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Abstract

The purpose of this dissertation is to conduct an in-depth analysis to modeling, pricing
and risk management for financial instruments traded in financial and weather market.
This work is composed of one scientific report and four working papers that focus
specifically on the following topics:

• The scientific report presents and discusses a review of recent literature on
financial products used to protect against climate change. Through comparisons
of different methodologies proposed by different researchers this study shows the
necessity and importance of using weather derivatives and insurance contracts to
better protect and develop world wide financial markets.

• In the first paper, we propose temperature-based risk management using hybrid
financial instruments built on weather derivatives. The Value-at-Risk technique is
exploited, in order to define the level of the critical temperature, to estimate the
prices of such derivatives. The results presented in the paper are promising, and
show that such contracts can positively cover temperature risk.

• In the second paper, we present a way to hedge temperature risk exploiting
weather derivatives contracts by considering ‘tail events’ and the standard financial
approach to tackle them such as Value-at-Risk and Expected Shortfall. We
perform the application of risk measures through historical and parametric
methods and analyze the effectiveness of Expected Shortfall based approach for
hedging meteorological risk. Even, according to risk measure theory, Expected
Shortfall captures diversification while Value-at-Risk does not, numerical results
show that it is more convenient to enter a single contract that covers more months
rather than monthly contracts spanned on the same period.

• In the third paper, we propose forecasting based on a stochastic model of
the probability distribution. We suggest to incorporate model uncertainty by
considering forecasting using dynamical stochastic evolutions of the probability
distribution of the model in question. We have considered and compared the
results of two different classes of autoregressive models where the so-called
stationary distribution is and is not normal. At the end, we have compared the
uncertainty measure based on worst case approach and the proposed approach
using a Value-at-Risk based measure giving tighter estimates.

• In the fourth paper, we propose some functional linear models predicting wind
speed from temperature data in which both the response and the covariate variables
are functions. We have proposed the functional linear model observed in different
patterns which are powerful enough to describe the dynamics of wind speed in
time.
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Chapter 1

Introduction

When I started working on this dissertation my original goal was rather simple. As for
several years I was working with quantitative financial analysis, I was stunned by how
mathematical and statistical methods were applied in finance and were used in order to
propose hedging strategies for people who trade and deal with financial derivatives.

After I started my PhD, I read about weather derivatives. The very first questions
that came in my mind were about what is a weather derivative? Is there any similarity
with financial derivatives? What type of events weather derivatives cover and why
should one be interested in weather derivatives? I got my very first responses from
the book "Modeling and Pricing in Financial Markets for Weather Derivatives". I was
impressed by the role weather derivatives play in many industries today and the way
they are used for hedging purposes by managing the weather risk. While reading the
book, my curiosity in this area was to see how statistical analysis of weather factors
and stochastic processes can be used in modeling the time and space dynamics. At the
end, I was fascinated by the way of applying the modern theory of mathematical finance
on weather derivatives pricing and hedging. That was the moment I found myself very
enthusiastic to combine the background I had in finance with this new area of weather
market.

For this reason I started my research with a review of recent literature on financial
and insurance products used to protect against climate change. Through comparisons
of different methodologies proposed by several researchers, I understood what it was
done until then and research needed to be extended in order to use weather derivatives
and insurance contracts in a proper manner to better protect and develop world wide
financial markets.

Hence, my PhD research began with a keen interest on temperature variable, and
seeking answers to the following questions: how we can link weather derivatives with
insurance contracts? Since a temperature contract (such as HDD and CDD) depend on a
critical temperature or the so called threshold, has it always set to be at 18◦ C for all
meteorological stations? Can we use Value-at-Risk or Expected Shortfall risk measures
to compute the threshold? Can we use these approaches to measure the risk loadings
and how effective is to use the same percentile as the one chosen for the threshold?
Once I started my research work on this topic, I realized that the idea of proposing
a hybrid instrument was flexible enough to allow considering the actuarial point of
view. A hybrid instrument is capable of dealing with a negative risk event such as
an insurance contract but priced as a derivative instrument, where risk loadings have
been properly considered and charged. Also, there was clear evidence that the standard
threshold of 18◦ C was not a proper choice for different regions. A reasonable choice
is by applying the Value-at-Risk approach and later extended in Expected Shortfall
approach. Since several adverse weather conditions can occur simultaneously, Expected
Shortfall can assess consequences of such improbable events more accurately compared
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to Value-at-Risk.
Another important issue is related to pricing models proposed by researchers in

the field. With the dissemination of quantitative methods in risk management and the
advent of complex derivative products, mathematical models have played an increasingly
important role in financial decision making, especially in the context of pricing and
hedging of derivative instruments. But there is some confusion on how sensitive is
the value of a given derivative to the choice of the pricing model. Are there some
instruments more model sensitive than others? While the use of models led to a better
understanding of market risks, it has given rise to a new type of risk, known as “model
risk” or “model uncertainty”, linked to the uncertainty on the choice of the model itself.
Uncertainty on the choice of the pricing model can lead to the mispricing of a derivative
products. While model uncertainty is acknowledged by most operators who make use
of quantitative models, most of the discussion on this subject has stayed at a qualitative
level and a quantitative framework for measuring model uncertainty is still lacking.
For this reason, proposing a very novel method that models the probability density
functions incorporating the uncertainty, which follows stochastic processes themselves,
is important for measuring and managing the risk. The forecast probability is treated
as a random variable in some state space of probability density functions, where the
notion of model uncertainty is reduced to uncertainty on future volatility. The model
risk is handled by a worst case approach which is extended based on Value-at-Risk
and Expected Shortfall and is applied in pricing weather derivatives in order to reduce
uncertainty.

On the other hand, some attempts of applying functional data analysis in analyzing
weather data are done in the literature reviewed. Therefore, the curiosity pushed me to
understand how weather data can be seen as functional objects and how we use functional
data analysis in forecasting weather variables such as temperature and wind? These
questions are followed from other more intriguing questions: can each weather station
broadly be categorized in some common geographical zones with similar features by
applying functional principal components analysis? In what way can the geographical
category characterize the detailed temperature profile and account for the different
profiles observed? Since, according to literature review in weather derivatives wind has
a similar behavior with temperature, then could a temperature record be used to predict
the total annual wind speed by using a linear regression where both the independent and
dependent variables are functions? Can the temperature record be used as a predictor
of the entire wind speed profile by a functional linear model? It is really wonderful
how the functional linear models under scrutiny are able to regularize curves observed
over a specific time period and predict curves at unobserved period of time. Moreover,
these models are available not just to predict full wind profile and annual wind from
temperature climate zones resulted from functional principal components analysis but
also predict wind directly from temperature observations.

More concretely, the dissertation consists of one scientific report and four working
papers where the scientific report and first three papers (Chapter 2, 3 4 and 6) are
connected via modeling and managing the risk in weather derivatives with a specific
focus on hybrid financial instruments, managing meteorological risk through VaR and
ES and forecasting by applying FDA in weather variables. The last paper (Chapter 5) is
an application of modeling and managing the risk in financial derivatives, with a specific

2



focus on dynamic probabilistic forecasting.

• Scientific report attempts to describe methods and models currently in use in
the weather derivative market from the studied literature. We start discussing
different types of weather-based financial derivatives and focus on worldwide
weather indices and explains why it is needed to develop and adopt weather
indices. Next, we focus on an important issue in the weather derivatives markets
which is the choice of the pricing methodology to use in order to obtain the “fair”
value for different contracts. Later we pinpoint innovations in the area of the
recent research. At the end, we conclude and discuss about future research.

• In the first paper we propose temperature-based risk management using hybrid
financial instruments built on weather derivatives. We model temperature time
series and price one-month forward option contracts for hedging adverse outcomes
and then show how a “negative” weather performance can be counterbalanced by
the “positive” performance of a hedging over-the-counter financial instrument,
which can be tailored to meet specific needs. In order to estimate the prices of
these derivatives, the conventional Value-at-Risk technique is exploited. This
technique is applied to define the level of the critical temperature (called threshold)
but also in the risk loadings added for hedging purposes. Numerical findings show
that such contracts can positively cover temperature risk.

• In the second paper we hedge meteorological risk concerning temperatures by
pricing weather derivatives contracts as efficient risk management instruments,
assuming as a key ingredient for this approach some "tail event" triggered by
a quantile-based critical threshold. Such thresholds are calculated assuming
different quantile levels, applying the Value-at-Risk and Expected Shortfall for
the distribution of temperatures as recorded in some historical series. It is shown
that both Value-at-Risk and Expected Shortfall are an efficient way for managing
the so-called Tail Risk; and since Expected Shortfall is more conservative than
Value-at-Risk and due to the subadditivity property, it can be seen that seasonal
contracts are generally better off than monthly contracts in reducing global risk.
A worst case approach based on Value-at-Risk and Expected Shortfall developed
into a Monte Carlo framework has been performed and led to a reduction of
uncertainty when calculating weather derivatives prices. Empirical studies in the
first and second papers are done under historical daily data for the temperature in
Celsius from the weather station Molin Bianco in Arezzo, Tuscany, Italy.

• In the third paper we propose forecasting based on a stochastic model of the
probability distribution. Indeed, we suggest to incorporate model uncertainty by
considering forecasting using dynamical stochastic evolution of the probability
distribution of the model in question. We apply our dynamic probabilistic
forecasting to option pricing, where our proposed notion of model uncertainty
reduces to uncertainty on future volatility. We have considered and compared
the results of two different classes of autoregressive models where the so-called
stationary distribution is and is not normal (where the Ornstein-Uhlenbeck process
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considered is driven by the Brownian motion and Levy process being a compound
Poisson process, respectively).

• In the fourth paper we propose some functional linear models predicting wind
speed from temperature data in which both the response and the covariate variables
are functions. We have proposed the functional linear model observed in different
patterns which is powerful enough to describe the dynamics of wind speed in time
in different meteorological stations in Lithuania. The functional linear model,
firstly, is used to predict wind speed from climate zone using functional principal
component analysis. Secondly, annual wind speed is fitted by using temperature
as a functional covariate, where the harmonic acceleration roughness in the
regression coefficient function is penalized. Thirdly, the full wind speed profile is
fitted by the regressing on the full temperature profile, using a level of smoothing
by applying generalized cross-validation criterion. The validation procedure
based on smoothed functional data of wind speed shows that the proposed models
are reliable and can be used for various practical applications.
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Chapter 2

Scientific Report: The Financial

Instruments for Mitigating and

Hedging against the Climate

Change

Abstract

Weather often has a significant impact on industrial sectors (such as energy and
power industry, agriculture, construction, tourism, insurance and reinsurance
companies, etc) making them exposed to weather risk. High exposure to weather
risk may lead to financial stress, or even worse bankruptcy. Therefore, weather and
its changes have driven a demand for weather risk management. Weather derivatives
are contracts whose payoff depends on the temperature, rainfall, snowfall, humidity,
sunshine or wind and can be used as part of risk management strategy to hedge
risk associated with adverse or unexpected weather conditions. The management
of weather risk with derivatives is a recent topic of scientific papers. This report
presents and critically discusses a review of recent literature on financial and
insurance products used to protect against climate change. Through comparisons
of different methodologies proposed by different researchers, this study shows the
necessity and importance of using weather derivatives and insurance contracts to
better protect and develop world wide financial markets.

Keywords: Weather derivatives, risk management, complete and incomplete market,
pricing and modeling

2.1 Introduction

The purpose of weather derivatives is to allow businesses and other organisations to
insure themselves against fluctuations in the weather. On the other hand the purpose of
insurance contracts and specifically of weather insurance products is to insure against
extreme events. The weather derivatives market, in which contracts that provide this
kind of insurance are traded, first appeared in the US energy industry in 1996 and 1997.
Early trading of weather based instruments among energy companies started as over-the-
counter (OTC1) trades. OTC trades are still used for weather derivatives for local cities
which are not listed in exchanges. In September 1999 the first electronic marketplace
for standardized weather derivatives was launched by the Chicago Mercantile Exchange
(CME) with the aim of increasing liquidity, market integrity and accessibility. In the

1it means that each contract is individually negotiated
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beginning, CME only traded two weather products namely Heating Degree Days (HDD)
and Cooling Degree Days (CDD) for ten cities in the USA (CME Group, 2011). This
market experienced rapid growth and in July 2010 CDD and HDD futures and options
for 24 cities in the USA, 11 cities in Europe, and 6 cities in Canada, 3 cities in Japan
and 3 in Australia were traded on the CME (Meissner and Burke (2011)). These
include New York, Chicago, Philadelfia, London, Paris, Amsterdam, Essen, Stockholm,
Barcelona, Rome, Madrid, Oslo, Prague and Berlin as well. But according to CME
Group (2018) up to today only weather derivative contracts based on temperatures in
London and Amsterdam are available as many other contracts disappeared since 2011;
further only Cumulative Average temperature (CAT), HDD and CDD contracts are
offered on the CME. An overview of weather derivatives traded on the CME is given
by "http://www.cmegroup.com/trading/weather/". Except CME, weather derivatives
contracts trade OTC on other exchanges such as Intercontinental Exchange, Swiss
Re’s ELRiX (electronic risk exchange), and LIFFE (the London International Financial
Futures and Options Exchange).

Actually, CME offers HDD contracts from November to June and CAT and CDD
from May to September. CDD contracts are only available in the summer months, when
temperatures are most likely to be above 18 degrees celsius. In the USA, CME offers
CDD contracts in May, June, July, August and September (Benth and Šaltytė Benth
(2012)). But CDD written on some European cities (such as Reykjavik in Iceland and
Dublin in Ireland) are not available since temperatures during summer are hardly above
18 degrees celsius, so CME offers CAT contracts in summer for these places while in
winter HDD contracts are offered as well in USA, Japan and Europe and this kind of
contract is available in winter only.

Other types of contracts based on frost days and snowfall are also traded on the
CME. The weather derivatives markets are expanding rapidly as diverse industries
seek to manage their exposure for weather risks. The notional value of CME weather
products in 2004 was $2.2B, and grew ten-fold to $22B through September 2005
with volume surpassing thousand of contracts traded. In 2006 the value of traded
weather instruments rose to $45B. Later, weather derivatives emerged in the financial
market as an instrument for hedging various weather related risks in different sectors.
According Härdle and Cabrera (2012) the key factor of using weather derivatives as
instruments for hedging risk is that it could accelerate the pricing method. Still there
is little liquidity in the market and weather is non-tradable, implying that the weather
derivatives market is an incomplete market. Weather derivatives comprise of derivatives
written on weather variables such as temperature, rainfall, snowfall, humidity, sunshine
or wind. In the period of October 14, 1997 to April 15, 2001, the largest proportion of
weather derivatives currently traded in the market are based on temperature with 98% of
the overall traded volume while rain-related contracts accounted for 0.9%, snow 0.5%,
and wind 0.2% (Garman, Blanco and Erickson (2000)). According to (Benth & Šaltytė
Benth (2007) and Jewson & Brix (2005)) temperature derivatives contracts are written
based on HDD, CDD, CAT and Pacific Rim indices.

A tradable weather derivative contract is defined by the following attributes: the
contract type, the contract period, the contract station where the temperature or other
index will be measured, the underlying index, the tick size (in CME the tick size is set
$20 which corresponds to a degree day index), the strike level and a payoff function.
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The variables defining the payoff function varies according to the type of the contract
which can be options, futures, forwards, swaps, collares, straddles, strangles and binaries
(Jewson & Brix (2005)).

In this scientific report we attempt to describe all the methods and models currently
in use in the weather derivative market. There are many ways of approaching the
question of how to price a weather derivative contract; on top of this there are strong
financial incentives to invent, new and more accurate methods for such pricing, and
there is undoubtedly a lot of progress still to be made.

The rest of the report is organized as follows: section 2 discusses different types
of weather based financial derivatives and focuses on world wide weather indices and
explains why it is needed to develop and adopt weather indices. It compares methods
used on modeling and pricing weather derivatives. In addition, a summary of pricing
methods and models is done. Section 3 reviews the literature and the last section
concludes the report and discusses about future research.

2.2 Methods

There are numerous methods suggested in the literature that we have chosen to review.
These methods mainly compare different types of risk management for different
products, including traditional weather insurance, emphasizing why the whole world
today should develop and implement weather derivatives to better manage risk. For
all the papers considered in this section, we will discuss features, advantages and
disadvantages and we will explore different types of financial derivatives capable of
managing disaster/fluctuation risk. Many details on how to calculate weather index,
how to price and how to create weather derivatives markets in all over the world, are
explained.

2.2.1 Weather indices

Weather changes involve investigation of daily meteorological variables (e.g. the future
change of precipitation intensity, or the number of frost days, etc). Quantification of
these events is based on climate indices derived from daily minimum, average, maximum
values or daily sums of meteorological variables (mainly temperature and precipitation).
Therefore, their investigation is essential for developing targeted adaptation plans or risk
management tools capable of hedging the risk of climate change. Weather indices often
describe extreme events that are associated with statistically rare values at the lower
or upper tails of the distribution functions (e.g. extremely hot days occur only a few
times in a year). However, some indices characterize frequent events, e.g. frost days
happen through one-quarter of the year in a specific location. Should we use discrete or
continuous distribution for weather variables?

2.2.1.1 Discrete or continuous distributions of weather variables

According to Jewson and Brix (2005) weather variables, such as temperatures can be
considered to be a continuous variable, but measurements of this variable are typically
rounded to a certain degree. In Europe, the measurements of daily minimum Tmin
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and daily maximum Tmax temperatures are usually rounded to one decimal place in
celsius and consequently Tavg (average of Tmin and Tmax) has two decimal places with
the final digit being either a zero or a five. As a result of this rounding there is only
a discrete number of possible outcomes for the measured temperature during a given
period, and hence only a discrete number of possible index values can be achieved.
This might lead one to conclude that all index distributions should be modelled using
discrete distributions. However, the actual number of different possible index values is
often very large, and fitting a discrete distribution to such data, and running simulations
can be very slow. It is instead, often a reasonable approximation to use a continuous
distribution. In general the rule will be: in any case where there are more than one
hundred possible values for the index the continuous distribution is used; in all other
cases the discrete distribution is the choice.

The most commonly used indices inform about the frequency of a variable of
having values that are over/under a given threshold, e.g. an extremely daily maximum
temperature is at least 35◦ celsius; dry periods are defined as consecutive days when
daily precipitation is below 1mm, a frost day when daily minimum temperature is
less than 0 degree celsius and so on. Thanks to the fixed thresholds, these indices are
easily quantifiable and also interpretable. However, it is not straightforward to use these
indices for comparing areas with different climate because the frequency of a variable
crossing a given threshold can vastly differ by regions. In order to partially resolve
this problem, percentile-based indices were introduced. In this case fixed percentage
values (usually the lower or upper deciles) of the distribution function are defined on a
reference period to specify the threshold (Stefani et al (2018)), letting the frequency of
going over this threshold be quantified for the future.

2.2.1.2 Index-weather formulas in discrete and continuous form

In this section, we will present the most commonly used weather indices used as the
underlying values for derivative contracts. The models and the theoretical derivation of
prices are most conveniently expressed in a continuous-time framework especially for
temperature weather indices while for rainfall the discrete-time framework is mainly
recommended. We restate the definitions of the different weather indices in discrete
(D) and continuous (C) frameworks accordingly. In the markets, the discrete form for
weather indices is always used (Benth and Šaltytė Benth (2012)). For instance, HDD and
CDD futures are settled on a daily average temperature, hence discrete representation is
suggested. But for theoretical considerations, sometimes it is convenient to formulate
the weather indices in continuous form which somehow is an approximation of the
market value. Therefore, if it is considered a daily time series model for temperature,
then the discrete form of the weather index is suggested to be used. Moreover, if it is
considered a continuous-time process, it is tempting to use a continuous representation
of weather indices; but the discrete form could be used as well. Therefore, there is
no specific criteria which clearly point out when to use a discrete/continuous form of
weather indices. Note that more specialized indexes can be constructed to please the
buyer of risk protection.

The cumulative average temperature (CAT), measures the sum of average tempera-
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ture T (i) in a given range [t1, t2].

(D) CAT =

t2∑

i=t1

T (i), (C) CAT =

∫ t2

t1

T (i)di

Pacific rim divides CAT index over its duration.

PRIM = CAT/(t2 − t1)

Heating degree days (HDD), and cooling degree days (CDD) measure the sum of
deviations of T (i) from a base temperature Tb, usually 65◦ Fahrenheit, or 18◦ Celsius,
in a given range [t1, t2] (Alexandridis Zapranis (2013)).

(D)HDD =

t2∑

i=t1

max(Tb − T (i), 0), (C)HDD =

∫ t2

t1

max(Tb − T (i), 0)di

and

(D)CDD =

t2∑

i=t1

max(T (i) − Tb, 0), (C)CDD =

∫ t2

t1

max(T (i) − Tb, 0)di

A cumulative rainfall index measures the sum of daily rainfall, R, on a specific date,
i over period, [t1, t2].

(D)CRI =

t2∑

i=t1

R(i), (C)CRI =

∫ t2

t1

R(i)di

As an alternative, Odening, Musshoff and Xu (2007) suggest a rainfall deficit index
defined as:

(D)RDI =

t2∑

i=t1

min(0,

is∑

j=(i−t1)s+1

(R(j) −Rmin)),

(C)RDI =

∫ t2

t1

min(0,

∫ is

(i−t1)s+1

(R(j) −Rmin)dj)di

where Rmin is the average s-day precipitation in the respective accumulation period.
This index measures the shortfall of the rainfall sum in a s-days period relative to a
reference level Rmin.

The cumulative snowfall index measures the sum of daily snowfall, Y , on a specific
date, i over period, [t1, t2] (Djordjevic (2018)).

(D)CSI =

t2∑

i=t1

Y (i), (C)CSI =

∫ t2

t1

Y (i)di
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The cumulative wind speed index measures the sum of daily average wind speeds
during a period, where duration is defined as [t1, t2], and W (i) is day i average wind
speed (Alexandridis & Zapranis (2013)).

(D)CWSI =

t2∑

i=t1

W (i), (C)CWSI =

∫ t2

t1

W (i)di

The Nordix wind speed index aggregates the daily deviations from a 20 year mean
over a specified period. w20(i) is the 20 year average wind speed on day i (Benth
(2018)).

(D)NWSI = 100 +

t2∑

i=t1

(W (i) − w20(i))

(C)NWSI = 100 +

∫ t2

t1

(W (i) − w20(i))di

The historical evolution of the actual German wind power production index
GWPPI (t) is obtained as

GWPPI (t) =
W (t)

24C(t)

where W (t) denotes the total wind power production in Germany at day t and C(t)
denotes the total installed capacity in Germany at day t (Benth and Pircalabu (2018)).

For the frost index a multivariate approach is suggested by (Rozante, Gutierrez, da
Silva Dias, de Almeida Fernandes, Alvim, and Silva (2019)). This index includes in
its formulation different processes by which frost occurs such as surface temperature
and moisture, sea-level pressure, low-level winds and cloudiness. The frost index (FI) is
intended to monitor the chance of occurrence or non-occurrence of frosts, taking into
account the contributions of some meteorological variables that directly influence the
phenomenon such as temperature (T) and relative humidity (H), both at 2m, wind speed
at 10m (V), pressure reduced to mean sea-level (P) and cloudiness (N)—together with
their means and standard deviations. For operational purposes, a normalized multivariate
weighted contribution is used:

FI(i,j,k) = w1
T (i, j, k) − Tm(i, j, k)

σT (i, j, k)
+ w2

Pm(i, j, k) − P (i, j, k)

σP (i, j, k)

+w3
V (i, j, k) − Vm(i, j, k)

σV (i, j, k)

+w4
N(i, j, k) −Nm(i, j, k)

σN (i, j, k)
+ w5

H(i, j, k) −Hm(i, j, k)

σH(i, j, k)

where P , T , V , N , H are the means calculated in case of frost, σP , σT , σV , σN , σH

are the standard deviations calculated in cases of frost, Pm, Tm, Vm, Nm, Hm are the
variables extracted from the numerical model and wi for i = 1, ..., 5 are the weights
(constrained to obey

∑5
i=1 wi = 1) attributed to each meteorological variable.
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2.2.2 Weather derivative instruments

Weather contracts are based on the actual observation at one or more points in time on a
weather variable or index. The weather derivative instruments are defined based on the
underlying index and the measure of weather which governs how pay-out on the contract
will occur. The structure of the derivatives are based on a standard derivative structure,
which includes futures, forwards, swaps, options (puts and calls) and a combination of
put and call options such as collars, straddles, and strangles.

2.2.2.1 Weather Futures

Weather futures are a type of weather derivative that obligate the seller of the derivative
to either buy or sell at a time T > 0 and at a pre-specified strike price K some
commodity. Such contracts enable to protect against losses caused by unexpected shifts
in weather conditions (Cummins and Geman (1995)). This is a derivative which is used
more and more by the energy companies for hedging against change in demand due
to change in temperature. Future derivatives are used only to hedge risk associated
with adverse weather. Their underlying variables include: HDDs, CDDs, Average
Temperature, Frost, Snowfall, and Hurricanes.

The long futures contract payoff formula is: payoff = ST −K
The short futures contract payoff formula is: payoff = K − ST

where ST is the price of the asset at the end of the contract, T is the maturity
and K is the strike price.

2.2.2.2 Weather forwards

Contrary to spot contract where assets are bought or sold today, forwards contract
is a contract in which two parties agree to buy or sell asset at a specified time at a
predetermined price today. Forwards are used to hedge risk. Unlike futures, forwards
are over-the-counter contracts.

The long forwards contract payoff formula is: payoff = ST −K
The short forwards contract payoff formula is: payoff = K − ST

where ST is the price of the asset at the end of the contract, T is the maturity
and K is the strike price.

2.2.2.3 Weather Options

As said before, there are two types of weather options: calls and puts. The buyer in
the HDDs call pay a premium at the beginning of the contract and will benefit of all
positive cash-flows the contract might produce untill expiration. If the number of HDDs
is greater than predetermined strike level then, the call holder will receive a payout in
return. The size of the payout is determined by the strike and the tick size, which is
the amount of money that the holder of the call receives for each degree day above the
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strike level before maturity. In formulating the weather options, the two counterparts
need to specify the following parameters:

• the contract type (call or put);

• the underlying index (HDDs or CDDs);

• the contract period;

• the weather station from which the temperature data are obtained;

• the strike level;

• and the tick size.

Normally the option price is stated in the option agreement, and the contract relieves the
option holder any obligation to pay the liquidated amount to the writer for refusing to
perform (Alaton et al (2002)).

• The call option represents the right to purchase an asset at a predetermined strike
price before the option reaches its expiry date and it is purchased in the hope that
the underlying asset price will rise. The payoff of a call option can be expressed
as follows:

P = V (max(I −K, 0))

where V is the tick size which can be determined as 1 EUR per index point, K is
the strike level, T is the maturity and I is the index/underlying variable.

• The put option represents the right to sell an asset at a predetermined strike price
before expiry date and it is purchased with the hope that the underlying asset price
will drop below the strike price. The investor benefit from put options when the
market price falls without having to sell short the underlying asset and has limited
risk if market goes up against them. The payoff of a put option can be expressed
as follows:

P = V (max(K − I, 0))

where V is the tick size which can be determined as 1EUR per index point, K is
the strike level, T is the maturity and I is the index/underlying variable.

2.2.2.4 Weather Swaps

Swaps are contracts in which two or more parties exchange risks during a predetermined
period and the payment are made by both parties: one side paying a fixed price and
the other paying a variable price. Swaps are over the counter instrument that can be
modified or customized to suit the needs of the parties involved by protecting their
business against weather uncertainties. In the case of the standard HDDs, the parties
agree on a given strike of the HDDs for the period and the swapped amount. So that
the swaps are costless: there is no premium, as the loss from a swap is equated with
positive payoff it produces. The parties write a contract to pay each other at some point
according to the weather related variable in future. In cases of long swap, the buyer has
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to pay the seller for low values of the index, thereby hedging against high value index.
If the swap is traded without premium, then the strike should be set at a level where the
expected payoff is close to zero thus shifting to compensate for the risk that are taking
(Cummins and Geman (1995)). Once the swap has been traded, valuation consisting of
the calculation of distribution of the possible financial outcome is done.

Swaps can vary depending on the need and the objective. For instance, energy
distributors can use the weather swap to hedge against warmer than normal winter.
According to Jewson and Brix (2005) the swap payoff is expressed as:

P = V (µ−K)

where V is the tick size, K is the strike and µ is the mean of the weather index
assumed normally distributed.

According to Broni-Mensah (2012) an uncapped swap can be represented with
payoff given as follows:

P (I, T ) = V (I −K)

where I is the value of a specified index at maturity time (T ), K is the strike level, and
V represents the cash value of one value movement in the sum (I − K). When the
maximum payouts for the two counterparties are not equal, the payoff will be as follows:

P (I, T ) =





V (L1 −K) if IH(T ) < L1

V (IH(T ) −K) if L2 < IH(T ) < L2

V (L2 −K) if IH(T ) > L2

where IH(T ) is the value of HDD index at maturity, V is used to translate the
quantity (IH(T )K) into monetary terms, K is the strike level, and L1 and L2 denote the
level at which a limit to the payoff is applied. As the swap structure is not symmetrical
we seek to determine the value of the strike K that satisfies the equation

H(K) = 0

with H denoting the expected payoff from a swap contract.

2.2.2.5 Weather Collar

Collar is a strategy that limits the range of loss of earnings on an underlying asset to a
specific range. It is a combination of a call and put option enabling one to use a long
put or call option with a particular strike by financing it with a short call or put option
with a different strike (Cummins and Geman (1995)). This strategy provides the user
with the price protection against adverse weather events in the underlying asset thereby,
forcing price to move within a defined range. Notably, this is provided at the expense of
giving up some of the returns. Importantly the collars contain the premium for one of
the parties. The payoff of a collar can be written as follow:

P = min(0,min(V (I −Kp),max(0,min(V (I −Kc), 0))))

where V is the tick size which can be determined as 1 EUR per index point, Kc is the
strike level for a call option, T is the maturity, Kp is the strike level for a put option and
I is the index/underlying variable.
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2.2.2.6 Weather Strangle

Strangle is an investment strategy involving the purchase or sale of option derivative
that allows the holder to profit based on how much the price of the underlying security
moves, with relative exposure to the direction of the price movement: the purchase is
known as a long strangle while the sale of the derivative is a short strangle. The strangle
option is built on a portfolio of put and call option (Jewson and Brix (2005)) thereby,
reducing the net debit of the trade and the risk of the loss in the trade although, their
strike is different. The owner of a long strangle makes a profit if the underlying price
moves far enough away from the current price and it is important that the investor should
take a long strangle if the security is volatile. The payoff of a strangle can be expressed
as follow:

P = V (max(Kp − I, I −Kc, 0))

where V is the tick size which can be determined as 1 EUR per index point, Kc is the
strike level for a call option, T is the maturity, Kp is the strike level for a put option and
I is the index/underlying variable.

2.2.2.7 Weather Straddle

A straddle is an option strategy involving the purchase of both a put and call option for
the same expiration date and strike price on the same underlying resulting to a significant
profit in the market direction (Cummins and Geman (1995)). The strategy is profitable
only when the stock either rises or falls from the strike price by more than the total
premium paid. It gives the trader a greater profit than a butterfly if the final stock price
nears the exercise price (Alaton et al (2002)). The payoff of a straddle can be expressed
as follow:

P = V (max(Kp − I, I −Kc, 0)),Kc = Kp

where V is the tick size which can be determined as 1 EUR per index point, Kc is the
strike level for a call option, Kp is the strike level for a put option, T is the maturity and
I is the index/underlying variable.

2.2.3 Pricing Approaches

One of the main areas of investigation in the weather derivatives markets is the choice of
the pricing methodology to use in order to obtain the “fair” value for different contracts.
It is also important that a good pricing approach can be used to increase the transparency,
market confidence and further develop weather derivatives into a robust thriving market.
But before going for pricing approaches let us discuss about the differences between
incomplete and complete markets.

2.2.3.1 Incomplete vs complete market

A market can be incomplete in many different ways (Björk (2009)), and below are
mentioned some of them:

• There are more random sources than there are risky underlying assets.
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• There are constraints on admissible portfolios, like, for example, a short selling
constraint.

• The underlying variable is not traded, like in the case of weather derivative
contracts.

• The underlying is traded but the market is not liquid, mention here the case of
commodity markets.

• The underlying is traded but the portfolios can not easily and/or without large
costs be carried forward in time, like, for example electricity derivatives.

As to financial valuation principles, the Black–Scholes method is the most successful
pricing approach in the area of derivatives. This method is based on a strategy in which
one creates a portfolio that accurately replicates the payoff of the derivative. The risk
associated with the financial derivative is thereby completely eliminated or hedged.
Thus, one can argue that the value of a product must be the cost of setting up the hedging
portfolio, based on the no-arbitrage principle. The Black–Scholes method has been a
landmark in derivative pricing in the complete market. A financial market is complete if
all claims are attainable, i.e. if all claims can be replicated by means of a self-financing
strategy. If claims, which are not attainable, exist and hence cannot be replicated by
means of any self-financing trading strategies, then the market is incomplete. The most
distinctive feature of weather derivatives is that, unlike traditional financial derivatives,
their prices are linked to a weather event rather than the price of an underlying security
or commodity. The commonly used underlying weather indexes, for instance, HDDs
and CDDs are non-tradable. On the other hand, there is typically little or no liquidity
in weather derivatives. Therefore, weather derivatives market is an incomplete market
because the underlying variable in this case, weather is non-tradable and cannot be
replicated in any means of self-financing trading activities. In addition, Stojanovic
(2011) suggests to study both the complete and incomplete markets, with emphasis
on incomplete markets, while complete markets must be viewed as special cases of
the incomplete ones. Since incomplete financial market models acknowledge both
the hedgeable and unhedgeable risks, then these models are more appropriate for the
valuation of weather derivatives. Below we describe some of the more popular pricing
models currently being used.

2.2.3.2 Market Price of Risk (MPR)

It is crucial, for the accurate pricing of the various weather derivatives and hedging
of the weather risk, the understanding of the MPR. Weather derivatives market is not
liquid enough. Furthermore, as just said weather market is not complete, because the
underlying is not tradable. This is the reason why the MPR should be considered when
valuing weather contracts. In most studies (focused on temperature) so far, the MPR was
considered zero (Alaton et al (2002)). However, recently a number of studies examined
the MPR and found that it is different than zero. In Møller (2001) one can find numerical
choices for the MPR, for which it is stated that the larger the value of MPR the greater
the level of compensation awarded. Cao and Wei (2004) apply a generalized Lucas’
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(1978) equilibrium pricing model to study the MPR and show that the market price
associated with the temperature is significant and represents a considerable portion of
the derivative’s price. These authors also demonstrate that MPR varies over time, and
the assumption of being constant does not have an empirical argumentation. In Xu et al
(2008), an indifference pricing approach which is also based on utility maximization is
proposed. The most common approach is the one presented in Alaton et al. (2002), and
it was followed by Bellini (2005), Benth et al. (2009), and Hardle and Cabrera (2009).

Alaton et al. (2002) suggest that the MPR can be estimated from the market data:
by examining what value of MPR gives a price from the theoretical model that fits the
observable market price. In Bellini (2005), the implicit MPR is estimated by comparing
theoretical future prices, given in previous formulas, to the prices observed in the market
under the assumption of a Levy noise process where a time dependence of the MPR is
examined. In Hardle and Cabrera (2009), the implied MPR of Berlin was estimated.
Their results indicate that the MPR for CAT derivatives is different from zero and
shows a seasonal structure that increases as the expiration date of the temperature future
increases. Benth et al. (2011) study the MPR in various Asian cities, for which the
MPR was estimated by calibrating model prices. Their results indicate that the MPR for
Asian temperature derivatives displays a seasonal structure that comes from the seasonal
variance of the temperature process.

2.2.3.3 Black-Scholes model

The Black-Scholes model is based on certain assumptions that do not apply realistically
to weather derivatives. This derivative pricing model is nonetheless so important in
asset pricing that deserves to be presented. One of the main assumptions behind the
model is that the underlying of the contract (HDD or CDD) follows a random walk
without mean reversion (tends to revert to normal levels within a specific period). Since
temperatures are mean reverting, the Black-Scholes model is inadequate for modeling
temperature (Garman et al (2000)). For this reason, according to Biganashvili (2013),
weather derivatives market needs a standard pricing model so all participants can start
communicating in a common language. The large discrepancies between the different
models used are preventing the market from developing at an even faster pace. As the
Black-Scholes model for financial derivatives was one of the main driving factors of
the option markets in the 1980s, the weather markets need a common denominator for
today’s markets. On the other hand, Meissner and Burke (2011) claim that the Black-
Scholes-Merton model despite its limitations is an adequate pricing model for weather
derivatives, which is superior to burn analysis approach. In general the Black-Scholes
model describes the evolution in a risk-neutral world of the price of weather derivatives
through the stochastic differential equation:

dWD(t)

WD(t)
= rdt+ σdW (t) (2.1)

where W (t) is a standard Brownian motion, σ is the volatility and r is the interest rate.
The solution of equation (6.1) is given as:

WD(T ) = WD(0) ∗ exp((r − 1

2
σ2)T + σW (T )) (2.2)
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WD(0) is the current price of the underlying asset, while the random variable W (T ) is
normally distributed with mean 0 and variance T , which is also the distribution of

√
TZ

if Z is standard normal random variable. Therefore equation (6.2) can be written as:

WD(T ) = WD(0) ∗ exp((r − 1

2
σ2)T + σ

√
TZ) (2.3)

The logarithm of underlying price is thus normally distributed, and the underlying
price itself has a lognormal distribution. An application of Black-Scholes model on
temperature options is explained in Meissner and Burke (2011). Since HDDs and CDDs
are the underlying in temperature options, the payoff equation for options on HDDs and
CDDs can be expressed as:

C(HDD) = e−rtE[max(F0(HDD) −K, 0)]

= e−rt(F0(HDD)N(d1) −KN(d2))
(2.4)

P (HDD) = e−rtE[max(K − F0(HDD), 0)]

= e−rt(KN(−d2) − F0(HDD)N(−d1))
(2.5)

C(CDD) = e−rtE[max(F0(CDD) −K, 0)]

= e−rt(F0(CDD)N(d1) −KN(d2))
(2.6)

P (CDD) = e−rtE[max(K − F0(CDD), 0)]

= e−rt(KN(−d2) − F0(CDD)N(−d1))
(2.7)

where d1 =
ln(

F0(HDD/CDD)
K )+ 1

2 σ2T

σ
√

T
and d2 = d1 − σ

√
T .

Equation (4) implies that the colder it is (the more the number of HDDs) the higher is
the payoff of the call. Thus, the investor would buy a call option on HDDs if the investor
believes it will be colder than the current future price F0(HDD) implies. Equation (5)
instead implies that the warmer it is (the fewer the number of HDDs), the higher is the
payoff of the put. Hence, an investor would buy a put on CDD, if the investor believes it
will be warmer that the current future price F0(HDD) implies.

In addition, one can apply sensitivities on Black-Scholes model and as a result
obtain what follows:

• Delta: is defined as the rate of change of the price of a HDD with respect to the
price of the underlying future price Ft(HDD).

Call: △ = ∂C(HDD)
∂F0(HDD) = e−rtN(d1)

Put: △ = ∂P (HDD)
∂F0(HDD) = e−rt(N(d1) − 1)

• Gamma: The second derivative of the call/put option with respect to the price of
the underlying future price F0(HDD) is called the Gamma of the option and is
given by

Γ = ∂2C(HDD)
∂F 2

0 (HDD)
= ∂2P (HDD)

∂F 2
0 (HDD)

= e−rte−
d1
2

F0(HDD)σ
√

t
√

2π
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• Theta: Theta is the rate of change of the price of a HDD with respect to time to
maturity with all else remaining the same.

Call: Θ = ∂C(HDD)
∂τ

Θ = 1
T (−( F0(HDD)σe−rte−

d2
1

2

2
√

t
√

2π
)) − rKe−rtN(d2) + rF0(HDD)e−rtN(d1)

Put: Θ = ∂P (HDD)
∂τ

Θ = 1
T (−( F0(HDD)σe−rte−

d2
1

2

2
√

t
√

2π
))+rKe−rtN(−d2)−rF0(HDD)e−rtN(−d1)

• Vega: The vega of a weather derivative, is defined as the rate of change of its
price with respect to the volatility of the underlying asset.

Λ = ∂C(HDD)
∂σ = ∂P (HDD)

∂σ = F0(HDD)e−rt
√

te−

d2
1

2

100
√

2π

• Rho: The rho of a weather derivative is defined as the rate of change of its price
with respect to the interest rate.

Call: ρ = ∂C(HDD)
∂r = 1

100Kte
−rtN(d2)

Put: ρ = ∂P (HDD)
∂r = − 1

100Kte
−rtN(−d2)

2.2.3.4 Actuarial Methods

These methods use conditional expectation of the weather derivatives future payoffs
to calculate the price. This, fundamentally is the same method used by insurance
companies. When pricing risks different probabilities and statistical analysis are required
for different events to be insured. Based on the historical probabilities an insurance
premium is calculated accordingly. These methods are less applicable for weather
derivatives as the underlying variable such as temperature, rainfall, snowfall, wind, etc
tend to follow a recurrent, predictable pattern (Stefani et al (2018)). If the contract
was to insure for extreme conditions such as extreme heat or cold periods, then the
actuarial method would be useful. It is argued that this is the only appropriate method
for extreme weather conditions (Cao, Li and Wei (2003)). Moreover, the estimated
expected payoff is in the real world, meaning that the actuarial approach is correct
only when the expected payoff from the derivative is the same in both the real and the
risk-neutral world (Hull 2003, 2005). An actuarial method with normal distribution was
used in the paper of Beyazit and Koc (2010) to price put/call European options:

Call = V e−r(T −t)E[max(HT −K, 0)],

Put = V e−r(T −t)E[max(K −HT , 0)]

where V is the tick size, r the risk free rate, T the expiration time, K the strike price
and HT the cumulative HDD/CDD index at maturity. If the index follows a normal
distribution, the put/call price functions will be expressed as:

Call = V e−r(T −t)((µn −K)(φ(−αn) − φ(−µn

σn
)) +

σn

2π
(e− α2

n
2 − e− 1

2 ( µn
σn

)2

))
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Put = V e−r(T −t)((K − µn)(φ(αn) − φ(−µn

σn
)) +

σn

2π
(e− α2

n
2 − e− 1

2 ( µn
σn

)2

))

where µn denote the mean, σn standard deviation of average annual temperature, φ(.)
the cumulative distribution function for standard normal distribution, and αn = K−µn

σn
.

2.2.3.5 Burn Analysis

This approach is commonly used in the insurance industry and essentially uses a
simulation using historical information to estimate uncertain weather related payments.
The procedure of this method starts by collecting the historical weather data. After this
being done, the method determines what would have been paid out from the option
for every year in the past and concludes by making an average of these amounts.
This approach is easy to implement and understand and in the valuation of complex
transactions involving correlated weather indices, the correlation is embedded into
historical data. However, if an extreme event is included in the data, it can distort the
results of the analysis as it tends to omit low frequency extreme events (Spillet (2001)).
The main advantage of burn analysis in comparison with other methods is that it does
not include any form of weather (temperature) forecasting. From what we stated above,
it is quite common that market participants use this method in order to get the first
notion about the fair price of an option. According to Schiller, Seidler, and Wimmer
(2012), burn analysis approach is the simplest method for evaluating weather derivatives
(despite all its simplifications, it is used by many market traders). The main idea of burn
analysis is to calculate the future payoff of a derivative by considering the payoffs the
same derivative yielded in the past. If, for example, a derivative for measurement period
[τ1, τ2] should be priced for the year n+ 1, we would calculate the fictive indices the
same derivative had in the years n, n− 1, n− 2, etc. This yields a series Y1, Y2, ..., Yn

of n indices for the past n years. Using the linear model

Yt = β0 + β1 ∗ t+ ǫt, t = 1, ..., n

then, the constant (intercept) parameter β0 and the trend (slope) parameter β1 can be
estimated as:

β̂1 =

∑n
t=1(t− n

2 )(Yt − Y )∑n
t=1(t− n

2 )

β̂0 = Y − n

2
β̂1

where Y = 1
n

∑n
t=1 Yt is the mean of the calculated indices over the past n years. Three

assumptions are established:

• The expected errorE(ǫt) = 0 for all years t = 1, ..., n+ 1.

• The variance of the errors V ar(ǫt) = σ2 is constant for all years t = 1, ..., n+ 1.

• The covariance of the errors Cov(ǫt, ǫs) = 0 for all years t 6= s.
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Under these assumptions, by the Gauss–Markov theorem, the estimator Ŷt =

β̂0 + β̂1t is the best linear unbiased estimator for Yt. Hence, the index Yn+1 of the next
year n+ 1 can be predicted as

Ŷn+1 = β̂0 + β̂1 ∗ (n+ 1)

In order to derive a measure of the certainty of the prediction Ŷn+1, a fourth
assumption need to be established:

• The errors ǫt, t = 1, ..., n+ 1, are independent identically normally distributed.

2.2.3.6 Index Modeling Method

This is a pricing method for weather derivatives based on a distribution statistically
modeling the claim size. Once claim sizes have been observed, we select and fit a
distribution. Then the mean of this distribution can be computed to find the expected
value of the claim. The advantage of this method is that we may derive statistically
information of the claims outside the range of the observed data values, and can make
assessments of the probability of extreme events happening. In particular, quantiles of
the claim outside the range of observed data can be estimated. According to Schiller,
Seidler, & Wimmer (2012) the approach extends the burn analysis method by estimating
the distribution of the weather index. If the distribution can be estimated relatively
well, the index modeling approach yields a more stable price estimation than the
Burn Analysis. In addition, the fourth assumption added to burn analysis approach
extends the burn analysis to an index modeling approach, since ǫi ∼ N(0, σ2) implies
Yi ∼ N(β0 + β1i, σ

2). With this assumption one can use the well-known theory of
linear models (Rencher 2008) to estimate the variance of the error of the prediction
Ŷn+1:

V ar(Ŷn+1 − Yn+1) =
(n+ 2)(n+ 1)(n− 2)

n(n− 1)(n− 4)
s2

s2 =
1

n− 2

n∑

i=1

(Yi − Ŷi)
2

is the unbiased estimate for the variance σ2 of the errors.

2.2.3.7 Monte Carlo Simulations

This method consists on a computer-based generation of random numbers which can be
used to statistically construct weather scenarios. Generally the payoffs of an instrument
are determined by simulating numerous weather scenarios based on HDDs or CDDs.
As a result, the fair price is the average of all possible payoffs approximately discounted
to account for the time value of money. Let turn back to the application of Black-
Scholes formula in weather derivatives. From equation 6.3 to draw samples of the
terminal weather derivative price WD(T ) it suffices to have a mechanism for drawing
samples from standard normal distribution. First let produce a sequence of Z1, Z2, ... of
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independent standard normal random variables. Given a mechanism for generating the
Zi, one can estimate E(e−rtmax(WD(T ) −K, 0)) using the following algorithm:

for i = 1, ..., n

generate : Zi

calculate : WDi(T ) = WD(0) + exp((r − 1

2
σ2)T + σ

√
TZi)

calculate : Ci = e−rtmax(WD(T ) −K, 0)

calculate : Ĉn =
C1 + ...+ Cn

n

for any n ≥ 0, the estimator Ĉn is unbiased, in the sense that its expectation is the target
quantity:

E[Ĉn] = C ≡ E[e−rTmax(WD(T ) −K, 0)]

The estimator is strongly consistent, meaning that when n → ∞

Ĉn → C

with probability 1. For finite but at least moderately large n, the point estimate Ĉn is
supplemented with a confidence interval. Let

sC =

√√√√ 1

n− 1

n∑

i=1

(Ci − Ĉn)2

denote the sample standard deviation of C1, ..., Cn and let zδ denote the 1 − δ
quantile of the standard normal distribution (Φ(zδ) = 1 − δ). Then

Ĉn ± zδ/2
sC√
n

is an asymptotically, as n → ∞, valid 1 − δ confidence interval for C. This is a
simple application of Monte Carlo simulation approach using Black -Scholes model on
weather derivatives according to Glasserman (2013).

2.2.3.8 Indifference Pricing Method

This approach is a utility based approach which has been presented by Brockett et al
(2006) and Xu et al (2008) and it is different from other pricing methods because it
is based on the basic principle of equivalent utility and according to Alexandridis and
Zapranis (2013) it makes use of investors risk preferences and a corresponding utility
function. The method uses the expected utility to produce indifference prices. One
utility function that can be used for this approach is an exponential utility function:

U(X) = −e−λX
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whereX ∈ R and λ > 0. But the utility function can be a mean-variance utility function
as well such as:

U(X) = E(X) − λσ2(X)

with the risk aversion parameter λ > 0. This method uses two market participants
a seller (e.g. insurance company) and a buyer as agent seeking protection. At the
beginning both actors optimize their investment portfolios in order to maximize wealth
at maturity. Differently from other approaches this method is less ambitious since it does
not attempt to predict a transacted market price. Instead, this approach calculates price
boundaries for seller’s and buyer’s and states if transactions are likely to occur or not. To
illustrate the indifference pricing approach, let consider a dynamic market setting that
consists of two assets, a weather derivative with a price process WD = (WDt)0≤t≤T ,
where T is a fixed time horizon, and a nontraded asset Y on which a European-type
claim is written. The payoff of this European derivative is denoted by g(Yt), payable at
time T . Moreover, no trading of the derivative is allowed after its inscription/purchase.
The individual risk preferences are modeled via a utility function u. In this model, the
investor seeks to maximize the expected utility of terminal wealth with and without
talking into account the European claim. The initial wealth of the investor is denoted
by w. The optimisation problem without considering this claim is a classical Merton
(1976) model of optimal investment, namely,

V (w) = supνEu[w +

∫ T

0

νtdWDt]

where V (w) is the attainable maximum expected utility of terminal wealth with initial
wealth w. Considering the possibility of buying/selling δ units of this claim, the buyer
and seller’s optimisation problems are defined respectively by

V b(w) = supνEu[w +

∫ T

0

νtdWDt − δπb + δg(YT )]

and

V s(w) = supνEu[w +

∫ T

0

νtdWDt + δπs − δg(YT )]

where πb and πs denote the prices of buying and selling one unit of the claim,
respectively.

The indifference seller’s (buyer’s) price of the European claim g(YT ) is defined as
πs(πb), such that the investor is indifferent to the following two scenarios: optimizes
the expected utility without using the derivative and optimizes his or her expected utility
taking into account, on the one hand, the liability (payoff) g(YT ) at expiration T , and
on the other hand, the compensation πs (cost πb). Therefore, the indifference prices
πs(πb) must satisfy

supνEu(w +

∫ T

0

νtdWDt) = supνEu[w +

∫ T

0

νtdWDt + δπs − δg(YT )])
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and

supνEu(w +

∫ T

0

νtdWDt) = supνEu[w +

∫ T

0

νtdWDt − δπb + δg(YT )])

2.2.3.9 McIntyre Pricing Method

A simple analytical model for pricing weather derivatives is presented by McIntyre and
Doherty in 1999. These authors assume that the cumulative weather variable (which can
be temperature, precipitation, etc) is normally distributed with mean m and standard
deviation σ. The McIntyre model for pricing weather call and put options derivatives is
expressed:

Call = (m−K)N((m−K)/σ) + σ2f(K)

Put = (K −m)N((K −m)/σ) + σ2f(K)

where m is the mean weather variable (for instance, temperature), K is the strike price,
N(.) is the cumulative standard normal distribution, σ is the standard deviation, and
f(.) is the probability density function for a standard normal random variable defined as

f(x) =
1

σ
√

2π
exp− (x−m)2

2σ2

The larger the volatility the larger the movement and the greater risk and as a
consequence a higher price for the option. The mean of the underlying weather derivative
indicates the price maker’s expectation of future observations and should take into
account recent trends, forecasts and positions. The implied volatility and implied mean
together represent the risk and the purchase price of the option.

2.2.3.10 Stochastic Process

In this approach a stochastic differential equation is chosen to represent the diffusion
of the weather index. The process is calibrated to either historical data sets or market
quotes for weather derivatives, should they exist. The equation is then solved using
the boundary conditions provided by the payment terms of the derivative transaction.
Common features of the processes chosen would be mean reverting or auto-regressive
processes. The one main advantage of this method is that the risk statistics are easily
expressed. In Tables [1-7] a list of pricing models for the dynamics of temperature,
rainfall, maize yield using basket (rainfall and temperature) weather derivatives, snowfall
and wind, respectively, are displayed.

Note: All the notations in models presented in Tables [1-7] are as in the reviewed
papers.

2.3 Literature Review

Weather affects worldwide economy. Global warming has led to more extreme weather
phenomena and wider weather fluctuations than expected.
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Table 2.1: Evolution of pricing models for the dynamics of temperature variations. (Part
1)

Authors Year Model
Alaton et al 2002 dT (t) = dS(t) + β(T (t) − S(t))dt+ σ(t)dB(t), β ∈ R

S(t) = a+ bt+ c sin(2tπ/365 + ν)

σ2(t) = 1
Nµ

∑Nµ−1
t=0 (T (t+ 1) − T (t))2

Nµ is the number of days corresponding to months µ = 1, ..., 12
Brody et al 2002 dT (t) = β(t)(θ(t) − T (t))dt+ σ(t)dBH(t)

BH -fractional Brownian motion 2

T (t) = 1
2 (Tmin(t) + Tmax(t))

θ(t) - the expected value at which the temperature reverts
at a rate β(t) on day t .

σ2(t) = 1
N

∑N
t=1 T

2
(t)

Campbell &
Diebold

2002 Tt = mt + st +
∑L

l=1 ρt−lTt−l + ǫ̃t, t = 1, 2, ..., ǫ̃t = σtǫt

ǫt ∼ iid(0, 1)

mt =
∑M

m=0 βtt
m

st =
∑P

p=1(σc,pcos(2πp
d(t)
365 ) + σs,psin(2πpd(t)

365 ))

σ2
t =

∑Q
p=1(γc,qcos(2πq

d(t)
365 ) + γc,qsin(2πq d(t)

365 ))

+
∑R

r=1 αr ∗ (σt−rεt−r)2 +
∑S

s=1 βsσ
2
t−s

d(t)− repeating step function that cycles through 1, ..., 365
L = 25,M = 1, P = 3, Q = 3, R = 1, S = 1

Benth & Šal-
tytė Benth

2005 dT (t) = dS(t) + β(T (t) − S(t))dt+ σ(t)dL(t)

L(t) - Levy process 3

S(t) = a+ b cos( 2π
365 (t− t0))

ε̃t = σtεt, εt ∼ iid
σ2

t =
∑Q

q=1[γc,qcos(
2πqd(t)

365 ) + γs,qsin( 2πqd(t)
365 )] +

∑R
r=1 αr ε̃

2
t−r

Benth & Šal-
tytė Benth

2007 dT (t) = dS(t) − β(T (t) − S(t))dt+ σ(t)dB(t)

S(t) = a+ bt+
∑I1

i=1 ai sin(2iπ(t− fi)/365)

+
∑J1

j=1 bj sin(2jπ(t− gj)/365)

σ2(t) = c+
∑I2

i=1 ci sin(2iπt/365) +
∑J2

j=1 dj sin(2jπt/365)

Benth & Šal-
tytė Benth

2011 T (t) = Λ(t) + Y (t)

Λ(t) = a+ bt+ c sin((2π(t− d))/365),

Y (t) = e
′

1X(t) ∼ CAR(p)
dX(t) = AX(t)dt+ σepdB(t)

σ2(t) ∼ V (t), dV (t) = −λV (t) + dL(t)
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Table 2.2: Evolution of pricing models for the dynamics of temperature variations. (Part
2)

Authors Year Model
Benth & Šal-
tytė Benth

2012 T (t) = µ(t) + ǫ(t)

µ(t) = S(t) +
∑p

i=1 αi(T (t− i) − S(t− i), ǫ(t) = σ(t)δ(t)

S(t) = a0 + a1t+
∑J

i=1 b1j cos(2πj(t− b2j)/365)
Taib &
Benth

2012 T (t) = S(t) + Y (t)

Y (t) =
∑p

i=1 αiY (t− i) + ǫ(t), ǫ(t) ∼ N(0, σ2)

S(t) = a0 + a1t+ a2 sin( 2π(t−a3)
365 )

Wang, Li, Li,
Huang & Liu

2015 dTt = dTm
t + α(Tm

t − Tt) + σtdWt

Wt - Wiener process
Tm

t = A+Bt+ Csin( 2πt
365 + φ)

σ2
t = c+

∑I
i=1 ci sin( 2iπt

365 ) +
∑J

j=1 cj cos( 2jπt
365 )

α = − log(

∑n

i=1
((Ti−1−T m

i−1)/σ2
i−1)(Ti−T m

i )∑n

i=1
((Ti−1−T m

i−1
)/σ2

i−1
)(Ti−1−T m

i−1
)
)

Szabȯ &
Szėpszȯ

2016 XT (t) = △T (t) + T + ǫ(t)

T – temperature polynomial averages
for the reference period

△T (t) – the departure of polynomial values from
this reference with t time

ǫ(t) – the residuals of raw model results from
the polynomial fits

Kabaivanov
&
Markovska

2017 dT (t) = θ(µ− T (t))dt+ σdW (t)

Mean reversion speed θ and mean µ are constant values
Kabaivanov
&
Markovska

2017 T (t) = f(t) + S(t)

f(t) = p1 sin(2πt) + p2 cos(2πt) + p3 sin(4πt) + p4 cos(4πt) + p5

dS(t) = θ(µ− S(t))dt+ σdW (t) + J(µj , σj)dΠ(α)
S(t) – the mean-reverting process with jumps

that are driven by a Poisson process with density α
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Table 2.3: Evolution of pricing models for the dynamics of temperature variations. (Part
3)

Authors Year Model

Prabakaran
& Singh

2017 dTt = (
dT m

t

dt + b(Tm
t − Tt))dt+ dLt

Tm
t = A+Bt+ Csin(wt+ φ)

dLt = σtdWt + dYt + dZt, Lt ∼ ARCH(1)
dYt = −αYtdt+ dQt, dZt = −βZtdt+ dRt

Qt =
∑NY

i
i=1 Ui, Ui ∼ N(µY , δ

2
Y ),

Rt =
∑NZ

i
i=1 Vi, Vi ∼ N(µZ , δ

2
Z)

dYt - fast mean-reverting OU process
driven by compound Poisson processes
dZt - slow mean-reverting OU process
driven by compound Poisson processes

Evarest,
Berntsson,
Sigull &
Yang

2018 Td(t) =

{
Tt,1 : dTt,1 = (µ1 − βTt,1)dt+ σ1Tt,1dWt, with prob q1

Tt,2 : dTt,2 = µ2dt+ σ2dWt, with prob q2

β – the mean reversion speed
µ1

β – the long-term mean
σ1 – the volatility of the mean-reverting
heteroskedastic process in base regime
µ2 and σ2 the mean and volatility

of the shifted regime process
Sd(t) = A1sin( 2π

365 (t−A2)) +A3t+A4 – seasonality process
Gyamerah,
Ngare &
Ikpe

2019 dTi(t) = dSi(t) + βi(t)(Ti(t) − Si(t))dt+ σ(t)Ti(t)dBi(t)

S(t) = a+ bt+ c sin(2tπ/365 + ν)
Ti(t) – represents the daily average temperature for location i
Si(t) – the deterministic seasonal component for location i

βi(t) – the time-varying speed of mean-reversion for location i
σ(t)Ti(t) – the daily average temperature volatility through time

for location i
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Table 2.4: Evolution of pricing models for rainfall.

Authors Year Model
Wilks 1998 Yt,k = rt,k ∗Xt,k

p01
t,k = P (Xt,k = 1|Xt−1,k = 0)

p11
t,k = P (Xt,k = 1|Xt−1,k = 1)

Xt,k =

{
1, if Φ[ǫt,k] < p

01/11
t,k

0, otherwise
rt,k = rmin − δt,k ln(Φ(zt,k)),ǫt,k ∼ N(0, 1)

δt,k =

{
βt,k, if ut <= αt,k

γt,k, if ut > αt,k

rmin = 0.01mm,ut ∼ U [0, 1], zt,k ∼ N(0, 1)
βt,k >= γt,k > 0, 0 < αt,k < 1

Ritter, Mub-
hoff &
Odening

2014 Yt,k = rt,k ∗Xt,k

p01
t,k = P (Xt,k = 1|Xt−1,k = 0)

p11
t,k = P (Xt,k = 1|Xt−1,k = 1)

Xt,k =





1, if Φ[ǫt,k] < p
01/11
t,k

0, otherwise

rt,k = rmin − δt,k ln(Φ(zt,k)), ǫt,k ∼ NK+1(0,Σ)
Σ : σ(k, l) = corr[ǫt,k, ǫt,l]

δt,k =





βt,k, if Φ[ǫt,k]

p
01/11

t,k

<= αt,k

γt,k, if Φ[ǫt,k]

p
01/11

t,k

> αt,k

rmin = 0.01mm, zt,k ∼ NK+1(0, Z)
Z : η(k, l) = corr[zt,k, zt,l]

Szabȯ &
Szėpszȯ

2016 XP (t) = ( △P (t)+100
100 )P ( ǫ(t)+100

100 )

P – precipitation polynomial averages
for the reference period

△P (t) – the departure of polynomial values from
this reference with t time

ǫ(t) – the residuals of raw model results from
the polynomial fits
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Table 2.5: Evolution of pricing models for maize yield using basket (rainfall and
temperature) weather derivatives.

Authors Year Model
Dzupire,
Ngare &
Odongo

2019 Y = I + ǫ, y – maize yield, ǫ ∼ N(0, σ2)

I = α0 + α1Rcd + α2CDD + α3R
2
cd + α4CDD

2 + α5RcdCDD

Rcd =
∑n

i=1 min(0,
∑is

j=(i−1)s+1 rj − rmin)

CDD =
∑n

i=1 1Ti>23, rmin – minimum rainfall amount

Table 2.6: Evolution of pricing models for snowfall.

Authors Year Model
Dischel et al 1999 Sn = aθn + bSn−1 + γǫn

ǫn ∼ N(µ, σ2) – iid
a+ b = 1, γ = 1

θn – the snowfall of the n-th day in an average year
Sn−1 – is the one day lagged snowfall

Luo et al 2010 dS(t) = [αθ(t) + βS(t)]dt+ γdm1 + δdm2

S(t) – is the daily snowfall level for day t
αθ(t) + βS(t) – is the expected value of daily snowfall
dm1 and dm2 – the actual distributions which have
no assumption about the shape but are bootstrapped

from the actual historical snowfalls

Weather derivatives have a payoff that depends on a weather index which represent
the weather conditions against which protection is being sought. The effect of hedging
using weather derivatives can also be achieved using an insurance contract that has
a payoff based on a weather index (Jewson & Brix (2005)). Weather derivatives
are economical in comparison to insurance, require no proof of damage or loss and
provide protection from the uncertainty in normal weather (Geyser & Van der Venter
(2001)). There are some differences between weather derivatives and index-based
weather insurance contracts that may mean that one is preferable to the other in certain
circumstances. For instance, some companies may not be happy with the idea of trading
derivatives but comfortable with buying insurance. According to Jewson & Brix (2005)
and Stefani et al (2018) other ways in which insurance and financial derivatives differ
include the following:

• cover different kind of risks: weather insurance protect from low frequency, high
impact extreme weather events such as tornadoes, floods and weather related fires
while financial derivatives are more suited to protect against higher frequency,
lower impact events (minor fluctuations of the underlying variable; for example,
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Table 2.7: Evolution of pricing models for wind.

Authors Year Model

Šaltytė Benth
& Benth

2010 Xk
t = Sk

t +
∑pk

i=1 φ
k
iX

k
t−i +

∑qk

j=1 θ
k
j ǫ

k
t−j + εk

t

t ∈ [0, T ], k = d, 3h, ld = 1, l3h = 8
φk

i and θk
j – parameters from ARMA(pk, qk)

εk
t = σt,kδ

k
t

σt,k = c0 +
∑3

d=1 cdcos(
2kπt
365 )

δk
t – iid process

Sk
t = ak

0 +
∑l

i=0 a
k
2i+1 cos( (2i+2)πt

365∗lk
) +

∑l
j=0 a

k
2j+2 sin( (2j+2)πt

365∗lk
)

Šaltytė Benth
& Šaltytė

2011 Z(s; t) = µ(s; t) + ε(s; t)

S(s; t) = as
1 +

∑L
l=1[as

2l+1cos(
(2l+2)πt

365 ) + as
2l+2sin( (2l+2)πt

365 )]
µ(s; t) = S(s; t) +

∑ps

i=1 φi(s)(Z(s; t− i) − S(s; t− i))
ε(s; t) = σ(s; t)ǫ(s; t), ǫ(s; t) ∼ N(0, 1)

σ(s; t) = bs
0 +

∑J
j=1[bs

2jcos(
2πjt
365 ) + bs

2j+1sin( (2j+1)πt
365 )]

Alexandridis
& Zapranis

2013 dW
(l)
t = S(t) + k(t)(W

(l)
t−1 − S(t− 1))dt+ Ipσ(t)dBt

S(t) = a0 + b0t+
∑I1

i=1 aisin(2πi(t− fi)/365)

+
∑J1

j=1 bjsin(2πj(t− gj)/365)

σ2(t) = c0 +
∑I2

i=1 ci sin( 2iπt
365 ) +

∑J2

j=1 dj cos( 2jπt
365 )

Benth & Pir-
calabu

2018 P (t) = Λ(t) exp(−X(t))

dX(t) = α(µ−X(t))dt+ dL(t)

α > 0, µ > 0, L(t) =
∑Nt

k=1 Jk, Nt ∼ Po(λ), Jk ∼ Exp(1/λ)
Λ(t) = a1 + a2 sin( 2πt

365 ) + a3 cos( 2πt
365 )

a temperature drop/increase by a few degrees, a higher/lower amount of snow or
rainfall or a higher/lower wind speed)

• with weather derivatives, the payout is designed to be in proportion to the
magnitude of the phenomena while weather insurance pays a once-off lump
sum that may or may not be proportional to the magnitude of the phenomena and
as such lacks flexibility

• it may be necessary to perform a frequent (daily, weekly or monthly) revaluation
of derivative positions, known as mark to market or mark to model, but this is
usually not necessary for insurance

• weather insurance normally pays out if there has been proof of damage or loss
while weather derivatives require only that a predetermined index value has
behaved in prespecified way
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• a tax payment could be required: most commonly, insurance reimbursements
might incur a tax deduction while derivative ones do not

• the accounting treatment may be different

• contractual details are different

All of these listed differences vary in a certain degree from country to country. As a
consequence weather derivatives will not totally replace insurance contracts since there
are a number of significant differences between them.

Traditional insurance can protect revenue losses or damages from weather-related
events and can be expensive and requires no proof of damage or loss. But such protection
has several drawbacks. First of all, weather caused damages, to some extent, are
social risks and many insured subjects may suffer simultaneously. As a result the
insurer who issued such policies may face financial problems to reimburse such claims.
Therefore, insurers may withdraw from the markets when find out that cumulative
losses are too large (Chen and Hamwi (2012)). Secondly, insurance companies might
face losses regardless of the behaviour of the financial markets. Thirdly, insurance
usually only covers extreme weather and catastrophic losses thus insured are not fully
protected (Ender and Zhang (2015)). Weather derivatives insurance has been attractive
to developing countries with small size of farms. In China large size farmers prefer
buying traditional weather insurance because it can cover their actual loss. Also, large
size farmers pay lower insurance premiums per unit coverage than small size farmers,
since the insurer’s underwriting cost will be lower due to the economies of scale and
also because of less adverse selection and moral hazard problems (Boyd et al (2011)).
In addition, large size farmers receive huge government subsidies for weather insurance
and premiums (Mahul and Stutley (2010)). In this report we recall and emphasize that
weather derivatives can be used as a risk management tool for all kind of industries
affected by weather. A review on the recent scientific papers follows divide in three
categories: weather derivatives, insurance and climate change.

2.3.1 Weather Derivatives

Weather derivatives are financial instruments that can be used in order to reduce risk
associated with adverse or unexpected weather conditions. The payoff of a weather
derivative depends on underlying weather variables such as temperature, rainfall, wind
or snowfall.

2.3.1.1 Temperature-based models and risks

Since the majority of the traded weather derivatives are written on temperature indices
then temperature is the most common used variable in weather derivatives. More
recent studies propose dynamic models which directly simulate the future behavior
of temperature using different pricing approaches. Lee and Oren (2009) propose an
equilibrium pricing model for weather derivatives in a multi-commodity setting. The
optimal payoff in a multi-commodity setting is given as

x∗
i,1(Pi) = µIi

− E[Ii|Pi] − αi,1W0B1(1 +
1

W0B1
(E[W1|Pi] − µW1

))
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where

αi,1 =
1
vi

(µW1
−B1W0) − (µIi

µW1
− E[E[Ii|Pi]W1]) − σW1Ii

µ2
W1

+ σ2
W1

− E[E[W1|Pi]W1]
,

W0 =

∑2
i=1

Λi

Γi
+
∑2

j=1
Λj

vjσ2
W1

µW1

vmσ2
W1

B1( 1
vmσW1

+
∑2

i=1
1

viΓi
+
∑2

j=1
1

vmσW1
)

where △i =
µW1

vi
− (µIiµW1 − E[E[Ii|Pi]W1] − σW1Ii), Γi = µ2

W1
+ σ2

W1
−

E[E[W1|Pi]W1], Λj = µW1 − vjσIjW1 , B1 = (1 + r)B0 is the riskless bond price at
time 1, r is the interest rate and B0 = 1, W1 is the weather derivative price, and Pi is
the unit spot price of type i at terminal time.

In the multi-commodity economy the weather derivative has two effects; the risk
hedging effect and the risk sharing effect while in a single-commodity economy there
is only a risk hedging effect since there is no counter-party to share risk. The risk
hedging effect can be measured by the certainty equivalent difference of the maximized
utility with and without weather derivative. The risk sharing effect reflects possible
diversification of weather risk across industries with different weather dependence
(e.g. some industries may benefit from high temperature while others may be adversely
affected). Such risk sharing effect can be measured by the certainty equivalent difference
of the maximized utility between the multi-commodity and a single-commodity
economy. Authors were able to derive closed form expression for equilibrium prices
and the measurement of the risk hedging and sharing effects. An important result was
that weather derivatives improves hedging and risk diversification capability, especially
in situations where commodity derivatives are not available. Numerical analysis is
performed by employing Monte-Carlo simulations.

Benth and Šaltytė Benth (2011) propose a continuous-time autoregressive model
for the temperature dynamics with volatility being the product of a seasonal function
and a stochastic process. Authors use the Barndorff-Nielsen and Shephard model for
the stochastic volatility. The authors find that the proposed temperature dynamics is
flexible enough to model temperature data accurately. Also, future prices for cooling
and heating degree days and cumulative average temperatures are calculated, as well as
option prices written on them. This model is applied on data from Stockholm, Sweden.
Next, some issues related to the mean reversion of the model are discussed, where in
particular the so-called half-life of the temperature model is derived. To understand how
fast the temperature dynamics is reverting back to its long-term average, the notion of
half-life (which is defined to be the expected time it takes before the process is returned
half way back to its mean from any position) of the stochastic process is discussed.

Meissner and Burke (2011) suggest that the Black-Scholes model (BSM) despite its
limitations is an adequate pricing model, which is superior to Burn analysis 4 which is
used in pricing weather futures and options contracts. These authors show that the BSM
model can be applied to pricing temperature based options. But the BSM model requires
completeness in the market which means that it can be used to perform delta hedging.
The authors find that there is an active market for temperature futures, which can be used

4for more see section 3.3.4
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to delta hedge. The BSM model assumes a log normal distribution of the underlying
at option maturity and by extensive empirical testing authors show that the log normal
distribution provides a reasonably well fit for HDD and CDD data. Therefore, this
support the application of the BSM model to price and risk management temperature
options in practice.

Benth and Šaltyt˙e Benth (2012) present a stochastic model for daily average
temperature which contains seasonality, a low-order autoregresive component and
a variance describing the heteroskedastic residuals. Also this paper addresses the issue
of using historical burn analysis on derivatives with aggregated values as the underlying
variable. A discussion of continuous time models, discrete time model (Campbell and
Diebold (2005)) and weather derivatives pricing is done. In Benth and Benth (2005)
the dynamics of the deseasonalized temperature is assumed to follow an Ornstein-
Uhlenbeck process. Alaton et al. (2002) consider the same dynamics except that the
volatility is assumed to be constant for each month. The dynamics are generalized in
so-called continuous time AR (CAR) process in Benth et al (2007) which is applied to
Stockholm data. Later Härdle and Cabrera (2009) studied this class of processes for
German temperature data and Benth et al (2011) for Asian temperatures, all validating
the relevance of this class of models. When estimating these models discretization of
the stochastic process is applied leading back to the time series models. Temperatures
are naturally evolving continuously over time, so it is very appealing to use continuous
time stochastic processes to model the dynamics although the data may be on a daily
scale and the weather derivatives market settles contracts based on indices of daily
average temperature. There is another fundamental aspect related to the nature of the
temperature futures markets. Temperature futures can be traded continuously in the
opening hours of the exchange. Thus a model for the forward price dynamics is naturally
formulated as a continuous time stochastic process. In Benth et al (2008) the dynamics
of temperature future prices is to use the risk adjusted to predict index value developing
a continuous time model of Brownian motion type by using a Girsanov transform which
effectively shifts the seasonal function by some constant called the MPR.

Taib and Benth (2012) study pricing of weather insurance contracts based on
temperature indices. Authors take data from Malaysia and analyze three pricing methods
such as burn approach, index modeling and temperature modeling. The first two give
similar results and a high degree of uncertainty in their premium estimates while
premium estimated from the temperature modeling approach is prone of Monte Carlo
error. But the temperature modeling approach has the advantage that it can account for
current information of the weather situation. Pricing of the insurance contract using
a seasonal autoregressive time series model for daily temperature variations (which
gives a very precise information on the dynamics of temperature and very detailed
probabilistic information on the index and therefore assess correctly the premium and
probabilities of loss and profits) is proposed and the profit/loss distribution from the
contract in the perspective of the insured and the insurer is investigated. Moreover,
chances of receiving a profit form a weather index insurance contract are analyzed. The
authors find that chances are not very large using burn analysis approach but far better
in the temperature modeling case.

Alexandridis and Zapranis (2012) shows that almost 70% of US companies are
affected by weather in some way. Burn analysis is considered the benchmark approach
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for pricing temperature derivatives. It is impractical to apply no arbitrage pricing models
to weather derivatives as it is not possible to construct a risk free portfolio consisting of
weather index and the derivative. In addition the no arbitrage condition does not result
in a unique price as many martingale measures exist.

Wang, Li, Li, Huang and Liu (2015) present a feasible model for the daily average
temperature on the area of Zhengzhou, China and apply it to weather derivatives pricing.
Authors apply the mean-reverting Ornstein-Uhlenbeck process to describe the evolution
of the temperature and use Monte Carlo simulations to price heating degree day (HDD)
call option for this city. Many other mathematical tools, such as wavelet functions,
B-spline functions, and polynomial function, can be used for a more accurate modeling
of temperature data. In addition, these authors suggest that it would be interesting to
treat carefully the jumps of temperatures due to extreme phenomena by integrating
a term which describes their behavior within the stochastic model. At the end it is
emphasized that is important to construct accurate weather models for other weather
factors, such as rain, snow, or fog, since the risks implied by these factors also deeply
affect economic development of China.

Yuan, Göncü and Ökten (2015) display the analysis of the estimation of the
sensitivities of weather derivatives in a stochastic model of temperatures. These authors
use path-wise derivative and kernel methods to derive Monte Carlo estimators for the
sensitivity (Greeks) of temperature-based weather derivatives. These sensitivities can be
used by investors for choosing the most suitable weather contracts for partial hedging
or speculation. Temperature data from New York, Atlanta and Chicago are used in
the discussion of numerical results. The sensitivities with respect to the long-term
mean temperature parameters are almost identical for all three cities. Therefore, from
this aspect there is no distinction between these contracts. However, there is more
of a distinction between contracts with respect to their delta, gamma, vega and mean
reversion parameter. The delta of the New York HDD option is smallest in absolute
terms, suggesting a smaller sensitivity with respect to possible measurement or forecast
errors in the initial temperature. In case of partial hedging with a correlated asset, a
lower gamma means less re-balancing of the partial-hedging portfolio and possibly
lower transaction costs. Results show that gamma of all three options is low with New
York HDD call/put options having the lowest value. As a future work, authors suggest,
the sensitivities derived in this study can be extended to various dynamic temperature
models with more general stochastic processes.

Erhardt (2016) explores a method to model the financial risks of holding portfolios of
long-term temperature derivatives for any subset of the 30 North American cities whose
derivatives are actively traded on the CME. The author incorporated spatial dependence
among 30 cities using a multivariate normal distribution. A normal distribution for
payments is obtained through affine transformations of cCDD 5 and cHDD 6. Moreover,
it is demonstrated how the normal distribution could be used to estimate some common
risk measures. The value at risk (VaR) is defined as:

V aR(L,α) = Qα = min(Q : P (L ≤ Qα) ≥ α)

5cumulative CDD
6cumulative HDD
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The VaR is easily obtained since the loss L is a continuous random variable for larger
values of α and therefore the distribution function FL(l) = P (L ≤ l) is stricktly
increasing and has inverse distribution function F−1

L then Qα = F−1
L . While the

conditional tail expectation is defined as:

CTEα(L) = E(L|L > Qα),

which is the expected loss conditional upon exceeding the VaR. In addition, the most
notable limitation of the method is its reliance on sufficiently long time periods to allow
for normality in the degree day sums. This method is not recommended for modeling
cumulative degree days over short time periods to allow the normal approximation to
hold.

Kabaivanov and Markovska (2017) focus on modeling environment changes in a
way that allows to price weather derivatives in a flexible and efficient way. These authors
show that option based approach toward resource management can offer very special
insights on rare events and allow to reuse derivative pricing methods to improve natural
resources management. To show this the authors use stochastic modeling with mean
reverting processes and Monte Carlo simulated temperatures to evaluate Asian weather
options. Two different models one with standard Orstein Uhlenbeck process and a
second one including jump diffusion and forecast different temperature paths over a 90
days horizon are calibrated. Both models are able to cope with temperature forecasting
and yield meaningful results for Asian weather options, but the one which includes
jumps and accounts for seasonal effects is more accurate. Authors conclude that the
advantages of using environment modeling go beyond the pure valuation of derivative
instruments because it provides a common framework that can fit together stochastic
models, management decisions, financial impact and the effects on individual behavior.
That allows to assess not only derivative contracts but also to forecast and measure the
result of regulations and environment policies.

Prabakaran and Singh (2017) construct the temperature model under Ornstein
Uhlenbeck process which is driven by a Levy process rather than a standard Brownian
motion. These authors extend their approach to model and price weather derivatives.
Also it is discussed on how weather forecasting and seasonal forecasting could
potentially improve their valuation of weather derivative contracts. The simplest case
of using weather forecasts in weather derivative pricing is considered, which is the
calculation of the fair price of a linear swap contract on a separable 7 and linear index
such as CAT. After that the calculation of the fair price of a linear swap contract on
a separable non-linear index such as HDD is considered and the general case which
includes the calculation of the fair price for all other contracts (non-linear swaps and
options) and the calculation of the distribution of outcomes for all contracts which is the
most difficult case.

Alexandridis, Gzyl, Ter Horst, and Molina (2017) propose the use of the maximum
entropy method to extract the risk neutral probabilities directly from the weather market

7For a separable index, the variance is the sum of the terms in the covariance matrix of daily index values
during the contract period. In case of CAT separable index is the sum of the terms in the covariance matrix of
the daily temperatures.
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prices. The maximum entropy method for a call/put European option is defined as:

πm =

K∑

j=1

ρjOm(Ŝj ,Km)pj ,m = 1, ...,M

where ρj is the density of the risk neutral probability q with respect to the probability
p and

∑K
i=1 ρipi = 1, Km are the strike prices, M is the number of option prices

used, O(Ŝj ,Km) is the payoff of the mth option (which will be either a call or a put
of European type), and πm is its observed price. This method is computationally fast,
model free, non-parametric and can overcome the data sparsity problem that governs the
weather market. These authors infer consistent risk neutral probabilities along with their
densities from the market price of temperature options, and price accurately options even
in the cases where the realised underlying HDDs indices were significantly different
from the historical average. The empirical results indicate that CAR and historical burn
analysis probabilities can provide better reconstruction of the original option prices and
produce a lower mean absolute distance in the valuation of the options not used in the
fitting procedure. It is concluded that when the available information in the market
arrives from historical data or from meteorological forecasts pricing is more coherent.

Evarest, Berntsson, Sigull and Yang (2018) discuss pricing of weather derivatives
whose underlying is temperature and where the temperature follows a two state regime
switching model with a heteroskedastic mean reverting process as base regime and
a shifted one defined by Brownian motion with mean different from 0. The model
allows the volatility of the underlying process in the base regime to vary with changes
in temperature process. This model is applied for pricing futures contract on HDD,
CDD and CAT and corresponding call option contracts on these futures. The authors
suggest that for realistic contract payoff, it is important to estimate MPR based on
the available market prices and after that make comparison between market prices
and expected payoff from the model. The Monte Carlo simulation approach for the
underlying temperature dynamics model is described and then this approach is used to
price the call option contracts.

Gyamerah, Ngare and Ikpe (2019) propose to use a machine learning ensemble
technique to determine the relationship between maize yield and weather variables.
This approach aim to eliminate the product design basis risk which makes most
smallholder farmers and agricultural stakeholders unwilling to pay for the price of
weather derivatives. These authors develop a mean-reverting model with a time-varying
speed of mean reversion, seasonal mean, and local volatility that depended on the local
average temperature. The model is extended to a multi-dimensional model for different
but correlated locations. The application of these models is done on futures, options
on futures and basket futures for cumulative average temperature and growing degree
days (GDD). Since there is not a real weather derivative market in Africa from which
the prices of indices under scrutiny can be obtained, it is assumed a constant MPR in
the pricing models. With these efficient and reliable pricing models, basis risk will be
mitigated. As a result there will be an increase in the willingness to pay for the contracts
on the farmers side and trading activities in the weather derivatives market will also
increase and it will be cost efficient to buy contracts for different but correlated farming
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locations rather than a single farming location. The agricultural sector of Ghana, which
is vulnerable to climate shocks, is considered as an illustration.

2.3.2 Rainfall-based models and risks

Even the most traded weather derivatives are based on temperature indices, several
economic sectors are exposed to rainfall risk as well. Farmers and financial investors
are affected by indirect losses caused by scarce or abundant rainfall. With rainfall
derivatives firms can transfer rainfall risk to the capital market and give the buyer the
opportunity to reduce rainfall risk exposure in order to profit from weather uncertainty.
The process of pricing rainfall derivatives it is not as smooth as in temperature case and
the literature on pricing rainfall derivatives is thin. Ritter, Mubhoff and Odening (2014)
estimate a daily multi-site rainfall model from which optimal portfolio weights derive.
This method, which is calibrated to the historical data and then simulates future rainfall,
allows to reduce geographical basis risk more efficiently than simpler approaches such
as inverse distance weighting. The reduction of geographical basis risk is done by
combining weather derivatives with different reference stations in Germany. Including a
new weather station requires partially a re-estimation of the multi-site rainfall model.

Härdle and Osipenko (2017) emphasized that weather derivatives are contingent
claims with payoffs determined by future events as temperature, snowfall and rainfall.
Authors develop a utility-based model for pricing baskets of weather derivatives under
default risk on the issuer side in OTC markets. The terminal wealth of buyer j at time T
is expressed as:

Πj,T = Ij + αT
j,TWT + βj,TBT = Ij + Vj,T

with Ij being a random income that depends on some weather indices entering the final
payoff WT . βj,TBT and αj,T WT are the payoffs of the risk free asset and of the basket
of the weather derivatives; together they constitute Vj,T , the terminal portfolio value
of buyer j. If αj,t+1:T denote trading strategies of agent j from t + 1 to T then the
portfolio choice problem of buyer j in each t = 0, 1, . . . , T1 is expressed as:

max
αj,t+1:T ∈RSx(T −t)

Et(Uj(Πj,T ))

αT
j,t+1Wt + βj,t+1Bt − Vj,t = 0

While the terminal wealth of investor m at T is defined as:

Πm,T = −αT
m,TWT + βm,TBT = Vm,T

with αm,T WT and βm,TBT being the payoffs of the weather derivatives portfolio and the
risk free asset respectively. Investor’s portfolio choice problem in each t = 0, 1, . . . , T1
is expressed as:

max
αm,t+1:T ∈RSx(T −t)

Et(Um(Πm,T ))

αT
m,t+1Wt − βm,t+1Bt + Vm,t = 0
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In time t < T investor m maximises expected utility of the terminal wealth with respect
to all future trading strategies, subject to a self-financing portfolio. In this model agents
maximise the expected utility of their terminal wealth, while dinamically rebalance
their weather portfolios over a finite investment horizon. Using dynamic programming
approach to portfolio optimisation over a finite investment horizon semi-closed forms
for the equilibrium prices of weather derivatives and for the optimal trading strategies
are obtained. The authors find an adverse effect of increasing counterparty default risk
and capital costs on the demand for weather derivatives and on their prices. At the
end, the proposed model is applied to price rainfall options using historical data of
agricultural provinces Changde and Enshi in China.

Undli and Schatvet (2018) examine the effect on a Norwegian hydropower
producer’s operating income by hedging volumetric risk with the use of weather
derivatives. Precipitation evolves more irregularly and unevenly than temperature
changes, furthermore it does not have the same geographical correlation structure found
for temperature. Also due to many zero values in precipitation data a logarithmic
transformation is not the right approach and therefore it is conducted a quadratic and
linear regression. After that the indifference pricing method 8 and McIntyre pricing
method is a simple analytical model presented by McIntyre in 1999 for pricing weather
derivatives, which assumes that data follows a normal distribution are applied, resulting
that McIntyre performs better. In this case derivatives allow hydropower producers
to transfer weather risk to a third party. It is shown that for periods characterized
by low precipitation and high standard deviation the production of hydropower can
effectively be hedged by using monthly options on precipitations resulting in increased
operating income and reduced volatility. The pricing model developed can be used
in agriculture as well where a farmer is interested in hedging weather risks due to
rainfall and temperature simultaneously and economically. It can also be used to price
weather derivatives in other weather related industries affected by rainfall, temperature
or both. To further develop application of weather derivative in hydropower case one
have to alternate indifference and McIntyre pricing models applied to a larger dataset
and different geographical locations.

2.3.3 Basket of temperature and rainfall

Other important results come from scientific work on rainfall concluding with a paper
that mixes rainfall and temperature effect together. Dzupire, Ngare and Odongo (2019)
present an incomplete market pricing approach to analyze the evaluation of weather
derivatives and the viability of a weather derivatives market in terms of hedging. For
the specification of indifference prices for the seller and buyer of a basket of weather
derivatives written on rainfall and temperature is developed a utility indifference method.
The agent’s risk preference is described by an exponential utility function and the
prices are derived by dynamic programming principles and corresponding Hamilton
Jacobi-Bellman equations from the stochastic optimal control problems. At the end it is
shown how the basket weather derivatives, whose underlying indices are rainfall and
temperature processes, contribute to maize yield variability.

8is a utility based approach which has been presented by both Brockett et al. (2006) and Xu et al (2008)
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2.3.4 Wind-related models and risks

Another group of research work in weather derivatives market is focused on wind. In
this report, the various aspects of weather derivative have been presented. So far, the
focus has been on modeling and pricing temperature and rainfall derivatives. In this
section, the focus is on wind derivatives. Šaltytė Benth and Benth (2010) propose an
ARMA time-series model for the wind speed at a single spatial location, and estimate
the model with data based on three different wind farm regions in New York. Large
discrepancies in the behaviour of daily average and three-hourly wind speed (DAWS
and WS) records are demonstrated. In order to compare the power prediction of DAWS
and WS the mean square prediction error (MSPE) is calculated. The authors find that
MSPEs for DAWS data are much smaller than those for the three-hourly WS, indicating
that more accurate predictions are obtained from modeling aggregated data directly
rather than at the finer time scale. Moreover, some Box-Cox and back transformations
are applied in the data.

Šaltytė Benth and Šaltytė (2011) propose a spatial–temporal model for the wind
speed (WS) applied on daily WS records from 18 meteorological stations in Lithuania.
The model contains seasonality, a higher-order autoregressive component, a variance
describing the remaining heteroskedesticity in residuals and is estimated at the single
spatial meteorological station independently on spatial correlations. The spatial
dependencies are modeled by a Gaussian random field. Referring to a validation
procedure based on out of sample observations these authors conclude that the model
predicts well the WS and can be observed in many other practical applications.

Alexandridis and Zapranis (2013) model the dynamics of the wind generating
process using a non-parametric non-linear wavelet network which is validated in New
York. The proposed methodology is compared against alternative methods, proposed
in prior studies. Their results indicate that wavelet networks can model the wind
process very well and consequently constitute an accurate and efficient tool for wind
derivatives pricing. These authors provide pricing equations for wind futures written
on two indices, the cumulative average wind speed index and the Nordix wind speed
index. The characteristics of the wind speed process are very similar to the process of
daily average temperatures. It is indicated a slight downward trend and seasonality in
the mean and variance. In addition the seasonal variance is higher in the winter while it
reaches its lower values during the summer period.

Benth and Pircalabu (2018) propose a non-Gaussian Ornstein–Uhlenbeck model
for the wind power production index. The model allows for an analytical formula for
pricing wind power futures. These authors provide an empirical study, where the model
is calibrated to 37 years of German wind power production index that is synthetically
generated assuming a constant level of installed capacity. Also, the MPR based on one
year of observed prices for wind power futures with different delivery periods, is studied.
Generally, the authors find a negative risk premium whose magnitude decreases as the
length of the delivery period increases. The result suggests that wind power producers
are willing to accept a lower price when selling wind power futures. Moreover, the
MPR is more volatile for shorter delivery periods and it is argued that this behaviour
might be related to liquidity aspects and the information contained in short-term weather
forecasts, which the proposed model does not incorporate.
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2.3.5 Snowfall-based models and risks

The last group of weather derivatives we consider in this report is based on snowfall.
Although rainfall and snowfall are two different weather variables and contracts are
traded separately, according to Alexandridis and Zapranis (2013), they share a lot of
common characteristics. Luo et al (2010) uses statistical modeling methods for index
and daily snowfall modeling and compare them. The index model which performs better
is the generalized Edgeworth expansion with adjusted exponential distribution since it
gives the lowest chi-squared statistic. For the daily snowfall modeling, the GARCH
model is the one who explains and performs better the daily snowfall pattern.

Tang and Jang (2011) perform an empirical analysis that examines geographical
diversification and financial hedging as two strategies against snowfall risk. Risk
management is split into two terms, namely operational hedging and financial hedging.
Operational hedging aims to reduce the exposure to risk factors by changing the
operations, whereas financial hedging is designed to transfer risks to the insurance
company or the market by purchasing insurance or trading financial instruments (such
as forwards, futures, or options). Also, financial hedging enables the firm to invest in
more attractive investment opportunities and the companies do not have to change their
operations only for risk management purposes. The empirical analysis results suggest
that financial hedging might be a more effective strategy for ski resorts. A contract that
covers only a quarter or even a month instead of the entire season is more effective. To
achieve better weather risk management, outcomes are provided based on simulating
(using Monte Carlo simulations) the interactions between geographical diversification
and financial hedging. As a result, business diversification could improve the outcomes
of financial hedging.

Tang and Jang (2012) construct a snowfall forward to hedge the snowfall risk
for Winter Sports, a public traded, single-property resort. Demonstrating hedging
effectiveness is optimal in this case, as the firm is not diversified geographically nor
business-wise. Establishing a hedge is deciding the strike, which is a predetermined
level of snowfall index used to decide profit or loss at the expiration of the contract
and is chosen to be the historical mean. To achieve a “costless” hedge, whose expected
value is zero for both sides on entering into the contract, the strike has to be set at a
level that is neutral so that neither side has a built-in profit on entering the position.
The objective of hedging is to minimize the volatility regardless of the direction of
price/quantity change, not to maximize the level of cash flows. To find optimal hedge
the authors regress unhedged, operating cash flow against quarterly and annual snowfall
to find an effective hedge. Monte-Carlo simulation is used as well, generating estimates
of cash flow alternatives in order to test the statistical significance of the regression.
Furthermore, these authors present the results of this hedging strategy in the period
1991-2003 by displaying cashflow with and without a derivative present. Cash flow
volatility was reduced by 25.8% at most, when actual snowfall was high. At the end it
is concluded that it is more efficient to use snowfall forwards as a risk management tool
in months with high snowfall levels.

Some recent work as master thesis is done by including an analysis on how
temperature affects on beer sales during the year (Hoornaert (2018)). This is done
by regression analysis, while a second one (Haugan and Rasmussen (2019)) is about
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snowfall in which four ways of pricing models on snow are considered: historical
densities, Edgeworth densities, burn analysis and ADS model that is a model proposed
by Alaton, Djehiche and Stillberger (2002). All these models are compared and at the
end it is concluded that Edgeworth densities model performs better when one consider
snowfall as weather index.

2.3.5.1 Edgeworth historical density

The option prices for CDD and HDD have also been calculated using Edgeworth adjusted
historical densities. There might be some situations requiring the changes in the prices
due to the distributional characteristics of the data, particularly temperature data. Due to
non-normality the pricing needs to be modified by taking into consideration of moments
of distribution higher than second order, which is known as the so-called generalized
Edgeworth series expansion and has been applied to option pricing by Rubinstein (2000).
In the model a(x) is the density of normal distribution function which is extracted from
historical distribution of temperature data by using first two moments. Then, by using
skewness η and kurtosis κ measures of the historical data the densities can be modified
and adjusted according to the following formula (Stuart and Ord (1987)):

f(x) = [1+
1

6
η∗(x3−3x)+

1

24
(κ−3)(x4−6x2+3)+

1

72
η∗2(x6−15x4+45x2−15)]a(x)

where x is standard normal variable and f(x) denotes the Edgeworth density of a(x).
Accordingly, the adjusted Edgeworth densities can be calculated as weights of the put
option payoffs during the selected period for the specific strike levels. The skewness
and kurtosis adjusted call and put prices can be calculated according to the following
formula:

Call(t) = e−r(T −t) 1
∑N

i=1 fi(x)

N∑

j=1

fj(x)max(

D∑

k=1

X(k) −K, 0)j

Cut(t) = e−r(T −t) 1
∑N

i=1 fi(x)

N∑

j=1

fj(x)max(K −
D∑

k=1

X(k), 0)j

In the above formula K is the strike price, N is the number of observations, D is
the number of days in a particular period and X(k) = max(T (k) − 18, 0) for CDD
and X(k) = max(18 − T (k), 0) for HDD.

2.3.6 Insurance-related market

In the past, insurance contracts and catastrophe bonds were widely used by companies
in weather-sensitive industry sectors. Insurance contracts are used to protect the buyer
of the contract against adverse weather conditions, and written on rare weather events
such as extreme cold or heat and hurricanes or floods. These events are highly liked to
create great catastrophes with huge impact on the revenues of the company.

Bobojonov, Aw-Hassan and Sommer (2014) examine the potential of three index
insurance schemes (1) a statistical index, (2) an index based on agro-meteorological
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approach and (3) a remote sensing-based index for minimizing risk. It also discusses
how index-based insurance markets contribute to rural development in scenarios of
increasing climate risks in Syria. The study identifies that all three insurance schemes
have a very high potential to cope with increasing climate risk. Insurance schemes
designed according to these indexes performed very well in terms of covering revenue
losses in most of the extreme drought years observed in the country. Farmers purchasing
an insurance contract may have better access to credit and find it easier to invest in
agricultural production and improve productivity. Because such alternative index-based
insurance programmes are low cost, such methods are more affordable for poor farmers
and thus can potentially make an excellent contribution to economic growth in rural
areas.

Porrini and Schwarze (2014) analyse the performance of different insurance models
in relation to information imperfections (such as adverse selection and moral hazard)
and market imperfections (such as charity hazard 9 and transaction costs). In addition,
the different models are examined in terms of the extent to which stimulate mechanisms
that facilitate the mitigation of greenhouse gas emissions, adaptation to the inevitable
impacts of climate change and the development of climate risk finance management.
Some concluding remarks are offered regarding the possible future development of a
European insurance model as a means of developing an economically effective response
to natural hazards caused by climate change.

Clarke et al (2016) argue that weather-indexed insurance products currently being
sold to farmers are derivatives, not indemnity insurance products. The model the author
proposes is one of rational demand, where the consumer is assumed to be a price taking,
risk averse, expected utility maximizer with, for some results, decreasing absolute risk
aversion (DARA). One critical aspect of the model is the nature of the joint probability
structure of the index insurance product and the consumer’s loss. The net transfer
from index insurance is assumed to be imperfectly correlated with the consumer’s net
loss, and so index insurance purchase both worsens the worst possible outcome and
improves the best possible outcome; a consumer might incur a loss but receive no net
income from the index insurance product, or incur no loss but receive a positive net
income. Some upper bounds derive, for rational purchase of hedging instruments. For
the case of indemnity insurance, that is insurance without basis risk10, risk aversion and
DARA alone cannot bound the purchase of indemnity insurance below full insurance;
an infinitely risk-averse individual would rationally purchase full insurance. However,
tighter bounds may be derived for actuarially fair or unfair hedging products with basis
risk, both under the restriction of risk aversion alone, and that of risk aversion and
DARA. Loosely speaking the bound for DARA arises because an individual who cares
enough about the risk of wanting to purchase a sizable hedge must, under the assumption
of DARA, care enough about the downside basis risk and, for the case of an actuarially
unfair price, the dead weight cost of hedging to limit the size of the hedge. Authors
present a ratio that may be useful for understanding the level of basis risk in a product
from a consumer’s perspective, and then apply the ratio to the numerical example of

9which refers to the reduced incentive to insure oneself against disaster damage in anticipation of
governmental and/ or private assistance

10an increase in insurance purchase transfers wealth from high- to low-wealth states, subject to some dead
weight cost
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weather index insurance across one state in India. With a belief constructed from the
empirical joint distribution function of yields and weather indexed claim payments, it is
shown that optimal demand from any risk averse expected utility maximizer is zero if
the price for index insurance is more than 1.56 times the expected claim income.

Doms (2017) analyzed how weather index insurance based put and call options
as well as strangles reduce performance risk of 20 German crop farms (which are not
exposed by extreme climatic conditions) and conclude with a comparison between them
based on hedging efficiency which is defined as the percentage change of the volatility
of farm specific total gross margins with and without weather index insurance. A main
point of interest in the weather index insurance research is the minimization of the basis
risk. One could find that customized contracts are better suited to reduce performance
risk than standardized contracts and hedging efficiency varies considerably from farm to
farm and depends highly on the contract type, the analyzed customized call-options and
strangles clearly outperform the customized put-options. Moreover the results indicate
that weather index insurances are highly farm specific. For reasons of comparability,
specific indexes are selected from numerous possible indexes based on assumptions
regarding possible sources of yield related performance risk. These indices were applied
to each of the farms under scrutiny equally and as a consequence there is need for a
farm specific risk analysis before a farmer decides for a specific insurance type.

Additional work should investigate whether the designed insurances reduce the
performance risk of farms located in regions with extreme farming conditions. It is
also of interest whether a change of the parameters of the standardized contracts might
improve their risk reducing capacity. One also might analyze contracts based on other
indexes such as mixed indexes.

Surminski and Hudson (2017) determine how the "risk reduction linkages of
insurance" 11 can be assessed and developed further in a multisector partnership (MSP)
setting. Traditionally, efforts to evaluate disaster insurance are focused on affordability,
availability, commercial viability and financial sustainability. These authors add another
feature of "risk reduction" as an indicator of the impacts that insurance can have on
the underlying risk levels. Four methodologies (such as stress testing, estimation of
effectiveness of policyholder-level mitigation measures, analysis through a risk reduction
framework and investigation of the design principles of insurance) are considered and
it is explored for several European examples of insurance development. While very
different in scope and history, all examples share one common feature: they can all
be considered as MSPs designed to foster greater collaboration between different
stakeholders. Those examples are used to act as testing grounds for the assessment of
the risk reduction implications of insurance. Author’s findings show that the potential for
risk reduction of new or reformed schemes could be strengthened through multisectoral
partnerships.

Keucheyan et al (2018) examine the ongoing financialization of climate risk
insurance. This paper describes the structure of modern natural risk insurance and
reinsurance, a structure that is currently undergoing profound changes due to the
combined impact of two processes, financialization and the emergence of new risks,

11the lack of linkages between insurance underwriting and risk reduction has been identified as a key
barrier for insurability and affordability
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including climate change. One response is discussed to the challenges of climate change
experienced by the insurance industry since the 1990s: so-called "catastrophe bonds", a
financial mechanism meant to insure against possible natural disasters. At the end the
paper shows that financialization and new risks alter the role of insurer "of last resort"
that the state 12 has played since the 19-th century. In the context of the "fiscal crisis
of the state", part of the state’s insuring capacity has been transformed into financial
mechanisms such as sovereign catastrophe bonds and microinsurance. The last two
sections reflect on the growing role of big data and financial modeling in climate risk
insurance and, presenting a critique of the process of financialization on both economic
and political grounds.

Stefani et al (2018) rely on the studies of Benth and Benth (2005), Benth and Benth
(2011) and Benth and Benth (2012) to create a model for temperature forecasting. In
this paper weather derivatives are considered as a hybrid instrument which encompasses
properties of insurance contracts. To estimate the prices of these derivatives, the
conventional VaR technique is exploited. This technique is applied to define the level of
the critical temperature (called threshold) but also in the risk loadings added for hedging
purposes.

Fusco, Miglietta and Porrini (2018) focus on the relation between insurance variables
and agroclimatic variables, such as the different levels of precipitation and temperature,
focusing in particular on the drought phenomenon. With a decrease in precipitation and
an increase in temperature the need to cover risks with adequate insurance instruments
increases. These authors collect agroclimatic and insurance data for each Italian province
for the period 2004-2011, and measure the influence of climatic agroclimatic variables
on insurance variables, such as Total Premiums, Insured Value and Certificates. The
results of the analysis show the significance of the precipitation variable and its negative
effect with each insurance dependent variable. The same result can be observed focusing
on the effect of minimum temperature on two insurance variables, i.e. Total Premiums
and Certificates. Models tested explain a range between 44% and 51% of the variation in
their insurance dependent variables. The analysis confirms that climate factors represent
an incentive for the adoption of insurance instruments highlighting the necessity to
increase farmers’ information and to support insurance instruments through public
subsidies. The paper concludes that adverse climatic events should not be considered as
exceptional events, but as one of the negative externalities with which the agricultural
enterprise must live. This major concern, especially in the agricultural sector particularly
vulnerable to adverse climatic events, shows the importance of providing suitable
financial hedging instruments for farmers.

2.3.7 Related works in climate change

Until now we have reviewed numerous models proposed by different researchers and
applied in different areas. But weather models consist on uncertainties, which stem
from the followings:

• Natural variability is the inherent part of the climate system causing its continuous

12plays the role of legal regulator of the insurance market, including of risk pooling practices by insurers
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change without any external forcing. For instance, two consecutive years can be
extremely dry or wet over a region due to this instance.

• Different climate models use various numerical approximations and parametriza-
tion schemes to describe physical processes resulting in dissimilar results, as
well. The largest diversity occurs in the description of cloud and precipitation
processes.

• Climate change is highly influenced by the anthropogenic activity. Its global future
path is not known yet and therefore different (optimistic, pessimistic) scenarios
are constructed in order to achieve a proper estimation. These hypothetical
scenarios are taken into account within models through various greenhouse gas
concentration pathways (Szabȯ and Szėpszȯ, 2016).

According to this, one cannot make any reasonable statements based on results of a
single weather model run but only through quantifying the projection uncertainties. This
could be achieved by applying the ensemble method, when more models and scenarios
are considered together and future changes are expressed as probabilistic information.

For example at the Hungarian Meteorological Service a detailed assessment is made
on the uncertainties of temperature and precipitation projections (Szabȯ and Szėpszȯ,
2016), based on the modified method of Hawkins and Sutton (2009 and 2011). The
study is based on how the total uncertainty could be reduced via model improvements
and scenario developments. These investigations may enable to increase the reliability
of the climate change information with finding a representative model. To conclude this
section a brief list of research works in assessing climate change are presented. Hwang,
Tol and Hofkes (2016) investigate the role of emissions control in welfare maximization
under fat-tailed risk about climate change. A classification of fat-tails is done and
it is discussed about the effects of fat-tailed risk on climate policy. One of the most
important findings is that emission control may prevent the "strong" tail-effect from
arising, at least under some conditions such as bounded temperature increases, low risk
aversion, low damage costs and bounded utility function. Moreover the fat-tailed risk
with respect to a climate parameter does not necessarily lead to an unbounded carbon
tax. To better understand what a fat-tail is: a probability density function has a fat tail
when its moment generating function is infinite, that is, the tail probability approaches
0 more slowly than exponentially. The method used in this paper is Gauss-Hermite
quadrature 13 which is used for numerical integration while for the simulations the
authors use a one-box temperature response model. Some implications of applying this
kind of technique are: climate policy greatly reduces the effect of fat-tailed uncertainty
on damage costs and consumption and that the effect is sensitive to the unit cost of
emissions control. So, optimal carbon tax does not necessarily accelerate as implied by
Weitzman’s Dismal Theorem (dismal theorem argues that “fat tails” in the distribution
of warming may pose problems for cost–benefit analysis as it may imply that society
might be willing to exchange today’s consumption for future consumption at an infinite
rate (Weitzman (2009))) if the option for emissions control is present. It should be

13Gauss-Hermite quadrature is a deterministic integration method used to calculate the expectation operator
this method uses predetermined integration nodes and weights.
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emphasized that the implications of this paper are only meaningful under the following
conditions: climate change is so uncertain that social welfare (carbon tax function) is
unbounded in the absence of emissions control and it is possible to control greenhouse
gas emissions and the level of emissions control is chosen optimally. To this end the
magnitude of uncertainty needs to be measured in detail for the benefits and the costs of
emissions control to be correctly estimated.

Veliz, Kaufmann, Cleveland and Stoner (2017) presented the first empirical estimates
for the effect of climate change on electricity prices in Massachusetts USA. This paper
finds that climate change alters the load duration curve 14 which raises prices. The
size of this price will depend on the degree to which policy makers can create an
environment that prompts generators, the distribution system and electricity consumers
to adapt. Adaptation can be enhanced by policies aimed at electricity supply and
consumption. On the supply side higher prices can be damped if policy creates a
more certain environment for investment in new peaking capacity. On the demand size
higher prices can be damped if policy favors energy conservation measures that reduce
and/ or reschedule the electricity used for cooling. Authors use statistical models to
translate the monthly changes in temperature that are forecast by climate models into
monthly changes in electricity consumption and translate these monthly changes into
hourly rates of electricity consumption using Monte Carlo techniques. After that the
translation of hourly rates of electricity consumption into hourly prices, using statistical
model that quantifies the relationship between hourly prices for and consumption of
electricity, is done. At the end, the hourly forecasts for price and consumption is used to
compute the effect of climate driven changes in temperature on electricity expenditures
in Massachusetts.

2.4 Results and Future Research

In the latest Global Risk Report 2019 15, published by the World Economic Forum,
extreme weather events were ranked number 1 global risk with the highest likelihood
and number 3 risk in terms of impact. Extreme weather events are perceived to bear
higher risks than cyber security, weapons of mass destruction, data fraud and involuntary
immigration.

As a result, it is important to include weather risk management tools such as natural
weather hedging, insurance and weather derivatives into the general risk management
strategy. From the literature review it is approved that weather derivatives can not be
used like a substitute of weather insurance, but we can use them for different purposes
or mix them together. Stefani et al (2018) proposed a hybrid contract that deals with
a negative risk event, such as an insurance contract, but that is priced as a derivative
instrument and this is done in case of temperature. In the future it would be interesting to
study other hybrid contracts applied in other weather variables such as rainfall, snowfall,
wind, etc. The weather derivative market is a classical incomplete market since the
weather indices are not tradable assets, thus traditional no arbitrage pricing methods

14A load duration curve (LDC) is used in electric power generation to illustrate the relationship between
generating capacity requirements and capacity utilization.

15http://www3.weforum.org/docs/WEF_Global_Risks_Report_2019.pdf
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such as Black-Scholes as suggested in Meissner and Burke (2011) are not applicable
in pricing weather derivatives. Further research needs to be executed on the valuation
methods of weather derivatives. Today, there is no standard pricing model like the
Black-Scholes model in conventional derivatives; having a standard pricing model could
remove the discrepancies between the actual applied different models. But why should
we be interested in weather derivatives? According to McDonald (2013) the first motive
is speculation; using a derivative to construct a bet that is highly levered and tailored to
a specific view. Initial costs of placing bets can be relatively small to the potential gains
or losses from the bets. The second motive states that in some cases, derivatives provide
a less costly financial outcome compared to combining underlying assets and will lead
to reduced transaction costs. As a third motive, the author mentions the possibility to
circumvent regulatory restrictions, taxes and accounting rules by trading derivatives,
defined as regulatory arbitrage. The fourth and last motive, which it is considered as
most vital, is risk management. For this report purpose, we are more interested in
weather derivatives as a risk management tool, hedging weather risk/revenue affected
by the weather.

Moreover, there is a need for analysing the different weather risk management tools
empirically. Are weather derivatives in the long-run superior to insurance? Weather
derivative settlement is objective and efficient, but can it add more value to a company
than insurance can?

The relatively low correlation (even negative correlation) between weather deriva-
tives and conventional financial assets suggests that weather derivatives can be excellent
for diversification purposes. The use of derivatives on precipitation can have positive
cash flow effect on industries with direct weather exposure, especially for businesses
that have seasonal cash flows dependent on weather conditions. Also the presence of
both production and price risk implies that options became a useful hedging tool. It
is concluded as well that when the underlying uncertainty is non-linear in nature, the
asymmetric payoff profile of options are more suitable for hedging purposes. We can
say that there are some limitations to these contracts. Because the pay-off of a weather
derivative depends on a weather index, not on the actual amount of money lost due
to the weather, it is unlikely that the pay-off will compensate exactly for the money
lost. The potential for such a difference is known as basis risk. In general, the basis
risk is smallest when the financial loss is highly correlated with the weather and when
contracts of optimal size and structure, based on the optimum location, are used for
hedging. So, for a company to decide how to hedge its risk there is often a trade-off
between basis risk and the price of the derivative.

Although it has been shown to use weather derivatives as a tool of risk management,
there still exists imperfections and weaknesses that are important to address. Basis
risk, as explained previously, is an imperfection that should always be taken into
consideration.

Another challenge related to weather derivatives is collecting data, more specifically
gathered data from multiple weather stations, none of them 100% representative the one
we are interested in. Gathering data from different stations not located exactly at the
place under study contributes to an increase in the geographical spatial/basis risk. In
addition, some further research could be done on the costs of setting-up a large network
of reliable weather stations.
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For further research and improvement, it is recommended looking at the possibility
of using multivariate, and/or non-linear regression when calculating the tick size used in
derivative pricing. This could improve the adjusted coefficient of determination, which
in turn should decrease basis risk. Using not only simple linear regression, would most
likely further improve weather derivatives as a risk management tool.

Although it is shown that the level of critical temperature in CDD and HDD indices
must be defined in an appropriate value according to the location of the station, we have
to see and compare for more methods or techniques on how to obtain the proper value
of the threshold.

All models can be refined for example in case of the indifference pricing approach
by choosing a different utility function as power utility which means a different risk
preference by the investor of by changing the basket of weather derivatives. Since
weather derivatives are traded on and over the counter, one may compare prices as
developed from different methods with those by actuarial approaches. In addition a
sensitivity analysis can be applied on the models used to price weather derivatives.
Moreover, an important issue to investigate is the analysis of the adoption of mixed-
based weather derivatives, which in turn use composite weather indexes, since they have
the potential to reduce basis risk.

Until now researcher suggest to use different models in contracts with payoff depends
on an underlying index but still needed to clarify what model and in which case we can
use a specific model which are the advantages and disadvantages in using the models
used for example for rainfall, snowfall, etc. Some research work is done on modeling
including temperature and rainfall variables but still it is necessary to do research on
the possibility and the scope of building a composite index of rainfall and temperature.
This would be useful for weather derivatives for hedging weather risk in some crops,
whose growth is highly dependent on both rainfall and temperature. Except that it
is interesting to study the effect of using artificial intelligence systems in forecasting
weather variables, which can improve the accuracy from the learning process. Weather
models developed until now from different researchers could be extended to include
more complex dynamics of the behavior of temperature. Moreover, a comparison of
different numerical techniques would be an interesting area to consider in the future.
The least square optimization methodology may have applications for valuing previously
intractable basket options in weather derivatives.

Another area where the research can be done is related to the appeal, the demand and
the willingness to pay for weather derivatives in different businesses. This would help
in structuring weather derivative products. After that it is interesting to study the effect
of meteorological forecasts on the prices of weather derivative products. Of course, this
could be done after a market for these products is in place. More research on portfolio
effects of weather derivatives is needed. An important development would be to model
more precisely the correlation between temperature and various commodity contracts.
This could be extended to model the known lag between movements in load versus
movements in prices.

We can conclude that weather derivatives are an essential tool in weather risk
management. These instruments provide efficient and objective cash settlement and
furthermore reduce the volatility of the financial performance triggered by weather
variables. In some case studies it is indicated that the significant payoffs in some years
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are vital to cover the premium payments of other years in which the payoffs equal zero.
As a consequence, only a long-term weather hedging horizon will prove to mitigate the
weather exposure.
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Abstract

Recent international policy initiatives focus on reducing carbon emissions to limit
warming. It is almost universally recognized that risks connected to climatic
changes are unpredictable in their consequences. Moreover, attempts (for instance
the 2016 Paris conference) to manage climatic changes at a global level have been
counterbalanced by a not clear-cut US policy. Surprisingly, the financial world
does not seem to care much about this problem. Yet, it is estimated that 80% of
world industries (i.e. agriculture, construction sector and hospitality activities) are
affected (totally or in part) by climate. Rain or low temperatures disrupt tourism;
heavy rain or high temperatures devastate crops and damage farmers. This work
contributes to existing literature by proposing a temperature-based risk management
using hybrid financial instruments based on weather derivatives. Based on well-
established literature we firstly model temperature time series; we then price one-
month forward option contracts for hedging adverse outcomes. Our results exploit
daily temperature data-set (1951-2016) collected in Arezzo, Italy. We then show
how a "negative" weather performance can be counterbalanced by the "positive"
performance of the hedging Over-The-Counter financial instrument that can be
tailored to meet specific needs.

Keywords: Climate change, weather derivatives, temperature, risk hedging

3.1 Introduction

As it is very well known, climate change is one of the most important and crucial
environmental, political as well as economic topics of the 21st century. It already affects
and will affect in the future the entire spectrum of life on planet Earth.

To tackle this issue, huge efforts have been done and are still undergoing on a
worldwide basis. Mentioning only the most recent acts, the so called ’Paris Agreement’,
that has become effective in November 2016 and has been signed by almost 200
countries, has stated that all parties should "hold the increase in the global average

temperature to well below 2◦C above pre-industrial levels and pursue efforts to limit the
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temperature increase to 1.5◦C above pre-industrial levels, recognizing that this would

significantly reduce the risks and impacts of climate change" [Paris].
Two straight effects of climate change are sequences of longer and more intense heat

waves, more frequent damaging storms, and a likely average raise in temperatures above
2◦C. This, of course, forces farms, companies as well as public authorities to consider
to hedge against climate changes to mitigate the resulting risk. To acknowledge the
important of ’adverse weather’ risk it is useful to recall that, since 1997, the Chicago
Mercantile Exchange (CME 1) allows traders to negotiate weather derivatives that go
under the names of Heating Degree Day (HDD), Cooling Degree Day (CDD), and
Cumulative Average Temperature (CAT) (CME Group, 2017). Such contracts rely
on the fact that the most relevant issue in managing weather risk is some uncommon
behavior of temperatures. Further, hedging has been done traditionally also through
insurance contracts whose effectiveness, however, is limited to clearly identified extreme
events.

Loosely speaking, insurance contracts can, somehow, be intended to be similar to
financial derivatives as one party is willing to sell some risk and the other accepts to buy
it.

In financial literature, a number of methodologies (namely Burn analysis, Index
modeling and Daily simulation; see, for instance, Jewson, Brix, & Ziehmann (2005),
Alaton, Djehiche, & Stillberger (2002), and Schiller, Seidler, & Wimmer (2012)) has
been extensively applied. Burn analysis is based on historical data and determine the
price of a weather derivative adding to the obtained value some risk loadings as it is
common practice in the actuarial field. Despite the triviality of this technique, Burn
analysis is a widely used pricing methodology, especially if the data set is large enough.

It is important to point out that weather derivatives are usually more suited to protect
against minor fluctuations from the normal status of the underlying variable, being most
effective in a sort of low risk scenario. To achieve a proper hedging against high risk
instances, instead, insurance contracts are to be obviously preferred.

If, on one hand, weather derivatives deal with a small fraction of sources of weather
risk, such contracts benefit of a liquid, regulated market like for instance CME; their
prices are, therefore, closer to the correct value of the traded risk. Insurance contracts,
instead, are very illiquid but they can cover, for instance, farmers from peculiar damages
such the one due to hailstorms and can be very flexibly shaped to risks localized in a very
small area. On the other hand, damages recognition and validation involve bureaucratic
paperwork and are subject to the final decision of a claim handler. This leads to a delay
or a reduction in damage payments, as well as uncertainty in the final payment.

In both cases, i.e. buying a derivative contract or an insurance contract, a crucial issue
is the goodness and source of collected historical data; this is an important motivation
in this article, since there is a gap in dealing with a meteorological risk by means of
a weather derivative rather than an ad-hoc insurance contract. In the first case, more
marketable contracts are penalized by the fact that they consider only an ’average’
risk and might run short of a reliable coverage. Just to give an example, temperature
in a US city which is the underlying for a future in CME, can be very different than
temperature in South Italy, thereby making it useless for a farmer buying such contract

1http://www.cmegroup.com/trading/weather/
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for a coverage. In the latter case the cost of an insurance agreement, as it recalls a
’tailor-made’ over-the-counter derivative whose price is not a market price, generally
ends up being larger. However, its specificity allows, in most cases, for a more effective
risk reduction.

To the best of our knowledge, so far no effort has been done by insurance companies
as well as banks or other financial institutions to offer a hybrid instrument that could
link derivatives to insurance contracts. The aim of this contribution is, then, to suggest
a methodology that, exploiting local data and heavily relying on results by F.E. Benth
(Benth & Benth (2013), Benth & Benth (2011), Benth & Benth (2005)), allows to find
the price of an insurance or derivative contract applying well established derivative
pricing methodologies.

The numerical section of this paper exploits and benefits from a detailed and very
ample data-set that spans from 1951 to 2016, for a total of 66 years available in SIR
2. In particular, daily max and min temperature data for the town of Arezzo (Tuscany,
Italy) have here been considered.

The main result of this paper is to bridge the two above mentioned approaches
and to lead to the determination of prices for temperature derivatives dealing with
meteorological risk in the Arezzo area. The approach is flexible enough to allow
considering the actuarial point of view, where risk loadings have to be properly
considered and charged.

This article is structured as follows: Section 3.2 recalls the main points in pricing
weather derivatives, Section 3.3 deals with their stochastic modeling, Section 3.4
proposes the valuation of one-month forward options for two different months and
shows their effectiveness in hedging meteorological risk. Section 3.5 concludes.

3.2 Basic Concepts on Temperature Derivatives

Weather derivatives are usually structured as futures, forwards, options and swaps based
on different underlying weather indexes. In this paper, in line with derivatives quoted
in the contracts, we will work with OTC instruments, in particular, forward option
contracts. Our analysis is focused on derivative products whose underlying are the
HDD, CDD and the level of daily accumulated temperatures over a given period Benth
& Benth (2013). The average temperature for a given day t is calculated as the mean of
the recorded maximum and minimum temperature. Given a weather station, let Tmin(t)
and Tmax(t) denote the minimum and maximum temperatures measured in one day t.
The average temperature in day t is defined by

T (t) =
Tmax(t) + Tmin(t)

2
(3.1)

For a given site, the degree days are the difference of the daily average temperature
from the base temperature (in general 65 degrees Fahrenheit or 18 degrees Celsius). An
HDD is the number of degrees by which the day’s average temperature is below the
base temperature, while a CDD is the number of degrees by which the day’s average
temperature is above the base temperature. Cooling degree days and heating degree

2http://www.sir.toscana.it/

59

http://www.sir.toscana.it/


3. Managing adverse temperature conditions through hybrid financial

instruments

days are never negative. Thus, if the daily average temperature is less than 18oC, HDD
will accumulate for the period, and if the daily average temperature is greater than 18oC,
CDD will accumulate. Consequently, HDD and CDD are calculated as follows:

HDD(t) = max(18 − T (t), 0) (3.2)

CDD(t) = max(T (t) − 18, 0) (3.3)

where T (t) is the current temperature. The HDD and CDD indexes are the aggregated
indexes over an agreed period of time that is called measurement period. CAT index
is the cumulative average temperature, and this index is used to substitute CDD index
(since in many cites the average daily temperature is hardly above 18oC) in summer and
in winter HDD for the same reasons.

HDD(t1, t2) =

t2∑

t=t1

HDD(t) (3.4)

CDD(t1, t2) =

t2∑

t=t1

CDD(t) (3.5)

CAT (t1, t2) =

t2∑

t=t1

T (t) (3.6)

These indexes are accumulations of daily HDDs and CDDs, over a month or an entire
season. In this study, one-month forward option contracts for which the underlying
is an index linked to specific weather events and the forward prices, are evaluated to
build hedging strategies over one month. Therefore, we have a contract which "delivers”
HDD over a specified monthly duration valid for a given month, in return for an agreed
forward price. The HDD is calculated from temperatures in the given month. There
are four basic elements in a contract: (i) the underlying variable, HDD or CDD; (ii) the
contract period; (iii) the meteorological station from which the temperature data are
recorded; (iv) the tick size that is the value in EUR of one HDD or CDD unit.

As mentioned before, temperature derivatives are the most commonly weather
contracts traded on the market. Our basic pricing framework is shown as follows:

1. Collect historical daily average temperature data;

2. Construct a technique for modeling temperature time series;

3. Building scenarios through Monte Carlo Method;

4. Calculate the price of the contract, adding the risk loading factor.

In this paper, we evaluated a one month forward HDD based on temperature daily data
in the city of Arezzo (Tuscany) in the timespan 1951-2016. The payoff of HDD for
temperature is

X(τ1, τ2) = k ×
τ2∑

s=τ1

max(c− T (s), 0) (3.7)
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Figure 3.1: Time series of daily average temperatures of Arezzo, snapshot of the
2012-2016 period

where k is the multiplier factor/tick size and it is set to 20 EUR, and c is the threshold.
While in general c is set as 18oC, it is necessary to find out the most appropriate
threshold for the calculation of the HDD index. As threshold we use the tenth percentile
(or first decile) of the daily average empirical temperature. As will be illustrated later the
threshold used for January, 2017 is calculated to be 2.43oC. Figure 3.1 shows the daily
average temperature in Arezzo for the last 5 years (2012-2016), where it is possible to
observe a clear seasonality of the data.

3.3 Stochastic Modeling of Weather Derivatives

3.3.1 Data Collection

The dataset consists of the daily maximum and minimum temperatures in Celsius (°C)
from the weather station Molin Bianco in Arezzo, Tuscany (WMO ID: 16172, latitude:
43°27’34”34.81”N, longitude: 11°50’44.5”E, and elevation: 248 meters above sea level)
over the timespan 1951-2016.

The daily average temperature (DAT) is then calculated using a simple arithmetic
mean of max and min temperatures. From a physical-meteorological point of view,
such calculation for the daily average temperature would be inaccurate, since one
should consider the temperatures of a day at different times. For the purposes of this
paper (i.e. pricing of derivatives having as underlying the temperature index) however,
it can be efficiently proceeded with the calculated daily average temperature. The
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sample, consisting of 24,107 observations, shows an absolute average maximum of
34°C recorded on June 18, 1990, when the maximum temperature was 39°C and the
minimum 29°C and an absolute average minimum of -8.10°C registered on October 30,
1993, when the maximum temperature was -1.2°C and the minimum temperature was
-15°C. The average temperature of the whole sample is 13.9°C.

The empirical distribution is described with a histogram in Figure 3.2.
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Figure 3.2: Histogram of the daily average temperature of Arezzo (Tuscany) (1951-
2016).

Table 3.1: Descriptive Statistics of the daily average temperature in Arezzo (Tuscany)
1951-2016.

Mean Var Std Dev Min Max Skew. Kurt.
Temperature(°C) 13.869 50.455 7.103 -8 34 0.019 2.105

Table 3.1 presents some descriptive statistics for the daily average temperatures. It
can be noted that the distribution of the temperature is not normal since there exist no
proper peak in the distribution.

The data set is used to construct a technique for modeling temperature. We start
from a simple linear regression for the long run trend. Then, we track and insert in the
model the seasonal component. Subsequently, to make sure that the model is able to
incorporate the effect of past data, we will proceed with an autoregressive model. At the
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end, a residual analysis will be implemented and a verification of the goodness of the
model will be made by evaluating what the model is able or not to capture.

3.3.2 Temporal Modeling for temperature

To model the temperature dynamics we use a time series decomposition approach. The
temperature T (t) is decomposed into a mean component µ(t), which models the trend,
and a residual component ǫ(t) which models the fluctuations around a trend over time.
The temporal decomposition of T (t) can be written as:

T (t) = µ(t) + ǫ(t) (3.8)

where µ(t) is a deterministic function over time that is defined as follows:

µ(t) = θ(t) +

p∑

i=1

αi(T (t− i) − θ(t− i)) (3.9)

where θ(t) represents the (linear) trend and seasonality in terms of the sine/cosine
functions in T (t), and αi are the parameters of an AR(p) process. The variables ǫ(t)
represent the residuals at time t of the following form:

ǫ(t) = σ(t)γ(t) (3.10)

Where σ(t) is a (possibly) time–dependent volatility function, and γ(t) is a zero-mean
temporally independent Gaussian random process with standard deviation equal to one.

3.3.3 Estimation and Validation of Temperature model

For modeling the temperature dynamics in Arezzo (Tuscany), we apply a time series
decomposition approach. Therefore, the temperature time series is decomposed into
components, such as trend, seasonality, AR process and residual term. All these
components appear in the data simultaneously as you can see in Equations 3.8 and 3.9.
By estimating and eliminating the different components of the time series step by step
and examining the residuals at each step, we can obtain a good fit of data to the proposed
model.

3.3.3.1 Trend

We choose to model the trend as a linear function of time ensuring stationarity in our
temperature time series. Even though the linear trend might be a simplification when a
long time series of temperature is considered, a constant trend from year to year seems
to be validated in our case. At first, we run a linear regression. The obtained slope is
significantly different from zero, meaning that the temperature has increased in Arezzo
by about 0.5°C in fifty years (Figure 3.3).

The positive trend corresponds to the increase in the global mean temperature.
Furthermore, meteorological phenomena are very much influenced by the geographical
location, and this is in fact one of the main causes of the weaknesses in going to perform
the pricing of weather derivatives.
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Figure 3.3: The linear trend in temperatures in Arezzo, Tuscany (1951-2016).

3.3.3.2 Seasonal Component

The deterministic function θ(t) is modeling the trend and seasonality of temperature. A
truncated Fourier series is sufficiently flexible to describe temperature:

θ(t) = a0 + a1t+ a2 cos

(
2πt

365

)
+ a3 sin

(
2πt

365

)
(3.11)

Such a sum of trigonometric functions explains the seasonal variations in the temperature,
such as low temperatures in the winter and high in the summer. According to the standard
statistical significance tests, we conclude that a rather low order truncated Fourier series
explains well the seasonal variations in the temperature. The estimates of the fitted
function are reported in Table 3.2 for Arezzo. As all confidence intervals do not contain

Table 3.2: Estimated coefficients and 95% confidence interval under OLS for formula
(3.11)

a0 a1 a2 a3

estimated parameter 14.0185 2.1814 × 10−5 −8.016 −1.0917
95% conf.int lower bound 13.9119 1.4157 × 10−5 −8.0914 −1.1672
95% conf.int upper bound 14.1251 2.95 × 10−5 −7.9407 −1.0164

0, parameters in Table 3.2 are significantly different from zero.
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Figure 3.4: Fitted trend (red), seasonality and AR(3) process.

3.3.3.3 AR Process

In this section we eliminate the estimated trend and seasonal effects from the temperature
data and find the best AR(p) model fitting the deseasonalized temperature data. Referring
to the temperature model in Equation (3.9) we consider an AR(3) under the hypothesis
that the temperatures of day t can be correlated with those of the days t− 1, t− 2, t− 3.
We also estimated other AR(p) processes on deseasonalized data, and found that AR(3)
fitted the data better. In Table 3.3 the estimated values of those parameters are reported.

Estimates α1, α2 and α3 are significant at the 1% level. As can be seen from Figure
3.4, adding the self-regulating econometric process in Equation (3.9) and (3.11), the
fitness is improving.

Table 3.3: Estimated coefficients from AR(3).

α1 α2 α3

Estimated values 0.809776834 0.00933351 0.079971453
p-value 0 0 1.684667 · 10−35
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3.3.3.4 Estimation of Volatility

One way to model the variance σ2(t) is to fit a truncated Fourier series

σ2(t) = b1 +

4∑

l=1

b2l cos

(
2πℓt

365

)
+ b2l+1 sin

(
2πℓt

365

)
(3.12)

to the empirical daily variance of the residuals. The alternative is to use the daily
empirical variance of residuals to approach the properties of a white noise. First, we
have calculated the daily variance of empirical residuals, remembering that for each
day of the year in our case we have 66 values, equal to the number of samples in years.
After that, we calculate the estimated OLS residuals. On the left hand side of Figure 3.5,
the empirical variance σ2(t) together with the estimated one is presented. It is noted
that the variation in temperatures in the cold season is considerably more marked than
during the hot season. The variability also increases in the period between late spring
and early summer, as well as early autumn, in short in the transition between the cold
and warm seasons and vice versa.
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Figure 3.5: Empirical (black line) and estimated (red curve) variance of the residuals of
the temperature about Arezzo in 1951

At the end it is possible to deduce the residual process by dividing the components
(Figure 3.5):

ǫ(t)/σ(t) (3.13)

From table 3.4 it is discovered that the behaviour of residuals is that of a normal standard.
Moreover Figure 3.6 shows the histogram of residuals.

Table 3.4: Normality Tests of Residuals.

JB * Pearson (χ2) Kurt. Skew. Lilliefors (KS *)
statistic value: 7.982 12.150 1.800 -5.32e-12 0.060

p - value: 0.029 0.434 0.0125 1 0.282

JB denotes Jaque-Bera. KS denotes Kolmogorov-Smirnov.
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Figure 3.6: Histogram of overall residuals

3.3.3.5 Validation of the Model

To detect potential remaining dependencies in the residuals we analyze the ACF of the
squared residuals. From the ACF of the squared residuals Figure 3.7, a clear seasonal
pattern is observed indicating a time – dependency in the variance of residuals. After
having eliminated the seasonal dependency by dividing the residuals by the square root
of the fitted variance, the resulting ACF is shown in Figure 3.8. The graph basically
shows that we are left with zero-mean uncorrelated in time series which is close to a
normal distribution.

After removing seasonality from time series we validate the model by comparing
empirical values with estimated values from the model.

3.4 Pricing of Temperature

As for HDD forward option contract the price is defined as:

P (t, τ1, τ2) = exp
(

− r(τ2 − t)
)
E
[
X(τ1, τ2)|Ft

]
(3.14)

where X(τ1, τ2) (according to expressions in Equation (3.7)) represents the average
value of considered payoffs for temperature. We use the Monte Carlo method to simulate
the stochastic component of the model given to Equation (3.10) for temperature. For
this reason we have chosen to use a fixed number of paths that means that for each
case we are going to simulate 1 000 values. For each of these paths we calculate the
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Figure 3.7: Autocorrelation function of empirical residuals
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payoff. Then, the average of the payoffs from all the generated paths will represent
the expected price of the derivative X(τ1, τ2). Concerning temperature this value has
resulted 31.99 EUR. After that, we proceed to calculate the price of the derivative
through the discounting formula. Referring to the current discount rates in Italy, r will
be set equal to 0 and, consequently, the current value will correspond to the simple
average value of X . Therefore, the price of the contract for temperature is 139.58 EUR
(for more details see Table 3.5).

But, to this price the component called risk loading must be added, which has
the purpose of guaranteeing to the insurance institution/ bank a profit margin for the
risk assumed. The value of the component is obtained, by calculating 5% of the 95%
percentile of the payoff distribution, which, in this case, is equal to 34.74 EUR. As a
result, the final price will be 174.32 EUR.
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Table 3.5: Details on calculation of the final price for 67 years - Month of January (Table
continue on next page).

Year MC-Monthly-HDD Monthly-Payoff Final Payoff

1951 0 0
1952 4.4 88
1953 7.8 156
1954 37.2 744
1955 8.81 176.2
1956 4.84 96.8
1957 3.87 77.4
1958 8.92 178.4
1959 4.04 80.8
1960 6.11 122.2
1961 80.02 1600.4
1962 6.58 131.6
1963 0 0
1964 25.15 503
1965 24.31 486.2
1966 39.94 798.8
1967 1.63 32.6
1968 6.22 124.4
1969 0 0
1970 0 0
1971 0.43 8.6
1972 0 0 245.7
1973 8.97 179.4
1974 3.36 67.2
1975 0.93 18.6
1976 26.44 528.8
1977 14.69 293.8
1978 27.37 547.4
1979 0 0
1980 2.43 48.6
1981 3.79 75.8
1982 59.52 1190.4
1983 2.18 43.6
1984 20.48 409.6
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Table 3.5: Continued.

Year MC-Monthly-HDD Monthly-Payoff Final Payoff

1985 0 0
1986 0.61 12.2
1987 3.79 75.8
1988 2.36 47.2
1989 0 0
1990 1.43 28.6
1991 0 0
1992 0 0
1993 3.89 77.8
1994 0 0 205.68
1995 0.73 14.6
1996 0 0
1997 0 0
1998 0 0
1999 0 0
2000 0 0
2001 0.68 13.6
2002 3.39 67.8
2003 0 0
2004 0 0
2005 0 0
2006 0 0
2007 0.78 15.6
2008 0 0
2009 0 0
2010 0 0
2011 0 0
2012 0 0
2013 0 0
2014 0 0
2015 1.36 27.2
2016 6.55 131 141.21
2017 2 31.99 139.58

3.4.1 Application of an hedging strategy analysis for temperature

Let consider a farmer in Arezzo who has signed a one month temperature contract with
a bank in January 1, 2017 to protect himself from excessively cold temperatures which
could lead to frost with consequent damages on his crops. The stipulated contract is
as it is described above, with a price of 174.32 EUR. At the end of contract period the
historical temperatures as of January, 2017 (obtainable from the SIR (Figure 3.1) are
recorded and the payoffs are calculated. From 6 to 16 of January there was a particularly

71



3. Managing adverse temperature conditions through hybrid financial

instruments

icy period that brought the daily average temperatures below the "minimum" threshold
(which we remember had been set at 2.43řC) thus "triggering" the protection provided
by the derivative, which in fact in those days will have earned 451.60 EUR. On the
other hand, a similar one month contract, signed for February 2017, gave a different
payoff. Favorable weather conditions did not allow the HDD to trigger and a loss is
faced by the farmer. But of course this is counterbalanced by meteorological conditions
favorable for the crops. In this way, considering the collection obtained net of the price
paid, for January the farmer will have obtained a profit of 277.28 EUR. The farmer then
has covered itself efficiently against adverse weather conditions. A summary of the
obtained results are shown in Table 3.6.

Table 3.6: Hedging strategy analysis for January 2017.

January - HDD with threshold 2.43řC

Price 139.58 EUR
Risk Loading 34.74 EUR

Final Price 174.32 EUR

Specific Case: January 2017

Price 174.32 EUR
Payoff 451.60 EUR
Profit 277.28 EUR

3.5 Conclusions

The aim of this paper is to propose an hybrid contract capable of dealing with some
’negative event’ risk, as an insurance contract, but, at the same time, being priced as a
derivative instrument. By numerical techniques, a contract capable of hedging against
temperature risk in a limited geographical area (i.e. the town of Arezzo in Tuscany)
has been priced. Results presented in Section 3.4 are promising as numerical findings
show that such contracts can positively cover temperature risk. This is not only a
theoretical achievement as financial institutions (for instance rural banks) can offer
effective hedging instruments.

Results presented in this paper can be applied, mutatis mutandis, to other kinds of
weather risk sources, such as excessive rainfall.
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Chapter 4

Managing Meteorological Risk

through Expected Shortfall

Joint work with Silvana Stefani, Enrico Moretto and Sergei Kulakov
(Published in Risks, 2020, Special Issue of Stochastic Modeling and Pricing in Energy
Markets, Volume 8, pp. 118)

Abstract

This paper focuses on weather derivatives as efficient risk management instruments
and proposes a more advanced approach for their pricing. An "hybrid" contract
is introduced, combining insurance properties, specifically tailored for the region
under study and introducing Value-at-Risk (VaR) and Expected Shortfall (ES) as
appropriate measures for the strike price. The numerical results show that VaR and
ES are both efficient ways for managing the so-called Tail Risk; further, being ES
more conservative than VaR and due to its subadditivity property, it can be seen
that seasonal contracts are generally better off than monthly contracts in reducing
global risk.

Keywords: climate change, temperature, risk hedging, Value-at-Risk, Expected Shortfall,
portfolio diversification

4.1 Introduction

In the last years, growing concern about climate changes and risk related to
meteorological events has strongly entered into the agenda of governments and
companies.

Companies whose profits rely heavily on certain weather conditions, for instance,
not too hot or too cold temperatures throughout the year, could seek protection by
diversifying their business by undertaking activities that are not sensitive to weather
itself. Obviously, this strategy may not completely offset losses, due to adverse weather.
In addition to this, opening a new business is very costly and might not be viable (Brix
et al. (2005)). However, more importantly is that these dangers may not necessarily be
obvious or of catastrophic nature. For instance, Kelly et al. (2005) demonstrate that
global warming may gradually alter a firm’s exposure to shocks. It is evident that, to
adjust to changes, firms must bear additional costs.

Thus, many agents in the global economy are attempting to protect themselves from
such risks. A vast variety of commodities can be heavily affected by, for instance, rises
or drops in temperatures (see, e.g., Tang & Jang (2011) and Tang & Jang (2012)); such
fluctuations may lead to substantial financial losses.
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According to Zenghelis (2006), the dangers of climate change are reducible to
financial terms and, thus, can be studied from an economic standpoint. Moreover,
it is recognized that the magnitude of the impact may vary spatially, so a financial
intervention is needed at the local level, by tailoring the hedging instruments.

Needless to say, both expected and unexpected fluctuations in temperature may lead
to losses. Hence, the interest in hedging instruments that can offset these losses is high.

Thus, the aim of this paper will be placed upon examining weather derivatives as
a capable risk management tool and upon developing a more advanced approach to
weather derivatives pricing. Moreover, a new instrument, called "hybrid" is proposed,
its aim being to serve as an efficient hedge against climate alterations. Naturally, a
question may arise at this point: why does the subject of this study constitute a powerful
alternative to conventional insurance tools?

Insurance tools have proven their efficiency in the case of a low-probability, high-
impact event. Hence, such contracts tend to exhibit a superior performance when
consequences of a serious disaster are to be mitigated. However, high-probability
and low-impact risks may be better tackled with non-traditional hedging instruments
Mills (2005) or Le Den et al. (2017). In Alaton et al. (2002), the authors mention the
following reasons to illustrate the advantages of weather derivatives relative to insurance
policies. First of all, in order to trigger an insurance claim, an insured agent has to
have a proof of a significant loss. On the contrary, payout of weather derivatives is
independent of such proof. Secondly, weather derivatives constitute a more flexible
instrument, and they can be tailored to a vast range of specific weather events. Thirdly,
just like other financial securities, weather derivatives are tradable assets and they can be
used for speculative or hedging purposes. These activities are the basis for a somehow
liquid market; a key point for obtaining fair prices. In turn, pricing weather derivatives
may be an issue of complexity. A variety of pricing methods exists, and the academic
community has no unity toward a ‘universal’ valuation model. A brief review of the most
fundamental works upon which this paper is based is provided in the next subsection.

Contributions in the Literature

An overview paper that was written by Taib & Benth (2012) compared a number of
popular approaches for weather derivatives pricing. This study is dedicated to the burn-
analysis, the weather index approach, and the temperature modeling. A contribution
by Alaton et al. (2002) first derives a stochastic model for pricing temperature weather
derivatives. These authors rely on the Wiener process in order to describe variance
and analyze the noise and trend components separately. Moreover, they incorporate
mean-reversion into their model. They then let the price of a derivative be equal to a
discounted expected value under martingale measure. In doing so, the authors suppose
that the market price of risk is constant.

In order to forecast temperature and price weather derivatives, Benth & Saltyte-Benth
(2005) develop a continuous-time mean-reverting Levy-based Ornstein-Uhlenbeck model
with stochastic volatility. These authors rely on classical arbitrage pricing theory in
the sense of Black & Scholes (1973); Merton (1973). It is though to be noted that their
model is extended by means of a parameter measuring the market price of risk, because
the valuation of derivatives on temperature indices cannot be only based on an hedging
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principle. Benth & Saltyte-Benth (2011) propose a continuous-time auto-regressive model
for the temperature dynamics. These researchers treat volatility as the product of a seasonal
function and a stochastic process, being the Barndorff–Nielsen and Shephard model applied
to represent stochastic volatility. Thus, the setting of this model allows for the authors to
take advantage of the classical derivatives pricing theory.

A step further is done in Saltyte-Benth & Benth (2012). Here, the authors derive
a continuous-time stochastic model for temperature forecasting. The contribution of
their study is threefold. First, they show that estimating each component of the model
separately can be beneficial. Second, they argue that the average temperature plays a
fundamental role in temperature modeling. Third, they call for using a product between
a seasonal deterministic function and a classical GARCH process in order to estimate
seasonal volatility.

In Stefani et al. (2018) authors rely on the studies by Benth & Saltyte-Benth (2005,
2011); Saltyte-Benth & Benth (2012) to price weather derivatives. They then proceed
to evaluate an hybrid instrument that encompasses properties of insurance contracts and
propose Value-at-Risk (denoted with VaR in what follows), as a threshold. VaR is a very
well known risk measure, which is widely applied in finance.

The present paper further extends the approach by Stefani et al. (2018), as recalled
above. The key novelty of this paper is the application of the Expected Shortfall (ES in
what follows) instead of VaR. As a risk measure, Expected Shortfall (ES) follows what the
Basel Committee on Banking Supervision suggests in order to efficiently measure risks
(see, e.g., Barger & Adkins (2013)). The main features of ES are documented at length
in papers as, e.g., Artzner et al. (1999), Acerbi & Tasche (2002),Acerbi & Szekely (2014).
As opposed to VaR, ES turns out to be very useful when a financial market is ’under stress’,
as, in general terms, ES is coherent (in brief, a risk measure is coherent when it allows the
risk manager to set aside an appropriate amount of money to cover and hedge a full range
of risks) and conservative. More importantly, VaR and ES are both computed exploiting
a given quantile-level q that seems a very appropriate way to deal with the so called tail
risk. As shown in this paper, ES also allows to determine an appropriate strike price for
Weather Derivatives. Moreover, as it is confirmed by the application, ES turns out showing
its strength due to the subadditivity property, that is particularly useful when considering an
entire set of derivatives contracts under a ’portfolio management perspective’. An insurance
company willing to issue Weather Derivatives might benefit of the diversification effect that
hedges its portfolio of such contracts leading to a reduction in its overall risk exposition.
From the side of a producer, a farmer may be better off buying a seasonal contact rather
than a bunch of monthly contracts. Further, the pricing of the proposed hybrid instruments
includes risk loadings, which is the reward that an insurer requires to enter the contract.

Finally, generally speaking and, as an extension to the scope of this paper, note
that Weather Derivatives can provide protection against various manifestations of
climate change: abnormal temperatures’ behavior, substantial changes in the quantity of
precipitation per month, and the like. Therefore, the payout of a single contract may
be prompted by multiple underlying variables. Pricing this contract can be incredibly
complex, because, despite being improbable, several adverse weather conditions can
occur simultaneously. ES can assess consequences of such improbable events more
accurately when compared to VaR.

The present paper has the following structure. Section 4.2 recalls the main points in
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weather derivatives pricing and risk measure theory; Section 4.3 presents the data and
performs an application of risk measures through historical and parametric methods. An
illustration of the stochastic model that was used to capture the behavior of temperatures
is provided in Section 4.4. Section 4.5 deals with the application of a worst case
approach that is based on VaR and ES while Section 4.6 shows the valuation of hybrid
weather derivatives. Section 4.7 is devoted to analyzing the effectiveness of ES-based
approach for hedging meteorological risk. Section 4.8 concludes.

4.2 Weather Derivatives and Risk Measures

A Weather Derivative (WD) is a financial contract whose pay-off depends on the
behavior of some meteorological underlying variable, such as, for instance, wind and
rainfall.

This paper focuses on a temperature-based WD: the daily arithmetic mean between
the maximum and minimum observed temperatures in a specific area, denoted with
T (i), i = 1, 2, . . . , will be the relevant underlying variable.

The three most common contingent claims dealing with temperature are:

• Heating degree days (HDD) contracts defined, over some time interval [t1; t2], as

HDD =

t2∑

i=t1

max(K − T (i), 0) (4.1)

where threshold K is usually equal to 18 ◦C (65 ◦F) with respect to the Chicago
Mercantile Exchange (CME) market (Alexandridis & Zapranis (2013)) while the
European Environment Agency1 (EEA) states that, in Europe, such a baseline
temperature is K = 15.5 ◦C.

• Cooling degree days (CDD) contracts defined as

CDD =

t2∑

i=t1

max(T (i) −K, 0), (4.2)

and act the opposite way with respect to HDD. According to EEA, K = 22 ◦C.

• Cumulative average temperature (CAT) is defined as

CAT =

t2∑

i=t1

T (i).

that measures the sum of average temperature over the period [t1; t2].

1https://www.eea.europa.eu/data-and-maps/indicators/heating-degree-days-2.
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In order to determine a cash-flow, these quantities are multiplied by a amount λ
called ‘tick size’.

Pay-offs generated by HDD and CDD contracts are non-symmetric; HDDs and
CDDs produce cash-flows whenever temperatures are below, in the first case, or above,
in the second, some threshold K. In derivative pricing terminology, this value is
commonly known as strike price.

It is easy to see that cash-flows that are generated by HDDs and CDDs are, indeed,
the sum of pay-offs generated by European call/put options. In the rest of the paper, due
to their resemblance to European options, only HDDs and CDDs will be considered.

As said in the Introduction, the key point motivating this contribution is the flexibility
in choosing strike prices. A K = 18 ◦C threshold could not be convenient for a number
of cases. For instance, small farmers who operate in tiny areas (for instance wineries
producing high quality wine in limited quantities) might not be able to access regulated
WD markets or might find such derivatives too expensive or ineffective. On top of this,
the reference temperatures for standardized WD cover a number of US and European
towns whose climate might have little or no connection at all with the area toward which
an agent seeks protection for.

This might lead to agents looking for WD that will not have a sufficiently liquid
market to be traded into. Unfortunately, in order to have model capable of determining
fair prices, a derivative market should be as liquid as possible, with the largest possible
number of buyers and sellers acting on it at the same time.

This is the reason why this paper extends the above mentioned methodology
introduced by Stefani et al. (2018) here, strike prices K are chosen so that WD,
for whom a formula capable of evaluating them exists, produce cash-flows only when
some relevant and well-suited events occur.

In order to opt for a "as-correct-as-possible" choice for K, a proper way to deal with
this issue is to use quantiles. It is well known (Artzner et al. (1999)) that such quantities
are very important in the theory of risk measures.

For the sake of compactness, a very brief and partial recall, with definitions of VaR
and ES, of the theory proposed by Artzner et al. (1999) is presented in Appendix 4.8.
Here, it suffices to recall that, even for both risk measures, closed-form expressions
exist, VaR is not, unlike ES, a coherent risk measure. This difference is crucial: ES
manages risks exploiting, if possible, some diversification effect. This turns out to be a
fundamental feature for risk management.

Letting a WD strike price be equal to some quantile-derived level of, in this case,
observed temperatures allows for pinpointing in a financially sound way which negative
event the derivative is supposed to hedge.

4.3 Data Collection

The data-set used in this paper is composed of historical daily data for the temperature
in Celsius (◦C) from the weather station Molin Bianco in Arezzo, Tuscany spanning 47
years, from January 1970 to 2017 and available at Settore Idrologico Regionale (SIR)2

web-site.

2https://www.sir.toscana.it.
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Due to some discontinuities in data, in order to avoid biases or discrepancies, the
numerical analysis performed in this article relates to the 1970–2017 period. Further,
the pricing model is going to be calibrated using data from 1970 to 2016 while data of
2017 will be used to validate WD prices.

Traditionally, many areas in Tuscany are devoted to the production of high-quality
agricultural produce. This is also the case of the province of Arezzo, so that, not only
from a theoretical point of view, it is clear that a way to hedge against climatic risk is
somehow required.

Daily average temperatures (DAT) have been calculated while using a simple
arithmetic mean of max and min temperatures, as reported in the SIR web-site.
Following Wang et al. (2015), data have been corrected for leap-years. The full
sample consists of 16 790 daily observations. Table 4.1 presents some descriptive
statistics for daily average temperatures.

Table 4.1: Descriptive Statistics of the daily average temperature in Arezzo (Tuscany)
1970–2016.

Mean Var Std Dev Min Max Skewness Kurtosis

Temp. (◦C) 14.26 51.34 7.17 −8.1 34 0.028 2.01

Financial literature carries a number of ways to determine the quantiles and related
values out of a set of observed data. The first is simply to determine these quantities
directly from observed data. In doing so, though, the methodology of a finite-sample
approach for the estimation of VaR and ES described in Rockafellar and Uryasev (2002)
is to be applied. The method that was implemented by these authors makes a correction,
so that the tail probability is always consistent with the VaR level, a refinement that
might be needed in the numerical analysis performed in this article.

Farmers are usually worried about the weather’s behavior during some specific
periods, particularly during winter or summer months. To address this point, a data-set
from 1970 to 2016 has been divided into monthly subsets. For each of them, some
quantile-related thresholds have been computed (see Figure 4.1).

Thresholds K for VaR (lhs-part of Figure 4.1) and ES (rhs-part of Figure 4.1) are
depicted in Figure 4.1 (for the definition of VaR and ES see Appendix 4.8). VaR-related
threshold (KVaR

α ) is the α−percentile, α ∈ [0, 1], of each subset. By definition, the
ES-related threshold (KES

α ) is the average of values of the subset that are identified by
KVaR

α .
In Figure 4.1, the relationship between strike prices, expressed in terms of

temperature, (KVaR
α and KES

α ) (vertical axis) and percentiles, which vary from 0% to
100%, (horizontal axis) is depicted.

Strike values that correspond to percentiles from 0% to 50% are HDDs observed
thresholds, while those corresponding to percentiles from 50% to 100% are CDDs
observed thresholds.

As an illustration, KVaR
α = 16.5 ◦C and KES

α = 15.24 ◦C are the thresholds for
June when considering the 10% percentile. Therefore, these values identify thresholds
applied in case of trading a HDD contract. On the other hand, KVaR

α = 24.39 ◦C and
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KES
α = 19.97 ◦C are similar threshold values for a CDD contract for June considering

the 90% percentile.
From Figure 4.1, it can be observed that VaR/ES thresholds that are found in terms

of quantiles are far away from the standard strike price suggested by CME (18 ◦C), but
closer to the ones stated by EEA (15.5 ◦C). As an example, the value for VaR for June
if temperature is 18◦ is approximately α = 0.2.
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Figure 4.1: Thresholds KVaR
α and KES

α for heating degree days (HDD) and cooling
degree days (CDD) for different confidence levels and in different months (HDD
corresponds to percentiles 0% to 50% while CDD corresponds to percentiles 50% to
100%). Note that the abbreviations J1, A1, J2, J3, and A2 are used to identify the
months of January, April, June, July, and August, respectively.

Estimation of VaR and ES Using Historical and Parametric

Approaches

In this paper, a range of methods for estimating VaR and ES have been exploited (see,
for instance, McNeil et al. (2005): these are the historical (see, e.g., Rockafellar and
Uryasev (2002)), the normal, the "T5" and "T10" ones. While the historical method has
no a priori assumptions, the normal, T5, and T10 are assumed parametric because they
rely on some underlying distribution: the normal distribution for the normal method and
a Student’s-t distribution with 5 and 10 degrees of freedom for the remaining two.
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However, while the normal and Student’s-t distributions quite efficiently fit a number
of financial time series, this is not the case for most meteorological data (see Figure
4.2).

As it is well known, historically speaking the first theoretical distribution applied
in mathematical finance is the normal one. Empirical investigation has shown that real
financial data are characterized almost ubiquitously by extreme events; in fact, large
losses occur with a frequency that the normal distribution is unable to predict.

VaR and ES are risk measures developed to hedge such potential losses. Their
numerical results depend, of course, on the assumed underlying distribution; for a
number of distributions (for instance, Student’s-t) explicit formulae exist.

When dealing with temperatures, at least in the area scrutinized in this article, it
occurs that historical distribution is bimodal and with thin tails. This leads to the fact that,
in this case, VaR and ES become very conservative and prudent ways of representing
risk.

Histogram of average temperature 1970-2016
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Figure 4.2: Historical distribution for daily temperature, Arezzo, 1970–2016.

The following analysis shows that meteorological data are usually characterized by
‘thin’, rather than ‘fat’, tails.

To this end, an analysis of the tails of the distribution of observed temperatures has
been attempted. As it is known, the normal distribution is thin tailed, which is, its upper
tail declines to zero faster than exponentially Pindyck (2011) and that the exponential
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distribution, whose probability density function is

f (x) =

{
λe−λx if x ≥ 0

0 if x < 0
,

is thin-tailed.

The right tail of such distribution is assumed to be composed of all temperatures
that are larger or equal to the 90%th percentile (24 ◦C) of the temperature data-set.

In Figure 4.3, in order to apply the exponential distribution, the 90% percentile
has been subtracted to all temperatures. The estimated λ is equal to 1.85997 with 95%
confidence interval [1.77605, 1.95002].

Similarly, the left tail of the distribution under scrutiny is assumed to be composed of
all temperatures that are smaller or equal to the 10% percentile (5 ◦C) of the temperature
data-set.
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Figure 4.3: Exponential fit of temperature distribution—tail beyond 90% percentile.

In Figure 4.4, in order to apply again the exponential distribution, temperatures have
been firstly changed in sign (obtaining a right tail). Further, in order to deal with positive
numbers, the 10% percentile has been added to all temperatures. The estimated λ is
here equal to 2.02396 with 95% confidence interval [1.93481, 2.11945].
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Figure 4.4: Exponential fit of temperature distribution—tail below 10% percentile.

In conclusion, the temperature distribution shows thin tails. Therefore, the
econometric analysis on VaR and ES must keep proper account of this feature. This is
achieved by considering the historical and normal methods.

The first method used is the historical one (see Figure 4.5). The estimation rolling
window size is set equal to 365 days, so that a full year of data is used to estimate for
both the historical VaR and ES; the sample window runs from the beginning of 2003
through the end of 2016. Following [basel2], a VaR confidence level of 97.5% is used.

According to Rockafellar & Uryasev (2002), the historical VaR and ES are computed,
as follows:

V aRα = z(k)

and

ESα =





(k − α ·N)z(k) +
∑N

i=k+1 z(i)

N(1 − α)
if k < N

z(k) if k ≥ N

where k = floor (α ·N), N is the length of the historical data under study, while z is
the vector containing all sorted historical data.
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Figure 4.5: The daily average temperature, Value-at-Risk (VaR), and Expected Shortfall
(ES) estimated with the historical method.

Figure 4.5 shows that the historical simulation curve has a piece-wise constant
profile. The reason for this is that quantiles do not change for several days until extreme
events occur. Thus, the historical simulation method is slow to react to changes in
volatility.

Another estimation method uses parametric models (McNeil et al. (2005)); this
approach requires computing the volatility of daily average temperatures.

Given this volatility, VaR and ES can be analytically computed assuming that
temperatures follow a normal distribution with mean µ and variance σ2:

VaRα = µ+ σΦ−1(α)

and

ESα = µ+ σ
φ(Φ−1(α))

1 − α

where φ and Φ denote density of standard normal distribution and cumulative standard
normal distribution, respectively. Φ−1(α) is the α-quantile of Φ. A non-zero mean is
assumed and it is estimated as a sum of all yearly means. For the normal distribution,
the estimated volatility is directly used to obtain the VaR and ES (see Figure 4.6).
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Figure 4.6: The daily average temperature, VaR, and ES estimated with the normal
method.

The data-set under scrutiny has a kurtosis far away from 3, as can be seen from Table
4.1. To properly test this claim, Table 4.2 carries the results for two tests for normality
of data:

Table 4.2: Normality tests of temperature data in Arezzo (Tuscany), 1970–2016.

Jarque-Bera Lillefors (Kolmogorov-Smirnov)

Statistic value 693.99 0.0564
p-value 0.001 0.001

The null hypothesis (data are normally distributed) is rejected by both of them.
To tackle this issue, a more flexible theoretical distribution can be applied. The key

point here is to choose a distribution that could somehow be compatible with observed
data. A plausible choice is the Student’s-t one. In fact, denoting with ν the number of
its degrees of freedom, its skewness is 0 for ν > 3, while its kurtosis is 6/ (ν − 4) for
ν > 4, a number compatible with the kurtosis observed (see Table 4.1).

VaR and ES Formulas for a Student’s-t with ν degrees of freedom
(
T ∼ t(ν, µ, σ2)

)

distribution are
V aRα = µ+ σt−1

ν (α)

and

ESα = µ+ σ

(
gν(t−1

ν (α))

1 − α
· (ν + (t−1

ν (α))2)

ν − 1

)
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where tν is the standard t-distribution c.d.f, t−1
ν is the standard t-distribution quantile

and gν is the standard t-distribution p.d.f.
Figure 4.7 shows the daily temperatures, VaR and ES estimated values with Student’s-

t distribution with 10 and 5 degrees of freedom.
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Figure 4.7: Daily average temperature, VaR and ES estimated with the T10 and T5
methods.

No theoretical model can fully catch reality, as is almost always the case. Still,
financial literature has deeply analyzed the results obtained by theoretical models
applied to real data. On top of this, closed formulas for VaR and ES, for the
distributions used in this section, exist. Looking at data under scrutiny, it results
that temperatures, at least in this case, have thin tails. Financial agents are, instead,
worried about fat fails. This explains why the normal distribution performs better,
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when compared to the Student’s-t distribution, with the latter being characterized
by fatter tails. This observation leads to the idea, to be developed in a subsequent
paper, to apply theoretical distributions with thinner tails when compared to the normal
distribution ones.

A back-test on ES, which is based on available data, is in Appendix 4.8. Its main
result is that the Historical and Normal models perform better and, therefore, will be
used in what follows.

Of course, the fact that Arezzo’s temperatures show thin tails could be the result of
the fact that Tuscany is located in a very favorable area, meteorologically speaking.

As the aim of the paper is to present a novel approach in pricing weather derivatives
by means of VaR and ES, its findings has to be standard and consistent. This leads to the
claim that what has been presented here could be possibly used everywhere, regardless
of the behavior of the observed meteorological data.

The historical method, of course, does not assume any underlying distribution. On
the other hand, as said, the normal method, assuming tails fatter than the observed
ones, will give results that are more conservative than taking a better fitting distribution.
The claim is that the normal method is the best financial compromise in choosing
an underlying distribution, according to the universal standards, without leaving the
freedom of applying different methods for finding VaR and ES. In any case, the final
results in pricing and hedging are found to be very similar using the historical or the
normal method.

4.4 Temperature-Based Model

To model the temperature dynamics, a time series decomposition approach proposed
by Benth & Saltyte-Benth (2013). Temperature T (t) is decomposed into a mean
component µ(t), which models the trend, and a residual component ǫ(t) that models
the fluctuations around a trend over time. The temporal decomposition of T (t) can be
written as:

T (t) = µ(t) + ǫ(t) (4.3)

where µ(t) is a deterministic function over time defined as:

µ(t) = θ(t) +

p∑

i=1

αi(T (t− i) − θ(t− i)) (4.4)

where αi are the parameters of an AR(p) process, θ(t) is the (linear) trend, and
seasonality in terms of the sine and cosine functions in T (t) expressed is as follows:

θ(t) = a0 + a1t+ a2 cos

(
2πt

365

)
+ a3 sin

(
2πt

365

)
.

The part containing trigonometric functions explains the seasonal variations in
temperature. The variable ǫ(t) represents residuals at time t in the form:

ǫ(t) = σ(t)γ(t) (4.5)

90



Temperature-Based Model

where σ(t) is a (possibly time–dependent) volatility function, γ(t) is a zero-mean
temporally independent Gaussian random process with standard deviation that is equal
to one, and σ(t) is a (possibly time–dependent) volatility function given by a truncated
Fourier series as follows:

σ2(t) = b0 +
4∑

l=1

b1l cos

(
2πt

365

)
+ b1l+1 sin

(
2πt

365

)
.

In order to predict average temperature for 2017, the dynamics of ǫ(t) is now to be
found. To achieve this, parameters for the volatility function σ(t), expressed using a
Fourier series of order 2 and applying the standard OLS method, are determined.

The next step is to simulate 1000 trajectories for γ(t); this leads to obtaining 1000
trajectories for average temperatures. The lhs of Figure 5.17 shows such trajectories and
how the observed average temperatures (red curve) differ from the simulated average
temperatures (blue curve). In the rhs of the same Figure 5.17, forecast errors for 1000
simulated trajectories with respect to average temperatures of 2017 are displayed.

Figure 4.8: Simulated mean temperature and errors for each trajectory for year 2017.

For a more detailed analysis of errors due to simulation,the mean absolute percentage
error (MAPE), mean absolute error (MAE), and root mean square error (RMSE)
discrepancies of simulated data from the observed average 2017 temperatures have
been computed and represented in Figure 4.9.
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Figure 4.9: Daily errors of simulated data when compared to observed 2017 temperatures
(mean absolute percentage error (MAPE), mean absolute error (MAE), and root mean
square error (RMSE)).

These data represent the errors that result when simulated data are compared with
the data observed in 2017. In order to at least partially reduce errors displayed above, a
’removing outliers’ approach will be performed in the next section.

4.5 Worst Case Approach Based on VaR and ES

In order to reduce uncertainty when calculating WD prices, the method proposed by
Benth, Kutrolli & Stefani (2019) is now applied.

Figure 4.10: Simulated VaR and ES for 2017 obtained by means of 1000 trajectories
using the historical method.
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This is done inside a Monte Carlo framework, in which values for the stochastic
component of the temperature model given in (4.5) are simulated.

At first, VaR and ES for all trajectories of volatility for year 2017 are computed.
Figure 4.10 shows the VaR and ES obtained by applying the historical method (see
Section 4.3).

Figure 4.11 shows VaR and ES obtained by applying the normal method; red curves
identify the average of VaR and ES from all of the simulated trajectories.

Figure 4.11: Simulated VaR and ES for 2017 applying in 1000 different trajectories
using the normal method.

This being done, applying the worst case approach that is based on VaR and
ES removes outliers/worst scenarios that, if not expunged, affect prices of weather
derivatives and lead to an increased uncertainty. The elimination of extreme tails
approach is based on a η = 2.5% level.

Figure 4.12 shows VaR and ES after having removed extreme tails by applying the
historical method; red curves identify the averages of VaR and ES from the remaining
simulated trajectories.

Figure 4.12: Simulated VaR and ES for 2017 upon removing extreme tails using
historical method.
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Figure 4.13 shows VaR and ES after having removed extreme tails by applying the
normal method; red curves identify the averages of VaR and ES from the remaining
simulated trajectories.

Figure 4.13: The simulated VaR and ES for 2017 after removing extreme tails using
normal method.

By comparing Figures 4.12 and 4.13 with Figures 4.10 and 4.11, having removed
outliers, the trajectories show a more compact behavior.

In the next section, pricing of pure financial derivatives has been computed removing
(Table 4.3) or not removing (Table 4.4) extreme tails.

Table 4.3: Pure financial derivative values for heating degree days (HDD) and CDD
computed from data simulated for 2017—thresholds 5% for HDD and 95% for CDD—
tick size λ = 20 EUR—tail values have not been removed.

Month HDD (VaR/ES) CDD (VaR/ES)

January 48.92/19.15 EUR 55.09/846.03 EUR
February 35.49/11.84 EUR 116.39/805.06 EUR

March 50.65/17.18 EUR 43.59/958.18 EUR
April 36.43/12.71 EUR 83.09/845.55 EUR
May 33.81/11.39 EUR 46.08/849.19 EUR
June 25.90/11.66 EUR 73.05/833.31 EUR
July 35.28/10.16 EUR 34.13/741.01 EUR

August 38.17/12.88 EUR 30.76/816.59 EUR
September 34.63/11.83 EUR 69.72/834.55 EUR

October 45.56/14.59 EUR 28.51/938.44 EUR
November 33.52/10.98 EUR 79.63/954.93 EUR
December 51.28/17.91 EUR 38.86/924.04 EUR
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Table 4.4: Pure financial derivative values for HDD and CDD computed from data
simulated for 2017—thresholds 5% for HDD and 95% for CDD—tick size λ = 20
EUR—tail values have been removed.

Month HDD (VaR/ES) CDD (VaR/ES)

January 48.90/19.14 EUR 55.08/846.02 EUR
February 35.48/11.83 EUR 116.38/805.05 EUR

March 50.64/17.17 EUR 43.59/958.18 EUR
April 36.42/12.70 EUR 83.07/845.54 EUR
May 33.80/11.38 EUR 46.09/849.18 EUR
June 25.90/11.66 EUR 73.04/833.30 EUR
July 35.27/10.15 EUR 34.12/741.00 EUR

August 38.16/12.87 EUR 30.75/816.58 EUR
September 34.62/11.82 EUR 69.70/834.53 EUR

October 45.55/14.58 EUR 28.50/938.43 EUR
November 33.51/10.97 EUR 79.62/954.92 EUR
December 51.27/17.90 EUR 38.85/924.03 EUR

4.6 Pricing a Temperature-Based Weather Derivative

In this section, the pricing of HDD and CDD (both without and with risk loadings),
computed for each month in 2017, are displayed. The temperatures for 2017 have been
simulated as said before, while VaR/ES percentiles thresholds have been set equal to
5% for HDD and 95% for CDD.

Table 4.3 encompasses the ‘pure’ financial values of HDD and CDD computed
according to formulae (4.1) and (4.2) and including tail values discussed above. Table
4.4 displays the same computations having, instead, removed tail values. The cut-off for
considering a value an outlier has been set as equal to 2.5%.

A comparison between Tables 4.3 and 4.4 shows how the financial prices are not
affected by the removal of extreme values. For this reason, and for sake of compactness,
the rest of this numerical analysis is going to be performed when considering all values.

To depart from standard actuarial techniques, risk loadings are determined here as a
fraction α of the 100 · (1 − α) percentile of the pay-off distribution of the derivative.
Such values are obtained considering the historical temperature time series from 1970
to 2016. As a first step, temperatures are subdivided month by month. Out of these, for
each of the twelve sub-sets the 100 · (1 − α) percentile is determined. Finally, these
values become the threshold used to compute the historical pay-off distributions of
either HDD and CDD. The complete graphical behavior of these thresholds is depicted
above in Figure 4.1.

By looking at Tables 4.3 and 4.5, it is evident that, as HDD thresholds are lower
when ES is applied instead of VaR, prices in the left part of column 2 are lower than
those in the right part. A similar but opposite reasoning holds for CDD: here, thresholds
are larger for ES rather than VaR so that prices in left part of column 3 are greater then
corresponding prices in the right part.

Some descriptive statistics of option values treated in this section can be found in
Appendix 4.8.
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Table 4.5: Final prices (i.e., financial value + risk loadings) for HDD and CDD—
simulations for 2017—tick size λ = 20 Euro—thresholds 5% for HDD and 95% for
CDD—tail values have not been removed.

Months HDD (VaR/ES) CDD (VaR/ES)

January 61.09/24.09 EUR 65.08/926.09 EUR
February 41.95/16.70 EUR 170.62/889.76 EUR

March 67.43/25.57 EUR 57.31/1084.86 EUR
April 46.99/17.57 EUR 96.4/928.79 EUR
May 41.03/13.98 EUR 52.64/935.06 EUR
June 33.39/15.85 EUR 84.54/920.02 EUR
July 44.59/13.76 EUR 40.28/822.81 EUR

August 47.43/18.22 EUR 38.48/922.24 EUR
September 44.32/14.27 EUR 79.82/929.98 EUR

October 56.18/18.39 EUR 36.13/1048.33 EUR
November 43.19/14.08 EUR 92.49/1029.81 EUR
December 63.59/22.69 EUR 49.41/1006.49 EUR

4.7 Hedging Strategies with Hybrid Instruments Based on

Value-at-Risk and Expected Shortfall

Consider a farmer who needs to hedge against negative weather events in the Arezzo’s
area by means of some tailor-made derivative contract.

According to computation that was performed above, the temperature risk for each
month in 2017 can be hedged by means of either an HDD or CDD with monthly
maturity.

In Benth & Saltyte-Benth (2013), it is stated that Chicago Mercantile Exchange
(CME) offers HDD contracts from November to June, while CDD and CAT contracts
are offered from May to September. This leads to the conclusion that, when considering
WD, some months (i.e., summer and winter seasons) are more relevant than others.

When comparing final prices of these derivatives (see Table 4.5) with their actual
2017 daily pay-off obtained by using observed data leads to Table 4.6, where only winter
and summer data are reported.

Table 4.6: HDD and CDD Profit/Losses for 2017—Prices in Table 4.5 have been
compared with actual 2017 pay-offs.

Months HDD (VaR/ES) CDD (VaR/ES)

January 85.51/20.92 EUR −65.08/−744.92 EUR
February −41.95/−16.70 EUR −120.62/354.61 EUR
March −67.43/−25.56 EUR −12.71/408.03 EUR
June −33.39/−15.85 EUR −52.54/828.07 EUR
July −44.59/−13.76 EUR −21.28/188.90 EUR

August −38.43/−18.22 EUR 147.52/816.34 EUR
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Expected Shortfall

Aside monthly contracts, in order to test if the ES’s diversification property holds in
this context, the analysis has been extended to seasonal contracts.

For this reason, two seasonal contracts, the first encompassing the winter period
ranging from January to March 2017, the second the summer one (June to August 2017)
have been priced with the same methodology applied for monthly WDs.

Table 4.7 summarizes the pure financial prices (column 2), the full prices (i.e.,
adding risk loadings—column 3) and profit and losses (column 4) for HDD in the winter
2017 season.

Table 4.7: Comparison between HDDs pure financial prices, financial prices + risk
loadings (RL) and Profit and Loss (P/L) − winter season 2017.

Months Pure Fin. Prices Fin. Prices + RL P/L

(VaR/ES) (VaR/ES) (VaR/ES)

Winter season 138.12/48.92 EUR 162.64/58.4 EUR 111.36/28.61 EUR
Jan-Feb-Mar 135.06/48.17 EUR 170.47/66.36 EUR −23.87/−21.34 EUR

By looking at Table 4.7, it is evident, in terms of P/L, that a seasonal HDD contract
leads to a profit for the insured farmer. Such profit would have turned into a loss in the
case that the farmer had bought monthly contracts.

A somehow less clear-cut result occurs for the summer season (see Table 4.8),
where CDD contracts are used. Final column in Table 4.8 shows that P/L for contracts
priced while using VaR as a threshold is larger when considering a three-month duration
derivative instead of three monthly CDDs. The opposite results, still leading, though, to
a profit, occurs when ES is used.

Table 4.8: Comparison between CDDs pure financial prices, financial prices + RL and
P/L − summer season 2017.

Months Pure Fin. Prices Fin. Prices + RL P/L

(VaR/ES) (VaR/ES) (VaR/ES)

Sum. season 88.60/2638.4 EUR 107.97/2877.9 EUR 242.03/1754.7 EUR
Jun-Jul-Aug 137.94/2390.9 EUR 163.30/2665.1 EUR 73.70/1833.3 EUR

To end this section, there is no need to say that some variables chosen in the above
analysis, such as, for instance, tick sizes and contract maturities, can be chosen, so
to match a large number of needs an agent might require to manage weather-related
business risks. Insurance companies can, on their side, perform some fine tuning with
respect to some quantities that are involved in WD so to avoid facing losses on their
side, as displayed in Tables 4.7 and 4.8.

Further, according at least to data that were exploited in this article, the Expected
Shortfall shows to maintain, even if not fully, its diversification property. Nevertheless,
it has been numerically assessed that seasonal WD derivatives lead to better profit and
loss results when compared with monthly contracts written on the same period.
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4.8 Conclusions

This article has presented a way to hedge temperature risk exploiting weather derivatives
contracts. This has been achieved when considering ‘tail events’ and the standard
financial approach to tackle them: namely, Value-at-Risk and Expected Shortfall.

Using as a starting point historical time series for a very specific area, an ‘hybrid’
contract, composed of a Weather Derivative whose price also encompasses a risk
loading, has been evaluated. The aim of this choice is to combine the efficient pricing
of a derivative with the gains that are required by an insurer to carry a specific risk.

Pay-offs have been determined by means of a stochastic simulation technique and
compared with those that were obtained observing 2017 temperatures.

According to risk measure theory, proved that Expected Shortfall captures
diversification while Value-at-Risk does not, the numerical results presented above
show that it is more convenient to enter a single contract that covers more months rather
than monthly contracts spanned on the same period.

Research performed in this paper can be extended in a number of directions.
As meteorological data are easily accessible, a possible extension might encompass
different sites, letting for more sources of randomness to be explored. Another path is
evaluating more complex derivatives instead of standard options. Beside this, the fact that
temperatures present thin tails is an interesting, as well as a non-standard financial issue,
research topic. Finally, a full comparison between hybrid and tailored-made Weather
Derivatives and the financial contracts periodically issued on some regulated market,
such as the Chicago Mercantile Exchange, might further shed some more light on this
specific field.
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Appendix A

Two of the most common quantile-based risk measures are Value-at-Risk (VaR) and
Expected Shortfall (ES).

In general terms, let X ∈ Ω be a random variable depicting the future outcome in
T > 0 of a risk. In the ADEH framework, a risk manager is assumed to be always
capable of distinguishing between acceptable and non acceptable risks.

Let A (AC = Ω − A) be the set containing all acceptable (non acceptable) risks.
In order for the theory to be consistent, these sets must obey some “common sense”
assumptions.

If Y ∈ AC , a risk measure is some function ρ : Ω → R defined as

inf
β

{
βv : (Y + β) ∈ A

}

where β is a positive amount of money while v is the risk-less discount factor in [0;T ].
A risk measure is, then, the smallest amount of money β to be added to a non

acceptable random variable Y that makes it, as some future epoch, Y + β an acceptable
one.

Let
FX (x) = P [X ≤ x] ∀x ∈ R

be the distribution function for a monetary-measured risk X and consider α, 0 < α < 1,
a probability level.

• the Value-at-Risk (VaR) for a risk X with 1 − α confidence level is defined as

VaRα (X) = −inf
z

{
FX (z) > α

}
,

If X ∈ AC (X ∈ A), then VaRα (X) > 0
(
VaRα (X) < 0

)

• the Expected Shortfall (ES) for a risk X with 1 − α confidence level is expressed
as

ESα (X) = −E
[
X|X ≤ −VaRα (X)

]

Even if such tail-based risk measures look appropriate in handling WD features,
ADEH’s work determines a fundamental result in risk management: some measures are
unable to capture fully capture risks.

VaR, for instance is not a sub-additive measure. Let X,Y ∈ Ω be two risks.
It can be shown that

VaRα (X) + VaRα (Y) ≤ VaRα (X + Y) (4.6)

a feature that defies the notion of diversification: when analyzing two, or more, risks
together, VaR might suggests not to hedge by means of a portfolio of random variables
but to invest all the money into a single asset.

Otherwise said, the right hand side of inequality (4.6) reports that risks X and Y,
measured separately, are not as risky as the same risks included in a portfolio.
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ES is instead sub-additive:

ESα (X) + ESα (Y) ≥ ESα (X + Y) .

A complete discussion of risk measures can be found in Artzner et al. (1999) and
Meucci (2009).

Appendix B

This section presents the ES back-test in order to assess the performance of the non-
parametric and parametric models studied in the previous section. The ES back-test
uses the unconditional test statistics proposed by Acerbi & Szekely (2014), given by

Zunc =
1

NpVaR

N∑

t=1

TtIt

ESt
+ 1

where N is the number of observations, Tt is the temperature for period t, pVaR is the
probability of VaR failure defined as 1 − VaR level, It is the VaR failure indicator on
period t with a value of 1 if Tt < −VaRt, and 0 otherwise and ESt is the estimated
expected shortfall for period t expressed as follows:

ESt = −Et

[
TtIt

pVaR

]
,

where the operator Et stands for the expected value conditioned to information available
up to time t.

The expected value for this test statistics is 0; it should be negative when there is
evidence of risk under-estimation. To determine how negative this estimate should be
for the model to be rejected, some critical values are needed. These, of course, require
some distributional assumptions on the observed variable Tt.

The unconditional test statistics turns out to be stable across a range of distributional
assumptions for Tt, from thin-tailed distributions through the normal one and up to
heavy-tailed distributions such as Student’s t with a few degrees of freedom. Only very
heavy-tailed Student’s t-distributions lead to more noticeable differences in the critical
values (see Acerbi & Szekely (2014)). The ES back-test takes advantage of the stability
of the critical values of the unconditional test statistic and uses tables of pre-computed
critical values to run ES back tests. The ES back-test has two sets of critical-value
tables. The first set of critical values assumes that the temperature outcomes Tt follow a
standard normal distribution; this is the unconditional normal test. The second set of
critical values uses the heaviest possible tails, it assumes that the temperature outcomes
Tt follow a t distribution with ν = 3 degrees of freedom; this is the unconditional t-test.

The unconditional test statistics is sensitive to both the severity of the VaR failures
relative to the ES estimate, and also to the number of VaR failures (how many times the
VaR is violated, since, whenever losses exceed VaR, a VaR violation occurs). Expected
average ratio is the average ratio of ES to VaR, over the period under scrutiny, with VaR
failures while observed average severity ratio is the average ratio of loss to VaR over the
periods with VaR failures.
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Therefore, a single but very large VaR failure relative to the ES may cause the
rejection of a model in a particular time window. A large increase/decrease of
temperature on a day when the ES estimate is also large may not impact the test
results as much as a large increase/decrease of temperature when the ES is smaller.
A model can also be rejected in periods with many VaR failures, even if all the VaR
violations are relatively small and only slightly higher than the VaR.

In Figure 4.14 the observed severity column shows the average ratio of increased/de-
creased temperature to VaR on periods when the VaR was violated. The expected
severity column uses the average ratio of ES to VaR for the VaR violation periods.
For the "Historical" and "Normal" models, the observed and expected severities are
comparable. However, for the Historical method, the observed number of failures (red
bars) is considerably higher than the expected number of failures (blu bars), about 2%
higher. Both the "T5" and the "T10" models have observed severities much higher than
the expected ones.

Average Severity Ratio
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Number of VaR Failures

Historical Normal T 10 T 5
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50

100
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Figure 4.14: Severity of VaR failures relative to the ES estimate and to the number of
VaR failures.

For the 2004–2016 window, all models pass both tests with a 95% level.
Even though all models pass both tests, it is clear from Figure 4.14 that T5 and

T10 have a higher average severity ratio and number of VaR failures. To conclude this
section, it results that from all the four methods (Historical, Normal, T5 and T10) under
study, Historical and Normal VaR and ES are the ones that perform better when applied
to the temperature data-set under scrutiny.
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4. Managing Meteorological Risk through Expected Shortfall

Appendix C

The following tables report some descriptive statistics for option data. Tables 4.9 and
4.10 show some descriptive statistics for seasonal HDD and CDD option contracts.
Months considered for seasonal HDD are January to June, for seasonal CDD such
months are May to September.

Table 4.9: Descriptive Statistics for seasonal HDDs for the period of time 1970–2016
and 10% percentile threshold.

Temp. (◦C) Mean Var Std Min Max Skew. Kurt.

VaR (K = 4.25 ◦C) 40.43 1 503.19 38.77 3.25 236.65 3.05 13.68
ES (K = 2.27 ◦C) 13.06 231.48 15.21 0 65.86 1.99 4.28

Table 4.10: Descriptive Statistics for seasonal CDDs for the period of time 1970–2016
and 90% percentile threshold.

Temp. (◦C) Mean Var Std Min Max Skew. Kurt.

VaR (K = 26 ◦C) 19.38 316.61 17.79 0 83.5 1.44 2.53
ES (K = 20.26 ◦C) 303.41 8 112.5 90.07 102.5 565.1 0.27 0.47

Tables 4.11 and 4.12 show descriptive statistics for June monthly HDD and CDD.

Table 4.11: Descriptive Statistics for monthly HDDs for the period of time 1970–2016
and 10% percentile threshold.

Temp. (◦C) Mean Var Std Min Max Skew. Kurt.

VaR (K = 16.5 ◦C) 40.43 3.44 17.46 4.18 0 1.77 2.78
ES (K = 15.24 ◦C) 1.08 4.33 2.08 0 9.04 2.44 5.62

Table 4.12: Descriptive Statistics for monthly CDDs for the period of time 1970–2016
and 90% percentile threshold.

Temp. (◦C) Mean Var Std Min Max Skew. Kurt.

VaR (K = 24.4 ◦C) 3.94 43.47 6.59 0 27.5 2.07 3.64
ES (K = 19.97 ◦C) 45.54 744.39 27.28 12.26 144.75 1.39 2.56
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Chapter 5

Dynamic probabilistic forecasting

with uncertainty

Joint work with Fred Espen Benth and Silvana Stefani

Abstract

We introduce a dynamical model for the time evolution of probability density
functions incorporating uncertainty in the parameters. The uncertainty follows
stochastic processes, thereby defining a new class of stochastic processes with
values in the space of probability densities. The purpose is to quantify uncertainty
that can be used for probabilistic forecasting. Starting from a set of traded prices of
equity indices we do some empirical studies. We apply our dynamic probabilistic
forecasting to option pricing, where our proposed notion of model uncertainty
reduces to uncertainty on future volatility. A distribution of option prices follows,
reflecting the uncertainty on the distribution of the underlying prices. We associate
measures of model uncertainty of prices in the context of Cont (2006). As a further
application we look at the Sharpe ratio and the VaR measure of market risk as well,
proposing some decision rules for investors, regulators and risk managers.

Keywords: Probability density, model uncertainty, risk measure, volatility, option prices

5.1 Introduction and Motivation

Forecasting the value of a financial asset or position is typically based on a stochastic
model, where forecasts are derived as the mean or the quantiles. In this paper we
propose forecasting based on a stochastic model of the probability distribution. Indeed,
we suggest to incorporate model uncertainty by considering forecasting using dynamical
stochastic evolutions of the probability distribution of the model in question.

In science, forecasting is important, in particular in systems with uncertainty. A
random variable X is supposed to span out the possible outcomes from an uncertain
event, like for example a game of dices or the return from an investment. Although
theoretically, X is a measurable map from the probability space (Ω,F , P ) into R, the
common approach is to describe it via its probability distribution, or rather, its density.
Hence, often in statistics and probability, we do not specify the function

X : Ω → R

in modeling, but rather its probability density p (assuming it exists)

R ∋ x → d

dx
P (X ≤ x) := p(x)
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5. Dynamic probabilistic forecasting with uncertainty

Inference and forecasting is done with the use of p. A classical forecast is the mean,

m :=

∫
xp(x)dx

Quantile forecasts are also important, finding xq such that

∫ xq

−∞
p(x)dx = q

for some q ∈ (0, 1). Sometimes the density is complex, like for example in hierarchical
Bayesian modeling where Bayes’ formula is applied in modeling with conditional
densities (see Jokhadze & Schmidt (2020)). An alternative is simulation, however,
simulation methods like Monte Carlo often rely on knowledge of the density.

In time series models, one starts out with a random variable as noise, and puts this
into motion through some iterative scheme. For example, a simple AR(p)-time series is
defined as first introducing a sequence of IID variables (ǫn), and then defining

X(n+ p) + α1X(n+ p− 1) + ...+ αpX(n) = ǫn (5.1)

However, in the modeling the fundamental assumption is usually a specification of
the distribution of ǫn, and not a specific representation as a real-valued function on
Ω. A typical choice is to let ǫn be normally distributed. As such, we start out with a
given distribution (e.g. the normal), and through some inductive iteration (as in (5.1))
we move the given distribution forward as a function of n. This gives, as a matter of
fact, a deterministic evolution of the prescribed distribution of ǫn. In principle, we can
completely determine the distribution of the system at any time step n, once specifying
the distribution of ǫn. Indeed, for an AR(p) model with normally distributed ǫn, X will
be again normally distributed, completely characterised by ǫ and the α’s.

Stochastic differential equations (SDE) are, in some sense, time series models in
continuous time. These provide a mathematically very detailed description of the
dynamics of some phenomena. For example, SDEs have been used as models for prices
of financial assets like stocks. But also SDEs, like time series models, starts out with a
fundamental process, typically being the Brownian motion B, that is the driver in the
dynamics. B has increments being independent and normally distributed, and is the time
continuous analogue of the random walk ǫn. An SDE describes the future states of the
system, which means for a stock price, the future possible stock prices. If the stock price
at time t is Xt, given by an SDE, then again we can in principle completely determine
the distribution of Xt at any future time t > 0, indeed Xt := Xt(B), a functional of
B and thus of the normal distribution. Hence, we can say that the distribution of Xt is
deterministically determined from B.

In real-world situations, we do not know, of course, the exact distribution of ǫ, nor
the driver in the SDE B. Our specific choice is only our (best) model of the situation,
and sometimes not even that, but a pragmatic choice to allow for certain tractability
of the model. But far more important, we do not know the exact dynamics forward in
time, that is, we do not know how the system is evolving dynamically. This is indeed
also prone to uncertainty, and is specified pragmatically and by insight into the system
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Introduction and Motivation

based on the information we have available. Going back to the stock price dynamics,
we do not have available any physical law, nor economical law that can prescribe to us
exactly how the prices dynamically move in time. We base the dynamics on empirical
probabilistic properties of prices, that we have observed historically. As a modeler, we
look at distributional properties, dependency properties over time, and select a model
that can explain these stylized features. However, in principle, there may be many
stochastic models able to explain our stylized facts. And even more, there may be other
effects that we have not observed, and that we therefore do not take into account. The
financial crisis around 2007 demonstrated this, where the existing models typically were
far from being able to forecast the extreme moves that occurred in the markets.

SDEs can be very complex, and therefore it may be very hard to reveal the actual
distribution and thereby make forecasts. For example, quantile forecasts may require
simulation from the SDE, which is very time consuming if we look for tails of the
distribution. We need many samples to accurately describe the tails of the distribution,
along with iterations in time to reach the future forecasting point. Hence, although the
SDE may feel attractive as a modeling device, it can lead to untractability when it comes
to practical forecasting.

To keep the context of the financial example, we are interested in forecasting
future prices. Our concern could be investment decisions, or risk evaluations of
current positions, or, fashionably in mathematical finance, assessing financial derivatives
contracts. All these questions rely on knowledge of the future probability distribution
of prices. If we decide for an SDE as the model for future prices, we do, as explained
above, move deterministically forward a given model, that is, a given distribution. There
is no room for uncertainty about the distribution that we move forward, neither any
uncertainty on the moving forward dynamics. As we are interested in the probability
distribution, we propose in this paper an alternative approach: A dynamical model of

the probability distribution where we include uncertainty, which follows stochastic
processes.

Our modeling paradigm is in line with classical probability theory in that we describe
mathematically a random event through its probability distribution. We consider
probability densities that evolve in time, t 7→ pt. The added ingredient is that we
want to allow for uncertainty in the distribution, and therefore consider pt as a random

variable in some appropriate state space of probability density functions, that is t 7→ pt

is a stochastic process with values in a state space of density functions.
Our modeling proposal cover classical SDEs. The solution, Xt, has a probability

law pX
t that evolves deterministically via the Chapman-Kolmogorov (forward) equation.

Indeed, we cover all Markovian processes, as these have associated Chapman-
Kolmogorov equations for the distribution density. It also covers model uncertainty by
Cont (2006), where the model uncertainty is prescribed through uncertainty about the
probability measure. We apply our dynamic probabilistic forecasting to option pricing,
where the notion of model uncertainty it is reduced to uncertainty on future volatility
and a distribution of option prices follows. This distribution reflects the uncertainty on
the distribution of the underlying prices.

The idea put forward in this paper faces several challenges. First of all, we need
to specify stochastic dynamical models for the density. Secondly, these models must
be benchmarked against reality, that is, we need to be able to make inference on the
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5. Dynamic probabilistic forecasting with uncertainty

model using data. On the other hand, we could possibly come up with very simple
models capturing uncertainty in an easy way, and allowing for simpler procedures
for forecasting. In addition, it also leads to interesting new models in more abstract
situations, like the definition of a compound Poisson process for probability densities.

The paper is structured as follows. We start in Section 5.2 by discussing general
density processes with values in L1(Rd) and proposing various dynamical models
introducing uncertainty in the probability density of a random event. A detailed
empirical analysis of financial data from Europe and the US are performed in Section 5.3,
including estimation of Ornstein-Uhlenbeck dynamical models assessing the uncertainty
in volatility. In this section we focus on an application of our ideas to call option pricing.
Model uncertainty measures are estimated by existing and proposed frameworks and
some VaR analysis and backtesting is performed in Section 5.4. In Section 5.5 we
point out some decision rules for measurement and management of risk. Section 5.6
concludes discussing our main findings.

5.2 Stochastic Probability Density Dynamics in L
1(R

d)

Assume we are given a filtered probability space (Ω,F , (Ft)t≥0, P ). Furthermore,
denote by L1(Rd) the space of (equivalence classes) real-valued measurable functions
on Rd, d ∈ N, which are integrable. It is well-known that L1(Rd) is a separable Banach
space with respect to the norm |f |1 :=

∫
Rd |f(x)|dx. Moreover, it is closed under

convolution and forms a commutative Banach algebra under the convolution product.
We know that any probability density function p is a non-negative integrable

function on Rd with
∫
Rd p(x)dx = 1. Moreover, as convolution is positivity preserving,

and the L1(Rd)-norm of the convolution product of two positive functions is the product
of their respective norms, the convolution of two densities is again a density. We can
of course see this directly from the fact that the density of the sum of two independent
random variables is the convolution of the marginal densities. A family (gt)t≥0 is called
a L1(Rd)-valued stochastic process if it is adapted to the filtration (Ft)t≥0 , that is, if
gt is an Ft-measurable map from Ω into L1(Rd) with the latter space equipped with the
Borel σ-algebra.

Definition 1. An L1(Rd)-valued stochastic process (pt)t≥0 is said to be a density

process if for any t ≥ 0, pt(x) ≥ 0 for all x ∈ Rd and
∫
Rd pt(x)dx = 1.

Consider now a parametric density function f(·, θ), where θ ∈ C ⊂ Rn, n ∈ N
with C being an open set.

Lema 2. Assume that Θ is a C-valued random variable. If for a.e. x ∈ Rd,

θ 7→ f(x, θ) is continuous and for any neighborhood U ⊂ C around θ there exists

a function hU ∈ L1(Rd) such that |f(x, θ̃)| ≤ hU (x) for θ̃ ∈ U , then f(·,Θ) is an

L1(Rd)-valued random variable.

Proof. For each fixed ω, we have that f(·,Θ(ω)) ∈ L1(Rd). Moreover, as Θ is a
random variable, it is a measurable map from Ω into the open set C. We must show that
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Stochastic Probability Density Dynamics in L1(Rd)

f is a measurable map from Ω into L1(Rd). Let θn be a sequence in C that converges
to θ. Thus, for a given neighborhood U around θ, we find for sufficiently big n that
θn ∈ U . But then we find from dominated convergence theorem that

lim
n→∞

|f(·, θn) − f(·, θ)|1 =

∫

Rd

lim
n→∞

|f(x, θn) − f(x, θ)|dx = 0

and continuity in L1(Rd) follows. The combination of a measurable map with a
continuous function implies measurability.

We introduce next a sequence of L1(Rd)-valued random variables (Fi)i∈N, given as
follows: Let (Θi)i∈N be an iid sequence of random variables. Define

Fi(x) := f(x,Θi) (5.2)

We have the following:

Lema 3. Suppose that Θ has a density pΘ. If (Θi)i∈N is an iid sequence of random

variables distributed according to Θ, then (Fi)i∈N in (5.2) is iid L1(Rd)-valued

random variables with the same distribution as f(·,Θ).

Proof. Since Θi is distributed as Θ, Fi is distributed as f(·,Θ) in L1(Rd) for all
i ∈ N. By independence, we have that the density of (Θ1,Θ2) is pΘ1(·)pΘ2(·). For any
A,B ∈ B(L1(Rd)), Borel sets of L1(Rd), we have from conditioning

P (F1 ∈ A,F2 ∈ B)

=

∫

C2

P
(
F1 ∈ A,F2 ∈ B|Θ1 = θ1,Θ2 = θ2

)
pΘ1

(θ1)pΘ2
(θ2)dθ1dθ2

But for given θ1, θ2, we find that

P (f1(·, θ1) ∈ A, f2(·, θ2) ∈ B) = P (f1(·, θ1) ∈ A)P (f2(·, θ2) ∈ B)

as these probabilities are zero-one probabilities (either fi is in the set, or not). Thus, we
find that

P (F1 ∈ A,F2 ∈ B) = P (F1 ∈ A)P (F2 ∈ B)

and the Lemma follows.

Let N(t) be a Poisson process with values on N ∪ {0}, having an intensity λ > 0.
Define the process

C(t) := g ∗ ⊗N(t)
i=1 Fi (5.3)

where g is a probability density function and ⊗N(t)
i=1 signifies N(t) times iterated

use of the convolution product ∗ in L1(Rd). We say that C(t) is a convolved Poisson

process, in some sense the natural analogue of a compound Poisson process for densities.

Lema 4. C(t) is a density process in L1(Rd).
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5. Dynamic probabilistic forecasting with uncertainty

Proof. First, for each ω ∈ Ω, we have that F1 ∗ F2 ∗ · · · ∗ Fn ∈ L1(Rd), being
positive by the property of the convolution product, and with integral equal to 1.
Hence, it will be a density function. The convolution product is also a continuous
function on L1(Rd), so Cn := g ∗ ⊗n

i=1Fi will be a random walk time series with
values in L1(Rd) for n ≥ 1. Define C(t) := CN(t), which is then a subordination
ofCn. AsN is Ft-adapted, we find thatC(t) is also Ft-adapted. Thus the result follows.

The iid sequence Fi and the convolved Poisson process defined above constitute
examples of dynamical models for the stochastic evolution of a probability density.
More important for our empirical studies is a class of Gaussian models, that we consider
next.

5.2.1 A particular Gaussian Model

Let M and Σ2 be two random variables with values on R and R+, respectively. We use
the notation R+ for the positive real line not including origin. Define f as

f(x,m, σ2) =
1√

2πσ2
exp

(
− (x−m)2

2σ2

)
(5.4)

and consider the L1(R)-valued random variable f(·,M,Σ2). Thus, we use the Gaussian
density function for a variable with meanm and variance σ2, combined with a parameter-
valued bivariate random variable (M,Σ2). We note that we can bound this function
around a neighborhood of any (m,σ2) by again a Gaussian function, and moreover,
the map (m,σ2) → f(x,m, σ2) is continuous. Thus, f(·,M,Σ2) is an L1(R)-valued
random variable by Lemma 2.

Consider now an example of pricing of call options. In the Black & Scholes
paradigm, the price of a call option is given by the Black & Scholes formula (Black &
Scholes (1973))

BS(S,K, r, T, σ) = SΦ(d1) −Ke−rT Φ(d2) (5.5)

where K is the strike price, T the exercise time, S the current stock price, r the risk-free
interest rate and

d1,2 =
ln(S/K) + (r ± 1

2σ
2)T

σ
√
T

This formula is based on a stock price with distribution at time T being log-normal,
e.g., lnS(T ) − lnS is normally distributed with mean (r − 1

2σ
2)T and variance σ2T .

However, if we are uncertain about the actual distribution at time T of the log-price,
we can consider the log-price being distributed according to random density f . If we
say that r is known with certainty, we have M = r − 1

2 Σ2, and Σ2 is some random
variable distributed in R+. Then the option price will be BS(S,K, r, T,Σ), with d1,2

being random variables given in terms of Σ2 (substituting σ with Σ). This means that
BS(S,K, r, T,Σ) also becomes a random variable. A challenge is then: what is the
price of the option, given that in finance we should have a price, and not many prices!
One can start discussing prices from the issuer point of view, or from the buyer, taking
into account risk perception. We analyse this empirically in Sections 5.3 and 5.4.
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Next, consider the convolved Poisson density process (C(t))t≥0 defined in (5.3),
with Fi := f(·,Mi,Σ

2
i ) for (Mi,Σ

2
i ) independent identically bivariate distributed

random variables. Let us look at the mean forecast at time t: By definition, the mean
forecast is

M̂(t) =

∫

R

xC(t)(x)dx

=

∫

R

x(g ∗ ⊗N(t)
i=1 Fi(x))dx

=

∫

R

xg(x)dx+

N(t)∑

i=1

∫

R

xFi(x)dx

=

∫

R

xg(x)dx+

N(t)∑

i=1

Mi

In conclusion, the mean forecast is a compound Poisson process on R, with intensity λ
and jump sizes given by M .

Indeed, as the normal density is closed under convolution by summing mean and
variances, we find that

C(t) = f(·,m+

N(t)∑

i=1

Mi, σ
2 +

N(t)∑

i=1

Σ2
i ) (5.6)

where m =
∫
R
xg(x)dx, σ2 =

∫
R
(x − m)2g(x)dx and g(x) is the density function

of N(m,σ2). Thus, we see that C(t) is the density of a normal mean-variance mix-
ture model, where the mean is given as the (real-valued) compound Poisson process
m+

∑N(t)
i=1 Mi and the variance by the compound Poisson process with values on the

positive half-line σ2 +
∑N(t)

i=1 Σ2
i . This representation motivates a new type of density

processes in L1(Rd), given by the following definition:

Definition 5. A conditional density process is given by C(t) := f(·,Θ(t)) where

f(·, θ) ∈ L1(Rd) is a probability density and t 7→ Θ(t) is a stochastic process with

values in the parameter space of f .

If f(·,m, v2) is the normal density function, we see from (5.6) that the convolved

Poisson process C(t) = g ∗ ⊗N(t)
i=1 fi(·,Mi,Σ

2
i ) can be represented as a conditional

density process.

A natural extension of the convolved Poisson dynamics analysed above is to choose
two stochastic processes (X(t))t≥0 and (Y (t))t≥0, with state spaces in R and R+,
respectively.

Define a conditional density process by C(t) = f(·, X(t), Y (t)), with f being the
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5. Dynamic probabilistic forecasting with uncertainty

normal density function. Then we find that the mean forecast is

M̂(t) =

∫

R

xC(t)(x) dx

=

∫

R

xf(x,X(t), Y (t))dx

= X(t). (5.7)

Thus the mean forecast follows the stochastic process X . If this is a stationary process,
the forecasted mean will be stationary and is distributed according to the law of X .
Later, in our empirical studies, we will use an Ornstein-Uhlenbeck process driven by a
Brownian motion for X (see Subsection 5.3.1).

A probabilistic forecast of the variance at time t will be

V̂ (t) =

∫

R

(x−X(t))2C(t)(x) dx

=

∫

R

(x−X(t))2f(x,X(t), Y (t)) dx

= Y (t). (5.8)

Also here we may choose Y as a stationary process, now naturally distributed on R+.
In our empirical studies, we will consider an Ornstein-Uhlenbeck process driven by a
subordinator (see Subsection 5.3.1), but also discuss a Gaussian Ornstein-Uhlenbeck
model as a simple approximation of the uncertain variance.

Let us study a quantile forecast at time t, i.e., defined as Qα(t) for α ∈ (0, 1) such
that ∫ Qα(t)

−∞
f(x,X(t), Y (t))dx = α

By changing variables y = (x−X(t))/
√
Y (t), we find that

∫ Qα(t)

−∞
f(x,X(t), Y (t))dx =

∫ (Qα(t)−X(t))/
√

Y (t)

−∞
f(y, 0, 1)dy

and therefore
Qα(t) = X(t) +

√
Y (t)qα (5.9)

with qα being the α-quantile of a standard normal distribution. This expression provides
us with a dynamic for the VaR, incorporating uncertainty on the mean and variance of
the underlying.

5.3 Empirical Analysis on Stock Indices

When examining financial assets it is most common to study the returns of stock prices
rather than the actual raw asset prices because returns are approximately symmetrically
distributed around 0 (or around somewhere close to 0) and behave roughly similar and
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uncorrelated of each other. For the purposes of this study we will examine the daily
log-returns for FTSEMIB, S&P500 and FTSE100 equity indices,

R(t) := log(
St

St−1
). (5.10)

Table 1 summarizes some statistics for the daily log-return series computed from the
closing prices obtained from Investing.com and covering the period 1 January 2008 to
21 January 2019 (2820, 2781 and 2792 daily observations for FTSEMIB, S&P500 and
FTSE100, respectively).

Table 5.1: Statistics of the daily log-returns of FTSEMIB, S&P500 and FTSE100, 2008
- 2019.

Mean Var Std Dev Skewness Kurtosis J-B
FTSEMIB 0.0002 0.0003 0.0169 0.1934 4.6182 2522.67
S&P500 -0.0002 0.0002 0.0127 0.3472 10.8043 13577.43
FTSE100 -0.00003 0.0002 0.0120 0.1459 8.3649 8147.03

The mean returns are almost identical for all series and close to zero. All series are
slightly positively skewed and there is a presence of outliers in all of them. For daily
returns, the null hypothesis of normality is strongly rejected by the Jarque-Bera (J-B)
statistic (the 5% critical values of J-B is 5.99) for all indices.
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Figure 5.1: Time series of index values of FTSEMIB, S&P500 and FTSE100.

For a brief insight into the underlying returns we will first look at some of the plots
of the index values and the log-returns of the data. Figure 1 shows a time series plot
of all the three indices, where we see some similarity between S&P500 and FTSE100
whereas FTSEMIB has a slightly different evolution. We observe from Figure 5.2 that
the log-returns fluctuate randomly around zero in a relatively symmetric fashion with
occurring clustering of volatility. One may also observe a slight tendency towards a
decreasing volatility with time in the indices S&P500 and FTSE100. We are going to
focus on the log-returns for further examination.

A main application of this study is to analyse the model uncertainty in option pricing,
where the notion of model uncertainty is reduced to uncertainty on future volatility when

117



5. Dynamic probabilistic forecasting with uncertainty

0 500 1000 1500 2000 2500 3000

-0.15

-0.1

-0.05

0

0.05

0.1

a. FTSEMIB
0 500 1000 1500 2000 2500 3000

-0.15

-0.1

-0.05

0

0.05

0.1

b. S&P500
0 500 1000 1500 2000 2500 3000

-0.15

-0.1

-0.05

0

0.05

0.1

c. FTSE100

Figure 5.2: Log-returns of FTSEMIB, S&P500 and FTSE100.

confining ourselves to the Black & Scholes Gaussian paradigm. Thus, starting from a
set of traded prices of equity indices we calculate volatilities, and after that calibrate
our pricing model and associate a measure of model uncertainty of prices. For this we
first need to determine a dynamic for the volatility. Another application is uncertainty in
forecasting VaR, for which we also need a dynamic for the mean. Recalling the analysis
in Section 5.2, we focus on conditional density processes to assess the uncertainty in
the distribution. As we can see from (5.7) and (5.8), the mean and variance require
stochastic models in order to further study the uncertainty in option prices or forecasting
VaR. For these purposes, we propose suitable Ornstein-Uhlenbeck processes in the next
Subsection.

5.3.1 Dynamic Modeling with Ornstein-Uhlenbeck Processes

Representing the mean and variance in the normal distribution of the log-return indices
by Ornstein-Uhlenbeck processes allow us to model the uncertainty by different speeds
of mean reversion and incorporating a mixture of jump and diffusional behaviour. Based
on empirical findings, we suggest a Gaussian Ornstein-Uhlenbeck process for the mean
and a non-Gaussian Ornstein-Uhlenbeck process with a gamma limiting distribution for
the volatility.

The Gaussian Ornstein-Uhlenbeck process (X(t))t≥0 satisfies the following
stochastic differential equation:

dX(t) = α(µ−X(t))dt+ βdB(t) (5.11)

where α and β are positive constant parameters, µ is the long-term mean of the process,
and (B(t))t≥0 is a Brownian motion. As can be seen in the equation above, the process
is expected to exhibit some form of regression to the mean, because deviations from the
mean µ effectively induce restoring forces. It is explicitly given by (see Benth, Šaltytė
Benth & Koekebakker (2004))

X(t) = X(0)e−αt + µ(1 − e−αt) + β

∫ t

0

e−α(t−s)dB(s). (5.12)

The limiting distribution is normal, with mean µ and variance β2/2α.
A discretization of the Ornstein-Uhlenbeck process connects it to an AR(1) process,

i.e., a first-order auto-regressive model. With our notation, the AR(1) process is defined
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recursively as follows for time steps of length ∆ > 0:

x(t) = µ(1 − e−α∆) + e−α∆x(t− ∆) + ǫ(t) (5.13)

where ǫ(t) is iid Gaussian random variables with zero mean and variance β2(1 −
e−2α∆)/2α. Equation (5.13) can be represented in a more general form as:

x(t) = a+ bx(t− ∆) + ǫ(t) (5.14)

Some parameter constraints are necessary for the model to remain wide-sense
stationary. In particular, AR(1) processes with |b| > 1 are not stationary.

For the non-Gaussian Ornstein-Uhlenbeck model we assume the dynamics

dY (t) = −ξY (t)dt+ dL(t) (5.15)

where ξ is a positive constant and (L(t))t≥0 is a subordinator (i.e., a non-decreasing
Lévy process). This model is indeed motivated from the Barndorff-Nielsen and Shephard
volatility model, see Barndorff-Nielsen & Shephard (2001). From Benth, Šaltytė Benth
& Koekebakker (2004) we know the explicit representation as

Y (t) = Y (0)e−ξt +

∫ t

0

e−ξ(t−s)dL(s)

As we will see, it is convenient to model the uncertain volatility by such a process, and
in particular using a compound Poisson process as (L(t))t≥0 with exponential jumps.
This yields a limiting distribution for Y being in the class of Gamma distributions. I.e.,
let

L(t) =

N(t)∑

i=1

Ji

for a Poisson process (N(t))t≥0 with jump intensity λ > 0 and jumps (Ji)
∞
i=1 being iid

exponentially distributed random variables with parameter ζ. The limiting distribution
of Y (t) as t → ∞ will be Gamma distributed, that is, limt→∞ Y (t) ∼ Γ(1/ζ, λ/ξ)
(see Benth, Šaltytė Benth & Koekebakker (2004)).

The AR(1)-models above raise the immediate question of generalizations, and the
link to more sophisticated models like GARCH, say, comes to mind (see e.g., Primiceri
(2005) and Bolleslev (1986)). However, we emphasise here that we do not aim at
modeling the volatility processes, but the randomness in the probability distribution
dynamics. On the other hand, in future studies one may try out more sophisticated
models for the mean and variance uncertainty in the probability distribution, following
for example recent studies as in (Gneiting & Ranjan (2013); Amisiano & Giacomini
(2007); Billio, Casarin, Ravazzolo, & van Dijk (2013), and Geweke & Amisano (2010)).
Here one can find that a probabilistic forecast can be represented in the form of a
predictive cumulative distribution function which can be discrete, discrete-continuous
or continuous. However, still the focus in these papers is not on random probability
distributions.
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5. Dynamic probabilistic forecasting with uncertainty

5.3.2 Mean and Variance of Log-Returns

As part of our empirical examination, we study the uncertainty in the historical mean
and variance of log-returns. So, after we have chosen to work on three time series of
stock prices the next step is considering the running mean of log-returns for those time
series, defined over a window of length N . Recalling the definition of log-returns in
(5.10), the running mean is

m̂N (ti) :=
1

N

N−1∑

k=0

R(ti−k)

We also look at a variance estimator over a window in a similar way:

σ̂2
N (ti) :=

1

N − 1

N∑

k=1

(R(ti−k) − m̂N (ti))
2

where N is the number of observations or the so called rolling window size. We will
start by studying the mean and variance time series as AR(1)-processes, to fit OU-
processes X(t) and Y (t) (see Avellaneda & Lee (2010)). In fact, we shall in a first
attempt model the variance Y also as a Gaussian Ornstein-Uhlenbeck process, as this
is providing a simple link to empirical analysis of AR(1) processes. Admittedly, a
Gaussian Ornstein-Uhlenbeck process may give negative values, which is unreasonable
for the variance. However, such a model is very simple from the empirical point of view,
and provide some insight we believe. We will eventually define a non-Gaussian model
for the variance, circumventing the problem of negative values. However, this model
requires a slightly different estimation procedure.

Before going for AR(1) processes for mean and variance the very first problem we
have to resolve is to find the most appropriate length of the rolling window we are going
to use for calculating the running mean of log-returns and the variance estimator over
that window. Hull (Hull et al (2009)) suggests that a good rule is to set the number
of observations, N to the same amount of days that the volatility is to be applied to.
This means that, if we want to estimate the price of an option with 30 days left to the
expiration then we have to measure the historical volatility based on 30 days too. In our
examination we try for different values of N that means for different historical days of
index returns and we have found that N should be set for a time horizon from one to
two weeks considering just trading dates. Figure 3 illustrates how the Durbin Watson
statistic changes for different N and where to search for the most appropriate number.
This statistic is a number that tests for auto-correlation in the residuals from a statistical
regression analysis and it is always between 0 and 4 (see Durbin & Watson (1950)
and Durbin & Watson (1951)). A value of 2 means that there is no auto-correlation
in the sample. Values from 0 to 2 indicate positive auto-correlation and values from
2 to 4 indicate negative auto-correlation. In our case the critical values around 2 in
order to conclude residuals have positive or negative correlation are 2 ± 0.15. By close
inspection of the numbers behind Figure 5.3, we conclude that for FTSEMIB we will
have no auto-correlation for N = 11 trading days, for S&P500 for N = 7 trading days
while for FTSE100 for N = 9 trading days1. It is clear to see by a close inspection of

1This is admittedly not easy to conclude from the Figure, but read off from the estimated numbers
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Figure 5.3: Durbin Watson statistic of mean log-returns, close-to-close variance and
variance of FTSEMIB, S&P500 and FTSE100.

Figure 5.4 that the corresponding R2 of all those results is statistically significant, being
more than 50%.
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Figure 5.4: R2 of mean log-returns, close-to-close variance and variance of FTSEMIB,
S&P500 and FTSE100.

In general close-to-close variance is an approximation of variance (still a second
moment but in the case when the mean is very close to zero and one does not consider it
in calculating variance) but as it is said in Bennett & Gil (2012) close-to-close variance
is suggested to be used for relatively short time periods (daily, weekly), cases in which
the drift should be close to zero and can be ignored. In our case we are going to work
with variance in order to have more accuracy in calculations.

The same results we get also from the auto-correlation function. Figure 5.5 and
5.6 show some results on the auto-correlation function corresponding to the mean and
variance of log-returns. The behaviour of mean and variance is typically as that of
an auto-regressive process. Each value that rises above or falls below the red lines is
considered to be statistically significant. Therefore, if a value is significantly different
from zero, that is evidence of auto-correlation. A value that is close to zero is evidence
against auto-correlation.

The values of the auto-correlation function for the variance are quite small compared
to the mean, and almost all the values are inside the confidence interval. However, we
still observe in Figure 5.6 a positive but decaying auto-correlation structure, which is
evidence of an autoregression dynamics.
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Figure 5.5: Auto-correlation function of mean log-returns for all indices.
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Figure 5.6: Auto-correlation function of variance of log-returns for all indices.

After arguing for evidence of auto-correlation for the moving window mean and
variance we have to go further on modeling the uncertainty in order to forecast the
future. We propose as already indicated to model the mean and variance uncertainty
by Gaussian Ornstein-Uhlenbeck processes described in Section 5.3 in a first attempt.
Later, we will expand on the variance model to a more realistic non-Gaussian dynamics.

To reinforce the fact why we go for an AR(1) and not with a higher-order auto-
regressive model AR(p) for p > 1, we present some more results from an econometric
analysis we have done using variable selection techniques. Below we display the
corresponding results based on the "All possible Regressions" technique. This algorithm
fits all regressions involving one regressor, two regressors, three regressors, and so on
(we have chosen to illustrate cases of autoregressive processes until the 10th order).
The selection criterion is recorded for each regression. Once the procedure finishes,
we analyze our results based on some criteria and then determine which order of
autoregressive process is optimum for our cases under study. As a criterion we have
chosen to use R2, R2

adj , AIC or BIC, and look for the model where this value stabilizes
forR2, R2

adj and the smallest value for AIC or BIC. Below we have presented the results
of the all possible regressions procedure for all indices under study.

One can see from the table 5.2, 5.3, and 5.4 that from order 1 to order 10 it is an
increase of 3.6% of R2 and 3.5% of R2

adj for mean and 0.28% of R2 and 0.25% of
R2

adj for variance in case of FTSEMIB index, 7.9% of R2 and 7.8% of R2
adj for mean

and 1.12% of R2 and 1.09% of R2
adj for variance in case of S&P500 index and 8.95%

of R2 and 8.9% of R2
adj for mean and 1.45% of R2 and 1.43% of R2

adj for variance
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Table 5.2: ’All possible Regressions’ procedure for mean and variance of log-returns of
FTSEMIB, 2008-2019.

FTSEMIB Mean Variance
p R2 R2

adj AIC BIC R2 R2
adj AIC BIC

1 0.7759 0.7759 -15007.4 -14992.9 0.9257 0.9257 -22623.2 -22621.8
2 0.7798 0.7797 -14978.5 -14965.5 0.9258 0.9257 -22604.7 -22601.8
3 0.7850 0.7848 -14908.2 -14896.6 0.9259 0.9258 -22586.8 -22582.5
4 0.7853 0.7849 -14900.4 -14890.3 0.9264 0.9263 -22576.1 -22570.3
5 0.7873 0.7869 -14912.2 -14903.5 0.9273 0.9272 -22572.2 -22565
6 0.7885 0.7881 -14918.7 -14911.5 0.9278 0.9276 -22561.4 -22552.7
7 0.7890 0.7885 -14920.6 -14914.8 0.9278 0.9277 -22543 -22532.9
8 0.7927 0.7921 -14933.2 -14928.8 0.9280 0.9278 -22526.7 -22515.1
9 0.8050 0.8044 -14917.1 -14914.2 0.9281 0.9279 -22510 -22496.9
10 0.8116 0.8109 -14904 -14902.5 0.9285 0.9282 -22496 -22481.6

Table 5.3: ’All possible Regressions’ procedure for mean and variance of log-returns of
S&P500, 2008-2019.

S&P500 Mean Variance
p R2 R2

adj AIC BIC R2 R2
adj AIC BIC

1 0.6162 0.6161 -14656.69 -14642.28 0.9069 0.9068 -22127.66 -22126.21
2 0.6291 0.6287 -14655.80 -14642.83 0.9071 0.9070 -22111.62 -22108.74
3 0.6361 0.6357 -14660.91 -14649.38 0.9081 0.9080 -22104.78 -22100.45
4 0.6548 0.6543 -14490.46 -14480.36 0.9086 0.9085 -22087.94 -22083.61
5 0.6568 0.6562 -14461.96 -14453.31 0.9090 0.9088 -22076.14 -22070.37
6 0.6616 0.6609 -14457.02 -14449.8 0.9091 0.9089 -22064.06 -22056.85
7 0.6735 0.6726 -14462.65 -14456.88 0.9095 0.9092 -22045.55 -22036.9
8 0.6897 0.6889 -14408.98 -14404.65 0.9169 0.9167 -22032.15 -22022.06
9 0.6917 0.6908 -14391.42 -14388.53 0.9172 0.9170 -22117.59 -22104.63

10 0.6948 0.6938 -14363.84 -14362.4 0.9181 0.9177 -22109.4 -22095

in case of FTSE100 index. These changes show only a minor increase compared to
the number of variables we have to consider in the model. Related to AIC and BIC
statistics the best model from the set of plausible models being considered is the one
with the smallest AIC/ BIC value. The fact that we have negative values of AIC and BIC
indicates less information loss than a positive AIC/ BIC and therefore a better model
(Baguley, (2012)). As a result from tables 2, 3 and 4 it is clear that the smallest values
of AIC/ BIC corresponds to the first model (AR(1)). Aslo if we focus in the values of
AIC and BIC the model selection will be done related to the lowest values of AIC and
BIC. Therefore, we select the AR(1) model as our final model in all three cases.
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Table 5.4: ’All possible Regressions’ procedure for mean and variance of log-returns of
FTSE100, 2008-2019.

FTSE100 Mean Variance
p R2 R2

adj AIC BIC R2 R2
adj AIC BIC

1 0.706 0.706 -15426.2 -15411.8 0.9428 0.9428 -23401.3 -23399.8
2 0.725 0.725 -15245.8 -15232.8 0.9432 0.9431 -23388.8 -23385.9
3 0.732 0.732 -15220.8 -15209.3 0.9438 0.9437 -23381.4 -23377.1
4 0.733 0.733 -15209.8 -15199.7 0.9441 0.9440 -23367.8 -23362
5 0.745 0.745 -15218.6 -15209.9 0.9443 0.9442 -23352.8 -23345.6
6 0.747 0.746 -15224.9 -15217.7 0.9472 0.9471 -23398.9 -23390.2
7 0.748 0.747 -15177.1 -15171.3 0.9475 0.9473 -23385.3 -23375.2
8 0.753 0.752 -15183.5 -15179.2 0.9486 0.9484 -23394 -23382.5
9 0.760 0.759 -15166.4 -15163.5 0.9487 0.9486 -23381.2 -23368.2

10 0.795 0.795 -15085.7 -15084.2 0.9573 0.9571 -23383.1 -23368.6

In conclusion, we identify the uncertainty dynamics of the mean and variance as
AR(1) processes (for more details see Table 5).

Table 5.5: Fitted AR(1) processes of mean and variance for FTSEMIB, S&P500 and
FTSE100, 2008-2019.

Fitted Mean/ Var Sig(Fisher) R2 DW
FTSEMIB x(t) = 0.8812x(t− 1) + ǫ1(t) 0.000 77.59% 1.99

y(t) = 0.9622y(t− 1) + γ1(t) 0.000 92.57% 1.95
S&P500 x(t) = 0.7809x(t− 1) + ǫ2(t) 0.000 61.62% 2.04

y(t) = 0.9522y(t− 1) + γ2(t) 0.000 90.69% 2.05
FTSE100 x(t) = 0.8392x(t− 1) + ǫ3(t) 0.000 70.58% 2.02

y(t) = 0.9777y(t− 1) + γ3(t) 0.000 94.28% 1.95

As is seen from Table 5 the goodness of fit for all models is quite good since the
significance level from the Fisher test is less than 0.05. Also these results are further
emphasized by R2 values that are all bigger than 50%. For each model, it is associated
the Durbin Watson statistic which is close to 2 for all cases. Now let us see how the
AR(1) fit the mean and variance graphically and study the behaviour of residuals. Figure
5.7 and 5.8 illustrate how the AR(1) processes that we identify with "AR(1)-fit" line fit
the mean and variance of log-returns. As a result they match very well the original time
series.

We build Q-Q plot to test for normality of residuals (see Figure 5.9 and 5.10).
The deviations from the straight line are minimal except the tails. The points in the
Q-Q plot form a relatively straight line since the quantiles of the time series nearly
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Figure 5.7: Fitted mean of log-returns for all indices.
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Figure 5.8: Fitted variance of log-returns for all indices.

match what the quantiles of the time series would theoretically be if the time series
was perfectly normally distributed. Compared to the normal distribution there is more
data concentrated in the center of the distribution and less data in the tails. These “fat
tails” correspond to the first quantiles occurring at less than expected values and the
last quantiles occurring at larger than expected values. This can be clearly seen by the
values of skewness and kurtosis for each index. We notice symmetry in distribution
for European stock indices and some deviations of symmetry for the American one
associated with presence of outliers. "Fat tails" affects the variance of the distribution.
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Figure 5.9: Residuals: mean of log-returns for all indices.

As it is seen from the normal Q-Q plots the centre of the data displayed normality
while it was in the tails that we viewed deviation from the normal.

For a further estimation of residuals processes for mean and variance one can find
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Figure 5.10: Residuals: variance of log-returns for all indices.

Table 5.6: Residual’s normality for mean and variance log-returns of FTSEMIB, S&P500
and FTSE100, 2008-2019.

Mean Skewness Kurtosis
FTSEMIB 0.0174 6.8653
S&P500 0.5664 13.9104
FTSE100 0.5436 21.8828

Variance Skewness Kurtosis
FTSEMIB 0.0612 103.6371
S&P500 -3.0542 183.1418
FTSE100 -0.2795 100.01

further analysis in the Appendix A.

5.3.3 Volatility

Uncertainty on volatility leads to model uncertainty and model risk. Since the volatility
of an asset changes over time the measurement of the historical volatility is merely an
estimate of the future volatility of the asset.

Volatility = σ̂N (ti) :=

√√√√ 1

N − 1

N∑

k=1

(R(ti−k) − m̂N (ti))2

Note that the number we got from this formula (σ̂N (ti)) is 1-day historical volatility.
In our calculations we are interested in the annualized volatility which we get by
multiplying the 1-day volatility by the square root of the number of (trading) days in a
year (the average of trading days in a year is 252) (see Figure 11). If the mean is the
average return of a stock index, variance and volatility can give us a sense of how much
that stock index over/ under performs. If values of volatility are large a stock index
value can potentially be spread out over a larger range of values. Therefore the price
of the stock index can change dramatically over a short time period in either direction,
which means it is riskier. Otherwise if values of volatility are small then a stock index
value does not fluctuate dramatically, and tends to be more steady.
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Figure 5.11: Annualized volatility of log-returns for all indices.

5.3.3.1 Simulation of Volatility by Gaussian Stationary

Ornstein-Uhlenbeck Processes

We simulate volatilities V (t) by using the approximated form of OU-process (equation
5.11) of an AR(1) form (equation 5.14). For this, at first we need to find the parameters
a and b by regression and simulating the residuals as Gaussian iid variables. In Figure
5.12 it is shown the case of simulating 1000 trajectories of volatility by using a Gaussian
OU-process where normal distributed residuals allow for negative values of errors which
can result in negative volatilities as well. Indeed the probability and magnitude of these
negative values are rather large.

a. FTSEMIB b. S&P500 c. FTSE100

Figure 5.12: Simulations of volatilities by using OU-process driven by a BM.

To avoid the problem of negative values in volatilities we propose to go for another
model where volatilities are simulated by using another class of autoregressive models
ensuring positive values by means of a non-Gaussian error term.

5.3.3.2 Simulation of Volatility by non-Gaussian Stationary

Ornstein-Uhlenbeck Processes

We simulate volatilities V (t) by using equation 5.15. For this, at first we need to find a
proper value of ξ, and we look for it referring to the k-lagged autocorrelation function
as follows:

Corr(V (t), V (t+ k)) = exp (−ξk), k = 1, 2, 3...
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If we take the logarithm of both sides we will have:

ln(Corr(V (t), V (t+ k))) = −ξk, k = 1, 2, 3...

In this way we will obtain a series of ξ-s from which we have to choose the proper
one for our model. To decide which ξ is the best we are going to refer to the optimal
value by minimizing the negative log-likelihood (NLL) function. We will choose as the
best one the ξ which corresponds to the smallest value of NLL (see Figure 5.13).
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Figure 5.13: Autocorrelation function of OU process to fix the speed of mean-reversion
ξ of V (t).

The line in red in Figure 5.13 indicates the best ξ chosen from this calibration
process.

Next we analyse the residuals. Let us consider every ℓ-th data from the original
volatility time series. What we are interested in, is to obtain a new sequence of data
which will be closely to zero-correlated (and treated as independent in order to enforce
fitting the new sequence of data to a gamma distribution). As a consequence, by trying
for different values of ℓ we found that the most proper value of ℓ for each index will be
25, 16, and 30, respectively. Let us plot a histogram for the new time series obtained
and look for a fit of the gamma distribution (see Figure 5.14).
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Figure 5.14: Fitted gamma distribution for new sample (based on every 25th, 16th,
30th data of the original data for each index, respectively).

Since in our cases we found a gamma distribution that fits well the new time series
this means thatL(t) is a compound Poisson process with jumps exponentially distributed
(see Schoutens (2003)). The estimated parameters for gamma distribution are shown in
Table 5.7, where α = 1/ζ and β = λ/ξ according to section 5.3.1.
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Table 5.7: Estimated parameters of gamma distribution for FTSEMIB, S&P500 and
FTSE100, 2008-2019.

α β
FTSEMIB 5.4682 0.0408
S&P500 2.2008 0.0666
FTSE100 4.0794 0.0374

Therefore, to simulate new volatilities referring to model 5.15 we need to discretize
the time interval [0, T ] by homogeneous time intervals of length △ > 0. Then an Euler
approximation gives,

V (t) = exp (−ξ∆)V (t− ∆) +

∫ t

t−∆

exp (−ξ(t− s))dL(s)

≈ exp (−ξ∆)V (t− ∆) + exp (−ξ∆)∆L(t)

where ∆L(t) = L(t) − L(t− ∆)

In Figure 5.15 is displayed the simulated volatility by using the methodology
described above:

a. FTSEMIB b. S&P500 c. FTSE100

Figure 5.15: Simulated volatility paths based on CPP OU-process.

As one sees in this case we will have just positive values of volatility. The red line
indicates the real values of volatility while the other trajectories are the simulated ones.
Note that the variability here is seemingly very big but is based on historical variations.

5.3.4 Option Pricing by the Black-Scholes Formula with

Uncertain Volatility

Let us consider the case of pricing an at-the-money (ATM) call option when the volatility
is uncertain, as we discussed in Section 5.2.1 (see equation 5.5). We fix the time to
maturity to be one month for illustration (the date under study will be 19th February,
2019), and consider the Gaussian and non-Gaussian Ornstein-Uhlenbeck models for
the volatility empirically analyzed in the previous Subsections. The risk-free interest
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rates used in calculations are collected from [25], [26] and [27] as the reported value of
December 2018, for each index, respectively.
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Figure 5.16: Distribution of prices by simulated volatilities using OU-processes,
Gaussian (blue) and non-Gaussian (red). (Note that M indicates median while A
indicates the average.)

Referring to the two methods we used to simulate volatilities, in Figure 5.16 one
sees the distribution of prices calculated on simulated volatilities using an OU process
considering BM which allows for negative values and considering the Levy process
which we assumed to be a compound Poisson process with exponentially distributed
jumps. Referring to the results we obtained for FTSEMIB and FTSE100 the non-
Gaussian model gives more spread out prices than the Gaussian ones, while in case
of S&P500 the Gaussian and non-Gaussian models perform almost in the same way.
In case of FTSEMIB the non-Gaussian gives much more spread out prices. We have
included the B&S price based on the historical volatility from the complete set of
log-return data as a vertical line in each plot as a reference point. Interestingly, the
uncertainty in the volatility yields for all three indices a large variation in option prices
around this reference point, with median and average relatively far away. Remark that
the negative prices shown in Figure 5.16 in reality are an effect of the kernel smoother
used in depicting the distributions.

An illustration on how the price changes in each date until time to maturity, for
each index and model applied is done below. Figures 5.17 and 5.18 show how the
prices are changing in different trajectories and how the "real prices" (B&S prices
based on historical volatility, red line) differ from the average price obtained from these
trajectories (blue line). Please recall that the prices are one month ahead contracts.

5.4 Model Uncertainty

Cont (2006) and Avellaneda et al (1995) propose to handle model risk by a worst
case approach: Let C be a set of contingent claims. Given that a payoff X ∈ C has
a well-defined value in all pricing models Q ∈ Q, where Q is the set of equivalent
martingale measures, one can define an upper and lower bound for the price of X
by π(X) = supi=1..n E

Qi [X] and π(X) = infi=1..n E
Qi [X], respectively. This

definition clearly quantifies the extremes of model uncertainty, which is the main
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a. FTSEMIB b. S&P500 c. FTSE100

Figure 5.17: Distribution of prices referring to the simulated volatility by using OU
process considering BM (negative values of volatilities are generated in this case).

a. FTSEMIB b. S&P500 c. FTSE100

Figure 5.18: Distribution of prices referring to the simulated volatility by using an OU
process with CPP.

purpose of Cont (2006). The model uncertainty measure is represented by

µ(X) = π(X) − π(X).

In our study in Subsection 5.3.4 above, we have simulated 1000 different volatility
samples which resulted in 1000 different call option prices in order to analyze the
implied distribution from model uncertainty (recall Figure 5.16).

Table 5.8: Model uncertainty (µ(X)) for the call option.

Gaussian OU non-Gaussian OU
FTSEMIB 0.105 0.158
S&P500 0.231 0.274
FTSE100 0.327 0.509

According to Avellaneda et al (1995) the upper bound π(X) is the lowest price
that can be charged for the derivative such that, by following an appropriate hedging
strategy, the seller can be sure to avoid making a loss on hedging (e.g. the so-called
super-hedging strategy (see Bayraktar & Zhou (2017))). The lower bound, on the other
hand, is the highest price that can be paid for the derivative such that, by following an
appropriate hedging strategy, the buyer can be sure to avoid making a loss on hedging.
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Table 5.8 presents how the model uncertainty differs from one model to another for
each index. In the table, OU-BM and OU-CPP refer to the Gaussian and non-Gaussian
Ornsten-Uhlenbeck models for the volatility, respectively. We observe the smallest
model uncertainty values corresponding to the Gaussian Ornstein-Uhlenbeck model,
which is in accordance with Figure 5.16.

Rather than using the worst case upper and lower prices to asses model uncertainty,
one may ask if it makes sense to calculate the upper and lower bounds of prices
using a Value-at-Risk (VaR) measure instead? Since we know that, for example,
with 1,000 trials the 1%VaR (1 percentile) is the 10th worst case then we will use
this methodology to try to define the upper and lower bounds in order to calculate
model uncertainty. This means that we calculate the α%-VaR for each trajectory
in the date we are interested in and from this vector of VaR values we choose the
lower and upper bounds as the corresponding values of simulated volatilities in
the trajectories where we find the minimal and maximal values of VaR. Hence, we
will calculate πα(X) = BS(S,K, r, T, s) and πα(X) = BS(S,K, r, T, s), where
s = Σmax{α%−V aRi,i=1..n} and s = Σmin{α%−V aRi,i=1..n}, BS(·) is the Black &
Scholes formula in (5.5), and n is number of simulations. Consequently, in this case the
model uncertainty will be represented by

µα(X) = πα(X) − πα(X).

To apply this approach we first need to understand which of the VaR-methods is
the most proper one for our data. In the sections below we will see results from three

methods of calculating VaR and a Backtesting VaR which will instruct us which method
we have to use to continue with the corresponding calculations of our proposal. Notice
that in case of estimating the model uncertainty of a portfolio of indices it is suggested
to substitute VaR by Expected Shortfall since VaR is not sub-additive or convex, and it
can lead to anomalous values for a portfolio of options (for more see Artzner, Delbaen,
Eber & Heath (1999) and Hull et al (2006)).

5.4.1 VaR Estimation of Log-Returns

In this section, we present the analysis and results for all three indices based on three
most common VaR calculation methods focusing on strengths and weaknesses of each
method (for more see Nieppola et al (2009) and Danielsson et al (2011)).

Using the normal distribution method, the profit and loss of a stock return is assumed
to be normally distributed. Under this assumption, VaR is computed by multiplying the
z-score, at each confidence level by the standard deviation of the returns. Because VaR
backtesting looks retrospectively at data, the VaR "today" is computed based on values
of the returns in the last N = 252 days (e.g., one year of daily data) leading to, but not
including today. In this case it is assumed that all past returns carry the same weight.

Unlike the normal distribution method, historical simulation is a non-parametric
method. It does not assume a particular distribution of the asset returns. Historical
simulation forecasts risk by assuming that past profits and losses can be used as the
distribution of profits and losses for the next period of returns. The VaR "today" is
computed as the pth - quantile of the last N returns prior to "today".
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Figure 5.19: VaR estimation using the normal distribution method for all indices.
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Figure 5.20: VaR estimation using the historical simulation method for all indices.

Figure 5.20 shows that the historical simulation curve has a piece-wise constant
profile. The reason for this is that quantiles do not change for several days until extreme
events occur. Thus, the historical simulation method is slow to react to changes in
volatility.

The exponential weighted moving average (EWMA) method assigns non-equal
weights, particularly exponentially decreasing weights. The most recent returns have
higher weights because they influence "today’s" return more heavily than returns further
in the past. The variance referring to the EWMA method over an estimation window of
size W and weight 0 < λ < 1 is

σ2 :=
1

c

W∑

k=1

λk−1Y 2
t−k

where c is the normalizing constant

c :=
W∑

k=1

λk−1 =
1 − λW

1 − λ

W →∞−→ 1

1 − λ
.

In the Figure 5.21, the EWMA reacts very quickly to periods of large (or small)
returns and it can account for fat tails of the return distributions. Note that the value of
λ in case of EWMA is chosen to be 0.94.
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Figure 5.21: VaR estimation using the EWMA method for all indices.

5.4.2 VaR Backtesting

In backtesting, VaR is estimated over the test window with three different methods and
at two different VaR confidence levels. The goal of VaR backtesting is of course to
evaluate the performance of the three VaR models. A VaR estimate at 99% confidence
should be violated only about 1% of the time, and VaR failures should not cluster.
Clustering of VaR failures indicates the lack of independence across time because the
VaR models are slow to react to changing market conditions.

A common first step in VaR backtesting analysis is to plot the volatility of returns
and the VaR estimates together. We plot all three methods at the 99% confidence level
and compare them to the volatility of returns.
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Figure 5.22: Comparisons of log-returns and VaR at 99% with different models.

To highlight how the various approaches react differently to changing market
conditions, we have zoomed in (see Figure 5.23) on the time series where there is
a large and sudden change in the value of returns. For example 2166th date which
corresponds to "24 June 2016" for FTSEMIB, 906th date which corresponds to "6 June
2011" for S&P500 and FTSE100.

A VaR failure or violation happens when the returns have a negative VaR. A closer
look around specified dates for each index shows a significant dip in the returns. It is
seen that the EWMA follows the trend of the log-returns closely and more accurately
than the other approaches. Consequently, EWMA has fewer VaR violations compared
to the normal distribution and historical simulation approaches. As a result, we are
going to use EWMA method to calculate VaR for different scenarios of volatilities and
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Figure 5.23: VaR violations with different models and for all indices.

to highlight the upper and lower price bounds for model uncertainty.

5.4.3 Sensitivity of Model Uncertainty by Using VaR Approach

Now let us apply EWMA approach in 1-month ATM call option prices. In our study
we have chosen to deal with a daily 1% VaR and λ = 0.94. In Figures 5.24 and 5.25
one sees the VaR values calculated for 1000 scenarios of volatilities simulated from the
Gaussian and non-Gaussian Ornstein-Uhlenbeck processes, respectively.

a. FTSEMIB b. S&P500 c. FTSE100

Figure 5.24: VaR scenarios for volatilities simulated by Gaussian OU-process.

a. FTSEMIB b. S&P500 c. FTSE100

Figure 5.25: VaR scenarios for volatilities simulated by non-Gaussian Ornstein-
Uhlenbeck process.

As a result, for Gaussian and non-Gaussian Ornstein-Uhlenbeck processes the
boundaries founded include the real value of volatility. It is clear from the Figures 5.24
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and 5.25 that the non-Gaussian Ornstein-Uhlenbeck process define a tighter interval of
pricing values

Table 5.9: Model uncertainty (µα(X)) for the call options by using VaR.

Gaussian OU non-Gaussian OU
FTSEMIB 0.095 0.029
S&P500 0.180 0.069
FTSE100 0.275 0.115

From Table 5.9 it is clear to see that the results on model uncertainty corresponding
to the non-Gaussian Ornstein-Uhlenbeck process are the smallest ones. Furthermore,
comparing with the results in Table 5.8, we see a clear reduction in model uncertainty
using the VaR approach compared to the extreme measure of Cont (2006). This is
particularly evident for the non-Gaussian model, where apparently the extreme tails are
ignored using the VaR methodology.

5.5 Decision Rules

In practice, investors, regulators and risk managers need some decision rules for judging
whether an investment has a good performance or has a model uncertainty and model
risk value that is too high. In this Section we apply our fitted mean log-return X(t) and
volatility σ(t) from all three stock indices, to analyse the forecasted risk-adjusted excess
return, known as the Sharpe ratio:

Sh(t) =
X(t) − r

σ(t)

Here, r > 0 is some benchmark return, for example the risk-free one. The risk-free rate
is different for each index and it is collected from [RfRItaly], [RfRUSA] and [RfRUK]
as the reported value of December 2018.

The Sharpe ratio indicates how well an investment performs in comparison to the
rate of return on a risk-free investment. Usually, any Sharpe ratio from 0.5 to 1 is
considered acceptable to good by investors. A ratio higher than 2 is rated as very good,
and a ratio of 3 or higher is considered excellent (for more see Bayley, & López de
Prado (2012)). When analyzing the Sharpe ratio, the higher the value, the more excess
return investors can expect to receive for the extra volatility they are exposed to by
holding a riskier asset. Similarly, a risk-free asset with no excess return would have
a Sharpe ratio of zero. As it is shown in the Figure 5.26, in general, lower volatility
results in a better (higher) Sharpe ratio.

It is clear to see that on February 2019, risk-adjusted returns are negative for
FTSEMIB and close to zero for S&P500 and FTSE100. A negative Sharpe ratio is hard
to interpret. An investor wants to increase a positive Sharpe ratio, by increasing returns
and decreasing volatility. However, a negative Sharpe ratio can be brought closer to zero
by either increasing returns (something recommended to do) or increasing volatility
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Figure 5.26: Sharpe ratio for all indices.

(something highly not recommended to do). Thus, the Sharpe ratio is not a particularly
useful for negative returns. The average Sharpe ratio using calendar daily returns over
the considered period (see Figure 5.26) is 0.2, 0.3, and 0.1 for FTSEMIB, S&P500, and
FTSE100, respectively. As a summary, we focus on the following investment decision
problem under model uncertainty: Reject the investment with payoff X if Sh(X) < s,
i.e., do not invest in X if the Sharpe ratio is less than s. As we explained above, a
reasonable threshold is s = 0.5.

Regarding to model risk, we are going to concentrate to the VaR measure which is
used by risk managers to measure and control the level of risk undertaken and to ensure
it is within limits.
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Figure 5.27: VaR measure for ATM call option using EWMA method.

For example, considering Figure 5.27, FTSEMIB index has a one-day 1%VaR
of 709.20 EUR, S&P500 index as a one-day 1%VaR of 71.35 USD, and FTSE100
index as a one-day 1%VaR of 178.26 GBP for 19th February, 2019. So, based on
VaR only, it is suggested to make the following decision: Reject the investment X if
α%V aR(X) > tα, as a consequence do not buy X if the lowest/ smallest loss of X
in the worst α% of scenarios is greater than tα. In the same way we can construct a
decision rule for the model uncertainty measure µ(X), such as reject X if µ(X) > tµ,
i.e., do not buy X if the model uncertainty µ(X) is greater than tµ. A large value
of model uncertainty will result in a significant implication, such as largest effect on
losses. The aim of regulators is to minimize the model uncertainty. The value of tµ
should depend on the investor’s risk preferences or there could be industry-standard
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values set by regulators. The obvious generalisation is to aggregate the performance,
market risk and model uncertainty with a combined rule such as reject X if Sh(X) +
α%V aR(X) + µ(X) > tM for some tM or as it is suggested by Deng, Dulaney,
McCann & Wang (2013) instead of considering VaR and Sharpe ratio separately we
can use a VaR Adjusted Sharpe ratio α%V aRSh(X) + µ(X) > tM . As a result we
notice that, if Sh(X) +α%V aR(X) +µ(X) < 0 or α%V aRSh(X) +µ(X) < 0, we
would always buy X , since positive returns are made in all possible combinations of
market scenarios and models.

5.6 Conclusion

We have proposed a dynamical model of the probability distribution of random events
adding uncertainty in the distribution. Further we have defined and discussed model
uncertainty and risk measures in a stochastic manner illustrated by various examples
applied to stock market indices such as FTSEMIB, S&P500 and FTSE100. It is
demonstrated that model and parameter risk and uncertainty play a prominent role.
In our study the notion of model uncertainty it is reduced to uncertainty on future
volatility. We have considered and compared the results of two different classes of
autoregressive models where the so-called stationary distribution is and is not normal
(where the OU-process considered is driven by the Brownian motion and Levy process
being a compound Poisson process, respectively). The uncertanty on volatility is
applied to option pricing, where a study of ATM call options on the three indices
imply a distribution of prices rather than a unique price. This is a quantification of the
volatility uncertainty in terms of its implied option prices. Next we have implemented
the quantitative framework for measuring the impact of model uncertainty on pricing
options proposed by Cont et al (2006). We have compared the uncertainty measure based
on worst cases with our proposal using a VaR-based measure giving tighter estimates.
Finally, some decision rules were discussed referring to VaR, model uncertainty and the
Sharpe ratio.

Data Availability Statement

The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Appendix A. Estimation of the residual process

After we first run a linear regression on log-returns on a rolling window to get the
residuals ǫt, we define an auxiliary process ek

ek =
k∑

j=1

ǫj , k = 1, 2, ...N

whereN is the length of the residuals. We view ek as a discrete version ofE(t) being an
OU-pricess as defined in equation (5.11).A regression estimation of ek is run to obtain
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parameters α, µ, β of the Ornstein-Uhlenbeck processes for the respective two cases
(see Table 5.10), based on the method of (Avellaneda & Lee (2010)).

Table 5.10: Parameters of OU-process for mean and variance of residuals of FTSEMIB,
S&P500 and FTSE100, 2008-2019.

Mean α µ β βeq z_score
FTSEMIB 0.3283 -0.0394 0.4888 0.6033 0.0652
S&P500 0.2271 -0.0322 0.5219 0.7744 0.0416
FTSE100 0.3747 -0.0130 0.4219 0.4874 0.0266

Var α µ β βeq z_score
FTSEMIB 0.2525 -0.0026 0.1012 0.1425 0.0183
S&P500 0.2271 -0.0322 0.5219 0.7744 0.0416
FTSE100 0.1906 -0.0015 0.0766 0.1241 0.0124

The parameter βeq in Table 5.10 is the standard deviation of the limiting Gaussian
distribution and z-score is the standardized version of EX(t)2 and EY (t)3 measuring
how far EX(t) or EY (t) deviate from their mean level. This measure is valid measure
across all securities being dimensionless and it is used as a trading signal (the idea is
that, depending on the strength of the mean-reversion signal (the value of the z-score),
we decide on day N to buy/sell at tomorrow’s open (or close an existing position)).

Fast mean-reversion (i.e. compared to the 365-day time horizon (estimation sample
requires that α > 252/365) requires α > 0.0895 for FTSEMIB, α > 0.09071 for
S&P500, α > 0.0904 for FTSE100. In all cases, 0 < br

4 < 1 and the above formulas
make sense otherwise the mean-reversion time is too long and the model is rejected for
the stock under consideration. For all our cases br are inside the allowed interval.

2
EX(t) indicate the regression equation on the residuals of mean

3
EY (t) indicate the regression equation on the residuals of variance

4
br is the coefficient of the linear regression on the accumulated sum of residuals of AR(1) processes to

obtain parameters of the residuals OU-process and z_score.
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Chapter 6

An Application of Functional Data

Analysis to Forecast Weather

Variables.

Joint work with Fred Espen Benth

Abstract

Functional data analysis (FDA) has emerged as a new area of statistical research
with a wide range of applications. In this paper, we propose some functional linear
models in which both the response and the covariate variables are functions. These
models enable to regularize curves observed over a specific time period and predict
curves at unobserved period of time. The proposed models are illustrated in the
analysis of temperature and wind speed data. The first model use FDA to estimate
temperature from climate zones applying functional principal components analysis
(FPCA) at all meteorological stations of Lithuania and predicting full log wind speed
and annual log wind speed from temperature climate zones resulted from FPCA.
The second model predicts log wind speed directly from temperature observations.
The validation procedure based on smoothed functional data of log wind speed
shows that the proposed models are reliable and can be used for various practical
applications.

Keywords: functional data analysis, linear concurrent model, temperature, wind speed,
smoothing

6.1 Introduction

So far, the focus has been on modeling and pricing temperature and rainfall derivatives.
The aim of this study is to determine if changes in temperature and wind of Lithuanian
cities are detectable using methods of functional data analysis (FDA). More concretely,
we propose the functional linear model observed in different patterns in order to predict
wind speed from temperature data in which both these variables are functions. Predicting
wind play a key role in businesses which are sensitive from wind, such as wind farms,
transportation and construction companies, electricity producer companies based on
wind mills production prediction, pricing wind derivatives and so on. Many research
papers are focused in modeling the dynamics of wind speed. For example, Šaltytė Benth
and Benth (2010) propose an ARMA time-series model for the wind speed at a single
spatial location, and estimate the model with data based on three different wind farm
regions in New York. By a comparison between daily average and three-hourly wind
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speed predictions the authors find that more accurate predictions are obtained from
modeling aggregated data directly rather than at the finer time scale.

Šaltytė Benth and Šaltytė (2011) propose a spatial–temporal model for the wind
speed (WS) applied on daily WS records from 18 meteorological stations in Lithuania.
The model contains seasonality, a higher-order autoregressive component, a variance
describing the remaining heteroskedesticity in residuals and is estimated at the single
spatial meteorological station independently on spatial correlations. The spatial
dependencies are modeled by a Gaussian random field.

Alexandridis and Zapranis (2013) model the dynamics of the wind generating
process using a non-parametric non-linear wavelet network which is validated in New
York. The proposed methodology is compared against alternative methods, proposed
in prior studies. Their results indicate that wavelet networks can model the wind
process very well and consequently constitute an accurate and efficient tool for wind
derivatives pricing. These authors provide pricing equations for wind futures written
on two indices, the cumulative average wind speed index and the Nordix wind speed
index. The characteristics of the wind speed process are very similar to the process of
daily average temperatures. It is indicated a slight downward trend and seasonality in
the mean and variance. In addition the seasonal variance is higher in the winter while it
reaches its lower values during the summer period.

Benth and Pircalabu (2018) propose a non-Gaussian Ornstein–Uhlenbeck model
for the wind power production index. The model allows for an analytical formula
for pricing wind power futures. Generally, the authors find a negative risk premium
whose magnitude decreases as the length of the delivery period increases. The result
suggests that wind power producers are willing to accept a lower price when selling
wind power futures. Moreover, the market price of risk is more volatile for shorter
delivery periods and it is argued that this behavior might be related to liquidity aspects
and the information contained in short-term weather forecasts, which the proposed
model does not incorporate.

Since many traded financial contracts are based on the daily average wind speed
index and from recent research it is seen a similarity in the dynamics of temperature
and wind, in our paper we have chosen to focus on modeling the dynamics of the daily
average wind speed by applying FDA based on temperature data.

FDA is increasingly used in a wide range of fields including weather derivatives as
well. In FDA, the data units are functions or curves, where the observed discrete data
are converted to functions using various smoothing procedures. These data are then
analyzed using traditional statistical methods to extract information from the functions.
The key challenge in FDA is to develop effective and well-suited methodologies for
retrieving information within and across curves. Ramsay and Silverman (1997, 2002)
present the basic principles of FDA. Besse, Cardot and Stephenson (2000) and Aguilera,
Ocana and Valderrama (1999) develop autoregressive forecasting models for climatic
variations. A considerable effort is being made in order to adapt some standard statistical
methods for functional data. For example, the case of principal component analysis
by Boente and Fraiman (2000), Dauxois et al (1982), Locantore et al (1999), Pezzulli
and Silverman (1993) and Silverman (1996), discriminant analysis by Ferraty and Vieu
(2003) and regression by Cardot et al (1999), Cuevas et al (2002), Ferraty and Vieu
(2002). Many other interesting examples can be found in Bosq (1991), Brumback and
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Rice (1998), Ramsay and Dalzell (1991), and Rice and Silverman (1991). The FDA
approach has become the object of an increasing amount of attention on the part of
many researchers in recent years and it is applied in different areas of study. Goia, May
and Fusai (2010) consider the short-term peak load forecasting for a district-heating
system by applying a functional clustering procedure to classify the daily load curves
and functional linear regression models for each cluster.

Hardle and Osipenko (2012) use functional principal component analysis of the
variation curves of temperature in order to compute the risk premium involved in the
spatial derivative price distribution.

Later, Marron, Ramsay, Sangalli and Srivastava (2015) took attention to the concept
of phase variability which is present in functional data and why it is important to not
ignore it in statistical analysis.

Fan, James and Radchenko (2015) propose functional additive regression (FAR)
method, which extends the usual linear regression model involving a functional predictor
and a scalar response and uses a penalized least squares optimization approach to deal
with high-dimensional problems.

Guo, Zhou, Huang and Härdle (2015) develop a functional data analysis approach
to jointly estimate a family of generalized regression quantiles assuming that the
generalized regression quantiles share some common features that can be summarized
by a small number of principal component functions.

A recent overview on functional regression can be found in Morris (2015). Some
more developments of functional linear model are proposed in Kneip, Poß and Sarda
(2016) and Brockhaus, Scheipl, Hothorn, and Greven (2015). Kneip, Poß and Sarda
(2016) consider functional linear regression, where scalar responses are modeled
in dependence of iid random functions. While Brockhaus, Scheipl, Hothorn, and
Greven (2015) propose the functional linear array model which is a unified model class
for functional regression models including function-on-scalar, scalar-on-function and
function-on-function regression.

Wang, Chiou and Müller (2016) provide an overview of FDA, starting with simple
statistical notions such as mean and covariance functions, then covering functional
principal component analysis, functional linear regression, as well as clustering and
classification of functional data.

Yu, Du and Zhang (2020) propose a flexible single-index partially functional linear
regression model, which combines single-index model with functional linear regression
model, where all the unknown functions are estimated by B-spline approximation.

Boente, Salibian-Barrera and Vena (2020) construct robust estimators for semi-
functional linear regression models by combining splines in order to approximate both
the functional regression parameter and the nonparametric component with robust
regression estimators based on a bounded loss function and a preliminary residual scale
estimator.

The functional linear model is an important model for FDA for which there has
been a vast literature on its estimation and prediction. Methods of estimating the slope
function were studied by, for instance, Cardot et al. (2003), Yao et al. (2005), Crambes
et al. (2009), minimax convergence rates of estimation were established by Hall and
Horowitz (2007), Cai and Hall (2006) using functional principal components regression.
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Usually, in the problem of functional linear model the data (X1, Y1), ..., (Xn, Yn)
are observed, where the X

′

i s are independent and identically distributed as a random
function X , defined on an interval I , and the Y

′

i s are generated by the regression model,

Yi = α+

∫

I

βXi + ǫi

where α is a constant, denoting the intercept in the model, and β is a square integrable
function on I , representing the slope function. The majority of attention usually focuses
on estimating β, typically by methods based on functional principal components. Note
that in our analysis Y will identify wind speed and X identify temperature data.

The functional linear model in our study is used in various ways:

• The functional linear model is used to predict wind speed from climate zone and
a functional covariate constructed by removing climate effects from temperature.

• Annual wind speed, a scalar dependent variable, is fitted by using temperature
as a functional covariate. Harmonic acceleration roughness in the regression
coefficient function is penalized.

• The full wind speed function is fitted by the regressing on the full temperature
profile, and various levels of smoothing are used to show the effects of smoothing
over both arguments of the regression coefficient function.

For this analysis, the first step is to inspect and smooth the data with the appropriate level
of smoothing for the analyses being considered. The idea of a "smart" roughness penalty
is introduced right away in the form of harmonic acceleration, which is especially
important for periodic data such as these with a variation that is dominated by a sinusoid
plus a constant signal, or shifted harmonic variation. However, in order to keep the
analysis simple and to economize on computational effort, we use a saturated basis
capable of interpolating the data combined with a roughness penalty, and instead opt for
a Fourier series basis system with 65 basis functions and no roughness penalty.

Nevertheless, there is a smoothing section below that use 35 Fourier basis functions
combined with a harmonic acceleration penalty where we estimate the smoothing
parameter by minimizing the generalized cross-validation (GCV) parameter. Smoothing
is followed by the display of various descriptive statistics, including mean and standard
deviation functions, and covariance and correlation surfaces. A short section illustrates
the principal components analysis of temperature, and these analysis is repeated for
wind speed as well.

6.2 Functional linear model

We consider the concurrent linear model introduced in Malfait and Ramsay (2003) in
order to relate the value of a functional response (log-wind speed (Yi(t))) to the current
value of functional covariate(s) (in our case temperature (Ti(s))). We have chosen Ωt

to contain the range of values of argument s over which Ti is considered to influence
response Yi at time t, and the subscript t on this set indicates that this set can change
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from one value of t to another. For example, when both s and t are time, using Ti(s)
to predict Yi(t) when s > t may imply backwards causation. In order to avoid this
nonsense, we consider only values of Ti before time t. We may also add a restriction on
how far back in time the influence of Ti on Yi can happen. This leads us to restrict the
integral to

Ωt = {s ≥ T0|t− δ ≤ s ≤ t}
where T0 is the initial data and δ > 0 specifies how much history is relevant to the
prediction. In our case we have chosen δ = 9855 days corresponding to 27 year
historical temperature data. Note that in our analysis we display snapshots from the
latest year 2003 in order to have clearer results.

A more general version for a single functional covariate (temperature) and an
intercept is

Yi(t) = β0(t) +

∫

Ωt

β1(t, s)Ti(s)ds+ ǫi(t) (6.1)

where i indicates the location/city considered. The bivariate regression coefficient
function β1(s, t) defines the dependence of Yi(t) on covariate Ti(s) at each time t and
is defined as follows:

β1(s, t) =

K∑

k=1

L∑

l=1

bklφk(s)ψl(t) = φ
′

(s)Bψ(t) (6.2)

where the coefficients for the expansion are in the K x L matrix B. We therefore need
to define two bases φ(s) and ψ(s) for the coefficient functions: φ(s) for β1, as well
as ψ(s) for the intercept function β0. The intercept function β0 can be expressed as
follows:

β0(t) =

L∑

l=1

alψl(t) = ψ
′

(t)a (6.3)

For the bivariate regression coefficient we have chosen Fourier basis while for the
intercept some constant basis. In this case Ti(s) need not be defined over the same
range, or even the same continuum, as Yi(t).

6.3 Functional smoothing and descriptive statistics

6.3.1 Data Collection

The analysis on the daily temperature and wind speed (WS) (m/s) data for 16 Lithuanian
meteorological stations, provided by the Lithuanian Hydrometeorological Service (LHS)
1 in Vilnius, Lithuania, is developed in this study. We have available records of
WS starting earlier than 1 January 1977 for 16 meteorological stations for WS and
temperature data starting from 1 January 1977 available for some more meteorological
stations but in order to have time series of equal length, as a starting point we choose 1
January 1977 and 16 meteorological stations for which we have records for temperature

1http://old.meteo.lt/english/
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and WS, simultaneously. Data series continue until 31 December 2003, resulting in
9855 daily observations corresponding to 27 years. Note that in order to have clear
visualisations of our analysis, in the following sections are shown just snapshots of the
last year 2002 taken in analysis and results of year 2013 from the predictive model.

6.3.2 Smoothing functional data of temperature and wind speed

This analysis starts with smoothing raw data of temperature and wind speed using a
technique of fitting models to data by minimizing the sum of squared errors. This
approach consist on fitting the discrete observations tj and yj over time, j = 1, ..., n,
for temperature and wind speed, respectively, using the following models:

tj = x1(lj) + ǫj

yj = x2(sj) + ηj

and a basis function expansion for x1(l) and x2(s) of the form

x1(l) =

K∑

k=1

ckφk(l) = c
′

φ

x2(s) =

M∑

m=1

dmψm(s) = d
′

ψ

where vectors c and d of length K and M contain the coefficients ck and dm which
determine the expansions and assume that the residuals ǫj and ηj about the true curve
are independently and identically distributed with mean zero and constant variance σ2.
Let define the n x K matrix Φ as containing the values φk(lj) and the n x M matrix
Ψ as containing the values ψk(sj). Then, a simple linear smoother is obtained if the
coefficients of the expansions ck and dk are determined by minimizing the least squares
criterions

MLSSE(t, c) =

n∑

j=1

(tj −
K∑

k=1

ckφk(lj))2

MLSSE(y, d) =

n∑

j=1

(yj −
M∑

m=1

dmψm(sj))2

(6.4)

which in matrix form are expressed as:

MLSSE(t, c) = (t− Φc)
′

(t− Φc)

MLSSE(y, d) = (y − Ψd)
′

(y − Ψd)
(6.5)

Taking the derivative of criterions MLSSE(t, c) and MLSSE(y, d) with respect to c
and d yield the equations

2ΦΦ
′

c− Φ
′

t = 0
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2ΨΨ
′

d− Ψ
′

y = 0

and solving this for c and d provides the estimators ĉ and d̂ that minimizes the least
squares solution,

ĉ = (Φ
′

Φ)−1Φ
′

t

d̂ = (Ψ
′

Ψ)−1Ψ
′

y

The vectors t̂ and ŷ of fitted values are

t̂ = Φ(Φ
′

Φ)−1Φ
′

t

ŷ = Ψ(Ψ
′

Ψ)−1Ψ
′

y

From equation (6.4) the functional observation for temperature and wind speed are
expressed by:

x1(l) =

K∑

k=1

ckφk(l)

x2(s) =

M∑

m=1

dmψm(s)

The smoothness of the fit can be controlled by the choice of K and M , which indicates
the number of basis functions. The smaller the number of basis functions, the smoother
the fit, and the larger the number of basis functions, the closer the fit will be to the
data. The basis functions employed in this analysis, are Fourier basis functions since
they perfectly represent periodic data. Fourier basis functions are useful for examining
annual trends with seasonal variation. The set of basis functions for Fourier series
includes one constant function and then pairs of sine and cosine functions to capture the
variation in phase (the number of basis must always be odd):

φ1(l) = 1 ψ1(s) = 1

φ2(l) = sin(lω) ψ2(s) = sin(sω)

φ3(l) = cos(lω) ψ3(s) = cos(sω)

φk(l) = sin(
k

2
lω) ψm(s) = sin(

m

2
sω)

φk+1(l) = cos(
k

2
lω) ψm+1(s) = cos(

m

2
sω)

where φk and ψm are the k and mth basis functions and ω = 2π/T where T is the
period of the function.

However, as it will be seen from the results, some regularization in the function
x = (x1(l), x2(s)) by attaching to the least squares fitting criterion an additional term
that controls the roughness of some derivative of the fit, is needed. Below we start
presenting results obtained in case of smoothing functional data by applying the least
squares technique. In figures 6.1-6.4, are shown the smoothed temperature functional
data for all Lithuanian meteorological stations.
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Figure 6.1: Smoothing functional data by least squares: Temperature curves and values
for the Lithuanian weather stations.
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Figure 6.2: Smoothing functional data by least squares: Temperature curves and values
for the Lithuanian weather stations.
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Figure 6.3: Smoothing functional data by least squares: Temperature curves and values
for the Lithuanian weather stations.
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Figure 6.4: Smoothing functional data by least squares: Temperature curves and values
for the Lithuanian weather stations.
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In order to understand better the variation of residuals for temperature curves, we
have chosen to display residuals of the three meteorological stations with the best fits
(see figure 6.5) and residuals of the three stations with the worst fits (see figure 6.6).
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Figure 6.5: Smoothing functional data by least squares: Residuals for three best fits.
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Figure 6.6: Smoothing functional data by least squares: Residuals for three worst fits.

In figures 6.7-6.10, are shown the smoothed wind speed functional data for all
Lithuanian meteorological stations. As it is seen the values RMS 2 on residuals are
smaller than the ones computed in case of temperature data.
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Figure 6.7: Smoothing functional data by least squares: Wind curves and values.

2stands for Root mean square error
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Figure 6.8: Smoothing functional data by least squares: Wind curves and values.
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Figure 6.9: Smoothing functional data by least squares: Wind curves and values
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Figure 6.10: Smoothing functional data by least squares: Wind curves and values.

The functions are definitely too rough with the basis functions chosen, especially for
temperature, which has a much higher noise level. These smoothing parameter values
probably undersmooth the data, but we can impose further smoothness on the results of
our analyses by a regularization approach as mentioned before.

Therefore, the fit to the data vectors t and y in equation (6.4) are regularized by
minimizing the criterions

PENSSE = MLSSE(t, c) + λ1 ∗ PEN(x1)

PENSSE = MLSSE(y, d) + λ2 ∗ PEN(x2)
(6.6)

where the second term on the right side penalizes some form of roughness in x. In our
case the following criterion is applied:

PEN(x) =

∫
[D2x(t)]2dt (6.7)
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which measures the roughness of the function x by integrating the square of its second
derivativeD2x, which is the total curvature of x. The smoothing parameter λ = (λ1, λ2)
is important; the larger λ, the more heavily roughness in x is penalized, and ultimately
as λ increases without limit, x is forced towards a straight line, for which the second
derivative is everywhere 0. On the other hand, as λ is reduced to zero, the roughness
of x matters less and less, and finally when λ → 0, x will be just as rough as y since
it will pass exactly through the data points. In the following figures one can see the
smoothed data and original data for temperature and wind, respectively. The goodness
of fit is given by RMS on residuals. This approach permits the direct smoothing of the
raw discrete data without any regularization which means λ is zero and the basis of
Fourier functions is chosen: about one basis function per week which means for the
frame of one year 65 basis fourier functions are applied.

However, even more sophistication in the definition of roughness can be obtained by
defining a linear differential operator of the form:

Lx = β0x+ β1Dx+ ...+ βm−1D
m−1x+Dmx

where themweight functions βj , j = 0, ...,m−1, may be either constants or themselves
functions. In our case it is applied the following operator (the degree of the operator is
chosen to be 3):

Lx = w2Dx+D3x

where the data are periodic with period 2π/w and we smooth towards a vertically shifted
sinusoid. The regularization penalty (6.7) then becomes

PEN (x) =

∫
[Lx(t)]2dt (6.8)

The reason for considering this wider family of penalties is that by the appropriate
choice of L, we can force the smooth as λ → ∞ to be toward a linear combination
of m functions uj that we choose (Heckman and Ramsay (2000)). The results of this
approach are shown in the figures below. In this case, 65 basis fourier functions are
considered and λ = 10 and λ = 100 000 for temperature and wind speed, respectively.
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Figure 6.11: Smoothing functional data with a roughness penalty: Each pair of functions
along with raw data
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Figure 6.12: Smoothing functional data with a roughness penalty: Each pair of functions
along with raw data
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Figure 6.13: Smoothing functional data with a roughness penalty: Each pair of functions
along with raw data
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Figure 6.14: Smoothing functional data with a roughness penalty: Each pair of functions
along with raw data

The general visualisation of all smoothed temperature and wind speed functional
data for all meteorological stations are shown in figure 6.15.
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Figure 6.15: All functions: Mean Temperature and Mean Wind Speed in 16
meteorological stations

Note that the behaviour of temperature and wind speed in Lithuania is quite similar
in all stations, which is coming likely because of the Lithuania’s simple terrain.

When we fit data using a roughness penalty instead of least squares, we switch from
defining the smooth in terms of degrees of freedom to defining the smooth in terms of
the smoothing parameter λ. In the following section the procedure of selecting the level
of smoothing is described by observing the generaized cross-validation criterion.

6.3.2.1 Choosing the level of smoothing using the generalized

cross-validation criterion

We choose level of smoothing using the generalized cross-validation criterion with
smoothing functional data with a roughness penalty. The generalized cross-validation
(GCV) measure developed by Craven and Wahba (1979) is designed to locate the best
value for the smoothing parameter λ. The criterion is given as follows:

GCV (λ) = (
n

n− df(λ)
)(

SSE

n− df(λ)
)

where SSE identifies the sum of squared estimate of errors and df denotes degree of
freedom. The right second factor is the unbiased estimate of error variance σ2, and thus
represents some discounting by subtracting df(λ) from n. The right first factor further
discounts this estimate by multiplying by n/(n− df(λ)).

The left hand side of Figure 6.16 shows the variation of the generalized cross-
validation statistic GCV for temperature over a range of log10(λ) values in its top panel.
The minimizing value of λ is about 100, and at this smoothing level, the degrees of
freedom measure has the value of df(λ) = 120 while GCV (λ) = 30. The right hand
side of Figure 6.16 shows the variation of the generalized cross-validation statistic GCV
for wind over a range of log10(λ) values in its top panel. The minimizing value of λ is
about 104, and at this smoothing level, the degrees of freedom measure has the value of
df(λ) = 27 while GCV (λ) = 2.54.
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Figure 6.16: Temperature and wind speed: Plot of degrees of freedom and GCV criterion:
The top panel displays the relation between the GCV statistic and smoothing level for
simulated temperature and wind speed records. The bottom panel displays the degrees
of freedom.

By fixing these parameters to be used in the process of generating the smoothed
functional curves corresponding to temperature and wind speed, the results changes
as it is shown in the following figures. In figures 6.17-6.20 are shown the results
corresponding to temperature for all meteorological stations.
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Figure 6.17: Temperature: Plot of data and fit after applying the final smooth with
minimum GCV value.
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Figure 6.18: Temperature: Plot of data and fit after applying the final smooth with
minimum GCV value.
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Figure 6.19: Temperature: Plot of data and fit after applying the final smooth with
minimum GCV value.
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Figure 6.20: Temperature: Plot of data and fit after applying the final smooth with
minimum GCV value.

It is clear to see from the pictures that the RMS on residuals is smaller than the one
generated by applying the least square technique.

In figures 6.21-6.24 are shown the results corresponding to wind speed for all
meteorological stations. It is clear to see that the results generated in this case are
improved compared with ones generated by applying the least square technique (RMS
errors for all meteorological stations are less than 0.5).
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Figure 6.21: Wind Speed: Plot of data and fit after applying the final smooth with
minimum GCV value.
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Figure 6.22: Wind Speed: Plot of data and fit after applying the final smooth with
minimum GCV value.
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Figure 6.23: Wind Speed: Plot of data and fit after applying the final smooth with
minimum GCV value.
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Figure 6.24: Wind Speed: Plot of data and fit after applying the final smooth with
minimum GCV value.

Before applying the functional linear model on the smoothed data generated let first
see some descriptive statistics about temperature and wind speed.

6.3.3 Descriptive Statistics for temperature and wind speed

We start by computing mean and standard deviation of temperature and log wind speed
for all 16 stations of Lithuania. Let xij , i = 1, 2 and j = 1, ..., 16 be a sample of
functions fit to data. The sample mean and variance functions for each day, are defined
as follows:

xi(l) =
1

N

∑

j

xij(l)
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and

si(l) =
1

N − 1

∑

j

(xij − xi(l))
2

The results for temperature and log wind speed are shown in the following figures:
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Figure 6.25: Functional mean for temperature and wind speed.
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Figure 6.26: Functional standard deviation for temperature and wind speed.

The distribution of wind speed is strongly skewed, and by logging these data, we
effectively work with the geometric mean of wind as a more appropriate measure of
location in the presence of substantial skewness.

The functional standard deviation focuses on the intrinsic variability between
observations, such as Lithuanian weather stations, after removing variations that are
believed to represent measurement and replication error not attributable to the variability
between observations.
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The bivariate covariance function cov(l, s) specifies the covariance between curve
values x1(l) and x2(s) at times l and s, respectively. It is estimated by

cov(l, s) =
1

N − 1

∑

j

(x1j(l) − x1(l))(x2j(s) − x2(s))

while functional covariance for temperature or log wind speed, are expressed by the
following expression, where i = 1 states for temperature, i = 2 states for log wind
speed.

covi(l, l) =
1

N − 1

∑

j

(xij(l) − xi(l))
2

The variance-covariance of temperature and log wind speed functions are shown in
Figure 6.27 as the height of the diagonal running from (0, 0) to (53, 53) (365 days are
translated in weeks, 53 weeks for a year). There is much more variation in wind in the
winter months. While regarding temperature the highest values are during the first half
of the year.
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Figure 6.27: Variance-covariance bivariate function for temperature and log wind speed.

The variance-covariance surface shown in Figure 6.27 indicate that variance across
weather stations is larger in the winter than it is in the summer.

The bivariate correlation function corr(l, s) specifies the correlation between curve
values x1(l) and x2(s) at times l and s, respectively. It is estimated by

corr(l, s) =
cov(l, s)√

cov(l, l)cov(s, s)
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 Temperature-Wind Correlation
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Figure 6.28: Correlation function between temperature and log wind speed.

From figure 6.28 it is seen that there is a correlation structure between temperature
and log wind speed.
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6.4 Exploring variation by functional principal components

analysis (PCA)

Let now look at how observations vary from one replication or sampled value to the
next and see what modes of variation are in the data, and how many of them seem
to be substantial. As in multivariate statistics, eigenvalues of the bivariate variance-
covariance function are indicators of the importance of principal components, and
plotting eigenvalues is a method for determining how many principal components are
required to produce a reasonable summary of the data. In functional PCA, there is
an eigenfunction associated with each eigenvalue, rather than an eigenvector, where
eigenfunctions describe major variational components and we apply it on smoothed
data (Ramsay and Dalzell (1991); Foutz and Jank (2010)). Applying a rotation to them
often results in a more interpretable picture of the dominant modes of variation in the
functional data, without changing the total amount of common variation.

The objective in principal components analysis is the orthogonal decomposition
of the variance-covariance function to isolate the dominant components of functional
variation. We calculate eigenfunctions ψj of the bivariate covariance function cov(s, t)
as solutions of the functional eigenequation:

∫
cov(s, t)ψj(t)dt = µjψj(s)

where the eigenvalues µj indicate the amount of variance attributable to each component
and ψj are known as the principal component functions or harmonics which satisfy the
following criteria ∫

ψj(t)ψl(t)dt = 0, j = 1, ..., l − 1

and ∫
ψ2

l (t)dt = 1

The principal component scores cij are given by the following:

cij =

∫
ψj(t)[xij(t) − xi(t)]dt

The control of level of fit in data in functional PCA, is done by controlling the
roughness of the estimated eigenfunctions (which means by modifying the definition of
orthogonality). We penalize excessive curvature in principal components, by using this
generalized form of orthogonality (Silverman (1996)):

∫
ψj(t)ψl(t) + λ

∫
D2ψj(t)D2ψl(t) = 0, l = 1, ..., j − 1

where λ controls the relative emphasis on orthogonality of second derivatives. We
choose the smoothing parameter λ via cross-validation (see Ramsay and Silverman
(2005); Green and Silverman (1994)).

Figure 6.29 shows the two principal component functions by displaying the mean
curve along green line and red line indicating the consequences of adding and subtracting
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a small amount of each principal component. We do this because a principal component
represents variation around the mean, and therefore is naturally plotted as such. We
observe that these two harmonics account for 94% of the variation around the mean
temperature curve. We see that the first harmonic, accounting for 86% of the variation,
represents a relative constant vertical shift in the mean, and that the second shows
essentially a contrast between winter and summer temperature levels.
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Figure 6.29: Principal components analysis of temperature: The two principal
component functions or harmonics are shown as perturbations of the mean, which
is the blue line. The green line show what happens when a small amount of a principal
component is added to the mean, and the red line show the effect of subtracting the
component. The top panel contains the strongest component.
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6. An Application of Functional Data Analysis to Forecast Weather Variables.

The fact that unrotated functional principal components are so predictable
emphasizes the need for looking for a rotation of them that can reveal more meaningful
components of variation. The VARIMAX rotation algorithm is often used for this
purpose. The results are plotted in Figure 6.30. The first component portrays variation
that is strongest in first part of the year and the second captures primarily variation from
the second part of the year.
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Figure 6.30: Rotated harmonics (Varimax rotation): The two rotated principal
component functions are shown as perturbations of the mean, which is the blue line.
The top panel shows variation primarily in the first part of the year. The bottom panel
shows variation primarily in the second part of the year.

It can be profitable to plot the principal component scores for pairs of harmonics to
see how curves cluster and otherwise distribute themselves within the K dimensional
subspace spanned by the eigenfunctions. Figure 6.31 reveals some fascinating structure.
All Lithuanian stations are contained within two clusters: the upper left with the east
stations and the lower right with west stations.

166



Functional linear model

-300 -200 -100 0 100 200 300

Harmonic I

-200

-150

-100

-50

0

50

100

150

200

H
a

rm
o

n
ic

 I
I

VILNIUS  

NIDA     

RASEINIAI

KYBARTAI 

KAUNAS   

UKMERGE  

SILUTE   

BIRZAI   

LAUKUVA  

TELSIAI  

PANEVEZYS

UTENA    

VARENA   

KLAIPEDA 

SIAULIAI 

DOTNUVA  

Figure 6.31: The scores for the two rotated principal component functions are shown as
circles. Selected stations are labeled in order to identify the two central clusters and the
outlying stations.

6.5 Functional linear model

6.5.1 Predicting temperature from climate region

In the Lithuanian weather data, we can divide the weather stations into two distinct
groups: West and East Lithuania as we have seen from the section above dedicated to
PCA analysis on temperature. It may be interesting to know the effect of geographic
location on the shape of the temperature curves. That is, we have a model of the form:

Ti(t) = β0(t) +

2∑

j=1

xijβj(t) + ǫi(t)

where Ti(t) is a functional response. In this case, the values of xij are either 0 or
1 and ǫi are considered to be independently and identically distributed. If the 16 by 3
matrix Z contains these values, then the first column has all entries equal to 1, which
codes the contribution of the Lithuanian mean temperature; the remaining two columns
contain 1 if that weather station is in the corresponding climate zone and 0 otherwise.
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6. An Application of Functional Data Analysis to Forecast Weather Variables.

In order to identify the specific effects of the two climate zones, we have to add the
constraint:

2∑

j=1

βj(t) = 0 for all t

In our case we will impose this constraint by adding the above equation as an
additional 17th “observation” for which T17(t) = 0.
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Figure 6.32: The regression coefficients estimated for predicting temperature from
climate region. The first panel is the intercept coefficient, corresponding to the Lithuania
mean temperature.

Figure 6.33: The predicted mean temperatures for the three regions.
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We first create a list containing three indicator variables for the intercept term and
each of the regions. In this setup, the intercept term is effectively the Lithuanian mean
temperature curve, and each of the remaining regression coefficients is the perturbation
of the Lithuanian mean required to fit a region’s mean temperature. The three regression
coefficients are shown in Figure 6.32.

Figure 6.33 shows the predicted mean temperature curves for each of the three
regions. Note that we have used a fourier basis with 13 basis functions.

Let define y as a vector of 16 dependent variable observations, and an 16 by 3 design
functional matrix Z available as a basis for a linear model for y, which contains xij

functions. The vector coefficient function β of length 3 contains each of the regression
functions. The concurrent functional linear model in matrix notation is then written as:

y(t) = Z(t)β(t) + ǫ(t)

where y is a functional vector of length 16 containing the response functions. Then
the vector r(t) will be the corresponding 16-vector of residual functions represented as
follows:

r(t) = y(t) − Z(t)β(t)

Figure 6.34 estimate the covariances among the residuals. It is clear that the highest
values correspond to period March-June. While the standard deviation of errors is
expressed as:

σi(r) =

√√√√
N∑

i,j=1,i=j

rij

where rij is the residual for ith observation of the jth curve expressed as rij =
yij + Zj(ti)β(ti). Figure 6.34(a) displays the covariance surface of residuals where
the highest values correspond to the first part of the year. In figure 6.34(b) is shown
the standard deviation of errors for the mean temperature, while in figure 6.34(c) all
residual function of mean temperature for each station are shown.
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Figure 6.34: A countour plot of variance-covariance surface for errors, standard
deviation of errors, and temperature residuals functions for all stations.
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6. An Application of Functional Data Analysis to Forecast Weather Variables.

6.5.2 Predict wind speed from climate region

We start by smoothing the logarithm of average wind speed directly. We first use 365
Fourier basis functions, and the same harmonic acceleration roughness penalty that we
have been using for the temperature data.
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Figure 6.35: The regression coefficients estimated for predicting log wind speed from
climate region. The first panel is the intercept coefficient, corresponding to the Lithuania
mean log wind speed.
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Figure 6.36: The predicted mean log wind speed for all stations.

The generalized cross-validation or GCV criterion was minimized for λ = 104, a
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level of smoothing that is equivalent to about 27 degrees of freedom. In order to speed
up computation, we then opted for a simple Fourier basis expansion with eleven basis
functions and no roughness penalization. For this analysis, we used an expansion of the
daily average temperature residual in terms of 13 Fourier basis functions.

The three regression coefficients are shown in Figure 6.35, while figure 6.36 shows
the predicted mean log wind speed curves for each of all stations.
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Figure 6.37: Residual matrix and get covariance of residuals: Contour plot of estimated
β function .
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6.5.3 Annual wind speed predicted by temperature profile

Let now predict total annual wind for Lithuanian weather stations from the pattern of
temperature variation through years. Let ALW i be the logarithm of total annual wind
at weather station i, and Ti the daily temperature function then the model takes the form

ALW i = α+

∫
Ti(s)β(s)ds+ ǫi

where the basis coefficient expansion of β is given by:

β(s) =
∑

i

ciφi(s) = c
′

φ(s)

Considering the periodic nature of the temperature and wind data, it seems natural to
call for the use of a Fourier series basis. Our first strategy is therefore to represent the
regularized fitting problem in terms of a basis function expansion as above, and then to
apply the concept of regularization to this representation.

We have chosen to work with 35 Fourier basis functions for the regression coefficient
β multiplying the temperature profiles and a constant function for α. In figure 6.38 we
plot the estimate of the regression function for the temperature profiles; the intercept
value is 1.0687.

Figure 6.38: Estimated β(s) for predicting log annual wind from average daily
temperature using 35 Fourier basis functions.
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In order to assess the quality of this fit we first extract the fitted values defined by
this model and compute the residual sum of squares by the following formula:

SSE(α, β) =

N∑

i=1

[ALWi − α−
∫
Ti(s)β(s)ds]2
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Figure 6.39: Observed log annual wind values plotted against values predicted by
functional linear regression on temperature curves.

The squared multiple correlation is 1, and the corresponding F-ratio with 5 and 11
degrees of freedom is −0.65, suggesting a fit to the data that is far better than we would
expect by chance.

The estimated function β(s) in Figure 6.38 illustrates that fidelity to the observed
data, as measured by the residual sum of squares, is not the only aim of the estimation.
The roughness penalty approach aims of avoiding excessive local fluctuation in the
estimated function (see Cardot (2002)). To this end, the penalized residual sum of
squares is defined as:

PENSSEλ(α, β) =

N∑

i=1

[ALW i − α−
∫
Ti(s)β(s)ds]2 + λ

∫
[Lβ(s)]2ds
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6. An Application of Functional Data Analysis to Forecast Weather Variables.

where L is a linear differential operator that is suitable for the problem and Lβ =
( 2π

365 )2Dβ +D3β. We choose the smoothing parameter λ by cross-validation method
as follows:

CV (λ) =
N∑

i=1

[ALW i − α−i
λ −

∫
Ti(s)β

−i
λ (s)]2ds

where α−i
λ and β−i

λ are the estimates of α and β obtained by minimizing the penalized
residual sum of squares based on all the data except (Ti, ALWi).

We use 65 basis functions to represent the temperature curves and 35 Fourier basis
functions to represent β. With this number of basis functions for β, it would be possible
to exactly fit the data from the 16 weather stations. However, we want to see how well
cross-validation would help us in arriving at a reasonable fit by penalizing harmonic
acceleration. Figure 6.40 plots the cross-validation score against the logarithms of
various values of λ. The plot shows the minimum point over the range of values plotted.
We choose λ = 109.5 for the final fit, corresponding to the lower minimum in the plot.
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Figure 6.40: The cross-validation score function CV (λ) for fitting log annual wind by
daily temperature variation, with a penalty on the size of harmonic acceleration. The
logarithm of the smoothing parameter is taken to base 10.

Figure 6.41 shows the estimated regression function after the application of the
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roughness penalty approach along with point-wise 95% confidence limits; the intercept
value is 1.1851. The confidence intervals in the beginning of the year contain zero,
suggesting that the influence of temperature on wind in that period is not important.
However, we see a strong peak in the middle of the summer followed by a valley in the
early fall. This pattern is, in effect, computing a contrast between summer and early fall
temperatures, with more emphasis on the autumn. This pattern is repeated by another
peak (weaker than the first one) in the middle of fall followed by a valley in late fall.
This pattern favors weather stations that are comparatively warm during summer and
some variation of warm and cool during fall.
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Figure 6.41: Estimate β(t) for predicting log annual wind from average daily
temperature with a harmonic acceleration penalty and smoothing parameter set to
109.5. The dashed lines indicate point-wise 95% confidence limits for values of β(s).

In Figure 6.42, we have plotted the observed values ALW i against the fitted values
ÂLW i obtained using this functional regression. The squared correlation between the
predicted and actual values in the plot is 0.88 and F-ratio is −0.65 for 5 and 11 degrees
of freedom. This simple regression diagnostic seems to confirm the model assumptions.
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Figure 6.42: Observed values ALW i of log annual wind plotted against the values
ÂLW i predicted by the functional regression model with the smoothing parameter
chosen by cross-validation. The straight line corresponds to zero residuals.

6.6 Functional linear model: Prediction of wind speed from

temperature

We now consider a fully functional linear model in which both the response (log wind
speed) and the covariate (temperature) variables are functions.

Predicting temperature is relatively easy, but predicting wind is quite another thing.
Certainly there are important wind effects due to climate zones, but can we get additional
predictability from the behavior of temperature? In Lithuania, it seems likely, that the
behaviour of wind is in line with temperature behaviour, it seems that when temperature
is increasing the wind speed is increasing as well and vice versa. In this section we want
to investigate to what extent we can predict the complete log daily wind profile LW of
a weather station from information in its complete daily temperature profile T .

Because all the functions in this study are intrinsically periodic, we expand both
the log wind speed and temperatures in Fourier series. We pre-processed the data by
fitting a Fourier series with 65 terms, applying a roughness penalty smoother in order to
eliminate very local variation. In order to predict log wind speed from temperature we
recall the formula presented in equation (6.1) where log wind speed LWi is defined as
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in the following form:

LWi(t) = β0(t) +

∫

Ωt

β1(t, s)Ti(s)ds+ ǫi(t) (6.9)

In contrast of the concurrent model used in case of predicting log wind speed from
climate region, the regression function β1 in this case is a function of both s and t. The
regression function β1(s, t) for a fixed value of t is interpreted as the relative weight
placed on the temperature at day s that is required to predict log wind speed on day t.
The unweighted fitting criterion is the integrated residual sum of squares:

LMSSE3(β0, β1) =

∫ N∑

i=1

[LWi(t) − β0(t) −
∫
Ti(s)β1(s, t)ds]2dt

The smoothed log wind speed curves for all 16 weather stations are shown in Figure
6.43.
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Figure 6.43: Log Wind speed functions for all stations of Lithuania.

In figure 6.44 it is shown the intercept function β0 (see equation 6.3).

3LMSSE is a squared error fitting criterion for a linear model
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6. An Application of Functional Data Analysis to Forecast Weather Variables.

Figure 6.44: The intercept function

Figure 6.45: The functional parameter function β1(s, t) for the prediction of log wind
speed from temperature, estimated direct from the data. The value β1(s, t) shows the
influence of temperature at time s on log speed at time t.

Figure 6.45 displays the estimated regression surface β1(s, t) defined in equation
(6.2). The estimated intercept function β0 ranged over values smaller than the response
functions, and can therefore be considered to be essentially zero. The height of the
surface declines to near zero for large differences between s and t.
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We see that the function β1 estimated by this method is extremely variable and it
also turns out that this β1 gives perfect prediction of the given data in log wind speed.

0 50 100 150 200 250 300 350

 Day(s)

0

50

100

150

200

250

300

350

 D
a

y
(t

)

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Figure 6.46: Contour plot of estimated β1 function truncating both bases to 65 terms.

From figure 6.46 we can discern several aspects of the effect of temperature on
wind. For instance, temperature in February is negatively associated with wind in the
same period and it is positively associated for the most time of the year. Temperature
around May is positively associated with wind in the summer months. Temperature in
September has a positive association with wind throughout the year.

In order to assess the fit of the functional linear model we have chosen to consider
the squared correlation function defined as follow:

R2(t) = 1 −
∑

i

(ŷi(t) − yi(t))
2/
∑

i

(yi(t) − y(t))

For all stations plotted in Figures 6.47-6.50, for instance, the values of R2 are more than
50%, illustrating that all stations are places whose wind fit closely to those predicted
by the model on the basis of their observed temperature profiles. However, Figures
6.47-6.50 demonstrates that the pattern of wind, judged by comparing the predictions
with the original data after subtracting the annual mean for the individual places, is
predicted very well for all stations.
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Figure 6.47: Original data (dots) and predictions (solid) of log wind speed relative to
mean for each of weather stations. The prediction is carried out using an estimated β1

function with the both bases truncated to 65 terms.
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Figure 6.48: Original data (dots) and predictions (solid) of log wind speed relative to
mean for each of weather stations. The prediction is carried out using an estimated β1

function with the both bases truncated to 65 terms.
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Figure 6.49: Original data (dots) and predictions (solid) of log wind speed relative to
mean for each of weather stations. The prediction is carried out using an estimated β1

function with the both bases truncated to 65 terms.
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Figure 6.50: Original data (dots) and predictions (solid) of log wind speed relative to
mean for each of weather stations. The prediction is carried out using an estimated β1

function with the both bases truncated to 65 terms.
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Functional linear model: Prediction of wind speed from temperature

6.6.1 PCA of wind speed

After the PCA analysis applyied on temperature data, it is natural to apply PCA analysis
also on the wind speed data predicted by the functional linear model.

Figure 6.51 shows the two principal component functions by displaying the mean
curve along green line and red line indicating the consequences of adding and subtracting
a small amount of each principal component. We observe that these two harmonics
account for 63% of the variation around the mean log-wind speed curve. We see that the
first harmonic, accounting for 39% of the variation, shows essentially a contrast between
winter and summer log-wind speed levels and that the second harmonic represents a
relative constant vertical shift in the mean.
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Figure 6.51: Principal components analysis of log-wind speed: The two principal
component functions or harmonics are shown as perturbations of the mean, which is
the blue line. The green line show what happens when a small amount of a principal
component is added to the mean, and the red line show the effect of subtracting the
component. The top panel contains the strongest component.

Applying the VARIMAX rotation algorithm as in case of temperature we obtain the
results plotted in Figure 6.52. The first component portrays variation that is strongest in
second part of the year and the second captures primarily variation from the first part of
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the year.
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Figure 6.52: Rotated harmonics for log-wind speed (Varimax rotation): The two rotated
principal component functions are shown as perturbations of the mean, which is the
blue line. The top panel shows variation primarily in the second part of the year. The
bottom panel shows variation primarily in the first part of the year.

Also for wind speed data it is clear two see that all meteorological stations can be
represented by two clusters, as it is concluded in temperature case even the general
percentage variation both groups explain is less than the one obtained in case of
temperature data.

6.7 Conclusions

This paper has described the purpose, concepts, and some of the methods of functional
data analysis in the context of analyzing temperature and wind speed data. These
methods were applied to 27 years of weather data in 16 meteorological stations in
Lithuania. Instead of working with discrete data, functional data analysis allowed for
statistical tests to be performed on the data represented as functional objects. The
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process of transforming the data into a functional form included generalized cross
validation tests and minimization of sum of squared residuals.

The main goal of this paper was to provide a model for wind speed which is easily
understandable and give a reliable prediction in time. We have proposed the functional
linear model observed in different patterns which is powerful enough to describe the
dynamics of wind speed in time.

The functional linear model firstly is used to predict wind speed from climate zone
using functional principal component analysis. Secondly, annual wind speed is fitted by
using temperature as a functional covariate, where the harmonic acceleration roughness
in the regression coefficient function is penalized. Thirdly the full wind speed profile is
fitted by the regressing on the full temperature profile, using a level of smoothing by
applying generalized cross-validation criterion. In order to compare the predictions, we
calculated the squared correlation coeficient (R2). The forecasting results from all three
approaches using the functional techniques are promising.

Further analysis can be done to study the rate of change of the wind speed function
as a dependent variable and the usage of other dimension reduction techniques.
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