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Abstract The topological susceptibility is computed in the
SU(3) gauge theory at temperatures T above the critical tem-
perature Tc using master-field simulations of very large lat-
tices, where the infamous topology-freezing issue is effec-
tively bypassed. Up to T = 2.0 Tc no unusually large lattice
effects are observed and the results obtained in the continuum
limit confirm the expected rapid decay of the susceptibility
with increasing temperature. As a byproduct, the reference
gradient-flow time t0 is determined in the range of lattice
spacings from 0.023 to 0.1 fm with a precision of 2 per mille.

1 Introduction

The temperature dependence of the topological susceptibility
χt in QCD is of interest in connection with the dark-matter
candidacy of the axion, a hypothetical particle related to the
so-called strong CP problem [1–4]. Computations of χt in
numerical lattice QCD are however not straightforward for
various reasons. A direct sampling of the topological charge
is often impractical, for example, because the simulation
algorithms tend to get trapped in a fixed-charge sector of
field space. Another source of difficulty is the fact that the
susceptibility decreases rapidly at high temperatures and con-
sequently becomes more and more sensitive to lattice effects.

Most computations of the topological susceptibility at
temperatures T larger than the critical temperature Tc per-
formed to date [5–14] rely on some form of reweighting
or the so-called integral method, where χt is obtained by
integrating its derivative with respect to T from low to high
temperatures. The systematic uncertainties and the statistical
errors are generally fairly large in these calculations, partic-
ularly so when the light quarks (which lead to an additional
chiral suppression of χt ) are included.
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Master-field simulations [15] bypass the topology freezing
issue by simulating lattices with four-dimensional volumes
V satisfying

χt V � 1. (1.1)

Fixed-topology effects are of order 1/V in this case [16,17]
and are thus parametrically smaller than the statistical errors,
which decrease like V−1/2 at large V . In the present paper,
master-field simulations are used to calculate the topologi-
cal susceptibility in the SU(3) gauge theory at temperatures
approximately equal to 1.5 Tc and 2.0 Tc. The study also
serves as a first test of the feasibility of such simulations
at non-zero temperatures, where having a physically large
three-dimensional volume may be of some general interest.

In the next section, the theoretical framework is described
in more detail. Since the topological susceptibility is rapidly
varying with temperature, its extrapolation to the continuum
limit requires a highly accurate scale setting. A separate com-
putation of the reference gradient-flow time t0 [18] was there-
fore performed using master-field simulations at vanishing
temperature. The computation of χt is discussed in Sect. 3
and conclusions are drawn in Sect. 4.

2 Theoretical framework

2.1 Lattice theory

The SU(3) Yang–Mills theory studied in this paper is set up
on hyper-cubic L0 × L3 lattices with spacing a and periodic
boundary conditions in all directions. At high temperatures
T = 1/L0, the time extent L0 of the lattice is always taken to
be much smaller than its spatial size L . For the gauge action
the Wilson plaquette action [20] with bare coupling g0 is
chosen.
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2.2 Definition of χt

Since the correlation function of the topological density

q(x) = − 1

32π2 εμνρσ tr{Fμν(x)Fρσ (x)} (2.1)

(where Fμν denotes the field strength of the gauge potential)
has a non-integrable short-distance singularity, the topolog-
ical susceptibility is only formally given by

χt =
∫

d4x 〈q(x)q(0)〉. (2.2)

A sensible definition of the susceptibility in the continuum
theory must therefore be provided before it can be computed
on the lattice.

In the present context, the susceptibility is tied to the
flavour-singlet U(1) chiral symmetry of QCD, which
becomes a non-anomalous symmetry when the axion field
is included in the theory. The soft breaking of the symmetry
by the quark masses then leads to the well-known formula
relating the axion mass to χt , provided the latter is defined
consistently with the chiral Ward identities. When this con-
dition is met, χt is unambiguously determined and can be
shown to be given by a singularity-free expectation value of
“density chains” [21–23].

Far easier to evaluate than the density chains is the topo-
logical charge at positive gradient-flow time [18]. The associ-
ated susceptibility does not require any subtraction or renor-
malization [19] and is known to coincide with the suscepti-
bility defined through the density chains, at least in the pure
gauge theory [24]. All this holds in the continuum limit of the
lattice theory, provided the flow time is held fixed in physical
units when the lattice spacing is taken to zero. In the present
paper, the topological susceptibility is measured in this way,
the implementation of the gradient flow and other technical
details being the same as in Ref. [18].

2.3 Physical regimes at high temperatures

The topological susceptibility is a potentially complicated
function of the temperature T and the spatial volume L3,
particularly so when L is less than 1 fm, where the effective
gauge coupling is small and the semi-classical approxima-
tion becomes asymptotically exact1. If L is much larger than
the correlation lengths in the pseudo-scalar sector, χt is inde-
pendent of L up to exponentially small terms. This regime
sets in at values of L of a few fermi, for all temperatures,
but at high temperatures the bound (1.1) only holds at much
larger spatial sizes.

1 In the case of a four-dimensional spherical space-time, χt can be
worked out analytically in this limit and is found to be a steep function of
V [25]. At non-zero temperatures, the situation is far more complicated
already at the classical level [26,27].

At these temperatures there is then an interesting interme-
diate regime, in which L is large while the variance

〈Q2〉 = χt V, V = L3/T, (2.3)

of the distribution of the topological charge Q is much
smaller than 1. It is plausible that χt is dominated by the
sectors with charge Q = ±1 in this case. Moreover, if
their contribution is assumed to be suppressed by the fac-
tor exp{−Smin}, Smin being the minimum of the gauge action
in these sectors (the instanton action), the renormalization
group implies that

χt ∝
T→∞ T−7 (2.4)

with a logarithmically varying proportionality constant. It
goes without saying that this argumentation is quite crude
and that Eq. (2.4) should not be taken as a solid theoretical
result.

2.4 Computation of the reference flow time t0

The extrapolation to the continuum limit of lattice results for
the topological susceptibility requires a precise scale-setting.
When the limit is taken, the temperature must be held fixed in
units of some physical scale such as the Sommer radius [28].
Moreover, since χt has mass dimension 4, its value must also
be expressed in such units. In view of the steep temperature
dependence of χt , a relative numerical error in the reference
scale thus results in an approximately 11 times larger error
of the converted values of χt .

The target statistical precision of χt in the present paper
is a few percent and the reference scale must therefore be
known with errors less than a few per mille to permit unbi-
ased continuum-limit extrapolations. This level of precision
is generally difficult to reach in practice, but can be attained
with a limited computational effort if the reference gradient-
flow time t0 [18] is used to set the scale.

The values of t0/a2 quoted in Table 1 were obtained from
master-field simulations of physically large lattices. In the
range of β = 6/g2

0 considered, the lattice spacing decreases
from about 0.10 to 0.023 fm. The lattice sizes L are at least
6 fm and reach values above 9 fm in some cases. On all
these lattices, χt V is in the thousands and frozen-topology
effects are therefore expected to be neglible. The numbers
Nmf of master fields included in the measurement of t0/a2

were adjusted so as to have approximately constant statistical
errors of about 2 per mille. Further details of the simulations
are reported in appendix A.

As shown in Fig. 1, the data for ln(t0/a2) rise roughly
linearly with β and can be well represented by a polynomial

ln(t0/a
2) =

4∑
k=0

ck(β − 6)k (2.5)
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Table 1 Lattice parameters and
simulation results for t0/a2 Lattice β Nmf t0/a2 Lattice β Nmf t0/a2

964 5.96 1 2.7875(53) 1924 6.53 2 15.156(28)

964 6.05 4 3.7834(47) 1924 6.61 4 18.714(30)

964 6.13 8 4.8641(85) 1924 6.69 5 23.089(48)

964 6.21 4 6.219(13) 1924 6.77 6 28.494(66)

1284 6.29 3 7.785(14) 2564 6.85 3 34.819(84)

1284 6.37 5 9.755(19) 2564 6.93 5 42.82(11)

1284 6.42 7 11.202(21) 2564 7.01 7 52.25(13)

1284 6.45 11 12.196(21)

Fig. 1 Plot of the simulation
results for ln(t0/a2) (diamonds)
and the interpolation (2.5),(2.6).
As shown by the plot on the
right, setting the scale with t0 or
the available data for the
Sommer radius r0 [29,30]
comes to the same within a
margin of about 1% (grey band;
r0 was computed using different
methods above and below
β = 6.5). The sinusoidal curve
is obtained from the fit function
(2.5) and the one published by
Necco and Sommer for r0/a
[30]
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of degree 4. A least-squares fit yields the values

(c0, . . . , c4)

= (1.16390, 3.37888,−1.36231, 1.20666,−0.45672)

(2.6)

for the coefficients. The fit approximates t0/a2 in the range
5.96 ≤ β ≤ 7.01 with an estimated error of 2 per mille. A
comparison with more precise results previously obtained on
small lattices [24] confirms this up to β = 6.42 and the fit
also reproduces the values at β = 6.3, 6.4, . . . , 7.0 quoted
in Ref. [31] within errors varying from 0.2 to 1.1 percent.

2.5 Conversion to physical units

The SU(3) Yang–Mills theory is unphysical and any assign-
ment of physical units is therefore a bit arbitrary. Often the
Sommer radius r0 is taken as the reference scale and its phys-
ical value is set to 0.5 fm. In the range 5.96 ≤ β ≤ 6.92 of
validity of the fit curves of both r0/a [30] and t0/a2, the ratio

of scales plotted in Fig. 1 averages to 0.950. The traditional
choice r0 = 0.5 fm thus amounts to setting

(8t0)
1/2 = 0.475 fm. (2.7)

Throughout this paper the conversion to physical units is
performed using Eq. (2.7) and the values of t0/a2 given by
the interpolation (2.5).

3 Computation of the topological susceptibility

The computations reported in this section follow the lines of
Refs. [15,18] except for the fact that lattices at high temper-
atures are simulated.

3.1 Master-field simulations

In total six lattices were simulated, at two temperatures and
three lattice spacings at each temperature, so as to allow for
an extrapolation of the results to the continuum limit (see
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Table 2 Parameters of the high-temperature lattices

Label Lattice β Nmf a [fm] T [MeV] L [fm]
A1 6 × 2563 6.15533 10 0.073 449.1 18.7

A2 8 × 3843 6.35393 10 0.055 449.1 21.1

A3 12 × 5123 6.65454 30 0.037 449.1 18.7

B1 6 × 5123 6.35033 18 0.055 595.8 28.3

B2 8 × 7683 6.56185 20 0.041 595.8 31.8

B3 12 × 10243 6.87251 20 0.028 595.8 28.3

Table 2). The critical temperature Tc in the SU(3) gauge the-
ory is 294 MeV [32] and the chosen temperatures T are thus
about 1.5 Tc and 2.0 Tc. As will become clear below, the
bound (1.1) is well satisfied on all lattices. Moreover, the
relevant correlation lengths are much smaller than the spa-
tial sizes L , so that the master-field simulation strategy is
expected to work out.

At high temperatures, the Polyakov loop

P(x) = 1

3
tr{W (x)} (3.1)

(where W (x) denotes the Wilson line that passes through x
and wraps around space-time in the time direction) assumes
a non-zero expectation value. The expectation value breaks
the Z3 center symmetry of the theory and its phase is spon-
taneously chosen to be 0, 2π/3 or −2π/3. A technically
attractive choice of order parameter is the Polyakov loop
at positive flow time, since its distribution does not require
renormalization [19] and unambiguously shows the increas-
ingly strong polarization of the loop with increasing tempera-
ture (see Fig. 2). Like the freezing of the topological charge,
the spontaneous breaking of the center symmetry is asso-
ciated with very long autocorrelation times if the standard
simulation algorithms are used.

Master fields representative of the theory in a pure phase
can be built up in several steps from approximately thermal-
ized configurations on smaller lattices. If L is not very much
larger than L0, the simulation algorithm rapidly evolves

the gauge field to a field with definite polarization of the
Polyakov loop. Periodic extensions of the field in space to
larger lattices preserve the polarization and long equilibration
times caused by large domains with different polarization are
avoided. Reflections in space preserve the distribution of the
Polyakov loop too and additionally ensure that the topologi-
cal charge of the field and thus its effects on the correlation
functions [16,17] remain small.

3.2 Simulation results

In the continuum limit, the topological susceptibility is inde-
pendent of the flow time t at which the charge density q(x)
is computed, provided t is held fixed in physical units when
the limit is taken. The choice of the flow time however has an
influence on the size of the lattice effects. In the calculations
reported here, two values of t given in units of t0 were chosen
corresponding to smoothing ranges

√
8t [18] approximately

equal to 0.28 fm and 0.47 fm.
As explained in Ref. [15], χt can be obtained in master-

field simulations by integrating the two-point correlation
function of the charge density,

χt (R) = a4
∑
x0

∑
|x|≤R

〈q(x)q(0)〉, (3.2)

up to some sufficiently large radius R, where the integral
reaches its asymptotic value within statistical errors (see
Fig. 3 for illustration). Reflection positivity implies that the
asymptotic value is approached from above with an exponen-
tial rate given by the screening lengths in the pseudo-scalar
channel.

The bumps in the data shown in Fig. 3 and the plateaus at
R ≥ 1.2 fm are characteristic features of χt (R) on all lattices
listed in Table 2. At large T , small R and small flow times
t , χt (R) probes the two-point function of the topological
density at short distances, where perturbation theory applies.
The bumps in the data are in fact roughly matched by leading-
order perturbation theory (appendix B). This computation

Fig. 2 Normalized histograms
of Re {zP(x)} at flow time
t = 0.35 t0 measured on the A1
(left) and B1 (right) lattices. In
both cases, the bin size is 1/60
and the phase factor
z ∈ {1, exp(±i2π/3)} is chosen
so as to cancel the phase of the
average value of the Polyakov
loop
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Fig. 3 Values of χt (R) obtained on the A3 lattice at two flow times cor-
responding to smoothing ranges equal to 0.28 fm (squares) and 0.47 fm
(diamonds)

Table 3 Simulation results for χt

Run R/a
√
t/t0 t2

0 χt × 105 √
t/t0 t2

0 χt × 105

A1 20 0.590 2.233(89) 0.983 2.089(75)

A2 26 0.590 2.33(10) 0.983 2.281(79)

A3 39 0.590 2.12(12) 0.983 2.11(11)

B1 26 0.593 0.494(26) 0.988 0.402(14)

B2 34 0.593 0.400(20) 0.988 0.372(12)

B3 52 0.593 0.343(38) 0.988 0.370(32)

also shows that χt (R) is suppressed already at small R by
the gradient-flow smoothing of the charge density and then
gets further suppressed at larger radii by the negative (non-
perturbative) long-distance contributions.

The results for the topological susceptibility quoted in
Table 3 coincide with the calculated values of χt (R) at
R � 1.4 fm, where the asymptotic plateaus are, in all cases,
safely reached within errors.

3.3 Continuum limit

The calculated values of t2
0 χt must be expected to depend

on the lattice spacing, the leading effects near the contin-
uum limit being of order a2. Statistically significant lattice
effects are, however, only observed at the larger tempera-
ture considered (see Table 3 and Fig. 4). As further eluci-
dated in Sect. 3.4, it is in fact no suprise that the relative
size of the effects increases with temperature, since the lat-
tice expression for the topological charge density includes
non-topological contributions of order a2.

Linear extrapolation in a2/t0 of the data listed in Table 3 to
the continuum limit yield results for t2

0 χt with errors ranging
from 5.3 to 14 percent. The values obtained at the two flow
times considered agree within errors, as should be the case,
the ones at the larger flow time,

t2
0 χt = 2.25(12) × 10−5 at T

√
8t0 = 1.081, (3.3)

t2
0 χt = 3.43(27) × 10−6 at T

√
8t0 = 1.434, (3.4)

being a bit more precise. These figures are orders of magni-
tude smaller than the susceptibility t2

0 χt = 6.67(7) × 10−4

[24] at zero temperature and the observed rapid decrease
from T = 1.5 Tc to T = 2.0 Tc is in rough agreement with the
power law (2.4). The agreement might however be somewhat
fortuitous in view of the fact that the derivation of Eq. (2.4)
assumes the effective gauge coupling to be small, which is
not the case at these temperatures.

3.4 Miscellaneous remarks

Scaling behaviour. If both T and L are held fixed in phys-
ical units, the computational effort required for the genera-
tion of a single master field is expected to increase like a−6

when the continuum limit is approached. With respect to the
integral method, which scales approximately like a−10, this
behaviour is rather mild. However, if T is increased at fixed
a, L must grow too for the inequality (1.1) to remain true.
While the computational effort then scales like T 7 or so, the
higher cost of the simulations should be balanced against the

Fig. 4 Extrapolation of the
values of t2

0 χt × 105 listed in
Table 3 to the continuum limit
(left: A-lattices, right:
B-lattices). The data at flow
time 0.35 t0 (squares) and
0.97 t0 (diamonds) are
extrapolated linearly in a2, the
grey points at a = 0 being the
extrapolated values
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fact that the effective statistics provided by a single master
field increases proportionally to T 8.
Improved topological charge. In all computations reported
here, the standard symmetric expression was used for the
topological charge density on the lattice, in which the field
tensor Fμν(x) is given by the so-called clover formula. A
classically O(a2)-improved expression is then

q(x) = − 1

32π2 εμνρσ tr

{
Fμν(x)Fρσ (x)

−2

3
a2Fμν(x)[Fμρ(x), Fμσ (x)]

}
(3.5)

up to derivative terms that do not contribute to the total charge
Q. Contrary to what may be expected, the a2-correction
in Eq. (3.5) tends to increase the lattice-spacing depen-
dence of the topological susceptibility. A complete O(a2)-
improvement of the theory [33] and the gradient flow [34] is
thus presumably required if the convergence to the contin-
uum limit is to be accelerated.
Finite-volume effects in traditional simulations. At high tem-
peratures T , the basic screening lengths are expected to
decrease proportionally to 1/T . The approximate suscep-
tibility χt (R) therefore approaches its asymptotic value at
large R more and more rapidly, but as suggested by Fig. 3,
a significant R-dependence may persist in a core range of
R extending up to R = 1.2 fm or so. In traditional high-
temperature simulations, where the topology freezing is over-
come in ways other than through a large volume, spatial sizes
L ≥ 2.4 fm are thus required to be safe of finite-volume
effects.

4 Conclusions

Dimensional analysis suggests that the topological suscep-
tibility grows proportionally to T 4 at high temperatures T ,
but instead it decreases rapidly as a result of a nearly perfect
cancellation of short- and long-distance contributions. This
behaviour is commonly attributed to the topological nature of
the charge density q(x), i.e. to the fact that variations of q(x)
with respect to the gauge field are total derivatives. None of
the non-perturbatively well-defined expressions for the sus-
ceptibility known to date however embodies this property
of the charge density to the extent that the smallness of the
susceptibility at high temperatures would be explained.

Master-field simulations provide new opportunities for
non-perturbative studies of QCD. At non-zero temperatures
below Tc, for example, the physically large volumes that
become accessible in this way allow the theory to be stud-
ied in kinematic regimes close to the thermodynamic limit,
where multi-hadron states make important contributions to
the partition function. Another motivation for the use of

this new type of simulations is the fact that the topology-
freezing issue (which tends to become severe at lattice spac-
ings a ≤ 0.05 fm) can be bypassed in a conceptually trans-
parent manner.

The computations of the topological susceptibility repor-
ted in the present paper could proceed straightforwardly for
this reason and led to results with unprecedented precision. At
temperatures higher than the ones considered here, master-
field simulations however require larger and larger lattices
to be simulated and thus become impractical at some point.
Moreover, the topological susceptibility must be expected to
be increasingly sensitive to lattice effects. To be able to con-
trol these effects, the lattice spacing must then be decreased.
This second problem is, however, not specific to master-field
simulations and will persist until an expression for the sus-
ceptibility is found which is naturally small at high temper-
atures.

All simulations were performed on a HPC cluster at
CERN and on the Marconi machine at CINECA through
agreements of INFN and the University of Milano-Bicocca
with CINECA. We gratefully acknowledge the computer
resources and the technical support provided by these insti-
tutions.
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Appendix A: Simulation algorithm and other implemen-
tation details

Apart from some specific technical details related to the very
large sizes of the simulated lattices, the master-field simula-
tions reported in this paper followed established lattice-QCD
strategies.

A.1 Simulation algorithm

All simulations were performed using the HMC algorithm
[35] with trajectory length τ = 2. The molecular-dynamics
equations were integrated by applying the forth-order inte-
grator given by Eqs. (63) and (71) in Ref. [36]. This scheme
proves to be highly efficient and an only mild adjustment of
the step number nstep was required on the larger lattices in
order to preserve a good acceptance rate Pacc (see Table 4).

Using standard MPI communication functions, the com-
putational work was distributed over up to 32768 processing
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Table 4 Simulation parameters

Run nstep Pacc τth 
τmf

A1 13 0.95 15360 480

A2 13 0.91 10560 480

A3 17 0.93 8160 480

B1 13 0.87 3840 480

B2 17 0.89 6240 480

B3 18 0.85 6080 960

τth and 
τmf are given in units of molecular-dynamics time

units. Most demanding from the point of view of the memory
requirements was the measurement program for the topolog-
ical susceptibility, which occupied a total memory of about
16 TB in the case of the largest lattice.

A.2 Thermalization

As already indicated in Sect. 3, the master fields were gen-
erated in several steps from smaller lattices, where thermal-
izations of the gauge field alternate with extensions to the
next larger lattice through reflections at the lattice planes.
The plaquette action per point is unchanged after a reflec-
tion and the topological charge vanishes, but the gauge-field
tensor changes abruptly across the reflection planes, which
can give rise to a low acceptance rate in the early phase of
the subsequent thermalization. A few update cycles with a
more accurate integration of the molecular-dynamics equa-
tions may be required in this case to get the thermalization
started.

The lengths τth of the final thermalization runs listed in
Table 4 are much longer than the relevant autocorrelation
times. A drift in the single-field expectation values [15] has
in fact never been seen after these long thermalization phases
(see Fig. 5 for an example). It may be worth noting in passing

4 8 12 16 20 24 28

Field number

−0.4

−0.2

0.0

0.2

0.4 δχt/χt

Fig. 5 Relative deviation from the ensemble average of the values of
the topological susceptibility computed using single master fields (run
A3, flow time 0.97 t0)

that outliers, such as the measurement number 25 in Fig. 5,
must occur with some non-zero probability, as in traditional
simulations, where whole ensemble averages may be simi-
larly outlying.

The separation 
τmf in simulation time of the master
fields included in the computations of expectation values
need not be particularly large, since any statistical correla-
tions among the fields are automatically taken into account
[15]. Autocorrelations however lead to larger statistical errors
relative to what they would be for uncorrelated fields. On the
B3 lattice, for example, the separation was duplicated with
respect to the other runs for this reason.

A.3 Use of quadruple-precision arithmetic

On the simulated lattices, significance losses of up to 11 dec-
imal places occur when the energy deficit 
H is computed
at the end of the molecular-dynamics evolution of the fields.
Standard IEEE 754 double-precision data and arithmetic may
be barely good enough under these conditions and it is, there-
fore, advisable to use quadruple-precision artithmetic in the
summation of the action densities over all lattice points. 
H
is then obtained with absolute precision given by the now
practically exactly accumulated numerical errors of the den-
sities. Assuming these are randomly distributed, their sum
scales like (V/a4)1/2 and the accumulated inaccuracies are
then far below any statistically relevant level.

A convenient portable implementation of quadruple-
precision numbers is through pairs of double-precision num-
bers. Algorithms for the associated arithmetic operations
were published by Dekker [37] many years ago. The subject
is also discussed in a book of Knuth [38] and more exten-
sively in an article by Shewchuk [39].

A.4 Parallel I/O

In master-field simulations, the computer time spent for field
configuration I/O may not be negligible. Current HPC sys-
tems however permit the storage facilities to be accessed
concurrently and thus offer a high aggregate I/O bandwidth.

In the I/O programs used in the present study, the lattice is
logically divided into fairly large rectangular blocks. The part
of the gauge field residing on a given block is then written
out in a portable format by one of the processing units. A
single field is thus stored in several files and advantage of the
parallel capabilities of the storage facility is taken by having
many processing units write their blocks concurrently.

Appendix B: Calculation of χt(R) in perturbation theory

In the continuum theory and at flow time t > 0, the integrated
correlation function
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χt (R) =
∫ 1/T

0
dx0

∫
|x|≤R

d3x 〈q(x)q(0)〉 (B.1)

of the topological charge density can be straightforwardly
expanded in powers of the gauge coupling. The computation
proceeds along the lines of Ref. [18] except for the fact that
the time components p0 of the momenta are quantized in
units of 2πT .

At high temperatures, where

8tT 2π2 � 1, (B.2)

the contributions of the p0 = 0 modes of the gauge field
to the leading-order expression for the two-point function of
the charge density are exponentially suppressed. Up to these
terms the latter is then given by

〈q(x)q(0)〉 = α2
s

T 2

π5(8t)3r3
γ

(
3

2
, r

)

×
{

3γ

(
3

2
, r

)
− 4γ

(
5

2
, r

)}
, (B.3)

αs being the strong coupling,

γ (a, r) =
∫ r

0
ds sa−1e−s (B.4)

the incomplete -function and r = x2/(8t). The correlation
function thus decreases monotonically from

〈q(0)2〉 = α2
s

4T 2

3π5(8t)3
, (B.5)

becomes negative at some point and eventually goes to zero
with a rate proportional to |x|−6 at large distances |x|.

Equation (B.3) leads to the expression

χt (R) = α2
s

4T

π4(8t)3/2 f (ρ), ρ = R

(8t)1/2 , (B.6)

0 1 2 3 4 5 6ρ
0

0.05

0.10

0.15

f(ρ)

Fig. 6 The function (B.7) assumes its maximal value 0.1583(1) at
ρ = 1.236(1) and decays like ρ−3 at large ρ

f (ρ) = ρ−3γ

(
3

2
, ρ2

)2

, (B.7)

for the approximate susceptibility (B.1). To this order of
perturbation theory, χt (R) thus depends on the summation
radius R roughly like the data plotted in Fig. 3 (see Fig. 6).
In particular, at the flow times chosen in the simulations,
the maxima of the bumps in Fig. 3 are at R = 0.30 fm
and 0.45 fm, while the leading-order expression (B.6) has its
maximum at R = 0.35 fm and 0.58 fm in these cases. The
plateaus in Fig. 3, on other hand, occur at distances, where
perturbation theory is not expected to apply and instead
goes to zero consistently with the vanishing of χt to all
orders.
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