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ABSTRACT

Flares from tidal disruption events are unique tracers of quiescent black holes at the centre of galaxies. The appearance of these
flares is very sensitive to whether the star is totally or partially disrupted, and in this paper we seek to identify the critical distance of
the star from the black hole (rd) that enables us to distinguish between these two outcomes. We perform here mesh-free finite mass,
traditional, and modern smoothed particle hydrodynamical simulations of star-black hole close encounters, with the aim of checking if
the value of rd depends on the simulation technique. We find that the critical distance (or the so-called critical disruption parameter βd)
depends only weakly on the adopted simulation method, being βd = 0.92 ± 0.02 for a γ = 5/3 polytrope and βd = 2.01 ± 0.01 for a
γ = 4/3 polytrope.
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1. Introduction
There is compelling evidence of the ubiquitous presence of
massive black holes (BHs) at the centres of nearby galaxies
(Kormendy & Richstone 1995; Kormendy & Ho 2013). These
BHs are mainly in low-luminous states (Ho 2008) or in qui-
escence, but sometimes they can enter highly luminous phases
(AGN) that are due to sudden influxes of the surrounding gas.
These influxes can be provided by the tidal disruption (TD) of
stars (Rees 1988). TDs occur when stellar dynamical encounters
scatter a star (of mass M∗ and radius R∗) onto a low angular mo-
mentum orbit about the BH (of mass MBH), subjecting it to the
extreme BH tidal field (Alexander 2012). Specifically, if the star
comes close to the so-called BH tidal radius

rt ∼ R∗

(
MBH

M∗

)1/3

∼ 102 R�

(
R∗

1 R�

)(
MBH

106 M�

)1/3(1 M�
M∗

)1/3

(1)

(Hills 1975; Frank & Rees 1976), the star will be totally or
partially disrupted, depositing a fraction of its mass onto the
BH through an accretion disc and powering a bright flare (e.g.
Rees 1988; Phinney 1989; Evans & Kochanek 1989; Lodato
et al. 2009; Strubbe & Quataert 2009; Lodato & Rossi 2011;
Guillochon & Ramirez-Ruiz 2013, 2015a; Coughlin & Begel-
man 2014). For a star to be disrupted outside the event horizon

? Einstein Fellow.

of a BH, that is, in order to observe the corresponding TD accre-
tion flare, rt must be greater than the BH event horizon radius

rs =
xGMBH

c2 ∼ 4 R�

(
MBH

106 M�

)(
x
2

)
, (2)

where x encapsulates effects related to the BH spin (Kesden
2012). Hence, the non-rotating destroyer BH mass must be
MBH . 108 M� when solar-type stars are involved. TD accre-
tion flares thus reveal otherwise quiescent or low-luminous BHs
in a mass range complementary to that probed in AGN surveys
(Vestergaard & Osmer 2009).

Regardless of whether the destruction is total or partial, most
of the stars in a galaxy fated to be disrupted by the central BH
are scattered onto low angular momentum orbits from about
the BH sphere of influence, that is, onto nearly parabolic tra-
jectories (Magorrian & Tremaine 1999; Wang & Merritt 2004).
For this reason, in this work we assume the disruptive orbits to
be parabolic. This assumption, together with the kick naturally
imparted by the disruption itself (Manukian et al. 2013), pre-
vents our partially disrupted stars from encountering the BH a
multitude of times. In this parabolic regime, about half of the
stellar debris produced by a (total or partial) stellar disruption
binds to the BH, returns to pericentre on different elliptical or-
bits (that is, with different orbital energies; Lacy et al. 1982),
circularises forming an accretion disc, and falls back onto the
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BH emitting a peculiar flare. The fallback rate is likely to be
somewhat different from the rate of debris returning to pericen-
tre (e.g. Cannizzo et al. 1990; Ramirez-Ruiz & Rosswog 2009;
Hayasaki et al. 2013, 2016; Coughlin & Nixon 2015; Guillochon
& Ramirez-Ruiz 2015b; Piran et al. 2015; Shiokawa et al. 2015;
Bonnerot et al. 2016; Coughlin et al. 2016), which in turn de-
pends on the structure of the disrupted star (e.g. Lodato et al.
2009) and the properties of the encounter (e.g. Guillochon &
Ramirez-Ruiz 2013, 2015a).

In this paper we aim at computing the critical distance rd at
which a star becomes totally or partially disrupted by the BH
tidal field. We are interested in finding the critical disruption
parameter

βd =
rt

rd
= β

rp

rd
(3)

for specific stellar structures that distinguishes total TDs from
partial TDs, with rt given by Eq. (1), β = rt/rp and rp being
the pericentre of the star around the BH. A partial TD is ob-
tained for β < βd, that is, for rp > rd, a total TD for β ≥ βd,
that is, for rp ≤ rd. The need to introduce the critical distance rd
arises because the tidal radius rt defines where the BH tidal force
overcomes the stellar self-gravity only at the stellar surface, and
not everywhere within the star. This problem has been consid-
ered previously (Guillochon & Ramirez-Ruiz 2013, 2015a; here-
after GRR). GRR evaluated the critical disruption parameter βd
for polytropes of index 5/3 and 4/3 (which represent low- and
high-mass stars, respectively) using a series of adaptive mesh
refinement (AMR) grid-based hydrodynamical simulations of
tidal encounters of star and BH. In this paper, we instead present
the results of simulations we performed for the same purpose
with the codes gadget2 (traditional smoothed particle hydro-
dynamical (SPH); Springel 2005)1 and gizmo (modern SPH and
mesh-free finite mass (MFM); Hopkins 2015)2. Since these tech-
niques all have advantages but also limits, we are inclined to
follow GRR in finding the critical disruption parameter βd for
certain stellar structures3 using an MFM, a traditional SPH, and
a modern SPH code instead of an AMR grid-based code, with
the goal of comparing results from different techniques.

The paper is organised as follows. In Sect. 2 we compare
AMR grid-based codes to gizmo mfm, traditional SPH, and
modern SPH techniques. In Sect. 3 we discuss our method and
describe how we evaluate the stellar mass loss ∆M in our sim-
ulated encounters. We show the curves of mass loss we obtain
for all codes as a function of β and polytropic index, comparing
them and the corresponding βd with GRR. Section 4 contains our
summary.

2. Grid-based vs. SPH and gizmo mfm codes

Fluid hydrodynamics and interactions in astrophysics are gen-
erally treated using two different classes of numerical meth-
ods: Eulerian grid-based (e.g. Laney 1998; Leveque 1998)
and Lagrangian SPH (e.g. Monaghan 1992; Price 2005, 2012;
Cossins 2010). Basically, grid-based methods divide a domain
into stationary cells traversed over time by the investigated fluid,
and account for information exchange between adjacent cells in

1 http://wwwmpa.mpa-garching.mpg.de/gadget/
2 http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.
html
3 When a more realistic stellar equation of state is used (e.g. Rosswog
et al. 2009, but only for white dwarfs), the value of βd may change
slightly.

the aim at solving the fluid equations. In particular, AMR grid-
based techniques (e.g. Berger & Oliger 1984; Berger & Colella
1989) adapt the cell number and size according to the properties
of different fluid regions, thus increasing the resolution where
needed (for example in high-density regions) and reducing com-
putational efforts and memory employment where lower resolu-
tion is sufficient. In contrast, SPH methods are Lagrangian by
construction and model a fluid as a set of interacting fluid ele-
ments, or particles, each with its own set of fluid properties. In
practice, the density of each particle is calculated by consider-
ing the neighbours within its so-called smoothing length (e.g.
Price 2005), and particle velocities and entropies or internal en-
ergies are evolved according to a pressure-entropy or energy for-
malism (modern SPH) or a density-entropy or energy formalism
(traditional SPH). Essentially, modern SPH techniques evaluate
the pressure and the local density of each particle by consider-
ing the neighbours within the particle smoothing length and use
pressure to define the equations of motion (Hopkins 2013). Tra-
ditional SPH techniques instead directly estimate the pressure
of each particle from its local density in the same way as for the
other particle properties, and use local density to define the equa-
tions of motion. In SPH methods the particle density mirrors the
density of different regions of the fluid.

Grid-based and SPH techniques both have advantages, but
also limits. At sufficiently high velocities, grid-based methods
are non-invariant under Galilean transformations, which means
that different reference frames are associated with different lev-
els of numerical diffusion among adjacent cells, and simulation
results may slightly depend on the choice of the reference system
(e.g. Wadsley et al. 2008). Moreover, grid-based methods violate
angular momentum conservation because a fluid moving across
grid cells produces artificial diffusion; this diffusion can lead to
unphysical forces, which couple with the fixed structure of the
grid to tie the fluid motion on specific directions (e.g. Peery &
Imlay 1988; Hahn et al. 2010). Finally, in grid-based methods
hydrodynamics and gravity descriptions are mismatched, in the
sense that hydrodynamics is evaluated by integrating quantities
over each cell, while gravity is computed at the centre of each
cell and then interpolated at the desired position (as for colli-
sionless particles). This can produce spurious instabilities (e.g.
Truelove et al. 1997).

SPH methods first need an artificial viscosity term added
to the particle equation of motion in order to resolve shocks
(Balsara 1989; Cullen & Dehnen 2010). Second, traditional
SPH codes are associated with a surface tension between fluid
regions of highly different densities, which limits their mixing
(e.g. Agertz et al. 2007). Great effort has been made to improve
SPH methods, leading to the so-called modern SPHs (Hopkins
2013). The smoothed definition of pressures together with densi-
ties, the more sophisticated viscosity switches, the higher order
smoothing kernels (quintic spline instead of cubic spline; see be-
low), and the inclusion of artificial conduction allowed solving
these problems, at least partially. However, the higher order ker-
nels typically lead to excessive diffusion. Despite all these im-
provements, some intrinsic limits of this technique still remain,
such as the ideal infinite number of neighbours required to cap-
ture small-amplitude instabilities.

Recently, a completely new Lagrangian method that aims to
simultaneously capture the advantages of both SPH and grid-
based techniques, has been implemented in the public code
gizmo (Hopkins 2015). In gizmo, the volume is discretised
among a discrete set of tracers (particles) through a partition
scheme based on a smoothing kernel (in a way that is similar
to SPH codes). However, unlike SPH codes, these particles do
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Fig. 1. Left panel: analytic solutions for the γ = 4/3, 5/3 polytropic radial density profile from the Lane-Emden equation. Right panel: plot of the
relaxed radial stellar density profile for each simulation technique for both politropic indices (γ = 4/3, 5/3 from the highest to the lowest central
density). Units are M�/R3

� for ρ and R� for r.

not sample fluid elements, but only represent the centre of un-
structured cells that are free to move with the fluid, like in mov-
ing mesh codes (Springel 2010). Hydrodynamics equations are
then solved at the cell boundaries, defined by an effective face.
This guarantees an exact conservation of energy and linear and
angular momentum as well as an accurate description of shocks
without needing an artificial viscosity term. The density associ-
ated with each particle or cell is obtained by dividing the mass of
the cell for its effective volume. In this work, we use the mesh-
free finite mass method of gizmo, where particle mass is pre-
served, making the code perfectly Lagrangian. For this method,
we use the cubic spline kernel with a desired number of neigh-
bours equal to 32 for the partition.

3. SPH and gizmo mfm simulations and stellar mass
losses

We modelled stars as polytropes of index 5/3 (low-mass stars)
or 4/3 (high-mass stars), with masses and radii of 1 M� and
1 R�, sampling each of them with Npart ∼ 105 particles. This
is done by placing the particles through a close sphere packing
and then stretching their radial positions to reach the required
polytropic density profile, thus limiting the statistical noise as-
sociated with a random placement of the particles. Npart sets
the gravitational softening length of each particle in our codes
to ε ∼ 0.1 R∗/(Npart)1/3 ∼ 0.002 R�, preventing particle over-
lapping in evaluating gravitational interactions. We also tried
test runs at higher resolution, where we modelled stars with
∼106 particles, but did not find significant differences in the stel-
lar mass loss ∆M with respect to simulations with lower resolu-
tion. We evolved stars in isolation for several dynamical times
in order to ensure their stability. The right panel of Fig. 1 shows
the relaxed stellar density profile, that is, the local density of the
particles ρ(r) (in M�/R3

�) versus their radial distance from the
stellar centre of mass r (in R�), for each simulation technique for
the two polytropic indices (γ = 4/3, and 5/3 from the highest to
the lowest central density), compared to the analytic solutions
from the Lane-Emden equation (left panel). The kernel function
that drives the evaluation of each particle local density (e.g. Price
2005) and the volume partition (Hopkins 2015) is chosen to be
a cubic (in gadget2 and gizmo mfm) or quintic (in gizmo
modern SPH) spline, and the number of neighbours of each

particle and domain point within its smoothing length/kernel
size is fixed to 32 and 128, respectively (Monaghan & Lattanzio
1985; Hongbin & Xin 2005; Dehnen & Aly 2012). Gravita-
tional forces are computed through the Springel relative crite-
rion (Springel 2005) instead of the standard Barnes-Hut criterion
(Barnes & Hut 1986) because the Springel criterion shows better
accuracy at the same computational cost. Since the relative crite-
rion is based on the particle acceleration, which is not available
at the beginning of each simulation, the Barnes-Hut criterion is
adopted at the first timestep to estimate an acceleration value,
and then the iteration is repeated using the Springel criterion in
order to remain consistent with the subsequent iterations. In our
simulations we use quite a large opening angle value (0.7), but
the accuracy parameter for the relative criterion is set to 0.0005,
which is very small compared to the suggested standard value
(0.0025). We performed test runs setting the opening angle to 0.1
and increasing the accuracy parameter to 0.0025, but found no
differences in the stellar density and temperature profiles and in
∆M. We implemented the BH force through a Newtonian analyt-
ical potential, with MBH = 106 M�, and in each of the traditional
SPH, modern SPH and gizmo mfm simulations we placed one
star on a parabolic orbit with a given rp, that is, β, around the BH.
The star was initially placed at a distance five times greater than
rt to avoid spurious tidal distortions (we also tested larger initial
distances, but found no significant differences in the outcomes).
Stellar rotation is not expected to significantly affect our results
in the range of β considered in this paper (Stone et al. 2013).
Figures 2 and 3 show snapshots from our traditional SPH simu-
lations recorded shortly after pericentre passage. The lower limit
of the range where βd lies (yellow) allows the core recollapse to
occur for both polytropic indices (Guillochon & Ramirez-Ruiz
2013, 2015a). Modern SPH and gizmo mfm simulations give
almost the same results.

We aim to assess the stellar mass loss ∆M in each simula-
tion. We recall that ∆M = M∗ corresponds to total disruption.
We describe the method we adopted to evaluate ∆M from each
of our simulated star-BH tidal encounters, following GRR. In a
specific simulation at a specific time, the position and velocity
components of the stellar centre of mass around the BH, xCM,
yCM, zCM, vxCM , vyCM , and vzCM are defined through an iterative ap-
proach. As a first step, we choose them to coincide with the po-
sition and velocity components of the particle with the highest
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Fig. 2. Snapshots of the SPH particle density (in logarithmic scale) at t ∼ 8.5 × 104 s after pericentre passage for our gadget2 simulations, in the
case of a star with polytropic index 5/3. White and black correspond to the highest and lowest densities, respectively. Each snapshot is labelled
with the corresponding value of β, with the range where the critical disruption parameter βd lies highlighted in yellow.
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Fig. 4. Stellar mass loss (in units of ∆M/M∗) as a function of β for a star with polytropic index 5/3. ∆M is evaluated at t ∼ 106 s after the
disruption. Blue, black, green, and red points are associated with gizmo mfm, gadget2, gizmomodern SPH, and GRR simulations, respectively.
Uncertainties on ∆M/M∗ from SPH and gizmo mfm simulations are inferred as reported in the main text. Points at low values of β have been
slightly horizontally displaced to give a better view of the error bars. The value of the critical disruption parameter βd (dashed lines) slightly
depends on the adopted simulation method.
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Fig. 5. Same as Fig. 4 for a polytropic star of index 4/3. The values of βd obtained from our simulations visibly differ from those of GRR.

local density, xpeak, ypeak, zpeak, vxpeak , vypeak , vzpeak . The specific
binding energy to the star of the ith particle then reads

E∗i =
1
2

[
(vxi − vxpeak )2 + (vyi − vypeak )2 + (vzi − vzpeak )2

]
+ φ∗i , (4)

where vxi , vyi , and vzi are the velocity components of the ith par-
ticle and φ∗i the stellar gravitational potential acting on the ith
particle (directly computed by the simulation code). By consid-
ering only particles with E∗i < 0, we re-define the position and
velocity components of the star centre of mass and re-evaluate
Eq. (4) by setting them in place of the components labelled with

the subscript “peak”. The process is re-iterated until the conver-
gency of vCM to a constant value to lower than 10−5 R� yr−1. Par-
ticles with E∗i > 0 are unbound from the star. The stellar mass
loss at the considered time can be obtained by multiplying the
mass of a single particle, m = M∗/Npart, by the number of par-
ticles bound to the star, NBound, and subtracting the result from
M∗. ∆M is obtained at t ∼ 106 s (∼650 stellar dynamical times)
after the disruption.

Figures 4 and 5 show the stellar mass loss in units of ∆M/M∗
as a function of β for polytropes of index 5/3 and 4/3, respec-
tively, inferred from our simulations with gizmo mfm (blue
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Table 1. Fitting coefficients of Eq. (6) and βd for each of the point sets in Figs. 4 and 5.

Simulations Polytropic index A B C D E βd

GRR 5/3 3.1647 −6.3777 3.1797 −3.4137 2.4616 0.90
gizmo mfm 5/3 5.4722 −11.764 6.3204 −3.8172 2.8919 0.91
gadget2 5/3 8.9696 −19.111 10.180 −4.2964 3.3231 0.93

gizmo modern SPH 5/3 8.7074 −18.358 9.6760 −4.5340 3.5914 0.94
GRR 4/3 12.996 −31.149 12.865 −5.3232 6.4262 1.85

gizmo mfm 4/3 −13.964 11.217 −2.1168 0.3930 0.5475 2.00
gadget2 4/3 −15.378 −5.2385 6.3635 −1.5122 5.7378 2.02

gizmo modern SPH 4/3 −10.394 −0.2160 2.6421 −0.8804 2.9215 2.02

Table 2. βd value as a function of polytropic index and adopted simula-
tion method.

Simulation method Polytropic index βd

AMR grid-based 5/3 0.90
MFM 5/3 0.91

Traditional SPH 5/3 0.93
Modern SPH 5/3 0.94

AMR grid-based 4/3 1.85
MFM 4/3 2.00

Traditional SPH 4/3 2.02
Modern SPH 4/3 2.02

points), gadget2 (black points) and gizmomodern SPH (green
points), and the same obtained from the GRR simulations (red
points). We estimate the uncertainty on our inferred ∆M/M∗ as

σ ∆M
M∗

=
√
σ2

Poisson + σ2
E∗i

+ σ2
AD =

√( √
NBound

Npart

)2

+ 0.012 + σ2
AD

(5)

where σAD is the average deviation from 1 of ∆M/M∗ for to-
tal disruptions in each of our point sets and σE∗i = 0.01, as
the values of |E∗i | for about 103 particles of 105 are lower than
0.01 times the average value |E∗|, that is, we are not able to de-
termine exactly whether these 103 particles are bound to or un-
bound from the star. We fit each of our point sets with a function
introduced in GRR

f (β) = exp
[

A + Bβ + Cβ2

1 − Dβ + Eβ2

]
, β < βd

f (β) = 1, β ≥ βd. (6)

The values of the coefficients A−E and of βd are given in Table 1.
It is worth noting that for the 5/3 polytropic index the curves
of stellar mass loss associated with the four simulation codes
differ very slightly in the value of the critical disruption pa-
rameter βd (dashed lines in Fig. 4). Specifically, βd is reached
first in the GRR simulations (βd = 0.90), followed by the
gizmo mfm (βd = 0.91), gadget2 (βd = 0.93), and gizmo
modern SPH (βd = 0.94) simulations (Table 2). This is ex-
pected because of the greater degree of excessive diffusion that
characterises grid-based techniques compared to modern and

traditional SPH techniques and the surface tension conversely
involved in SPH methods (Sect. 2). For the 4/3 polytropic in-
dex, instead, there is disagreement between our simulations and
those of GRR (dashed lines in Fig. 5). βd is reached clearly first
in the simulations of GRR (βd = 1.85), followed by very similar
values of the gizmo mfm (βd = 2.00), gadget2 (βd = 2.02),
and gizmo modern SPH (βd = 2.02) simulations (Table 2). We
hypothesise that the lower value of βd obtained by GRR is the
result of resolving the stellar core of the γ = 4/3 polytrope not
far enough.

In support of this hypothesis, we tested the dependence of
βd on the resolution of our simulations by performing some
low-resolution (∼103 particles) gadget2 simulations for the
two polytropic indices (black points in Fig. 6). Figure 6 shows
that for a γ = 5/3 polytrope (left-hand panel) the change in
resolution has negligible effects on βd. On the other hand, for
γ = 4/3 polytropes (right-hand panel) we observe a strong de-
pendence of βd on resolution below a resolution threshold be-
cause the configuration of the star is less stable.

We also determined the dependence of βd on different values
of MBH by performing additional low-resolution (∼103 particles)
gadget2 simulations with a γ = 5/3 polytrope of mass 1 M�
and BHs of masses 105 M� and 107 M�. Figure 7 clearly shows
that βd does not depend sensitively on MBH. We recall that
flares and accretion temperatures instead depend on MBH (e.g.
Guillochon & Ramirez-Ruiz 2013, 2015a).

For completeness, we also show in Fig. 8 how the poly-
tropic index of the stellar remnant, which results from partial
disruptions on parabolic orbits, is not preserved, but decreases
with increasing β for both γ = 5/3 polytropes (left panel) and
γ = 4/3 polytropes (right panel).

4. Summary and conclusions

Tidal disruption events provide a unique way to probe otherwise
quiescent or low-luminous black holes at the centres of galax-
ies. When approaching the central black hole of a galaxy, a star
may be totally or partially disrupted by the black hole tidal field,
depositing material onto the compact object and lighting it up
through a bright flare (e.g. Rees 1988; Phinney 1989; Evans &
Kochanek 1989). Such a tidal accretion flare is expected to be
shaped by the structure of the disrupted star (e.g. Lodato et al.
2009) and the morphology of the star-black hole encounter (e.g.
Guillochon & Ramirez-Ruiz 2013, 2015a).

The hydrodynamical simulations of Guillochon &
Ramirez-Ruiz of star-black hole close encounters probably
represent the most complete theoretical investigation of the
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γ = 4/3 polytrope, the value of βd clearly depends on the adopted resolution below a resolution threshold. For a γ = 5/3 polytrope, the value of βd
differs very slightly among the three simulations.
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Fig. 7. Comparison of mass losses as a function of β near βd for a
γ = 5/3 polytrope of mass 1 M� approaching BHs with three differ-
ent masses: 105 M� (red points), 106 M� (black points), 107 M� (blue
points). The value of βd clearly does not depend on MBH.

properties of tidal disruption events (Guillochon & Ramirez-
Ruiz 2013, 2015a). In each simulation, the star (M∗ = 1 M�,
R∗ = 1 R�) is modelled as a polytrope of index 5/3 or 4/3 and
evolved on a parabolic orbit with a specific pericentre around
the black hole (MBH = 106 M�) using an AMR grid-based code.
The resulting stellar mass loss defines the morphology of the
simulated encounter, that is, it defines whether the disruption is
total or partial, thus shaping the ensuing accretion flare. Here
we followed the approach of Guillochon & Ramirez-Ruiz, but
adopted two SPH simulation codes (gadget2, traditional SPH;
Springel 2005; gizmo, modern SPH; Hopkins 2015) and gizmo
in mfm mode (Hopkins 2015) instead of a grid-based method,
as all these simulation techniques have their advantages, but
also limits (Sect. 2). We mainly intended to determine for
each polytropic index whether the demarcation line between
total and partial tidal disruption events, the critical disruption
parameter βd (Eq. (3)), is the same for different simulation
techniques.

Figures 4 and 5 clearly show that for a γ = 5/3 polytrope
the curves of stellar mass loss inferred from AMR grid-based
simulations (red points) and from gizmo mfm (blue points),
traditional SPH (black points), and modern SPH (green points)
simulations differ only slightly in the value of βd (dashed lines),
reflecting the limits of different codes (Sect. 2), while for a γ =
4/3 polytrope there is disagreement between our simulations and
those of GRR (Table 2), which is most likely due to the adopted
resolutions; this interpretation is consistent with the resolution
tests we performed with our own simulations (Fig. 6). However,
even with equal resolution, the SPH approach should be supe-
rior to a grid-based approach at resolving the dynamics of the
core of, especially, a γ = 4/3 polytrope, given that the resolution
naturally follows density in equal-mass-particle approaches. As
a consequence, we find βd = 0.92 ± 0.02 (2.01 ± 0.01) for a
γ = 5/3 (4/3) polytrope.

The γ = 4/3 profile is probably only appropriate for a zero-
age main-sequence sun because the central density of our Sun
is about twice greater than the γ = 4/3 polytrope at an age of
5 Gyr. For a real star, even greater resolution would therefore be
needed in a grid-based approach in order to properly estimate the
location of full versus partial disruption. Moreover, real stars are
generally not well modelled by a single polytropic index, espe-
cially as they evolve (MacLeod et al. 2012). Giant stars consist
of a tenuous envelope and a dense core, which prevents enve-
lope mass loss, thus likely moving the value of βd even ahead.
A similar core-envelope structure and behaviour also charac-
terise giant planets when they are disrupted by their host star
(Liu et al. 2013). TDEs could also refer to disruptions by stel-
lar objects (Guillochon et al. 2011; Perets et al. 2016). How-
ever, the value of βd for the latter encounters still remains to be
investigated.
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Fig. 8. Changes in the value of the polytropic index of the stellar remnant resulting from partial disruptions for selected initial values of its
β. Densities and radii are normalised to the central density and the radius of the remnant. Black curves represent solutions to the Lane-Emden
equation for different values of γ; red, green, and blue points are from some of our simulations that left a remnant, for three different values of β.
Left panel: γ = 5/3 polytrope. Right panel: γ = 4/3 polytrope.
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