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Abstract: Despite decades of study, the factors that controlled the formation and evolution of the upper
reaches of the Yellow River, including uplift of the northeastern Tibetan Plateau, Pliocene-Pleistocene
climate change, and autogenetic processes are still poorly constrained. The stratigraphic record
of such paleogeographic evolution is recorded in the sequence of nine terraces formed during
progressive incision of the Yellow River in the last 1.7 Ma. This article investigates in detail for
sediment provenance in terraces of the Lanzhou area, based on heavy-mineral and geochemical (REE)
signatures. Two main provenance changes are identified, pointing each to a major paleogeographic
reorganization coupled with expansion of the upper Yellow River catchment and enhanced sediment
fluxes. The first change took place between the deposition of terrace T9 (formed around 1.7 Ma) and
terrace T8 (formed around 1.5 Ma), when rapid fluvial incision point to tectonic control and active
uplift of northeastern Tibetan Plateau. The second change took place between deposition of terrace
T4 (formed around 0.86 Ma) and terrace T3 (formed around 0.14 Ma), during a period of low incision
rates and notably enhanced sediment fluxes as a response to enhanced East Asian Summer Monsoon
and consequently increased precipitations, pointing instead chiefly to climatic control.

Keywords: provenance analysis; tectonic versus climatic control; early-middle Pleistocene transition;
Yellow River terraces; Lanzhou (northern China)

1. Introduction

The Yellow River is the sixth longest river and carries the highest sediment load in the world [1,2].
The upper course of the Yellow River drains the central and northeastern Tibetan Plateau, and
reconstructing its origin and early history is key to understanding the relationship between fluvial
incision, climate variation, and basement uplift [3–9]. In the northeastern Tibetan Plateau, the Yellow
River is deeply incised into a series of intermontane basins and tectonic ranges. The valley contains a
series of fluvial terraces, which preserve the record of successive stages of plateau uplift and climatic
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change [10]. Based on the chronological sequence of the terraces, the Yellow River system was
interpreted to have been formed since the middle Pleistocene as a response either to the accelerated
tectonic uplift of the northeastern Tibetan Plateau [3,4,6,7,10,11], or to climatically-driven expansion of
lake systems breaching topographic barriers [12–14].

Previous provenance studies of Yellow River sediments emphasized mainly the spatial
differentiation among upper, middle, and lower modern fluvial reaches using zircon and heavy-mineral
data [9,15–20]. However, there are few studies using heavy-mineral data to study paleo-drainage
changes of the upper Yellow River on time scale. Zircon U-Pb geochronology was used to infer
provenance of the upper Yellow River terraces in the Lanzhou area [18,21], but based on a limited
number of grains (~100) per sample. In the complex northeastern Tibetan Plateau area, a considerably
higher number of valid zircon ages need to be obtained (≥250 per sample) [22,23] in order to reliably
identify subtle provenance differences in the dataset.

To improve our understanding of the evolution of the upper Yellow River catchment and to
explain the role of several interconnected factors—including regional topography, tectonic deformation,
and climatic change—we have carried out detailed provenance analysis of the Yellow River terraces
well exposed in the Lanzhou area based on heavy-mineral and geochemical data. Heavy mineral
compositions are often used to infer sedimentary provenance. Many heavy mineral species are found
in sediment or sedimentary rocks, many of which are diagnostic sedimentary source indicators [24].
Differences in heavy mineral assemblages can often be used to differentiate different sediment transport
routes [25]. Rare earth elements (REE) are generally regarded as useful in identifying the origin
and formation mechanism of source rocks [26] and have been increasingly used in recent years as
provenance tracers, because REE are less fractionated during the progress of weathering, transport,
and sedimentation [27–31]. In order to increase throughput, we relied on the QEMSCAN (Quantitative
Evaluation of Minerals by Scanning Electron Microscopy) method for heavy-mineral analyses, whereas
geochemical signatures were determined by LA-ICP-MS (laser ablation and Inductively coupled
plasma mass spectrometry).

2. Yellow River Terraces in the Lanzhou Area

The Lanzhou Basin, located at the northeastern edge of the actively uplifting Tibetan Plateau, is
part of the larger Longzhong Basin crossed by the upper Yellow River [32,33] (Figure 1) and including
deposits of Late Cretaceous to Cenozoic age [34]. The Lanzhou basin, a graben-like structure 5–10 km
wide and extending over a length of 40 km from Hutouya in the west-northwest to Sangyuanxia in the
east-southeast, and it is divided into a western sub-basin delimited to the north by the Jinchengguan
fault and an eastern sub-basin delimited by the Baitashan and Leitanhe fault in the west and by the
Gaolan Mountains in the south [35] (Figure 1b).

Along the northern margin of the eastern Lanzhou sub-basin, the stepwise incision of the Yellow
River has formed nine terraces (from the oldest T9 at the top to the youngest T1 at the base) (Figure 1a,b).
Terraces T9 to T2 are strath terraces covered by loess-paleosol of different thickness and beveled
across either Cretaceous-Cenozoic sandstone or Precambrian basement [10,11] (Figure 1c). The highest
terrace T9, studied in the Yaogou section, lies 333 m above the modern river, is based on red Cenozoic
sandstone, and consists of 10 m of fluvial gravel overlain by ~22 m of fluvial sand and clay [36–38].
Terrace T8, studied in the Jiuzhoutai section, lies 100 m below T9, is also based on red Cenozoic
sandstone, and consists of 2–3 m of fluvial gravel [11]. Terrace T7, studied in the Dunwashan section,
lies 140 m above the modern river and consists of 6 m of fluvial gravel overlain by 12 m of overbank
deposits. Terrace T6, exposed along the northern margin of the eastern Lanzhou basin and studied
in the Dalanggou section, lies 127 m above the modern river and consists of 3–4 m of fluvial gravel
overlain by 18 m of fluvial sand. Terrace T5, exposed in a narrow strip between the Xiaoshagou and
Xiaogou sections, lies 108 m above the modern river consists of 3–4 m of fluvial gravel overlain by
~11 m of interchannel sand. Terrace T4, exposed almost along the entire length of the Lanzhou basin
and studied in the Zaoshugou section, lies 99 m above the modern river and consists of 4–6 m of fluvial
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gravel overlain by 6–10 m of fluvial sand. The most widely exposed and preserved best terrace T3 lies
60 m above the modern river and comprises of 5–7 m of fluvial gravel overlain by 10 m of fluvial sand
in the Baitashan section. The lowest strath terrace T2 lies 23 m above the modern river and consists
of 5 m of fluvial gravel and ~10 m of fluvial sand in the Luoguogou section. Terrace T1, consisting
of fluvial gravel overlain by fluvial silt, is not studied here because it is poorly exposed and mostly
occupied by buildings of Lanzhou city. Based on paleomagnetic and optically-stimulated-luminescence
(OSL) dating of the base of loess-paleosol sequences, the ages of these terraces have been determined
as 0.05 Ma (T2), 0.14 Ma (T3), 0.86 Ma (T4), 0.96 Ma (T5), 1.05 Ma (T6), 1.24 Ma (T7), 1.5 Ma (T8), and
1.7 Ma (T9) [10,11,38].
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Figure 1. Yellow River terraces in the Lanzhou area. (a) Terraces distribution and sample location
(modified from [10,38]). (b) Geological map of the Lanzhou area (modified from [19,21]). Geological
units: 1: Holocene fluvial sediments; 2–3: Pleistocene loess-paleosol sequence; 4: Wuquan fluvial gravel
formation; 5: Tertiary sandstone and glutenite; 6: Cretaceous purplish-red sandstone and greyish
green siltstone; 7: Ordovician greyish green andesite and meta-andesite; 8: Precambrian basement.
(c) Syntheses of stratigraphic and chronological data from loess-paleosol sequences covering terrace
surfaces. The terraces’ ages were obtained by measuring the magnetostratigraphy (T9–T4) and optically
stimulated luminescence (OSL, T3–T2) dating of loess-paleosol sequences covering these terraces
(modified from [10,38]).
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3. Sampling and Methods

Provenance analysis was carried out on eight sand samples collected in the eastern Lanzhou basin
from alluvial terraces T9 to T2, and on one modern sand sample (T0) collected from an active bar on
the Yellow River bed at Lanzhou (Figure 1a).

From each sample, heavy minerals were separated using the dense liquid tribromomethane
(density 2.89 g/cm3). Heavy-mineral separates were analyzed by QEMSCAN at Colorado School of
Mines (Golden, CO, USA), following the procedure described in detail in [39–41]. From 290 to 398
heavy-mineral grains were counted in each sample. For composite grains including more than one
mineral, the QEMSCAN determines the surface area percentage of each (Figure 2), thus providing full
information on all components.
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Figure 2. QEMSCAN image of heavy minerals in the modern Yellow River sample T0. Ky = Kyanite,
Sill = Sillimanite.

The concentration of major and trace elements, including REE (rare earth elements) are widely
considered as useful tracers of provenance [42–46]. Geochemical analyses were carried out on a
30–40 mg aliquot of each bulk sample crushed in an agate mortar, weighed into an airtight Teflon
decomposer, and moistened with a little extra-pure water. Next, we added 1 mL HNO3 and 1 mL
HF in Teflon containers left in ultrasonic bath for over 20 min, and the samples were steamed nearly
dry on a heating plate at 150 ◦C After repeating the operation three times, the residues placed in a
stainless-steel pot with 2 mL HNO3 and 3 mL extra-pure water were heated in oven at ~150 ◦C for over
24 h. The concentration of chemical elements was determined by LA-ICP-MS using Agilent 7700X and
Photon Machine Analyte 193nm at Key Laboratory of Mineral Resources in Western China, Lanzhou
University (Lanzhou, China).

Grain-size analyses on bulk samples were carried out by Laser Diffraction Particle Size Analyzer
at the Key Laboratory of Western China’s Environment Systems (Ministry of Education) of Lanzhou
University. All samples were air-dried and analyzed by a Mastersizer 2000 produced by Malvern
Instruments Ltd. (Malvern, UK) with Hydro2000G automatic sampler. The measuring range is from
0.02 to 2000 µm, and the median particle size D50 has an accuracy of ±1%.
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4. Results

Different heavy-mineral assemblages in superposed Yellow River terraces of the Lanzhou area,
together with varying REE patterns, indicate major provenance changes through time.

4.1. Heavy-Mineral Assemblages

Transparent heavy-mineral suites in modern Yellow River sand and in Pleistocene to Holocene
terraces are invariably dominated by amphibole (46–58%) and epidote (22–29%) (Figure 3a, Table 1).
The abundance of amphibole indicates prominent contributions from basement rocks [24,47], with
the amphibole series forming in a wide range of temperature and pressure conditions in igneous and
metamorphic rocks [48]. A ratio of amphibole versus total heavy minerals has been used to reflect past
changes in the origin of loess from the central Chinese Loess Plateau [49]. Because more than 73% of the
heavy-mineral fraction is composed of amphibole plus epidote in Yellow River terraces, we here use
the ratio between these two dominant minerals as a tracer of provenance change. Amphibole accounts
for less than 50% of the assemblage in terraces T8 and T3–T2 as well as in T0, whereas epidote displays
peak abundance in terraces T3 and T2 where the amphibole/epidote ratio is close to 1 (1.01–1.08 versus
1.5–2.7 in older terraces).
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Figure 3. Comparison between heavy-mineral spectra from Yellow River terraces and the paleoclimatic
record. (a) Heavy-mineral data from Yellow River terraces in the Lanzhou area. (b) Correlation between
formation age of Yellow River terraces and height above the river (mod. from [10,38]). The less steep
slope between T7 and T3 indicates lower rates of rock uplift and river incision at that time. (c) Variations
of the East Asian summer monsoon during the past 1.8 Ma, based on the stacked magnetic susceptibility
(χ) records on the Chinese Loess Plateau (CLP) [50]. (d) Variations of global ice volume during the past
1.8 Ma, based on the benthic oxygen-isotope record [51]. Mineral color-code as in Figure 2.
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Table 1. Heavy-mineral assemblages in samples from the Yellow River terraces in the Lanzhou area in volume% (data from [52])

Sample
Number Age Zircon Opx # Cpx # Olivine Amphibole Apatite Andalusite

/Ky/Sill# Staurolite Tourmaline Garnet Titanite Rutile Monazite Epidote

T9 * 1.70 Ma 0 2 1 0 55 3 2 0 0 2 2 5 0 28
T8 1.50 Ma 0 2 5 0 46 4 0 0 0 2 3 8 0 29
T7 1.24 Ma 0 2 3 1 57 1 1 0 0 2 2 6 0 26
T6 1.05 Ma 1 2 3 1 58 1 0 0 0 4 2 4 0 25
T5 0.96 Ma 0 1 3 1 58 2 0 0 0 3 2 6 0 22
T4 0.86 Ma 0 2 3 0 54 3 1 0 0 1 1 4 0 30
T3 0.14 Ma 0 0 2 0 44 2 0 0 0 3 1 3 0 44
T2 0.05 Ma 0 1 3 0 44 1 0 0 0 3 1 4 0 41
T0 modern 1 1 6 0 47 3 0 0 0 4 4 8 0 26

* The name Tx stands for Yellow River terrace sample where x is a terrace number, T0 is the modern Yellow River bed sample. # Opx = Orthopyroxene; Cpx = Clinopyroxene; Ky = Kyanite;
Sill = Sillimanite.
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4.2. Rare Earth Elements

The total REE (
∑

REE) content in Yellow River terraces varies widely from 46 to 116 ppm.
In chondrite-normalized REE diagrams (Figure 4, Table 2), all samples show enrichment in light rare
earth elements (LREE, 43–108 ppm) and depletion in heavy rare earth elements (HREE, 3.4–8.2 ppm),
with negative Eu (Eu/Eu* = 0.67–0.84) and Ce (Ce/Ce* = 0.86–0.90) anomalies.
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Table 2. Rare earth elements concentrations (ppm) in sediments from the Yellow River terraces in the
Lanzhou area

Sample
Number Age La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

T9 * 1.70 Ma 10.470 18.676 2.140 8.260 1.580 0.383 1.402 0.210 1.306 0.250 0.759 0.100 0.677 0.105
T8 1.50 Ma 25.715 47.243 5.410 21.115 3.985 0.832 3.412 0.497 3.068 0.597 1.839 0.254 1.744 0.280
T7 1.24 Ma 13.480 24.928 2.934 11.420 2.219 0.533 2.031 0.312 2.024 0.396 1.211 0.172 1.175 0.194
T6 1.05 Ma 15.838 27.250 3.112 11.699 2.141 0.519 1.789 0.238 1.389 0.257 0.744 0.103 0.687 0.105
T5 0.96 Ma 12.582 22.681 2.666 10.430 2.025 0.515 1.843 0.269 1.664 0.316 0.966 0.132 0.895 0.144
T4 0.86 Ma 14.512 24.976 2.892 11.228 2.202 0.533 1.939 0.281 1.733 0.331 1.016 0.138 0.937 0.150
T3 0.14 Ma 18.592 33.793 3.882 14.859 2.853 0.643 2.471 0.371 2.252 0.442 1.386 0.189 1.318 0.213
T2 0.05 Ma 22.269 39.731 4.508 17.364 3.184 0.731 2.630 0.375 2.314 0.450 1.314 0.189 1.268 0.203
T0 modern 16.664 29.551 3.470 13.511 2.640 0.622 2.320 0.334 2.048 0.393 1.193 0.164 1.081 0.188

chondrite 0.367 0.957 0.137 0.711 0.231 0.087 0.306 0.058 0.381 0.0851 0.249 0.0356 0.248 0.0381

* The name Tx stands for Yellow River terrace sample where x is a terrace number, T0 is the modern Yellow River
bed sample.

REE curves are all similar, with minimum values for the oldest terrace T9 and maximum values for
terrace T8. REE contents are relatively high for both terraces T3 and T2 (Figure 4). For the interpretation
of REE concentration; however, it must be kept in mind that REE are preferentially hosted in ultra-dense
minerals such as monazite, and their abundance in sediments is consequently strongly affected by
hydraulic-sorting processes [53].

5. Discussion

The mineralogical and geochemical fingerprints of siliciclastic sediments are mainly controlled
by the lithology of source rocks, with superposed effects associated with climatic conditions in the
catchment and hydraulic sorting during erosion, transport, and deposition [9,54].

Most of the river sediments have similar and uniform REE patterns displaying enrichment
in light REE [55,56] which is inherited from source rocks, confirming that the sediments are not
anthropogenically polluted [57,58]. Heavy-mineral assemblages in Yellow River terraces and
geochemical data suggest that changes in sediment composition took place between terraces T9
and T8, and between terraces T4 and T3. The provenance changes cannot be discounted as a
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grain-size effect because T3 and T2 have similar composition despite their markedly different grain-size
distributions (Figure 5). This is confirmed by the principal-component diagram shown in Figure 6,
where terraces T3 and T2 plot on the right side of the PC1 component, accounting for ~82% of data
variance. Principal-component analysis also suggest that terrace T8 and modern fluvial sand T0 are
distinguished from other samples on PC2, accounting for ~15% of data variance. This reflects at least
in part the slightly lower content in hornblende relative to samples T9 and T7–T4. Some studies in
Europe have shown that higher uplift rates may decrease the preservation of climate-controlled fluvial
terraces, whereas moderate to low uplift rates will enable their preservation [59–61]. Accurate field
investigations have failed to find any Yellow River terrace in the Lanzhou area formed between 0.86 Ma
and 0.14 Ma [10]. However, it is noteworthy that this provenance change took place between 0.86 and
0.14 Ma, a long period of decreased tectonic activity when river terraces were not formed— or were
formed but were not preserved—in the Lanzhou basin [10] (Figure 3b). For this reason, we could not
more precisely constrain the age of such a compositional change.
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Before 1.45 Ma (terraces T8 and T9), the East Asian summer monsoon was relatively stable, as
documented by magnetic-susceptibility data on Chinese loess [50] (Figure 3c), and there is no evidence
of large variations in ice volume [51] (Figure 3d). This speaks against climate change as a main cause
for the change in heavy-mineral assemblages and geochemical signatures observed between terraces
T9 and T8. In this time window—i.e., between 1.7 and 1.5 Ma—the Yellow River rapidly incised its
talweg by as much as 100 m. If this was not triggered by climatic change, then active tectonic uplift
remains as the most plausible cause [62].

Between 1.24 Ma (terrace T7) and 0.86 Ma (terrace T4), the Yellow River course was shorter, its
drainage basin smaller, and its sediment load notably less than today [12,13,63]. The timing of major
paleogeographic change took place during, and in the final part of the so-called “mid-Pleistocene climatic
revolution” (or early-middle Pleistocene transition; 1.4-0.424 Ma), characterized by a progressive
increase in the amplitude of climatic oscillations [64,65]. At that time, the East Asian summer monsoon
intensified and the amplitude of ice-volume variation between glacial and interglacial stages increased,
as documented by magnetic-susceptibility data on Chinese loess [50,51] (Figure 3c,d). Increased glacial
erosion may have enhanced sediment fluxes [66–68] at that time, when a phase of decreased rock uplift
and deformation in the Lanzhou area is suggested by the decrease in incision rates as highlighted
in Figure 3b. Tectonic control is unlikely for this time period [62], during which heavy-mineral and
geochemical signatures have remained remarkably constant.

After 0.86 Ma, the change in heavy-mineral assemblages and geochemical fingerprints observed
between terraces T4 (0.86 Ma) and T3 (0.14 Ma) may be explained with the stepwise addition of large
areas to the upper reaches of the Yellow River by headward erosion [12,63]. This scenario is consistent
with the increase in precipitations as a consequence of enhanced East Asian Summer Monsoon [50]
and with the increased amplitude in ice-volume variation [51]. Between ~0.5 and 0.1 Ma, Yellow River
sediment fluxes markedly increased, while the Gonghe basin, the Tongde basin, and the Jungong basin
were successively incorporated in the Yellow River drainage system [4,12,13].

6. Conclusions

The study of heavy-mineral assemblages and REE patterns characterizing Yellow River terraces in
the Lanzhou area reveals two notable provenance changes, from ~1.7 Ma (terrace T9) to ~1.5 Ma (terrace
T8) and from ~0.86 Ma (terrace T4) to ~0.14 Ma (terrace T3). Two paleogeographic reorganizations
took place during those time intervals, both associated with phases of expansion of the upper Yellow
River catchment and consequently increased sediment fluxes.

The height difference of ~100 m between terraces T9 and T8 indicates rapid incision during the
early Pleistocene (early Calabrian), suggesting that the first shift was triggered tectonically by a phase
of rapid uplift of the northeastern Tibetan plateau. The second reorganization took place during the
final part of the middle Pleistocene transition (late Calabrian), when the East Asian summer monsoon
intensified and the amplitude of ice-volume variation between glacial and interglacial stages increased.
River incision was much slower at this time, indicating that this second, major reorganization was
chiefly climatically controlled.
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