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Abstract: Multiscale entropy (MSE) provides information-domain measures of the systems’ complexity.
The increasing interest in MSE of the cardiovascular system lies in the possibility of detecting
interactions with other regulatory systems, as higher neural networks. However, most of the MSE
studies considered the heart-rate (HR) series only and a limited number of scales: actually, an
integrated approach investigating HR and blood-pressure (BP) entropies and cross-entropy over the
range of scales of traditional spectral analyses is missing. Therefore, we aim to highlight influences of
higher brain centers and of the autonomic control on multiscale entropy and cross-entropy of HR and
BP over a broad range of scales, by comparing different behavioral states over 24 h and by evaluating
the influence of hypertension, which reduces the autonomic control of BP. From 24-h BP recordings
in eight normotensive and eight hypertensive participants, we selected subperiods during daytime
activities and nighttime sleep. In each subperiod, we derived a series of 16,384 consecutive beats for
systolic BP (SBP), diastolic BP (DBP), and pulse interval (PI). We applied a modified MSE method to
obtain robust estimates up to time scales of 334 s, covering the traditional frequency bands of spectral
analysis, for three embedding dimensions and compared groups (rank-sum test) and conditions
(signed-rank test) at each scale. Results demonstrated night-and-day differences at scales associable
with modulations in vagal activity, in respiratory mechanics, and in local vascular regulation, and
reduced SBP-PI cross-entropy in hypertension, possibly representing a loss of complexity due to an
impaired baroreflex sensitivity.

Keywords: SampEn; cross-SampEn; autonomic nervous system; heart rate; blood pressure

1. Introduction

In the 1990s, the approximate entropy (ApEn) method paved the way for practically using
information-domain techniques in the field of heart rate variability (HRV) analysis [1,2]. Successively
its variant, sample entropy (SampEn), became particularly popular, providing less biased measures
with better relative consistency compared to ApEn [3]. ApEn and SampEn measure the irregularity of a
time series by calculating the probability that segments of m samples that are similar remain similar
when the segment length increases to m + 1. This approach was adapted to analyze two series leading
to the definitions of Cross-ApEn and cross-SampEn. Cross-entropy measures may detect interactions
between series connected within physiological networks by evaluating their degree of asynchrony [4].

The interest in “information-domain” approaches is because these methods allow the investigation
of complexity aspects difficult to evaluate with frequency-domain or time-domain techniques. In fact,
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the entropy analysis of HRV may offer information on the cardiovascular regulation revealing
complexity changes that may reflect an altered integrative autonomic control or modulations from
higher brain centers. This information is expected to usefully integrate the traditional methods of HRV
in the stratification of the cardiac risk or in monitoring treatments and rehabilitation protocols in the
secondary prevention of cardiovascular diseases. Since diseased systems lack adaptability or suffer
from an impaired integrative regulation, they are expected to be less “complex” than healthy systems,
and therefore, to show lower HRV entropy. However, an intrinsic difficulty in assessing cardiovascular
health by entropy is that diseased systems may also show high entropy due to erratic or uncorrelated
fluctuations [5]. Therefore, the irregularity of the heart rate, as quantified by ApEn or SampEn, does not
always measure the cardiovascular “complexity”.

In this regard, an important step forward toward a metric of HRV complexity was to separate the
temporal scales where entropy components due to erratic fluctuations prevail from those where entropy
better reflects the cardiovascular complexity. This was done by introducing the Multi-Scale Entropy
(MSE) method, which estimates SampEn on progressively coarse-grained series [6]. Successive MSE
variants adopted different approaches for low-pass filtering of the heart rate before coarse-graining
and for setting the tolerance at each scale [7] or proposed a statistically more robust estimation
strategy [8]. Several clinical studies demonstrated the value of MSE and of its variants in assessing HRV
alterations in aortic stenosis [7], diabetes [9], atrial fibrillation [10], congestive heart failure [11], long QT
syndrome [12], sleep disorders [13], strokes [14–16], trauma [17], mental diseases [18], and disorders
of consciousness [19]. Animals models of heart failure, hypertension, impaired baroreflex [20], and
inflammation [21] also provided evidence of an altered MSE of HRV.

However, an integrated approach for characterizing the MSE of cardiovascular time series is still
missing. In fact, very few works also considered the MSE of beat-by-beat blood pressure [9,22–24], and
none of them investigated the interactions between heart rate and blood pressure in terms of multiscale
cross-entropy. Furthermore, all of the HRV studies but one [10] considered a limited number of entropy
scales. This is in striking contrast with the frequency range traditionally investigated in HRV studies [25]
that includes a very-low-frequency band where the baroreflex control produces its buffering effects
on the blood pressure variability [26]. Therefore, our study aims to characterize the cardiovascular
regulation with an information-domain approach based on heart-rate and blood-pressure multiscale
entropy and cross-entropy, addressing a broad range of scales equivalent to the frequency range of the
traditional spectral analyses. To highlight the influences of the circadian modulations on MSE from
the higher brain centers, our study will compare different behavioral conditions (nighttime sleep vs.
daytime activity); and to point out the role of the autonomic regulation, it will compare normotensive
vs. hypertensive groups, in which the autonomic control of blood pressure is known to operate with
different efficacy.

2. Materials and Methods

2.1. Subjects and Data Collection

The study is based on the blood pressure (BP) recordings collected in our previous study on the
baroreflex-mediated interactions between heart rate and BP [27]. Briefly, ambulatory intra-arterial
BP was measured at the radial site percutaneously inserting a catheter into the radial artery of the
non-dominant arm in 8 normotensive participants (NT, 5 males and 3 females, age 43± 20 years, referred
to our hospital for suspected hypertension, which was excluded after the clinical evaluation) and in 8
subjects with moderate to severe essential hypertension (HT, 7 males and 1 female, age 50 ± 20 years).
Clinic systolic BP (SBP) and diastolic BP (DBP) values were 131 ± 6 and 84 ± 4 mmHg (M ± SD) in the
NT group, 191 ± 19 and 104 ± 7 mmHg in the HT group.

Recordings started at around 6 pm and lasted 24 h; meal, bed, and recreational times were
standardized. In each 24-h recording, we considered two sub-periods each of 5 h duration: The first
was selected during daytime in the afternoon, when the subjects were not lying in bed and were free
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to perform the activities allowed to patients not confined to bed, such as playing cards, watching
TV, meeting relatives, or walking on the hospital green (day sub-period); the second was selected
at night, after 11 PM when the subjects were asleep according to the time schedule of the hospital
(night sub-period). The recordings were digitized at 12 bits and 170 Hz sampling frequency. Then
they were manually edited from movement artifacts, pulse pressure dampening, and premature beats
deleting the corresponding portion of the BP tracing. SBP and DBP were calculated beat-by-beat as the
highest and lowest BP values in each pulse wave; the pulse interval (PI) was computed as the time
interval between consecutive systolic maxima. Missing beats associated with deleted BP signals were
not interpolated.

The study protocol was approved by the ethical committee of the Ospedale Maggiore Policlinico
di Milano (Milan, Italy) and all the participants gave written informed consent in accordance with the
Declaration of Helsinki.

2.2. Coarse-Grained MSE and Modified MSE

The MSE method, as originally proposed in [5], estimates entropy at the scale τ as SampEn of the
series coarse-grained with order τ. To illustrate the coarse-grained MSE (cgMSE) technique and the
following modified MSE (mMSE) technique, it is useful to summarize the SampEn method as revised
in [28]. SampEn of a time series of N samples X = {x1 x2 . . . xN} at the embedding dimension m is
calculated by constructing the template vectors

xm
i (δ) =

[
xi, xi+δ, . . . xi+(m−1)δ

]T
, 1 ≤ i ≤ N −mδ (1)

with δ the delay between successive components, by calculating the infinity norm distance between all
couples of vectors

dm
ij (δ) = ‖x

m
i (δ) − xm

j (δ)‖∞
, 1 ≤ i, j ≤ N −mδ, j > i + δ (2)

and by counting the number of matched-pairs, np(m,δ,r), i.e., pairs of vectors with a distance lower
than a predefined threshold r. Then the above steps are repeated for the dimension m + 1 obtaining:

SampEn(X, N, m, δ, r) = − ln
np(m + 1, δ, r)

np(m, δ, r)
(3)

see Reference [8]. To calculate cgMSE as in [5], coarse-grained series of order τ and length Q = bN/τc,
Yτ ={ y1 y2 . . . yQ}, are obtained as:

yi =
1
τ

i·τ∑
j=(i−1)·τ+1

x j, 1 ≤ i ≤ bN/τc. (4)

Setting the tolerance threshold r equal to 20% of the standard deviation of X, and the distance
δ = 1 sample, which means that the template vectors are composed by successive samples, cgMSE at
the scale τ is

cgMSE(τ) = SampEn
(
Yn,

⌊N
τ

⌋
, m, δ = 1, r

)
. (5)

Equation (5) indicates that the number of data available for estimating SampEn decreases with the
scale proportionally to 1/τ and the statistical properties of the cgMSE estimator quickly deteriorate as
the scale increases. Thus, we considered the mMSE estimator originally introduced in [8] to estimate
MSE on very-short segments of data even if we are dealing with long series, because we aim to
investigate a broad range of scales that includes very large τ. In the mMSE method, the coarse-graining
procedure of Equation (4) is replaced with a moving average filter to improve the robustness of the
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estimate. Accordingly, low-pass filtered series of length Q = N − τ + 1, Zτ = {z1 z2 . . . zQ}, are obtained
as moving averages of order τ:

zi =
1
τ

i+τ−1∑
j=i

x j, 1 ≤ i ≤ N − τ+ 1 (6)

and the mMSE at scale τ is the SampEn of Zτ with delay δ = τ:

mMSE(τ) = SampEn(Zτ, N − τ+ 1, m, δ = τ, r). (7)

At any order τ > 1 the number of data for estimating SampEn is greater with mMSE than with
cgMSE. To verify that mMSE provides statistically more robust estimates, we generated a series of
white Gaussian noise, 1/f (or pink) noise, and Brownian motion (or brown noise). For each type of
noise, we generated series of length 1000, 10,000, and 100,000 samples, and calculated mMSE and
cgMSE for scales τ ≤ 40.

Figure 1 shows that the uncertainty of the estimate is greater for cgMSE (which was unable to
estimate the larger scales for N = 1000) while the expected values are similar for the two estimators.
This suggests to replace coarse-grained series with low-pass filtered and delayed series, as in [8].
Figure 1 also highlights that at any given scale τ, the entropy estimate decreases as N increases for the
pink and brown noises, but not for the white noise. Pink and brown noises, unlike the white noise, are
non-stationary fractional Brownian motions whose standard deviation increases with the length of the
series (see Figure 6 in [29]). Since r is a fraction of the standard deviation, the tolerance increases with
N for fractional Brownian motions while it does not depend on N for stationary processes. Therefore,
to avoid the confounding factor of the series length, we decided to compare conditions and groups
considering beat-by-beat series of the same length, which was set to 214 (=16,384) beats. To empirically
evaluate the range of scales estimable by mMSE with series of this length, we synthesized 10 series
of white noise, 10 series of pink noise and 10 series of brown noise, for each of 16,384 samples; and
we calculated mean and standard deviation of mMSE(τ) up to τ = 724 and 1 ≤ m ≤ 3 (to reduce the
computation load, we calculated mMSE for all τ when τ ≤ 16 and for τ exponentially distributed over
the scale axis when τ > 16, with a density of 8 estimates at each doubling of the axis). Figure 2 suggests
that the length of 16,384 beats allows estimating scales up to around τ = 600 beats, with the exception
of m = 3 where mMSE of brown noise appears limited to 512 samples.
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Figure 1. Comparison of Multiscale Entropy estimators for white, pink, and brown noise. Time series 
of different length N were analyzed with the cgMSE (red lines) and mMSE (black lines) algorithms 
for 3 embedding dimensions m. Panels (a,d,g): N = 103; panels (b,e,h): N = 104; panels (c,f,i): N = 105; 
panels (a–c): m = 1; panels (d–f): m = 2; panels (g–i): m = 3. Note the more stable estimates with longer 
N, lower m, and with the mMSE algorithm, being cgMSE unable to provide estimates for pink noise 
at the larger scales when N = 103. At all the scales, independently from the algorithm, the estimates 
decrease with N for pink and brown noise.  

 

Figure 2. Modified Multiscale Entropy for white, pink, and brown noises. Mean value ± SD for ten 
series of N = 214 samples and scales τ ≤ 724 samples; (a): m = 1; (b): m = 2; (c): m = 3. For these three 
noise processes, the estimation variability is greater at the larger scales and increases with m, while 
the expected value of the estimates does not depend on m. 

  

Figure 1. Comparison of Multiscale Entropy estimators for white, pink, and brown noise. Time series
of different length N were analyzed with the cgMSE (red lines) and mMSE (black lines) algorithms for
3 embedding dimensions m. Panels (a,d,g): N = 103; panels (b,e,h): N = 104; panels (c,f,i): N = 105;
panels (a–c): m = 1; panels (d–f): m = 2; panels (g–i): m = 3. Note the more stable estimates with longer
N, lower m, and with the mMSE algorithm, being cgMSE unable to provide estimates for pink noise
at the larger scales when N = 103. At all the scales, independently from the algorithm, the estimates
decrease with N for pink and brown noise.
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Figure 2. Modified Multiscale Entropy for white, pink, and brown noises. Mean value ± SD for ten
series of N = 214 samples and scales τ ≤ 724 samples; (a): m = 1; (b): m = 2; (c): m = 3. For these three
noise processes, the estimation variability is greater at the larger scales and increases with m, while the
expected value of the estimates does not depend on m.

2.3. MSE of Cardiovascular Series: From Scales in Beats to Temporal Scales in Seconds

Since the PI, SBP, and DBP series are sampled on a beat-by-beat basis, the MSE algorithms provide
estimates on scales τ with units in number of beats and not in seconds. This means that when groups
or conditions with different heart rates are compared, the same scale in beats corresponds to different
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scales in seconds; and that the range of scales associated with a given frequency band of the traditional
HRV spectral analysis depends on the mean heart rate. To overcome these problems, we mapped the
scales from beats to seconds with the transformation:

t = τ× 〈PI〉, (8)

where <PI> is the mean PI, in seconds, over the series. However, a possible problem not addressed
by Equation (8) is the distortion due to considering the sampling rate constant when actually the
beat-by-beat sampling is intrinsically uneven. This issue was considered in [10], which evaluated
cgMSE after interpolating and oversampling the beat-by-beat series at 2 Hz. To quantify the distortion
due to the uneven sampling, we compared two mMSE(t) estimates: The first was obtained by applying
the mMSE method on the original beat-by-beat series and by mapping the scale axis from the beat-scale
to the time-scale according to Equation (8); the second estimate was obtained by applying the mMSE
method on a spline-interpolated, evenly-resampled series at 2 Hz. Figure 3 compares the estimates of PI
mMSE without and with evenly oversampling for the two series of 16,384 s with the lowest and highest
mean heart rate among those selected for our analysis: subject 1 during nighttime sleep (the most
bradycardic series) and subject 8 during daytime activities (the most tachycardic series). Discrepancies
between the two approaches are negligible almost at all the scales in both the conditions. This is likely
due to the selection of data segments that avoided periods with substantial long-term trends of the
mean heart rate, such as during the transition from wake activities to sleep (for this reason we might
have found greater distortions if we had analyzed the whole 24-h period). However, Figure 3a also
shows that estimates after interpolation and oversampling are substantially lower at t < 3 s for the
bradycardic subject; this is probably due to the correlation among samples introduced by the spline
interpolation. Therefore, we decided not to interpolate and oversample evenly the beat-by-beat series
to avoid possible distortions at the shorter scales, considering acceptable the discrepancies between
unevenly- and evenly-sampled series at least for the day and night data segments selected in our study.
Furthermore, since the series are not oversampled evenly, the mMSE at the scale τ = 1 beat directly
corresponds to SampEn.
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Figure 3. Modified Multiscale entropy for the original and the evenly oversampled beat-by-beat series.
Estimates are shown for segments of 214 s and for three embedding dimensions. Estimates on the
beat-by-beat series (dashed lines) are plotted vs. the scale t, in seconds, calculated by multiplying τ in
beats by the mean PI, in seconds; estimates after interpolation and oversampling at 2 Hz (continuous
lines) are plotted vs. the scale t, in seconds, calculated dividing τ, in number of samples, by the
sampling frequency, in Hz; (a) the most bradycardic segment, during nighttime sleep; (b) the most
tachycardic segment, during daytime activities.

2.4. Low-Pass Filtering for mMSE Estimates

The coarse-graining procedure in cgMSE removes components with scales shorter than τ beats by
a moving average over τ samples (see Equation (4)). The moving average filter has a poor frequency
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response due to a wide transition band, and it has been suggested to replace it with a zero-phase,
6-th order low-pass Butterworth filter with cut-off frequency fc = 0.5/τ [7]. This suggestion, originally
proposed for cgMSE, is also valid for mMSE that employs a moving average filter in Equation (6).
To quantify the effect of the narrower transition band of the Butterworth filter on mMSE, we replaced the
Zτ series of Equation (6) with Bτ, the output of the filter proposed in [7] applied on the original X series.
However, we found a numerical instability calculating the filter coefficients for scales τ ≥ 380 beats
(by contrast, the moving average filter was always stable with coefficients equal to 1/τ). To overcome
this problem, we used a two-step procedure when τ ≥ 380 beats. In the first step, the X series was
low-pass filtered with fc = 0.5/4 and downsampled by a factor of 2. Since the scale τ of the original series
of length N = 214 samples corresponds to the scale p = τ/2 on the downsampled series of length 213

samples, we could design the Butterworth filter with fc = 0.5/p. In the second step, the downsampled
series was low-pass filtered, spline-interpolated and oversampled by a factor of 2 to reach the original
length of 214 samples again. Finally, the mMSE was calculated as:

mMSE(τ) = SampEn(Bτ, N, m, δ = τ, r) (9)

with B1 = X.
Figure 4 compares mMSE obtained with the moving average and the Butterworth filters for

the same data segments of Figure 3. The Butterworth filter provides estimates with better temporal
resolution thanks to its narrower transition band. In particular, Figure 4 points out that it better locates
the maximum around t = 4 s for both the segments as well as the maximum and the minimum at
t = 40 s and t = 180 s, respectively, for the tachycardic segment.
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Figure 4. Comparison between moving average and Butterworth filter in estimating the modified MSE.
The same beat-by-beat PI series of Figure 3 are considered; (a) the most bradycardic segment, during
nighttime sleep; (b) the most tachycardic segment, during daytime activities.

The better performance of the Butterworth filter appears clearly in Figure 5 also, which plots
the mMSE estimates for the synthesized noises of Figure 2 as obtained by the two filters. The major
discrepancy regards the entropy of white noise, expected to decrease monotonically with τ up to a
minimum close to zero at the largest scale. This pattern appears clearly with the Butterworth filter
(Figure 5b). By contrast, when the moving average is used, the lowest entropy, slightly greater than
zero, is reached at scales around 28, and at the largest scales, the entropy estimate even tends to increase
(Figure 5a). This is likely due to a residual high-frequency variability not properly removed by the
moving-average filter. Therefore, we applied the mMSE method replacing the moving average with
the Butterworth filter.
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Figure 5. Comparison between moving average and Butterworth filter in estimating the modified MSE
with m = 1 for the same noise processes of Figure 2. (a) moving average filter; (b) Butterworth filter.

To summarize, our MSE method differs from multiscale estimators of previous studies because
(1) it considers temporal scales, in seconds, rather than scales in number of beats; (2) it is based on
the modified MSE approach [8] but replacing the moving average with a Butterworth filter. Unlike
the refined-MSE [7], which originally proposed the Butterworth filter for coarse-graining, our MSE
estimator does not downsample the series and does not update the tolerance threshold at each scale by
re-calculating r as a fraction of the standard deviation of the filtered series. This latter choice is based
on our previous analysis suggesting that a fixed threshold may provide more stable estimates and
better highlight physiological differences between heart-rate and BP dynamics [23].

2.5. Multiscale Cross-Entropy between SBP and PI

We estimated the multiscale cross-SampEn between PI and SBP similarly extending the
cross-SampEn estimator [3] to multiple scales. Before cross-entropy analysis, the mean was removed
and each series normalized to unit variance dividing each value by the standard deviation of the series.
Called P = {p1 p2 . . . pN} and S = {s1 s2 . . . sN} for the normalized PI and SBP series of N beats, we
calculated the template vectors for a given embedding dimension m

pm
i (δ) =

[
pi, pi+δ, . . . pi+(m−1)δ

]T

sm
i (δ) =

[
si, si+δ, . . . si+(m−1)δ

]T , 1 ≤ i ≤ N −mδ (10)

the distances between all couples of vectors

dm
ij (δ) = ‖p

m
i (δ) − sm

j (δ)‖∞
, 1 ≤ i, j ≤ N −mδ (11)

and the number of pairs of vectors with distance lower than a threshold r, np(m,δ,r). We calculated the
same quantities for m + 1 defining cross-SampEn as

XSampEn(P, S, N, m, δ, r) = − ln
np(m + 1, δ, r)

np(m, δ, r)
(12)

Unlike cross-ApEn, cross-SampEn is direction independent, which means that
XSampEn(P,S,N,m,δ,r) = XSampEn(S,P,N,m,δ,r) [3]. To evaluate the cross-SampEn at the scales n, we set
r = 0.20 and low-pass filtered P and S using the Butterworth filter employed for mMSE with low-pass
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frequency fc = 0.5/τ, obtaining the filtered series Pτ and Sτ (where P1 = P and S1 = S). The modified
multiscale cross entropy, mMXSE, at the scale τ ≥ 1 was calculated as:

mMXSE(τ) = XSampEn(Pτ, Sτ, N, m, δ = τ, r) (13)

At τ = 1, mMXSE coincides with cross-SampEn. The scales were mapped from beats τ into times t,
in seconds, according to Equation (8).

2.6. Statistical Analysis

SampEn and cross-SampEn estimates were compared between NT and HT groups and between
day and night conditions by a repeated-measures linear mixed-effects model, applied on ranks to
handle possible violations of the hypothesis of normality of the residuals. Preliminary to the statistical
assessment of multiscale entropies, the mMSE(t) and mMXSE(t) functions were interpolated and
resampled to obtain 50 estimates at scales t exponentially distributed over the temporal axis between 2
s and 512 s. To identify the temporal scales where differences between the day and night conditions
may occur, we calculated the Wilcoxon signed rank test between conditions at each t; this was done
separately for the NT and the HT groups. The test is based on the statistics of the quantity W, defined
as the sum of the ranks of differences between pairs, taken with their sign [30]. Then, to identify the
scales where differences between the NT and the HT groups may occur, we calculated the statistics
of the Wilcoxon rank-sum test between groups at each t; this was done separately for the night and
day conditions. The test is based on the statistics of the quantity V, defined as the lowest sum of the
ranks between two groups [30]. The 5% value of the W and V statistical distributions was taken as
the statistical significance threshold to reject the null hypothesis for the comparison between two
conditions in each group, or between two groups in each condition; the threshold was adjusted by the
Bonferroni correction when considering multiple comparisons.

Both these tests do not require the assumption of normal distributions. Tests were performed
with “R: A Language and Environment for Statistical Computing” software package (R Core Team,
R Foundation for Statistical Computing, Vienna, Austria, 2017).

3. Results

3.1. PI Entropy

Table 1 reports that PI SampEn is greater during nighttime than in daytime. Figure 6 shows
the profiles of PI multiscale entropy for t between 2 s and 334 s. This range includes the scales
associated with the traditional high-frequency (HF, 2.5 ≤ t < 6.7 s), low-frequency (LF, 6.7 ≤ t< 25 s),
and very-low-frequency (VLF, 25 ≤ t < 333.3 s) bands of the HRV spectral analysis. As a reference, the
position of these bands is displayed in each panel. As suggested in [10], the VLF band is split into a
VLF1 (25 ≤ t < 90 s) and a VLF2 (90 ≤ t < 333.3 s) sub-bands. At scales up to the LF range, PI multiscale
entropy does not differ significantly between day and night. By contrast, in the VLF1 band PI multiscale
entropy is significantly lower at night, but in the normotensive group only. During daytime activities,
the PI entropy tends to be lower in the hypertensive participants, the differences being more significant
between 7 and 24 s, a range of scales that falls within the LF band.
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Figure 6. Multiscale Sample Entropy of PI in normotensive (NT) and hypertensive (HT) groups, during
day and night conditions. Average modified multiscale entropy mMSE(t) over eight NT and eight HT
participants during nighttime sleep (panels (b,e)) or daytime activities (panels (a,d)), for embedding
dimensions m between one and three; as a reference, gray bands in each panel show the ranges of scales
corresponding to the high-frequency (HF), low-frequency (LF), and very-low-frequency (VLF) bands of
traditional spectral analysis (with VLF = VLF1 + VLF2, see text). Panels (c,f): Wilcoxon signed-rank
statistics V for the comparison between conditions, separately in NT and HT groups; panels (g,h):
Wilcoxon rank–sum statistics W for the comparison between groups, separately in day and night
conditions. The lower red horizontal line is the 5th percentile of the V or W distributions: when the
distribution is above this threshold, the difference is statistically significant at p < 5% and the hypothesis
of similar entropies for a given condition and a given group is rejected; the intermediate red horizontal
line corresponds to the same significance threshold after Bonferroni correction for two comparisons
(NT vs. HT for both conditions, day vs. night for both groups); the upper red line corresponds to the
Bonferroni correction of the statistical threshold for all the four comparisons simultaneously.
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Table 1. Sample entropy (SampEn) and systolic blood-pressure-pulse interval (SBP-PI) cross-SampEn
by conditions and groups as mean (SD), with significance p of the factors Group, Time, and of
their interaction.

p Value

Day Night Group Time Time *Group

PI SampEn
m = 1 NT 1.02 (0.21) * 1.31 (0.31)

0.25 <0.001 0.10HT 0.84 (0.14) ** 1.32 (0.27)
m = 2 NT 0.94 (0.23) * 1.22 (0.29)

0.31 <0.001 0.07HT 0.75 (0.15) ** 1.27 (0.27)
m = 3 NT 0.88 (0.23) * 1.06 (0.21)

0.50 <0.001 0.06HT 0.69 (0.17) ** 1.14 (0.30)

SBP SampEn
m = 1 NT 1.29 (0.19) 1.41 (0.30)

0.45 <0.05 >0.99HT 1.37 (0.21) 1.45 (0.29)
m = 2 NT 1.25 (0.19) 1.37 (0.29)

0.49 <0.05 0.92HT 1.30 (0.18) 1.42 (0.29)
m = 3 NT 1.18 (0.18) 1.24 (0.25)

0.34 0.19 0.83HT 1.25 (0.18) 1.27 (0.28)

DBP SampEn
m = 1 NT 1.25 (0.24) 1.35 (0.32)

0.83 0.18 0.47HT 1.26 (0.26) 1.31 (0.29)
m = 2 NT 1.20 (0.25) 1.30 (0.33)

0.83 0.14 0.68HT 1.19 (0.27) 1.26 (0.30)
m = 3 NT 1.17 (0.25) 1.25 (0.32)

0.90 0.16 0.68HT 1.16 (0.27) 1.23 (0.31)

SBP-PI cross-SampEn
m = 1 NT 1.22 (0.13) * 1.47 (0.25)

0.78 <0.01 0.86HT 1.20 (0.15) * 1.43 (0.28)
m = 2 NT 1.19 (0.15) * 1.46 (0.28)

0.70 <0.01 0.67HT 1.15 (0.14) ** 1.42 (0.28)
m = 3 NT 1.13 (0.15) * 1.33 (0.21)

0.83 <0.01 0.63HT 1.11 (0.15) ** 1.30 (0.27)

NT = normotensive group (8 subjects); HT = hypertensive group (8 subjects); m = embedding dimension; * and **
indicate significances p, respectively, <0.05 and <0.01 by a posteriori contrasts with False Discovery Rate correction
according to [31].

3.2. Blood Pressure Entropy

SBP SampEn is greater during nighttime sleep than during daytime activities (Table 1). By contrast,
SBP multiscale entropy is lower during nighttime sleep in the HF and VLF ranges (Figure 7). DBP
SampEn and DBP multiscale entropy in the HF range do not differ between day and night, while in the
VLF range DBP multiscale entropy tends to be lower at night (Figure 8). The comparison between NT
and HT groups does not reveal significant differences, neither for SBP nor for DBP.
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Figure 7. Multiscale Sample Entropy of SBP in normotensive (NT) and hypertensive (HT) groups,
during day and night conditions. Panels (a,b,d,e): average mMSE(t) by groups and conditions for 1
≤ m ≤ 3. Panels (c,f): signed-rank statistics V for the comparison between conditions; Panels (g,h):
rank-sum statistics W for the comparison between groups. See also Figure 6.
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3.3. SBP-PI Cross-Entropy 

The SBP-PI cross-SampEn is greater during nighttime sleep than during daytime activities 
(Table 1). Significant night/day differences in multiscale cross-entropy (Figure 9) regard the VLF 
scales in the normotensive group, with lower entropy at night. The night–day differences are less 
pronounced in the hypertensive group because of their lower cross-entropy during daytime 
activities, the difference between the NT and HT groups being more significant at scales from 15 s to 
45 s, i.e., over the LF and VLF1 ranges. 

Table 2 summarizes the results showing the average values of multiscale PI, SBP and DBP 
entropy, and SBP-PI cross entropy, over the scales corresponding to the HF, LF, VLF1 and VLF2 
bands, separately by groups and conditions. 

Figure 8. Multiscale Sample Entropy of diastolic blood-pressure (DBP) in normotensive (NT) and
hypertensive (HT) groups, during day and night conditions. Panels (a,b,d,e): average mMSE(t) by
groups and conditions for 1 ≤ m ≤ 3. Panels (c,f): signed–rank statistics V for the comparison between
conditions; Panels (g,h): rank-sum statistics W for the comparison between groups. See also Figure 6.

3.3. SBP-PI Cross-Entropy

The SBP-PI cross-SampEn is greater during nighttime sleep than during daytime activities (Table 1).
Significant night/day differences in multiscale cross-entropy (Figure 9) regard the VLF scales in the
normotensive group, with lower entropy at night. The night–day differences are less pronounced in
the hypertensive group because of their lower cross-entropy during daytime activities, the difference
between the NT and HT groups being more significant at scales from 15 s to 45 s, i.e., over the LF and
VLF1 ranges.

Table 2 summarizes the results showing the average values of multiscale PI, SBP and DBP entropy,
and SBP-PI cross entropy, over the scales corresponding to the HF, LF, VLF1 and VLF2 bands, separately
by groups and conditions.
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Table 2. Averages of modified-multiscale entropy (mMSE) and SBP-PI modified multiscale cross entropy (mXMSE) over the ranges of scales corresponding to the HF,
LF, VLF1, and VLF2 bands, by conditions and groups: mean (SD).

HF LF VLF1 VLF2

Day Night Day Night Day Night Day Night

PI mMSE
m = 1 NT 1.31 (0.25) 1.17 (0.25) 1.34 (0.19) 1.19 (0.29) 1.27 (0.24) 0.93 (0.25) 1.18 (0.22) 0.90 (0.24)

HT 1.05 (0.29) 1.19 (0.33) 1.12 (0.25) 1.21 (0.35) 1.08 (0.23) 1.01 (0.26) 1.03 (0.20) 0.96 (0.21)
m = 2 NT 1.23 (0.24) 1.06 (0.21) 1.26 (0.20) 1.06 (0.25) 1.17 (0.29) 0.75 (0.25) 1.08 (0.31) 0.77 (0.22)

HT 0.97 (0.27) 1.10 (0.35) 1.04 (0.25) 1.06 (0.35) 0.99 (0.25) 0.81 (0.25) 0.92 (0.23) 0.81 (0.24)
m = 3 NT 1.14 (0.24) 0.96 (0.16) 1.18 (0.22) 0.92 (0.19) 1.11 (0.34) 0.64 (0.25) 1.00 (0.42) 0.70 (0.21)

HT 0.89 (0.25) 1.02 (0.34) 0.97 (0.25) 0.94 (0.34) 0.92 (0.25) 0.67 (0.23) 0.88 (0.29) 0.70 (0.25)

SBP mMSE
m = 1 NT 1.44 (0.19) 1.26 (0.28) 1.31 (0.18) 1.30 (0.26) 1.22 (0.18) 1.03 (0.24) 1.24 (0.24) 0.95 (0.26)

HT 1.41 (0.15) 1.18 (0.36) 1.30 (0.15) 1.23 (0.37) 1.11 (0.18) 0.90 (0.29) 1.19 (0.22) 0.84 (0.25)
m = 2 NT 1.34 (0.21) 1.20 (0.28) 1.23 (0.20) 1.21 (0.25) 1.15 (0.19) 0.92 (0.24) 1.20 (0.33) 0.84 (0.25)

HT 1.33 (0.17) 1.11 (0.36) 1.21 (0.17) 1.12 (0.36) 1.05 (0.19) 0.79 (0.27) 1.14 (0.26) 0.74 (0.26)
m = 3 NT 1.25 (0.19) 1.13 (0.27) 1.19 (0.22) 1.11 (0.23) 1.11 (0.23) 0.85 (0.24) 1.16 (0.45) 0.78 (0.26)

HT 1.21 (0.15) 1.05 (0.35) 1.14 (0.19) 1.03 (0.35) 1.00 (0.20) 0.73 (0.27) 1.16 (0.31) 0.69 (0.27)

DBP mMSE
m = 1 NT 1.45 (0.25) 1.34 (0.29) 1.28 (0.18) 1.33 (0.30) 1.08 (0.22) 1.01 (0.23) 1.08 (0.25) 0.95 (0.27)

HT 1.32 (0.23) 1.25 (0.30) 1.26 (0.24) 1.24 (0.30) 1.08 (0.27) 0.92 (0.21) 1.06 (0.31) 0.84 (0.19)
m = 2 NT 1.38 (0.27) 1.28 (0.31) 1.20 (0.22) 1.22 (0.32) 1.00 (0.26) 0.86 (0.27) 1.02 (0.29) 0.82 (0.28)

HT 1.27 (0.25) 1.20 (0.31) 1.18 (0.27) 1.14 (0.30) 0.99 (0.28) 0.79 (0.20) 0.99 (0.31) 0.73 (0.20)
m = 3 NT 1.32 (0.29) 1.21 (0.31) 1.16 (0.26) 1.11 (0.32) 0.96 (0.30) 0.77 (0.30) 0.96 (0.33) 0.74 (0.29)

HT 1.19 (0.24) 1.14 (0.31) 1.10 (0.27) 1.05 (0.28) 0.93 (0.28) 0.71 (0.19) 0.97 (0.29) 0.66 (0.18)

SBP-PI mXMSE
m = 1 NT 1.41 (0.20) 1.33 (0.21) 1.39 (0.12) 1.38 (0.18) 1.34 (0.14) 1.13 (0.16) 1.33 (0.14) 1.08 (0.19)

HT 1.32 (0.16) 1.26 (0.29) 1.31 (0.10) 1.33 (0.30) 1.20 (0.11) 1.11 (0.24) 1.25 (0.16) 1.06 (0.26)
m = 2 NT 1.33 (0.20) 1.25 (0.21) 1.32 (0.13) 1.26 (0.16) 1.28 (0.15) 0.98 (0.18) 1.25 (0.20) 0.99 (0.21)

HT 1.24 (0.18) 1.18 (0.29) 1.22 (0.11) 1.21 (0.28) 1.12 (0.14) 0.96 (0.23) 1.16 (0.24) 0.97 (0.31)
m = 3 NT 1.23 (0.18) 1.17 (0.18) 1.26 (0.14) 1.14 (0.14) 1.21 (0.15) 0.89 (0.19) 1.20 (0.28) 0.94 (0.22)

HT 1.14 (0.16) 1.10 (0.29) 1.14 (0.12) 1.10 (0.26) 1.06 (0.16) 0.84 (0.20) 1.11 (0.30) 0.95 (0.34)
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and (2) allowed us to report a loss of cardiovascular complexity in hypertension. In particular, the 
following results deserve to be discussed. 

4.1. Day-Night Modulations in Normotensive Subjects 

SampEn. The comparison between day and night conditions reveals that the circadian 
modulations of entropy depend strongly on the scale. The fastest scales are described by SampEn, 
which coincides with the multi-scale entropy at the scale of one beat. As to PI, SampEn is much 
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by the positive association between the heart-rate entropy and the vagal tone or by the inverse 
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Figure 9. Multiscale Cross Sample Entropy between PI and SBP during day and night conditions.
Panels (a,b,d,e): average modified multiscale cross entropy (mMXSE(t)) by groups and conditions for
1 ≤ m ≤ 3. Panels (c,f): signed-rank statistics V for the comparison between conditions; panels (g,h):
rank–sum statistics W for the comparison between groups. See also Figure 6.

4. Discussion

Our work presents the first joint analysis of heart rate and blood pressure multiscale entropy,
designed to address the same range of scales of the traditional power spectral methods. By considering
24-h recordings in normotensive and in hypertensive participants, our information-domain analysis (1)
provided us with a more detailed description of night-and-day modulations of cardiovascular entropy
than achievable with mono-scale SampEn and cross-SampEn, and (2) allowed us to report a loss of
cardiovascular complexity in hypertension. In particular, the following results deserve to be discussed.

4.1. Day-Night Modulations in Normotensive Subjects

SampEn. The comparison between day and night conditions reveals that the circadian modulations
of entropy depend strongly on the scale. The fastest scales are described by SampEn, which coincides
with the multi-scale entropy at the scale of one beat. As to PI, SampEn is much greater during
nighttime sleep than during daytime activities (Table 1). This result can be explained by the positive
association between the heart-rate entropy and the vagal tone or by the inverse association with the
sympatho/vagal balance. This was demonstrated by a greater heart-rate permutation entropy in supine
than in orthostatic position [32], being the vagal tone higher in supine than in standing posture; and by
a lower heart-rate SampEn after pharmacological vagal blockade [33]. The vagal tone is expected to be
greater sleeping at night than during daytime activities (1) because of the lying posture and (2) because
of the cardiac sympatho/vagal balance activations during the daily activities, and this would explain
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the greater PI SampEn at night. The vagal tone does not influence the DBP dynamics, which mainly
depend on the modulations of peripheral resistances, and coherently no differences between day and
night are found for DBP SampEn. The tendency of SBP SampEn to increase during nighttime sleep
might reflect the greater PI SampEn through beat-by-beat modulations of stroke volume.

HF range. At slightly greater scales than one beat, i.e., in the HF range, day-night modulations
of multiscale entropy differ markedly from those of SampEn. In fact, unlike the PI SampEn, which is
greater in night with high statistical significance, the PI multiscale entropy does not differ between
day and night in the HF range (Figure 6c). Furthermore, both SampEn and HF entropy of SBP differ
significantly between day and night (Figure 7c), but while SBP SampEn is greater in night, the HF
multiscale entropy of SBP is lower in night. The profiles of multiscale entropy vs. t explain these
discrepancies: During day, the multiscale entropy increases with t reaching a maximum in the HF
range while, during night, it decreases with t reaching a minimum in the HF range. The relative
minimum of SBP entropy in the HF range during night could be due to the respiratory fluctuations: in
fact, respiratory driven oscillations of SBP fall into the HF band and are more regular during sleep
than during daytime activities. As to DBP entropy, night–day differences at the shorter scales are not
significant (Figure 8c), coherently with the lower amplitude of the respiratory oscillation in DBP than
in SBP [34]. In addition, the relative minimum of PI entropy in the HF range could be explained by a
more regular respiratory sinus arrhythmia during sleep.

VLF1 range. The more evident differences between day and night are found around the VLF1 range,
encompassing scales between half a minute and a few minutes. These differences similarly regard
heart-rate and BP multiscale entropy as well as the SBP-PI multiscale cross-entropy and consist of a
substantial reduction of entropy during nighttime sleep. The VLF1 range may be linked to the relatively
slow mechanisms of vascular regulation that control the local blood flow in individual districts. We
may expect that the regulation of local blood flows from the higher brain centers is less engaged while
sleeping, in the lying position, than during the afternoon activities performed freely moving within
the hospital. Both changes in BP or in heart rate may produce changes in blood flow. This would
explain the lower VLF1 entropy of both BP and PI during nighttime sleep as due to the more constant
supply of blood flow to the individual vascular districts provided by the mechanisms of integrative
cardiovascular regulation which is, consequently, reflected in a more regular dynamics of BP and PI.

4.2. Hypertension and Entropy

MSE. Our study provides evidence of a loss of heart rate complexity in hypertension. In fact,
the multiscale entropy of PI is lower in the HT group during the daytime activities (Figure 6a,d), the
difference reaching the statistical significance at scales around the LF range (Figure 6g). By contrast,
the multiscale entropy of the NT and HT groups are very similar during nighttime sleep. In this
regard, a previous study showed that changing posture from supine to 90◦ head-up tilt increased the
sympatho/vagal balance less in hypertensive than in normotensive patients, so that the hypertensive
group, compared to normotensive controls, had a lower LF normalized power in the upright posture
but not in the supine posture [35]. This finding was explained by the lower baroreflex sensitivity in the
hypertensive participants, which caused a lower sympathetic activation in response to the upright
position [35]. We recently showed that our HT group, compared to the NT one, also has a lower
baroreflex sensitivity [27]: thus, we could similarly hypothesize that the lower LF entropy in the HT
group is a consequence of the impaired baroreflex sensitivity that caused a lower autonomic activation
in response to the afternoon activities. Because the PI multiscale entropy is lower in the HT group
during day but not during night, the day–night differences, significant in the NT group, do not reach the
statistical significance in the HT group (Figure 6f).

XMSE. However, the more pronounced alterations associated with hypertension regard the SBP-PI
cross-entropy during daytime activities, particularly at scales in-between the LF and the VLF1 bands
(Figure 9g). Cross-SampEn measures the degree of asynchronicity between two time series (the lower
is the cross-SampEn, the more synchronized are the two series). Accordingly, not only are the PI
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fluctuations more regular in the HT group because of their lower entropy but they are also better
synchronized with the SBP fluctuations. We recently showed in the same participants that the feedback
baroreflex coupling of PI with SBP is reduced in the HT group while the feedforward mechanical
coupling of SBP with PI is preserved [27]. Since cross-SampEn is not direction dependent, it does
not distinguish the contribution of the feedforward PI-to-SBP coupling from the contribution of the
feedback SBP-to-PI coupling. The two contributions are responsible for rather different patterns of
coupling: In fact, an increase/decrease of PI is associated with a decrease/increase of SBP due to the
feedforward coupling, while it is associated with the opposite pattern, i.e., an increase/decreases of SBP,
due to the feedback coupling. Thus, we may hypothesize that the superposition of two contributions
with such different dynamics increases the asynchronicity rather than the synchronization of the two
signals. This would suggest that the greater PI-SBP synchronization in hypertensive individuals
reflects the prevailing mechanical coupling between PI and SBP. The lower PI-SBP entropy during
daytime activities at scales between 15 s and 45 s would thus reflect a loss of cardiovascular complexity
in hypertension.

4.3. Limitations and Conclusions

Technical and methodological aspects should be considered regarding the reproducibility of our
entropy measures. We recorded BP invasively at the radial artery: If the less accurate but more practical
noninvasive instrumentation for measuring continuous BP at the finger site is used, SBP entropy might
differ around the LF range because of the amplification of the LF fluctuations of SBP at the digital
artery [36]. Moreover, if the beat duration is measured as the R-R interval from the electrocardiogram,
differences with the PI entropy might be observed at the shorter scales because of the difference between
the PI and the R-R interval spectral powers in the HF band [37]. Another methodological aspect
regards the use of the classic “fixed-threshold” approach, as originally proposed for the multiscale
entropy [6], which means that the entropy is calculated with the same tolerance threshold r at all the
scales, as in Equation (5). Other authors proposed using a tolerance threshold that varies at each scale
as the standard deviation of the coarse-grained series [7]: With such a “varying-threshold” approach,
the results could be different [23]. Finally, we selected two groups of NT and HT subjects of the same
size with non-dissimilar age range (p = 0.41 after Student’s t-test) and sex composition (p = 0.57 after
Fisher’s exact test); however, with a larger population of participants, we could have excluded more
safely possible age and gender biases in our results.

In conclusion, we demonstrated the feasibility of an information-domain evaluation of the
beat-by-beat BP dynamics encompassing the same scales of the traditional spectral analysis from
recordings of a few hours duration. Furthermore, our multiscale analysis on sub-periods selected
within the 24 h demonstrated night-and-day differences in the structure of the cardiovascular entropy.
Considering the scales in which the circadian differences were observed, they could be separately
associated with distinct physiological mechanisms, which likely are the vagal activity for the fastest
scales of PI entropy, the respiratory mechanics for the HF scales of SBP entropy, and the local blood flow
regulation for the VLF1 scales of heart rate and BP. From a clinical perspective, of note is the substantial
reduction of the PI-SBP cross-entropy in the hypertensive group. Since the reduction was detected at
scales shorter than 45 s and was elicited by daily activities, our result suggests the possibility that the
SBP-PI cross-entropy measured at these scales during an autonomic challenge may help to quantify
alterations in the cardiovascular control mechanisms. Thus, future autonomic tests based on multiscale
cross-entropy of BP and heart rate might integrate traditional HRV indices or baroreflex sensitivity
assessments for stratifying the cardiovascular risk more efficiently or for better monitoring the progress
of treatments or of cardiac rehabilitation protocols.

Author Contributions: P.C. and A.F. designed the work, analyzed and interpreted the data, created the software
used in the work. G.P. provided the recordings. All the authors contributed to the interpretation of the data,
drafted the work, and substantively revised it.

Funding: This research was funded by the Italian Ministry of Health, grant number RC 2019.



Entropy 2019, 21, 550 18 of 19

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pincus, S.M.; Gladstone, I.M.; Ehrenkranz, R.A. A regularity statistic for medical data analysis. J. Clin. Monit.
1991, 7, 335–345. [CrossRef] [PubMed]

2. Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88,
2297–2301. [CrossRef]

3. Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample
entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [CrossRef]

4. Pincus, S.M.; Mulligan, T.; Iranmanesh, A.; Gheorghiu, S.; Godschalk, M.; Veldhuis, J.D. Older males secrete
luteinizing hormone and testosterone more irregularly, and jointly more asynchronously, than younger
males. Proc. Natl. Acad. Sci. USA 1996, 93, 14100–14105. [CrossRef]

5. Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale Entropy Analysis of Complex Physiologic Time Series.
Phys. Rev. Lett. 2002, 89, 068102. [CrossRef] [PubMed]

6. Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005,
71, 021906. [CrossRef]

7. Valencia, J.F.; Porta, A.; Vallverdu, M.; Claria, F.; Baranowski, R.; Orlowska-Baranowska, E.; Caminal, P.
Refined Multiscale Entropy: Application to 24-h Holter Recordings of Heart Period Variability in Healthy
and Aortic Stenosis Subjects. IEEE Trans. Biomed. Eng. 2009, 56, 2202–2213. [CrossRef]

8. Wu, S.-D.; Wu, C.-W.; Lee, K.-Y.; Lin, S.-G. Modified multiscale entropy for short-term time series analysis.
Physica A 2013, 392, 5865–5873. [CrossRef]

9. Trunkvalterova, Z.; Javorka, M.; Tonhajzerova, I.; Javorkova, J.; Lazarova, Z.; Javorka, K.; Baumert, M.
Reduced short-term complexity of heart rate and blood pressure dynamics in patients with diabetes mellitus
type 1: Multiscale entropy analysis. Physiol. Meas. 2008, 29, 817–828. [CrossRef] [PubMed]

10. Watanabe, E.; Kiyono, K.; Hayano, J.; Yamamoto, Y.; Inamasu, J.; Yamamoto, M.; Ichikawa, T.; Sobue, Y.;
Harada, M.; Ozaki, Y. Multiscale Entropy of the Heart Rate Variability for the Prediction of an Ischemic
Stroke in Patients with Permanent Atrial Fibrillation. PLoS ONE 2015, 10, e0137144. [CrossRef]

11. Ho, Y.-L.; Lin, C.; Lin, Y.-H.; Lo, M.-T. The Prognostic Value of Non-Linear Analysis of Heart Rate Variability
in Patients with Congestive Heart Failure—A Pilot Study of Multiscale Entropy. PLoS ONE 2011, 6, e18699.
[CrossRef] [PubMed]

12. Bari, V.; Valencia, J.F.; Vallverdú, M.; Girardengo, G.; Marchi, A.; Bassani, T.; Caminal, P.; Cerutti, S.; George, A.L.;
Brink, P.A.; et al. Multiscale Complexity Analysis of the Cardiac Control Identifies Asymptomatic and
Symptomatic Patients in Long QT Syndrome Type 1. PLoS ONE 2014, 9, e93808. [CrossRef]

13. Pan, W.-Y.; Su, M.-C.; Wu, H.-T.; Lin, M.-C.; Tsai, I.-T.; Sun, C.-K. Multiscale Entropy Analysis of Heart Rate
Variability for Assessing the Severity of Sleep Disordered Breathing. Entropy 2015, 17, 231–243. [CrossRef]

14. Chen, C.-H.; Huang, P.-W.; Tang, S.-C.; Shieh, J.-S.; Lai, D.-M.; Wu, A.-Y.; Jeng, J.-S. Complexity of Heart
Rate Variability Can Predict Stroke-In-Evolution in Acute Ischemic Stroke Patients. Sci. Rep. 2015, 5, 17552.
[CrossRef]

15. Chen, C.-H.; Tang, S.-C.; Lee, D.-Y.; Shieh, J.-S.; Lai, D.-M.; Wu, A.-Y.; Jeng, J.-S. Impact of Supratentorial
Cerebral Hemorrhage on the Complexity of Heart Rate Variability in Acute Stroke. Sci. Rep. 2018, 8, 11473.
[CrossRef] [PubMed]

16. Tang, S.-C.; Jen, H.-I.; Lin, Y.-H.; Hung, C.-S.; Jou, W.-J.; Huang, P.-W.; Shieh, J.-S.; Ho, Y.-L.; Lai, D.-M.;
Wu, A.-Y.; et al. Complexity of heart rate variability predicts outcome in intensive care unit admitted patients
with acute stroke. J. Neurol. Neurosurg. Psychiatry 2015, 86, 95–100. [CrossRef] [PubMed]

17. Norris, P.R.; Anderson, S.M.; Jenkins, J.M.; Williams, A.E.; Morris, J.A.J. Heart Rate Multiscale Entropy at
Three Hours Predicts Hospital Mortality in 3,154 Trauma Patients. Shock 2008, 30, 17. [CrossRef] [PubMed]

18. Valenza, G.; Nardelli, M.; Bertschy, G.; Lanata, A.; Scilingo, E.P. Mood states modulate complexity in heartbeat
dynamics: A multiscale entropy analysis. EPL 2014, 107, 18003. [CrossRef]

19. Riganello, F.; Larroque, S.K.; Bahri, M.A.; Heine, L.; Martial, C.; Carrière, M.; Charland-Verville, V.; Aubinet, C.;
Vanhaudenhuyse, A.; Chatelle, C.; et al. A Heartbeat Away From Consciousness: Heart Rate Variability
Entropy Can Discriminate Disorders of Consciousness and Is Correlated With Resting-State fMRI Brain
Connectivity of the Central Autonomic Network. Front. Neurol. 2018, 9, 1–18. [CrossRef]

http://dx.doi.org/10.1007/BF01619355
http://www.ncbi.nlm.nih.gov/pubmed/1744678
http://dx.doi.org/10.1073/pnas.88.6.2297
http://dx.doi.org/10.1152/ajpheart.2000.278.6.H2039
http://dx.doi.org/10.1073/pnas.93.24.14100
http://dx.doi.org/10.1103/PhysRevLett.89.068102
http://www.ncbi.nlm.nih.gov/pubmed/12190613
http://dx.doi.org/10.1103/PhysRevE.71.021906
http://dx.doi.org/10.1109/TBME.2009.2021986
http://dx.doi.org/10.1016/j.physa.2013.07.075
http://dx.doi.org/10.1088/0967-3334/29/7/010
http://www.ncbi.nlm.nih.gov/pubmed/18583725
http://dx.doi.org/10.1371/journal.pone.0137144
http://dx.doi.org/10.1371/journal.pone.0018699
http://www.ncbi.nlm.nih.gov/pubmed/21533258
http://dx.doi.org/10.1371/journal.pone.0093808
http://dx.doi.org/10.3390/e17010231
http://dx.doi.org/10.1038/srep17552
http://dx.doi.org/10.1038/s41598-018-29961-y
http://www.ncbi.nlm.nih.gov/pubmed/30065287
http://dx.doi.org/10.1136/jnnp-2014-308389
http://www.ncbi.nlm.nih.gov/pubmed/25053768
http://dx.doi.org/10.1097/SHK.0b013e318164e4d0
http://www.ncbi.nlm.nih.gov/pubmed/18323736
http://dx.doi.org/10.1209/0295-5075/107/18003
http://dx.doi.org/10.3389/fneur.2018.00769


Entropy 2019, 21, 550 19 of 19

20. Silva, L.E.V.; Lataro, R.M.; Castania, J.A.; da Silva, C.A.A.; Valencia, J.F.; Murta, L.O.; Salgado, H.C.;
Fazan, R.; Porta, A. Multiscale entropy analysis of heart rate variability in heart failure, hypertensive, and
sinoaortic-denervated rats: classical and refined approaches. Am. J. Physiol. Regul. Integr. Comp. Physiol.
2016, 311, R150–R156. [CrossRef]

21. Vandendriessche, B.; Peperstraete, H.; Rogge, E.; Cauwels, P.; Hoste, E.; Stiedl, O.; Brouckaert, P.; Cauwels, A.
A Multiscale Entropy-Based Tool for Scoring Severity of Systemic Inflammation. Crit. Care Med. 2014, 42,
e560–e569. [CrossRef]

22. Angelini, L.; Maestri, R.; Marinazzo, D.; Nitti, L.; Pellicoro, M.; Pinna, G.D.; Stramaglia, S.; Tupputi, S.A.
Multiscale analysis of short term heart beat interval, arterial blood pressure, and instantaneous lung volume
time series. Artif. Intell. Med. 2007, 41, 237–250. [CrossRef]

23. Castiglioni, P.; Coruzzi, P.; Bini, M.; Parati, G.; Faini, A. Multiscale Sample Entropy of Cardiovascular
Signals: Does the Choice between Fixed- or Varying-Tolerance among Scales Influence Its Evaluation and
Interpretation? Entropy 2017, 19, 590. [CrossRef]

24. Turianikova, Z.; Javorka, K.; Baumert, M.; Calkovska, A.; Javorka, M. The effect of orthostatic stress on
multiscale entropy of heart rate and blood pressure. Physiol. Meas. 2011, 32, 1425–1437. [CrossRef]

25. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force
of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology.
Circulation 1996, 93, 1043–1065. [CrossRef]

26. Radaelli, A.; Mancia, G.; De Carlini, C.; Soriano, F.; Castiglioni, P. Patterns of cardiovascular variability after
long-term sino-aortic denervation in unanesthetized adult rats. Sci. Rep. 2019, 9, 1232. [CrossRef] [PubMed]

27. Parati, G.; Castiglioni, P.; Faini, A.; Di Rienzo, M.; Mancia, G.; Barbieri, R.; Saul, J.P. Closed-Loop
Cardiovascular Interactions and the Baroreflex Cardiac Arm: Modulations over the 24 Hours and the
Effect of Hypertension. Front. Physiol. 2019, 10, 1–10. [CrossRef]

28. Govindan, R.B.; Wilson, J.D.; Eswaran, H.; Lowery, C.L.; Preißl, H. Revisiting sample entropy analysis.
Physica A 2007, 376, 158–164. [CrossRef]

29. Eke, A.; Herman, P.; Kocsis, L.; Kozak, L.R. Fractal characterization of complexity in temporal physiological
signals. Physiol. Meas. 2002, 23, R1-38. [CrossRef]

30. Wilcoxon, F. Individual Comparisons by Ranking Methods. Biometr. Bull. 1945, 1, 80–83. [CrossRef]
31. Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to

Multiple Testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 1995, 57, 289–300. [CrossRef]
32. Porta, A.; Bari, V.; Marchi, A.; De Maria, B.; Castiglioni, P.; di Rienzo, M.; Guzzetti, S.; Cividjian, A.; Quintin, L.

Limits of permutation-based entropies in assessing complexity of short heart period variability. Physiol. Meas.
2015, 36, 755–765. [CrossRef]

33. Porta, A.; Castiglioni, P.; Bari, V.; Bassani, T.; Marchi, A.; Cividjian, A.; Quintin, L.; Di Rienzo, M.
K-nearest-neighbor conditional entropy approach for the assessment of the short-term complexity of
cardiovascular control. Physiol. Meas. 2013, 34, 17–33. [CrossRef]

34. de Boer, R.W.; Karemaker, J.M.; Strackee, J. Relationships between short-term blood-pressure fluctuations
and heart-rate variability in resting subjects. I: A spectral analysis approach. Med. Biol. Eng. Comput. 1985,
23, 352–358. [CrossRef]

35. Radaelli, A.; Bernardi, L.; Valle, F.; Leuzzi, S.; Salvucci, F.; Pedrotti, L.; Marchesi, E.; Finardi, G.; Sleight, P.
Cardiovascular autonomic modulation in essential hypertension. Effect of tilting. Hypertension 1994, 24,
556–563. [CrossRef] [PubMed]

36. Castiglioni, P.; Parati, G.; Omboni, S.; Mancia, G.; Imholz, B.P.; Wesseling, K.H.; Di Rienzo, M. Broad-band
spectral analysis of 24 h continuous finger blood pressure: comparison with intra-arterial recordings. Clin. Sci.
1999, 97, 129–139. [PubMed]

37. Constant, I.; Laude, D.; Murat, I.; Elghozi, J.L. Pulse rate variability is not a surrogate for heart rate variability.
Clin. Sci. 1999, 97, 391–397. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1152/ajpregu.00076.2016
http://dx.doi.org/10.1097/CCM.0000000000000299
http://dx.doi.org/10.1016/j.artmed.2007.07.012
http://dx.doi.org/10.3390/e19110590
http://dx.doi.org/10.1088/0967-3334/32/9/006
http://dx.doi.org/10.1161/01.CIR.93.5.1043
http://dx.doi.org/10.1038/s41598-018-37970-0
http://www.ncbi.nlm.nih.gov/pubmed/30718760
http://dx.doi.org/10.3389/fphys.2019.00477
http://dx.doi.org/10.1016/j.physa.2006.10.077
http://dx.doi.org/10.1088/0967-3334/23/1/201
http://dx.doi.org/10.2307/3001968
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.1088/0967-3334/36/4/755
http://dx.doi.org/10.1088/0967-3334/34/1/17
http://dx.doi.org/10.1007/BF02441589
http://dx.doi.org/10.1161/01.HYP.24.5.556
http://www.ncbi.nlm.nih.gov/pubmed/7960013
http://www.ncbi.nlm.nih.gov/pubmed/10409467
http://dx.doi.org/10.1042/cs0970391
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Subjects and Data Collection 
	Coarse-Grained MSE and Modified MSE 
	MSE of Cardiovascular Series: From Scales in Beats to Temporal Scales in Seconds 
	Low-Pass Filtering for mMSE Estimates 
	Multiscale Cross-Entropy between SBP and PI 
	Statistical Analysis 

	Results 
	PI Entropy 
	Blood Pressure Entropy 
	SBP-PI Cross-Entropy 

	Discussion 
	Day-Night Modulations in Normotensive Subjects 
	Hypertension and Entropy 
	Limitations and Conclusions 

	References

