ALK protein has many features of an
ideal tumor oncoantigen that can be exploited to design specific
immunotherapies, such as a cancer vaccine. ALK is required for
tumor survival and growth and expressed minimally in some
nervous system cells (4, 19). ALK is also antigenic in humans, as
lymphoma patients with ALK rearrangements mount spontaneous
B- and T-cell responses against the ALK protein, with measurable
antibodies (20), cytotoxic T lymphocytes (CTL), and CD4þ

T-helper effectors to ALK epitopes (21–24). A robust immune
response to ALK is associated with a decreased risk of relapse in
lymphoma patients (25). Our previous ALK vaccine in preclinical
mouse models of lymphoma containing ALK rearrangements
induced specific and potent immune responses that provided
strong and durable tumor protection (19).
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In the present study we test the efficacy of ALK vaccination in
lung cancer. Grafted or primary mouse models of ALK-positive
lung tumors showed that an ALK vaccine elicited a strong, ALK-
specific CTL response in both mouse models, efficiently blocking
tumor growth.

Materials and Methods
Cell lines and reagents

HumanALK-rearrangedNSCLC cell linesH2228 (variant 3, E6;
A20), DFCI032, and H3122 (variant 1, E13;A20) were obtained
from the ATCC collection and were passaged for fewer than 6
months after receipt and resuscitation. These cell lines were
further internally tested for the presence of EML-ALK rearrange-
ment. Themurine ASB-XIV cell linewas purchased fromCell Lines
Service (CLS) and was passaged for fewer than 6 months after
receipt and resuscitation.

The ALK TKINVP-TAE684was purchased fromAxonMedchem
and crizotinib (PF-02341066) was kindly gifted by Pfizer.

Mice
Strains of mice used in this study include K-RasLSL/G12V and Tg

EGFRL858R, as previously published (26, 27), and BALB/c mice
(Charles River).Micewerehandled and treated in accordancewith
European Community guidelines.

Generation of ALK transgenic mice
A cDNA fragment encoding EML4-ALK (variant 1, E13;A20) or

TFG-ALK was ligated to the human SP-C promoter as well as to a
polyadenylation signals (Supplementary Fig. S1A). The expres-
sion cassettewas injected into pronuclear-stage embryos of FVB/N
mice. The presence of the transgenewas examined byPCRanalysis
with DNA from the tail of founder animals. Mice were handled
and treated in accordance with European Community guidelines.
Methods are further described in Supplementary Materials and
Methods.

DNA vaccination and in vivo cytotoxicity assay
For DNA vaccination, 50 mg of pDEST or pDEST-ALK plasmids

were used as previously described (19). The in vivo cytotoxicity
assay was previously reported (19).

Antibody dosing for in vivo treatment
For CD4þ and CD8þ cell depletion, anti-CD4 (clone GK1.5)

and anti-CD8 (clone 2.43) antibodies were purchased from
BioXcell. For depletion, mice were injected i.p. with 100 mg of
anti-CD4 or anti-CD8 at days �1, þ5, þ15, and þ25.

For PD-1 blockade, anti–PD-1 (clone J43) and control anti-
hamster polyclonal IgG for the in vivo experiments were purchased
from BioXcell. Mice received 200 mg of each anti–PD-1 and anti–
PD-L1 or 200 mg of anti-hamster IgG i.p. every 3 days for a total of
5 injections.

Magnetic resonance imaging
Magnetic resonance images (MRI) were acquired on a Bruker

Avance 300 spectrometer operating at 7 T and equipped with a
microimaging probe (Bruker Bio-Spin), as described in Supple-
mentary Materials and Methods.

Histology and immunohistochemistry
For histologic evaluation, tissue sampleswerefixed in formalin,

embedded in paraffin, stained, and visualized as previously

described (19). T lymphocytes and regulatory T cells (Tregs) were
quantified bymeasuring the number of CD3þ, CD8þ, CD4þ, and
Foxp3þ cells, respectively, among the total tumor cells.

Intratumoral cell characterization
For flow cytometry analysis, lung cell infiltrate was obtained

using the Lung Dissociation Kit (Miltenyi Biotec) following the
manufacturer's instructions. Cells were resuspended in phosphate
buffer and stained with antibodies described in Supplementary
Materials and Methods.

Statistical methods
Kaplan–Meier analyses for survival curves were performedwith

GraphPad Prism 5, and P values were determined with a log-rank
Mantel–Cox test. Paired data were compared with the Student t
test. P values of <0.05 were considered to be significant. Unless
otherwise noted, data are presented as mean � SEM.

Results
ALK vaccination elicits a specific cytotoxic response and
prevents tumor growth in an orthotopic model of ALK-positive
lung cancer

To test the efficacy of the ALK vaccine against lung cancer, we
developed an orthotopic mouse model of ALK-positive lung
cancer by ectopic expression of EML4-ALK in the syngeneic
BALB/c murine lung cancer cell line ASB-XIV. We transduced
ASB-XIV cells with a retroviral vector containing the EML4-ALK
cDNA (variant 1) and GFP as a reporter. Protein expression in
transduced ASB-XIV cells was comparable with EML4-ALK expres-
sion in human ALK-rearranged NSCLC cells (variant 1 in H3122
and 3 in H2228; Fig. 1A). ASB-XIV cells express MHC class I and
thus are suitable for tumor immune studies (Fig. 1B). Within 3
weeks after i.v. injection of 5 � 105 ASB-XIV cells into the mouse
tail vein, tumor nodules were detected in both lungs (Fig. 1E and
F).We vaccinated BALB/cmicewith aDNAplasmid coding for the
intracytoplasmic domain of ALK (ref. 19; Fig. 1C).

ALK vaccine induced a strong ALK-specific immune response as
measured by an in vivo cytotoxic assay (ref. 19; Fig. 1D). Ten days
after the second vaccination, we injected EML4-ALK or GFP ASB-
XIV cells. GFPASB-XIV cells gave equal numbers of tumors inmice
vaccinated with either a control or the ALK plasmid (Fig. 1E). In
contrast, tumors of EML4-ALKASB-XIV cells had impaired growth
in ALK-vaccinated mice (Fig. 1F). Thus, ALK vaccination induced
an ALK-specific immune response that efficiently prevented the
growth of ALK-positive lung tumors.

ALK vaccination delays tumor growth and increases the overall
survival of EML4-ALK–rearranged NSCLC Tg mice

To test the efficacy of the ALK vaccine as a therapy for primary
lung tumors, we generated two transgenic (Tg) mouse models
of ALK-driven lung cancers. Two rearrangements of ALK (EML4-
ALK, variant 1, or TFG-ALK) were expressed under the human
lung-specific surfactant protein-C (SP-C) promoter (Supple-
mentary Fig. S1A), because human ALK-rearranged NSCLCs
are often SP-C positive (28), and the expression of EML4-ALK
by the SP-C promoter can induce efficient lung tumor forma-
tion in mice (29). Both transgenic mouse models expressed the
ALK fusion selectively in lung epithelial cells, in amounts
comparable with human NSCLC with rearranged ALK (Sup-
plementary Fig. S1B–S1D), and rapidly developed multifocal
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ALK-positive tumors few weeks after birth, with 100% pene-
trance (Supplementary Fig. S1E and S1F). Tumors were mainly
well-differentiated adenocarcinoma growing as papillary, aci-
nar, or more solid carcinoma (30). Ki-67 immunostaining
showed that these tumors had a proliferation rate of 10.5%
� 1.4% for EML4-ALK and 8.5% � 1.9% for TFG-ALK (Sup-
plementary Fig. S1G). At 4 weeks of age, a few tumor nodules in
both types of ALK mice (Supplementary Fig. S1H and S1I, left)
were detected by MRI. Existing nodules rapidly expanded in
volume and new nodules appeared in the lungs over time
(Supplementary Fig. S1H and S1I, central and right plots). No
tumor metastases were detected by examination of other organs
with MRI or histology in ALK mice at any age, consistent with
other constitutive or ALK-inducible mice (29, 31). Both EML4-
ALK and TFG-ALK mice died within 50 weeks, with a mean
survival of 33.25 weeks for EML4-ALK mice and 37 weeks for
TFG-ALK mice (Supplementary Fig. S1L).

To test the efficacy of the ALK vaccine, we screened ALK mice
by MRI to stratify them according to their tumor burden. ALK
mice were vaccinated at 4 weeks of age, when tumors were
detectable in the lungs (Supplementary Fig. S1H and S1I),
according to the protocol in Fig. 2A. The ALK vaccine generated
strong ALK-specific cytotoxic activity in both ALK models,
comparable with wild-type (WT) littermates (Fig. 2B). In
EML4-ALK mice, the average number of tumors detected in
control mice was 58 � 6.0 by week 20, whereas ALK-vaccinated
mice had only 16 � 3.5 at the same time point (Fig. 2C and D).
Similar results were observed in TFG-ALK mice at 20 weeks of
age (67 � 6.0 nodules in control mice compared with 20 � 3.5
nodules in vaccinated mice; Fig. 2E and Supplementary Fig.
S2A). Correspondingly, the overall tumor burden calculated in
terms of tumor volumes by serial MRI was significantly lower in
ALK-vaccinated mice than in control mice (Supplementary
Fig. S2B and S2C). Survival of ALK-vaccinated mice was
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Figure 1.
Prophylactic ALK vaccine prevents the growth of ALK-positive lung tumors in an orthotopic model. A, EML4-ALK expression in ASB-XIV–infected cells and
in human EML4-ALKNSCLC cell lines (H3122 andH2228)was evaluated by immunoblottingwith the indicated antibodies. B, analysis of theMHC class I (PE-H2DdAb)
antigen expression on ASB-XIV cells by flow cytometry. C, schematic representation of ALK vaccination protocol in BALB/c mice. Control mice were
vaccinatedwith empty pDEST (Ctrl), andALK-vaccinatedmicewere vaccinatedwith pDEST-ALK (Vax). D, cytotoxic activity inALK-vaccinatedmice evaluated by an
in vivo cytotoxicity assay. Horizontal bars represent mean. E and F, representative hematoxylin and eosin (H&E) sections of lungs injected with GFP-ASB-XIV
cells (E) or EML4-ALK ASB-XIV cells (F). Histograms represent the number of tumors in control (Ctrl; n ¼ 3 mice) and ALK-vaccinated mice (Vax; n ¼ 3 mice).
Scale bars, 1 mm (top) and 50 mm (bottom). The total number of tumors was counted in the whole lung of each mouse. Data are represented from three
independent experiments as mean (� SEM). ���� , P < 0.0001. n.s., not statistically significant.
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significantly extended by at least 18 weeks in EML4-ALK and by
12 weeks in TFG-ALKmice (Fig. 2F and G). The ALK vaccine was
still efficacious against larger tumors in older mice (Supple-
mentary Fig. S2D). Thus, ALK-DNA vaccination was a potent
controller of growth of primary ALK-rearranged lung tumors.

ALK-DNA vaccination increases the number of intratumoral T
cells and requires CD8þ T lymphocytes

Next, we examined how the ALK vaccine shaped the intratu-
moral immune infiltrate. The ALK vaccine increased the number
of intratumoral T cells in both EML4-ALK and TFG-ALK mice,
which was associated with a reduced tumor size (Fig. 3A and B).
Both CD4þ and CD8þ T cells were significantly increased in ALK-
vaccinated mice (Fig. 3C). In ALK-vaccinated mice, tumor-infil-
trating T cells had a significantly higher CD8þ:CD4þ ratio com-
pared with controls, due to the DNA vaccine preferentially stim-
ulating a CD8þ T-cell immune response (Fig. 3C; ref. 32).We also
observed an increase in intratumoral Tregs (Fig. 3D and E),
suggesting that the ALK vaccine induces both Teff cells and Tregs,

as described for other tumor vaccines (33). Nonetheless, the ratio
of CD8þ:Foxp3þ was higher in vaccinated mice than in control
mice (Fig. 3E).

To confirm that the ALK vaccine required Teff for its antitumor
functions, we used repeated injections of antibodies specific for
CD4þ and CD8þ T cells to deplete them in the orthotopic model
based on EML4-ALK ASB-XIV cells (Fig. 3F). The depletion of
CD8þ T cells, but not CD4þ T cells, significantly reduced the ALK
vaccine efficacy (Fig. 3G and H). Therefore, in mice bearing ALK-
positive tumors, ALK vaccination elicited a cytotoxic response
largely mediated by CD8þ T cells. However, in mice depleted of
CD8þ T cells, the vaccine still appeared to retain some activity,
suggesting that other factors may be involved in the immune
response elicited by the vaccine.

Immunosuppressive lung microenvironment in ALK-
rearranged lung cancer

We showed that the ALK vaccine stimulates a potent immune
response against ALK-rearranged lung tumors. However, the
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Figure 2.
Therapeutic ALK vaccine delays tumor progression in ALK-rearranged NSCLC. A, ALK vaccination protocol in ALK Tg mice. B, cytotoxic activity in control
mice (*) and ALK-vaccinated (Vax)WTmice (&) or Tgmice (&). Horizontal bars represent mean. C, representative coronal MRI sections of lungs from EML4-ALK
mice. D and E, number of tumors in control (Ctrl) and ALK-vaccinated (Vax) mice as measured by MRI at the indicated time points. EML4-ALK mice
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(G). ���� , P < 0.0001.
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ALK vaccine did not cure the mice, which died after a delay in
tumor growth (Fig. 2). Because ALK was still expressed in late
tumors, we asked whether the efficacy of the ALK vaccine would
diminish over time due to an immunosuppressive microenvi-
ronment that progressively develops in lung tumors with ALK
rearrangements. Indeed, oncogenic activation of EGFR in lung
cancers induces an immunosuppressive lung microenviron-
ment by induction of PD-L1 expression on the surface of tumor
lung epithelial cells (34).

First, we better characterized the immune infiltrate in mice
bearing ALK lung tumors and observed that overall the percentage
of B and T lymphocytes, natural killer (NK) cells, and granulocytes
was comparable between WT and EML4-ALK mice (Supplemen-
tary Fig. S3A–S3D). However, T cells in tumor-bearing EML4-ALK
mice displayed a significantly higher expression of PD-1 on both
CD4þ andCD8þT cells (Fig. 4A andSupplementary Fig. S3E), and
PD-1þCD3þ T cells also expressed other T-cell–inhibitory mole-

cules such as LAG-3 and TIM-3 in higher amounts (Supplemen-
tary Fig. S3E). In addition, Foxp3þ Tregs were also increased in
EML4-ALK mice over time (Supplementary Fig. S3F). These data
suggest that tumor lungs bearing EML4-ALK develop an immu-
nosuppressive microenvironment reminiscent of that seen in
EGFR-driven lung cancer models (34).

We also characterized the immune microenvironment in
human ALK-rearranged NSCLC. NSCLC patients with ALK rear-
rangements had lower percentages of CD3þ, CD4þ, and CD8þ

intratumoral T-cell infiltrate than EGFR-mutated NSCLC (Fig.
4B). These findings were further extended by interrogating
gene-expressionprofilingdata from larger series of humanNSCLC
with different oncogenic mutations. By gene set enrichment
analysis, we found lower expression of tumor-infiltrating T-
cell–related molecules in EML4-ALK NSCLC compared with
EGFR-mutated, K-RAS–mutated, or ALK/RAS/EGFR–nonmutated
NSCLC (Fig. 4C). In particular, in ALK-rearranged tumors, we
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observed significant depletion of T-cell receptor (TCR)–related
molecules, such as TCRb chain, CD3d, CD3g , CD3z, and Lck, of
the T-cell costimulatory molecules ICOS and CD28, as well as of
CD80 and CTLA-4 (Supplementary Fig. S4A–S4D).

Blockade of the PD-1/PD-L1 pathway restores ALK vaccine
efficacy against tumor cells with high levels of PD-L1

We asked whether oncogenic ALK could also regulate PD-L1
expression on lung tumors. Tumors derived fromEML4-ALKmice
had higher levels of PD-L1 expression than tumors originating in
mice carrying other NSCLC recurrent mutations, such as the K-
RasG12V (26) and EGFRL858R (27)mice (Supplementary Fig. S5A).
Next, we analyzed PD-L1 expression by flow cytometry and
showed that tumor epithelial cells (CD45�/EpCAMþ) and asso-
ciated hematopoietic cells (CD45þ) in EML4-ALKmice expressed
PD-L1 (Supplementary Fig. S5B). To determine whether ALK
oncogenic activity directly controlled PD-L1 expression in
NSCLC, we treated three ALK-rearranged NSCLC cell lines
(H3122, H2228, and DFCI032) with crizotinib to inhibit ALK
activity (Fig. 5A and Supplementary Fig. S5C). Expression of PD-
L1 was detectable in all ALK-rearranged cell lines tested and was
reduced upon ALK inhibition in all three cell lines (Fig. 5B and
Supplementary Fig. S5D). Consistently, PD-L1 mRNA was also
downregulated (Fig. 5C and Supplementary Fig. S5E). To further
confirm that PD-L1 expression was driven by ALK activity, and to

exclude the possibility that PD-L1 downregulation was mediated
by crizotinib inhibition of MET, ROS1, or other off-targets, we
knocked down EML4-ALK by a doxycycline-inducible shRNA
system (16). Again, PD-L1 expression was downregulated upon
EML4-ALK knockdown (Supplementary Fig. S5F and S5G). We
conclude that in ALK-rearranged NSCLC, PD-L1 mRNA and
proteinwere regulated byALK activity. Another group has recently
confirmed these findings (35).

The expression of PD-L1 of the surface of tumor cells impairs
antitumor activity of the immune system (36). We investigated
whether the efficacyof theALKvaccine couldbediminishedby the
expression of PD-L1 on the surface of the target lung tumor cells.
EML4-ALK mice express moderate, but detectable PD-L1, and we
observed similar intensity of expression by flow cytometry in
EML4-ALK ASB-XIV (Fig. 5D). We reasoned that ALK vaccine
efficacy could be hampered when target tumor cells express more
PD-L1. We engineered EML4-ALK ASB-XIV cells to express more
PD-L1 than parental cells by transduction with a lentivirus con-
taining amurine PD-L1 construct (Fig. 5D). Vaccinatedmice were
injected with control EML4-ALK ASB-XIV cells or EML4-ALK ASB-
XIV cells expressing high PD-L1. In the presence of high PD-L1
expression, the ALK vaccine was less effective in preventing lung
tumor growth (Fig. 5E), suggesting that the function of ALK-
specific Teff cells was modulated by the amount of PD-L1 on the
surface of target lung tumor cells.
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To test whether administration of antibody to PD-1 could
restore a full efficacy of the ALK vaccine, we treated mice with
anti–PD-1 or control IgG (Supplementary Fig. S6A). The treat-
ment with anti–PD-1 alone, as well as control IgG, did not have
significant effect on tumor growth and mice developed tumors
comparable with controls. In contrast, anti–PD-1 treatment
almost completely restored the efficacy of the ALK vaccine (Fig.
5F). These results are consistent with findings that immune
checkpoint therapy restores an adaptive immune response best
in patients with high PD-L1 expression (37, 38).

To show that blockade of the PD-L1/PD-1 immune checkpoint
was effective with physiologic expression of PD-L1, we tested
anti–PD-1 treatment in EML4-ALK mice (Supplementary Fig.
S6B). We observed a stabilization of tumors immediately at the

end of treatment (Fig. 5G) followed by a slower growth rate as
compared with control mice (Fig. 5H). These data suggest that
immune checkpoint blockade therapy could be efficacious in the
physiologic tumor microenvironment of ALK-rearranged lung
tumors.

ALK vaccination is effective in combination with ALK TKIs
Crizotinib treatment of NSCLC patients with ALK rearrange-

ments has had success in clinical trials, supporting the use of
ALK TKIs as main therapy for NSCLC (39). A combination of
ALK TKIs with the ALK vaccine could be an attractive thera-
peutic possibility for NSCLC patients. In this context, ALK TKIs
could reduce the tumor burden to facilitate the activity of the
ALK vaccine. We tested this combination in our ALK mouse
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models. ALK mice were treated with crizotinib (PF-02341066)
for 2 weeks (100 mg/kg) and concurrently vaccinated with the
ALK or control vaccine (Fig. 6A). The immune response elicited
by the vaccine was not affected by administration of crizotinib,
as an equally strong ALK-specific cytotoxic immune response in
vivo was also detected in ALK-vaccinated mice treated with
crizotinib (Fig. 6B). As expected, treatment with crizotinib
induced the regression of tumors in both groups within 2
weeks (Fig. 6C, left and central plots; 6D). At 6 weeks from
treatment suspension, tumors relapsed at the same sites in
crizotinib-treated mice (Fig. 6C, top right plots), whereas the
combination of crizotinib and ALK vaccine delayed tumor
recurrence (Fig. 6C, bottom right plots). Indeed, mice treated
with crizotinib showed relapses and new tumors 10 weeks after

treatment suspension, whereas in ALK-vaccinated mice, re-
lapses and new tumors were less numerous and significantly
smaller (Fig. 6D and E). Similar results were obtained when
EML4-ALK mice were vaccinated during treatment with TAE684
(25 mg/kg; Supplementary Fig. S7A–S7C). Thus, the ALK vac-
cine might be efficiently combined with ALK TKI treatment to
delay tumor relapse after crizotinib suspension.

ALK vaccination prevents growth of tumors expressing
crizotinib-resistant ALK mutations

Human NSCLC patients treated with ALK TKI almost invari-
ably develop resistance. L1196M, C1156Y, and F1174L are com-
mon ALK mutations found in patients relapsing under treatment
with crizotinib (8, 12, 13). Point mutations in the ALK kinase
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domain have the potential to alter the antigenicity of ALK as
they can modify its protein structure. To test the activity of the
ALK vaccine against these mutants, we transduced ASB-XIV cells
with a retroviral vector containing either the EML4-ALK WT or
the EML4-ALK mutants (Fig. 7A). Control mice injected with
ASB-XIV cells expressing the L1196M, C1156Y, or F1174L
EML4-ALK mutants rapidly developed tumors in the lungs,
whereas ALK vaccination almost completely prevented tumor
growth of EML4-ALK WT and all mutants (Fig. 7B–E). Therefore,
the ALK vaccine is not only efficacious against the EML4-ALK
WT but also against some of the most common EML4-ALK
mutants that develop in patients during treatment with crizotinib
or ceritinib.

Discussion
In this work, we extended our previous findings on the efficacy

of a DNA ALK vaccine against ALK-positive lymphoma to ALK-
rearranged lung cancers. Compared with our previous work, we
showed that the ALK vaccine is active not only in tumor grafts but
also in primary ALK-rearranged NSCLC. Because the SP-C pro-
moter is active since embryonic development (40), these mice are
likely tolerant to human ALK. Thus, an important advance from

this work is the demonstration that an ALK vaccine can overcome
tolerance in mice.

In addition, we showed that the ALK vaccine could be
combined with either ALK TKI treatment or the anti–PD-1
antibody. These combinatorial therapies make the ALK vaccine
attractive for potential clinical use. Current therapies for ALK-
rearranged NSCLC, based on crizotinib or next-generation ALK
TKIs, achieve a clinical response by arresting tumor progres-
sion or inducing tumor regression. However, all patients
eventually relapse and die due to development of TKI resis-
tance (11, 41).

In this work, we set the stage for the application of an ALK
vaccine to further extend progression-free survival in NSCLC
patients. The ALK vaccine induced a strong systemic and intratu-
moral immune response in mouse models of ALK-rearranged
NSCLC, significantly reducing tumor growth and extending sur-
vival of treated mice, regardless of the type of ALK translocation
(EML4-ALK or TFG-ALK). Simultaneous treatment during vacci-
nation with crizotinib or TAE684 did not affect the ALK immune
response achieved by the vaccine. Thus, these data indicate the
feasibility of administering an ALK vaccine to NSCLC patients
during ALK TKI treatment, possibly when the response ismaximal
in terms of tumor burden reduction.
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Additional advantages of such a combination could stem
from the potential activity of ALK TKIs in the regulation of the
tumor immune microenvironment. We showed that the onco-
genic activity of ALK directly regulated PD-L1 expression of the
surface of tumor cells. High PD-L1 expression impaired the
immune response against ALK elicited by the vaccine (Fig. 5).
Therefore, PD-L1 downregulation by ALK TKI treatment could
relieve the inhibitory feedback on intratumoral T cells and
facilitate ALK-specific immune responses. Tumor cell death
induced by ALK TKIs could release additional tumor neoanti-
gens, including ALK itself, and thus enhance antitumor
immune response (42, 43). Further investigation to elucidate
the effect of ALK TKIs on the tumor microenvironment is
required, but it is intriguing that studies in mouse models and
metastatic melanoma patients showed an enhanced antitumor
immune response after treatment with the selective B-RAF
inhibitor (vemurafenib) alone, or in combination with MEK
inhibitors (44, 45).

The immune microenvironment in ALK-rearranged tumors
could therefore be a critical factor in the ALK-specific immune
responses. We presented data indicating that ALK-rearranged
mice indeed progressively develop an immunosuppressive tumor
microenvironment similar to that induced in mice by oncogenic
EGFR (34). Compared with WT mice, ALK-rearranged lungs
accumulated higher numbers of PD-1þ T cells that also expressed
the exhaustion markers TIM-3 and LAG-3, and showed increased
numbers of tumor-infiltrating Tregs. ALK-rearranged NSCLC
patients also showed a likely immunosuppressive microenviron-
ment in the lungs with reduced tumor-infiltrating T cells.

In ALK-vaccinated lungs, the tumor-infiltrating Tregs were
increased, and we detected a population of intratumoral CD8þ

T cells with high expression of PD-1 (Supplementary Fig. S8A
and S8B), which we interpreted as exhausted CD8þ T cells that
had been elicited by the ALK vaccine to recognize the ALK
antigen (46). In mice with advanced tumors, the ALK vaccine
elicited a weaker ALK-specific cytotoxic response (Supplemen-
tary Fig. S8C) and decreased antitumor activity (Supplementary
Fig. S2D). In these settings, Treg depletion by an antibody to
CD25 could partially restore the impaired cytotoxic activity
generated by the ALK vaccine (Supplementary Fig. S8C), indi-
cating that Tregs could also play a critical role in the immu-
nosuppressive tumor environment seen in ALK-rearranged lung
tumors. Similarly, the restoration of the ALK vaccine efficacy by
administration of antibody to PD-1 in high PD-L1 EML4-ALK
ASB-XIV xenografts (Fig. 5) suggests that blockade of immune
checkpoint molecules could powerfully potentiate the ALK
vaccine.

Overall, these data suggest that combination therapy of ALK
TKIs and ALK vaccine could work efficiently in the clinical
setting to generate a strong and long-lasting immune response
to ALK in NSCLC. The benefit from combined ALK TKI and ALK

vaccine therapy can be enhanced by additional immunothera-
pies, such as anti–PD-1/PD-L1 and anti-CTLA, to block
immune checkpoints (17, 18) or through Treg depletion by
antibodies to CD25 (47). Thus, the development of an ALK
vaccine for clinical use, together with additional immunother-
apeutic tools, provides exciting therapeutic options for the
treatment of ALK-rearranged NSCLC.
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