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We study normal forms of scalar integrable dispersive
(not necessarily Hamiltonian) conservation laws,
via the Dubrovin–Zhang perturbative scheme.
Our computations support the conjecture that
such normal forms are parametrized by infinitely
many arbitrary functions that can be identified
with the coefficients of the quasi-linear part of the
equation. Moreover, in general, we conjecture that
two scalar integrable evolutionary partial differential
equations having the same quasi-linear part are Miura
equivalent. This conjecture is also consistent with the
tensorial behaviour of these coefficients under general
Miura transformations.

1. Introduction
The Dubrovin–Zhang perturbative approach is concerned
with the classification problem of evolutionary partial
differential equations (PDEs) of the form

ut = X(u, ux, . . .), i = 1, . . . , n, (1.1)

where the functions X(u, ux, . . .) are polynomials in
the jet variables ux, uxx, . . .. Introducing a rescaling of
independent variables of the form x → εx and t → εt, the
equation (1.1) takes the form

ut =
∑

k≥−1

εkFk+1(u, ux, . . . , u(k+1)), (1.2)

where the functions Fk are homogeneous differential
polynomials of suitable degree, and we adopt the
notation u(k) := ∂k

xu. It is also assumed that

F0(u) ≡ 0.
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Hence, we focus on a class of evolutionary PDEs of the form

ut =
∑
k≥0

εkFk+1(u, ux, . . . , u(k+1)), (1.3)

where the r.h.s is a formal power series in ε and it does not necessarily truncate. Introducing
a gradation such that functions depending on the single variable u have degree zero, and
monomials of the form u(k) have degree k, it is straightforward to check that the differential
polynomial Fk has degree k. For instance, we have

F1 = V(u)ux

F2 = A(u)uxx + B(u)u2
x.

The Burgers equation
ut = uux + εuxx, (1.4)

and the Korteweg–de Vries (KdV) equations

ut = uux + ε2uxxx (1.5)

are two celebrated examples of exactly integrable nonlinear PDEs of the form (1.3). As the r.h.s.
of equation (1.3) is allowed to be an infinite power series in ε, the class of equations under study
also includes non-evolutionary examples such as the Camassa–Holm equation [1]

ut − ε2uxxt = −3uux + ε2(uuxxx + 2uxuxx). (1.6)

Indeed, the Camassa–Holm equation (1.6) can be recast in the evolutionary form via the
transformation

v = u − ε2uxx = (1 − ε2∂2
x )u,

whose formal inverse is given by

u = (1 − ε2∂2
x )−1v = 1 + ε2vxx + ε4vxxxx + · · · .

One of the main problem in the theory of integrable PDEs is to classify equations (or systems of
equations) of the form (1.3) up to equivalence under the so-called Miura transformations

u → ũ = M0(u) +
∑

k

εkMk(u, ux, . . .),

where M0 is assumed to be invertible and Mk are differential polynomials of degree k.
Hence, the classification problem of integrable equation of the form (1.3) is reformulated in

terms of a classification problem of equivalence classes of integrable equations with respect to
Miura transformations. The Dubrovin–Zhang perturbative scheme aims at the reconstruction of
higher-order integrable corrections (both dispersive and dissipative) starting from the quasi-linear
PDE of Hopf type (the dispersionless limit)

ut = f (u)ux.

Within this scheme, the various perturbative approaches developed so far mainly differ in the
kind of additional structures that are possessed by the dispersionless limit and that are required
to be preserved by the perturbation procedure.

Let us consider, for instance, the Hopf equation ut = uux. It is clearly integrable as it possesses
infinitely many symmetries parametrized by an arbitrary function of one variable g(u). The most
general approach to the classification of integrable deformations of the Hopf equation is based
on the request that all deformed symmetries uτ = g(u)ux + · · · commute with the deformed Hopf
equation ut = uux + · · · [2–4].

The classification of integrable conservation laws is based on the simple observation that the
Hopf hierarchy consists of conservation laws of the form ut = ∂x(G(u)) and one may require
that the deformation of the integrable hierarchy preserves the form of a conservation law,
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i.e. ut = ∂x(G(u) + · · · ). The general classification of scalar viscous conservation laws has been
recently discussed in reference [5].

A special class of conservation laws is given by Hamiltonian equations. These are equations
of the form ut = ∂x(G(u) + · · · ) such that the deformed currents G(u) + · · · can be written as
variational derivatives w.r.t. the variable u, i.e.

ut = ∂x
δ

δu

(∫
(h0(u) + · · · ) dx

)
.

At the dispersionless level, all equations of Hopf hierarchy are Hamiltonian w.r.t. the operator ∂x

that defines a Poisson bracket of hydrodynamic type [6]. This observation suggests to deform the
Hamiltonians, requiring that they remain in involution w.r.t. the Poisson bracket. This approach
has been first proposed and developed in reference [7].

An alternative classification procedure relies on the observation that Hopf-type equations
possess a bi-Hamiltonian structure. This suggests to classify integrable deformations according
to the existence of a deformed bi-Hamiltonian structure [3,8–11].

A common feature of these different approaches is that deformations are parametrized by
arbitrary functions. Clearly, the numbers of the functional parameters involved crucially depends
on the problem at hand. In this paper, following Arsie et al. [5], we consider the case of scalar
conservation laws extending the analysis to the case of dispersive conservation laws. Besides the
undeniable relevance of conservation laws in physical applications, our focus is also motivated
by the fact that, within the more general context of systems of PDEs of hydrodynamic type, the
class of integrable diagonalizable equations [13] coincide with the class of diagonalizable systems
of conservation laws [14].

A key observation of this work is that for scalar evolutionary PDEs the coefficients
corresponding to the quasi-linear terms have a tensorial nature. More precisely, given a PDE of
the form

ut = X1(u)ux + ε(X2(u)uxx + · · · ) + ε2(X3(u)uxxx + · · · ) + · · ·
the coefficients X1(u), X2(u), etc., of the quasi-linear terms are invariant under Miura
transformations of the form:

u → v = u +
∑

k

εkMk(ux, uxx, . . .). (1.7)

It is thus natural to expect that these coefficients play a crucial role in the classification problem.
We also observe that the above transformations, which can be seen as perturbation of the identity,
trivially preserve the dispersionless limit.

Based on the results of this study combined with results already existing in the literature, we
formulate conjecture 1.1.

Conjecture 1.1. Two scalar integrable evolutionary PDEs admitting the same quasi-linear part are
Miura equivalent.

According to conjecture 1.1, the number of free functional parameters appearing in
deformations coincide with the number of independent functions in the quasi-linear part of the
equation.

2. Tensorial coefficients
Here, we analyse in more detail the transformation properties of quasi-linear terms in
evolutionary equations of the form

ut = X(u, ux, uxx, . . .) = X1(u)ux + ε(X2(u)uxx + · · · ) + ε2(X3(u)uxxx + · · · ) + O(ε3), (2.1)

under a Miura transformation of the following type

u → v = M0(u) +
∑

k

εkMk(u, ux, uxx, . . .). (2.2)
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Observing that the vector field X(u, ux, uxx, . . .) in equation (2.1) transforms according to the rule

X(u, ux, . . .) → X̃(v, vx, . . .) =
(

∂v

∂u
+ ∂v

∂ux
∂x + ∂v

∂uxx
∂2

x + · · ·
)

Xu=u(v,vx,...) (2.3)

where u = u(v, vx, . . .) is the inverse of Miura transformation (2.2), we show that the coefficients of
leading derivatives X1(u), X2(u), etc., in (2.1) are not affected by the corrections to the leading part
M0(u) of the Miura transformation (2.2). More precisely, these coefficients transform as tensors
w.r.t the leading term of the transformation and in particular are invariant if such a leading term
is the identity, i.e.

u → v = u +
∑

k

εkMk(u, ux, uxx, . . .). (2.4)

We can prove the following.

Theorem 2.1. Under the Miura transformation (2.2), the coefficients X1(u), X2(u), X3(u), . . . of the
quasi-linear terms in the right-hand side of (2.1) transform as

Xk(u) → X̃k(v) = Xk(u(v)),

where u(v) is the inverse of the dispersionless limit of (2.2).

Proof. First of all, we observe that quasi-linear terms in the differential polynomial

X̃(v, vx, . . .) = X̃1(v)vx + ε(X̃2(v)vxx + · · · ) + ε2(X̃3(v)vxxx + · · · ) + O(ε3)

are completely determined by quasi-linear terms in the differential polynomial

X̃(u, ux, . . .) =
(

∂v

∂u
+ ∂v

∂ux
∂x + ∂v

∂uxx
∂2

x + · · ·
)

X(u, ux, . . .)

= X̃1(u)ux + ε(X̃2(u)uxx + · · · ) + ε2(X̃3(u)uxxx + · · · ) + O(ε3). (2.5)

Observing that the inverse of (2.2) is of the form

u = N0(v) +
∑
k≥1

εkNk(v, vx, . . .), (2.6)

it can be easily proved by induction that the term X̃k(v)v(k) (i.e. the quasi-linear term in X̃(v, vx, . . .)
of degree k) is determined by quasi-linear terms in X̃(u, ux, . . .) of degree less than or equal to k.
Hence, in the following, we focus our analysis on quasi-linear terms of X̃(u, ux, . . .) only. Let us
now write the Miura transformation (2.2) as

u �→ v = M0(u) +
∑
k≥1

εk(ak(u)u(k) + Rk(u, ux, . . .)), (2.7)

where the homogeneous part of the k-th degree Mk(u, ux, . . .) has been decomposed into the quasi-
linear part and the remainder. We check by a direct calculation that quasi-linear terms of X̃mu(m)
of X̃(u, ux, . . .) computed by using the formula (2.5) are not affected by the reminder Rk.

Let us now write the vector field X(u, ux, . . .) as

X =
∑
l≥1

εl−1Xl(u)u(l) + NQ,

where NQ denotes the non-quasi-linear part of X(u, ux, . . .) and compute the transformed vector
field (2.5)

X̃(u, ux, . . .) =
⎛
⎝∂F0(u)

∂u
+
∑
k≥1

εkak(u)∂k
x + R1

⎞
⎠
⎛
⎝∑

l≥1

εl−1Xl(u)u(l) + NQ

⎞
⎠,

where R1 accounts for the terms produced by the remainders Rk in (2.7) and terms of the
type

∑
k≥1 εk(∂ak(u)/∂u)u(k). Observing that the action of R1 on X(u, ux, . . .) always produces
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non-quasi-linear terms, we have

X̃(u, ux, . . .) =
∑
l≥1

εl−1Xl(u)

⎛
⎝∂F0(u)

∂u
u(l) +

∑
k≥1

εkak(u)u(k+l) + NQ1

⎞
⎠+ NQ2, (2.8)

where NQ1 denotes non-quasi-linear terms produced by R1 and NQ2 stays for remaining non-
quasi-linear terms. We can now evaluate explicitly quasi-linear terms in (2.8). Observing that

∂ l
xv = ∂F0

∂u
u(l) +

∑
k

εk(ak(u)u(k+l)) + R,

where R contains products of at least two derivatives of u, we have that the bracket in (2.8)

∂F0(u)
∂u

u(l) +
∑
k≥1

εkak(u)u(k+l) + NQ1

is equal to

∂ l
xv + NQ1 − R,

and therefore

X̃(v, vx, . . .) =
∑
l≥1

εl−1Xl(u)|u=u(v)∂
l
xv + · · · ,

where the dots stand for non-quasi-linear terms, and u = u(v) is the inverse of the dispersionless
part of the Miura transformation. �

We have also the following.

Corollary 2.2. If two evolutionary PDEs are Miura equivalent and have the same dispersionless limit,
then their quasi-linear parts coincide.

Obviously, the converse statement is in general not true. However, we conjecture that it is valid
if one restricts to the class of integrable equations (see conjecture 1.1).

3. Scalar conservation laws
This section is devoted to the study of integrable scalar conservation laws of the form

ut = ∂x

[
g(u) +

∞∑
k=1

εkωk(u, ux, . . .)

]
, (3.1)

where ωk are differential polynomials of degree k.
For the sake of simplicity, we focus on the case g(u) = u2. The general case can be treated in an

analogous way.
In virtue of the conjecture (1.1), equivalence classes (with respect to the action of the Miura

group) of integrable scalar equations are labelled by the independent coefficients of the quasi-
linear part. Depending on the class of the equations considered, it might happen that only a subset
of the coefficients of the quasi-linear part are sufficient to determine all the others. The following
analysis provides evidence of the fact that this is the case for the independent coefficients of the
quasi-linear part in conservation laws of the form (3.1). We will call them central invariants by
analogy with the central invariants introduced in reference [10].

We follow the approach presented in reference [5] for viscous conservation laws, that is the
case ω1 �= 0 in (3.1), and we extend it to dispersive conservation laws, where only even powers
in the formal parameter ε appear in (3.1). The main steps of this approach can be summarized
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as follows.

1. Reduce of (3.1) to its normal form

ut = ∂xω̃
def
u2 = ∂x

[
u2 + εa(u)ux +

∑
k>1

εkω̃k(u, ux, . . .)

]
, (3.2)

where
∂ω̃k

∂ux
= 0, ∀ k > 1.

This reduction is always possible and it is unique (see [5]).
2. Impose the integrability condition, i.e. the requirement that there exists a family of

conservation laws

uτ = ∂xω
def
f = ∂x

[
f (u) +

∞∑
k=1

εkfk(u, ux, . . .)

]
(3.3)

that commute with (3.1). We note that, as shown in [5,15], this is equivalent to requiring
that the 1-forms ωu2 and ωf (u) are in involution w.r.t. the Poisson bracket

{α, β} :=
∑

j

∂
j+1
x β

∂α

∂u(j)
− ∂

j+1
x α

∂β

∂u(j)
= 0. (3.4)

In general, one imposes the commutativity up to a fixed order in ε, and one derives
relations that express the terms fk appearing in (3.3) as functions of the terms a(u) and ωk
appearing in (3.2) and of the leading term f (u) in (3.3). Depending on the structure of the
equation (3.2) under consideration, there might be different constraints among a(u) and
the coefficients in ωk, as we will see below. The presence or absence of these constraints
will single out the independent coefficients of the quasi-linear part.

(a) The viscous case
Let us briefly review the case of a scalar conservation law with viscosity studied in reference [5]
and that corresponds to the assumption a(u) �= 0 in (3.2). The procedure outlined above leads to
the following.

Theorem 3.1. Up to O(ε6), the quasi-linear part of ωdef
u2

u2 + εa(u)ux + ε2b1(u)uxx + ε3c1(u)uxxx + ε4d1(u)u4x + ε5e1(u)u5x + O(ε6) (3.5)

is uniquely determined by a(u). More precisely, we have

b1 =
(

a2

2!

)′
, c1 =

(
a3

3!

)′′
, d1 =

(
a4

4!

)′′′
, e1 =

(
a5

5!

)′′′′
. . .

As a consequence, up to order O(ε5), a(u) is the only independent coefficient and it is named
viscous central invariant in reference [5]. Furthermore, the coefficients fk of the symmetries (3.3) are
also completely determined by a(u) and by the leading term of the symmetries f (u).

This result suggests the following.

Conjecture 3.2. The quasi-linear part of a viscous conservation law (3.2) is uniquely determined
by a(u).

Accordingly, in the case of scalar viscous conservation laws, the main conjecture can be
formulated as follows.

Conjecture 3.3. Two integrable viscous conservation laws (3.2) admitting the same viscous central
invariant a(u) are Miura equivalent.

Therefore, if this conjecture is true, for scalar viscous conservation laws (3.2), there exists only
one independent coefficient in the quasi-linear part of the equation.
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(b) Dispersive case
The case of dispersive conservation laws arises as a branching in the classification procedure
that corresponds to the choice a(u) = 0. The difference with the viscous case (see theorem 3.1)
is remarkable as the classification suggests the existence of infinitely many free functional
parameters. Let us assume, for the sake of simplicity, that the coefficients in front of all odd powers
of ε vanish (we will justify this assumption later). In this case, the current in (3.2) reads as

ωdef
u2 = u2 + ε2b1(u)uxx + ε4[c1(u)u4x + c2(u)u2

xx]

+ ε6[d1(u)u6x + d2(u)uxxu4x + d3(u)u2
xxx + d4(u)u3

xx]

+ ε8[e1(u)u8x + e2(u)uxxu6x + e3(u)u5xuxxx + e4(u)u2
4x

+ e5(u)u4xu2
xx + e6(u)u2

xxxuxx + e7(u)u4
xx] + · · · , (3.6)

and the current in (3.3)

ωdef
f = f (u) + ε2[B1(u)uxx + B2(u)u2

x]

+ ε4[C1(u)u4x + C2(u)uxuxxx + C3(u)u2
xx + C4(u)u2

xuxx + C5(u)u4
x]

+ ε6[D1(u)u6x + D2(u)uxu5x + D3(u)uxxu4x + D4(u)u2
xu4x + D5(u)u2

xxx

+ D6(u)uxuxxuxxx + D7(u)u3
xuxxx + D8(u)u3

xx + D9(u)u2
xxu2

x + D10(u)uxxu4
x

+ D11(u)u6
x] + . . . . (3.7)

The integrability condition, that is the involutivity conditions on the associated 1-forms

{ωdef
u2 , ωdef

f (u)} = 0, ∀ f (u)

up to the order O(ε12), gives the following set of constraints:
At order ε0, no conditions are enforced.
At order ε2, B1 and B2 are expressed in terms of b1 and f .
At order ε4, C1, C2, C3, C4 and C5 are expressed in terms of b1, c1, c2 and f .
At order ε6, the terms Di, i = 1, . . . , 11 are given as functions of b1, c1, c2, d1, d2, d3, d4 and f .
At order ε8, the terms Ei, i = 1, . . . , 22 are expressed as functions of the small letters (coefficients

of ωdef
u2 ) and f . Moreover, there appear constraints that express c2 in terms of b1, c1 and d1

c2 = 1
144

1

b2
1

[
117

(
∂2b1

∂u2

)
b3

1 − 84b2
1

(
∂b1

∂u

)2
+ 670

(
∂b1

∂u

)
c1 − 330b2

1

(
∂c1

∂u

)
+ 560b1d1 − 800c2

1

]

(3.8)

and d3 and d4 in terms of b1, c1, d1, d2 and e2, e3, e4.
At order ε10, all the terms Fi, i = 1, . . . , 42 are expressed as functions of the small letters

(coefficients of ωdef
u2 ) and f . Moreover, there appears a constraint that gives d2 in terms of b1, c1,

d1 and e1. Furthermore, the coefficients e2, e4, e5, e7, f4 and f6 also are determined in terms of the
other coefficients of ωdef

u2 .
At order ε12, all the coefficients Gi, i = 1, . . . , 77 are expressed as functions of the small letters

(coefficients of ωdef
u2 ) and f . Moreover, there appear constraints that give e3, e6, part of the f ′

i s and
part of g′

is in terms of the remaining coefficients of ωdef
u2 , namely those coefficients that are still free.

Summarizing, taking into account computations up to order 12, we have the following
situation:

— at the order 2 b1 is free,
— at the order 4 c1 is free, c2 is a function of b1, c1, d1,
— at the order 6 d1 is free and d2, d3, d4 are functions of b1, c1, d1, e1 and e2, e3, e4, but e2, e3, e4,

owing to constraints appearing at higher orders, can be expressed in terms of b1, c1, d1, e1
and f1.

The above results are summarized in the following.
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Theorem 3.4. Up to O(ε12), all the coefficients of the quasi-linear part of (3.6) are independent.
Moreover, up to O(ε6), all the small letters are uniquely determined in terms of b1, c1, d1, e1 and f1.

For the sake of simplicity, we have imposed from the very beginning that in the case of a(u) = 0
only even powers of ε are present. However, one can check that this assumption is not restrictive
and it follows directly from computations, at least up to the sixth order.

The above results lead to the following.

Conjecture 3.5. The quasi-linear part of an integrable dispersive conservation law contains only even
powers of ε and all the coefficients of the quasi-linear part are independent.

(c) Are all dispersive conservation laws Hamiltonian?
In reference [7], it was proved that Hamiltonian conservation laws can be reduced to the form

ut = ∂x

[
u2

2
+ ε2

24
(2cuxx + c′u2

x) + ε4(2pu(4) + 4p′uxuxxx + 3p′u2
xx + 2p′′u2

xuxx) + O(ε6)

]
, (3.9)

where p(u) and c(u) are arbitrary functions. Equation (3.9) is brought to the normal form (3.2), up
to O(ε6),

ut = ∂x

[
u2

2
+ ε2

12
c(u)uxx + ε4

(
2p(u)u(4) + 4c′(u)2 + 3cc′′

1152
u2

xx

)
+ O(ε6)

]
(3.10)

by means of the Miura transformation

ũ = u + ε∂x(εα(u)ux + ε2(β0(u)uxxx + β1(u)uxuxx + β2(u)u3
x) + O(ε4)),

where the coefficients α(u), β0(u), β1(u) and β2(u) are given by

α(u) = − c′(u)
24

β0(u) = −p′(u) + c′(u)2 − c(u)c′′(u)
384

β1(u) = −p′′(u)
2

+ 5c′(u)c′′(u) − 6c(u)c′′′(u)
1152

β2(u) = 3c′′(u)2 + 2c′(u)c′′′(u) − 4c(u)c(IV)(u)
3456

.

Hence, the coefficients of the normal form (3.6) can be uniquely expressed in terms of the
invariants c(u) and p(u). In particular, we have

b1(u) = c(u)
12

c1(u) = 2p(u)

c2(u) = 4c′(u)2 + 3c(u)c′′(u)
1152

.

Then, the relation (3.8) results in a constraint on the coefficient d1 that is consequently no longer
free, being uniquely determined in terms of the two functional parameters c(u) and p(u), i.e.

d1(u) = 1
7

p(u)
c(u)

[
480p(u) − 67

4
c′(u)

]
+ 1

112
c(u)

[
11p′(u) + 13

720
c′(u)2 − 7

960
c(u)c′′(u)

]
.

Comparing this result with the one presented in theorem 3.4, it follows that integrable hierarchies
of dispersive conservation laws, in general, are not Hamiltonian with respect to the Poisson
operator ∂x or with respect to a Poisson operator related to ∂x by a Miura transformation.
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4. Examples
The classification procedure discussed above turns out to be consistent with alternative
definitions of integrability (e.g. S-integrability, existence of a bi-Hamiltonian structure, Backlund
transformations) and reproduces a number of relevant examples known in the literature. Given
the general integrable conservation law in the form

ut = ∂x[u2 + ε2b1(u)uxx + ε4(c1(u)u4x + . . .) + ε6(d1(u)u6x + . . .) + ε8(e1(u)u8x + . . .) + . . .], (4.1)

for particular choices of the free functional parameters, we easily recover a few examples well
known in the literature. The list below is not meant to be complete.

(a) KdV equation
In the particular case of constant central invariants, we could reproduce two important examples.
The choice

b1 = const. c1(u) = d1(u) = · · · = 0

gives the celebrated KdV equation.

(b) Nonlinear intermediate long-wave equation (Hodge–KdV equation)
The following example of constant central invariants

b1 = |B2|
2

c1 = |B4|
4

d1 = |B6|
6

. . . ,

where B2 = 1
6 , B4 = − 1

30 , . . . are Bernoulli numbers, corresponds to the nonlinear intermediate
long-wave equation [16]. This equation appeared also in the study of Gromow–Witten invariants
in topological field theory [17,18]. In this framework, it is known as Hodge–KdV equation.

(c) Camassa–Holm and Degasperis–Procesi equations
In the case of linear central invariants, we have the Camassa–Holm equation

ut − ε2uxxt = −3uux + ε2(uuxxx + 2uxuxx)

and Degasperis–Procesi equation [19]

ut − ε2uxxt = −4uux + ε2(uuxxx + 3uxuxx).

Note that these two equations do not appear in the evolutionary form, but can be brought to the
evolutionary form via formal inversion of the operator 1 − ∂2

x . They can also be reduced to the
same dispersionless limit via a rescaling of the dependent variable u. In both cases, the central
invariants have the form

b1(u) = c1(u) = d1(u) = · · · = cu,

but the value of constant c is −2 in the first case and −3 in the second case, and thus as a
consequence of conjecture 1.1 they are not expected to be Miura equivalent.

We conclude this section by presenting a list of examples of integrable equations sharing one
and the same quasi-linear part and that are known to be Miura equivalent.
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(d) Korteweg–de Vries versus mKdV equation
Let us consider the KdV equation

ut = 2uux + ε2uxxx, (4.2)

and the modified KdV equation in the form

vt = −3v2vx + ε2vxxx. (4.3)

We observe that, introducing the transformation of the dependent variable v = ±√−2w/3, the
equation (4.3) takes the form

wt = 2wwx + ε2
(

wxxx − 3
2w

wxwxx + 3
4w2 w3

x

)
, (4.4)

whose quasi-linear part coincides with KdV equation (4.2). Hence, the conjecture 1.1 is
consistent with the very well-known fact that there exists the Miura transformation mapping
the equation (4.2) into (4.3) [20], that is explicitly given by

u = − 3
2 (v2 + ε

√
2vx).

(e) Korteweg–de Vries versus Gardner equation
The Gardner equation,

vt = ∂x(v2 − αv3 + ε2vxx), (4.5)

is completely integrable, and it is known to be Miura equivalent to the KdV equation (4.2) via the
following invertible transformation [21]

u = v − 3
2 αv2 − 3

2

√
2αεvx.

We note that this transformation clearly does not preserve the dispersionless limit. In order to
verify the consistency of the conjecture 1.1 with the above classical result, it is first necessary to
reduce the dispersionless part of Gardner’s equation (4.5) to the Hopf equation. This is done by
introducing the variable w such that v = (1 ± √

1 − 6αw)/(3α), and the equation (4.5) takes the
form

wt = 2wwx + ε2

(
wxxx + 9α

1 − 6αw
wxwxx + 27α2

(1 − 6αw)2 w3
x

)
.

We immediately see that the above equation and the KdV equation (4.2) share one and the same
quasi-linear part.

(f) Sawada–Kotera versus Kaup–Kuperschmidt equation
A direct comparison of Sawada–Kotera(SK)

ut = ∂x[ 5
3 u3 + ε2(5uuxx) + ε4(uxxxx)]

and Kaup–Kuperschmidt (KK) equations

ut = ∂x[ 5
3 u3 + ε2(5uuxx + 15

4 u2
x) + ε4(uxxxx)]

clearly show that these two equation possess the same quasi-linear part and as a consequence of
conjecture (1.1) they are expected to be Miura equivalent. Indeed, such a Miura transformation
exists and was discovered by Fordy & Gibbons [22].

5. Concluding remarks
In this paper, we focused our attention on the study of equivalence classes of integrable dispersive
conservation laws with respect to Miura transformations. The analysis of transformation
properties of quasi-linear terms in the deformation and the results from the perturbative approach
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Table 1. Summary of known and conjectured results in the scalar case.

type of deformations no. invariants references

general viscous deformations 2 (conjecture) [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

general dispersive deformations ∞ (conjecture) this paper and [2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

viscous conservation laws 1 (conjecture) [5]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dispersive conservation laws ∞ (conjecture) this paper
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hamiltonian conservation laws ∞ (conjecture) [6,23]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bi-Hamiltonian structures 1 (proved in [12]) [8,9,11,12,24]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

suggest that equations sharing one and the same quasi-linear part are also Miura equivalent. This
seems to be a general principle.

Table 1 aims at providing a summary of currently known classification results of
scalar-integrable PDEs. We have also included the case of bi-Hamiltonian structures although
in this case the invariant parameter is not directly related to the quasi-linear part of the
corresponding equations.

Apart from the bi-Hamiltonian case where results at any order are already available, other
results have been proved so far only up to a certain order in the deformation parameter ε.
The number of independent functions parametrizing the quasi-linear part depends on the type
of deformations. In the case of dispersive conservation laws apparently, the coefficients of the
quasi-linear part can be arbitrarily chosen. A similar freedom has been observed for Hamiltonian
conservation laws [23]. Note that Miura transformations involved in this case are canonical (this
is not a restrictive choice as a consequence of an important theorem proved in [25]), and the
comparison with dispersive conservation laws is not immediate (as explained in §3c).

Viscous deformations turn out to be much more rigid being parametrized by a single function
of one variable for viscous conservation laws [5] and by two functions for general viscous
equations [3].

We point out that although there is a certain flexibility in the choice of the functional
parameters that characterize the deformation, it is more convenient to choose invariant
parameters as they allow a direct comparison between different equations not necessarily brought
to their normal form.

Apparently, the case of general dispersive equations is more general than the case of dispersive
conservation laws. However, according to the main conjecture 1.1, integrable dispersive equations
should be parametrized by the coefficients of the quasi-linear part. Because no additional free
parameters are available, this would lead to the conclusion that general dispersive-integrable
equations are necessarily conservative.

We conclude by mentioning that the case of integrable systems of conservation laws of the
form

ui
t = ∂x[f i(u) + ε(Ai

j(u)uj
x) + ε2(Bi

j(u)uj
xx + Ci

jk(u)uj
xuk

x) + O(ε3)], i = 1, . . . , n,

is completely open. For instance, even the generalization of the notion of normal form is not
straightforward. Moreover, it is not difficult to check that the coefficients of the quasi-linear part
do not transform as tensors under a general Miura transformation. We plan to tackle this case in
a future publication.
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