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The exploitation of phase-change materials in diverse technological applications 

can be greatly aided by a better understanding of the microscopic origins of their 

functional properties. Over the last decade, simulations based on electronic 

structure calculations within density functional theory (DFT) have provided 

useful insights into the properties of phase-change materials. However, large 

simulation cells and long simulation times beyond the reach of DFT simulations 

are needed to address several key issues of relevance for the performance of 

devices. One way to overcome the limitations of DFT methods is to use machine 

learning (ML) techniques to build interatomic potentials for fast molecular 

dynamics simulations that still retain a quasi-ab initio accuracy. Here, we review 

the insights gained on the functional properties of the prototypical phase-change 

material GeTe by harnessing such interatomic potentials. Applications and future 
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challenges of the ML techniques in the study of phase-change materials are also 

outlined. 
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Introduction 

The development of novel nonvolatile memories (NVMs) is key to further our 

ability to retain, share and process the ever-growing amount of data generated 

every day. Current NVMs based on Flash technology suffer from relatively low 

speeds and limited endurance. Among the alternative options to Flash technology, 

phase-change memories1,2 stand out as one of the most promising candidates, as 

attested to by the recent Optane memory, based on the Intel/Micron 3D Xpoint 

technology, that entered the market in 2017 as storage-class memories.3 

In phase-change memories, information is encoded into two different 

phases of phase-change materials such as chalcogenide alloys,4,5 which can 

reversibly (up to ~1012 times)6,7 switch between the crystalline and amorphous 

phases upon Joule heating within a few nanoseconds. The two phases have 

markedly different electrical resistance values that are exploited in the memory 

readout. 

Although the Ge2Sb2Te5 compound is presently the material of choice for 

phase-change memories, the quest for alloys with better performance continues.5,8 

For embedded applications in the automotive industry, for instance, data retention 

above 100°C is desirable, which is not achievable with Ge2Sb2Te5. Other 

applications such as neuro-inspired computing9 and photonic devices10 would also 

benefit from tailoring of the functional properties of phase-change alloys. To this 

end, a thorough understanding of the microscopic features of phase-change 

materials is mandatory. 

In this regard, atomistic simulations can provide valuable microscopic 

information that would be difficult to be gained experimentally. First-principles 

(or ab initio) electronic structure calculations are usually the tool of the trade, and 
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the field has greatly benefited from molecular dynamics (MD) simulations based 

on density functional theory (DFT).5,8,11–14  

Nonetheless, investigations of many properties of phase-change alloys lie 

well beyond the capabilities of DFT methods. For instance, the crystallization of 

amorphous nanowires (a possible alternative architecture for phase-change 

memories) requires simulations of ~104 atoms for several nanoseconds, while 

DFT simulations are typically limited to a few hundred atoms for up to few 

nanoseconds.  

For a well-studied material such as silicon, it is straight-forward to 

perform large-scale simulations by picking an empirical/classical potential of 

choice and by striking some balance between accuracy (some of which would be 

lost) and computational efficiency. However, even though a classical interatomic 

potential has been devised for GeTe,15 phase-change materials display complex 

interplay between different atomic environments,16 which makes the construction 

of classical potentials challenging. 

One way to solve this conundrum, where DFT is not fast enough, and 

classical potentials are not accurate enough, is to harness machine learning (ML) 

algorithms17–19 to build interatomic potentials with (quasi) ab initio accuracy and 

a computational efficiency (almost) comparable to that of classical potentials. 

ML-based interatomic potentials 

Machine learning (ML) is by now a pervasive aspect of technology that is 

percolating rapidly into many scientific fields. Materials science is no exception 

as ML may very well deliver the next generation of interatomic potentials for 

atomistic simulations. Actually, in this field ML algorithms are used as a flexible 

tool to build a potential energy surface by fitting a quite large data set (104–105 

configurations) of DFT energies and forces of relatively small (102 atoms) 

configurations; two popular approaches in this context are based on Gaussian 

approximations20 and neural networks (NNs).21  

In the NN method of Behler and Parrinello,21 the structure of the system is 

encoded by means of so-called symmetry functions that describe the local atomic 

environment of each atom up to a cutoff radius typically encompassing up to the 
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third coordination shell. As depicted in Figure 1a, the symmetry functions 

represent the input of a feed-forward NN, which consists of a collection of nodes 

and layers where the inputs are subject to a nonlinear transformation (via so-

called activation functions) and then are linearly combined via a number of 

“weights” to eventually yield the total energy of a given configuration. The 

weights are randomly initialized and then refined by back-propagation in order to 

minimize the mismatch between the energies predicted by the NN and by 

DFT.21,22 Once a sufficiently good fitting is achieved, we can leverage it to obtain 

the energy of very large models at low computational cost that scales linearly with 

the number of atoms. Crucially, forces and stress are readily available from NN 

potentials, thus enabling fast MD simulations while retaining an accuracy close to 

that of the underlying DFT calculations. 

In the next sections, we illustrate how the neural network potential (NNP) 

for the prototypical phase-change compound GeTe that was generated in 201223 

has allowed addressing several properties ranging from dynamical heterogeneity 

and fast crystallization in the liquid phase to structural relaxations in the 

amorphous phase. 

Functional properties of the phase-change material GeTe 

A neural network potential for GeTe 

The NNP for GeTe described in References 23 and 24 was constructed from the 

DFT energies of ~30,000 configurations containing 64 to 216 atoms. The 

potential was validated against DFT calculations (an example is illustrated in 

Figure 1b) and it is capable of describing the bulk phases of GeTe as well as 

surfaces, nanowires, and nanoparticles. As a first application, the NNP was used 

to compute the thermal conductivity of the amorphous phase25 and the thermal-

boundary resistance at the amorphous-crystalline interface.26 On this topic, the 

reader is referred to a recent review on the thermal properties of amorphous 

materials studied by means of ML potentials.27 
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Fragility of supercooled liquid and structural relaxations in glass 

In phase-change memories, crystallization of the amorphous phase is achieved by 

electrical pulses that bring the material to a supercooled liquid state above the 

glass-transition temperature Tg. One of the key properties of phase-change 

materials is that they tend to be fragile liquids,28 which means that their viscosity 

(η) remains fairly low at large supercooling, only to rise sharply very close to Tg. 

This feature allows atoms to remain highly mobile at low temperatures (T), albeit 

above Tg, where the thermodynamical driving force for crystal nucleation and 

growth is also high.28 The NNP developed in Reference 23 allowed29 the function 

η(T) to be computed, providing an estimate of the so-called fragility index (the 

slope of η(T) at Tg) which turned out to be in reasonable agreement with later 

experimental data from ultrafast differential scanning calorimetry.28  

The atomic mobility at low T is further enhanced by a breakdown of the 

Stokes–Einstein relation between viscosity and diffusivity that was also predicted 

by MD simulations.29 This feature is typical of fragile liquids and is often ascribed 

to the emergence of dynamical heterogeneities consisting of spatially separated 

domains in which atoms move substantially faster or slower than average. This is 

illustrated in Figure 2a. Close to the melting temperature, the distinction between 

slow (blue) and fast (red) moving regions is minimal. However, as the system is 

cooled down, one can clearly notice the emergence of spatially localized domains 

(Figure 2b).30 These results were obtained by the so-called isoconfigurational 

analysis technique, which involves a large number (~100) of MD simulations.30 

Most notably, it turns out that fast-moving regions involve structural 

heterogeneities in the form of chains of Ge–Ge bonds, depicted in Figure 2c. 

These chains are ultimately responsible for the breakdown of the Stokes–Einstein 

relation and thus for an enhancement of atomic mobility at high supercooling 

which boosts the crystallization speed. They also play a role in the so-called 

resistance drift - a practical issue for phase-change memories whereby the 

resistance of the amorphous phase increases over time due to aging. In fact, by 

combining NNP and DFT calculations, it was found that Ge–Ge chains are 

responsible for localized electronic states within the gap of the amorphous 
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phase.31 Removal of these chains via structural relaxations over time (aging) leads 

to an energy gain and to a widening of the bandgap,31 which can explain the 

resistance drift (see Reference 32 for a review). Moreover, it was recently shown 

that the presence of Ge–Ge chains provides a rationale for the experimentally 

measured reduction of the resistance drift in GeTe nanowires,24 whose amorphous 

structure is characterized, on average, by a lower fraction of Ge–Ge chains 

compared to the bulk. 

Crystal nucleation and growth 

The short time-scale of crystal nucleation and growth of phase-change materials 

offers the unique opportunity for DFT methods to study the crystallization process  

by means of unbiased MD simulations with an affordable computational load.33 

Indeed, this has been achieved in several works,12,34 but the usage of still 

relatively small models inevitably leads to spurious interactions between the 

newborn crystalline nuclei and their periodic images, thus affecting both 

induction times and crystal growth velocities. 

The advent of NNP was a game changer in this respect, as it allowed the 

extent of finite size effects to be assessed (they are avoidable by using supercells 

containing at least about 1000 atoms) and to investigate crystal nucleation and 

growth in a wide range of conditions for supercells containing 4,000–32,000 

atoms.35–37 Some of these findings are summarized in Figure 3. It was possible to 

identify different nucleation regimes at different temperatures (Figure 3a) and to 

accurately estimate the crystal growth velocity, extracted from the slope of growth 

profiles (Figure 3b). Recently, these growth rates were compared with those 

obtained for GeTe nanowires24 (Figure 3c), which enabled the study of the effects 

of nanostructuring on crystallization kinetics. 

Heterogeneous growth of crystalline GeTe,37 a scenario of utmost 

relevance for phase-change memories, was also addressed by using large models 

of polycrystalline GeTe that allowed following the competition between the 

growth of different grains (Figure 3d). Moreover, simulations of the 

crystallization of the most studied ternary compound Ge2Sb2Te5 have been 

performed very recently by means of a ML-based interatomic potential38 based on 
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Gaussian approximations (the so-called GAP approach20): a representative result 

is reported in Figure 3e.  

Conclusions 

Although DFT simulations have provided invaluable contributions to the study of 

phase-change materials, there is the need to bring MD simulations closer to the 

size scale of real memories in order to address key issues for the improvement of 

devices. ML-based interatomic potentials represent an effective solution, in that 

they can overcome the limitations of DFT calculations in terms of size and 

simulation time while keeping a quasi-ab initio accuracy.  

In this article, we have illustrated some of the results obtained by means of 

a NNP for GeTe. The methodologies needed to construct ML potentials are now 

more accessible than they were in 2012 when the GeTe potential was devised. 

While a substantial effort is still needed to collect the huge data set of DFT 

energies, several promising advances,39,40 including stratified41 and implanted42 

NN are now available to tackle multicomponent alloys.43 

There remain open questions in the field of phase-change memories that 

would greatly benefit from large-scale simulations of multicomponent alloys such 

as the switching mechanism of Ge-rich alloys for automotive applications44 and of 

superlattices/interfacial phase-change memories.45 For the hotly debated 

switching mechanism of interfacial phase-change memories,46 DFT simulations 

have provided a number of different scenarios among which large-scale 

simulations might ultimately be able to identify the most plausible one. The 

impact of confinement effects and nanostructuring on crystallization kinetics is 

another issue where ML potentials can make a difference. Our previous work on 

GeTe nanowires is an example, but much remains to be explored, such as the 

fascinating possibility of monoatomic phase-change memories47 or phase-change 

materials encapsulated in carbon nanotubes,48 or even as isolated nanoparticles.49 

Besides the generation of interatomic potentials, ML and in particular NNs 

have been exploited very recently to predict glass properties by learning from 

existing experimental database.50-54 There are still relatively few examples of this 

type of application of ML in glass science, and none so far for tellurides of 
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interest for phase-change memories. However, the field is rapidly evolving and 

the growth of available data on phase-change alloys from both experiments and 

MD simulations could trigger the harnessing of ML to optimize alloys 

composition for tailored applications by learning from databases of physical 

properties.  

In conclusion, in light of what the community has achieved in the last few 

years, we feel that ML can truly contribute to the rational design of phase-change 

materials for memories and other applications in the near future. 
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Figure 1. (a) Neural networks (NN) can be harnessed to construct a machine 
learning (ML)-based interatomic potential starting from a data set of density 
functional theory (DFT) energies of small (100 atoms) configurations.  The 
weights w of the NN are assigned by back-propagation which is a procedure 
aimed at minimizing the mismatch between the energy predicted by the NN (ENN) 
and the DFT energies (EDFT). (b) Total pair correlation function, g(r), of liquid 
GeTe from a NN simulation with 4096 and 216 atoms, compared with DFT 
results for the smaller cell. The g(r) gives a measure of the probability to find an 
atom at a distance r from an atom set at the origin. Adapted with permission from 
Reference 23. © 2012 American Physical Society. 
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TABLE II. Elastic constants (GPa) of trigonal GeTe from DFT
and NN calculations.

c11 c12 c13 c14 c33 c44

DFT 92 18 22 35 40 24
NN 73 10 30 24 36 20

d at fixed lattice parameters a and α. The resulting energy
as a function of d is reported in Fig. 2(b) for the NN and
the DFT calculations. We note that the DFT values in Fig. 2
were not included in the training set but were recalculated
for investigating the quality of the NN potential only. The
double-well potential identifies the two possible ferroelectric
configurations, while the maximum corresponds to an ideal
paraelectric configuration.

As a further validation of the potential, we computed
the difference in energy between the trigonal phase and an
ideal rocksalt phase at their equilibrium volumes at zero
temperature that amounts to 44 or 55 meV/atom in NN and
DFT calculations, respectively.

The elastic properties of trigonal GeTe were investigated
by computing the elastic constants from finite deformations of
the lattice parameters. The NN and DFT results are compared
in Table II. The elastic constants obtained here with the PBE
functional are somehow softer than those obtained with the
LDA functional in Ref. 51. The bulk modulus obtained either

0

1

0

1

0

1

0

1

 0  2  4  6  8  10

g(
r)

r (Å)

Total

TeTe

TeGe

GeGe

DFT
NN216
NN4096
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from the elastic constants or from the equation of state is 34
and 36 GPa for the NN and DFT calculations.

The agreement between NN and DFT results is overall
very good, the largest discrepancy being the cell angle and
the difference between the short and long Ge-Te bonds, which
might also be the source of the slight misfit in the elastic
constants. The results are overall satisfactory considering that
long-range Coulomb interactions are not included in our NN
potential for the reasons discussed in Sec. II A. These are
expected to play a role in the ferroelectric crystalline phase of
GeTe, but they are probably less important in the liquid and
amorphous phases we are primarily interested in.

B. Liquid phase

The liquid phase of GeTe was simulated by a 4096-atom
model at 1150 K. Total and partial pair correlation functions
are compared in Fig. 3 with results from our previous ab initio
simulations in a small 216-atom cell at the same temperature.18

Results from the NN simulations of a 216-atom cell are
also reported. The density of 0.03156 atoms/Å3 is the same
for all simulations and corresponds to the value chosen in
the ab initio simulations of Ref. 18, which is close to the
experimental density of the amorphous phase.52 Distributions
of coordination numbers are reported in Fig. 4 as computed
by integrating the partial pair correlation functions up to the
cutoff shown in Fig. 3. Average coordination numbers are
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by computing the elastic constants from finite deformations of
the lattice parameters. The NN and DFT results are compared
in Table II. The elastic constants obtained here with the PBE
functional are somehow softer than those obtained with the
LDA functional in Ref. 51. The bulk modulus obtained either
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FIG. 3. (Color online) Total and partial pair correlation functions
of liquid GeTe from a NN molecular dynamics simulation at 1150 K
with a 4096- and a 216-atom cell, compared with results from a DFT
simulation at the same temperature using a 216-atom cell (Ref. 18).
NN results are obtained by averaging over a NVE run 40 ps long at the
average temperature of 1150 K. The vertical lines are the interatomic
distance threshold used to define the coordination numbers 3.0, 3.22,
and 3.0 Å for Ge-Ge, Ge-Te, and Te-Te bonds, respectively.

from the elastic constants or from the equation of state is 34
and 36 GPa for the NN and DFT calculations.

The agreement between NN and DFT results is overall
very good, the largest discrepancy being the cell angle and
the difference between the short and long Ge-Te bonds, which
might also be the source of the slight misfit in the elastic
constants. The results are overall satisfactory considering that
long-range Coulomb interactions are not included in our NN
potential for the reasons discussed in Sec. II A. These are
expected to play a role in the ferroelectric crystalline phase of
GeTe, but they are probably less important in the liquid and
amorphous phases we are primarily interested in.

B. Liquid phase

The liquid phase of GeTe was simulated by a 4096-atom
model at 1150 K. Total and partial pair correlation functions
are compared in Fig. 3 with results from our previous ab initio
simulations in a small 216-atom cell at the same temperature.18

Results from the NN simulations of a 216-atom cell are
also reported. The density of 0.03156 atoms/Å3 is the same
for all simulations and corresponds to the value chosen in
the ab initio simulations of Ref. 18, which is close to the
experimental density of the amorphous phase.52 Distributions
of coordination numbers are reported in Fig. 4 as computed
by integrating the partial pair correlation functions up to the
cutoff shown in Fig. 3. Average coordination numbers are
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Ge and Te atoms in liquid GeTe at 1150 K. Results from NN
(4096- and 216-atom) and DFT (216-atom) (Ref. 18) simulations
are compared.
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Figure 2. Dynamical heterogeneity in liquid GeTe from MD simulations 
employing a NNP. (a) The colour map refers to the density ρ of the dynamical 
propensity (DP), calculated according to Eq. 4 in Reference 30. Slow- and fast-
moving domains are highlighted in blue and red, respectively. (b) Spatially 
localized clusters of slow- and fast-moving atoms at 500 K. Chains of Ge–Ge 
bonds found in most mobile regions (purple) are highlighted in (c). Adapted with 
permission from Reference 30. © 2014 American Physical Society. 
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Figure 3. (a)-(d) Results on the crystallization of GeTe from MD simulations 
using a NNP. (a) Number of crystalline nuclei (>29 atoms) at different 
temperatures as a function of time in supercooled liquid GeTe. The number of 
nuclei first increases and then decreases due to coalescence. The two snapshots 
(insets at the top and bottom) show crystalline atoms forming a single nucleus or 
several nuclei at high and low temperatures respectively. (b) The radius, R, of a 
crystalline nucleus of GeTe at two temperatures as a function of time. Reprinted 
with permission from Reference 35. © 2013 American Chemical Society. (c) 
Crystal growth velocity, U, of a GeTe nanowire (NW, green triangles) and at the 
crystal/liquid interface in the bulk (blue circles). Reprinted with permission from 
Reference 24. © 2017 American Chemical Society. (d) C111 (red) and C100 (blue) 
crystalline grains in a polycrystalline model of GeTe at the beginning (t0) and end 
(tend) of the simulation. Projections along the xz planes are shown. Reprinted with 
permission from Reference 37. © 2015 American Chemical Society. (e) Potential 
energy as a function of time in the simulation of the crystallization of Ge2Sb2Te5 
with a Gaussian approximation potential. Reprinted with permission from 
Reference 38. © 2018 American Chemical Society. 
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