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Abstract We consider the production of a vector boson
(Z , W± or γ ∗) at next-to-next-to-leading order in the strong
coupling constant αS. We impose a transverse-momentum
cutoff, qcut

T , on the vector boson produced in the qg-initiated
channel. We then compute the power corrections in the cut-
off, up to the second power, of the real-virtual interference
contribution to the cumulative cross section at order α2

S.
Other terms with the same kinematics, originating from the
subtraction method applied to the double-real contribution,
have been also considered. The knowledge of such power
corrections is a required ingredient in order to reduce the
dependence on the transverse-momentum cutoff of the QCD
cross sections at next-to-next-to-leading order, when the qT-
subtraction method is applied. In addition, the study of the
dependence of the cross section on qcut

T allows as well for
an understanding of its behaviour in the small transverse-
momentum limit, giving hints on the structure at all orders
in αS and on the identification of universal patterns. Our
result are presented in an analytic form, using the process-
independent procedure described in a previous paper for the
calculation of the all-order power corrections in qcut

T .
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1 Introduction

The recent years have witnessed an increasing growth in the
accuracy of physics measurements at the Large Hadron Col-
lider, on the one side, and the great efforts done by the the-
oretical community in order to provide theoretical results of
increasing precision, on the other. The goal of these activ-
ities is not only important for the extraction of Standard
Model (SM) parameters, but also for searches of signals of
new physics that can appear as small deviations with respect
to the SM predictions.

Reaching the highest possible level of precision is then the
main goal and the calculation of perturbative QCD correc-
tions plays a dominant role in this context. Until a few years
ago, the standard for such calculations was next-to-leading-
order (NLO) accuracy. In recent years, the goal has become
next-to-next-to-leading-order (NNLO) accuracy, and even
beyond for some processes.

The computation of higher-order terms becomes more
involved due to the technical difficulties arising in the evalua-
tion of virtual contributions and to the increasing complexity
of the infrared (IR) structure of the real contributions. In order
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to expose the cancellation of the IR divergences between real
and virtual contributions, the knowledge of the behaviour of
the scattering amplitudes in the infrared limits is then crucial
and it is indeed what is used by the subtraction methods in
order to work.

At NNLO and beyond, several subtraction schemes have
been proposed in the past years. These schemes mostly fit
into two categories: local methods and slicing methods. The
latter are based on partitions of the phase space into hard
regions and infrared-sensitive regions, where the cancella-
tion of divergences is performed with non-local subtraction
terms. In order to apply these methods, one has to introduce
a resolution parameter to identify the phase-space regions
where the non-local subtraction acts. Slicing methods that
have been successfully applied at NNLO and N3LO are the
transverse-momentum (qT) subtraction method [1–5] and N -
jettiness subtraction [6,7].

By applying non-local subtraction methods, the singular
terms in the small-cutoff limit are cancelled. These terms
have a universal nature and this allows to construct the sub-
traction terms on general grounds. After the cancellation has
taken place, only finite and vanishing terms remain. These
terms are, in general, process dependent. A residual depen-
dence on the cutoff then remains as power corrections. While
these terms formally vanish in the null-cutoff limit, they give
a non-zero numerical contribution for any finite choice of the
cutoff.

The knowledge of the power-correction terms greatly
increases the numerical reliability of the final results. In fact,
by subtracting the lowest powers in the cutoff makes the result
less sensitive to the arbitrary cutoff, numerically approach-
ing the theoretical limit of this parameter going to zero. This
is not only valid when the subtraction method is applied to
NLO computations, but it is numerically more relevant when
applied to higher-order calculations, as pointed out, for exam-
ple, in the evaluation of NNLO cross sections in Refs. [8,9].

Beyond reducing the dependence of the theoretical results
on the cutoff, the study of power-suppressed terms in the
infrared regions is a theoretically interesting subject, since it
allows to deepen our knowledge of the universal and non-
universal structure of the perturbative behaviour of QCD
cross sections in the IR limits. Thus, several papers have
tackled the study of power corrections in the general frame-
work of fixed-order and threshold-resummed computations
[10–19].

Power corrections at NLO have been extensively studied
in Refs. [20–30] in the context of the N -jettiness subtraction
method, and in Refs. [31–36] within SCET-based subtrac-
tion methods. Power corrections at NLO for the transverse
momentum of a colour singlet have been derived for the first
time at differential level in Ref. [37] within the SCET frame-
work. In Ref. [38], we presented a method to compute the
power corrections at all orders, for the inclusive production

of a colourless final-state system, at NLO in QCD. Recently,
the leading power corrections for the electroweak NLO cor-
rections to the inclusive cross section for the production of a
massive lepton pair through the Drell–Yan mechanism have
been computed in Ref. [39].

N -jettiness power corrections at NNLO have been con-
sidered in Refs. [20,23]. In particular, analytic results are
obtained for the dominant αS τ log(τ ) and α2

S τ log3(τ ) sub-
leading terms, where τ is the 0-jettiness, for qq̄-initiated
Drell–Yan production and for gg-, gq- and qq̄-initiated
Higgs boson production, along with a numerical fit for the
subdominant terms.

In this paper we consider the production of a vector boson
(Z , W± or γ ∗) at NNLO in the strong coupling constant
αS. We impose a transverse-momentum cutoff, qcut

T , on the
vector boson produced in the qg-initiated channel, and we
compute, for the first time, the power corrections in the cut-
off, up to the second power (qcut

T )2, of the real-virtual inter-
ference contribution to the cumulative cross section at order
α2

S, plus other terms with the same kinematics, originating
from the application of the subtraction method to the double-
real contribution. In order to perform this computation, we
apply the general process-independent method that we have
formulated in Ref. [38].

This is the first step in order to compute the power cor-
rections, up to the second power, of the NNLO cumulative
cross section for vector-boson production. In fact, together
with the real-virtual qg-initiated channel that we consider in
this paper, also the qq-initiated channel contributes to the
real-virtual terms, together with all the double-real radiation
contributions. We will consider these contributions in future
works.

The outline of this paper is as follows. In Sect. 2 we intro-
duce our notation and we briefly summarize the expressions
of the partonic and hadronic cross sections, in a form that
is suitable for what follows. In Sect. 3 we outline the calcu-
lation we have done and in Sect. 4 we present and discuss
our analytic results. We draw our conclusions in Sect. 5. In
Appendix A, we present some examples of the integrals we
had to perform in order to compute the power corrections,
and we give the result of the integration for a few of them.
Finally, in Appendix B we collect the final results of our
paper.

2 The hadronic and partonic cross sections

In this section we set the theoretical framework and introduce
the notation used throughout the paper.
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2.1 The hadronic cross sections

We consider the production of a colourless system F with
quadri-momentum q and squared invariant mass Q2, plus a
coloured system X at a hadron collider

h1 + h2 → F + X . (2.1)

We call S the hadronic squared center-of-mass energy and we
write the hadronic differential cross section for this process
as

dσ =
∑

a,b

∫ 1

τ

dx1

∫ 1

τ
x1

dx2 fa(x1) fb(x2) dσ̂ab , (2.2)

where

τ = Q2

S
, (2.3)

fa/b are the parton densities of the partons a and b, in the
hadron h1 and h2 respectively, and dσ̂ab is the partonic cross
section for the process a + b → F + X . The dependence on
the renormalisation and factorisation scales and on the other
kinematic invariants of the process are implicitly assumed.

The hadronic cross section can be written as1

σ =
∑

a,b

∫ 1

τ

dx1

∫ 1

τ
x1

dx2 fa(x1) fb(x2)

×
∫

dq2
T dz

dσ̂ab(qT, z)

dq2
T

δ

(
z − Q2

s

)
, (2.4)

where s is the partonic center-of-mass energy, equal to

s = S x1 x2 . (2.5)

We have also made explicit the dependence on z, the ratio
between the squared invariant mass of the system F and the
partonic center-of-mass energy, and on qT, the transverse
momentum of the system F with respect to the hadronic
beams. Using Eqs. (2.5) and (2.3) and integrating over x2 we
obtain

σ =
∑

a,b

τ

∫ 1

τ

dz

z

∫ 1

τ
z

dx1

x1
fa(x1) fb

×
(

τ

z x1

)
1

z

∫
dq2

T
dσ̂ab(qT, z)

dq2
T

. (2.6)

We then introduce the parton luminosity Lab(y) defined by

Lab(y) ≡
∫ 1

y

dx

x
fa(x) fb

( y
x

)
, (2.7)

so that we can finally write

1 For more details, see Appendix A of Ref. [38].

σ =
∑

a,b

τ

∫ 1

τ

dz

z
Lab

(
τ

z

)

×1

z

∫
dq2

T
dσ̂ab(qT, z)

dq2
T

. (2.8)

2.2 The partonic differential cross sections

In this paper we consider the NNLO corrections to the pro-
duction of a vector boson F , i.e. a W±, a Z or a virtual photon
γ ∗. In particular, we deal with the qg-initiated partonic chan-
nel

q(p1) + g(p2) → F(q) + X (k) , (2.9)

where the quadri-momenta are given in parentheses. In Ref.
[38], among other contributions, we considered the NLO
cross section for F production, i.e.

q(p1) + g(p2) → F(q) + q(k) , (2.10)

where the final-state quark has the same flavour of the initial-
state one, for Z/γ ∗ production, and different flavour, for W
production. We generically indicate the initial- and final-state
quark with the same letter q.

Introducing the kinematic invariants

s = (p1 + p2)
2 , t = (p1 − q)2 , u = (p2 − q)2,

(2.11)

we have the relation

s + t + u = q2 + s2 (2.12)

where s2 = k2 is the squared invariant mass of the system
recoiling against the F boson at parton level.

In the following, we use the same notation and the expres-
sions computed in Ref. [40]. The couplings appearing in
the differential cross sections follow this convention: if an
electroweak boson F is emitted by a quark with flavour
f1 = {u, d, s, c, b} which then changes into f2, the ver-
tex is described by the Feynman rule

− ieγ μ

[
� f2 f1

1 − γ5

2
+ r f2 f1

1 + γ5

2

]
, (2.13)

where the definitions of the left- and right-handed couplings
� and r depend on the F boson

W− : � f2 f1 = 1√
2 sin θW

(σ+) f2 f1 V f2 f1 , r f2 f1 = 0 ,

(2.14)

W+ : � f2 f1 = 1√
2 sin θW

(σ−) f2 f1 V
†
f2 f1

, r f2 f1 = 0 ,

(2.15)

Z : � f2 f1 = 1

sin 2θW
(σ3) f2 f2 − δ f2 f1 e f1 tan θW ,

r f2 f1 = −δ f2 f1 e f1 tan θW , (2.16)

123
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γ ∗ : � f2 f1 = r f2 f1 = δ f2 f1 e f1 , (2.17)

where θW is the Weinberg angle, e f is the fractional electric
charge of the quark with flavour f , σ± = (σ1 ± iσ2)/2 and
σ3 are the weak isospin Pauli matrices and V is the unitary
Cabibbo–Kobayashi–Maskawa mixing matrix. In addition,
in the following we abbreviate � f2 f1 to �21, and the same for
r f2 f1 .

The QCD NLO corrections to Eq. (2.9) were computed in
Ref. [40]. We report here Eq. (2.12) of this reference, since we
are going to use their results in d = 4 space-time dimensions,
after correcting for some known typos2

Eq
dσ̂qg

d3q
= 1

s

CF

N2
c − 1

α αS(μR)

{
δ(s2) Aqg(s, t, u)

×
∑

f

(∣∣� f 1
∣∣2 + ∣∣r f 1

∣∣2
)

+αS(μR)

2π

{[
δ(s2)

(
Bqg

1 (s, t, u)

+nf B
qg
2 (s, t, u) + Cqg

1 (s, t, u) + Cqg
2 (s, t, u)

)

+Cqg
3 (s, t, u, s2)

]∑

f

(∣∣� f 1
∣∣2 + ∣∣r f 1

∣∣2
)

+δ(s2) Bqg
3 (s, t, u) (�11 − r11)

∑

f

(
� f f − r f f

) }}
,

(2.18)

where Eq is the energy of the F boson, Nc = 3 is the num-
ber of colours and CF = (N 2

c − 1)/(2Nc) = 4/3. The func-
tions Aqg , Bqg

i , Cqg
i (i = 1, 2, 3) are defined in Eqs. (A4)–

(A6), (A10)–(A12) of Ref. [40]. Aqg is the contribution at
tree level of the process in Eq. (2.10). The functions Bqg

i
receive contributions from the interference of the one-loop
virtual corrections to Eq. (2.10), with the tree-level contribu-
tion. In particular, Bqg

2 originates from the renormalisation
counterterm, while Bqg

3 is the contribution from the virtual
diagrams with a triangular quark loop, which are present
only for Z/γ ∗ production. These contributions are then mul-
tiplied by a δ(s2) term, since the system recoiling against the
F boson only comprises a single quark with momentum k,
so that s2 = k2 = 0.

The functions Cqg
i originate from the diagrams contribut-

ing to the real corrections. In particular, Cqg
1 and Cqg

2 are the
coefficient of a δ(s2) term, leftovers of the subtraction method
when dealing with initial- and final-state radiation. Cqg

3 con-
tributes instead for non-zero values of s2, and corresponds to
the double-real radiation contribution toqg-initiated F boson
production. In the following we neglect all the infrared diver-
gences appearing as poles in Eqs. (A4)–(A6), (A10)–(A12)
of Ref. [40], since they cancel out when summing real and
virtual contributions at this order in αS.

2 See footnote § of Ref. [41].

The Bqg
i and Cqg

i are analytic functions of the kinematic
invariants and contain logarithmic and dilogarithmic func-
tions.

In this paper we present results for the calculation of the
power corrections for all the terms proportional to δ(s2) in
Eq. (2.18), i.e. the virtual-correction terms and terms from
the regularisation of the double-real radiation contributions.

Since the kinematics of these terms is equivalent to the
one discussed in Ref. [38], we follow the same procedure
described in its Appendix A (in particular Eqs. (A.16)–
(A.20)), and we integrate all the terms proportional to δ(s2)

in Eq. (2.18), writing them in the form suitable to be inserted
in Eq. (2.8), i.e.

dσ̂qg(qT, z)

dq2
T

∣∣∣∣∣
δ(s2)

= 1

16π

z2

Q4
1

√

(1 − z)2 − 4z
q2

T
Q2

×
[
|M (z, t+, qT)|2 + |M (z, t−, qT)|2

]
,

(2.19)

where M(s, t, u) is the sum of the functions Aqg, Bqg
1 , Bqg

2 ,

Bqg
3 ,Cqg

1 ,Cqg
2 , as they appear in Eq. (2.18), together with

the global factor in front, evaluated at

u = Q2 − s − t , s = Q2

z
, t = t± , (2.20)

where

t± = Q2

2z

⎡

⎣z − 1 ±
√

(1 − z)2 − 4z
q2

T

Q2

⎤

⎦ , (2.21)

so that M becomes a function of z and qT, for a given vector-
boson virtuality Q2.

We can write Eq. (2.18), manipulated according to the
previous steps, in a compact notation as

dσ̂qg(qT, z)

dq2
T

= αS

2π

dσ̂
(1)
qg (qT, z)

dq2
T

+
( αS

2π

)2 dσ̂
(2)
qg (qT, z)

dq2
T

, (2.22)

where the superscript (1) denotes the tree-level cross section,
while the superscript (2) the virtual and real contributions.
The choice is made in order to make contact with the label-
ing of the transverse-momentum resummation coefficients,
that refer to F production as the zeroth term, to its NLO cor-
rections as the first term, and to the NNLO corrections, i.e.
the QCD NLO corrections to F + 1 parton, as the second
one.

In the rest of the paper we focus on the contribution

dσ̂
(2)
qg (qT, z)

dq2
T

∣∣∣∣∣
δ(s2)

(2.23)
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and, with a little abuse of notation, when referring to
Eq. (2.23), we sometimes drop the

∣∣
δ(s2)

, to ease the nota-
tion.

3 Description of the calculation

In order to compute the power corrections of the cross section
in Eq. (2.23), we follow the path along which we proceeded
in Ref. [38] and which is described in Sect. 3 therein.

We recall here that, in the phase-space region where qT

is different from zero and much smaller than the invariant
mass of the colour singlet, the cross section of Eq. (2.23) is
characterised by a well-known perturbative structure. In fact,
it contains logarithmically-enhanced terms that are singular
in the qT → 0 limit [42–51], terms that are finite in the same
limit, and power terms that vanish in the small-qT limit.

It is customary in the literature [24,52] to compute the
following cumulative partonic cross section, integrating the
differential cross section in the range 0 ≤ qT ≤ qcut

T , in order
to derive the perturbative behaviour of these terms at small
qT

σ̂ <
ab(z) ≡

∫ (qcut
T )

2

0
dq2

T
dσ̂ab(qT, z)

dq2
T

. (3.1)

For F + 1 parton production at NLO, Eq. (3.1) receives con-
tributions from the Born diagrams, that were analysed in Ref.
[38], and from the virtual and real QCD corrections. The for-
mer are proportional to δ(s2), while the latter describe the
production of a further parton. Since the total NNLO par-
tonic cross section for F production is finite, following what
was done in Refs. [41,53], we compute the above integral
as a difference

σ̂ <
ab(z) = σ̂ tot

ab (z) − σ̂ >
ab(z) , (3.2)

with

σ̂ tot
ab (z) =

∫ (qmax
T )

2

0
dq2

T
dσ̂ab(qT, z)

dq2
T

,

σ̂>
ab(z) =

∫ (qmax
T )

2

(qcut
T )

2
dq2

T
dσ̂ab(qT, z)

dq2
T

, (3.3)

where qmax
T is the maximum transverse momentum allowed

by the kinematics, σ̂ tot
ab (z) is the total partonic cross section,

and σ̂ >
ab(z) is the partonic cross section integrated above qcut

T ,
that can be then computed in four space-time dimensions.

In this paper we study the qcut
T � Q behaviour of the

NNLO real-virtual contribution to F production, by com-
puting the qcut

T -expansion of

σ̂ >(2)
qg (z) =

∫ (qmax
T )

2

(qcut
T )

2
dq2

T
dσ̂

(2)
qg (qT, z)

dq2
T

∣∣∣∣∣
δ(s2)

, (3.4)

up toO((qcut
T )2

)
included. The integration goes from an arbi-

trary value qcut
T up to the maximum transverse momentum

qmax
T allowed by the kinematics of the event, given by

(
qmax

T

)2 = Q2 (1 − z)2

4 z
, (3.5)

at a fixed value of z.
The integration in qT is performed with dedicated changes

of variables, in order to get rid of the square roots within the
arguments of logarithms and dilogarithmic functions. The
correct analytic continuation is then performed in order to
obtain a real result. At difference with what was done in
Ref. [38], we do not quote here the results of the integration,
due to their length.

To lighten up the notation, we introduce the dimensionless
quantity3

a ≡
(
qcut

T

)2

Q2 , (3.6)

that will be the expansion parameter in the rest of the paper.
Then, in order to compute the hadronic cross section of
Eq. (2.8), we need to integrate the partonic cross sections
convoluted with the corresponding luminosities. In the cal-
culation of the total cross sections, the upper limit in the z
integration is unrestricted and equal to 1. When a cut on the
transverse momentum qT is applied the z-integration range
is instead bound from above, i.e.

0 ≤ z ≤ zmax ≡ 1 − f (a) ,

f (a) ≡ 2
√
a
(√

1 + a − √
a
)

. (3.7)

However, in order to make contact with the transverse-
momentum subtraction formulae, which allows us to recover
the logarithmic-enhanced behaviour along with the power
corrections, we need to extend the integration range of the z
variable up to 1 and then expand our results in powers of a. To
this aim, we used the same procedure presented in Ref. [38]
in order to deal with the divergent terms in the z → 1 limit.
The procedure is very technical and all the details are pre-
sented in Appendix B of the same reference. Hence we refer
the interested reader to that appendix for the description of
the method.

4 Results

In this section we collect fully-analytic results for the NNLO
power corrections in the transverse-momentum cutoff, up to
order a. The results refer to the δ(s2) contributions of the
qg-initiated channel in Eq. (2.18).

3 In the literature, the parameter a is also referred to as r2
cut (see e.g.

[8]).
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We label the different contributions of Eq. (2.18) with the
letter K , so that

K = {
Aqg, Bqg

1 , Bqg
2 , Bqg

3 , Cqg
1 , Cqg

2

}
. (4.1)

Using Eq. (2.19) and following the discussion in Sect. 2.2, we
integrate K (s, t, u) in t to obtain a function of the transverse
momentum of the vector boson, qT, and z
∫

dt K (s, t, u) = K (qT, z) . (4.2)

As recalled in Sect. 3, the functions K are then integrated
in qT from an arbitrary value, qcut

T , up to the maximum
transverse momentum qmax

T allowed by the kinematics of the
event.

We further split the contributions of Bqg
1 and Cqg

1 accord-
ing to their colour factor, CA and CF. We then introduce a
further index, c = {CA,CF}, relevant for Bqg

1 and Cqg
1 , in

order to distinguish the coefficients of the different colour
factors.

The general procedure described in Appendix B of
Ref. [38] is applied to the qT-integrated K functions. In order
to present the structure of the results, we refer to the defini-
tions of I , Ĩ1, Ĩ2 and Ĩ3 of Eqs. (B.8)–(B.11) in Ref. [38].
Moreover, we present the results for the sum Ĩ23 ≡ Ĩ2 + Ĩ3,
and we do not give the two terms separately.

After dropping the qg superscript for ease of notation, we
can then write

I H = Ĩ H1 + Ĩ H23 ,

H = {A, B1, B2, B3, C1, C2} , (4.3)

where, if H = {B1, C1},

Ĩ H1 =
∑

c={CA,CF}
c

{∫ 1

0
dz l(z) cgH0 (z)

+
∫ 1

0
dz l(z)

[
cgH1 (z)

1 − z

]

+

+
∫ 1

0
dz l(z)

[
cgH2 (z)

1 − z

]

++

}
, (4.4)

Ĩ H23 =
∑

c={CA,CF}
c cJ H

23 , (4.5)

while, if H = {A, B2, B3, C2},

Ĩ H1 =
∫ 1

0
dz l(z) gH0 (z) +

∫ 1

0
dz l(z)

[
gH1 (z)

1 − z

]

+

+
∫ 1

0
dz l(z)

[
gH2 (z)

1 − z

]

++
, (4.6)

Ĩ H23 = J H
23 , (4.7)

where l(z) is given in terms of the parton luminosity in
Eq. (2.7), where we have dropped any subscript for ease of

notation

l(z) ≡ 1

z
L
(

τ

z

)
. (4.8)

The functions cgH0 (z), cgH1 (z), cgH2 (z), gH0 (z), gH1 (z), gH2 (z),
cJ H

23 and J H
23 are the main results of this paper and are col-

lected in Appendix B.

4.1 Technical details

We have written dedicated Mathematica parallel codes in
order to apply the whole method to the different contribu-
tions. As already pointed out in Ref. [38], the hardest inte-
grals are those to compute Ĩ2, which requires the calculation
of exact integrals in z, between 0 e 1 − f (a), where f (a) is
defined in Eq. (3.7).

The integrand functions have been classified into five
groups, according to the number of logarithmic and poly-
logarithmic functions that appear at the integrand level. A
sample of these integrals is collected in Appendix A. We
have integrated O(800) integrals in order to compute the
expressions in Eqs. (B.10) and (B.11) of Ref. [38], for all the
contributions in Eq. (4.3). In general, the integrals require
dedicated changes of variables and iterated integrations by
parts, peculiarly for the ones involving polylogarithms and
logarithms to the third power, that turned out to be the most
difficult ones.

4.2 Comments

Due to the length of the intermediate results, in Appendix B
we report only the final results, i.e. the functions cgH0 (z),
cgH1 (z), cgH2 (z), gH0 (z), gH1 (z), gH2 (z), cJ H

23 and J H
23 that

appear in Eqs. (4.3)–(4.7).4

In agreement with what is found in Ref. [38], no odd-
power corrections of qcut

T /Q = √
a appear, i.e. the power

expansion of the real-virtual interference terms for F pro-
duction in the qg channel is in (qcut

T )2.

In addition, we can define the Ĝ(2)
qg (z)

∣∣∣
δ(s2)

function, start-

ing from the integral of the cumulative cross section in
Eq. (3.4), as

σ>(2)
qg

∣∣∣
δ(s2)

= τ

∫ 1− f (a)

τ

dz

z
Lqg

(
τ

z

)
1

z
σ>(2)
qg (z)

∣∣∣∣
δ(s2)

≡ τ

∫ 1

τ

dz

z
Lqg

(
τ

z

)
σ̂ (0) Ĝ(2)

qg (z)
∣∣∣
δ(s2)

,

(4.9)

4 The intermediate results are available upon request to the authors.
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and, from the structure of the power corrections we have
computed in this paper, the general form of this function is
given by5

Ĝ(2)
qg (z)

∣∣∣
δ(s2)

= log3(a) Ĝ(2,3,0)
qg (z) + log2(a) Ĝ(2,2,0)

qg (z)

+ log(a) Ĝ(2,1,0)
qg (z) + Ĝ(2,0,0)

qg (z)

+a log2(a) Ĝ(2,2,2)
qg (z) + a log(a) Ĝ(2,1,2)

qg (z)

+a Ĝ(2,0,2)
qg (z)

+O
(
a

3
2 log(a)

)
, (4.10)

all the other coefficients being zero.
This also agrees with the calculation done in Ref. [20],

although the observable is different. In fact, analytic results
are therein obtained for the dominant αS τ log(τ ) and
α2

S τ log3(τ ) subleading terms for 0-jettiness (τ ) for qq̄-
initiated Drell–Yan-like processes.

We do not expect this behaviour to be true in general
when cuts are applied to the final-state boson. This was ver-
ified in Refs. [29,30], both for transverse momentum and
N -jettiness. In fact, power corrections proportional to

√
a

and
√

τ are found therein.

5 Conclusions

In this paper we considered the production of a vector boson
F (Z , W±, γ ∗) at next-to-next-to-leading order in the strong
coupling constant αS. We imposed a transverse-momentum
cutoff, qcut

T , on the vector boson and we computed, up to
the second power of qcut

T , the power corrections for the qg-
initiated real-virtual contributions to the cumulative cross
section, and for other contributions from double-real radi-
ation, leftover of the subtraction scheme, having the same
kinematics, i.e. F + 1 parton.

Although we studied Drell–Yan-type F boson production,
the procedure we followed is general and can be applied to
other similar cases, up to any order in the powers of qcut

T , as
illustrated in our previous paper [38].

We presented analytic results for the power corrections in
qcut

T and we found that the logarithmic terms in qcut
T show

up at most to the third power in the power-correction con-
tributions, as expected, and that no odd-power corrections in
qcut

T appear. This is in agreement with known results in the
literature at a lower order in αS, i.e. next-to-leading, and with
what we found in Ref. [38] where we computed the power

5 The notation for the expansion of Ĝ(2)
ab (z)

∣∣∣
δ(s2)

follows from the num-

ber of powers of αS, log(a) and a
1
2 , according to

Ĝ(2)
ab (z)

∣∣∣
δ(s2)

=
∑

m,r

logm(a)
(
a

1
2

)r
Ĝ(2,m,r)

ab (z) .

corrections at next-to-leading order up to (qcut
T )4. We do not

expect this to be true in general when cuts are applied to the
final state.

The knowledge of the power terms is crucial for under-
standing both the non-trivial behaviour of cross sections in
the infrared limit, and the resummation structure at sublead-
ing orders. In addition, within the qT-subtraction method, the
knowledge of the power terms helps in reducing the cutoff
dependence of the cross sections.

The result presented in this paper is the first step towards
the full calculation of the power corrections of vector-boson
production at NNLO. Work is ongoing to compute these cor-
rections for the qq-initiated real-virtual contributions and for
the double-real radiation contributions too.
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A Samples of integrals

According to the procedure first presented in Ref. [38], in
order to compute the power corrections, one has to perform
two integrations of the differential cross sections: an integra-
tion in qT, in general easy to perform, and an integration in
z from 0 to 1 − f (a). This second integration turned out to
be challenging for some integrand functions.

We have classified the integrand functions into five groups,
according to the number of logarithms and polylogarithms
appearing in the expressions. We present here a sample of
integrands for each group.

A.1 Integrand classification

Defining

r(z) ≡
√

(1 − z)2 − 4az , (A.1)

we have groups containing:
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1. one logarithm:

∫ 1− f (a)

0
dz zn log

[
(1 − z)

1 + z ± r(z)

1 − z ± r(z)

]
(A.2)

∫ 1− f (a)

0
dz zn

r(z)

1 + z ± r(z)
log

[
2z

1 − z ± r(z)

]

(A.3)

2. two logarithms:

∫ 1− f (a)

0
dz zn r(z) log(z) log

[
1 − z − r(z)

2(1 − z)

]
(A.4)

∫ 1− f (a)

0
dz zn r(z) log2

[
2z

1 − z ± r(z)

]
(A.5)

3. three logarithms:

∫ 1− f (a)

0
dz zn log2

[
1 − z − r(z)

1 − z + r(z)

]

× log

[
(1 − z)

1 + z + r(z)

1 − z + r(z)

]
(A.6)

∫ 1− f (a)

0
dz zn log(z) log2

[
1 − z ± r(z)

2(1 − z)

]
(A.7)

∫ 1− f (a)

0
dz zn log3

[
1 ∓ z ± r(z)

2z

]
(A.8)

∫ 1− f (a)

0
dz zn log(z)

× log
1 − z ± r(z)

2 (1 − z)
log

1 − z ∓ r(z)

2z
(A.9)

4. one polylogarithm of order 2:

∫ 1− f (a)

0
dz zn r(z) Li2

[
2z

1 + z ± r(z)

]
(A.10)

∫ 1− f (a)

0
dz zn log

[
1 − z ± r(z)

1 − z ∓ r(z)

]

×Li2

[
−z

1 − z ± r(z)

1 − z ∓ r(z)

]
(A.11)

5. one polylogarithm of order 3:

∫ 1− f (a)

0
dz zn Li3

[
2z

1 + z ± r(z)

]
(A.12)

∫ 1− f (a)

0
dz zn Li3

[
−z

1 − z ± r(z)

1 − z ∓ r(z)

]
(A.13)

where n = 1, . . . , 4.

A.2 Sample of integral expansion

After the z integration, the results are functions of a only,
and have to be expanded around a = 0. A sample of these
expansions is given in the following:

– Example 1

∫ 1− f (a)

0
dz z log2

[
1 − z − r(z)

1 − z + r(z)

]

× log

[
(1 − z)

1 + z + r(z)

1 − z + r(z)

]

= 1

2
a log3(a) + 2 a log2(a)

+
(

17

2
+ π2

)
a log(a)

+ [48 − 32C − 16 log 2
]√

a

+
[

9 ζ(3) − 15

4
+ 4

3
π2 + 8 log 2

]
a + O

(
a

3
2

)
,

(A.14)

where C is the Catalan constant defined by

C =
∞∑

n=0

(−1)n

(2n + 1)2 = 1

12 − 1

32 + 1

52

− 1

72 + · · · ≈ 0.915965594 . . . (A.15)

– Example 2

∫ 1− f (a)

0
dz z3 log2

[
1 − z − r(z)

1 − z + r(z)

]

× log

[
(1 − z)

1 + z + r(z)

1 − z + r(z)

]

= 5

6
a log3(a) + 71

12
a log2(a)

+
(

1721

72
+ 5

3
π2
)
a log(a)

+ [48 − 32C − 16 log 2
]√

a

+
[

16 ζ(3) + 8711

864
+ 71

18
π2 + 16 log 2

]
a

+O
(
a

3
2

)
, (A.16)

– Example 3

∫ 1− f (a)

0
dz z r(z) log(z) log

[
1 − z − r(z)

2(1 − z)

]
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= − 5

36
log(a) + π2

18
− 55

108
+
(

π2

3
− 5

2

)
a log(a)

+
(

5

6
π2 − 25

4

)
a + O

(
a

3
2

)
, (A.17)

– Example 4

∫ 1− f (a)

0
dz z log(z) log

[
1 − z + r(z)

2(1 − z)

]

= a

[
1 − π2

12
+ 2 log2 2 − 2 log 2

]
+ O

(
a

3
2

)
,

(A.18)

– Example 5

∫ 1− f (a)

0
dz z log(z) log2

[
1 − z − r(z)

2(1 − z)

]

= 1

2
a log2(a) − log2(a)

4

+a

(
2 + 3

4
π2 + 2 log2 2 − 2 log 2

)

+
(

2

3
π2 − 4

)
a log(a)

+
(

π2

3
− 7

2

)
log(a)

+2

3
π2 − 59

8
+ O

(
a

3
2

)
. (A.19)

We note that the intermediate integrals contain log(2) and√
a terms, and also terms proportional to the Catalan con-

stantC . Despite this, once recombined to compose the whole
behaviour of the physical cross section, all these terms dis-
appear from the final answer, as illustrated in Appendix B.
Something similar happened for the results at NLO we pre-
sented in Ref. [38].

B Final results

In this appendix we collect the results for the NNLO power
corrections, up to order a in the transverse-momentum cutoff.
The results refer to the δ(s2) contribution of the qg-initiated
channel to the inclusive cross section for the production of
a vector boson F , i.e. the cgH0 (z), cgH1 (z), cgH2 (z), gH0 (z),
gH1 (z), gH2 (z), cJ H

23 and J H
23 functions in Eqs. (4.4)–(4.7).

In the following, we need l(z), defined in Eq. (4.8), and
its first derivative

l(1)(z) ≡ d

dz
l(z) = − 1

z2 L
(

τ

z

)
− τ

z3 L(1)

(
τ

z

)
, (B.1)

both evaluated in z = 1. For sake of brevity, we introduce
the following notation

L ≡ l(1) = L (τ ) , (B.2)

L′ ≡ l(1)(1) = −L (τ ) − τL(1) (τ ) . (B.3)

The renormalisation and factorisation scales are indicated
with μR and μF, respectively, and pqg(z) is the zeroth-order
Altarelli–Parisi splitting function, defined as

Pqg(z) = TR

[
2z2 − 2z + 1

]
≡ TR pqg(z) . (B.4)

In addition, we recall the definition of a in Eq. (3.6): a =(
qcut

T

)2
/Q2.

B.1 Aqg

gA
0 (z) = pqg(z)

[
−log(a)+log

(1−z)2

z

]
+ 1

2
(1+3z)(1−z)+O

(
a

3
2 log(a)

)

(B.5)

gA
1 (z) = −z (1 + 3z) a + O

(
a

3
2 log(a)

)
(B.6)

gA
2 (z) = −2z pqg(z) a + O

(
a

3
2 log(a)

)
(B.7)

J A
23 = −

(
L + L′)

a log(a)

−
(

3

2
L + 10

3
L′
)
a + O

(
a

3
2 log(a)

)
(B.8)

B.2 Bqg
1 : CA coefficient

CAgB1
0 (z) = 1

6
pqg(z) log3(a) − pqg(z) log(z) log2(a)

+
[
z − pqg(z)

(
log2 z

1 − z

−2 log(1 − z) log(z) + 7

6
π2
)]

log(a)

+pqg(z)

(
2

3
log3(1 − z) − 1

6
log3(z)

+ log(1 − z) log2(z)

)

−
(

6z2 − 5z + 5

2

)
log2(1 − z) log(z)

−
(

15

2
z2 − 5z + 1

)
log(1 − z) log(z)

+
(

21

4
z2 − 3

2
z − 1

4

)
log2(z)

+
(

3z2 − 4z + 1
)

log2(1 − z)

+
(

14

3
π2 z2 + 9

2
z2

−9

2
π2 z − 8z + 9

4
π2 + 3

2

)
log(1 − z)
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−
(

4

3
π2 z2 + 3

2
z2 − 3

2
π2 z − 3z + 3

4
π2 − 1

2

)
log(z)

−
(

3

2
z2 + 3z − 1 + 1

2
(2z − 1) log

z

1 − z

)

×
(

Li2(1 − z) − Li2(z)
)

− 2(2z − 1) Li3(1 − z)

−
(

4z2 − 2z + 1
)

Li3(z)

+ζ(3)
(

4z2 − 2z + 1
)

− 15

4
π2 z2

−13

4
z2 + 23

6
π2 z + 9

2
z − 2

3
π2 − 5

4

+
[

11

6
pqg(z)

(
− log(a) + log

(1 − z)2

z

)

+11

12
(1 − z) (3z + 1)

]
log

μ2
R

Q2 − 2 (1 + z) a log2(a)

+
[

39

8
z − 45

16
+ (11z + 10) log(1 − z)

−(16z + 19) log(z)

]
a log(a)

+
[
−
(

13

8
z3 + 9z2 + 27

16
z − 1

16

)

× log(1 − z) +
(

5

2
z + 2

)
log2(1 − z)

+
(

13

8
z3 + 9 z2 − 63

8
z − 11

2

)

× log(z) −
(

19

2
z + 5

)
log2(z)

− (z + 9) log(1 − z) log(z) + 2 (1 + z)

×
(

Li2(1 − z) − Li2(z)
)

+ 23

8
z2 − 165

16
z + π2

3
z − 3 + 5

6
π2
]
a

+O
(
a

3
2 log(a)

)
(B.9)

CAgB1
1 (z) =

[
−2z3 − 1

2
z2 + z + 1

2

]
a log2(a)

+
[ (

8z3 + 12z2 − 8z − 4
)

log(1 − z)

+
(
−4z3 − 11z2 + 6z + 1

)
log(z)

+ 4z3 − 43

8
z2 − 75

16
z + 61

16

]
a log(a)

+
[(

−8z3 + 1

2
z2 + 15

2
z − 8

)

× log2(1 − z) +
(

6z3 − 10z2 + 11

2
z

)
log2(z)

+
(

12z3 − 23

2
z2 − 2z + 15

)
log(1 − z) log(z)

− (1 + z)

(
13

8
z3 + 31

4
z2

−177

16
z + 65

16

)
log(1 − z)

+
(

9

2
z2 − z − 2

)(
Li2(1 − z) − Li2(z)

)

+
(

13

8
z4 + 43

8
z3 − 29

8
z2

−43

8
z + 17

2

)
log(z)

+2π2 z3 − 63

16
z3 − 79

12
π2 z2

−11

4
z2 − π2

2
z + 79

16
z + 4

3
π2 + 4

−11

6
z (3z + 1) log

μ2
R

Q2

]
a + O

(
a

3
2 log(a)

)
(B.10)

CAgB1
2 (z) =

[
1

2
(1 − z)(z + 1)

(
4z2 − 6z + 3

)]
a log2(a)

+
[
(z − 1)

(
4z3 − 21

4
z2 − 2z + 3

)

+2
(

4z4 − 4z3 − 3z2 + 7z − 3
)

log(1 − z)

+
(
−4z4 + 10z3 + 2z2 − 29z + 18

)
log(z)

]
a log(a)

+
[(

12z4 − 25z3 + 43

2
z2 + 2z − 6

)
log(1 − z) log(z)

−2
(

4z4 − 4z3 − 3z2 + 7z − 3
)

log2(1 − z)

+
(

6z4 − 5z3 − 3

2
z2 − 5z + 5

)
log2(z)

+1

4

(
16z4 − 11z3 − 32z2 + 31z − 12

)
log(z)

+(1 − z)

(
8z3 − 4z2 − 25

4
z + 6

)
log(1 − z)

+ z2

2
(2z − 1)

(
Li2(1 − z) − Li2(z)

)

+π2

12

(
24z4 − 94z3 + 45z2 + 24z − 26

)

+ 1

16

(
−109z4 + 132z3 + 83z2 − 122z + 48

)

−11

3
z pqg(z) log

μ2
R

Q2

]
a + O

(
a

3
2 log(a)

)
(B.11)

CAJ B1
23 = 1

6

[
L + L′]

a log3(a)

+1

4

[
15L − 11

3
L′
]
a log2(a)

+
[(

−11

6
log

μ2
R

Q2 −5

3
π2 − 43

8

)
L

+
(

−11

6
log

μ2
R

Q2 − 5

3
π2

+79

6

)
L′
]
a log(a)

+
[(

−11

4
log

μ2
R

Q2 − 5ζ(3) − 11

3
π2 + 897

32

)
L

+
(

−55

9
log

μ2
R

Q2 − 5ζ(3) − 185

36
π2

+565

192

)
L′
]
a + O

(
a

3
2 log(a)

)
(B.12)
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B.3 Bqg
1 : CF coefficient

CFgB1
0 (z) = pqg(z) log

z

1 − z
log2(a)

+
[

16z2 − 17z + 8 + pqg(z)

×
(

11

6
π2 + Li2(z) − Li2(1 − z)

+2 log2 z

1 − z
+ log2(1 − z)

− log(1 − z) log(z)

)]
log(a)

−2pqg(z)

(
log3(1 − z) − 2

3
log3(z)

+2 log(1 − z) log2(z)
)

+
(

8z2 − 6z + 3
)

log2(1 − z) log(z)

+
(

−9

2
z2 + 7z − 5

2

)
log2(1 − z)

+
(
−6z2 + 3z − 2

)
log2(z)

+
(

−7π2 z2 − 42z2 + 20

3
π2 z + 48z

−10

3
π2 − 20

)
log(1 − z)

+
(

8

3
π2 z2 + 47
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B.8 Cqg
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