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Abstract The algorithms for optimal management and deployment of ambulances
within a municipality require a spatio-temporal model to forecast hotspots and
minimise the response times. Ambulance interventions represent an example of a
point pattern occurring on a linear network, which was created starting from the
main streets of Milan. The constrained spatial domain raises particular challenges
and unique methodological problems that cannot be ignored for proper model de-
velopment. Hence, this paper presents a non-separable spatio-temporal model for
analysing the emergency interventions that occurred in the street network of Mi-
lan from 2015 to 2017. A dynamic latent factor model is adopted for capturing
the temporal evolution, while the spatial dynamics are modelled using a network-
readaptation of a kernel estimator.
Abstract Gli algoritmi per la gestione delle ambulanze all’interno di un comune
necessitano di modelli statistici che possano prevedere l’insorgere di criticità, in
maniera tale da poter minimizzare i tempi di intervento. Gli interventi in emergenza
delle ambulanze rappresentano un esempio di processo di punto su network stradale,
creato partendo dalla rete stradale di Milano. Il supporto spaziale del fenomeno
sviluppa diverse problematiche sia da un punto di vista metodologico che appli-
cato, che non possono essere ignorate per la creazione di un modello appropriato.
In questo paper analizziamo la distribuzione degli interventi in emergenza delle
ambulanze nel comune di Milano tra il 2015 ed il 2017, sviluppando un modello
dinamico a fattori latenti per la componente temporale ed uno stimatore kernel non-
parametrico per l’intensità spaziale, riadattato nel caso di dati su network.
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1 Introduction

The algorithms for optimal staff management and ambulances deployment within a
municipality require a spatio-temporal model to forecast hotspots and minimise the
expected response times. The predictions are required at a fine spatial and temporal
resolution, due to intricate spatio-temporal patterns in emergency intervention data,
which are particularly relevant for a hectic city like Milan.

Ambulance interventions represent a typical example of a point pattern occurring
on a linear network, an increasingly popular type of events presenting several chal-
lenges related to the tangled and non-homogeneous nature of their spatial support
[1]. Several authors explained the perils of re-adapting classical planar techniques,
such as K-function or Kernel Density Estimator (KDE), to network data without
considering the network’s structure [5, 7]. The recent surge of interest can also be
linked with the rapid development of several open-source spatial databases (such
as Open Street Map), that provide the starting point for creating a computational
representation of a road network.

2 Data: Ambulance Interventions

The data at hand included all emergency calls registered in the municipality of Milan
(IT) from 2015-01-01 to 2017-12-31, which required an ambulance intervention
and were handled by the regional Emergency Medical System (EMS). We removed
all records with missing spatial or temporal coordinates, and we included only the
first intervention when multiple ambulances were dispatched for the same (typically

(A) (B)

Fig. 1 Left: Locations of ambulance interventions in Milan from 2015 to 2017. Right: The most
important streets of the road network. In both cases, we can recognise several white areas corre-
sponding to parks (Parco Sempione), pedestrian areas (Citylife), and non-urban places.
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life-threatening) event. The final sample included 495,950 interventions, 163,488
occurred in 2015, 165,368 in 2016 and 167,094 in 2017.

The spatial distribution of the EMS calls is reported in Figure 1(A). We note
that the events resemble a street network structure, highlighting the city ring road
and the most critical arterial thoroughfares. Hence, we argue that a spatio-temporal
model of emergency interventions should not ignore their peculiar spatial support.
The empty areas in Figure 1(A) correspond to non-urban places, mainly located in
the south or the west. We can also clearly distinguish the shapes of several iconic
locations of Milan, such as City Life, Parco Sempione or Scalo Farini.

We examined the temporal dimension of EMS interventions and determined the
seasonal patterns that govern the total number of emergency calls. More precisely,
we noticed that the average number of hourly events during the weekdays follows a
particular trend: after a rapid increase in the early morning, the time series reaches
its maximum around 10:00, slowly declines until 20:00 and then decreases until the
night. The weekends present a similar distribution, with more interventions during
the night hours (probably linked with the city’s nightlife) and fewer events in the late
morning. The time series of ambulance interventions also exhibits a weekly seasonal
pattern, and the global minima are registered around August, in conjunction with
national holidays. The dynamic latent factor model introduced in Section 3.1 was
defined taking into account these seasonal patterns, which are discussed by [6, 4].

A linear network, typically denoted by L, is defined as the union of a finite set of
segments, say li, lying in a planar region S:

li = [ui,vi] = {s : s = tui +(1− t)vi; 0≤ t ≤ 1}; ui,vi ∈ S⊆ R2.

The endpoints of li are denoted by ui and vi, and, in this paper, S denotes the polygo-
nal boundary of Milan. The computational structure of the road network was created
starting with data downloaded from Open Street Map (OSM) and selecting only the
most important1 street segments.

Spatial networks can also be seen as graph objects, where the edges correspond
to the street segments, while the nodes are usually placed at road junctions [2]. We
took advantage of the graph representation to simplify Milan’s road network, ex-
cluding the small groups of isolated road segments. More precisely, we created a
binary adjacency matrix between pairs of edges, defining two edges as connected if
the corresponding road segments share one point at their geographical boundaries.
Then, we clustered the segments and removed the isolated groups (typically de-
noted as components in the graph-analysis literature). This procedure creates a fully
connected road network, which has relevant consequences on the kernel estimator
presented in Section 3.2.

The linear network obtained after applying the pre-processing steps described
above is depicted in Figure 1(B). It is composed of approximately 11,000 edges,
and it covers more than 1850km, traversing almost every part of the city. We can

1 We filtered only the street segments that, in the OSM jargon, are classified as motorways, trunks,
primary roads, secondary roads, tertiary roads, and unclassified roads. Using the Italian classifi-
cation, they range from Autostrada to Strada Comunale.
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notice several similarities between Figure 1(A) and 1(B), and, once again, we can
recognise several iconic places.

After creating the street network, we decided to exclude all ambulance interven-
tions that occurred farther than 50 metres from the closest street segment, since we
assumed that they occurred in other parts of the city network, and we projected the
remaining ones into the linear network. We removed approximately 5% of the EMS
data. Finally, we explored the spatio-temporal nature of EMS data, observing the
presence of space-time interactions in the hourly distributions. More precisely, we
noticed that from 08 AM to 08 PM the interventions are concentrated near the city
centre, close to the office areas and the main buildings, while, during the night hours,
they are scattered all around the municipality. These interactions are captured by the
weighted network kernel estimator detailed in Section 3.2.

3 Statistical Methods

Following and extending the approach introduced in [9, 4], we consider a continuous
one-dimensional linear network L and a discrete temporal dimension T divided
into intervals of one hour. Let yt denote the number of emergency calls that were
recorded at time t ∈T , and let si,t , i = 1, . . . ,yt be the location of ith event. Then, we
assume that, independently for each t ∈T , the point process {si,t : i = 1, . . . ,yt} can
be modelled as a Non-homogeneous Poisson Process (NHPP) on a linear network
with intensity function λt(s) [3, 1]. Furthermore, we assume that

λt(s) = µtgt(s), s ∈ L; t ∈T , (1)

where µt represents the temporal dimension of the EMS counts, while gt(s) is the
spatial component of the process. Even though Equation 1 looks like the classical
separability assumption for spatio-temporal point processes, the notation gt(s) im-
plies that the spatial component depends on the temporal distribution of the data.
These space-time interactions are taken into account adding a set of weights into the
kernel function used to estimate gt(s), as detailed in Section 3.2.

In the next sections, we briefly introduce a time series model to capture the evo-
lution of µt , and we describe with greater details the procedures for estimating gt(s)
using a re-adaptation of the planar weighted kernel estimator for point pattern data
on linear networks.

3.1 Temporal model

Following the approach detailed in [6, 4], we modelled the temporal component µt
using a dynamic latent factor model. The hourly, daily, and weekly seasonalities
were included by imposing a set of constraints on the factors and loadings matri-
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ces, while penalised and cyclic cubic regression splines were adopted to impose a
smooth evolution on EMS counts.

3.2 Spatial model

As mentioned before, the spatial component of the EMS interventions is modelled
using a network-readaptation of Jones-Diggle corrected weighted kernel estimator,
which, given a location s ∈ L and a time period u, can be written as

ĝu(s) =
∑t∈T ∑

yt
i=1 wsi(t,u)KN(s,si,t)

∑t∈T ∑
yt
i=1 wsi(t,u)

.

We assumed that the weight function, hereby denoted as wsi(t,u), depends only on
the temporal lag between u and the historical data. The weights are used to incor-
porate a space-time interaction into the KDE, giving more importance to EMS calls
that occurred in the temporal proximity of u, and creating a non-separable structure
into λt(s). We refer to [9, 4] for more details on the weights’ estimation process.

The function KN(s,si,t) denotes the Jones-Diggle corrected network KDE, as in-
troduced by [8]. More precisely, considering a location s ∈ L and a time period
t ∈T , the estimator is defined as

KN(s,si,t) =
K(s− si,t)

cL(si,t)
, (2)

where K denotes a planar bivariate kernel function, si,t is an historical ambulance
intervention, and cL(si,t) represents the convolution of the kernel K with arc-length
measure on the network, defined as cL(s) =

∫
L k(v− s) d1v. Equation 2 is analogous

to the planar KDE, where the Jones-Diggle correction is replaced using an integral
over the network. Despite a slightly suboptimal statistical efficiency, the KDE esti-
mator in Equation 2 can be computed rapidly using the fast Fourier transformation,
which is essential considering the size of the network and the volume of EMS calls.
The other statistical properties are extensively described in [8], whereas alternative
approaches are discussed by [1].

4 Results and Conclusions

We exemplified the algorithm described in Section 3 considering two future tem-
poral occasions: 2018-01-03 at 03:00 (left) and 2018-01-03 at 15:00 (right). The
results are reported in Figure 2. The map on the left shows that EMS interventions
are spread in several parts of Milan, highlighting nightlife areas such as Porta Gen-
ova or San Lorenzo, while the map on the right draws attention to other zones close
to Duomo and significant working places. In both cases, the main train station, Pi-
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(A) (B)

Fig. 2 Estimates of the spatial intensity function, ĝu(s), considering two future time periods: 2018-
01-03 at 03:00 (left) and 2018-01-03 at 15:00 (right).

azzale Loreto, and several retirement houses (such as Pio Albergo Trivulzio) are
highlighted. The two maps are represented using different scales in order to better
point out the temporal fluctuation of ambulance intervention intensity.

As further steps, we are developing a methodology for properly assessing the
fit of the suggested model. Moreover, we plan to extend the planar spatio-temporal
estimators for relative risk to network data to investigate and compare the spatial
dynamic of EMS calls having different severity levels.
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