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ABSTRACT

MEASURES OF RISK:
VALUATION AND CAPITAL ADEQUACY IN ILLIQUID MARKETS

AND SYSTEMIC RISK

Maria ARDUCA

In this thesis, we study market consistent valuation and capital adequacy in markets with fric-
tions, and duality for systemic risk measures. All along the thesis, we focus on uniperiodal market
models. In the first chapter, we consider a market with convex transaction costs, convex portfolio
constraints and convex acceptance set that reflects the preferences of an agent who acts as a buyer
in the market. We define the set of market consistent prices for every conceivable payoff, where
consistent is meant with respect to the market and the preferences of the buyer. We show that
the supremum of this set coincides with the well-known superreplication price, this giving to this
functional an interpretation that goes beyond the classical hedging explanation. We develop an
extension of the Fundamental Theorem of Asset Pricing in a context where arbitrages are replaced
by acceptable deals (i.e. replicable payoffs with nonpositive price belonging to the acceptance set)
and prices are not necessarily linear. This allows to characterize, under suitable assumptions, the
set of market consistent prices of any payoff. In the second chapter, we consider an abstract econ-
omy with transaction costs both at initial time and at maturity, and portfolio constraints. We do
not assume convexity a priori, tough some results hold only under convexity assumptions. An
external regulator fixes the acceptance set, that is the set of possible agent’s capital positions that
he deems acceptable from a risk perspective. We define capital adequacy rules that generalize the
coherent risk measures of Artzner, Delbaen, Eber and Heath [9] in that they represent the minimum
amount that the agent has to invest in the market in order to reach the acceptability requirements.
The chapter aims to study the properties of these general risk measures. In particular, we establish
conditions on the portfolios ensuring that they are lower semicontinuous, and we compare these
conditions with no-acceptable deal type assumptions. In convex and quasi convex case, we also
provide dual representations. In the third chapter we establish dual representations for systemic
risk measures. We model interactions among a finite number of institutions through an aggregation
function, and we assume that a regulator fixes a set of acceptable aggregated positions. Systemic
risk is estimated through the minimum amount of capital that has to be injected in the system (be-
fore or after aggregation) in order to make the aggregated position acceptable. Hence, we deal with
systemic risk measures of both “first allocate, then aggregate” and “first aggregate, then allocate”
type. In both cases, we provide a detailed analysis of the corresponding systemic acceptance sets
and their support functions. Our general results cover some specific cases already studied in the
literature. The same approach delivers a simple and self-contained proof of the dual representation
of utility-based risk measures for univariate positions.
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1

INTRODUCTION

This thesis in (one of) the fruit(s) of a two years research activity played between Milan and Zurich,
thanks to the support of the PhD program in Statistics and Mathematical Finance of the University
of Milano Bicocca and the collaboration with the Center for Finance and Insurance of the University
of Zürich. The content of this thesis is part of a project conducted jointly with my supervisor,
Cosimo Munari, and partially with Pablo Koch-Medina.

In the next few pages, the reader will be provided with a general overview of the framework
and the problems motivating this thesis. We are going to present some standard concepts from
Mathematical Finance from a point of view that shall facilitate the reading of the thesis. We do not
mean to be neither exhaustive nor technical. In fact, we try to keep the language and the model as
simple as possible so as to facilitate the understanding of the key ideas. The attempt to capture the
essential structure behind standard topics in Mathematical Finance such as Fundamental Theorems
and Risk Measures has guided us during the entire project. The focus on uniperiodal models
helps in this direction, as one does not need to deal with technicalities that come out in discrete
multiperiodal or continuous time settings.

In the last part of this introduction we summarize the contents chapter by chapter. We post-
pone to the introductions of the single chapters the related references and the comparison with the
literature.

FRICTIONLESS ARBITRAGE THEORY

Consider two fixed time instants: we refer to the first one as initial time, and to the second one as
maturity. Assume that there exist N pre-fixed types of contracts that can be exchanged by a subject
(agent) at initial time. For every i = 1, . . . , N, contract i consists of paying pi ∈ R units of a fixed
unit of account (e.g. a currency) at initial time, and receiving the payoff Si at maturity. We call
these N available contracts basic securities (or simply securities) and we refer to the place where
the exchange of the securities happens as the market. The real value pi is called the initial price (or
simply price) of the ith security. Typically the payoffs Si are modeled through random variables
on a probability space that describes uncertainty at maturity. For the sake of generality, we fix
a topological vector space X that plays the role of the space of every conceivable payoff and we
assume that Si’s are elements of X . Moreover, we assume that X is equipped with a compatible
order ≥ such that the positive con X+ is closed, and that every rational agent prefers the elements
of the positive cone X+ to 0.

We assume that an agent who acts in this market is allowed to buy any quantity of any basic
security and that the price of λi ∈ R units of basic security i is λi times the unitary price, i.e.
λi pi. Moreover, we assume that he is allowed to buy every combination of the securities. Such
combinations are called portfolios and are described through vectors (λ1, . . . , λN) ∈ RN , where λi
represents the number of units of the ith security. The price for buying a portfolio is assumed to be
the combination of the prices of the acquired securities. To be precise, we assign to every portfolio
λ ∈ RN the initial price

V0(λ) =
N

∑
i=1

λi pi.

We do not distinguish between buying and selling prices, as we assume that there is no bid-ask
spread. The total payoff received at maturity by the agent who has bought the portfolio λ at initial
time is the following:

V1(λ) =
N

∑
i=1

λiSi.



2 INTRODUCTION

Every rational agent is attracted by particular portfolios known as arbitrage opportunities (or
simply arbitrages), which can be bought at nonpositive price and have final nonzero payoff which
is in X+.1 We read in Föllmer and Schied [49]:

The existence of such an arbitrage opportunity may be regarded as a market inefficiency in the
sense that certain assets are not priced in a reasonable way. In real-world markets, arbitrage
opportunities are rather hard to find. If such an opportunity would show up, it would generate
a large demand, prices would adjust, and the opportunity would disappear.

For this reason, most of the theory of financial markets has been developed under the assumption
that there are no arbitrage opportunities. In this case, we say that the No Arbitrage condition holds,
which means that:

λ ∈ RN , V0(λ) ≤ 0, V1(λ) ∈ X+ =⇒ V1(λ) = 0. (NoA)

From now on, we assume that (NoA) holds, and that S1 ∈ X+ \ {0}. This automatically implies
p1 > 0. Under these assumptions, whenever two portfolios have the same payoff, their prices must
coincide, for otherwise it would be possible to buy the cheaper, sell the more expensive and buy a
positive number of units of S1 so as to create an arbitrage. We say that the law of one price holds, i.e.

λ, µ ∈ RN , V1(λ) = V1(µ) =⇒ V0(λ) = V0(µ). (L1P)

The validity of (L1P) allows to get rid of portfolios and functionals V0 and V1, and to work at the
level of the payoffs. This is what we do in what follows (and in Chapter 1).

We define the finite dimensional vector subspace of X of attainable payoffs:

S := {V1(λ) : λ ∈ RN} = span(S1, . . . , SN).

Thanks to (L1P), the following linear functional is well defined for every Z ∈ S :

π(Z) := V0(λ) for λ ∈ RN such that Z = V1(λ).

For Z ∈ S , π(Z) represents the price (expressed in units of the fixed unit of account) that the agent
has to pay at initial time so as to buy a portfolio whose payoff at maturity is Z. Note that (NoA)
holds if and only if π is strictly positive on S , in the sense that π takes strictly positive values on
every nonzero Z ∈ S ∩ X+. But the characterization of (NoA) we are mostly interested in is the
following:

(NoA) ⇐⇒ X+ ∩
(

ker(π)−X+
)
= {0}.

As the reader will appreciate, the difference ker(π)− X+ is the real subject of our discussion.
It coincides with the set of all payoffs X such that there exists an attainable payoff Z ∈ S with
initial price 0 and such that Z superreplicates X (we say that a payoff X superreplicates a payoff Y if
X ≥ Y). This means that by paying 0 at initial time, and possibly throwing away something, we
obtain the payoff X. The (NoA) condition states that this remaining X cannot be positive, unless it
is equal to 0. Since ker(π)−X+ is a convex cone, this set is usually called the cone of superreplicable
payoffs at zero cost. Note that by positivity of π, it coincides with {Z ∈ S : π(Z) ≤ 0} − X+.
From a topological point of view, a straightforward application of the Dieudonné Theorem B.1.9
shows that the difference of ker(π) and X+ is closed (see Dieudonné [39] for the original result).
Both of them are indeed convex closed cones, ker(π) is finite dimensional and their intersection is
{0} due to (NoA).2 Closedness of ker(π)−X+ has two important consequences that we are going
to discuss: one regarding the regularity of the so called superreplication price, the other regarding
strictly positive extensions of π to the payoff space X .

1In Chapter 1, the term arbitrage opportunity indicates the payoff V1(λ) of a portfolio λ such that V0(λ) ≤ 0 and V1(λ) ∈
X+ \ {0}, instead of the portfolio itself. This is not misleading since, due to the model specification of that chapter, there is
a bijection between portfolios and payoffs.

2In multiperiodal or continuous time models, the dimension of S is generally not finite, since there is a random com-
ponent not only in the basic securities’ payoffs but also in the portfolios. In these cases, (NoA) has been often replaced by
stronger assumptions that fall under the name of “no free lunch”, and that consist in assuming that some type of closure of
ker(π)−X+ has {0}-intersection with X+. This is the approach used e.g. in Clark [33] and Kreps [69]. The first assumes
that cl

(
ker(π)−X+

)
∩X+ = {0}, while the second requires that one cannot find X ∈ X and nets (Xα) ⊂ X and (Zα) ⊂ S

such that Xα → X, Xα ≤ Zα and lim infα π(Zα) ≤ 0.
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For a payoff X ∈ X , the superreplication price is defined as the infimum of the prices of port-
folios whose payoff superreplicate X:

π+(X) := inf{V0(λ) : λ ∈ RN , V1(λ) ≥ X}. (1)

It is typically used in hedging problems: suppose an agent must deliver at maturity a payoff X and
wants to set up a trading strategy so as to be covered against potential losses. The value π+(X)
represents the minimum amount of the fixed unit of account that he has to invest at initial time
in the market in order to have a final payoff that superreplicates the claim that he must deliver.
Actually, it turns out that the superreplication price plays a key role also in pricing problems. The
reader will find a detailed discussion about this in Chapter 1.

Since we have assumed that (NoA) holds, the superreplication price of X ∈ X can equivalently
be expressed as

π+(X) = inf{π(Z) : Z ∈ S , Z ≥ X}.

Now, the linearity of our model allows to concentrate the pricy part of every portfolio on the first
basic security. Indeed S = ker(π)+RS1, and π(Z+mS1) = mp1 for every Z ∈ ker(π) and m ∈ R.
Hence, for every X ∈ X ,

π+(X) = inf
{

m ∈ R : m
S1

p1
− X ∈ − ker(π) +X+

}
.

This characterization brings to light that closedness of ker(π)−X+ implies that, whenever π+(X)
is real valued, the infimum in the definition (and in the characterizations) of π+(X) is attained and
one can then identify the best portfolio(s) superreplicating X. Moreover, it follows that sublevels
of π+ are closed sets, showing that π+ is lower semicontinuous, a feature that may turn out to be
useful in applications, where one generally deals with approximations rather than exact payoffs.

In order to investigate the other consequence of closedness of ker(π)− X+, we need to intro-
duce duality. From now on, assume that X is locally convex, and let X ′ be the topological dual
of X . It is well known (see Proposition A.1.10) that closed convex cones admit a representation
as intersections of half spaces defined through functionals that are nonnegative on the cone itself.
Let us apply then this representation to −(ker(π) − X+) = ker(π) + X+. Note that the set of
nonnegative functionals on this set consists of positive functionals that extend π:

ker(π) +X+ =
⋂

ψ∈X ′+ , ψ|S=π

{X ∈ X : ψ(X) ≥ 0}. (2)

The essence of the Fundamental Theorem of Asset Pricing is to find among the functionals appear-
ing in (2), a strictly positive functional (i.e. ψ(X) > 0 whenever X ∈ X+ \ {0}). Such a functional
is a good candidate for pricing payoffs belonging or not to S : if X ∈ S , then the new price ψ(X)
coincides with the market price π(X); if X /∈ S , the price ψ(X) is typically considered reasonable
in the sense that the (NoA) condition keeps holding in the extended market where X is added to
attainable payoffs in the following way: S ′ = S + RX, π′(Z + mX) = π(Z) + mψ(X) for every
Z ∈ S and m ∈ R. We refer the reader to Chapter 1 for a detailed discussion on the problem
of pricing non attainable payoffs in a way that is consistent with the market, and for a different
justification of why and how these functionals could work as pricing rules.

The existence of a strictly positive functional that extends π is obtained through a separation
process. Due to (NoA), the cone of superreplicable claims intersects the positive cone only in 0.
Using standard Hahn-Banach separation, one finds for every nonzero X ∈ X+ a functional ψX that
extends π and is strictly positive on X. Then the point is how to build a unique extension of π
that is strictly positive on X+ \ {0}. This was first done by Yan [94] in spaces of random variables
with an ad hoc technique for probability spaces, and by Kreps [69] in general topological vector
spaces satisfying suitable separability properties. In both cases, the author constructs the desired
functional as an infinite convex combination of a proper countable subfamily of {ψX}X∈X+\{0}.
Again, we refer to Chapter 1 for more on this topic.



4 INTRODUCTION

ARBITRAGE THEORY IN THE PRESENCE OF FRICTIONS

We introduce this section using the words of Pennanen [79]:

The market model considered so far describes perfectly liquid markets where the unit price of a
security does not depend on whether we are buying or selling nor on the quantity of the traded
amount. In reality, different unit prices are associated with buying and selling and, moreover,
as the traded quantities increase, the prices start to move against us. This is often referred to as
illiquidity.

Like in the cited paper, after having described a perfectly liquid market, we make the model more
realistic by introducing frictions like (not necessarily proportional) transaction costs, illiquidity
and portfolio constraints. The general framework is like before: a one period market where N
basic securities are traded. The substantial difference in the model is that we drop linearity. For
instance the cost of buying n units of basic security i could exceed n times the cost of buying
one unit, since the number of units of security i at the lowest price is finite, and «when buying
more, one gets the second lowest price and so on» ([79]). Moreover, the price of a combination of
securities or portfolios could be strictly less than the combination of the prices since purchases and
sales could compensate and this would reduce transaction costs. These facts justify the choice of a
convex function V0 : RN → R to model portfolios prices at initial time. Moreover, we assume that
V0(0) = 0. Since buying −λ coincides with selling λ, it comes that the selling price of the portfolio
λ is −V0(−λ), which needs not coincide with V0(λ).

We assume that trading occurs at maturity too, and the agent in possession of a portfolio is
forced to liquidate it. The gain from this liquidation is described through an element of the abstract
payoff space X . The function V1 : RN → X assigns to each portfolio its liquidation value. We
assume that V1(0) = 0 and V1 is concave for the same reasons for which V0 is convex. The case
where there is no trading at maturity and each security delivers its terminal contractual payoff is
covered by taking V1 linear.

Finally, we take into account the possibility that the agent could have no access to every com-
bination of the basic securities due to constraints such as borrowing and short selling restrictions.
To model this fact, we assume that he is allowed to buy only portfolios in a subset P ⊂ RN . It
makes sense to assume that P is convex as the agent can decide to buy combinations of admissible
portfolios. Moreover we assume that the zero portfolio belongs to P .

Arbitrages, and the (NoA) condition, are defined like in the case of a perfectly liquid market.
Simple examples show that in this context, the absence of arbitrages is not a sufficient condition for
(L1P) to hold, as the potential gain of buying and selling two portfolios with the same liquidation
value and different initial price could vanish due to transaction costs. See for instance Example
2.1.4. One could assume in principle that the law of one price holds, and get rid of portfolios in
favor of prices defined directly on liquidation values. This is the case in the model of Chapter 1,
where (L1P) holds because V1 is linear and injective.

For our analysis, it is convenient to define the set of attainable payoffs with maximum cost
m ∈ R:

Vm := {V1(λ) : λ ∈ P , V0(λ) ≤ m}.

Like we have done for a perfectly liquid market, we characterize (NoA) as follows:

(NoA) ⇐⇒ X+ ∩
(
V0 −X+

)
= {0}.

The difference V0 −X+ is the set of superreplicable claims at zero (or lower) cost. It is a convex set
that contains 0. In case of conic constraints (i.e. P conic) and proportional transaction costs (i.e. V0
and V1 positively homogeneous), it is also conic. In the spirit of the linear case, one could address
the problem of closedness of this set but, due to the lack of linearity things are more complicated
than for linear markets. One way to prove the desired closedness is to use some Dieudonné Theo-
rem’s extension under suitable assumptions on the market. This is what we do in Theorem 2.3.13.
Otherwise one has to try with a more ad-hoc approach and guess sufficient conditions so that accu-
mulation points belong to V0 −X+. One of the goals of this thesis is to identify these assumptions.

Now, suppose we are lucky enough to have that Vm−X+ is closed for every m ∈ R. Do we have
the same benefits from this closedness as in liquid markets (i.e. regularity of the superreplication
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price and existence of a strictly positive functional that “extends” the market)? Concerning lower
semicontinuity of π+ (defined in equation (1)) the answer is a priori negative. Indeed, since

π+(X) = inf{m ∈ R : X ∈ Vm −X+},

without further assumptions ensuring a continuous dependence of the sets Vm−X+ on m, nothing
can be said about π+.

Concerning the second question, for ease of exposition, in this introduction we treat the dual
representation of V0 −X+ only in case P is a cone and V0 and V1 are positively homogeneous and
hence V0 −X+ is a convex cone. It follows from Proposition A.1.10 that

X+ − V0 =
⋂

ψ∈D∗
{X ∈ X : ψ(X) ≥ 0},

where

D∗ :=

{
ψ ∈ X ′+ : sup

λ∈P , V0(λ)≤0
ψ(V1(λ)) = 0

}
= {ψ ∈ X ′+ : ψ(V1(λ)) ≤ 0 ∀λ ∈ P such that V0(λ) ≤ 0}.

Functionals in the dual set of X+ −V0 are those and only those that assign nonpositive price to the
liquidation value of portfolios with nonpositive initial price.3 Although this property establishes
a compatibility among the market and the functional, we think that it is not sufficient to interpret
functionals in D∗ as pricing rules that extend π from S to X . We expect that such a functional
satisfies ψ(V1(λ)) ≤ V0(λ) for every λ ∈ P so that new prices are compatible with the bid ask
spread of the market. It turns out that

D := {ψ ∈ X ′+ : ψ(V1(λ)) ≤ V0(λ) ∀λ ∈ P} ⊂ D∗, (3)

but in general the inclusion can be strict (simple examples can be constructed).
It is not hard to see that D coincides with D∗ in the presence of a traded security, let us say

the first basic security, unconstrained and perfectly liquid. In our model, this would mean that
P = P + Re1 and V0(λ + me1) = V0(λ) + mp1 and V1(λ + me1) = V1(λ) + mS1 for every λ ∈ P
and m ∈ R, where p1 > 0 and S1 ∈ X+ \ {0}. Note that in this case we would have

Vm −X+ =
m
p1

S1 + V0 −X+,

hence the closedness of the set of superreplicable claims at zero cost would imply that π+ is lower
semicontinuous and that the infimum in the definition of π+(X) is actually a minimum, when it is
real valued.

Like pointed out in Kabanov [65], Kabanov et al. [64] and Schachermayer [90], there are mod-
els where such a linear direction does not necessarily exist. In particular, those papers consider
multicurrency markets or markets with physical delivery that, due to their intrinsically multivari-
ate nature, are modeled by way of solvency cones, which coincide with the negative of the set of
portfolios freely available on the market, and vector-valued portfolios. They assume proportional
transaction costs, a generalization of their model towards convex markets has been done in Lep-
inette and Molchanov [71]. We follow instead the approach of Pennanen (see e.g. [76, 78, 79,
81]) based on direct modeling of pricing functionals defined on “single valued” portfolios, which
arises as the natural generalization of the frictionless case. Actually, we take from this author the

3Le us make a brief parallelism with pricing systems as they have been defined in that part of the literature developed
around the concept of solvency cones. Consider e.g. Schachermayer [90], where the author describes a market with propor-
tional transaction costs and physical delivery and does not assume the existence of a reference asset like cash into which the
other assets can be liquidated. The set that he calls −K̂(Π) consists of portfolios available at price zero, and its dual cone

K̂∗(Π) := {w ∈ RN : 〈w, λ〉 ≤ 0 ∀λ ∈ −K̂(Π)}

is defined as the set of consistent price systems. Note that if we identify −K̂∗(Π) with the set of portfolios available at zero
cost in our model, that is {λ ∈ P : V0(λ) ≤ 0}, then for every ψ ∈ D∗, assumed that V1 is linear and P = RN , we have
that ψ ◦V1 : RN → R is a consistent pricing system in the sense of [90].
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key idea of focusing on the set of superreplicable processes instead of superreplicable payoffs. Instead
of working with V0 −X+, we consider the following subset of the product space X ×R:

C := {(X, m) ∈ X ×R : exists λ ∈ P such that V0(λ) ≤ −m, V1(λ) ≥ X}.

The fact that we have added one linear direction to the payoff space X will allow to compare
directly the real values ψ(V1(λ)) and V0(λ) and hence to find the desired pricing functionals in D.
The set C is convex and in case of proportional transaction costs and portfolio constraints it is also
conic. Again, it is possible to characterize the absence of arbitrages in terms of C:

(NoA) ⇐⇒ C ∩ (X+ ×R+) = {0}.

Since for every X ∈ X the superreplication price admits the following representation

π+(X) = inf{m ∈ R : (X,−m) ∈ C},

it is easy to see that whenever C is closed, then π+ is lower semicontinuous and the infimum in (1) is
attained. Moreover, the closedness of C allows to obtain useful dual representations. As above, for
clarity of exposition, we again focus the discussion about duality on the conic case. For a treatment
of the genuinely convex case, we refer the reader to Chapters 1 and 2. So, let P be conic, and V0
and V1 be positively homogeneous. Assuming that C is closed, its dual representation would be
an intersection over functionals in the dual product space X ′ ×R. Moreover, we assume that it is
possible to reduce these functionals to those whose real component is equal to 1 (see Chapter 1 for
details). It turns out that

C =
⋂

ψ∈D
{(X, m) ∈ X ×R : ψ(X)−m ≥ 0}

where D is like in (3). Hence the functionals appearing in the representation of C are exactly those
that extend the market in a way that is compatible with the bid-ask spread as we have required.
Like in the case of perfectly liquid markets, if X is a suitable space of random variables or has
suitable separability properties, then one could find a strictly positive functional in D.

Hence, it would be interesting to find sufficient conditions for C to be closed. This is what we
do in Chapters 1 and 2. We conclude this section noting that if the market is perfectly liquid, C is
closed if and only if ker(π)−X+ is so, showing that the “C-approach” for illiquid markets actually
generalizes the standard approach for perfectly liquid markets.

ACCEPTABLE DEALS THEORY

So far, we have described perfectly liquid markets and then we have generalized the model in
order to include the more realistic case of illiquid markets. Now, we move towards a different
generalization, which is not about the market (that for this section may be assumed to be with or
without frictions) but rather regards the concept of superreplication. We use the words of Pennanen
[81] to introduce the problem:

In reality, one rarely looks for superhedging strategies when trading in practice. Instead, one
(more or less quantitatively) sets bounds on acceptable levels of “risk” when taking positions in
the market and when quoting prices.

Similarly, Cherny [32] says:

When a trader sells a contract, he/she would charge for it a price, with which he/she would be
able to superreplicate the contract. In theory the superreplication is typically understood almost
surely, but in practice an agent looks for an offsetting position such that the risk of his/her over-
all portfolio would stay within the limits prescribed by his/her management (the almost sure
superreplication is virtually impossible in practice).

The idea is to relax the superreplication condition by imposing suitable constraints on acceptable
replication errors. This is achieved by fixing a subset A ⊂ X called acceptance set, which has the
property that X is preferred to Y if X − Y ∈ A. In this sense A may be interpreted as a set of
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admissible superreplication errors. Of course, it makes sense that the positive cone is a subset of
A, and A could be required to be convex in line with the diversification principle.

Now, one could come up with a natural question: who decides the preference criterion? That
is, who decides A? In contrast to classical arbitrage theory, where it is common agreement that if
X − Y ∈ X+ then X is preferred over Y, here different agents may come up with different ways to
define preferences and acceptable errors. Thus it is the agent himself who models the acceptance
set A on his subjective preferences.

Now, assume that P , V0 and V1 are given like above, and an acceptance set A has been fixed.
The ideas that we have developed with the positive cone as acceptance set still hold. In particular,
arbitrages are replaced by acceptable deal opportunities (or acceptable deals), i.e. portfolios λ ∈ P such
that V0(λ) ≤ 0 and V1(λ) ∈ A \ {0}4 , the convex set corresponding to C is defined as follows

CA := {(X, m) ∈ X ×R : exists λ ∈ P such that V0(λ) ≤ −m, V1(λ)− X ∈ A},

and the new superreplication price of X ∈ X is:

π+
A(X) := inf{V0(λ) : λ ∈ P , V1(λ)− X ∈ A} = inf{m ∈ R : (X,−m) ∈ CA}.

In Chapter 1, we show that in the absence of suitable acceptable deal opportunities, the set CA is
closed, this fact implying that π+

A is lower semicontinuous, that the infimum in its definition is
actually a minimum, and that CA admits a representation over functionals that extend the market
in a consistent way (i.e. in D for the positively homogeneous case). Moreover, like for the positive
cone, following the approach of [69], it is possible to determine conditions on the space X and on
A such that there exists a pricing functional that takes strictly positive values on every nonzero
element of A.

RISK MEASURES

The model just described is also suitable for applications to financial regulation. Consider a uniperi-
odal market modeled as above through P , V0 and V1. As said above, according to the properties
of these primary elements, the market will have frictions or not. Assume that an acceptance set
A ⊂ X is fixed, but let us change the interpretation of A with respect to the previous section. Let
X ∈ X describes the capital position of an agent (or an institution). For example, it may correspond
to the net asset value of an institution, or the P&L profile of a payoff. Suppose that a financial reg-
ulator wants to evaluate the goodness of X. The regulator fixes the set A of capital positions that
he deems acceptable, and compares the agent’s profile with them. In particular, he states the prob-
lem in capital adequacy terms: if the position is not acceptable, is it possible to make it acceptable
through an appropriate management action? If yes, which is the minimum cost for doing so? In
Artzner et al. [9], the authors say:

For an unacceptable risk (i.e., a position with an unacceptable future net worth), one remedy may
be to alter the position. Another remedy is to look for some commonly accepted instruments that,
when added to the current position, make its future value acceptable to the regulator/supervisor.

In order to implement this remedy using the basic securities of our model as commonly accepted
instruments, one naturally comes up with the following functional:

ρ(X) := inf{V0(λ) : λ ∈ P , X + V1(λ) ∈ A}, (4)

which is nothing else than the generalization of the standard risk measures axiomatically defined
right in [9]. Note that, up to a sign, also π+

A falls in the large class of functionals of this type. For
an agent with capital position X at maturity, ρ(X) represents then the minimum amount of the
fixed unit of account that he has to invest in the market at initial time so that his final position at
maturity after having liquidated his portfolio is acceptable. As said in [9], this value could be used
as a measure of the riskiness of X:

4Like for arbitrages, in Chapter 1 acceptable deals are defined as the payoffs V1(λ) of portfolios λ such that V0(λ) ≤ 0
and V1(λ) ∈ A \ {0}. Thanks to the bijection between portfolios and payoffs of that chapter’s model, acceptable deals as
portfolios correspond to acceptable deals as payoffs. In the model of Chapter 2, instead, such a bijection does not hold in
general, but the focus there is on the absence of acceptable deals rahter than on their definition, and absence of acceptable
deals as defined in Chapter 2 is equivalent to the absence of acceptable deals as portfolios.
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The current cost of getting enough of this or these instrument(s) is a good candidate for a measure
of risk of the initially unacceptable position.

Since the cited seminal paper of 1999, the risk measures related literature has been developed a lot
(for an overview, see the introductions of Chapters 2 and 3). Although generalizations in different
directions of the cash-additive single asset risk measures have been studied, to the best of our
knowledge the problem has never been treated in such a generality, i.e. allowing for general (non
necessary proportional) transaction costs both at initial time and at maturity, portfolio constraints
and general acceptance sets. For this reason, Chapter 2 tackles a systematic study of functionals of
type (4).

Risk measures have also been generalized so as to obtain functionals suitable for measuring the
risk not only of a single agent or institution, but of a connected system of individuals. To this end,
an aggregation function appears in defining the so called systemic risk measures, which has the role
of modeling interactions among the elements of the system. We study these type of risk measures
in Chapter 3.

Unfortunately, in applications one does not really know the real capital position of the institu-
tion (or of the system), but can only estimate approximations. This fact clarifies the importance of
proving continuity properties of functionals of type (4). In particular, lower semicontinuity plays
a key role in linearization of convex problems, making them more tractable for applications. It is
known indeed that, at least in the presence of (quasi) convexity, lower semicontinuous functions
admits a dual representation as supremum of affine functions. A considerable part of this thesis is
devoted to study dual representation of different types of risk measures and to provide conditions
ensuring the lower semicontinuity of functionals of type (4) (such as the closedness of the set CA,
as explained above).

STRUCTURE OF THE THESIS

The rest of this thesis is divided in three chapters. Each of them can be read independently of each
other and regardless of this introduction. This is why the reader will find some overlap between
the content of the last few pages and the introductions or the model descriptions of the following
chapters. There are only few references among different chapters which help compare the results.
A common appendix at the end collects the necessary mathematical background, and the List of
Symbols on page 117 contains the used notations.

In Chapter 1, we work in a reference space a random variables and we consider a uniperiodal
market model with convex transaction costs at initial time, convex constraints and convex accep-
tance set that reflects the preferences of an agent who acts as a buyer in the market. As we assume
that the law of one price holds, we abandon the modeling through portfolios and we conduct our
study on payoffs. The focus of this chapter is the problem of assigning prices to financial contracts.
To this end, we introduce a definition of market consistent prices, where consistent is meant with
respect to the market and the preferences of the buyer. In order to provide a dual representation
of these prices, we develop an extension of the Fundamental Theorem of Asset Pricing in a context
where arbitrages are replaced by acceptable deals. The chapter is based on the submitted paper
Arduca and Munari [6].

In Chapter 2 the reference model space is abstract. We consider a uniperiodal market with
transaction costs both at initial time and at maturity, and portfolio constraints. We do not assume
convexity a priori, tough some results hold only under convexity assumptions. The acceptance
set too is not required to be convex in general, and it is interpreted as the set of positions that
are deemed acceptable by an external regulator. We define capital adequacy rules like in (4), and
the objective of the entire chapter is to study their properties. As the law of one price needs not
hold, we work all along the chapter at the level of portfolios instead of payoffs like in Chapter
1. In particular, we establish conditions on the portfolios ensuring the the functional is lower
semicontinuous, and we compare these conditions with no-acceptable deal type assumptions. In
the convex and quasi convex case, we also provide a dual representation of the functionals of
interest. This chapter collects the results achieved jointly with Munari in an ongoing project.

Chapter 3 is devoted to the dual representation of systemic risk measures defined on product
spaces of random variables. We consider a uniperiodal model and a finite number of institutions
that are connected to each other. We model interactions through an aggregation function, and we
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assume that an external regulator fixes a set of acceptable aggregated positions. Systemic risk is
estimated as the minimum amount of money that has to be injected in the system (before or after
aggregation) in order to make the aggregated position acceptable. The goal of the chapter is to
develop a unifying approach to obtain dual representations of systemic risk measures, which is
not related to a particular choice of the acceptance set or the aggregation function. Our general
results cover some specific cases already studied in literature. This chapter is based on Arduca et
al. [5].
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CHAPTER 1

MARKET-CONSISTENT PRICING WITH
ACCEPTABLE RISK

The goal of every pricing theory in finance is to address the basic question: Which reasonable price(s)
can be assigned to payoffs of financial contracts?

The classical framework of arbitrage pricing theory tackles the pricing problem starting from
the fundamental notion of arbitrage-free prices. Since the pioneering contributions of Black and
Scholes [23], Merton [72], Cox and Ross [35] and Harrison and Kreps [59], this framework has
successfully been extended in several directions. A prominent line of research has worked to the
construction of what may be broadly called a general theory of “subjective pricing”. This has been
achieved by investigating the pricing problem under suitable relaxations of the classical notion of
an arbitrage opportunity. A key contribution in this direction is the theory of “good deal pricing”.
To recall the main ideas behind it, we start by providing a brief overview of arbitrage pricing theory
in a static setting.

ARBITRAGE PRICING

Consider a one-period financial market where a finite number of securities are traded at the initial
date and deliver their payoff at the terminal date. For ease of exposition, we assume that the
market is frictionless in the sense that there are neither transaction costs nor portfolio constraints.
We denote by L a vector space of random variables over a fixed probability triple (Ω,F , P). The
elements of L represent the payoffs of relevant financial contracts at the terminal date. The set of
positive payoffs is denoted by L+. For definiteness, we assume that L is the space of all integrable
random variables. The set of payoffs that can be fully replicated by trading in the market is a vector
spaceM⊂ L. (This assumption requires the payoffs of the basic traded securities to be integrable.
Should this fail, we can always ensure integrability after an appropriate change of probability
measure. Moreover, the new probability measure can always be taken to have bounded Radon-
Nikodym derivative with respect to the original one). We assume that to each replicable payoff
we can assign a certain price at the initial date through a linear functional π : M → R. For
every replicable payoff X ∈ M the quantity π(X) can be interpreted as its replication cost. The
interesting and more realistic situation is when the market is incomplete in the sense that there
exist payoffs that cannot be fully replicated by trading in the market.

The classical arbitrage pricing theory provides an answer to the initial motivating pricing prob-
lem under the assumption that arbitrage opportunities cannot be encountered in the market. An
arbitrage opportunity is any replicable payoff that is positive (but not null) and can be acquired with-
out cost. The absence of arbitrage opportunities is clearly equivalent to the strict positivity of the
pricing functional. This condition is typically justified from an economical perspective by argu-
ing that, should an arbitrage opportunity exist, there would be infinite demand for it so that its
price would increase until the opportunity would eventually vanish. In an arbitrage-free market,
the range of reasonable prices for a payoff X ∈ L is usually assumed to consist of the so-called
arbitrage-free prices. A candidate price p ∈ R is said to be an arbitrage-free price for X if the linear
extension of π to the enlarged marketed space M + RX obtained by assigning to X the value p
is strictly positive. The formalization of this notion goes back to Harrison and Kreps [59]. The
usual interpretation is that p is arbitrage free for X if the arbitrage-free market for the basic traded
securities can be extended in a frictionless way by adding the new security with unitary price p
and unitary payoff X without creating arbitrage opportunities. This interpretation is, however, at
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odds with the fact that introducing a new security in the market will generally alter the prices of
the existing securities, as Kreps remarks in [69]:

Of course, this [...] interpretation cannot be made in general, as the introduction of a market for x
[X] creates new economic opportunities for agents and may thereby change the prices of bundles
in M [M].

Another way to define a range of reasonable prices is the following. We say that p is a market-
consistent price for X if

• for every Z ∈ M such that Z− X ∈ L+ \ {0} we have p < π(Z),

• for every Z ∈ M such that X− Z ∈ L+ \ {0} we have p > π(Z).

This notion is used in Koch-Medina and Munari [67]. The above conditions stipulate that p is a
market-consistent price for X from a buyer’s, respectively seller’s, perspective: An agent interested
in buying, respectively selling, the payoff X at the price p cannot find any replicable payoff in the
market that is more attractive than X from a buyer’s, respectively seller’s, perspective and can be
bought at a lower price, respectively sold at a higher price. In other words, it is not foolish to
transact X for the price p given the alternatives offered by the market. In spite of the different
interpretation, it turns out that arbitrage-free prices and market-consistent prices are equivalent
concepts in an arbitrage-free market. Now, the key question becomes: How to characterize arbitrage-
free prices or equivalently market-consistent prices?

The first important result in this direction is to show that the set of arbitrage-free prices is an
interval whose bounds can be expressed in terms of the superreplication price defined for X ∈ L by

π+(X) = inf{π(Z) ; Z ∈ M, Z− X ∈ L+}.

Result 1. The set of arbitrage-free prices Π(X) for a payoff X ∈ L is an interval with upper bound
π+(X) and lower bound −π+(−X).

Note that the superreplication price corresponds to the lowest monetary amount that has to be
invested in the market in order to cover the underlying payoff in every contingency. Thus, it is the
minimum price accepted by a seller who wants to finance a strategy to hedge in every future state
the claim of the buyer. At the same time, if we take the buyer’s point of view, by the stated result
it is the maximum price such that is not foolish given the alternatives in the market. Throughout
this chapter, we focus on the latter perspective, since the focus is on pricing rather than on hedging
problems.

According to the above result, the problem of characterizing arbitrage-free prices boils down to
determining whether superreplication prices are themselves arbitrage-free prices or not. It turns
out that the superreplication price of a replicable payoff is always an arbitrage-free price. This im-
plies that a replicable payoff has a unique arbitrage-free price, which coincides with its replication
cost. In contrast, the superreplication price of a nonreplicable payoff is never arbitrage free. In this
case, there exist infinitely many arbitrage-free prices.

Result 2. If the market is arbitrage free, then for a payoff X ∈ L the following statements hold:

• If X ∈ M, then −π+(−X) = π+(X) = π(X) and Π(X) = {π(X)}.

• If X /∈ M, then −π+(−X) < π+(X) and Π(X) = (−π+(−X), π+(X)).

To obtain a more concrete description of arbitrage-free prices, which can be effectively used in
both theory and practice, one needs a convenient representation of superreplication prices. The
key tool to achieve this is the celebrated Fundamental Theorem of Asset Pricing. Here, we record
one of its equivalent formulations.

Result 3. If the market is arbitrage free, then there exists a family D of strictly-positive bounded random
variables D such that EP[DX] = π(X) for every replicable payoff X ∈ M. Moreover,

• π+(X) = sup{EP[DX] : D ∈ D} for every payoff X ∈ L.

• Π(X) = {EP[DX] : D ∈ D} for every payoff X ∈ L.



13

The elements of D are known in the literature under different names including pricing densities,
stochastic discount factors, price deflators. By definition, any pricing density can be used to represent
the initial price of each replicable payoff by way of an expectation applied directly to the payoff
itself. This provides a strictly-positive linear extension of the pricing functional beyond the space
of replicable payoffs. These extensions deliver a representation of superreplication prices together
with the desired concrete characterization of arbitrage-free prices. These representations can be
exploited to tackle a variety of concrete pricing problems in theory and practice.

GOOD DEAL PRICING

The representation of superreplication prices in Result 3 is the starting point of the “good deal pric-
ing” literature. The notion of a good deal is a generalization of that of an arbitrage opportunity.
Broadly speaking, a good deal is any (nonzero) replicable payoff that belongs to a set A ⊂ L of suf-
ficiently attractive payoffs and can be acquired without cost. In the literature, this set is sometimes
called the acceptance set and is typically, but not always, assumed to contain the positive cone L+.
In this case, every arbitrage opportunity is also a good deal. It is the agent’s task to specify the
threshold to attractive payoffs based on his or her individual preferences. The common assump-
tion in the “good deal pricing” literature is that the absence of arbitrage opportunities is replaced
by the more general absence of good deals. This leads to tighter pricing bounds that are called good
deal bounds. One can distinguish between two fundamental research directions in the field.

A first strand of literature starts by imposing suitable constraints on pricing densities. The
goal is to restrict the set of pricing densities thereby obtaining a smaller, more tractable, interval of
arbitrage-free prices. The following example from Cherny [32] motivates the intent to restrict the
interval of prices:

Consider a contract that with probability 1
2 yields nothing and with probability 1

2 yields 1000
USD. The no arbitrage price interval for this contract is (0, 1000). But if the price of the contract
is, for instance, 15 USD, then everyone would be willing to buy it, and the demand would not
match the supply. Thus, 15 USD is an unrealistic price because it yields a good deal, i.e., a trade
that is attractive to most market participants. The technique of the no-good deal pricing is based
on the assumption that good deals do not exist.

A variety of constraints have been considered in the literature including constraints based on
Sharpe ratios in Cochrane and Saa Requejo [34] and Bion-Nadal and Di Nunno [22], gain-loss
ratios in Bernardo and Ledoit [18], utility functions in Černý [28], and general conic constraints in
Cherny [32]. The resulting good deal bounds can be expressed in terms of the restricted superrepli-
cation price defined for every payoff X ∈ L by

π+
E (X) = sup{EP[DX] : D ∈ E}

for a given family of pricing densities E ⊂ D. The rationale for discarding the portion of arbitrage-
free prices exceeding the given good deal bounds is that pricing at those levels would allow for
good deals with respect to a suitable acceptance set A ⊂ L. A second strand of literature starts
from the very definition of superreplication price and relaxes the superreplication condition by
imposing suitable constraints on acceptable replication errors. This is achieved by tightening the
superreplication price into the more restrictive pricing bound defined for a payoff X ∈ L by

π+
A(X) = inf{π(Z) : Z ∈ M, Z− X ∈ A}

for a given acceptance set A ⊂ L. Provided that the acceptance set contains the positive cone L+,
the result is again a restriction of the interval of arbitrage-free prices. A pricing theory for general
acceptance sets was developed in Jaschke and Küchler [60] and Staum [91]. Special acceptance
sets have also been studied including sets based on test probabilities in Carr et al. [26], and utility
functions in Černý and Hodges [32] and Arai [2].

The two approaches are dual to each other in the sense that one can build a formal one-to-one
correspondence between sets of pricing densities and acceptance sets. The advantage of the first
approach is that it immediately entails a dual characterization of the restricted set of arbitrage-
free prices. However, it may not be easy to understand which acceptance set corresponds to a
given constraint on the pricing densities. Conversely, the advantage of the second approach is
that it starts with the explicit choice of a set of acceptable replication errors. However, a dual
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characterization of the corresponding set of arbitrage-free prices has to be explicitly obtained. This
requires a suitable extension of the Fundamental Theorem of Asset Pricing.

OUR CONTRIBUTION

The goal of this chapter is to extend the existing literature by building a general theory of “good
deal pricing” in a one-period financial market. The theory is general in the sense that we consider
general convex acceptance sets containing all positive random variables, and we allow for general
convex transaction costs and portfolio constraints. Throughout this chapter, good deals are named
acceptable deals.

A first relevant feature of our approach is that the reference space L is taken to be the natural
modeling framework, namely the vector space of random variables on (Ω,F , P), and the accep-
tance setA is assumed to be a generic convex subset of L containing all positive random variables.
This is different from the bulk of the “good deal pricing” literature where regularity conditions on
acceptable payoffs are stipulated upfront in view of the application of special mathematical results,
e.g. duality theory. The advantage of our approach is that we are able to highlight where and why
a restriction to a subset of L is needed, e.g. to apply duality theory, and what are its consequences
in terms of the original pricing problem. The assumption thatA contains the positive cone ensures
that our good deal bounds are truly tighter than the classical arbitrage-free bounds.

A second relevant feature is that the pricing rule π is no longer linear but convex and, similarly,
the set of admissible replicable payoffsM is no longer a vector space but a convex set. This allows
us to incorporate (proportional and nonproportional) transaction costs and portfolio constraints.
The presence of frictions has a variety of important implications, some of which are highlighted
later in the chapter. From the perspective of our motivating pricing problem, the most important
implication is that, in a market with frictions, the classical notion of an arbitrage-free price becomes
ambiguous because it is not clear how to extend the market preserving the prices of the basic
traded securities together with the absence of arbitrage opportunities or, more generally, good
deals. Cherny [32] considers a linear extension like in the case of frictionless markets, but we do not
find adequate reasons for this choice. At the same time, the above formulation of market-consistent
prices can be unambiguously adapted to our general market model by simply substituting the
positive cone L+ with the acceptance setA. More precisely, we say that p ∈ R is a market-consistent
price (with respect to A) for a payoff X ∈ L if

• for every Z ∈ M such that Z− X ∈ A \ {0} we have p < π(Z),

• for every Z ∈ M such that X− Z ∈ A \ {0} we have p > π(Z).

We argue that market-consistent prices constitute the natural reasonable prices for buyers and sell-
ers who have full access to the market and are prepared to accept a replication error belonging toA.
To the best of our knowledge, a clear definition of reasonable prices beyond the classical arbitrage
pricing theory has never been explicitly stated. The goal of this chapter is to provide an answer to
the question: How to characterize market-consistent prices with acceptable risk?

As a first simple step, we show that Result 1 still holds provided we replace the superreplication
price by the pricing bound defined for every payoff X ∈ L by

π+
A(X) = inf{π(Z) : Z ∈ M, Z− X ∈ A}

where π is now a convex functional and M is a convex set. We establish a direct and a dual
characterization of market-consistent prices with acceptable risk in the spirit of Result 2 and Result
3 above.

As for the direct characterization, it is worth highlighting that only part of Result 1 can be
extended to our setting. Indeed, while the market consistency of π+

A(X) forces the payoff X to
belong to the set M of admissible replicable payoffs, the converse implication no longer holds.
In particular, if X belongs to M, then its replication cost π(X) may fail to be market consistent.
This reveals a fundamental difference between frictionless markets and markets with frictions and
extends to a “good deal pricing” setting the classical findings of Bensaid et al. [17].

A dual characterization of market-consistent prices akin to Result 3 is more challenging to ob-
tain and requires extending the Fundamental Theorem of Asset Pricing to our setting. To this end,
a preliminary step is to identify the appropriate generalization of a pricing density. This is given
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by the so-called strictly-consistent pricing densities, i.e. the Riesz densities of those linear function-
als that belong to the domain of the conjugate function of π and are strictly positive on A. We
think that strict positivity on A is the correct way of generalizing strict positivity of functionals
in arbitrage theory, as the set A plays the role of the positive cone. From a financial perspective,
these functionals can be interpreted as the pricing rules of suitable frictionless complete markets
where the basic traded securities are “priced” in accordance with their bid-ask spreads and every
(nonzero) acceptable payoff has a strictly positive “price”. The Fundamental Theorem of Asset
Pricing provides sufficient conditions for the existence of strictly-consistent pricing densities and
can be used to derive a dual representation of π+

A(X) and a corresponding dual characterization of
market-consistent prices. In the case of a conic acceptance set, the key condition is that the market
admits no scalable acceptable deal, i.e. no acceptable deal that remains an acceptable deal indepen-
dently of how it is rescaled. This is a very weak condition that may be satisfied even though the
market admits good deals. In the case of a nonconic acceptance set, the absence of scalable accept-
able deals is no longer sufficient and we have to require the absence of scalable acceptable deals
with respect to a suitably enlarged acceptance set. This extends to a “good deal pricing” setting the
Fundamental Theorem established by Pennanen [76].

EMBEDDING IN THE LITERATURE

The natural term of comparison for our work are the papers belonging to the second branch of the
“good deal pricing” literature as presented above. The focus of most of those papers is on friction-
less markets and/or specific acceptance sets but there are three contributions, namely Jaschke and
Küchler [60], Staum [91] and Cherny [32] where a general theory of “good deal pricing” in markets
with frictions is presented. To highlight the link to our work we provide a brief description of each
of our main references (with special emphasis on their formulations of the Fundamental Theorem
of Asset Pricing) in order of publication.

• The focus of Carr et al. [26] is on one-period frictionless markets with finite probability space
and convex polyhedral acceptance sets defined in terms of test probability measures. The
authors establish a Fundamental Theorem of Asset Pricing (Theorem 1) characterizing the
absence of a special type of good deals that is specific to the polyhedral structure of their
acceptance sets.

• The focus of Jaschke and Küchler [60] is on multi-period markets with proportional frictions
and conic convex acceptance sets. The reference model space is abstract. The authors estab-
lish a Fundamental Theorem of Asset Pricing (Corollary 8) characterizing the absence of a
strong form of good deals under a suitable closedness assumption. No sufficient condition
for the closedness assumption to hold is provided. For more details, see Subsection 1.5.2.

• The focus of Černý and Hodges [29] is on multi-period frictionless markets with convex ac-
ceptance sets. The reference model space is abstract. The authors establish a Fundamental
Theorem of Asset Pricing (Theorem 2.5) characterizing the absence of good deals under the
assumption that the model space is an Lp space with 1 < p < ∞ and that the acceptance
set is boundedly generated. The latter condition is seldom met in infinite dimensional model
spaces.

• The focus of Staum [91] is on multi-period markets with convex frictions and convex ac-
ceptance sets. The reference model space is abstract. The author establishes a Fundamental
Theorem of Asset Pricing (Theorem 6.2) characterizing the absence of a generalized type of
good deals. Unfortunately, the proof of the Fundamental Theorem contains a major flaw
invalidating the entire result. For more details, see Subsection 1.5.2.

• The focus of Cherny [32] is on multi-period markets with convex frictions and conic con-
vex acceptance sets. They establish a Fundamental Theorem of Asset Pricing (Theorem 3.1)
which heavily relies on the weak closedness of the barrier cone of the acceptance set, and
that characterizes the absence of good deals with the existence of a pricing density positive
(not strictly positive) on the acceptance set and nonpositive on the set of replicable payoffs
with nonpositive cost. The setting is the space of all random variables on a given probability
space, but they require that the market is such that it is possible to restrict the dual set of
interest to a tractable space.
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• The focus of Arai [2] is on multi-period frictionless markets with convex acceptance sets de-
fined in terms of utility functions. The reference model space is an Orlicz space. The author
establishes dual representations of the corresponding good deal bounds.

We believe we bring some contribution to existing literature. First, we explicitly start from the def-
inition of a market-consistent price with acceptable risk. This is an important step from the point
of view of the economical interpretation of the theory to be developed. Second, we work under
general convex transaction costs and portfolio constraints. Finally, we identify a generalization of
strictly positive pricing densities to the good deal setting and we provide a version of the Funda-
mental Theorem of Asset Pricing that does not suffer from the flaws in Staum [91] and extends the
results in Černý and Hodges [29] beyond the frictionless setting and beyond boundedly-generated
acceptance sets, the results in Jaschke and Küchler [60] beyond the conic setting and the results in
Cherny [32] beyond conic acceptance sets. It is worth noting that our choice to work in a one-period
model allows us to improve the main result of Jaschke and Küchler [60] also in the conic setting. In
particular, we are able to provide sufficient conditions for the existence of strictly-consistent pricing
densities instead of simple consistent pricing densities as considered in that paper. This is crucial to
establish our desired characterization of market-consistent prices.

1.1 THE MARKET MODEL

For definitions and notations we refer to Appendix A. We consider a one-period financial mar-
ket where uncertainty about the terminal state of the economy is captured by a probability space
(Ω,F , P). Every payment is denominated in a fixed unit of account, which for simplicity we call
money. The payoff of a financial contract at the terminal date is modeled by a random variable
(better, an equivalence class of random variables) X ∈ L0(P). The positive and the negative value
of any random variable correspond to the absolute inflow and outflow of money specified by the
contract at the terminal date. The elements of R are identified with constant random variables and
are therefore interpreted as risk-free payoffs. In what follows, we will find convenient to apply ex-
pectations to generic random variables regardless of their integrability. We do this like explained
in Appendix A.

1.1.1 THE BASIC TRADED SECURITIES

We assume that N basic securities are traded in the market. The terminal payoff of the ith basic
security is represented by a (not necessarily positive) random variable Si ∈ L0(P). This is equiv-
alent to a cash delivery that agents receive in exchange for their claims. In particular, no physical
delivery occurs so that agents do not have to liquidate their positions in the market at the terminal
date to convert them into cash. To avoid dealing with redundant securities, we assume throughout
that S1, . . . , SN are linearly independent. Through their trading activity, agents can set up portfo-
lios of basic securities at the initial date. A portfolio of basic securities is represented by a vector
λ = (λ1, . . . , λN) ∈ RN . We adopt the standard convention according to which a positive entry
refers to a long position and a negative entry to a short position. The corresponding ask prices are
described by a function V0 : RN → (−∞, ∞]. We assume that V0 may take nonfinite values to allow
for the presence of unfeasible portfolios. Throughout the chapter we assume that V0 is convex and
lower semicontinuous and satisfies V0(0) = 0.

Example 1.1.1. In a frictionless market the bid-ask spread associated with every basic security is zero so that
every unit of the ith basic security can be bought or sold for the same price pi ∈ R. The associated pricing
rule is linear and given by

V0(λ) =
N

∑
i=1

λi pi

for every λ ∈ RN . In a market with proportional transaction costs every unit of the ith basic security can be
bought for the price pb

i ∈ R and sold for the price ps
i ∈ R. It is natural to assume that pb

i ≥ ps
i so that the

corresponding bid-ask spread is nonnegative. The associated pricing rule is sublinear and given by

V0(λ) = ∑
λi≥0

λi pb
i + ∑

λi<0
λi ps

i
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for every λ ∈ RN . In a market with nonproportional transaction costs the unitary buying and selling prices
for the ith basic security vary with the volume traded according to some functions pb

i , ps
i : R+ → R. Again,

it makes sense to assume that pb
i (x) ≥ ps

i (x) for every x ∈ R+ so that the corresponding bid-ask spread is
nonnegative. As carefully explained in Pennanen [79], in limit order markets it is natural to assume that pb

i
is convex and ps

i is concave. Moreover, we assume that ∂+ps
i (0) ≤ ∂+pb

i (0). The associated pricing rule is
convex and given by

V0(λ) = ∑
λi≥0

pb
i (λi)− ∑

λi<0
ps

i (−λi)

for every λ ∈ RN .

We have shown three examples of pricing rules that are defined as a sum of convex functions
of the single components. This means that V0(λ) = ∑N

i=1 V0(λiei). It may happen, tough, that
the pricing functional is properly subadditive in the components, in the sense that when buying
different securities, one incurs in sales. Our model covers also this case.

Each portfolio of basic securities generates a payoff at the terminal date. These special payoffs
are described by the map V1 : RN → L0(P) defined by

V1(λ) :=
N

∑
i=1

λiSi.

The linearity of V1 is consistent with our one-period setting where no trading occurs at the terminal
date and each security delivers its terminal state-contingent contractual payoff. The vector space
spanned by the payoffs of the basic securities is denoted by S , i.e.

S := {V1(λ) : λ ∈ RN}.

The elements of S represent payoffs of financial contracts that can be replicated by trading in the
market of the basic securities and will therefore be referred to as replicable payoffs. It is important
to point out that, by finite dimensionality, there exists a unique topology on S which makes S a
Hausdorff topological vector space. Every topological property related to S has to be understood
with respect to such topology.

1.1.2 THE PRICING RULE

For our later analysis it is convenient to associate an ask price directly to replicable payoffs. This is
possible because we have assumed that no basic security is redundant so that the payoffs S1, . . . , SN
are linearly independent. Indeed, under this assumption, two portfolios having the same payoffs
must coincide and, hence, command the same ask price

V1(λ) = V1(µ) =⇒ V0(λ) = V0(µ).

In the introduction of this thesis, we have called this effect “law of one price”. It allows us to
introduce a pricing rule π : S → (−∞, ∞] by setting for every replicable payoff X ∈ S

π(X) := V0(λ),

where λ ∈ RN is any portfolio satisfying X = V1(λ). The quantity π(X) can thus be unambigu-
ously interpreted as the replication cost of X. The properties of π that we need in the sequel are
recorded in the next proposition. In particular, we highlight a characterization of the asymptotic
cone of the set of replicable payoffs that can be acquired without cost in terms of the asymptotic
function π∞ (see Appendix B).

Proposition 1.1.2. The map π is convex, lower semicontinuous, satisfies π(0) = 0 and one has

{X ∈ S : π(X) ≤ 0}∞ = {X ∈ S : π∞(X) ≤ 0}.

Proof. It follows from the convexity of V0 and the linearity of V1 that π is convex. Moreover, we
clearly have π(0) = V0(0) = 0. To show lower semicontinuity, take a sequence (Xn) ⊂ S and
X ∈ S and assume that Xn → X. By definition of S , we find a sequence (λn) ⊂ RN and λ ∈ RN
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such that Xn = V1(λn) for every n ∈ N and X = V1(λ). As S1, . . . , SN are linearly independent,
we infer that λn → λ. As a consequence, the lower semicontinuity of V0 implies that

π(X) = V0(λ) ≤ lim inf
n→∞

V0(λn) = lim inf
n→∞

π(Xn).

This delivers the desired lower semicontinuity. Since {X ∈ S : π(X) ≤ 0} contains the zero
payoff, the last equality is a direct consequence of Proposition B.2.8.

By virtue of the last proposition and Corollaries B.1.7 and B.2.7, we may indifferently use reces-
sion or asymptotic cones and functions:

rec
(
{X ∈ S : π(X) ≤ 0}

)
= {X ∈ S : π(X) ≤ 0}∞, rec(π) = π∞.

All along this chapter, whenever the identification recession-asymptotic holds, we will opt for the
asymptotic notation as it looks lighter than the recession’s one. We recall that the recession function
rec(π) = π∞ is the smallest sublinear map dominating π . This means that π∞ can be interpreted
as the best approximation of π among all the pricing rules in markets with proportional transaction
costs where bid-ask spreads are larger than the ones in the original market.

1.1.3 THE SET OF ADMISSIBLE REPLICABLE PAYOFFS

We model portfolio constraints such as borrowing and short selling restrictions on specific basic
securities by restricting the set of admissible portfolios to a subsetP ⊂ RN . Throughout we assume
that P is closed, convex, and contains the zero portfolio. This implies that rec(P) = P∞ due to
Corollary B.1.7.

Example 1.1.3. The case of no short selling corresponds to P = RN
+ . The case of no short selling with

caps on the long positions corresponds to P = [0, λ1]× · · · × [0, λN ] for a suitable portfolio λ ∈ RN with
strictly-positive components. In a similar fashion one can include caps on the short positions as well.

We denote by M the set of all replicable payoffs generated by admissible portfolios of basic
securities, i.e.

M := {V1(λ) : λ ∈ P} ⊂ S .

Every payoff inM is called an admissible replicable payoff. The properties ofM that are needed in
the sequel are recorded in the next proposition. In particular, we show that the asymptotic cone
ofM (which coincides with its recession cone) consists of all the replicable payoffs associated to
portfolios that are admissible regardless of their size.

Proposition 1.1.4. The setM is closed, convex, contains the null payoff, and satisfies

M∞ = {V1(λ) : λ ∈ P∞}.

Proof. Since P is convex and contains the zero portfolio, it readily follows from the linearity of
V1 that M is convex and contains the null payoff. Now, take a sequence (Xn) ⊂ M and X ∈ S
and assume that Xn → X. By definition of S andM, we find a sequence (λn) ⊂ P and λ ∈ RN

such that Xn = V1(λn) for every n ∈ N and X = V1(λ). As S1, . . . , SN are linearly independent,
we infer that λn → λ. As a result, the closedness of P yields that λ ∈ P , showing that X ∈ M.
This establishes thatM is closed. Hence we have that rec(M) =M∞. The representation ofM∞

is a direct consequence of the linearity of V1 by applying the definition of rec(M) and Corollary
B.1.7.

Remark 1.1.5 (From buyer to seller). In chapter we take the perspective of a buyer. In particular,
π is interpreted as an ask pricing functional and M as a set of admissible replicable payoffs for
a buyer. To switch to the seller’s perspective one has simply to consider the pricing rule X 7→
−π(−X) and the set of admissible replicable payoffs −M.

Remark 1.1.6 (From payoffs to portfolios). Our results will be formulated in terms of payoffs
instead of portfolios. To this effect, we only need to fix a finite dimensional vector space S of
replicable payoffs, a pricing rule π : S → (−∞, ∞] satisfying the properties in Proposition 1.1.2,
and a set M of admissible replicable payoffs satisfying the properties in Proposition 1.1.4. It is
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important to note that, in this case, we can always specify a set of linearly independent payoffs
S1, . . . , SN ∈ L0(P), a pricing functional V0 : RN → (−∞, ∞] and a set of admissible portfolios P
such that

(i) S =
{

∑N
i=1 λiSi : λ ∈ RN},

(ii) π(X) = V0(λ) for all X ∈ S and λ ∈ RN such that X = ∑N
i=1 λiSi,

(iii) M =
{

∑N
i=1 λiSi : λ ∈ P

}
.

Moreover, under the stipulated properties of π and M, the functional V0 is convex, lower semi-
continuous, and satisfies V0(0) = 0, and the set P is convex, closed, and contains the null portfolio.
This fact will be repeatedly use throughout the chapter.

Remark 1.1.7 (On the market model). Let S ⊂ L0(P) be a vector space of replicable payoffs. The
range of market models that are compatible with S depends on the dimensionality of S . In the
finite dimensional case, the eligible models are a standard one-period market or a multi-period
market where the only admissible trading strategies are of buy-and-hold type. In the infinite di-
mensional case, we may consider any (discrete or continuous) multi-period market. Many results
in chapter do not require S to be finite dimensional. However, the finite dimensionality of S will
play a decisive role in a key closedness result, namely Theorem 1.3.14, that is the basis for our
general versions of the Fundamental Theorem of Asset Pricing. For this reason, we have opted to
formulate the entire chapter in the setting of a standard one-period market.

1.2 THE PRICING PROBLEM

In this section we introduce the notion of an acceptance set and the key related notion of a market-
consistent price. This extends the classical concept of an arbitrage-free price beyond the setting of
a frictionless market and beyond standard superreplication. In the frictionless literature, arbitrage-
free prices are commonly defined as those prices that allow to enlarge the original market in a
frictionless way without creating arbitrage opportunities; see, e.g., Harrison and Kreps [59]. In a
market with frictions this approach becomes problematic because it is not clear how the market
could and should be enlarged in the first place. We therefore follow a different path and adapt
to our market model the notion of a market-consistent price studied in a frictionless setting in
Koch-Medina and Munari [67].

Consider an agent interested in buying a financial contract with payoff X ∈ L0(P). The agent’s
problem is to determine a range of “reasonable” prices at which he should be prepared to acquire
said contract. The fundamental idea behind arbitrage pricing is that the agent will compare X
with the replicable payoffs offered by the market and will use the corresponding market prices to
benchmark whether a candidate buying price is too high or not. More precisely, the agent will look
for all the replicable payoffs that are deemed better than X from a buyer’s perspective and use the
corresponding market prices to set up an upper bound on prices. To this effect, one has to specify
a criterion that allows to compare and rank payoffs. In the classical arbitrage pricing theory, a
replicable payoff Z ∈ S is better than X (from a buyer’s perspective) if it delivers a higher payoff
in every future contingency, i.e.

Z− X ∈ L0(P)+.

In this case, one often says that Z superreplicates X. Based on this criterion, agents will use super-
replicating replicable payoffs to determine the range of prices at which they are willing to purchase
the contract. The same criterion lies at the heart of another key notion of the classical arbitrage pric-
ing theory, namely that of an arbitrage opportunity, i.e., a nonzero replicable payoff Z ∈ S such
that π(Z) ≤ 0 and Z ∈ L0(P)+. In line with the above ranking criterion, an arbitrage opportunity
is a desirable payoff that can be acquired at zero price.

1.2.1 THE ACCEPTANCE SET

In chapter, we relax the criterion behind arbitrage pricing and assume that agents are prepared
to accept a suitable superreplication error when comparing payoffs. This leads us to replace the
positive cone by a larger set A ⊂ L0(P), which we call the acceptance set, and postulate that
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a replicable payoff Z ∈ S is considered better than a given payoff X ∈ L0(P) (from a buyer’s
perspective) whenever

Z− X ∈ A.

Since A may contain nonpositive payoffs, it may happen that Z fails to superreplicate X is some
future contingency. A sound acceptance set should stipulate a reasonable tradeoff between positive
and negative outcomes so that the failure of superreplication is truly acceptable. Note that, in
contrast to the “homogeneous” setting of the classical arbitrage pricing theory, different agents
may naturally come up with different ways to define acceptability.

The formal definition of an acceptance set is as follows. We assume that the notion of accept-
ability is well behaved with respect to aggregation in the sense that every convex combination of
acceptable payoffs remains acceptable, that the null payoff is acceptable and that every payoff dom-
inating a given acceptable payoff is automatically acceptable. The last property corresponds to the
usual monotonicity requirement stipulated in risk measure theory; see, e.g., Artzner et al. [9]. A di-
rect consequence of our definition is that every positive payoff is acceptable. We refer to Section 1.6
for a list of concrete acceptance sets.

Definition 1.2.1. A set A ⊂ L0(P) is called an acceptance set if it is convex, contains 0 and

A+ L0(P)+ ⊂ A.

From now on we fix an acceptance set A. Every element of A is called an acceptable payoff. Note
that, in line with our pricing problem, we do not restrict the acceptance set to belong to any “nice”
subspace of L0(P) as commonly done in risk measures theory.

1.2.2 MARKET-CONSISTENT PRICES

As previously recalled, the fundamental idea behind arbitrage pricing is that agents interested in
buying a certain payoff will compare it with the replicable payoffs offered by the market and use
the corresponding market prices to assess whether a candidate buying price is too high or not.
The resulting reasonable prices are known in the literature under different names including fair
prices, arbitrage-free prices, and market-consistent prices. The natural extension of this notion to
our setting is recorded in the next definition.

Definition 1.2.2. For a payoff X ∈ L0(P) we say that p ∈ R is a market-consistent (buyer) price for X
(with respect to A) whenever:

(1) p < π(Z) for every replicable payoff Z ∈ M such that Z− X ∈ A \ {0};

(2) p ≤ π(X) whenever X ∈ M.

We denote by MCP(X) the set of market consistent prices for X.

The range of market-consistent prices with respect toA is the natural range of reasonable prices
for a buyer who has full access to the market of basic securities and is willing to take superreplica-
tion risk according to the acceptance set A. Indeed, if a price is not market consistent for a given
payoff, then the buyer can always invest that amount (or less) to purchase an admissible replicable
payoff that is strictly preferable from the perspective of A. In particular, note that every market-
consistent price is also an arbitrage-free price in the classical sense. This is because the acceptance
set A contains the positive cone L0(P)+.

Remark 1.2.3. Note that condition (2) is automatically implied by condition (1) if for every repli-
cable payoff X ∈ M there exist U ∈ A \ {0} and c ∈ R such that X + 1

n U ∈ M and π(X + 1
n U) ≤

π(X) + 1
n c for every n ∈N. In particular, this holds if A andM have nonzero intersection andM

and π are conic.

Remark 1.2.4 (From buyer to seller). Consistently with Remark 1.1.5, for a payoff X ∈ L0(P) we
say that p ∈ R is a market-consistent seller price for X (with respect to A) whenever:

(1) p > −π(−Z) for every Z ∈ −M such that X− Z ∈ A \ {0};

(2) p ≥ −π(−X) whenever X ∈ −M.

It is readily seen that p is a market-consistent buyer price for X if and only if −p is a market
consistent seller price for −X. As a result, a characterization of market-consistent buyer prices will
immediately deliver a corresponding characterization of market-consistent seller prices.
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1.2.3 ACCEPTABLE DEALS

The goal of chapter is to establish a characterization of market-consistent prices in the presence of
our general market frictions and acceptance set. In the classical arbitrage pricing setting, this relies
on the celebrated Fundamental Theorem of Asset Pricing and is possible provided the market is
free of arbitrage opportunities. In this section we introduce the notion of an acceptable deal, which
constitutes the natural generalization of an arbitrage opportunity to our setting. In the next sections
we provide a direct and a dual characterization of market-consistent prices under the assumption
that suitable acceptable deals do not exist. The dual characterization is based on an appropriate
extension of the Fundamental Theorem of Asset Pricing.

In the classical frictionless theory an arbitrage opportunity is a nonzero replicable payoff that
is positive and can be acquired at zero cost. In the presence of portfolio constraints, one has to
additionally require that the payoff be admissible. We say that an arbitrage opportunity is scalable
if it remains an arbitrage opportunity regardless of its size. Clearly, this specification only makes
sense in the presence of nonconic frictions. The corresponding arbitrage opportunities with respect
to A are called (scalable) acceptable deals.

Definition 1.2.5. We say that a nonzero replicable payoff X ∈ S is:

(1) an arbitrage opportunity if X ∈ M∩ L0(P)+ and π(X) ≤ 0.

(2) a scalable arbitrage opportunity if tX is an arbitrage opportunity for every t > 0.

(3) an acceptable deal (with respect to A) if X ∈ M∩A and π(X) ≤ 0.

(4) a scalable acceptable deal (with respect to A) if tX is an acceptable deal for every t > 0.

Remark 1.2.6. (i) The notion of acceptable deal has appeared, together with a number of varia-
tions, under different names in the literature, among which the most common is good deal. This
term was invented in Cochrane and Saa-Requeio [34] and used for assets with high Sharpe ratio
of the excess return and hence deemed desirable. The same terminology is used in Jaschke and
Küchler [60]. Here, they define good deals of first and second kind. By relating their setting to
ours as explained in Subsection 1.5.2, the absence of good deals of the first kind corresponds to
our absence of acceptable deals, while the absence of good deals of second kind corresponds to
A ∩ {Z ∈ M : π(Z) < 0} = ∅. In Cherny [32], a good deal is defined as an attainable payoff
(at zero cost) such that the monetary risk measure induced by A takes strictly negative valued on
it, while in Černý and Hodges [29], good deals are defined as our acceptable deals (but their ac-
ceptance set cannot be identified with our since, e.g., it does not contain 0). Acceptable deals are
called acceptable opportunities in Carr et al. [26]. The notion of a scalable acceptable deal is a direct
extension of that of a scalable arbitrage opportunity introduced by Pennanen [76] and, in a frictionless
setting, corresponds to the notion of a scalable good deal in Baes et al. [11].

(ii) In the classical interpretation, an arbitrage opportunity constitutes an anomaly in a well-
functioning and transparent market because every rational agent will seek to exploit it thereby
raising its demand until prices will also rise and the arbitrage opportunity will eventually vanish.
This provides an economic foundation for assuming the absence of such opportunities. The sit-
uation is different when we consider acceptable deals because there may be no consensus across
agents in the identification of a common criterion of acceptability.

Since M, π and A are convex, recession analysis is the natural language for characterizing
the concept of scalability, which is the content of the next proposition. We have already said that
rec(M) and rec(π) coincide with M∞ and π∞ respectively, using the said topology on S . Note
that A∞ is not well defined unless we fix a topology on L0(P).

Proposition 1.2.7. A nonzero replicable payoff X ∈ S is:

(i) a scalable arbitrage opportunity if and only if X ∈ M∞ ∩ L0(P)+ and π∞(X) ≤ 0.

(ii) a scalable acceptable deal (with respect to A) if and only if X ∈ M∞ ∩ rec(A) and π∞(X) ≤ 0.

Proof. The statements are straightforward using Definition B.1.6 and thanks to the identifications
rec(M) =M∞ and rec(π) = π∞.
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For later use, it is convenient to name the set of scalable acceptable deals together with the null
payoff:

G := {Z ∈ M∞ ∩ rec(A) : π∞(Z) ≤ 0} ⊂ S . (1.1)

As mentioned above, the absence of (scalable) acceptable deals will play a key role in our study
of market-consistent prices. We conclude this section by highlighting a number of financially in-
teresting situations where the absence of scalable acceptable deals automatically holds. The easy
proof is omitted.

Proposition 1.2.8. Assume that one of the following conditions holds:

(i) rec(A) = L0(P)+ and there exists no scalable arbitrage opportunity.

(ii) M∞ ⊂ S+ and there exists no scalable arbitrage opportunity.

(iii) M∞ = {0}.

Then, there exists no scalable acceptable deal.

Remark 1.2.9 (On scalable acceptable deals). We collect some observations about the above result.
(i) Unless A coincides with L0(P)+ in the first place, the condition rec(A) = L0(P)+ can hold

only if A is not conic. We refer to Section 1.6 for concrete examples where this holds.
(ii) The conditionM∞ ⊂ S+ is typically implied by portfolio constraints of limited short-selling

type. For instance, if the payoffs of the basic securities are positive and the set of admissible port-
folios is bounded from below so that short-selling is possible but restricted for each security, then
the desired condition follows from Proposition 1.1.4.

(iii) The conditionM∞ = {0} is equivalent to the boundedness ofM due to Proposition B.1.3.
By linearity of V1, this is also equivalent to the boundedness of the set of admissible portfolios P .
Note that, in this case, there exists no scalable acceptable deal regardless of the choice of A and π.

1.3 DIRECT CHARACTERIZATION OF MARKET-CONSISTENT PRICES

In this section we establish a first characterization of market-consistent prices, which we call “di-
rect” to distinguish it from the “dual” characterization obtained in the next section. The key obser-
vation is that the set of market-consistent prices is an interval unbounded to the left. To obtain our
desired characterization we therefore have to discover under which conditions the right extreme
of the interval is itself a market-consistent price. This extreme coincides with the appropriate gen-
eralization to our setting of the classical superreplication price. In other words, we have to verify
under which conditions the generalized superreplication price is a market-consistent price. In a
frictionless market where the acceptance set is given by the positive cone this occurs if and only if
the underlying payoff is replicable. In our general market setting this is no longer true.

We start by fixing a reference payoff space X that is assumed to contain all the replicable pay-
offs.

Assumption 1.3.1. We denote by X a linear subspace of L0(P) containing S .

The next definition records the announced generalization to our setting of the classical super-
replication price, which is also known in the literature under the name of superhedging price. For
better comparability, we maintain the same terminology here.

Definition 1.3.2. For a payoff X ∈ X we define the superreplication price of X by

π+(X) := inf{π(Z) : Z ∈ M, Z− X ∈ A}.

Remark 1.3.3 (From buyer to seller). We will see below that the superreplication price constitutes
the natural threshold for the market-consistent buyer prices. The corresponding threshold from a
seller’s perspective is given for every payoff X ∈ X by the subreplication price

π−(X) = sup{−π(−Z) : Z ∈ −M, X− Z ∈ A}.

It is immediate to verify that π−(X) = −π+(−X).
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We collect some simple properties of π+ in the next proposition.

Proposition 1.3.4. The map π+ : X → [−∞,+∞] is convex and for any Z ∈ M we have that π+(Z) ≤
π(Z). Moreover π+(0) ≤ 0.

Proof. Convexity of π+ is a consequence of the properties of A, M and π. Now, for Z ∈ M, we
have that π+(Z) ≤ π(Z) since Z− Z = 0 ∈ A. Since by assumption π(0) = 0, the last assertion
follows from the previous one.

We start by highlighting that the set of market-consistent prices is an interval that is unbounded
to the left and bounded to the right by the superreplication price.

Proposition 1.3.5. For every payoff X ∈ X the set MCP(X) is an interval such that:

(i) inf MCP(X) = −∞.

(ii) sup MCP(X) = π+(X).

Proof. It is clear that (−∞, p) ⊂ MCP(X) for every market-consistent price p ∈ MCP(X). Now,
take any p ∈ (−∞, π+(X)) and note that, by definition of π+, we have p < π(Z) for every Z ∈
M such that Z − X ∈ A. This shows that p is a market-consistent price for X and implies that
π+(X) ≤ sup MCP(X). Conversely, take an arbitrary market-consistent price p ∈ MCP(X). If
Z ∈ M is such that Z − X ∈ A, then π(Z) ≥ p. Taking the infimum over such Z’s and the
supremum over such p’s delivers the inequality π+(X) ≥ sup MCP(X). This shows that π+(X) is
the supremum of the set MCP(X).

It follows from the preceding proposition that establishing a characterization of market-consistent
prices is tantamount to establishing a characterization of when the superreplication price is itself
a market-consistent price. The next theorem provides a solution to this problem. It turns out that
the superreplication price may or may not be market consistent, so that the corresponding set of
market-consistent prices may or may not be a closed interval. Figure 1.1 furnishes an intuition of
the possibilities for attainable replicable payoffs.

Theorem 1.3.6 (Direct characterization of market consistent prices). Assume that X ∈ X is such that
π+(X) ∈ R. Then, we have MCP(X) 6= ∅ and the following statements hold:

(i) π+(X) /∈ MCP(X) if and only if π+(X) = π(Z) for some Z ∈ M such that Z− X ∈ A \ {0}, if
and only if

(X +A) ∩ {Z ∈ M : π(Z) ≤ π+(X)} 6⊂ {X}. (1.2)

In particular, in this case the infimum in the definition of π+(X) is attained.

(ii) π+(X) ∈ MCP(X) if and only if

(X +A) ∩ {Z ∈ M : π(Z) ≤ π+(X)} ⊂ {X}.

(iii) If X /∈ M, then both π+(X) ∈ MCP(X) and π+(X) /∈ MCP(X) can hold, the latter being equiva-
lent to the attainment of the infimum in the definition of π+(X).

(iv) If X ∈ M, then both π+(X) ∈ MCP(X) and π+(X) /∈ MCP(X) can hold, and in both situations
either π+(X) = π(X) or π+(X) < π(X) can hold. Moreover the following statements hold:

(a) X /∈ (X +A) ∩ {Z ∈ M : π(Z) ≤ π+(X)} if and only if π+(X) < π(X).

(b) X ∈ (X +A) ∩ {Z ∈ M : π(Z) ≤ π+(X)} if and only if π+(X) = π(X).

Finally, if π+(X) ∈ MCP(X), (a) holds if and only if the infimum in the definition of π+(X) is not
attained, and (b) holds if and only if the infimum in the definition of π+(X) is attained.

Proof. By assumption, π+(X) ∈ R, showing that MCP(X) 6= ∅. Now, by definition of market
consistent price and by the inequality π+(Z) ≤ π(Z) for every Z ∈ M, π+(X) is not market
consistent if and only if there is Z ∈ M such that Z − X ∈ A \ {0} and π(Z) ≤ π+(X). But, by
definition of π+(X), the inequality π+(X) ≤ π(Z) holds too, proving the first equivalence in (i)
and showing that the infimum in the definition of π+(X) is attained at Z. Second equivalence in
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X +A

{π ≤ π+(X)}

= {π ≤ π(X)}

X

Z

(A) π+(X) /∈ MCP(X),
π(X) = π+(X)

X +A

{π ≤ π(X)}{π ≤ π+(X)}

X

Z

(B) π+(X) /∈ MCP(X),
π+(X) < π(X)

X +A

{π ≤ π+(X)}

= {π ≤ π(X)}

X

(C) π+(X) ∈ MCP(X),
π(X) = π+(X)

X +A

{π ≤ π(X)}{π ≤ π+(X)}

X

(D) π+(X) ∈ MCP(X),
π+(X) < π(X)

FIGURE 1.1: Reciprocal positions of X + A and {Z ∈ M : π(Z) ≤ π+(X)} for
X ∈ M.

(i) is immediate after observing that the inequality in (1.2) can be replaced by equality. Statement
(ii) is counternominal to statement (i).

Now, assume that X /∈ M. Example 1.3.7 (and Examples 1.3.8 (ii) and (iii)) shows that both the
situation may hold. To complete the proof of (iii), it remains to show that if π+(X) = π(Z) for
Z ∈ M such that Z − X ∈ A, then π+(X) cannot be market consistent for X. But this is obvious
by definition of MCP(X) since X 6= Z.

Now, assume that X ∈ M. Example 1.3.7 shows that all the enumerated possibilities may
happen, except for π+(X) = π(X) if π+(X) ∈ MCP(X). For this case, see Example 1.3.9 (i). (For
other examples, see also Example 1.3.8 (i) for π+(X) < π(X) and π+(X) ∈ MCP(X), Example 1.3.9
(i) for π+(X) < π(X) and π+(X) /∈ MCP(X), Example 1.3.9 (ii) for π+(X) = π(X) and π+(X) /∈
MCP(X)). The equivalences in (a) and (b) are clear, and the last equivalences follow using point (ii)
and the proof is concluded.

We show by way of example that each of the situations enumerated in the last theorem can
hold. In the first example A is convex nonconic, while π andM are conic.

Example 1.3.7. Let Ω = {ω1, ω2} and assume that F is the power set of Ω and that P is specified by
P(ω1) = P(ω2) =

1
2 . In this setting, we take X = L0(P) and identify every element of X with a vector of

R2. Set S = R2 andM = R2
+ and consider the linear pricing rule π(x, y) = x for every (x, y) ∈ S , and

acceptance set defined by
A = {(x, y) ∈ X : EP[u(X)] ≥ 0},
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x

y

−1 A

M

FIGURE 1.2: Example 1.3.7

where u : R→ R is the utility function defined by u(x) := 1− e−x log 2. It is not difficult to show that

A =

{
(x, y) ∈ X : x > −1, y ≥ − log(2− e−x log 2)

log 2

}
.

Note that the requirements in Assumption 1.3.1 are fulfilled.
For any X = (x, y) ∈ X , the superreplication price is

π+(X) =

{
0 if x < 1
x− 1 if x ≥ 1

and the infimum in the definition of π+(X) is attained if and only if x < 1.

• For X = (0,−1) /∈ M we have π+(X) /∈ MCP(X) since

(X +A) ∩ {Z ∈ M : π(Z) ≤ π+(X)} = {(0, t) ∈ R2 : t ≥ 0} 6⊂ {X}.

• For X = (1,−1) /∈ M we have π+(X) ∈ MCP(X) since

(X +A) ∩ {Z ∈ M : π(Z) ≤ π+(X)} = ∅ ⊂ {X}.

• For X = (0, 0) ∈ M we have π+(X) = 0 = π(X) and π+(X) /∈ MCP(X) since

(X +A) ∩ {Z ∈ M : π(Z) ≤ π+(X)} = {(0, t) ∈ R2 : t ≥ 0} 6⊂ {X}.

• For X =
(
0, 1

2
)
∈ M we have π+(X) = 0 < 1

2 = π(X) and π+(X) /∈ MCP(X) since

(X +A) ∩ {Z ∈ M : π(Z) ≤ π+(X)} =
{
(0, t) ∈ R2 : t ≥ −

log
(
2− e−

1
2 log 2)

log 2

}
6⊂ {X}.

• For X = (1, 0) ∈ M we have π+(X) = 0 < 1 = π(X) and π+(X) ∈ MCP(X) since

(X +A) ∩ {Z ∈ M : π(Z) ≤ π+(X)} = ∅ ⊂ {X}.

In the next two examples we chose a conic acceptance set.

Example 1.3.8. Consider the setting of the previous example. Set S = R2 and consider the convex pricing
rule π(x, y) = ex − 1 for every (x, y) ∈ S , and the conic acceptance set defined by

A = {(x, y) ∈ R2 : y ≥ max{−x, 0}}.
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Note that the requirements in Assumption 1.3.1 are fulfilled.
(i) SetM = S = R2 and X = (0, 0) ∈ M. Since π(X) = 0 and

π+(X) = inf{ex − 1 : (x, y) ∈ A} = −1,

the infimum is not attained, π+(X) < π(X) and (X +A) ∩ {Z ∈ M : π(Z) ≤ π+(X)} = ∅. This
shows that π+(X) ∈ MCP(X).

(ii) SetM = {(x, y) ∈ R2 : y ≥ 0} and X = (0,−1) /∈ M. It holds that the infimum

π+(X) = inf{ex − 1 : (x, y) ∈ (X +A) ∩M} = −1

is not attained, and (X +A) ∩ {Z ∈ M : π(Z) ≤ π+(X)} = ∅. This shows that π+(X) ∈ MCP(X).
(iii) SetM = {(x, y) ∈ R2 : x ≥ 0} and X = (−1, 0) /∈ M. It holds that the infimum

π+(X) = inf{ex − 1 : (x, y) ∈ (X +A) ∩M} = min{ex − 1 : x ≥ 0} = 0

is attained, and (X +A) ∩ {Z ∈ M : π(Z) ≤ π+(X)} = {(0, t) ∈ R2 : t ≥ 0}. This shows that
π+(X) /∈ MCP(X).

Example 1.3.9. Consider the setting of the previous examples. Set S = M = R2 and consider the
acceptance set defined by

A = {(x, y) ∈ R2 : y ≥ max{−x, 0}}.

Note that both A andM are cones and the requirements in Assumption 1.3.1 are fulfilled.
(i) Define the conic pricing rule π(x, y) = max{2x + y, x + 2y} for every (x, y) ∈ R2. A direct

inspection shows that for every payoff in X the attainability condition π+(X) = π(Z) for Z ∈ (X +A) ∩
M is fulfilled. Set X = (−2, 1) ∈ M and observe that π+(X) = π(X) = 0 and

(A+ X) ∩ {Z ∈ M : π(Z) ≤ π+(X)} = {X},

hence π+(X) ∈ MCP(X). Next, take Y = (1,−2) ∈ M. In this case, an explicit calculation shows that

π+(Y) = inf
x∈R

max{2x− 2 + max{1− x, 0}, x− 4 + 2 max{1− x, 0}} = −3
2

.

At the same time, for Z = (− 1
2 ,− 1

2 ) ∈ (A + Y) ∩M we have π(Z) = − 3
2 , showing that (A + Y) ∩

{Z ∈ M : π(Z) ≤ π+(Y)} 6⊂ {Y}, hence π+(Y) /∈ MCP(Y). Note also that π(Y) = 0 so that
π(Y) > π+(Y).

(ii) Define the conic pricing rule π(x, y) = max{x + y, x + 2y} for every (x, y) ∈ R2. A direct
inspection shows that for every payoff in X the attainability condition π+(X) = π(Z) for Z ∈ (X +A) ∩
M is fulfilled. Set X = (1,−1) ∈ M and observe that π+(X) = 0 and

(A+ X) ∩ {Z ∈ M : π(Z) ≤ π+(X)} = {tX : t ∈ [0, 1]}

so that π+(X) /∈ MCP(X). Note also that π(X) = 0 so that π(X) = π+(X).

Theorem 1.3.6 unveils a stark contrast between our general setting and the classical friction-
less setting. In our case, for a replicable payoff X belonging to M, the market price π(X) may
be strictly larger than the superreplication price π+(X). This fact is in line with the findings in
Bensaid et al. [17], where the focus was on a multi-period Cox-Ross-Rubinstein model with pro-
portional transaction costs and no portfolio constraints and the acceptance set was taken to be the
positive cone. As explained in that paper, the counterintuitive inequality π(X) > π+(X) is, in fact,
reasonable to expect because trading is costly and it may therefore «pay to weigh the benefits of
replication against those of potential savings on transaction costs». What also follows from the pre-
vious result and was only implicitly highlighted in [17] is that, contrary to the frictionless case, for
a replicable payoff X belonging toM, both the market price π(X) and the superreplication price
π+(X) may fail to be market consistent! This is again triggered by transaction costs, which may
allow the existence of replicable payoffs Z ∈ M satisfying Z− X ∈ A \ {0} and π(Z)− π(X) ≤ 0
even if the market admits no acceptable deals.
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Motivated by the above discussion, we provide sufficient conditions for the market price of a
payoff in M to be market consistent and, hence, to coincide with the corresponding superrepli-
cation price. More precisely, we show that this holds for every payoff with “zero bid-ask spread”
provided the market admits no acceptable deals.

Proposition 1.3.10. If there exists no acceptable deal, then π(X) = π+(X) ∈ MCP(X) for every replicable
payoff X ∈ M∩ (−M) such that π(−X) = −π(X). In particular, ifM and π are linear and there exists
no acceptable deal, then π(X) = π+(X) ∈ MCP(X) for every replicable payoff X ∈ M.

Proof. Take an arbitrary X ∈ M∩ (−M) such that π(−X) = −π(X). Since π+(X) is the supre-
mum of the set MCP(X) and π+(X) ≤ π(X), it suffices to show that π(X) ∈ MCP(X). To this
effect, take any replicable payoff Z ∈ M satisfying Z − X ∈ A \ {0}. Note that 1

2 Z − 1
2 X =

1
2 (Z− X) + 1

2 0 ∈ A ∩M. As a result, the absence of acceptable deals implies that

0 < π

(
1
2

Z− 1
2

X
)
≤ 1

2
π(Z) +

1
2

π(−X) =
1
2

π(Z)− 1
2

π(X).

This yields π(X) < π(Z) and proves that π(X) is a market-consistent price for X.

1.3.1 THE SET C

The characterization of market-consistent prices established in Theorem 1.3.6 allows for different
cases, but it may be simplified if the infimum in the definition of superreplication price is attained
for every payoff with finite superreplication price. The remainder of this section is devoted to find-
ing sufficient conditions for this attainability property to hold. In particular, we look for economi-
cally meaningful conditions involving the underlying financial primitives, namely the acceptance
set A, the pricing rule π, and the set of admissible replicable payoffsM.

For technical reasons, we need to require that the restriction of the acceptance set to X is closed
with respect to a fixed linear topology on X . This implies that the natural choice X = L0(P) is
possible only if the chosen acceptance set is closed with respect to, e.g., the topology of convergence
in probability. This strong closedness property is satisfied by the positive cone and few other
acceptance sets but typically fails to hold. As a result, the choice of the space X will generally
depend on the underlying acceptance set. Hence, together with Assumption 1.3.1, we require the
following.

Assumption 1.3.11. We assume that X is equipped with a Hausdorff topology which makes this
space a topological linear space, and that A∩X is closed with respect to the given topology.

Note that under Assumption 1.3.11, by virtue of Corollary B.1.7, the asymptotic and the reces-
sion cone of A∩X coincide,

(A∩X )∞ = rec(A∩X ) = rec(A) ∩ X .

Like for π andM, we prefer the asymptotic notation better than the recession one.
A key role in our analysis will be played by the set

C := {(X, m) ∈ X ×R : ∃Z ∈ M such that Z− X ∈ A, π(Z) ≤ −m}.

It is immediate to verify that the epigraph of π+ is related to C as follows:

epi(π+) ⊃ {(X, m) : (X,−m) ∈ C}.

Even though without further assumptions the opposite inclusion may fail, it turns out that in the
classic representation of superreplication prices as π+(X) = inf{m ∈ R : (X, m) ∈ epi(π+)},
up to a sign we can replace the epigraph of π+ with the set C. This is the content of the next
proposition.

Proposition 1.3.12. For every payoff X ∈ X the superreplication price of X can be expressed as

π+(X) = inf{m ∈ R : (X,−m) ∈ C}.
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Proof. For every m ∈ R we have (X,−m) ∈ C if and only if there exists a replicable payoff Z ∈ M
such that Z− X ∈ A and π(Z) ≤ m. As a result, we get

π+(X) = inf{π(Z) : Z ∈ M, Z− X ∈ A}
= inf{m ∈ R : ∃Z ∈ M such that Z− X ∈ A, π(Z) ≤ m}
= inf{m ∈ R : (X,−m) ∈ C}.

This establishes the desired equality.

The preceding representation of superreplication prices suggests that a strategy to tackle the
attainability problem is to look for conditions ensuring that the set C is closed (with respect to the
natural product topology on X ×R, where X is equipped with the topology fixed at the beginning
of this section and R with its canonical Borel topology). This is the content of our next result, which
will play a critical role in the next section as well. Before, we need a preparatory lemma. Recall
that the set G is defined in (1.1) and coincides with the set of scalable acceptable deals together
with the null payoff. In the case that G is a linear subspace of S , we denote by G⊥S its orthogonal
complement in S , with reference to a fixed norm that induces the unique Hausdorff topology
making S a topological vector space.

Lemma 1.3.13. If G is a linear space, then for any (X, m) ∈ C there is Z ∈ G⊥S such that π(Z) ≤ −m and
Z− X ∈ A.

Proof. For any (X, m) ∈ C, we find Y ∈ M such that π(Y) ≤ −m and Y − X ∈ A. Define Y0 as
the orthogonal projection of Y on G and Z := Y − Y0 ∈ G⊥S (the operation of projecting is meant
in the finite dimensional space S). Now, by B.2.5, we have that π(Z) = π(Y − Y0) ≤ π(Y) ≤ −m
as −Y0 ∈ G and so π∞(−Y0) ≤ 0. Moreover, Z− X = (Y − X)− Y0 ∈ A by virtue of Proposition
B.1.5 since Y− X ∈ A ∩X and −Y0 ∈ rec(A) ∩ X = (A∩X )∞. This concludes the proof.

Theorem 1.3.14. If the set G is a linear space, then C is closed and (0, n) /∈ C for some n ∈N. In particular,
the same thesis hold if there exists no scalable acceptable deal.

Proof. We first establish closedness. To this end, take a net (Xα, mα) ⊂ C indexed on the directed
set (A,�) and a point (X, m) ∈ X ×R and assume that (Xα, mα) → (X, m). By Lemma 1.3.13, we
find a net (Zα) ⊂ G⊥S such that Zα − Xα ∈ A and π(Zα) ≤ −mα for every α ∈ A. Now, suppose
that (Zα) has no convergent subnet, and denote by ‖ · ‖ a norm on S which induces the unique
Hausdorff topology which makes S a topological vector space. In this case, we find a subnet of
(Zα) consisting of nonzero elements with strictly-positive diverging norms. (Indeed, it suffices
to consider the index set B = {(α, n) : α ∈ A, n ∈ N, ‖Zα‖ > n} equipped with the direction
defined by (α, n) � (β, m) if and only if α � β and m ≥ n and take Z(α,n) = Zα for every (α, n) ∈ B).
We still denote this subnet by (Zα) for convenience. Since the unit sphere in S is compact, we can
assume without loss of generality that

Zα

‖Zα‖
→ Z

for a suitable nonzero Z ∈ M∞ by definition of asymptotic cone. Clearly, Z belongs to G⊥S too. As
(Xα) is a convergent net by assumption,

Zα − Xα

‖Zα‖
→ Z.

This implies that Z ∈ (A∩X )∞ again by definition of asymptotic cone. We claim that π∞(Z) ≤ 0.
Otherwise, we must find λ > 0 such that π(λZ) > 0. Without loss of generality we may assume
that ‖Zα‖ > λ for every α ∈ A. Since (mα) is a convergent net, we can use the lower semicontinuity
and convexity of π to get

0 < π(λZ) ≤ lim inf
α

π

(
λZα

‖Zα‖

)
≤ lim inf

α

λπ(Zα)

‖Zα‖
≤ lim inf

α

−λmα

‖Zα‖
= 0. (1.3)

This shows that π∞(Z) ≤ 0 must hold. As a result, it follows that Z is a scalable acceptable deal
which belongs to G⊥S , which is impossible. To avoid this contradiction, the net (Zα) must admit a
convergent subnet, which we still denote by (Zα) for convenience. By closedness ofM, the limit Z
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also belongs toM. As we clearly have Zα − Xα → Z− X, it follows that Z− X ∈ A by closedness
of A∩X . Moreover,

π(Z) ≤ lim inf
α

π(Zα) ≤ lim inf
α
−mα = −m

by lower semicontinuity and convexity of π. This shows that (X, m) ∈ C and establishes that C is
closed.

As a second step, we show that (0, n) /∈ C for some n ∈N. To this effect, assume to the contrary
that for every n ∈ N there exists Zn ∈ A ∩ G⊥S such that π(Zn) ≤ −n. If the sequence (Zn) is
bounded, then we may assume without loss of generality that Zn → Z for some Z ∈ A ∩M. The
lower semicontinuity of π implies π(Z) ≤ lim infn→∞ π(Zn) = −∞, which cannot hold. Hence,
the sequence (Zn) must be unbounded. As argued above, we find a suitable subsequence, which
we still denote by (Zn), that has strictly-positive divergent norms satisfying Zn

‖Zn‖ → Z for some
nonzero Z ∈ (A ∩ X )∞ ∩M∞. We claim that π∞(Z) ≤ 0. Otherwise, we must find λ > 0 such
that π(λZ) > 0. Without loss of generality we may assume that ‖Zn‖ > λ for every n ∈ N. The
lower semicontinuity and convexity of π imply

0 < π(λZ) ≤ lim inf
n→∞

π

(
λZn

‖Zn‖

)
≤ lim inf

n→∞

λπ(Zn)

‖Zn‖
≤ lim inf

n→∞

−λn
‖Zn‖

≤ 0. (1.4)

This shows that π∞(Z) ≤ 0 must hold. As a result, it follows that Z is a scalable acceptable deal,
contradicting the fact that Z ∈ G⊥S . To avoid this contradiction, we must have (0, n) /∈ C for some
n ∈N.

Finally, if there are no scalable acceptable deals, then G = {0} and hence it is a linear space.

Remark 1.3.15. (i) Closedness of C in the case that G is a linear space may also be obtained by
applying a generalization of the famous Dieudonné theorem about the closure of the difference of
convex closed sets. Indeed, C can be equivalently written as

C = hypo(−π)− ((A∩X )×R+),

and the hypograph of −π is finite dimensional, providing the local compactness needed for this
type of results. Closedness of C is ensured by the original Dieudonné theorem in Dieudonné [39]
if G = {0} (see also Theorem B.1.9 in Appendix B), and by its generalization provided e.g. by
Theorem 1.1.8 in Zǎlinescu [95] if G is a vector space.

(ii) Consider the case whereM = S and V0 is linear on RN (and consequently π is linear on S),
which correspond to a perfectly liquid market. Moreover, assume that there U ∈ X+ ∩M is such
that π(U) = 1. Since in this case by linearity C can be reduced to

C = {(X, m) ∈ X ×R : mU + X ∈ ker(π)− (A∩X )},

it is clear that C is closed in the product space X ×R if and only if ker(π)− (A∩X ) is closed in X .
IfA is taken to be the positive cone L0(P)+, this difference coincides with the set of superreplicable
claim at zero cost. Thus the problem of the closure of C is nothing else than a generalization of the
problem of the closedness of the cone of superreplicable claims at zero cost in frictionless markets,
which is the hard core of the proofs of the fundamental theorems of asset pricing.

(iii) We have already said that the absence of scalable acceptable deals is interpreted as the
absence of payoff any size of which is attractive and is available on the market at zero (or negative)
cost. Similarly, one could wonder how to interpret the assumption “G is a linear space”. Apart
from being a nice mathematical generalization, this condition can be related to the absence of some
type of strong scalable acceptable deals. Indeed if G is linear, every scalable acceptable deal X is
such that π∞(X) = π∞(−X) = 0, and hence also π(X) = −π(X) = 0. Thus its price cannot
become strictly negative.

The next example shows a case where C is not closed, and a case where C is closed even if G is
not linear, the latter proving that the converse of the closedness result in Theorem 1.3.14 does not
hold.

Example 1.3.16. Let Ω = {ω1, ω2, ω3} and assume that F is the power set of Ω and that P is specified
by P(ωi) = 1

3 . We take X = L0(P) and identify every element of L0(P) with a vector of R3. Let M
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coincide with S = {(x, y, z) ∈ R3 : x = 0} and let π : M → R be defined as π
(
(0, y, z)

)
= y. Note

thatM =M∞, π = π∞ and ker(π) = span{(0, 0, 1)}.
(i) Consider the closed convex conic acceptance set

A =
{
(x, y, z) ∈ R3 ; x2 + y2 + 6xy + 2

√
6xz + 2

√
6yz ≥ 0,

√
3x +

√
3y +

√
2z ≥ 0

}
,

obtained by rotating the cone A′ = {(x, y, z) ∈ R3 : x2 + y2 ≤ 3z2, z ≥ 0} by π/3 around the direction
(−1, 1, 0). Clearly, A = A ∩ X and A = A∞. We show that C is not closed. For every n ∈ N define
Xn =

(
1− 1

n ,−1, 0
)

and note that (Xn, 0) ∈ C because Zn = (0, 0, n2) ∈ M satisfies π(Zn) = 0 and
Zn − Xn ∈ A. Clearly, we have (Xn, 0) → (X, 0) with X = (1,−1, 0). However, a simple verification
shows that (X, 0) does not to belong to C, proving that C is not closed.

(ii) Let A (and hence A∩X and A∞) coincide with the positive cone R3
+. In this case G = {(0, 0, t) ∈

R3 : t > 0}, which is not a linear space, and ker(π)−A = {(x, y, z) ∈ R3 : x ≤ 0, y ≤ 0}. From
Remark 1.3.15 (ii) we have that C is closed.

Thanks to Theorem 1.3.14 and the representation of π+ in terms of C, we can provide sufficient
conditions for the infimum in the definition of π+(X) to be attained. This is the content of the next
proposition.

Proposition 1.3.17. If G is linear, then π+ is a proper lower semicontinuous function and for every X ∈ X
with π+(X) < ∞ there exists a replicable payoff Z ∈ M such that Z− X ∈ A and π+(X) = π(Z). In
particular, the same holds if there are no scalable acceptable deals.

Proof. In Proposition 1.3.4 we have shown that π+ is convex. Moreover, since C is closed by The-
orem 1.3.14, thanks to the representation in Proposition 1.3.12 and Proposition A.1.8, π+ is lower
semicontinuous. Since (0, n) /∈ C for some n ∈ N by Theorem 1.3.14, it follows that π+(0) > −∞.
As a result, π+ is finite at 0, as π+(0) ≤ 0 by Proposition 1.3.4 Being convex and lower semicon-
tinuous, the map π+ can never attain the value −∞ on the space X . Indeed, if π+(X) = −∞ for
some X ∈ X , then we readily see that π+(λX) = −∞ for every λ ∈ (0, 1) by convexity. However,
this implies π+(0) ≤ lim infλ↓0 π+(λX) = −∞ by lower semicontinuity, which cannot hold. This
shows that π+ is proper. Now, for every X ∈ X with π+(X) < ∞, we have π+(X) ∈ R. Thanks to
the representation obtained in Proposition 1.3.12 and the closedness of C, the couple (X,−π+(X))
belongs to C, hence we find Z ∈ M such that π(Z) = π+(X) and Z− X ∈ A.

The next result is just an application of the direct characterization of market consistent prices
(Theorem 1.3.6) under assumptions ensuring that the attainability in the definition of π+ is satis-
fied.

Corollary 1.3.18 (Direct characterization of market consistent prices). Assume that G is linear or there
are no scalable acceptable deals. Then for every X ∈ X such that π+(X) < ∞ we have MCP(X) 6= ∅ and
the following statements hold:

1. If X /∈ M, then π+(X) /∈ MCP(X).

2. If X ∈ M, then both π+(X) ∈ MCP(X) and π+(X) /∈ MCP(X) can hold. Moreover:

(a) If π+(X) ∈ MCP(X), then π+(X) = π(X).

(b) If π+(X) /∈ MCP(X), then both π+(X) = π(X) and π+(X) < π(X) can hold.

1.4 DUAL CHARACTERIZATION OF MARKET-CONSISTENT PRICES

In this section we establish a dual characterization of market-consistent prices based on a general
version of the Fundamental Theorem of Asset Pricing in the setting of pricing with acceptable risk.
As done in the previous section, we fix a reference payoff space and we assume that throughout
this section Assumptions 1.3.1 and 1.3.11 hold. For the time being, we do not need to equip this
space with any further special structure. Later on, to be able to apply duality theory, we will have
to consider a convenient topology.
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1.4.1 PRICING DENSITIES

Dual characterization of market-consistent prices will be expressed in terms of suitable dual ele-
ments, called pricing densities, that generalize the classical stochastic discount factors in friction-
less markets. Here we introduce these dual elements and we investigate their existence’s impact
on (scalable) acceptable deals.

Definition 1.4.1. A random variable D ∈ L0(P) is called a pricing density if the following conditions
hold:

(1) DX ∈ L1(P) for every replicable payoff X ∈ S .

(2) sup{EP[DX]− π(X) : X ∈ M} < ∞.

In addition, we say that a pricing density D ∈ L0(P) is:

(3) consistent (with A and X ) if inf{EP[DX] : X ∈ A ∩X} > −∞.

(4) strictly consistent (with A and X ) if EP[DX] > 0 for every nonzero payoff X ∈ A ∩X .

Remark 1.4.2. Functionals that “extend” the market and are consistent with the acceptance set
appear under different names and specifications in the literature about pricing with acceptable risk.
In Jaschke and Küchler [60], they are called consistent price systems and correspond to consistent
pricing densities. Being their model conic, the supremum in (2) and the infimum in (3) are zero
(see Subsection 1.5.2 for a comparison with their setting). In Staum [91], consistent pricing kernels
are consistent pricing densities with the same supremum and infimum zero, which additionally are
strictly positive, in the sense that belong to X ′++. Cherny [32] works with risk neutral measures, that
are probabilities Q absolutely continuous with respect to P such that EQ[X] ≤ 0 for every attainable
P&L X and such that are consistent with A, with infimum in (3) equal to zero due to conicity of
A. In Černý and Hodges, the market is perfectly liquid, hence the so called no-good deal pricing
functionals equal π on S , and moreover are strictly consistent with A. Note that their acceptance
set, though, cannot be identified with our as it does not contain 0. Also the setting of Carr et al.
[26] is frictionless and unconstrained. Here state price functions correspond, up to a normalization,
with strictly positive pricing densities, and representative state pricing function correspond to pricing
densities strictly consistent with cone(A).

To illustrate the financial interpretation of the above notion and its connection to stochastic
discount factors, consider a pricing density D ∈ L0(P) and define the vector space L = {X ∈
L0(P) : DX ∈ L1(P)}. Note that L contains S . Moreover, define the linear functional ψ : L → R

by
ψ(X) = EP[DX].

By definition of a pricing density, there exists a constant γπ,M ≥ 0 such that for every replicable
payoff X ∈ M we have ψ(X) ≤ π(X) + γπ,M. In particular, for every replicable payoff X ∈
M∩ (−M)

−π(−X)− γπ,M ≤ ψ(X) ≤ π(X) + γπ,M.

The functional ψ can therefore be viewed as the pricing rule of an “artificial” frictionless market
where every payoff in L is “replicable” and prices for the admissible replicable payoffs respect, up
to a suitable enlargement, the bid-ask spread associated to their “true” market prices. If D is such
that γπ,M = 0, no enlargement is needed. This happen for instance when

sup
X∈cone(M)

{EP[DX]− cone(π)(X)} < ∞.

In this case, D qualifies as a pricing density for the “conified” market with conic pricing rule
cone(π) and conic set of admissible payoffs cl(cone(M)). This is automatically satisfied if both
π and M are conic in the first place. In particular, this holds if the pricing rule π is linear and
M = S , in which case ψ is a genuine extension of π beyond the space of replicable payoffs. This is
in line with the classical interpretation of stochastic discount factors in frictionless markets.

The consistency of D implies that prices of acceptable payoffs in the “artificial” frictionless
market with pricing rule ψ are bounded from below by a constant γA ≤ 0 so that for every X ∈
A ∩X ∩ L

ψ(X) ≥ γA.
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A simple situation where these “artificial” prices are nonnegative is when

inf
X∈cone(A)∩X

EP[DX] > −∞.

In this case, D qualifies as a consistent pricing density with respect to the conic acceptance set
cone(A). This is clearly satisfied ifA is a cone in the first place. In particular, ifA is taken to be the
positive cone, then (strict) consistency boils down to the (strict) positivity of ψ.

We summarize the above discussion in the following proposition, which highlights the role of
conicity in simplifying the formulation of a consistent pricing density.

Proposition 1.4.3. Let D ∈ L0(P) be a pricing density. Then, the following statements hold:

(i) EP[DX] ≤ π(X) for every X ∈ M∞ such that π is conic on cone(X).

(ii) EP[DX] = π(X) for every X ∈ M∞ ∩ (−M)∞ such that π is linear on span(X).

If D is consistent, then the following statement holds:

(iii) EP[DX] ≥ 0 for every X ∈ rec(A) ∩ X .

Proof. Let D ∈ L0(P) be a pricing density and take an arbitrary X ∈ X . Since span(X) = cone(X)∪
cone(−X), it is clear that (i) implies (ii). To prove (i), assume that X ∈ M∞ and π is conic on
cone(X). Then, by definition of a pricing density,

sup
n∈N

{n(EP[DX]− π(X))} = sup
n∈N

{EP[D(nX)]− π(nX)} < ∞.

This is only possible if EP[DX]− π(X) ≤ 0, showing the desired claim. Finally, to establish (iii),
assume that D is consistent and X ∈ rec(A). Then, by definition of consistency,

inf
n∈N
{nEP[DX]} = inf

n∈N
EP[D(nX)] > −∞.

This is only possible if EP[DX] ≥ 0, proving the desired claim and concluding the proof.

Remark 1.4.4 (From pricing densities to risk-neutral probabilities). In a market where some admis-
sible replicable payoff is frictionless, every positive pricing density can be equivalently represented
in terms of a probability measure. To see this, let D ∈ L0(P) be a (strictly) positive pricing density
and consider a strictly-positive payoff U ∈ M∞ ∩ (−M)∞ such that π is linear along span(U)
and satisfies π(U) > 0. It follows from the preceding proposition that EP[DU] = π(U). Then,
we find a probability measure Q that is absolutely continuous with (equivalent to) P and satisfies
dQ
dP

= DU
π(U)

. In this case,
EP[DX]

π(U)
= EQ

[
X
U

]
for every X ∈ L0(P) such that DX ∈ L1(P). This shows that the action of a pricing density can be
equivalently formulated in terms of an expectation under Q applied to payoffs expressed in units
of the reference payoff U. The probability Q thus plays the role of an (equivalent) risk-neutral
probability from the classical frictionless theory.

Now we try to highlight the link between the existence of strictly-consistent pricing densities
and the absence of acceptable deals. Before stating our result, we furnish a geometric intuition,
with reference to Figure 1.3. If D is a strictly consistent pricing density, by definition we have

γA := inf
X∈A∩X

EP[DX] = 0 and EP[DX] > 0 for X ∈ A ∩X \ {0} (1.5)

γπ,M := sup
X∈M

{EP[DX]− π(X)} < ∞. (1.6)

In the product space X ×R, we consider the hyperplane

H := {(X, m) ∈ X ×R : m = EP[DX]}.
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epi(π)

A× (−R+)

X
A

R
H

(A) γπ,M = 0

epi(π)

A× (−R+)

X
A

R
H

γπ,M

(B) γπ,M > 0

FIGURE 1.3: Strictly consistent pricing densities and acceptable deals

From (1.5), it is clear that

(A∩X )× (−R+) \ {(0, 0)} ⊂ H−− := {(X, m) ∈ X ×R : m < EP[DX]}.

If γπ,M = 0, by virtue of (1.6) it also holds that

epi(π) ⊂ H+ := {(X, m) ∈ X ×R : m ≥ EP[DX]}.

Since H+ ∩ H−− = ∅, whenever γπ,M = 0 we have that (A ∩ X )× (−R+) ∩ epi(π) = {(0, 0)},
which is equivalent to the absence of acceptable deals. But if γπ,M > 0, then the inclusion epi(π) ⊂
H+ fails, and it is not possible to conclude right away that the model has no acceptable deals.

The next proposition shows that the market is always free of scalable acceptable deals whenever
a strictly-consistent pricing density exists. As we have anticipated, under the additional assump-
tion γπ,M = 0, the market is also free of acceptable deals.

Proposition 1.4.5. (i) If there exists a strictly-consistent pricing density, then there exists no scalable ac-
ceptable deal.

(ii) If there exists a strictly-consistent pricing density D ∈ L0(P) such that EP[DX] ≤ π(X) for every
payoff X ∈ M, then there exists no acceptable deal.

Proof. Let D ∈ L0(P) be a strictly-consistent pricing density and take a nonzero payoff X ∈ A ∩
M∞. We have to show that π∞(X) > 0. To this effect, note that, by definition of a pricing density,

sup
n∈N

{n(EP[DX]− π∞(X))} = sup
n∈N

{EP[D(nX)]− π∞(nX)} ≤ sup
n∈N

{EP[D(nX)]− π(nX)} < ∞,

where we used that π∞ dominates π. This is only possible if EP[DX]−π∞(X) ≤ 0. As a result, we
obtain π∞(X) ≥ EP[DX] > 0. This yields (i). Next, assume that EP[DX] ≤ π(X) for every payoff
X ∈ M and take a nonzero payoff X ∈ A∩M. Then, we immediately see that π(X) ≥ EP[DX] >
0, showing (ii).

The next example shows that, contrary to the classical frictionless setting, the existence of a
strictly-consistent pricing density does not generally imply that the market be free of acceptable
deals. In view of the preceding proposition, this may occur only if either the pricing rule or the
set of admissible replicable payoffs fails to be conic and γπ,M is strictly positive. We provide an
example in both cases.

Example 1.4.6. Let Ω = {ω1, ω2} and assume that F is the power set of Ω and that P is specified by
P(ω1) = P(ω2) =

1
2 . In this simple setting, we take X = L0(P) and identify every element of X with a

vector of R2. Set S = R2 and consider the acceptance set defined by

A = {(x, y) ∈ R2 : y ≥ max{−x, 0}}.

Note that A is conic. We consider the following two situations.
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(i) Set π(x, y) = x + y2 for every (x, y) ∈ R2 andM = R2. Note thatM is conic while π is not. Note
also that the requirements in Assumption 1.3.1 are met. It is clear that D = (2, 4) is a strictly-consistent
pricing density. In particular, we have

sup
X∈M

{EP[DX]− π(X)} = sup
y∈R

{2y− y2} = 1.

However, X = (−1, 1) ∈ A ∩M satisfies π(X) = 0 and is thus an acceptable deal.
(ii) Set π(x, y) = x + y for every (x, y) ∈ R2 andM = {(x, y) ∈ R2 : x ≥ −1, 0 ≤ y ≤ 1}. Note

that π is conic whileM is not. Note also that the requirements in Assumption 1.3.1 are met. It is clear that
D = (2, 4) is a strictly-consistent pricing density. In particular, we have

sup
X∈M

{EP[DX]− π(X)} = sup
0≤y≤1

y = 1.

However, X = (−1, 1) ∈ A ∩M satisfies π(X) = 0 and is thus an acceptable deal.

1.4.2 DUAL REPRESENTATION OF C

In this section we study from a dual perspective the subset C of the product space X ×R, which
will play a key role in determining the dual representation of market consistent prices. For this
analysis, the reference payoff space X has to be equipped with a topological structure and paired
with a suitable dual space X ′ with pairing defined through expectation. In particular, the explicit
choice of the dual space X ′ will allow us to obtain a flexible characterization of market consistent
prices expressed in terms of expectations and densities belonging to the chosen dual space. To this
effect, it is critical to impose that A∩X is closed with respect to a specific weak topology, namely
σ(X ,X ′). At first sight, this assumption may seem rather restrictive unless X is a normed space
and X ′ is its norm dual, in which case σ(X ,X ′)-closedness is equivalent to norm closedness by
convexity; see e.g. Theorem 5.98 in Aliprantis and Border [1]. It turns out that, for the common
payoff spaces and the standard acceptance sets, the required closedness holds even with respect to
the most restrictive choice X ′ = L∞(P); see Proposition 1.6.2 below.

Hence, together with Assumptions 1.3.1 and 1.3.11, we require the following.

Assumption 1.4.7. We denote byX ′ a linear subspaces of L0(P). We assume thatX andX ′ contain
L∞(P) and satisfy XY ∈ L1(P) for all X ∈ X and Y ∈ X ′. These space are in separating duality
through

(X, Y) 7→ EP[XY].

We equip X and X ′ with the weakest linear topologies σ(X ,X ′) and σ(X ′,X ) associated with the
above mapping. Unless otherwise stated, all the topological properties on X and X ′ refer to such
topologies (in particular, the topology on X of Assumption 1.3.11 coincides with σ(X ,X ′), and
hence A∩X is assumed to be σ(X ,X ′)-closed).

First, we recall the definition of the set C:

C := {(X, m) ∈ X ×R : ∃Z ∈ M such that Z− X ∈ A, π(Z) ≤ −m}.

Moreover, we define the set of consistent pricing densities belonging to X ′:

D := {D ∈ X ′ : D is a consistent pricing density}.

Similarly, the set of strictly-consistent pricing densities belonging to X ′ is denoted by

Dstr := {D ∈ X ′ : D is a strictly-consistent pricing density}.

In addition, it is convenient to introduce the maps γM,π : X ′ → (−∞, ∞], γA : X ′ → [−∞, ∞)
defined by

γπ,M(Y) := sup
X∈M

{EP[XY]− π(X)},

γA(Y) := inf
X∈A∩X

EP[XY].
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Note that γπ,M coincides with the conjugate function of the restriction toM of the pricing rule π
whereas γA is the support function σA∩X of the set A∩X . These maps appear in the definition of
a consistent pricing density.

The next proposition records the fundamental properties of the set C. In particular, we show
that consistent pricing densities appear naturally in the barrier cone of C (see Definition A.1.9).

Proposition 1.4.8. The sets C and D are convex and the following statements hold:

(i) −((A∩X )×R+) ⊂ C.

(ii) − bar(C) ⊂ X ′+ ×R+ and D ⊂ X ′+.

(iii) σC(Y, 1) = γπ,M(Y)− γA(Y) for every Y ∈ X ′.

(iv) D = {Y ∈ X ′+ : σC(Y, 1) < ∞} = {Y ∈ X ′+ : (Y, 1) ∈ − bar(C)}.
Proof. The convexity of C is clear. Now, take an arbitrary (X, m) ∈ −((A ∩ X ) × R+) and set
Z = 0 ∈ M. Then, we clearly have Z − X = −X ∈ A as well as π(Z) = 0 ≤ −m, showing that
(X, m) ∈ C. This establishes the thesis. Next, take any (Y, r) ∈ − bar(C) and note that

sup
m∈N

{−mEP[1{Y<0}Y]}+ sup
n∈N

{−nr} = sup
m,n∈N

{EP[−m1{Y<0}Y]− nr} ≤ σC(Y, r) < ∞,

where we used that −(m1{Y<0}, n) ∈ −((A ∩ X )×R+) ⊂ C by monotonicity of A and by point
(i). This shows that (Y, r) must belong to X ′+ ×R+ and yields (ii). An explicit calculation shows
that

σC(Y, 1) = sup
m∈R

sup
Z∈M, π(Z)≤−m

sup
X∈Z−A∩X

{EP[XY] + m} = sup
Z∈M

sup
X∈Z−A∩X

{EP[XY]− π(Z)}

= sup
Z∈M
{EP[ZY]− π(Z)}+ sup

X∈−(A∩X )

EP[XY] = γπ,M(Y)− γA(Y)

for every Y ∈ X ′. This establishes (iii) and (iv) and implies thatD is convex by convexity of σC .

The next theorem presents the dual representation of the closure of C, understood with respect
to the natural product topology on X ×R, where X is equipped with the topology fixed at the
beginning of this section and R with its canonical Borel topology.

Theorem 1.4.9. There exists n > 0 such that (0, n) /∈ cl(C) if and only if cl(C) 6= X × R and the
following representation holds:

cl(C) =
⋂

Y∈D
{(X, m) ∈ X ×R : EP[XY] + m ≤ γπ,M(Y)− γA(Y)}. (1.7)

Proof. Assume that (0, n) /∈ cl(C). Hence X ×R strictly contains cl(C). We can apply to cl(C) the
dual representation in Proposition A.1.10 to get

cl(C) =
⋂

(Y,r)∈X ′×R

{(X, m) ∈ X ×R : EP[XY] + mr ≤ σC(Y, r)}. (1.8)

We claim that − bar(C) ∩ (X ′ × (0, ∞)) 6= ∅. Since (0, n) /∈ C by assumption, there must exist
(Y, r) ∈ − bar(C) satisfying

nr = EP[0 ·Y] + nr > σC(Y, r) ≥ 0.

This establishes the desired claim. Now, recall that− bar(C) ⊂ X ′+×R+. Since σC is sublinear and
− bar(C) is a convex cone, it follows that

cl(C) =
⋂

Y∈X ′+

{(X, m) ∈ X ×R : EP[XY] + m ≤ σC(Y, 1)}.

The desired representation is now a direct consequence of point (iii) of Proposition 1.4.8. Viceversa,
assume that (1.7) holds and take Y ∈ D, which exists since cl(C) 6= X ×R. Observe that (0, n) ∈
cl(C) if and only if n ≤ σC(Y, 1) < ∞. This delivers the desired result.
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Remark 1.4.10. If (0, n) ∈ cl(C) for every n > 0, then D is empty, and the closure of C has the
following representation:

cl(C) =
( ⋂

Y∈X ′+

{X ∈ X : EP[XY] ≤ σM∩X (Y)− γA(Y)}
)
×R.

This is the case in the next example. However, from a financial point of view, this case in not of
interest since it would mean that the agent would have the chance to receive an arbitrary high
amount of money in change of acquiring desirable positions.

Example 1.4.11. Consider a two state economy, so thatX = R2. LetA = {(x, y) ∈ R2; min{x, x+ y} ≥
0} andM = {(−z, z) ∈ R2 : z ∈ R}. Suppose the pricing functional is defined onM as π((−z, z)) = z.
It is easy to see that C = {(x, y, m) ∈ R2 ×R : x + y ≥ 0}, which contains (0, 0, n) for every n > 0, and
σC(Y, r) = ∞ whenever r > 0.

Of course, representation (1.7) is actually a representation of the set C whenever it turns out to
be closed in the first place. In Theorem 1.3.14 we have shown that this holds if G is a linear space.

Corollary 1.4.12 (Dual representation of C). If G is a linear space (in particular, if there exists no scalable
acceptable deal), then the following representation of C holds:

C =
⋂

Y∈D
{(X, m) ∈ X ×R : EP[XY] + m ≤ γπ,M(Y)− γA(Y)}.

Proof. It is enough to apply Theorems 1.3.14 and 1.4.9.

We close this section presenting a set of assumptions under which the dual elements appearing
in the representation of C may be reduced to strictly consistent pricing densities. This happens
whenA is a cone and at least one strictly consistent pricing density exists in X ′. Note that our next
proposition is based on the progressive application of three results of this and the preceding sec-
tion: first Proposition 1.4.5 to show that there are no scalable acceptable deals, then Theorem 1.3.14
to affirm that C is closed and (0, n) /∈ C for some n ∈ N, and then Theorem 1.4.9 for the dual
representation of C.

Proposition 1.4.13. If A is a cone and Dstr is not empty, the following representation holds:

C =
⋂

D∈Dstr

{(X, m) ∈ X ×R : EP[XD] + m ≤ γπ,M(D)}. (1.9)

Proof. Let D∗ belong to Dstr. By Proposition 1.4.5, scalable acceptable deals do not exists. Hence,
we invoke Corollary 1.4.12 to affirm that representation (1.7) holds for C. Since γA(D) = 0 for every
D ∈ D by conicity of A, we only need to establish the inclusion “⊃” of (1.9). To this end, take an
arbitrary (X, m) ∈ X ×R such that EP[XD] + m ≤ γπ,M(D) for every D ∈ Dstr. Now, take any
D ∈ D. For every λ ∈ (0, 1), it is immediate to verify using conicity of A that λD∗ + (1− λ)D ∈
Dstr so that

λ(EP[XD∗] + m) + (1− λ)(EP[XD] + m) = EP[X(λD∗ + (1− λ)D)] + m
≤ γπ,M(λD∗ + (1− λ)D)

≤ λγπ,M(D∗) + (1− λ)γπ,M(D).

Letting λ ↓ 0 delivers EP[XD] + m ≤ γπ,M(D) and shows the desired inclusion.

1.4.3 DUAL REPRESENTATION OF SUPERREPLICATION PRICES

In this section we show that the dual representation of set C can be used for convenient expressions
of superreplication prices. This fact will be exploited in the next section for the dual characteriza-
tion of market consistent prices.

Proposition 1.4.14. If G is a linear space, the following representation holds for every payoff X ∈ X :

π+(X) = sup
D∈D
{EP[DX]− γπ,M(D) + γA(D)}. (1.10)
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Proof. Take any payoff X ∈ X . It follows from Proposition 1.3.12 and Corollary 1.4.12 that

π+(X) = inf{m ∈ R : (X,−m) ∈ C}
= inf{m ∈ R : EP[DX]−m ≤ γπ,M(D)− γA(D), ∀D ∈ D}
= inf{m ∈ R : m ≥ EP[DX]− γπ,M(D) + γA(D), ∀D ∈ D}
= sup{EP[DX]− γπ,M(D) + γA(D) : D ∈ D}.

This establishes (1.10).

Similarly to the preceding section, we close by treating the case where A is a cone and there
exists at least one strictly consistent pricing density. Thanks to the special representation of C, it
turns out that the supremum is taken over strictly consistent pricing densities also in representing
the superreplication price.

Proposition 1.4.15. Assume that A is a cone and Dstr is not empty. In this case, the following representa-
tion holds:

π+(X) = sup
D∈Dstr

{EP[DX]− γπ,M(D)}. (1.11)

Proof. It is enough to replicate the proof of Proposition 1.4.14, using representation (1.9) for C.

Example 1.4.20 shows that if A fails to be a cone, the representation of π+ is no longer valid.

1.4.4 DUAL CHARACTERIZATION OF MARKET CONSISTENT PRICES

In a preceding discussion, we have interpreted pricing densities as pricing rules of a frictionless
“artificial” market which respect, up to an enlargement, the bid-ask spread of the original mar-
ket. In this section, we aim to use (some of) these fictitious pricing rules to characterize market
consistent prices.

We start by showing that strictly-consistent pricing densities can be used to define special
market-consistent prices.

Proposition 1.4.16. If Dstr is not empty, then for every payoff X ∈ X and for every D ∈ Dstr

EP[DX]− γπ,M(D) ∈ MCP(X).

Proof. Let D ∈ Dstr and X ∈ X . Note that for every replicable payoff Z ∈ M such that Z − X ∈
A \ {0} we have

π(Z) ≥ EP[DZ]− γπ,M(D)

= EP[D(Z− X)] + EP[DX]− γπ,M(D)

> EP[DX]− γπ,M(D)

by strict consistency. Note also that EP[DX] − γπ,M(D) ≤ π(X) in the case that X ∈ M. This
shows that EP[DX]− γπ,M(D) is a market-consistent price for X.

Note that, since MCP(X) is an interval unbounded from below, under the assumptions of the
last proposition, we have that

MCP(X) ⊃ {p ∈ R : ∃D ∈ Dstr such that p ≤ EP[DX]− γπ,M(D)}. (1.12)

To establish our desired dual characterization of market-consistent prices we have to determine
whether or not the converse inclusion also holds. The next theorem provides an answer to this
more challenging task under the assumption that the acceptance set is conic. In particular, it fea-
tures a dual representation of superreplication prices in terms of strictly-consistent pricing densities
that extends the well-known representation via stochastic discount factors in a frictionless setting
where the acceptance set is taken to be the positive cone.

Theorem 1.4.17 (Dual characterization of market consistent prices). If A is a cone and Dstr is not
empty, the following statements hold for any X ∈ X :
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(i) If π+(X) /∈ MCP(X), then the supremum in (1.11) is not attained and

MCP(X) = (−∞, π+(X)) = {p ∈ R : ∃D ∈ Dstr such that p ≤ EP[DX]− γπ,M(D)}.
(1.13)

(ii) If π+(X) ∈ MCP(X), then the following statements hold and both can happen:

(a) the supremum in (1.11) is attained if and only if

MCP(X) = (−∞, π+(X)] = {p ∈ R : ∃D ∈ Dstr such that p ≤ EP[DX]− γπ,M(D)}.

(b) the supremum in (1.11) is not attained if and only if

MCP(X) = (−∞, π+(X)]

) {p ∈ R : ∃D ∈ Dstr such that p ≤ EP[DX]− γπ,M(D)} = (−∞, π+(X)).

This situation can occur even if both π andM are conic and there exists no acceptable deal.

Proof. Recall from Proposition 1.3.5 that π+(X) is the supremum of the set MCP(X). Assume that
π+(X) does not belong to MCP(X). In view of Proposition 1.4.16, to complete the proof we only
have to show the inclusion “⊂” in (1.13). To this effect, take an arbitrary market-consistent price
p ∈ MCP(X) and note that we must have p < π+(X). Hence, it follows from the representation
(1.10) that p < EP[DX]− γπ,M(D) for a suitable D ∈ Dstr. This delivers the desired inclusion.

If π+(X) belongs to MCP(X), then the inclusion in (1.12) is an equality if and only if the supre-
mum in (1.11) is attained. This delivers equivalences in (a) and (b). We refer to Example 1.4.18 for
a concrete situation where (a) and (b) happen. This concludes the proof.

The following examples complement the proof. We show that, contrary to the standard friction-
less setting, for a replicable payoff with market-consistent superreplication price, the supremum in
the dual representation of the corresponding superreplication price need not be attained. In view
of the above result, this implies that a dual characterization of market-consistent prices in terms
of strictly-consistent pricing densities may not be possible for replicable payoffs. Interestingly, this
can occur even if both the pricing rule and the set of admissible payoffs are conic and there exists
no acceptable deal.

Example 1.4.18. Let Ω = {ω1, ω2} and assume that F is the power set of Ω and that P is specified by
P(ω1) = P(ω2) = 1

2 . In this simple setting, we take X = X ′ = L0(P) and identify every element of
L0(P) with a vector of R2. Take A = R2

+ andM = {(x, y) ∈ R2 ; 0 ≤ y ≤ −x} and define

π(x, y) =

{√
x2 + xy if (x, y) ∈ M,

∞ otherwise.

(To verify that π is convex, one can observe that π is continuous onM and that the Hessian matrix of π in
the interior ofM is given by

Hπ(x, y) =

 y2

4(x2+xy)3/2 − xy
4(x2+xy)3/2

− xy
4(x2+xy)3/2

x2

4(x2+xy)3/2


and has nonnegative eigenvalues, namely 0 and 1

4 (x2 + y2)(x2 + xy)−3/2). Both A andM are cones and
π is conic. Moreover, there exists no acceptable deal and all the requirements in the stipulated assumptions
are fulfilled. A direct inspection shows that strictly-consistent pricing densities D ∈ X ′ exist (for instance,
take D = (1, 2)) and satisfy γπ,M(D) = 0 by conicity. Now, set X = (−1, 1) ∈ M. It is immediate to
verify that if Z ∈ M and Z− X ∈ A, then Z = X. This implies that π+(X) = π(X) = 0 ∈ MCP(X).
We show that there is no D = (d1, d2) ∈ Dstr such that EP[DX] = 0. Indeed, we would otherwise have
d1 = d2 and taking Zλ = (−1, λ) ∈ M for λ ∈ (0, 1) would deliver

sup
0<λ<1

{EP[DZλ]− π(Zλ)} ≤ 0 =⇒ d1 ≥ sup
0<λ<1

2√
1− λ

= ∞.
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FIGURE 1.4: Example 1.4.20

As a result, the supremum in (1.11) is not attained.
Now, set Y = 0 ∈ M and note that, like before, π+(Y) = π(Y) = 0 ∈ MCP(Y). It is clear that

EP[DY] = 0 for every D ∈ Dstr. In particular, the supremum in (1.11) is attained.

Motivated by the preceding example, we provide a sufficient condition on replicable payoffs
under which it is possible to derive a dual characterization of the corresponding market-consistent
prices in terms of strictly-consistent pricing densities. The condition is automatically met in fric-
tionless markets.

Proposition 1.4.19. If A is a cone and there exists a strictly-consistent pricing density D ∈ X ′ such that
γπ,M(D) = 0, then for every payoff X ∈ X such that π+(X) ∈ MCP(X) and such that X ∈ M∩ (−M)
and π is linear on span(X) we have

MCP(X) = {p ∈ R : ∃D ∈ Dstr such that p ≤ EP[DX]}.

Proof. It follows from Proposition 1.4.5 that A ∩ {Z ∈ M : π(Z) ≤ 0} = {0}. Now, take a
payoff X ∈ X such that π+(X) ∈ MCP(X) and assume that X ∈ M∩ (−M) and π is linear on
span(X). By Theorem 1.3.6 we have π+(X) = π(X). Moreover, by Proposition 1.4.3, we know that
π(X) = EP[DX]. As a result, the supremum in (1.11) is attained and the desired statement follows
from Theorem 1.4.17.

One may wonder whether the conclusions of Theorem 1.4.17 still hold if the acceptance set is
not assumed to be conic. The next example shows that conicity of A is necessary for both the dual
representation of superreplication prices and the dual characterization of market-consistent prices
to hold.

Example 1.4.20. Let Ω = {ω1, ω2} and assume that F is the power set of Ω and that P is specified by
P(ω1) = P(ω2) = 1

2 . In this simple setting, we take X = X ′ = L0(P) and identify every element of
L0(P) with a vector of R2. Define π(x, y) = max{x, x + y} for every (x, y) ∈ R2 and set

M = {(x, y) ∈ R2 : y ≥ −1}, A = {(x, y) ∈ R2 : y ≥ max{−2x, 0}, x ≥ −1}.

Note also that all the requirements in Assumption 1.4.7 are fulfilled and there exists no acceptable deal. It is
not difficult to verify that strictly-consistent pricing densities exist, namely

Dstr =
{

D = (d1, d2) ∈ R2
+ : d1 = 2, 1 < d2 ≤ 2

}
.

In this case, we have

γπ,M(D) = sup
X∈M

{EP[DX]− π(X)} = max

{
sup
−1≤y<0

{
1
2

d2y
}

, sup
y≥0

{(
1
2

d2 − 1
)

y
}}

= 0.
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If X = (x, y) /∈ M, computations show that its superreplication price is

π+(X) =

{
x− 1 if y ≤ −2
x + y

2 if − 2 < y < −1

and by Theorem 1.3.6 we see that MCP(X) = (−∞, π+(X)). Moreover the representation

sup
D∈Dstr

{EP[DX]− γπ,M(D)} = sup
D∈Dstr

EP[DX] = x +
y
2

,

coincides with π+(X) if and only if −2 ≤ y < −1. Thus for every (x, y) /∈ M with y < −2 we have that

sup
D∈Dstr

{DX− π∗(D)} = x +
y
2
< x− 1 = π+(X).

This shows that both the representation of the superreplication price and the characterization of market-
consistent prices obtained in Theorem 1.4.17 can fail when A is not conic (even for a payoff outsideM).

1.5 FUNDAMENTAL THEOREM OF ASSET PRICING

The dual characterization of market-consistent prices established in Theorem 1.4.17 requires to
know that a strictly-consistent pricing density exists in the first place. This section is devoted to
the investigation of this problem. In line with the previous section, we are especially interested
in economically meaningful conditions for the existence of such a pricing density expressed in
terms of the underlying financial primitives, namely the acceptance set A, the pricing rule π, and
the set of admissible replicable payoffs M. This will lead us to establishing a general version of
the Fundamental Theorem of Asset Pricing in our setting. To do so, the reference payoff space
and its dual have to be equipped with a special topological structure. As illustrated below, our
framework will prove to be general and flexible enough to accommodate a variety of concrete
important examples.

Hence throughout this section, together with Assumptions 1.3.1,1.3.11 and 1.4.7, we assume the
following.

Assumption 1.5.1. X ′ is the norm dual of a suitable normed space in L0(P) and σ(X ′,X ) is weaker
than the weak-star topology on X ′.

The key tool to determine the existence of strictly-consistent pricing densities is the following
version of the well-known Kreps-Yan Theorem.

Theorem 1.5.2 (Kreps-Yan Theorem). Let L and L′ be subsets respectively of X and X ′, and assume
that the following properties hold:

(1) Σ-completeness: For every sequence (Yn) ⊂ L′ there exist a sequence (λn) ⊂ (0, ∞) and Y ∈ L′
such that ∑n

k=1 λkYk → Y.

(2) Countable separation: There exists a sequence (Yn) ⊂ L′ ∩ (bar(cone(L))) such that for every
nonzero X ∈ L we have EP[XYn] > 0 for some n ∈N.

Then, there exists Y ∈ L′ such that EP[XY] > 0 for every nonzero X ∈ L.

Proof. By the countable separation property, there exists a sequence (Yn) ⊂ L′ ∩ bar(cone(L))
such that for every nonzero X ∈ L we have EP[XYn] > 0 for some n ∈ N. In particular, note
that EP[XYn] ≥ 0 for all X ∈ L and n ∈ N because (Yn) ⊂ bar(cone(L)). Moreover, by the Σ-
completeness property, there exist a sequence (λn) ⊂ (0, ∞) and Y ∈ L′ such that ∑n

k=1 λkYk → Y.
Since the series converges in the σ(X ′,X )-topology, it is immediate to see that EP[XY] > 0 for
every nonzero X ∈ L.

Remark 1.5.3. (i) We actually need less than the Σ-completeness property as it is state in point (1).
Indeed it is enough to have Σ-completeness with respect to the sequence (Yn) of point (2). We have
stated the theorem in this way so that it is possible to compare it with the Kreps-Yan Theorem in
Jouini et al. [63], and since in the case where we apply this theorem it happens that (1) holds.
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(ii) The above result can be generalized for every pair of vector spaces X and X ′ equipped with
a bilinear mapping 〈·, ·〉 : X ×X ′ → R. In this respect, our statement is a minor adaptation of the
abstract version of the Kreps-Yan Theorem obtained by Jouini et al. [63]. In that paper, the set L
was assumed to be a convex cone satisfying L ∩ (−L) = {0} and L− L = X and the dual set L′
was taken to satisfy

L′ = bar(L) = {Y ∈ X ′ : 〈X, Y〉 ≥ 0, ∀X ∈ L}.

Incidentally, note that the pointedness condition L ∩ (−L) = {0} is automatically implied by the
countable separation property (regardless of the special choice of L). Our formulation is motivated
by the choice L = A∩X and L′ = D. In particular, in that paper’s setting, even in the case where
A and, hence, L is a cone, the set L′ must be taken to be a subset of the barrier cone of L.

(iii) The merit of Jouini et al. [63] is to have extracted the key underlying mathematical structure
behind the original works by Kreps [69] and Yan [94]. We refer to Cassese [27], Gao and Xanthos
[54], and Rokhlin [88, 87] for a variety of concrete examples where the above Σ-completeness and
countable separation properties hold.

The preceding result gives us a pair of sufficient conditions for the existence of a strictly-
consistent pricing density. This follows at once by applying the result to L = A∩ X and L′ = D.
It is therefore left to verify that the corresponding Σ-completeness and countable separation prop-
erty are fulfilled. This is exactly the content of the fundamental theorem of asset pricing, which
basically consists in an application of the Kreps-Yan Theorem.

Before stating our fundamental theorems, we highlight a useful equivalent condition to the
absence of scalable acceptable deals in the presence of a conic acceptance set satisfying a suitable
pointedness condition. We state it in a lemma, as it will be used as a technical tool in proving
the fundamental theorems. Note that condition (i) means that there exist no acceptable deals that
remain acceptable payoffs once they are diminished by arbitrary multiples of any given acceptable
payoff.

Lemma 1.5.4. Let A be a cone with A∩ (−A) = {0}. The following statements are equivalent:

(i) For every nonzero X ∈ A ∩X there exists λ > 0 such that (λX, 0) /∈ C.

(ii) There exists no scalable acceptable deal.

Proof. If (i) holds, then for every nonzero X ∈ A ∩ X we find λ > 0 such that λX /∈ {Z ∈ M :
π(Z) ≤ 0} or equivalently X /∈ {Z ∈ M∞ : π∞(Z) ≤ 0} by Proposition 1.1.2. This yields (ii).
Conversely, assume that (ii) holds and let ‖ · ‖ be a norm on S inducing the unique Hausdorff
topology that makes S a topological vector space. First, we claim that

{Z ∈ M∩A : π(Z) ≤ 0} is bounded. (1.14)

Otherwise, for every n ∈ N we find Zn ∈ M ∩ A such that π(Zn) ≤ 0 and ‖Zn‖ ≥ n. Since
the unit sphere in S is compact, there exists a nonzero Z ∈ S such that Zn

‖Zn‖ → Z. Note that
Z ∈ M∞ ∩ (A ∩ X )∞ by definition of recession cone. Note also that π∞(Z) ≤ 0 must hold, for
otherwise λ̃ > 0 exists such that π(λ̃Z) > 0, and the lower semicontinuity and convexity of π
yields

0 < π(λ̃Z) ≤ lim inf
n→∞

π

(
λ̃

Zn

‖Zn‖

)
≤ lim inf

n→∞

λ̃

‖Zn‖
π(Zn) ≤ 0.

This shows that Z is a scalable acceptable deal, contradicting (ii). To avoid this, we must have (1.14).
Now, assume that (i) fails to hold so that we find a nonzero X ∈ A ∩ X such that for every λ > 0
there exists Zλ ∈ M with π(Zλ) ≤ 0 and Zλ − λX ∈ A. In particular, note that Zλ ∈ A and
Zλ
λ ∈ A + X for every λ > 0. Since (A + X) ∩ S is closed and does not contain the zero payoff

by assumption on A, the norm ‖ · ‖ must be bounded from below by a suitable ε > 0 on the set
(A+ X)∩S . In particular, ‖Zλ‖

λ ≥ ε for every λ > 0. This implies that {Zλ : λ > 0} is unbounded.
However, this is against (1.14). It then follows that (i) must hold.

Remark 1.5.5. (i) If A is taken to be the positive cone, the pointedness condition A ∩ (−A) =
{0} automatically holds and condition (i) is equivalent to the “no scalable arbitrage” condition
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in Pennanen [76]. Note that the same result holds under the weaker pointedness condition A ∩
(−A) ∩ X = {0}, which is necessary for condition (i) to hold.

(ii) Note that, since we have assumed that A ∩ (−A) = {0}, then the absence of scalable ac-
ceptable deals is equivalent to G being a linear space. In this case, indeed, the dimension of G is
forced to be zero.

We are now ready to state the first fundamental theorem. Showing that Σ-completeness holds
turns out to be quite simple, as it is a direct consequence of the fact that, by assumption, the space
X ′ is a norm dual and σ(X ′,X ) is weaker than the corresponding weak-star topology. On the
other side, establishing the countable separation property requires some effort and can only be ac-
complished under suitable conditions. The importance of these conditions lies in the fact that they
provide concrete situations where the dual characterization of market-consistent prices obtained
in Theorem 1.4.17 actually holds.

We start by dealing with the basic situation where A is the positive cone.

Theorem 1.5.6 (Fundamental Theorem of Asset Pricing). Let A = L0(P)+ and assume that there
exists no scalable arbitrage opportunity. Then, there exists a strictly consistent pricing density in X ′.

Proof. We divide the proof in two steps, so as to prove separately the two needed properties for
applying Theorem 1.5.2 to L = A ∩ X and L′ = D. The existence of a strictly consistent pricing
density in X ′ is then ensured by the said theorem.

Step 1 (Σ-completeness). For every sequence (Yn) ⊂ D there exists a sequence (λn) ⊂ (0, ∞) and
Y ∈ D such that ∑n

k=1 λkYk → Y.

Recall that D ⊂ X ′+ by Proposition 1.4.8 and note that σC(Y, 1) ≥ 0 for every Y ∈ D. More-
over, recall that X ′ is a norm dual and denote by ‖ · ‖X ′ the corresponding dual norm. Let
Sn = ∑n

k=1 αkYk and αn = (1 + ‖Yn‖X ′)−1(1 + σC(Yn, 1))−12−n > 0 for every n ∈ N. Since X ′
is complete with respect to its norm topology, we have Sn → Z for a suitable Z ∈ X ′ with respect
to said topology. Hence, by our standing assumptions, we also have Sn → Z with respect to the
reference topology σ(X ′,X ). To conclude the proof, note that ∑n

k=1 αk → r for some r > 0 and

σC(Z, r) ≤ lim inf
n→∞

n

∑
k=1

αkσC(Yk, 1) < ∞

by lower semicontinuity and sublinearity of σC . This yields (Z, r) ∈ − bar(C). The desired state-
ment follows by setting λn = αn

r > 0 for every n ∈N and Y = Z
r ∈ D.

Step 2 (Countable separation). There exists a sequence (Yn) ⊂ D such that

for every nonzero X ∈ X+ there exists n ∈N such that EP[XYn] > 0. (1.15)

As a preliminary step, note that for every nonzero X ∈ X+ there exists λ > 0 such that (λX, 0) /∈
C by Lemma 1.5.4. Since C is closed and (0, n) /∈ C for some n ∈ N by Theorem 1.3.14, we can
use the representation of C recorded in Corollary 1.4.12 to find an element YX ∈ D such that
EP[λXYX ] > σC(YX , 1) ≥ 0. Equivalently, we have that

for every nonzero X ∈ X+ there exists YX ∈ D such that EP[XYX ] > 0. (1.16)

To establish (1.15), we start by showing that the family G = {{Y > 0} : Y ∈ D} is nonempty and
closed under countable unions. That G is nonempty follows from (1.16). To show that G is closed
under countable unions, take an arbitrary sequence (Yn) ⊂ D \ {0}. By Step 1, we find a sequence
(λn) ⊂ (0, ∞) and an element Y ∈ D such that Sn = ∑n

k=1 λkYk → Y. It is easy to see that

{Y > 0} =
⋃

n∈N

{Yn > 0} P-almost surely. (1.17)

Indeed, consider first the event E = {Y > 0} ∩ ⋂n∈N{Yn = 0}. We must have P(E) = 0 for
otherwise

0 < EP[1EY] = lim
n→∞

EP[1ESn] = 0.
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As a result, the inclusion “⊂” in (1.17) must hold. Next, we claim that P(Y ≥ Sn) = 1 for every
n ∈N. If not, we find k ∈N and ε > 0 such that the event E = {Y ≤ Sk − ε} satisfies

0 < εP(E) ≤ EP[1E(Sk −Y)] ≤ lim
n→∞

EP[1E(Sn −Y)] = 0.

This delivers the inclusion “⊃” in (1.17) and shows that G is closed under countable unions as
desired.

Now, set s = sup{P(E) : E ∈ G }. Take any sequence (Yn) ⊂ D such that P(Yn > 0) ↑ s. By
closedness under countable unions, there must exist Y∗ ∈ D such that {Y∗ > 0} = ⋃

n∈N{Yn > 0}
P-almost surely. Take an arbitrary nonzero X ∈ A ∩ X and assume that EP[XYn] = 0 for every
n ∈N. This would imply that EP[XY∗] = 0 and, thus, the element 1

2 Y∗ + 1
2 YX ∈ D would satisfy

P

(
1
2

Y∗ +
1
2

YX > 0
)
≥ P(Y∗ > 0) + P({Y∗ = 0} ∩ {YX > 0}) > P(Y∗ > 0) = s,

which cannot hold. In conclusion, we must have EP[XYn] > 0 for some n ∈N, showing (1.15).

Remark 1.5.7. (i) Note that instead of proving countable separation and applying the Kreps-Yan
Theorem, we could have shown that s = 1 in the second step, and this would have immediately
implied that D∗ is a strictly consistent pricing density. This approach heavily relies on the fact
that we have chosen the positive cone as acceptance set. We have preferred to derive the result by
applying the Kreps-Yan Theorem since this argument can be generalized to other choices of A (see
Theorem 1.5.9).

(ii) Countable separation can also be obtained applying the well known Halmos-Savage theo-
rem in [56]. Indeed recall that D ⊂ X ′+ ⊂ L1(P)+. By (1.16), the collection (YX)X∈X+\{0} induces a
family of finite measures on (Ω,F , P) that is equivalent to P (meaning that P(E) = 0 if and only
if EP[1EYX ] = 0 for every nonzero X ∈ X+). Note that this is no more valid if we consider a larger
acceptance set instead of the positive cone. By the Halmos-Savage Theorem, there is a countable
subfamily (Yn)n ⊂ (YX)X∈X+\{0} that is equivalent to P, ensuring that for every nonzero X ∈ X+

we have EP[XYn] > 0 for some n. Actually, the proof of the celebrated Halmos-Savage theorem
in [56], relies on an argument similar to the exhaustion procedure we have used in proving count-
able separation.

(iii) The above theorem is stated under the conditions S ⊂ X . It is not difficult to derive a for-
mulation of the Fundamental Theorem without imposing any condition on S . In this case, assume
that there exists no scalable arbitrage opportunity. We can always find a probability measure Q

that is equivalent to P and satisfies dQ
dP
∈ L∞(P) and S ⊂ L1(Q). Namely, we have to impose

dQ

dP
=

c
1 + ∑N

i=1 |Si|

for a suitable normalizing constant c > 0. Let X = L1(Q) and X ′ = L∞(Q). A direct application
of the above theorem (with Q replacing P) yields the existence of DQ ∈ L∞(Q) such that DQ is
strictly positive with respect to Q and

sup
X∈M

{EQ[DQX]− π(X)} < ∞.

As a result, the random variable DP = dQ
dP

DQ satisfies the following properties:

(1) DPX ∈ L1(P) for every X ∈ S ,

(2) EP[DPX] > 0 for every nonzero X ∈ L1(Q)+,

(3) sup{EP[DPX]− π(X) : X ∈ M} < ∞.

This shows that DP is a pricing density with respect to L0(P) that is strictly consistent with L0(P)+.
Note that the fact that in point (2) we can derive that EP[DPX] > 0 for every nonzero X ∈ L1(P)+
depends on the choice of the positive cone as acceptance set.
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We aim to extend the Fundamental Theorem of Asset Pricing to general acceptance sets be-
yond the positive cone. One may wonder whether the proof of the above theorem can be adapted
to achieve this objective. However, as remarked, our proof builds on a suitable application of
the exhaustion argument underpinning the classical Halmos-Savage Theorem in [56] that breaks
down in the presence of nonpositive acceptable payoffs. We are therefore forced to pursue a dif-
ferent strategy. Inspired by the original work by Kreps [69], we work under a suitable separability
assumption. To be able to state our desired result for a general acceptance set, Theorem 1.5.2 sug-
gests that a convenient “conification” of the acceptance set is necessary. This leads to considering
the modified acceptance set

K(A) := cl(cone(A) ∩ X ) + L0(P)+,

where we have denoted by cl the closure operator with respect to the reference topology σ(X ,X ′).
As a preliminary step to our main result, the next lemma collects some relevant properties ofK(A).

Lemma 1.5.8. The set K(A) is a conic acceptance set satisfying K(A) ∩ X = cl(cone(A) ∩ X ). In
particular, if A is conic, then K(A) ∩ X = A∩X .

Proof. It is readily seen that K(A) is a conic acceptance set. Note that K(A) ∩ X = cl(cone(A) ∩
X ) + X+, and the last set coincides with cl(cone(A) ∩ X ) since it is monotone in X . To see this
monotonicity, recall thatA, and hence cone(A), is monotone in L0(P). It follows that cone(A)∩X
is monotone in X and its closure is monotone as well.

We are finally in a position to state the announced version of the Fundamental Theorem of Asset
Pricing for a general acceptance set.

Theorem 1.5.9 (Fundamental Theorem of Asset Pricing). Let the norm predual of X ′ be separable with
respect to its norm topology and assume that one of the following sets of conditions holds:

(i) A is a cone with A∩ (−A) = {0} and there exists no scalable acceptable deal.

(ii) K(A) ∩ (−K(A)) = {0} and there exists no scalable acceptable deal with respect to K(A).

Then, there exists a strictly-consistent pricing density in X ′.

Proof. It follows from Lemma 1.5.8 thatK(A) is a conic acceptance set such thatK(A)∩X is closed
and coincides with cl(cone(A) ∩ X ). Note that every pricing density that is (strictly) consistent
with K(A) is also (strictly) consistent with A. As a result, it suffices to prove the statement under
(i). Hence, assume that (i) holds. Like we have done for the other fundamental theorem, we divide
the proof in two steps, each one showing that one of the properties required in Theorem 1.5.2 holds
for L = A ∩ X and L′ = D. The existence of a strictly consistent pricing density in X ′ is then
ensured by the said theorem.

Step 1 (Σ-completeness). For every sequence (Yn) ⊂ D there exists a sequence (λn) ⊂ (0, ∞) and
Y ∈ D such that ∑n

k=1 λkYk → Y.
See the proof of this step in Theorem 1.5.6.

Step 2 (Countable separation). There exists a sequence (Yn) ⊂ D such that

for every nonzero X ∈ A ∩X there exists n ∈N such that EP[XYn] > 0. (1.18)

As a preliminary step, note that for every nonzero X ∈ A ∩ X there exists λ > 0 such that
(λX, 0) /∈ C by Lemma 1.5.4. Since C is closed and (0, n) /∈ C for some n ∈ N by Theorem 1.3.14,
we can use the representation of C recorded in Corollary 1.4.12 to find an element YX ∈ D such
that EP[λXYX ] > σC(YX , 1) ≥ 0. Equivalently, we have that

for every nonzero X ∈ A ∩X there exists YX ∈ D such that EP[XYX ] > 0. (1.19)

Recall thatX ′ is a norm dual and denote by ‖ · ‖X ′ the corresponding dual norm. For every nonzero
X ∈ A ∩X consider the rescaled couple

(ZX , rX) =

(
YX
‖YX‖X ′

,
1

‖YX‖X ′

)
∈ − bar(C).
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As the norm predual of X ′ is separable by assumption, the unit ball in X ′ is weak-star metrizable
by Theorem 6.30 in Aliprantis and Border [1]. Being weak-star compact by virtue of the Banach-
Alaoglu Theorem, see e.g. Theorem 6.21 in Aliprantis and Border [1], the unit ball together with
any of its subsets is therefore weak-star separable. In particular, this is true for {ZX : X ∈ (A ∩
X ) \ {0}}. Since our reference topology on X ′, namely σ(X ′,X ), was assumed to be weaker than
the weak-star topology, it follows that {ZX : X ∈ (A∩X ) \ {0}} is also separable with respect to
σ(X ′,X ). Let {ZXn : n ∈ N} be a countable dense subset. Then, for every nonzero X ∈ A ∩ X , it
follows immediately from (1.19) that we must have EP[XYXn ] > 0 for some n ∈N by density. This
delivers (1.18).

Remark 1.5.10. (i) The separability of the norm predual of X ′ is typically ensured by suitable as-
sumptions on the underlying σ-field. For concreteness, consider the case where X ′ = L∞(P),
which is interesting because it delivers bounded pricing densities. In this case, the norm predual is
L1(P). A simple sufficient condition for separability is that F is countably generated. A character-
ization of separability in the nonatomic setting can be found, e.g., in Theorem 13.16 in Aliprantis
and Border [1]. It is worthwhile highlighting that separability of the predual may hold even if the
reference payoff spaceX is not separable with respect to a pre-specified natural topology. Consider
for instance the case where F is countably generated and X is an Orlicz space with a non ∆2 Orlicz
function (for details and terminology see the next section). If the probability space is nonatomic,
then X fails to coincide with its Orlicz heart, and by Theorem 1, section 3.5 in Rao and Ren [83], X
is not separable. Nonetheless we can pair this choice of X with X ′ = L∞(P) that is the norm dual
of the separable space L1(P).

(ii) The case where A is a cone is the relevant one in light of Theorem 1.4.17. In this case,
the above sets of assumptions are equivalent due to Lemma 1.5.8. In the general convex case, to
establish the existence of a strictly-consistent pricing density we had to “conify” the acceptance
set A so as to obtain another acceptance set K(A) satisfying the same standing assumptions. As
mentioned above, this was suggested by the statement of Theorem 1.5.2. A more direct way to
see that a “conification” is necessary is to observe that every strictly-consistent pricing density is
automatically strictly consistent for the acceptance setK(A). Incidentally, note that this is also true
for the more natural “conified” acceptance set cone(A). However, the problem with cone(A) is
that the intersection cone(A) ∩ X , or equivalently cone(A ∩ X ), need not be closed and, hence,
our standing assumptions need not hold.

(iii) The pointedness conditions can be slightly weakened. Indeed, it suffices that A ∩ (−A) ∩
X = {0} and K(A) ∩ (−K(A)) ∩ X = {0} hold, respectively. In view of Lemma 1.5.8, the latter
condition is equivalent to cl(cone(A) ∩ X ) ∩ (− cl(cone(A) ∩ X )) = {0}.

The following example helps appreciate the preceding version of the Fundamental Theorem of
Asset Pricing by showing that, in the presence of a nonconic acceptance set, the conditions on the
“conified” acceptance set stipulated above are necessary for the existence of a strictly-consistent
pricing density.

Example 1.5.11. Let Ω = {ω1, ω2} and assume that F is the power set of Ω and that P is specified by
P(ω1) = P(ω2) = 1

2 . In this simple setting, we take X = X ′ = L0(P) and identify every element of
L0(P) with a vector of R2. Set S =M = R2 and π(x, y) = max{x, y} for every (x, y) ∈ R2 and define

A = R2
+ ∪ {(x, y) ∈ R2 : x < 0, y ≥ x2}.

In this case,M and π are conic butA is not. All the requirements in the stipulated assumptions are satisfied
and so are all the conditions in Theorem 1.5.9 with A in place of K(A). However, there exists no strictly-
consistent pricing density D = (d1, d2). Indeed, we could otherwise take Xλ = (−λ, λ2) ∈ A for every
λ > 0 and use the definition of a consistent pricing density to obtain

EP[DXλ] > 0 =⇒ d2λ > d1

for every λ > 0, which would contradict the strict positivity, hence the strict consistency, of D. What goes
wrong is that there exists a scalable acceptable deal with respect to K(A). To see this, it suffices to note that
K(A) = {(x, y) ∈ R2 : y ≥ 0}, which shows that X = (−1, 0) is indeed a scalable acceptable deal with
respect to K(A).
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By combining the results obtained in this section, namely Proposition 1.4.5 and Theorems 1.5.6
and 1.5.9, it is possible to reformulate the Fundamental Theorem of Asset Pricing in the form of an
equivalence between the absence of scalable acceptable deals and the existence of strictly-consistent
pricing densities.

Corollary 1.5.12 (Fundamental Theorem of Asset Pricing). Assume that either A = L0(P)+ or the
norm predual of X ′ is separable with respect to its norm topology and A is a cone with A∩ (−A) = {0}.
Then, the following statements are equivalent:

(i) There exists no scalable acceptable deal.

(ii) There exists a strictly-consistent pricing density.

In this case, the pricing density can be taken in X ′.

1.5.1 EXTENSION OF THE FUNDAMENTAL THEOREM

In the proofs of our fundamental theorems, the role played by the absence of scalable acceptable
deals is to determine the validity of the dual representation of C, together with the condition
(λX, 0) /∈ C for some λ > 0 for any nonzero acceptable payoff X in X , in the case where A is
a cone and satisfies a suitable pointedness condition. These two facts combined ensure the exis-
tence of pricing densities in D that are strictly positive on elements of A∩ X (see equations (1.16)
and (1.19)). Actually, the same holds if we cope with the closure of C instead of C itself. This means
that we can weaken the no-scalable acceptable deals assumption and replace it with a pair of re-
quirements: the condition (λX, 0) /∈ cl(C) for some λ > 0 for any nonzero acceptable payoff X in
X , together with the validity of the dual representation of cl(C). By Theorem 1.3.14 the last condi-
tion is almost equivalent to (0, n) /∈ cl(C) for some n ∈ N. We provide a financial interpretation
for these assumptions as absence of some type of “good deals”. Namely, (λX, 0) /∈ cl(C) means
that the market does not offer something that is almost better than λX at almost zero cost, while
(0, n) /∈ cl(C) means that it is not possible to gain almost n units of the fixed currency when buying
almost acceptable admissible replicable payoffs

We state the announced general version of the fundamental theorem at the end of this section
since we have opted for stressing first of all the role of the no scalable acceptable deal condition.
One, of course, could proceed the other way round, and derive the two other fundamental theo-
rems as corollaries of this stronger result.

Theorem 1.5.13 (Fundamental Theorem of Asset Pricing, strong version). Assume that either A =
L0(P)+ or the norm predual of X ′ is separable with respect to its norm topology, and A is a cone such that
A∩ (−A) = {0}. Moreover assume that the following conditions hold:

(a) There exists n ∈N such that (0, n) /∈ cl(C).

(b) For every nonzero X ∈ A ∩X there exists λ > 0 such that (λX, 0) /∈ cl(C).

Then there exists a strictly consistent pricing density in X ′.

Proof. Like in the proofs of the other fundamental theorems, we aim to apply the Kreps-Yan The-
orem 1.5.2 to L = A ∩ X and L′ = D. Hence we only need to verify the two properties re-
quired in that theorem. Σ-completeness holds like in the other fundamental theorems. For proving
countable separation, note that we can used the representation of cl(C) recorded in Theorem 1.4.9
since (0, n) /∈ cl(C) for some n ∈ N. Moreover, by assumption we have that for every nonzero
X ∈ A ∩ X , there is λ > 0 such that (λX, 0) /∈ cl(C). The proof proceeds exactly like in Theorems
1.5.6 and 1.5.9, as σC = σcl(C) and bar(C) = bar(cl(C)).

Remark 1.5.14. (i) (Beyond the finite dimensionality of S) The force of Theorem 1.5.13 lies in the
fact that its proof does not rely on the fact that S is a finite dimensional subspace of X . Indeed, in
the previous sections we have used this assumption to prove that the absence of scalable acceptable
deals implies that C is closed. Now, we do not need this step as we work with the closure of C,
which may or may not coincide with C. Hence the extended fundamental theorem remains valid
in more general models, for instance in discrete multiperiodal or continuous setting, where the
space of portfolios is generally not identified with RN and the set of replicable payoffs S may have
infinite dimension. Note that, if we work in the more general setting where S is not required to be
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finite dimensional, then the preceding Fundamental Theorems (Theorems 1.5.6 and 1.5.9) fail, as
they are based on the fact the absence of acceptable deals furnishes the closedness of C.

(ii) We show that in markets with proportional transaction costs and one frictionless asset, as-
sumption (b) implies (a). Assume that A, M and π are conic, and U ∈ A ∩M exists such that
the market has no frictions and no constraints in the direction U. This means thatM =M+ RU
and π(X + λU) = π(X) + λπ(U) for every X ∈ M and λ ∈ R. To show that (b) implies (a), fix
n ∈ N such that n ≥ π(U) and assume by contradiction that (0, n) ∈ cl(C). Hence we find nets
Xα → 0, mα → n and (Zα) ⊂ M such that π(Zα) ≤ −mα and Zα − Xα ∈ A. Now, define nets
X̃α = Xα + U → U, m̃α = mα − n → 0, (Z̃α = Zα + U) ⊂ M and note that π(Z̃α) ≤ −m̃α and
Z̃α − X̃α = Zα − Xα ∈ A. This implies that (U, 0) ∈ cl(C) and contradicts assumption (b) since
cl(C) is conic.

1.5.2 FUNDAMENTAL THEOREMS OF ASSET PRICING WITH ACCEPTABLE RISK IN THE LITER-
ATURE

General Fundamental Theorems of Asset Pricing in the context of pricing with acceptable risk were
established in Jaschke and Küchler [60], Staum [91] and Cherny [32]. In these three papers, the set
M was not assumed to be embedded into a finite-dimensional space to allow for applications to
multi-period models. In the first two, the focus was on abstract payoff spaces beyond the setting of
random variables. In this section we analyze the Fundamental Theorems proved in these papers
and we compare them with our results. We also consider the Fundamental Theorem established in
Pennanen [76], where the context is that of arbitrages and not of acceptable deals, and the market
is assumed to have convex frictions and constraints.

The specific focus of Jaschke and Küchler [60] is on markets with proportional frictions admit-
ting at least one frictionless asset with payoff 1. Together with the convex cone A, they consider
an other convex cone M, the set of «cash streams that can be generated by trading with zero initial
endowment», such that 1 ∈ A−M. In order to make a comparison with our model, we try to ex-
plicit the «market prices implicit in M» mentioned in footnote 12 on page 194 [60]. To this end, we
need an additional assumption, that is 1 /∈ span(M). LetM := M + R1 be the space of admissible
replicable payoffs, and π the pricing functional defined onM as π(Z + α1) = α for Z ∈ M and
α ∈ R. Clearly M = ker(π), which agrees with their statement: «M plays here the same role as the
final pay-outs of self-financing strategies with initial endowment of 0 do in the classical theory».
By Remark 1.3.15, our set C is closed if and only if A−M is closed.

They assume the absence of so called good deals of second kind. It is easy to observe that this
condition has many characterizations: −1 /∈ A−M, or (1, 0) /∈ C, or (X, 0) /∈ C for every nonzero
X ∈ A, or (0, n) /∈ C for some (every) n ∈ N. Written in our terms, the absence of good deals
of second kind corresponds to A ∩ {Z ∈ M, : π(Z) < 0} = ∅. Their fundamental theorem
(Corollary 8 [60]) states that ifA−M is closed in the weak topology and there are no good deals of
second kind, then there exists a functional ψ in the right polar cone of A−M (that is a functional
positiveA and negative on M) such that ψ(1) = 1. The obtained ψ corresponds to a pricing density,
since it is dominated by π onM:

ψ(Z + α1) = ψ(Z) + α ≤ α = π(Z + α1)

for every Z ∈ M and α ∈ R. Note that their fundamental theorem is expressed in terms of con-
sistent (not strictly-consistent) pricing densities. As a result, it is not possible to apply it to derive
a characterization of market-consistent prices similar to Theorem 1.4.17. The proof is a straight-
forward application of the bipolar theorem: the separation of −1 from A − M gives the desired
functional, up to a normalization. In addition, due to the generality ofM, the Fundamental Theo-
rem is stated under an assumption that corresponds to the closedness of our set C but no concrete
conditions for it to hold are provided. In particular, the absence of good deal of second kind does
not determine closedness of C even in finite dimensional cases as shown in the next example.

Example 1.5.15. Consider Example 1.3.16. We have already proved that C is not closed in this case. In order
to show one of the equivalent conditions to the absence of good deals of second kind, we define 1 = (0, 1, 0),
and M = ker(π) = span{(0, 0, 1)}. Since −1 /∈ A − M = A+ M, there are no good deals of second
kind.
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Differently from [60], in the model of Staum [91], the pricing functional is not translation invari-
ant with respect to any reference asset. The 1st Fundamental Theorem (Theorem 6.2 [91]) is stated
under the assumption of convexity ofA and π, and is based on Lemma 6.1 [91], whose thesis is the
existence of a strictly positive functional nonnegative on A and dominated by π (in his notation, a
consistent pricing kernels). These functionals correspond to strictly-positive (not strictly-consistent)
pricing densities. As a result, it is not possible to apply the fundamental theorem to derive a char-
acterization of market-consistent prices similar to Theorem 1.4.17 unless A is the positive cone.

He supplies to the lack of homogeneity via a conification process by considering an artificial
market with acceptance set cone(A) and pricing functional cone(π). The assumptions of Lemma
6.1 are lower semicontinuity of a functional that corresponds to π+ in the conified market, and
π+(X) > 0 for any nonzero X ∈ X+. Note that under the assumption of lower semicontinuity of
π+, hypo(−π+) = cl(C), and the second assumption coincides then with (X, 0) /∈ cl(C) for every
nonzero X ∈ X+. Moreover, since π+(0) = 0, he has that (0, n) /∈ cl(C) for every n > 0. Sufficient
conditions for the lower semicontinuity of the map π+ are provided only in the space X = L∞(P)
equipped with the canonical norm topology.

Unfortunately, the proof of the key instrumental Lemma 6.1 is flawed. On the one side, Zorn’s
Lemma is evoked to infer that a family of sets that is closed under countable unions admits a maxi-
mal element. However, this is not true as illustrated, for instance, by the family of all the countable
subsets of R. On the other side, it is tacitly assumed that, for a generic dual pair (X ,X ′), the se-
ries ∑n∈N 2−nYn converges in the topology σ(X ′,X ) for every choice of (Yn) ⊂ X ′, which cannot
hold unless special assumptions are required of the pair (X ,X ′) as those stipulated in Assump-
tion 1.5.1. The strategy in [91] was to replicate the exhaustion argument used in the classical proof
of the Fundamental Theorem. Regardless of the above issues, this argument seems unlikely to
work in an abstract setting beyond random variables because it heavily relies on the existence of
a (dominating) probability measure. Moreover, even in that setting, it seems to work only when
the acceptance set consists exclusively of positive random variables. This explains why we had to
pursue a different strategy when dealing with more general acceptance sets in Theorem 1.5.9.

Markets with convex transaction costs and convex constraints are also studied in Cherny [32].
Like us, the author chooses as space of payoffs the space of random variables on a fixed probability
space. He fixes a set D of probability measures which identifies by duality a coherent risk mea-
sure ρ and the corresponding conic convex acceptance set, and introduces suitable spaces (weak
and strong L1) depending on D that play the role of our X as they allow to restrict L0(P) to a space
where it is possible to apply duality theory. It turns out that when the acceptance set is induced by
expected shortfall or by expectation under P, these spaces coincide with L1(P). The author does
not explicit the underlying market, but he considers a convex subset of L0(P) of payoffs that he
calls attainable P&Ls. This set corresponds to our {Z ∈ M : π(Z) ≤ 0}, and is assumed to be D-
consistent, meaning that whenever we find a consistent pricing density in the market restricted to
the strong L1 space, then we also find a consistent pricing density in the market on L0(P). This as-
sumption supplies our S ⊂ X and the repeated use of A∩X in spite of A. A good deal is defined
as an attainable P&L such that ρ takes a strictly negative value on it. The author establishes a Fun-
damental Theorem (Theorem 3.1) showing that when there are no good deals, one find a consistent
(not necessarily strictly consistent) pricing density. The proof heavily relies on the assumption that
D is weakly compact.

Finally, we compare our Theorem 1.5.13 to Theorem 5.2 of Pennanen [76] in case X = L1(P)
andA = L0(P)+ (the author works in L0(P), but for the proof he reduces to the space of integrable
functions). He considers the conified market cl(cone(M)), cl(cone(π)), and the corresponding set
C, and proves that, under the condition cl(C) ∩ (X+ × R+) = {0}, one finds a strictly positive
market price deflator. In our notation, this is a strictly positive (and hence strictly consistent) pricing
density D ∈ L∞(P) both for the conified market and for the original one, with γπ,M(D) = 0. The
assumption of Theorem 1.5.13, when applied to the conified market, is equivalent to cl(C)∩ (X+ ×
R+) = {0} as C is a cone. The intent of assuming cl(C) ∩ (X+ ×R+) = {0}, is to avoid those
cases where the set C related to the original market does not intersect the positive cone but anyway
is “tangent” to it. To catch the idea, consider the simple case where X = R, M = A = R+ and
π(X) = X2 for X ≥ 0. Here, the original C is C = {(X, m) ∈ R× (−R+); if X ≥ 0 then m ≤ −X2}.
In this case, since there are no acceptable deals, Theorem 1.5.6 ensures the existence of a strictly
consistent pricing density D for the original market, but γπ,M(D) > 0.
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1.6 EXAMPLES

In this section we fix a class of reference payoff spaces and their duals such that the requirements
of Assumptions 1.4.7 and 1.5.1 are fulfilled, and we discuss some concrete examples of acceptance
sets. In particular, we highlight the weak-closedness property required in Assumption 1.4.7 of the
chosen acceptance sets and provide some explicit features that consistent pricing densities must
have for any specification ofM and π. Note that, in order to apply our version of the Fundamental
Theorem for general acceptance sets (Theorem 1.5.9), one also need a pointedness condition on the
smallest cone containing the acceptance set.

The natural payoff spaces considered below belong to the broad class of Orlicz spaces. For an
overview, see Appendix A. Throughout this section we assume that the underlying probability
space (Ω,F , P) is atomless, and we pair every Orlicz space X = LΦ(P) with L∞(P). It is clear
that Assumption 1.4.7 is satisfied. Moreover, the space L1(P) is known to be the norm predual of
L∞(P), and whenever L1(P) is separable (e.g. ifF is countably generated), Assumption 1.5.1 is sat-
isfied too, as σ(L∞(P),X ) ⊂ σ(L∞(P), L1(P)). As pointed out in Remark 1.5.10, this is compatible
with choices of a non separable X .

Before we start with our description of concrete acceptance sets, we highlight a number of suf-
ficient conditions for the weak closedness required in Assumption 1.4.7 to hold. These conditions
are easy to check and fulfilled by virtually all acceptance sets of interest. As a preliminary step, we
recall the notion of law invariance and surplus invariance. Law invariance is a standard property in
risk measure theory and stipulates that acceptability is only driven by the probability distribution
of a payoff. Surplus invariance was introduced in Koch-Medina et al. [66] and thoroughly studied
in Koch-Medina et al. [68] and Gao and Munari [53] and stipulates that acceptability is only driven
by the downside profile of a payoff. For every random variable X ∈ L0(P) we denote by PX the
probability law of X under P.

Definition 1.6.1. We say that A is law invariant under P if for all X, Y ∈ L0(P)

X ∈ A, PX = PY =⇒ Y ∈ A.

We say that A is surplus invariant if for all X, Y ∈ L0(P)

X ∈ A, X− = Y− =⇒ Y ∈ A.

Proposition 1.6.2. Let X be an Orlicz space and assume that one of the following conditions holds:

(i) A∩ L1(P) is closed with respect to the norm topology of L1(P).

(ii) A is law invariant under P and for every sequence (Xn) ⊂ A∩X and every X ∈ X

Xn → X P-almost surely, sup
n∈N

|Xn| ∈ X =⇒ X ∈ A ∩X .

(iii) A is surplus invariant and for every sequence (Xn) ⊂ A∩X and every X ∈ X

Xn → X P-almost surely, sup
n∈N

|Xn| ∈ X =⇒ X ∈ A ∩X .

Then, A∩X is closed with respect to σ(X , L∞(P)).

Proof. If (i) holds, then A ∩ L1(P) is σ(L1(P), L∞(P))-closed by Theorem 5.98 in Aliprantis and
Border [1]. Since X is contained in L1(P), the desired closedness follows immediately. Next, as-
sume that (ii) holds. In this case, the set A ∩ X is norm closed. This is because every sequence in
X that converges in norm admits a dominated subsequence that converges P-almost surely. This
follows from a straightforward extension of the proof of Theorem 13.6 in Aliprantis and Border [1]
to the Orlicz setting. As a result, the desired closedness follows from Theorem 5.98 in Aliprantis
and Border [1] when X = L1(P) and from Proposition 1.1 in Svindland [92] when X = L∞(P).
In all other cases it follows from Theorem 1.1 in Gao et al. [55]. Finally, if (iii) holds, the desired
closedness follows from Theorem 1 in Gao and Munari [53].
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Moreover, we provide sufficient conditions for the pointedness condition of A required in Re-
mark 1.5.5 to hold. This condition is necessary for applying Theorem 1.5.9.

Proposition 1.6.3. Let X be an Orlicz space and assume thatA∩ LΦ(P) is conic, law invariant and closed
with respect to σ(LΦ(P), L∞(P)). Then, one of the following two alternatives holds:

(i) A = {X ∈ LΦ(P) : EP[X] ≥ 0}.

(ii) A∩ (−A) ∩ LΦ(P) = {0}.

Proof. The result is a straightforward application of Proposition 5.8 in Bellini et al. [16].

1.6.1 EXPECTED SHORTFALL

A prominent example of acceptance set defined in terms of a risk measure is the one based on
Expected Shortfall at some level α ∈ (0, 1). For a given random variable X ∈ L0(P) we define the
Value at Risk of X at level α as the negative of the upper α-quantile of X, i.e.

VaRα(X) := inf{x ∈ R : P(X + x < 0) ≤ α} = − inf{x ∈ R : P(X ≤ x) > α}.

The Expected Shortfall of X at level α is defined by

ESα(X) :=
1
α

∫ α

0
VaRp(X)dp.

Intuitively speaking, ESα(X) coincides with the expectation of −X conditional to the left tail be-
yond the upper α-quantile. Note that we always have ESα(X) ≥ VaRα(X) > −∞. It follows that
the quantity ESα(X) is finite if and only if the negative part of X is integrable under P. Next, set

AES(α) := {X ∈ L0(P) : ESα(X) ≤ 0}.

In line with the above interpretation, the set AES(α) consists of all the payoffs that are positive on
average on the left tail beyond their upper α-quantile.

The next proposition records the fact that AES(α) is eligible for being chosen as acceptance set
in the model of this chapter, and satisfies the closedness requirement in Assumption 1.4.7 with
respect to the pair X = LΦ(P), X ′ = L∞(P). Moreover, it shows a feature that pricing densities
consistent with this acceptance set must have.

Proposition 1.6.4. The set AES(α) is a conic acceptance set such that AES(α) ∩ LΦ(P) is closed with
respect to σ(LΦ(P), L∞(P)) for every Orlicz function Φ, and AES(α) ∩ (−AES(α)) ∩ LΦ(P) = {0}.
Moreover, every pricing density D ∈ L∞(P) that is consistent with AES(α) satisfies D

EP[D]
≤ 1

α .

Proof. Using the properties of the map ESα, it can be verified that AES(α) is a conic acceptance set.
Moreover,

AES(α) ∩ L1(P) = {X ∈ L1(P) : ESα(X) ≤ 0},

and it is well known that the acceptance set induced by expected shortfall in L1(P) is norm closed,
implying that AES(α)∩ LΦ(P) is closed with respect to σ(LΦ(P), L∞(P)) by Proposition 1.6.2. The
condition AES(α) ∩ (−AES(α)) ∩ LΦ(P) = {0} follows from Proposition 1.6.3. Finally, since every
consistent pricing density D belongs to the barrier cone ofAES(α)∩ L∞(P), it has to satisfy D

EP[D]
≤

1
α by Theorem 4.52 in Föllmer and Schied [49].

1.6.2 GAIN-LOSS RATIOS

Another prominent example of acceptance set defined in terms of a risk measure is the one based
on the expectile at some level α ∈ (0, 1

2 ]. For a given random variable X ∈ L0(P) such that the
positive or the negative part is integrable, we define the expectile of X at level α as the unique
solution eα(X) ∈ [−∞, ∞] of the equation

α EP[(X− eα(X))+] = (1− α)EP[(eα(X)− X)+].
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For a random variable X ∈ L0(P) such that EP[X+] = EP[X−] = ∞, we set eα(X) = −∞. Note that
eα(X) is finite if and only if X is integrable under P, eα(X) = −∞ if EP[X−] = ∞ and eα(X) = ∞ if
EP[X+] = ∞ and EP[X−] < ∞. Now, set

Ae(α) := {X ∈ L0(P) : eα(X) ≥ 0}.

It is not difficult to prove that

Ae(α) =

{
X ∈ L0(P) :

EP[X+]

EP[X−]
≥ 1− α

α

}
,

with the convention ∞
∞ = −∞ and 0

0 = ∞. Note that for α = 1
2 , Ae(α) coincides with the set

of random variables with positive expectation. The set Ae(α) consists of all the payoffs such that
the ratio between the expected inflow and the expected outflow of the corresponding payments
is sufficiently large. In particular, note that 1−α

α ≥ 1 by assumption on α, which implies that
the expected inflow must be at least large as the the expected outflow. This type of acceptability
criterion was investigated in Bernardo and Ledoit [18], even though the link with expectiles was
not discussed there.

With the next proposition we show that that Ae(α) is a candidate acceptance set in our the
model, and satisfies the closedness requirement in Assumption 1.4.7 with respect to X = LΦ(P)
and X ′ = L∞(P). Moreover, we show a feature that pricing densities consistent with this accep-
tance set must have.

Proposition 1.6.5. The set Ae(α) is a conic acceptance set such that Ae(α) ∩ LΦ(P) is closed with respect
to σ(LΦ(P), L∞(P)) for every Orlicz function Φ and Ae(α) ∩ (−Ae(α)) ∩ LΦ(P) = {0} unless α = 1

2 .

Moreover, every pricing density D ∈ L∞(P) that is consistent with Ae(α) satisfies ess sup(D)
ess inf(D)

≤ 1−α
α .

Proof. From the definition of Ae(α) and its characterization, it is easy to verify that Ae(α) is a
monotone set in L0(P) containing 0. By Proposition 7 in Bellini [15], the intersection

Ae(α) ∩ L1(P) = {X ∈ L1(P) : eα(X) ≥ 0}

is a convex cone, and henceAe(α) is a conic acceptance set. Using the characterization ofAe(α), we
see that Ae(α) ∩ L1(P) is norm closed in L1(P), proving that Ae(α) ∩ LΦ(P) is closed with respect
to σ(LΦ(P), L∞(P)) by Proposition 1.6.2. By Proposition 1.6.3, we have that Ae(α) ∩ (−Ae(α)) ∩
LΦ(P) = {0} unless α = 1

2 .Finally, since every consistent pricing density D belongs to the barrier

cone of Ae(α), it has to satisfy ess sup(D)
ess inf(D)

≤ 1−α
α by Proposition 8 [15].

1.6.3 EXPECTED UTILITY

Let u : R → [−∞, ∞) be a nonconstant, increasing, concave, right-continuous function satisfying
u(0) = 0 and

lim
x→−∞

u(x)
x

= ∞. (1.20)

We interpret u as a classical von Neumann-Morgenstern utility function. The last condition re-
quires that a rational agent with utility u does not asymptotically behave like a risk-neutral agent
for large losses. The case of a risk-neutral agent is covered by Section 1.6.4. For a fixed level
α ∈ (−∞, 0] define

Au(α) := {X ∈ L0(P) : EP[u(X)] ≥ α}.

This set consists of all the payoffs that exhibit a minimal expected utility. In particular, the level α
could coincide with some utility level, in which caseAu(α) would consist of all the payoffs that are
preferable, from the perspective of the utility function u, to a certain monetary loss. This type of
acceptability criteria has been considered in a pricing context in Arai [2] and Arai and Fukasawa [3].

Like in the previous examples, we show that that Au(α) is an eligible acceptance set in our
model. Moreover, we show that rec(Au(α)) coincides with the positive cone, and as a consequence
every scalable acceptable deal is a scalable arbitrage.
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Proposition 1.6.6. The set Au(α) is an acceptance set such that Au(α) ∩ LΦ(P) is closed with respect
to σ(LΦ(P), L∞(P)) for every Orlicz function Φ and (Au(α) ∩ LΦ(P))∞ = LΦ(P)+. Moreover, every
pricing density D ∈ L∞(P) that is consistent with Au(α) satisfies EP[u∗(λD)] > −∞ for some λ > 0,
where u∗(y) := infx∈R{xy− u(x)}.

Proof. By definition, it is clear that Au(α) is an acceptance set. We show that (Au(α) ∩ LΦ(P))∞ ⊂
LΦ(P)+. To this effect, take X ∈ (Au(α)∩ LΦ(P))∞ and assume that P(X < 0) > 0. In this case, we
find ε > 0 such that P(X ≤ −ε) > 0. Set E = {X ≤ −ε} and take a, b ∈ R such that u(x) ≤ ax + b
for every x ∈ R. Then, for every λ > 0

α ≤ EP[u(λX)] ≤ EP[u(λX)1E] + EP[u(λX)1{X≥0}] ≤ P(E)u(−λε) + aλEP[X+] + b.

However, this is not possible because the right-hand side above diverges to −∞ as λ goes to ∞
due to (1.20). As a consequence, we must have P(X < 0) = 0, showing that (Au(α) ∩ LΦ(P))∞ ⊂
L0(P)+. The other inclusion is obvious.

Since the map X 7→ EP[u(X)] is upper semicontinuous on L1(P), the set

Au(α) ∩ L1(P) = {X ∈ L1(P) : E[u(X)] ≥ α}

is norm closed in L1(P) and henceAu(P)∩ LΦ(P) is σ(LΦ(P), L∞(P))-closed by Proposition 1.6.2.
Finally, since every consistent pricing density D belongs to the barrier cone of Au(α) ∩ L∞(P), by
Theorem 4.115 in Föllmer and Schied [49] it can be derived that

σAu(α)∩L∞(P)(D) = sup
λ>0
{α + EP[u∗(λD)]} > −∞,

implying that EP[u∗(λD)] > −∞ for some λ > 0

It is not difficult to find examples of functions u that fall within the considered class of util-
ity functions, such that Au(α) ∩ (−Au(α)) ∩ LΦ(P) contains nonzero random variables for some
choices of α, hence the same holds for K(Au(α)). Thus, without further assumptions on u and α,
Theorem 1.5.9 cannot be applied to this type of acceptance sets.

1.6.4 TEST PROBABILITIES

In this subsection, we consider the acceptability criterion used in Carr et al. [26]. We fix finitely
many test probability measures P1, . . . , Pm absolutely continuous with respect to P, and associated
floors f1, . . . , fm ∈ (−∞, 0]. We consider acceptable any random variable whose expected payoffs
with respect to the test probabilities exceed the associated floors. Namely

Atest := {X ∈ L0(P) : EPi [X] ≥ fi for i = 1, . . . , m}.

For later purpose, we also define I := {i ∈ {1, . . . , m} : fi = 0} and we assume that I 6= ∅.
In the next proposition, we show thatAtest is an acceptance set that fulfills the closedness condi-

tion required in Assumption 1.4.7, we characterize rec(Atest) and we show that consistent pricing
densities must belong to the cone generated by the test probabilities whose floor is equal to zero.

Proposition 1.6.7. The set Atest is an acceptance set such that

rec(Atest) = {X ∈ L0(P) : EPi [X] ≥ 0 for i = 1, . . . , m}.

If dPi
dP
∈ L∞(P) for every i, thenAtest ∩ LΦ(P) is closed with respect to σ(LΦ(P), L∞(P)) for every Orlicz

function Φ, and for every pricing density D ∈ L∞(P) consistent with Atest, there are wi ∈ R+, i ∈ I such
that

D = ∑
i∈I

wi
dPi
dP

. (1.21)

Proof. It is immediate to verify that Atest is an acceptance set. The characterization of rec(Atest) is
straightforward once we recall that rec(Atest) =

⋂
t>0 tAtest. Now, assume that dPi

dP
∈ L∞(P) for

every i. Since
Atest ∩ LΦ(P) = {X ∈ LΦ(P) : EPi [X] ≥ fi for i = 1, . . . , m},
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it is clear that this set is σ(LΦ(P), L∞(P))-closed. Finally, every consistent pricing density in L∞(P)
is such that EP[DX] ≥ 0 for every X ∈ cone(Atest ∩ LΦ(P)) and

cone(Atest) = {X ∈ L0(P) : EPi [X] ≥ 0 for every i ∈ I}.

It follows that (1.21) holds.

SinceAtest ∩ LΦ(P) is not law invariant, it is not possible to apply Proposition 1.6.3 toK(Atest)∩
LΦ(P). Without further assumptions on the test probabilities, we cannot conclude that the point-
edness property required in Theorem 1.5.9 holds.
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CHAPTER 2

RISK MEASURES BEYOND
FRICTIONLESS MARKETS

Since 1999, when Artzner, Delbaen, Eber and Heath published the seminal paper [9] about risk
measures, a considerable branch of Mathematical Finance research has been devoted to this field.

Coherent risk measures were introduced in [9] as capital requirement rules: the riskiness of the
capital position of a financial subject is measured through the amount of capital that has to be
invested in a reference instrument in order to make the position acceptable. The criterion of ac-
ceptability is specified by an external regulator/supervisor who fixes the set A of the positions
that he deems acceptable from a risk perspective. Denoting by S0 and S1 the initial and final values
of the reference instrument, the risk measure evaluated in the position X is defined as

ρ(X) = inf{mS0 : m ∈ R, X + mS1 ∈ A}.

In [9], the risk measure ρ is assumed to be a convex and positively homogeneous function defined
on the space of random variables on a finite set. Right after [9], a number of articles came up with
generalizations of coherent risk measures in various directions. In Delbaen [37], the author extends
the reference payoff space to general probability spaces, in Föllmer and Schied [48], the authors
drop positive homogeneity and consider convex risk measures, in Frittelli and Rosazza Gianin [50]
the focus is on dual representations of convex risk measures defined on abstract topological vector
spaces. Though it was not required in the seminal paper [9], the subsequent research identified the
reference instrument S = (S0, S1) with cash. This reduction has been justified with a discounting
argument. E.g. in Delbaen [37], the author says:

...we are working in a model without interest rate, the general case can “easily” be reduced to
this case by “discounting”.

Similarly, in Frittelli and Rosazza Gianin [50], it is stated:

For simplicity, we will consider market models without interest rates; it is immediate, however,
to extend all the definitions and results tho the “real” case, by appropriately discounting.

As widely discussed in Munari [75], the discounting procedure actually presents some problems:
in case of defaultable bonds it is simply not possible, moreover by discounting one could fall out
the chosen payoff space, or one could lose the structure and the properties of the acceptance set. For
these reasons, the theory of risk measures has been extended beyond the cash additive paradigm,
hence allowing for risky and possibly defaultable reference assets. This is done in Farkas et al. [45]
for L∞ and in Farkas et al. [44] for abstract spaces.

Risk measures with multiple reference assets appeared in 2002 in the first edition of Föllmer
and Schied [49] (see paragraph 4.5 in the first edition and paragraph 4.8 in the second and the third
edition) and were investigated in Artzner at al. [8] in the context of finite dimensional spaces of
random variables, and generalized to general topological vector spaces in Farkas et al. [46] and
in Baes et al. [11]. Their set-valued counterpart was studied in Jouini et al. [62], which in turn
triggered Hamel and Heyde [57] and Hamel et al. [58]. Instead of one single reference instrument,
the authors of [8], [46] and [11] fix a vector space M of payoffs of eligible assets, and a linear
pricing functional π : M → R, which describes initial costs for buying (and selling) the assets.
The resulting risk measure is

ρ(X) = inf{π(Z) : Z ∈ M, X + Z ∈ A}.
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As said in [8], under a proper no arbitrage condition the multiasset case may be substantially
reduced to a single asset model:

...the original risk measure is identical to a coherent risk measure defined with anyone of the
original assets acting as the single eligible asset and with the new acceptance set obtained from
the original acceptance set [A] by augmenting it by the future values of portfolios of eligible
assets which have initial value zero [A+ ker(π)].

Like the reference security in single-asset risk measures was assumed to be perfectly liquid, the
choice of a liner subspaceM and a linear pricing functional π implies that the modeled market has
no frictions and no constraints. A model that allows for bid-ask spreads, illiquidity and constraints
would be much more realistic though. Despite these effects are rarely taken into account in the risk
measures literature, they are widely investigated in the in the context of pricing (e.g. Bouchard et
al. [24]), utility maximization (e.g. Çetin [97]), hedging and Fundamental Theorems (e.g. Penna-
nen [81], Pennanen [78], Kabanov et al. [64], Schachermayer [90], Astic and Touzi [10] and Jouini
and Kallal [61]). In these papers, frictions are modeled through non linear (typically convex or
sublinear) pricing functionals and constrained spaces of admissible portfolios or payoffs.

In this chapter, we aim to develop a risk measure theory for abstract spaces in markets with
potential frictions. The first step towards a generalization of risk measures in this nonlinear direc-
tion was made by Frittelli and Scandolo [51], where general capital requirements where defined
for general setsM and general functions π. We start one step before with respect to [51]: prices
are defined on portfolios of basic securities and not on the liquidation values or on the payoffs
generated by portfolios. Our model hence allows for cases where two portfolios have the same liq-
uidation value at maturity but different price at initial time, this being compatible with the absence
of arbitrages in nonlinear markets. We consider a uniperiodal economy where a finite number of
basic securities are traded both at initial time and at maturity, hence we define pricing function-
als at both instants. Note that at maturity the portfolios of basic securities do not simply pay off
their contractual value, but are liquidated to proceed with a subsequent management action. This
assumptions makes this model suitable to be used as first block of a discrete multiperiodal model.
The generalized risk measure we define looks like

ρ(X) = inf{V0(λ) : λ ∈ P , X + V1(λ) ∈ A},

where P is the constrained set of admissible portfolios, V0 denotes the buying price at initial time,
V1 captures the liquidation value at maturity andA is the acceptance set specified by the regulator.
Moreover, while lower semicontinuity of the generalized risk measure was assumed in [51] when
needed, we provide sets of sufficient assumptions on the market for the risk measure to be lower
semicontinuous. In this regard, the choice of a finite number of basic securities is crucial.

We try to keep the model as general as possible: for this reason, we make few assumptions on
the primitive elements (e.g. the acceptance set is only required to be monotone) and for each result
we require only the desired additional properties.

The structure of this chapter is as follows: in Section 2.1 we describe the model in two steps.
The first description is abstract, without references to any possible financial application, showing
that the model is suitable to be applied in other contexts. Then we specify the capital adequacy
interpretation that we use throughout the chapter. In Section 2.2, we investigate how the algebraic
properties of the primitive elements influence those of the generalized risk measure, while in Sec-
tion 2.3 we find sufficient conditions for the risk measure to be lower semicontinuous. As these
conditions are related to the absence of some particular appealing portfolios, in Section 2.4 we in-
vestigate the relation among them and the absence of some generalized arbitrages called acceptable
deals. The necessary mathematical background is collected in the appendices and we refer to the
List of Symbols on page 117 for the necessary notation.

2.1 MODEL AND INTERPRETATION

We describe the model in two steps. First, we define primitive elements without giving them any
interpretation. Then, we use the model to describe a capital adequacy problem. The reason of this
separation is to suggest to the reader the idea that applications of this chapter may go beyond the
one we are going to consider (for an example, see Remark 3.2.2).
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2.1.1 THE GENERAL MODEL

Consider a dynamic one period setting, where an agent acts at initial time (time 0) to achieve some
predetermined goal at maturity (time 1) trying to minimize the cost of his action.

Assume the agent can select his activity in a predetermined actions’ space of finite dimension,
say N ≥ 1. Allowing for the existence of constraints for his choice, we model the set of available
actions for the agent with a nonempty subset P of RN , which may happen to coincide with RN .
The cost of any admissible action expressed in a given unit of measure is described through the
function V0 : P → R, which will be called the valuation operator at time 0.

We describe all possible states of the agent at maturity as elements of a locally convex topo-
logical vector space X . We assume that X is partially ordered by a vector order generated by the
pointed convex cone X+ and denoted by ≥. Let V1 : P → X be a function describing the additive
actions’ impact at maturity, meaning that if X ∈ X is the agent’s state at time 1, the final effect of
undertaking action λ ∈ P at time 0 is to transform his final position in X + V1(λ). We refer to V1
as the liquidation operator at time 1.

Finally, we assume that a nonempty proper subset of desirable positions A ⊂ X is specified. It
has to be thought to as determined by external factors, like regulators, agents’ utility criteria, pre-
scribed management limits... We call this set the acceptance set. According to the rational principle
“more is better”, where “more” has to be understood in the sense of the partial order of X , we
require A to be monotone (i.e. if X ∈ A and Y ≥ X, then Y ∈ A).

The aim of the agent with maturity state X ∈ X is to determine the minimal cost of an admis-
sible action λ ∈ P ensuring that its final modified position X + V1(λ) is in the acceptance set. We
define the set valued map M : X ⇒ P as

M(X) := {λ ∈ P : X + V1(λ) ∈ A} ⊂ RN ,

the set of admissible actions that the agent may consider to undertake, and the minimal cost func-
tional ρ : X → [∞, ∞] as

ρ(X) := inf{V0(λ) : λ ∈ P , X + V1(λ) ∈ A}.

Note that ρ(X) = infλ∈M(X) V0(λ) and for this reason may be referred as an optimal value function,
while M is often called constrained set mapping. For later use, we also define the so called optimal
and quasi-optimal set mappings M∗, M∗ε : X ⇒ P , ε > 0:

M∗(X) := {λ ∈ M(X) : V0(λ) = ρ(X)} = M(X) ∩ {V0 ≤ ρ(X)}
M∗ε (X) := {λ ∈ M(X) : V0(λ) < ρ(X) + ε} = M(X) ∩ {V0 < ρ(X) + ε}.

Furthermore, for every m ∈ R, we define the set of liquidation values achieved with initial cost
bounded by m:

Vm := {V1(λ) : λ ∈ P , V0(λ) ≤ m}.

Note that we have not assumed any property on the primitive elements P , V0, V1 and A, apart
from monotonicity ofA. Without further assumptions, we derive that ρ is monotone decreasing as
an extended-real valued function on X , showing that to a higher state corresponds a lower cost to
reach acceptability.

Proposition 2.1.1. For every X, Y ∈ X such that Y ≥ X we have ρ(Y) ≤ ρ(X).

Proof. Let Y ≥ X. If λ ∈ P is such that X +V1(λ) ∈ A, monotonicity ofA ensures that Y +V1(λ) ∈
A. The thesis follows.

2.1.2 THE CAPITAL ADEQUACY INTERPRETATION

So far, we have not made any reference to a financial context. The aim of this paragraph is to
make clear the interpretation of our model from the point of capital requirements rules. As a
result it will be clarified that ρ is nothing else than a generalization to markets with constraints and
frictions of the coherent risk measures introduced in the seminal paper Artzner et al. [9]. In order
to keep language and interpretation more accessible, throughout the chapter we will constantly
make reference to this financial interpretation.
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We consider a uniperiodal financial market where N basic securities are traded at initial time
and their maturities concide or are later than the final time. At time 0, an agent buys a portfolio of
basic securities. Buying the portfolio λ = (λ1, . . . , λN) ∈ RN means that the agent receives from a
counterparty λi units of security i for each i, and pays to the counterparty the value V0(λ), which
is expressed in a fixed reference unit of account. To be precise, we are assuming that if λi ≥ 0
the agent receives λi units of security i, while if λi < 0 the agent gives way (sells) −λi units, and
if V0(λ) ≥ 0 the agent gives away the amount V0(λ), while if V0(λ) < 0 the agent receives the
amount −V0(λ).

At time 1 the agent liquidates the portfolio λ he has bought, meaning that he sells λi units of
security i for every i, and he receives the “amount” V1(λ) which is added to his capital position.
Since the outcome of the basic securities cannot generally be determined at initial time, liquidation
values as well as capital positions are typically described through random variables, and X coin-
cides in all practical examples with a suitable space of random variables. If the maturity of some
security is later than the terminal time, during the liquidation the agent may incur in transaction
costs or illiquidity effects. By admitting V1 to be nonlinear, we cover this case. Note that the choice
of a linear map V1 corresponds to the case where there is no trading of the basic securities at matu-
rity and they simply deliver their terminal contractual payoff (for further details see Chapter 1), or
there is a perfectly liquid market.

An external financial regulator fixes the acceptance set A: the agent is safe whenever, after the
liquidation of his portfolio, his position falls in A. From this perspective, the interpretation of ρ as
a risk measure is straightforward: given the capital position X of the agent, ρ(X) is the minimum
amount of unit of account that the agent has to invest in the basic securities at initial time in order
to meet the requirement imposed by the regulator at maturity.

Remark 2.1.2 (From buyer to seller). So far, we have taken the point of view of a buyer since
from this side the interpretation of the risk measure ρ arises naturally, but it is possible to change
perspective and assume that the agent acts on the market by selling portfolios. Let us make a quick
comment about this point of view. Since P is the set of portfolios that the agent can purchase,
and since V0 is the buying pricing functional, which portfolios can be sold and at which price?
Concerning the exchange of basic securities, we assume that selling λ is equivalent to buying −λ,
so that the set of portfolios that can be sold is P s := −P . Moreover, we assume that receiving an
amount is equivalent to paying minus that amount. Thus the agent who sells λ ∈ P s is purchasing
−λ ∈ P paying the price V0(−λ) and thus receiving the amount Vs

0 (λ) := −V0(−λ). Similarly it
can be done for V1.

Remark 2.1.3 (Comparison with the model of Chapter 1). Incidentally, we take the opportunity to
notice that the setting of the present chapter is actually a generalization of the type of economy
studied in Chapter 1. There, we start working on L0(P), and then we restrict to a topological vec-
tor space X , while here we start directly with X . The setting of Chapter 1 corresponds to the case
where X is a space of random variables on some probability space, the market satisfies some con-
vexity requirement (namely P is convex closed and contains 0, V0 is convex lower semicontinuous
and V0(0) = 0), there is no liquidation at maturity and the payoffs of the basic securities are inde-
pendent (i.e. V1 is linear and injective), A is convex and contains 0. Note that the set that here we
denote by A, corresponds to A∩X of Chapter 1.

2.1.3 COSTS DEFINED ON PAYOFFS

Considering the model we have just described, one could ask whether it may be simplified by
dropping the set P of portfolios and by assigning initial costs directly to each final impact. Of
course, this can be done whenever the following condition holds:

λ, µ ∈ P , V1(λ) = V1(µ) =⇒ V0(λ) = V0(µ). (2.1)

Indeed, considering the set of addictive impacts of admissible actions M := {V1(λ) : λ ∈ P},
thanks to (2.1) the functional π :M→ R given by

π(Z) := V0(λ) for any λ ∈ P s.t. Z = V1(λ)

is well defined. Condition (2.1) is known as law of one price (see e.g. Föllmer and Schied [49]) and
arises as a natural consequence of absence of arbitrages in standard frictionless and no-constraints
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market models. Indeed, if the law of one price fails, one could set up a strategy consisting in buying
the cheaper of two portfolios with same value at maturity and selling the other, this leading to
the existence of an arbitrage. Clearly, this is a consequence of linearity of V0 and V1 as buying a
portfolio and selling another means buying the difference, whose cost coincides with the difference
of the costs. But in nonlinear models, there are very simple examples showing that the correlation
between the absence of arbitrages and the law of one price as expressed in equation (2.1) is no
longer valid, even without portfolio constraints.

Example 2.1.4. Assume that N = 2, P = R2 and X = R. For every λ = (λ1, λ2) ∈ P , define V0 and
V1 as follows:

V0(λ) = max
{

λ2 + 2λ1, λ2 +
1
2

λ1

}
, V1(λ) = λ1 + λ2

It is easy to check that this market has no arbitrage opportunities, since there are no λ’s such that V0(λ) ≤ 0
and V1(λ) > 0. But the law of one price (2.1) is violated as

V1(0, 0) = V1(−1, 1) = 0, V0(0, 0) = 0 6= V0(−1, 1) =
1
2

.

If we fall within the model of Chapter 1 as explained in Remark 2.1.3, the law of one price (2.1)
holds since V1 is linear and injective. In particularM and π as defined here coincide withM and
π of Chapter 1.

One could try to formulate a law of one price ad-hoc for market models with frictions and
portfolio constraints, but this topic goes beyond the scope of this thesis.

2.2 ALGEBRAIC PROPERTIES

In this section we prove a number of simple statements showing how algebraic properties of the
primitive elements P , V0, V1 and A influence the functional ρ.

Proposition 2.2.1. The following statements hold:

(i) Assume that A and P are closed under addition (meaning that X + Y ∈ A for any X, Y ∈ A, and
similarly for P), V0 is subadditive, and V1 is superadditive. Then ρ is subadditive.

(ii) Assume that A and P are cones, V0 and V1 are positively homogeneous and ρ(0) ∈ R. Then ρ is
positively homogeneous.

(iii) Assume that A and P are convex cones, V0 is sublinear, V1 is superlinear and ρ(0) ∈ R. Then ρ is
sublinear.

(iv) Assume that A and P are convex, V0 is convex and V1 is concave. Then ρ is convex.

(v) Assume that A and P are convex, V0 is quasi convex and V1 is concave. Then ρ is quasi convex.

(vi) Assume that A and P are cones, V0(tX) ≥ t V0(X) and V1(tX) ≤ t V1(X) for t > 1. Then
ρ(tX) ≥ t ρ(X) for t > 1 (and ρ(tX) ≤ t ρ(X) for 0 < t < 1).

Proof. (i) Take X, Y ∈ X and λ, µ ∈ P such that X + V1(λ) ∈ A and Y + V1(µ) ∈ A. Then

X + Y + V1(λ + µ) ≥
(
X + V1(λ)

)
+
(
Y + V1(µ)

)
∈ A,

and thus ρ(X + Y) ≤ V0(λ + µ) ≤ V0(λ) + V0(µ). Since λ and µ are arbitrary, the thesis follows.
(ii) Take X ∈ X and t > 0. Then

ρ(tX) = inf {V0(λ) : λ ∈ P , tX + V1(λ) ∈ A}

= inf
{

V0(λ) : λ ∈ P , X + V1

(
λ

t

)
∈ A

}
= inf {V0(tλ) : λ ∈ P , X + V1(λ) ∈ A}
= t ρ(X).
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(iii) Follows from points (i) and (ii).
(iv) Take X, Y ∈ X and λ, µ ∈ P such that X + V1(λ) ∈ A and Y + V1(µ) ∈ A, and t ∈ [0, 1].

Then
tX + (1− t)Y + V1(tλ + (1− t)µ) ≥ t

(
X + V1(λ)

)
+ (1− t)

(
Y + V1(µ)

)
∈ A, (2.2)

thus ρ(tX + (1− t)Y) ≤ V0(tλ + (1− t)µ) ≤ tV0(λ) + (1− t)V0(µ). The thesis follows since λ and
µ are arbitrary.

(v) Take X, Y ∈ X and λ, µ ∈ P such that X + V1(λ) ∈ A and Y + V1(µ) ∈ A, and t ∈ [0, 1].
Then equation (2.2) holds. Hence

ρ(tX + (1− t)Y) ≤ V0(tλ + (1− t)µ) ≤ max{V0(λ), V0(µ)}. (2.3)

Now, if ρ(tX + (1− t)Y) > ρ(X), than there exists λ̄ ∈ P such that X + V1(λ̄) ∈ A and ρ(tX +
(1 − t)Y) > V0(λ̄). From (2.3), it follows that for every µ ∈ P with Y + V1(µ) ∈ A, we have
ρ(tX + (1 − t)Y) ≤ V0(µ). Hence ρ(tX + (1 − t)Y) ≤ ρ(Y). Analogously, we can prove that
ρ(tX + (1− t)Y) ≤ ρ(X).

(vi) For t > 1 and X ∈ X we have:

ρ(tX) = inf{V0(λ) : λ ∈ P , tX + V1(λ) ∈ A}

= inf
{

V0(λ) : λ ∈ P , X +
1
t

V1(λ) ∈ A
}

≥ inf
{

V0(λ) : λ ∈ P , X + V1

(
λ

t

)
∈ A

}
= inf{V0(tλ) : λ ∈ P , X + V1(λ) ∈ A}
≥ t ρ(X).

Remark 2.2.2. We wonder whether linearity of the liquidation operator V1, corresponding to the
case where there is no market at maturity as explained in Subsection 2.1.2, would imply some
more algebraic properties of ρ. Actually, it is easy to observe that if V1 is linear, points (i), (iii), (iv),
(v), (iv) of Propositions 2.2.1 still hold true when removing the assumption of monotonicity of the
set A, which we take for granted for its meaningfulness in applications. Thus in our model, the
absence of linearity of V1 is not an issue for the purpose of proving some algebraic property of ρ,
as for instance the combination V1 concave (or subadditive) and A monotone supplies the lack of
linearity.

2.2.1 A NOTE ON CONVEXITY AND QUASI CONVEXITY

It is well known that in the case where there is a unique basic security and it is perfectly liquid and
unconstrained, convexity and quasi convexity of the risk measure ρ are equivalent (see e.g. Föllmer
and Schied [49]). In this case ρ is typically called a monetary risk measure. Being the equivalence
of convexity and quasi convexity a direct consequence of the translation invariance property of
monetary risk measures, it is not surprising that it may fail in the presence of illiquidity. Risk
measures that are quasi convex and not convex have been studied e.g. in Drapeau and Kupper [40]
and Cerreia-Vioglio et al. [30]. For completeness, we also provide an example of a quasi convex
but non convex risk measure ρ.

Example 2.2.3. Consider the probability space [0, 1] with Lebesgue sigma algebra and Lebesgue measure and
denote by L∞ the space of bounded random variables modulo a.s. equivalence. Assume that X = L∞ and A
is the acceptance set induced by expected shortfall at level α with α = 1

2 , i.e. A = {X ∈ L∞ : ESα(X) ≤ 0}.
Let N = 1, P = R, V0(λ) = λ

1
3 and V1(λ) = λ. Note that V0 is quasi convex, strictly increasing, and not

convex. Proposition 2.2.1 ensures quasi convexity of ρ. For any Z ∈ L∞ we have that ρ(Z) = V0(ESα(Z)).
In order to show that ρ is not convex, it is enough to find X and Y in L∞ such that the expected shortfall is
“linear” on the segment joining X and Y, while V0 is not convex on [ESα(X), ESα(Y)]. Indeed in this case
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t̂ ∈ (0, 1) exists such that

ρ(t̂X + (1− t̂)Y) = V0(ESα(t̂X + (1− t̂)Y))

= V0(t̂ ESα(X) + (1− t̂)ESα(Y))

> t̂ V0(ESα(X)) + (1− t̂)V0(ESα(Y))

= t̂ ρ(X) + (1− t̂) ρ(Y),

showing that ρ is not convex. To this end, take X = −1[0,1/2] + 1(1/2,1] and Y = −21[0,1/2] + 1(1/2,1].
Expected shortfall for random variables of type tX + (1− t)Y, t ∈ [0, 1] is easily computed:

ESα(tX + (1− t)Y) = 2− t,

and it is linear in t. This concludes the example as ESα(X) = 1, ESα(Y) = 2 and V0 is strictly concave on
R+.

A challenging question is: how to characterize quasi convexity of our risk measures? We only
provide a partial answer. As recalled in Definition A.1.3, ρ is quasi convex if and only if every set
of type {ρ ≤ m} is convex. Since

{ρ ≤ m} = {X ∈ X : ∀ε > 0 ∃λε ∈ P s.t. X + V1(λε) ∈ A and V0(λε) ≤ m + ε}
=
⋂
ε>0

(A−Vm+ε) ,

for every m ∈ R, the sets that actually matter for ρ to be quasi convex are those of type A− Vm.
Clearly, if A− Vm is convex for every m ∈ R, then ρ is quasi convex. The validity of the opposite
implication is not straightforward in general, but in Theorems 2.3.10, 2.3.12 and 2.3.14 we will see
that under suitable conditions, {ρ ≤ m} actually coincides with A− Vm, and hence the opposite
implication holds as well. The setsA−Vm turn out to be convex ifA, P and V0 are convex, and V1
is concave. But none of these four conditions is necessary, as we show in the next simple examples.
The first example below (and Example 3.2.(ii) in Baes et al. [11]) shows another difference from
the case of monetary risk measures, where convexity of the acceptance set is necessary for quasi
convexity of ρ.

Example 2.2.4. Let X = R3 and define A ⊂ X as follows

A := {(x, y, z) ∈ R3
+ : max{x + y, x + z, y + z} ≥ 1}.

The acceptance set A is not convex, as (1, 0, 0), (0, 1, 0), (0, 0, 1) are in A but their convex combination
(1/3, 1/3, 1/3) /∈ A. Clearly, A is monotone and closed.

Assume that N = 2 and P = R2, and define

V0 : P → R, V0(λ1, λ2) = λ2

V1 : P → X , V1(λ1, λ2) = (λ1,−λ1 + 2λ2, λ2).

Since the law of one price (2.1) holds, we can define prices directly on the payoffs space M = {V1(λ) :
λ ∈ P} = {(x, y, z) ∈ R3 : x + y− 2z = 0} as π : M → R defined by π(x, y, z) = z (we maintain
the coordinate system inherited from R3). Note that Vm = V0 + m(0, 2, 1) for every m, so that A− Vm is
convex iff A−V0 is so. Moreover,

V0 = {X ∈ M : π(X) ≤ 0} =
{
(x, 2z− x, z) ∈ R3 : z ≤ 0

}
.

We claim that
A−V0 = {(x, y, z) ∈ R3 : z ≥ 0, x + y ≥ 0, x + y + z ≥ 1},

which is convex being the intersection of three half spaces. To show our claim, take (x, y, z) ∈ R3 such that
z ≥ 0, x + y ≥ 0, x + y + z ≥ 1. Then

(x, y, z) = (0, x + y, z)︸ ︷︷ ︸
∈A

− (−x, x, 0)︸ ︷︷ ︸
∈V0

∈ A− V0
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and we have proved the inclusion “⊃”. For the other, consider the point

(xA, yA, zA)− (x, 2z− x, z)

where (xA, yA, zA) ∈ A and z ≤ 0. The third component, zA − z, is clearly positive, the sum of the first
two as well, since

xA︸︷︷︸
≥0

+ yA︸︷︷︸
≥0

+−x− 2z + x︸ ︷︷ ︸
≥0

≥ 0,

and finally the sum of the three components is greater than 1:

xA + yA + zA︸ ︷︷ ︸
≥1

−x− 2z + x− z︸ ︷︷ ︸
≥0

≥ 1,

showing the other inclusion. We conclude that A− Vm is convex for every m ∈ R, and hence ρ is quasi
convex. One could also note that in this case, as ρ can be written as

ρ(X) = inf {m ∈ R : X + m(0, 2, 1) ∈ A− V0} ,

Lemma 2.5 in [44] ensures that ρ is convex.

Example 2.2.5. Assume that X = R, A = R+, N = 2, P = R2 and V1 and V0 are defined as follows on
λ = (λ1, λ2) ∈ P :

V0(λ) =

{
λ1 + λ2 if λ2 > 0
λ1 + 2λ2 if λ2 ≤ 0

, V1(λ) = min{λ1, λ2}.

We have that V0 is not convex, but A− Vm = R+ for m ≤ 0 and A− Vm = [−m/2,+∞) for m > 0,
which is convex.

Example 2.2.6. Assume that X = R, A = R+, N = 2, P = R2 and V1 and V0 are defined as follows on
λ = (λ1, λ2) ∈ P :

V0(λ) = V1(λ) = max{λ1, λ2}.

We have that V1 is not concave, but A−Vm = [−m,+∞) for every m ∈ R, which is convex.

Example 2.2.7. Assume that X = R,A = R+, N = 1, P = R \ {0} and V1 and V0 are defined as follows
on λ ∈ P :

V0(λ) = V1(λ) = λ.

We have that P is not concave, but A−Vm = [−m,+∞) for every m ∈ R \ {0} and A−V0 = (0,+∞),
which are convex.

2.3 CONTINUITY AND STABILITY PROPERTIES

In this section, we establish sufficient conditions for ρ to be lower semicontinuous or continuous,
and for the map M∗ε to be lower semicontinuous. In the first part, we focus on a particular set in
the product space X ×R which turns out to be strictly related to the epigraph of ρ, while in the
last part we follow a completely different approach that holds if the acceptance set has nonempty
interior.

2.3.1 THE ROLE OF THE CLOSEDNESS OF C

First, note that ρ can be expressed as

ρ(X) = inf{m ∈ R : (X, m) ∈ C} (2.4)

where
C := {(X, m) ∈ X ×R : ∃λ ∈ P such that V0(λ) ≤ m and V1(λ) + X ∈ A}. (2.5)

Equality (2.4) does not coincide with the standard representation of a function through its epigraph
(A.1) since in general only the inclusion epi(ρ) ⊃ C holds. The set C may be interpreted (modulo
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temporal order) as the set of processes such that the initial amount m allows to set up a strategy
that grants to fulfill the acceptability requirements at maturity.

The importance of the closedness of C in the product topology is highlighted by the following
proposition.

Proposition 2.3.1. If C is closed, the following statements hold:

(i) ρ is lower semicontinuous.

(ii) If ρ(X) ∈ R for some X ∈ X , the infimum in (2.4) is attained:

ρ(X) = min{m ∈ R : (X, m) ∈ C}.

(iii) The sets {ρ ≤ m} and A−Vm coincide and are closed for every m ∈ R.

(iv) If ρ(X) ∈ R for some X ∈ X , the infimum defining ρ is attained:

ρ(X) = min{V0(λ) : λ ∈ P , X + V1(λ) ∈ A} i.e. M∗(X) 6= ∅.

Proof. If C is closed, assertion (i) holds by Proposition A.1.8 (ii). In this case epi(ρ) = C and asser-
tion (ii) is straightforward. Since the infimum in (2.4) is attained we have that

{ρ ≤ m} = {X ∈ X : (X, m) ∈ C} = A−Vm,

which is closed by lower semicontinuity of ρ. This shows (iii). For proving (iv), note that if ρ(X) ∈
R, then (X, ρ(X)) ∈ C by (ii). This means that we find λ ∈ P such that V1(λ) + X ∈ A and
V0(λ) ≤ ρ(X). By definition of ρ(X) the opposite inequality holds too, hence ρ(X) = V0(λ).

Remark 2.3.2 (Comparison with Theorem 1.3.14). As we have illustrated in Remark 2.1.3, the
model of Chapter 1 is a special case of the present setting, where law of one price (2.1) and suitable
convexity assumptions hold, and V1 is linear and injective. Moreover the set C defined in (2.5) cor-
responds, up to a sign, to the set C studied in Chapter 1. As a consequence of Theorem 1.3.14, C is
closed in that context whenever there are no acceptable deals, i.e. when there are no nonzero X in
A such that X = V1(λ) for some λ ∈ P with V0(λ) ≤ 0. Examples 2.3.3 and 2.3.4 below show that
out of the setting of that chapter, the absence of acceptable deals is no more a sufficient condition
for the set C to be closed. In particular, in Example 2.3.3 V1 is not linear, and in Example 2.3.4 the
law of one price fails.

Example 2.3.3. Consider the simple case where X = R and A = R+. Moreover, assume that V0 and V1
are defined on P = R as

V0(λ) = eλ − 1, V1(λ) = arctan(λ).

It it easy to see that A ∩ {V1(λ) : λ ∈ P , V0(λ) ≤ 0} = {0}. For n ∈ N, define Xn := arctan(n)
and mn := e−n − 1. The couples (Xn, mn) belong to C, since λn := −n is such that V0(λn) = mn and
Xn + V1(λn) = 0 ∈ A. Moreover, (Xn, mn) → (π/2,−1), which does not belong to C since there are no
λ ∈ P having V0(λ) ≤ −1.

Example 2.3.4. Assume that X = R2, A = R2
+ and P = −R+ ×R. Moreover, assume that V0 and V1

are defined on P as
V0(λ1, λ2) = eλ2 − 1, V1(λ1, λ2) = (λ1, 0).

Note thatA∩ {V1(λ) : λ ∈ P , V0(λ) ≤ 0} = {0}. For n ∈N, define Xn := 0 and mn := e−n − 1. The
couples (Xn, mn) belong to C, since λn := (0,−n) is such that V0(λn) = mn and Xn + V1(λn) = 0 ∈ A.
Moreover, (Xn, mn)→ (0,−1), which does not belong to C since there are no λ ∈ P having V0(λ) ≤ −1.

2.3.2 CLOSEDNESS OF THE MAP M : X ⇒ P

In this section, we follow the approach of Pennanen [78] to prove closedness of C, and we provide
in the final proposition a result that allows to extend the result in [78] to acceptance sets different
from the positive cone in one period models.

In Pennanen [78] the setting is discrete multiperiodal. Considering only one period, it is easy
to see that the set C considered there coincides with (2.5) up to a sign, where X = L0(P) is the
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space of equivalence classes of random variables on the probability space (Ω,F , P), equipped
with the topology of convergence in probability and almost sure pointwise order. With reference
to the notation of that paper, portfolio constraints (D0, D1) are modeled by (P ,−P), while the cost
process (S0, S1) coincides with (V0,−V1(−·)) (note that in [78], S1 is defined ω by ω, and hence we
define V1(λ) as the equivalence class of −S1(−λ)). The set P is assumed to be convex and closed
and 0 ∈ P , the function V0 is assumed to be convex and lower semicontinuous and V0(0) = 0.
Moreover we assume that V1(0) = 0 and there are representatives of V1(λ) for every λ ∈ P such
that for every ω the function V1(·)(ω) is concave and upper semicontinuous. Finally, we assume
that the map ω 7→ hypo(V1(·)(ω)) is F -measurable (see Chapter 14 of [86]). The acceptance set A
corresponds to the cone of positive random variables L0(P)+.

In Theorem 8 of [78] it is shown that C is closed provided that the convex cone

L0 := P∞ ∩ {λ ∈ P∞ : V∞
0 (λ) ≤ 0} ∩ {λ ∈ P∞ : V∞

1 (λ) ≥ 0 a.s.} (2.6)

is linear (the proof is an application of Theorem 5.2 in Pennanen [77]), where P∞ is the recession or
asymptotic cone of P (Definition B.1.6), V∞

0 is the recession or asymptotic function of V0 (Definition
B.2.6), while, with an abuse of notation, V∞

1 : P → L0(P) is pointwise defined as

V∞
1 (λ)(ω) := −(−V1(·)(ω))∞(λ) ∀ω ∈ Ω. (2.7)

Since the proof of this result is based on a.s. procedures, the choice of the space L0(P) is crucial, as
well as the fact that both the acceptance set and V1 admit a pointwise representation (indeed A =
{X ∈ L0(P) : X ≥ 0 a.s.}), and V1 is upper semicontinuous ω by ω, for suitable representatives.
This fact allows to express C as

C = {(X, m) : ∃λ ∈ P s.t. (λ, m, X(ω)) ∈ C(ω) a.s.}, (2.8)

where C(ω) := {(λ, m, x) ∈ RN ×R×R : λ ∈ P , V0(λ) ≤ m, V1(λ)(ω) + x ≥ 0}. Moreover,
the proof heavily relies on convexity assumptions on V0 and V1.

The proof of Theorem 8 in [78] keeps working if we replace A with the set of random variables
that are greater than some fixed L ∈ L0(P), as (2.8) holds true with C(ω) := {(λ, m, x) ∈ RN ×
R×R : λ ∈ P , V0(λ) ≤ m, V1(λ)(ω) + x ≥ L(ω)}. Now, we provide a different and simplified
proof of Theorem 8 in [78] that works in our uniperiodal setting. This will bring to light in which
step the particular shape of A is used and opens a path to possible generalization. To this end, we
consider the set L0 defined as in (2.6), and

N0 := L0 ∩ (−L0).

Note that without further assumptions L0 is a cone andN0 is a linear space. We denote byN⊥0 the
orthogonal complement of N0 in the finite dimensional linear space span(P). Before stating the
result, we prove a projection lemma inspired by Theorem 5.2 in [77].

Lemma 2.3.5. Let X = L0(P) be the space of equivalence classes of random variables on the probability
space (Ω,F , P). Assume that P is convex, closed and contains 0, V0 is convex and lower semicontinuous
and there are representatives of V1(λ) for every λ ∈ P such that V1(·)(ω) is concave and upper semicon-
tinuous for every ω ∈ Ω. Then, if (X, m) ∈ C, we find λ̃ ∈ N⊥0 such that (X, λ̃) ∈ C.

Proof. If (X, m) ∈ C, there is λ ∈ P such that V0(λ) ≤ m and X + V1(λ) ∈ A. Define λ0 as the
orthogonal projection of λ on N0 and λ̃ := λ− λ0 ∈ N0

⊥. Then:

• λ̃ ∈ P + P∞ ⊂ P since P is convex closed and 0 ∈ P , by virtue of Proposition B.1.5.

• V0(λ̃) = V0(λ − λ0) ≤ V0(λ) ≤ m since V0 is convex and lower semicontinuous, and
V∞

0 (−λ0) ≤ 0, by virtue of Proposition B.2.5.

• X + V1(λ̃) = X + V1(λ − λ0) ≥ X + V1(λ) since V1 is concave and upper semicontinuous
and V∞

1 (−λ0) ≥ 0, by virtue of B.2.5.

Thanks to monotonicity of A, we conclude that (X, λ̃) ∈ C.
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Theorem 2.3.6 (Theorem 8 of [78], uniperiodal version). Let X = L0(P) be the space of equivalence
classes of random variables on the probability space (Ω,F , P) equipped with the topology of the convergence
in probability. Assume that P is convex, closed and contains 0, V0 is convex and lower semicontinuous and
there are representatives of V1(λ) for every λ ∈ P such that V1(·)(ω) is concave and upper semicontinuous
for every ω ∈ Ω. Moreover, let L ∈ L0(P) be such that

A = {X ∈ L0(P) : X ≥ L P-a.s.}.

If the following condition holds

L0 is a linear space

then C is closed.

Proof. Throughout the proof, we consider the concave upper semicontinuous representatives of
V1(λ) for λ ∈ P . Let

(
(Xn, mn)

)
n ⊂ C be a sequence that converges to (X, m) ∈ L0(P)×R. For all

n, there is λn ∈ P such that Xn + V1(λn) ∈ A and V0(λn) ≤ mn. We way assume that λn ∈ N⊥0 =

L⊥0 by virtue of Lemma 2.3.5 and of the linearity condition. Moreover, eventually mn ≤ m + 1. By
fixing representatives for each equivalence class and possibly by passing to a subsequence, we find
Ω′ with probability 1 such that Xn(ω) → X(ω) for every ω ∈ Ω′. Let M(ω) := supn Xn(ω) < ∞
for ω ∈ Ω′. We may also assume that for ω ∈ Ω′ we have Xn(ω) + V1(λn)(ω) ≥ L(ω).

For every ω ∈ Ω′ defineM(ω) := {λ ∈ P : M(ω)− L(ω) ≥ −V1(λ)(ω)}. The sequence (λn)n
is contained inM(ω) because for every n it holds that

M(ω) + V1(λn)(ω) ≥ Xn(ω) + V1(λn)(ω) ≥ L(ω),

and the inclusion remains valid for the recession cones:

(λn)
∞
n ⊂

⋂
ω∈Ω′

M(ω)∞.

AsM(ω) is the sub level of the convex lower semicontinuous function−V1(·)(ω), due to Corollary
B.2.9

M(ω)∞ = {λ ∈ RN : (−V1(·)(ω))∞ ≤ 0}.

Since (λn)n ∈ {V0 ≤ m + 1}, from Corollary B.2.9 it follows that

(λn)
∞
n ⊂ {λ ∈ P : V0(λ) ≤ m + 1}∞ = {λ ∈ RN : V∞

0 (λ) ≤ 0}.

We have shown that (λn)
∞
n ⊂ L0 ∩ L⊥0 = {0}. This implies that (λn)n is a bounded sequence, and

without losing generality we may assume that λn → λ ∈ P .
Being V0 lower semicontinuous, V0(λ) ≤ limn mn = m. Since V1 is upper semicontinuous,

for every ω ∈ Ω′ we have that X(ω) + V1(λ)(ω) ≥ lim sup(Xn(ω) + V1(λn)(ω) ≥ L(ω), thus
X + V1(λ) ∈ A, and we can conclude that (X, m) ∈ C and C is closed.

It is clear that the choice of A plays a role only in the last step of the proof. Indeed we have
Xn → X, λn → λ, Xn + V1(λn) ∈ A and we want to conclude that X + V1(λ) ∈ A. This property
coincides with closedness of the set valued map M (see Definition A.3.1). The next proposition
shows that M turns out to be closed in this case independently on the choice of A, provided that it
is closed in probability. Hence we can generalize the theorem to the class of closed acceptance sets.

We establish the result for abstract spaces, and we make use of the notion of upper semicon-
tinuity for functions valued in ordered topological vector spaces (Definition A.2.2). It is easy to
see that in L0(P), the upper semicontinuity of V1 required in Theorem 2.3.6 means that for every
λn → λ one finds random variables Zn ≥ V1(λn) such that Zn(ω)→ V1(λ)(ω) for almost every ω.
Indeed it is enough to take Zn := max{V1(λn), V1(λ)}. This shows that upper semicontinuity of
V1 required in Theorem 2.3.6 coincides with that of Definition A.2.2 by virtue of Proposition A.2.3,
and hence the next proposition applies to the case studied in our last theorem.

Proposition 2.3.7. Assume that P is closed,A is closed and V1 is upper semicontinuous. Then M is closed
at every X ∈ X (hence M(X) is a closed set). If moreover V0 is lower semicontinuous, then M∗(X) is a
closed set for every X ∈ X . Finally, if moreover ρ is upper semicontinuous at X, then M∗ is closed at X.
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Proof. Consider a net (Xα)α∈A ⊂ X directed by (A,�) and X ∈ X such that Xα −→
α

X. Let (λα)α∈A

be a corresponding net in P such that λα ∈ M(Xα), and let λ ∈ P be such that λα −→
α

λ.

Since V1 is upper semicontinuous at λ, we find a subnet (λβ) ⊂ (λα) and (Yβ) ⊂ X such that
Yβ → V1(λ) and V1(λβ) ≤ Yβ. Clearly, the corresponding net (Xβ) converges to X as a subnet of
(Xα). By monotonicity of A, we have that Xβ + Yβ ∈ A, and hence the limit X + V1(λ) ∈ A.

If V0 is lower semicontinuous, then M∗(X) is closed as it is the intersection of two closed sets.
Now assume that ρ is upper semicontinuous at X and take nets Xα → X, λα → λ, such that
λα ∈ M∗(Xα) for every α. Being M closed, λ ∈ M(X). Since

V0(λ) ≤ lim inf
α

V0(λα) = lim inf
α

ρ(Xα) ≤ lim sup
α

ρ(Xα) ≤ ρ(X),

we have that λ ∈ M∗(X).

We have shown that upper semicontinuity of V1 can provide closedness of the map M. This
conveys a sort of stability, since it means that in order to secure X, we can approach it with capital
positions Xα that are secured through actions λα, and undertake the action λ approximated by λα,
if it exists.

Remark 2.3.8. It is worth mentioning that Pennanen has addressed the problem of lower semi-
continuity of a function of ρ’s type in convex market models also with acceptance sets of the form
A := {X ∈ L0(P) : E[v1(−X)] ≤ 0} for a proper function v1 : R×Ω → R (see [80] and [79]).
Reducing to one period and adopting the identification (S0, S1) = (V0,−V1(·)), D0 = P and
D1 = −P , in Theorems 5.1 and 6.1 of [80] it is shown that the reservation value π0 coincides with
ρ(−·) and is lower semicontinuous, provided that L0 is linear. The techniques used in this case
though, being based on the theory of normal integrands, are related to this specific choice of A,
and provide lower semicontinuity of ρ without establishing closedness of C.

2.3.3 CLOSEDNESS OF C WITH CONVEXITY

The aim of this section is to establish an analogue of Theorem 2.3.6 which holds beyond spaces of
random variables. Since it is not possible to replicate neither [78]’s nor Theorem 2.3.6’s strategy,
we elaborate a new proof. The linearity condition we impose has be inspired by the cited paper.
Consider indeed the following sets

L := P∞ ∩ {λ ∈ P∞ : V1(λ) ∈ A∞} ∩ {λ ∈ P∞ : V∞
0 (λ) ≤ 0}, (2.9)

N := L ∩ (−L),

which will play a central role in our proof of closedness of C, and observe that if V1 is positively
homogeneous, L is a cone andN is a linear space. Moreover, note that if X = L0(P),A is bounded
from below and V1 is superlinear, then A∞ = L0(P)+, V1 = V∞

1 and thus L = L0.
The set L contains those portfolios any size of which is available on the market with nonpos-

itive price, and with liquidation value any size of which is acceptable. We denote by N⊥ the
orthogonal complement of N in span(P). Inspired by Theorem 5.2 in [77], we use some convex-
ity/homogeneity assumption to restrict to N⊥ the set where λ’s in the definition of C are chosen.

Lemma 2.3.9. If A is a convex and closed acceptance set containing 0, P is convex closed and contains 0,
V1 is superlinear and V0 is convex and lower semicontinuous, then N is a linear space and if (X, m) ∈ C
we find λ̃ ∈ N⊥ such that (X, λ̃) ∈ C.

Proof. First, note that L is a cone, soN is a linear space. For X ∈ X and λ ∈ P such that V0(λ) ≤ m
and X + V1(λ) ∈ A, define λ0 as the orthogonal projection of λ on N and λ̃ := λ − λ0 ∈ N⊥.
Then:

• λ̃ ∈ P + P∞ ⊂ P because P is convex closed and contains 0, by virtue of Proposition B.1.5.

• V0(λ̃) = V0(λ − λ0) ≤ V0(λ) ≤ m because V0 is convex and lower semicontinuous and
V∞

0 (−λ0) ≤ 0, by virtue of B.2.5;
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• X + V1(λ̃) ≥ (X + V1(λ)) + V1(−λ0) ∈ A + A∞ ⊂ A because V1 is superlinear and A is
convex closed and contains 0, by virtue of Proposition B.1.5.

This shows that (X, λ̃) ∈ C.

The next theorem is the main result of the current section.

Theorem 2.3.10. Assume that A is convex closed and contains 0, P is convex closed and contains 0, V1
is superlinear and upper semicontinuous, and V0 is convex and lower semicontinuous. If the following
condition holds:

L is a linear space

then C is closed.

Proof. Take a net
(
(Xα, mα)

)
α
⊂ C that converges to (X, m) ∈ X ×R. For all α, there is λα ∈ P

such that Xα + V1(λα) ∈ A and V0(λα) ≤ mα. We may assume that λα ∈ N⊥ = L⊥ by virtue of
Lemma 2.3.9 and of the linearity condition.

Now, suppose that (λα) has no convergent subnets. In this case, we find a subnet of (λα)
consisting of nonzero elements with diverging norms. (Indeed, it suffices to consider the index set
{(α, n) : α ∈ A, n ∈ N, ‖λα‖ > n} equipped with the direction defined by (α, n) � (β, m) if and
only if α � β and m ≥ n and take λ(α,n) = λα for every (α, n) ∈ A). We still denote this subnet by
(λα) for convenience and we may assume that ‖λα‖ ≥ 1, so that λα

‖λα‖ ∈ P . Hence λ 6= 0 exists in

P∞ ∩ L⊥ such that
λα

‖λα‖
→ λ.

Being V1 upper semicontinuous at λ, we find a subnet
(

λβ

‖λβ‖

)
and (Yβ) ⊂ X such that

V1

(
λβ∥∥λβ

∥∥
)
≤ Yβ

and Yβ → V1(λ). Clearly, the corresponding net (Xβ) converges to X. It follows that

Zβ := Xβ +
∥∥λβ

∥∥Yβ ≥ Xβ +
∥∥λβ

∥∥V1

(
λβ∥∥λβ

∥∥
)
≥ Xβ + V1(λβ) ∈ A.

Since A is monotone, (Xβ) converges and the norms of (λα) diverge, we have that

Zβ∥∥λβ

∥∥ =
Xβ∥∥λβ

∥∥ + Yβ −→ 0 + V1(λ) ∈ A∞.

Since V0(λα) ≤ mα ≤ m + 1 for each α, we have that

λ ∈ {µ ∈ RN : V0(µ) ≤ m + 1}∞ ⊂ {µ ∈ RN : V0
∞(µ) ≤ 0}

(last inclusion is due to Proposition B.2.8), and we have obtained that λ ∈ L ∩ (L⊥) = {0}, which
contradicts λ 6= 0. Thus (λα) must have a convergent subnet. We may assume that λα → λ ∈ P .
Proposition 2.3.7 ensures that X + V1(λ) ∈ A, and lower semicontinuity of V0 gives

V0(λ) ≤ lim inf
α

V0(λα) ≤ lim
α

mα = m,

showing that C is closed.

Remark 2.3.11 (Comparison with the closedness result of Chapter 1). We show that the closedness
result for C obtained in Chapter 1 (in Theorem 1.3.14), is actually a corollary of our last theorem.
Indeed, as explained in Remark 2.1.3, the model studied in Chapter 1 falls within the assumptions
of Theorem 2.3.10, where the set A here is identified with the set A ∩ X of Chapter 1. It is not
difficult to see that, thanks to linearity and injectivity of V1,
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L is linear ⇐⇒ G is linear

(recall that G is defined in Chapter 1, (1.1)). This implies that the closedness result is Theorem 1.3.14
is a corollary of Theorem 2.3.10.

2.3.4 CLOSEDNESS OF C WITHOUT CONVEXITY

We now drop some convexity assumptions of Theorem 2.3.10, and we prove an analogous result.
The drawback is that, since convexity and superlinearity were crucial in the proof of Lemma 2.3.9,
now we have to assume that L is reduced to {0}.

Theorem 2.3.12. Assume that A ⊂ X is closed, P is closed, contains 0 and is star shaped about 0, V0
is lower semicontinuous, V1 is upper semicontinuous and such that V1(tλ) ≥ t V1(λ) for λ ∈ P and
0 < t ≤ 1. Moreover assume the following condition holds:

L = {0}.

Then C is closed.

Proof. Consider a net
(
(Xα, mα)

)
α∈A ⊂ C and assume it converges to (X, m) ∈ X ×R. Possibly

passing to a subnet, we can assume that mα ≤ m + 1 for every α. For each α ∈ A, let λα ∈ P be
such that Xα + V1(λα) ∈ A and V0(λα) ≤ mα.

If (λα) has no convergent subnets, by repeating the argument in the proof of Theorem 2.3.10
(except for assuming that λα and λ are in L⊥) we find a nonzero λ ∈ L, which is impossible.
Hence (λα) has a convergent subnet and we may assume that λα → λ ∈ P . Like in Theorem 2.3.10,
Proposition 2.3.7 ensures that X + V1(λ) ∈ A, and lower semicontinuity of V0 gives V0(λ) ≤ m,
showing that C is closed.

Under a similar set of assumptions it is possible to apply a Dieudonné type theorem about the
closedness of the algebraic difference of sets, so as to show that the sets A−Vm are closed. Since

{ρ ≤ m} =
⋂
ε>0

(A−Vm+ε),

this would imply lower semicontinuity of ρ. By similarity we incorporate the result in this section,
even though it does not provide sufficient conditions for C to be closed.

Theorem 2.3.13. Assume that A ⊂ X is closed, P is closed, V0 is lower semicontinuous, V1 is posi-
tively homogeneous and continuous on P and admits a positively homogeneous and continuous extension
on cl(cone(P))→ X . Moreover assume that the following condition holds:

L = {0}.

Then A−Vm is closed for every m ∈ R and ρ is lower semicontinuous.

Proof. If Vm is empty there is nothing to be proved. Otherwise, the result is a straightforward
application of Theorem 1.59 of Barbu and Precupanu [13] applied to E1 = RN , E2 = X , A = {λ ∈
P : V0(λ) ≤ m}, B = A and T = V1. Recall that by Corollary B.2.9, {λ ∈ P : V0(λ) ≤ m}∞ ⊂
{λ ∈ P∞ : V∞

0 (λ) ≤ 0}.

We close this section by establishing sufficient conditions for C to be closed whenP is a compact
subset of RN . The next theorem is not a consequence of Theorem 2.3.12, since V1(tλ) ≥ t V1(λ) for
0 < t < 1 is not required here. Note that under compactness hypothesis on P , we do not need to
require the condition L = {0} as it is automatically satisfied because P∞ = {0}.

Theorem 2.3.14. Assume that P is compact, A is closed, V0 is lower semicontinuous and V1 is upper
semicontinuous. Then ρ > −∞ and C is closed. Moreover if ρ(X) < ∞ for some X ∈ X , the infimum
defining ρ is attained:

ρ(X) = min{V0(λ) : λ ∈ P , X + V1(λ) ∈ A} i.e. M∗(X) 6= ∅

and the sets {ρ ≤ m} and A−Vm coincide and are closed for every m ∈ R.
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Proof. Being V0 a lower semicontinuous function defined on the compact set P , it has a minimum.
Thus ρ > −∞. Let

(
(Xα, mα)

)
α∈A ⊂ C be a net converging to (X, m) ∈ X ×R. For each α, there is

λα ∈ P such that Xα + V1(λα) ∈ A and V0(λα) ≤ mα.
Since P is compact, we find a subnet, that for convenience we still denote by (λα) that con-

verges to some λ ∈ P . For Proposition 2.3.7, we have that X + V1(λ) ∈ A. Moreover V0(λ) ≤
lim inf

α
V0(λα) ≤ m, showing that (X, m) ∈ C. Like in Theorem 2.3.10 we can conclude that ρ(X) is

actually a minimum and that {ρ ≤ m} = A−Vm for every m ∈ R.

For an alternative proof of the lower semicontinuity of ρ on the interior of its domain under the
assumption of Theorem 2.3.14 in case X is a metric vector space, we can apply Theorem 4.2.1(1)
in [12].

2.3.5 A RESULT OF LOCAL CONTINUITY USING THE INTERIOR OF A

In this section we follow a completely different path to determine conditions for ρ to be continuous
and M∗ε to be lower semicontinuous. This is done respectively in Theorems 2.3.16 and 2.3.19. This
section has been inspired by Chapter 4 of Bank et al. [12] and Baes et al. [11].

The following technical lemma is the base for proving the continuity result.

Lemma 2.3.15. Assume that A has nonempty interior, P is convex and V1 is concave. Let M0 : X ⇒ P
be defined for X ∈ X as

M0(X) := {λ ∈ P : X + V1(λ) ∈ int(A)}.

Then M0(X) ⊂ M(X) ⊂ cl(M0(X)) whenever M0(X) 6= ∅.

Proof. The first inclusion is trivial. For the second, take λ ∈ M(X) and λ0 ∈ M0(X). Since A is a
convex set with nonempty interior, the segment joining X + V1(λ) ∈ A and X + V1(λ0) ∈ int(A)
is contained in the interior of A, which is itself monotone as A is monotone. Being V1 concave, we
have that

X + V1(tλ + (1− t)λ0) ≥ t(X + V1(λ)) + (1− t)(X + V1(λ0)) ∈ int(A).

Hence the open segment joining λ and λ0 in contained in M0(X) and we conclude that λ ∈
cl(M0(X)).

Theorem 2.3.16. Assume that A is convex with nonempty interior, 0 ∈ A, P is convex, V0 is convex
and continuous, and V1 is concave. Let X ∈ X be such that ρ(X) ∈ R and λ0 ∈ P exists such that
X + V1(λ0) ∈ int(A). Then ρ is continuous at X.

Proof. Since ρ is convex by Proposition 2.2.1, it is enough to prove the upper semicontinuity at X
to conclude that ρ is actually continuous. Fix ε > 0 and λ ∈ M(X) with V0(λ) < ρ(X) + ε. For
Lemma 2.3.15 and continuity of V0, we find λ∗0 ∈ M0(X) such that V0(λ

∗
0) < ρ(X) + ε. Therefore,

U + V1(λ
∗
0) ∈ A for some U ∈ NX , and ρ(Y) ≤ V0(λ

∗
0) < ρ(X) + ε for all Y ∈ U , proving that ρ is

upper semicontinuous at X.

In what follows we aim to show that under the hypothesis of Theorem 2.3.16, the quasi-optimal
set mapping M∗ε is lower semicontinuous. First, we state two lemmas. The first is a technical one,
and we omit the proof as it is given in Lemma 5.23 of [11] (there, it is stated in a global sense, but
the proof is still valid when considering pointwise continuity).

Lemma 2.3.17. For all maps S1, S2 : X ⇒ P the following statements hold:

(i) Assume that S1 is strongly lower semicontinuous and S2 is lower semicontinuous at some X0 ∈ X .
Then, the set-valued map S : X ⇒ P given by S(X) = S1(X) ∩ S2(X) is lower semicontinuous at
X0.

(ii) Assume that S1 is strictly lower semicontinuous at some X0 ∈ X and S1(X0) ⊂ S2(X0) ⊂ cl(S1(X0)).
Then, S2 is lower semicontinuous at X0.

Lemma 2.3.18. If V0 is upper semicontinuous, M is lower semicontinuous at X0 ∈ X and ρ is lower
semicontinuous at X0, then M∗ε is lower semicontinuous at X0 for every ε > 0.
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Proof. Take ε > 0 and observe that for every X ∈ X

M∗ε (X) = M(X) ∩ Hε(X), Hε(X) := {λ ∈ P : V0(λ) < ρ(X) + ε}.

We claim that Hε is strictly lower semicontinuous at X0. This concludes the proof due to Lemma
2.3.17. If Hε(X0) = ∅, there is nothing to be proved. Otherwise let λ0 ∈ P and α ∈ R be such that
V0(λ0) < α < ρ(X0) + ε. Upper semicontinuity of V0 ensures that there is a neighborhood V of λ0
such that V0(λ) < α if λ ∈ V , and lower semicontinuity of ρ ensures that there is a neighborhood
U of X0 such that ρ(X) > α− ε if X ∈ U . Hence V ⊂ Hε(X) for all X ∈ U and we have proved
strongly lower semicontinuity of Hε at X0.

Theorem 2.3.19. Assume that A is convex with nonempty interior, 0 ∈ A, P is convex, V0 is convex and
continuous, and V1 is concave. Let X ∈ X be such that ρ(X) ∈ R and λ0 ∈ P exists such that V1 is
continuous at λ0 and X + V1(λ0) ∈ int(A). Then M∗ε is lower semicontinuous at X0 for each ε > 0.

Proof. By Theorem 2.3.16, ρ is continuous at X. Once proved that M is lower semicontinuous at X,
the thesis follow from Lemma 2.3.18.

Since X + V1(λ0) ∈ int(A) and A is open, there are U ∈ NX and U ′ ∈ NV1(λ0)
such that

U + U ′ ⊂ int(A). Then for continuity of V1, there is V neighborhood of λ0 such that U + V1(V) ⊂
int(A). Thus for every Y ∈ U we have that V ⊂ M0(Y), and we have obtained the strong lower
semicontinuity of M0 at X. Now note that M0(X) ⊂ M(X) ⊂ cl(M0(X)) and apply Lemma 2.3.17
to get lower semicontinuity of M at X.

2.4 NO ACCEPTABLE DEAL CONDITIONS VS L-TYPE CONDITIONS

As we have pointed out in the introduction of this thesis, in frictionless unconstrained uniperiodal
models, the absence of arbitrages is a sufficient condition for the cone of superreplicable claims
at zero cost to be closed. We have also said that in a nonlinear world, due to the possible lack of
translation invariance, we are interested in the set C in the product space X × R rather than in
the set of superreplicable claims at zero cost. Examples 2.3.3 and 2.3.4 show that in markets with
frictions the absence of arbitrages is not enough to conclude that C is closed, and in Sections 2.3.3
and 2.3.4 we have established sets of assumptions ensuring that C is closed. Namely, together
with algebraic or topological properties of the elements of the model, we have required the set
L to be either linear or equal to {0}. We will refer informally to these assumptions as “L-type
conditions”. The scope of this section is to investigate the L-type conditions by relating them to
the more familiar “no acceptable deal” (NAD) conditions.

First, we give general definitions and we state some general results linking L-type conditions
and NAD conditions. Then, we use these results to investigate the case of a perfectly liquid market
with conic acceptance set (Proposition 2.4.8) and to investigate the conditions L linear and L = {0}
(Subsection 2.4.1).

Definition 2.4.1. For any couple of nonempty sets Q ⊂ RN and B ⊂ X such that B is monotone,
and for any couple of maps T0 : Q → R and T1 : Q → X , we define the following set

L(Q; T0; T1,B) := {λ ∈ Q : T0(λ) ≤ 0, T1(λ) ∈ B},

and we say that the NAD(Q; T0; T1,B) (read “no-acceptable deal with respect to (Q, T0, T1,B)”)
condition holds if the following implication holds true:

λ ∈ L(Q; T0; T1,B) =⇒ T1(λ) = 0.

The set L(Q; T0; T1,B) is nothing else than a generalization of the sets we have encountered in
the previous section, indeed L0 defined in (2.6) coincides with L(P∞; V∞

0 ; V∞
1 ,X+) and L defined

in (2.9) coincides with L(P∞; V∞
0 ; V1,A∞).

The condition NAD(Q; T0; T1,B) derives its name from the case where Q = P , T0 = V0, T1 =
V1 and B = A, since NAD(P ; V0; V1,A) means that we cannot find any nonzero element of the
reference spaceX which is acceptable and in the mean time can be obtained through the liquidation
of a portfolio with nonpositive initial cost. Such an element is typically called an acceptable deal (see
Definition 1.2.5), hence NAD stands for “no acceptable deals”.
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FIGURE 2.1: Example 2.4.4

Proposition 2.4.2. Assume that B is monotone and contains 0 and T1(0) = 0. Then NAD(Q; T0; T1,B)
holds in each of the following cases:

(a) L(Q; T0; T1,B) = {0},

(b) Q is convex, T1 is concave, B ∩ (−B) = {0} and L(Q; T0; T1,B) = −L(Q; T0; T1,B) (in particular
L(Q; T0; T1,B) is linear).

Proof. Case (a) is straightforward. Now, assume (b) holds and take λ ∈ L(Q; T0; T1,B), so that
T1(λ), T1(−λ) ∈ B. For concavity −T1(λ) ≥ T1(−λ), hence T1(λ) ∈ −B by monotonicity, imply-
ing that T1(λ) = 0.

We exhibit some examples, the first two showing that the converse in general does not hold
true, and the third showing the necessity of B ∩ (−B) = {0} in (b) to draw the conclusion.

Example 2.4.3. Consider Example 2.3.4. The condition NAD(P ; V0; V1,A) holds, and L(P ; V0; V1,A) =
{0} ×R−.

Example 2.4.4. Consider the simple case where X = R, A = R+, N = 2 and P = R2. The operators
V0 : P → R and V1 : P → X are defined as follows:

V0
(
(λ1, λ2)

)
= λ1 + 2λ2, V1(λ1, λ2) = min{λ1 + 2λ2, 2λ1 + λ2}

Note that V0 is linear, hence V0 = V∞
0 , while V1 is superlinear. Moreover, A = A∞ and P = P∞.

Since V0(λ1, λ2) ≤ 0 iff λ2 ≤ − 1
2 λ1, and V1(λ1, λ2) ∈ A iff{

λ2 ≥ −2λ1

λ2 ≥ − 1
2 λ1

,

it follows that L(P ; V0; V1,A) = {(2λ,−λ) : λ ≥ 0} which is not equal to −L(P ; V0; V1,A). Further-
more, it is clear that the condition NAD(P ; V0; V1,A) holds

Example 2.4.5. Assume that X = R2, A is the half space R+ ×R, N = 2 and P = R2. Let V0 and V1 be
defined as follows:

V0 : P → R, V0(λ1, λ2) = λ1 + λ2.

V1 : P → X , V1(λ1, λ2) =

(
g
(

R(λ1, λ2)
)
, λ2

)
where R is the counter clockwise rotation of π/4, and

g(x, y) =
{

log(y + 1) y ≥ 0
y y < 0 .
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We have that V0(λ) ≤ 0 iff λ2 ≤ −λ1, and V1(λ) ∈ A iff λ2 ≥ λ1. Hence L(P ; V0; V1,A) =
{(λ1,−λ1) : λ1 ∈ R}, that is a nontrivial linear space. Now, if λ = (λ1, λ2) ∈ L(P ; V0; V1,A)

and λ2 6= 0, then V1(λ) =

(
g
(

λ1√
2

, 0
)

, λ2

)
= (0, λ2) 6= (0, 0), violating the no acceptable deal condition.

The next propositions characterizes the condition NAD(Q; T0; T1,B) in terms of L(Q; T0; T1,B)
in some situations.

Proposition 2.4.6. Assume that B contains 0 and either the law of one price (2.1) holds together with
T0(0) = 0 and T1(0) = 0, or Q and T0 are convex, T1 is concave and one of the following statements holds:

1. B is a cone and there exists λ∗ ∈ Q such that T1(λ
∗) ∈ B \ (−X+);

2. Q = RN , T1 is monotone increasing and there exists λ∗ ∈ RN such that T1(λ
∗) /∈ −X+.

Then the following equivalence holds:

NAD(Q; T0; T1,B) ⇐⇒ L(Q; T0; T1,B) = ker(T0) ∩ ker(T1).

Proof. We only prove the “ =⇒ ” implication. Since 0 ∈ B, it is clear that ker(T0) ∩ ker(T1) is
contained in L(Q; T0; T1,B). Then by definition of NAD(Q; T0; T1,B), we only need to show that
our sets of hypothesis ensure that every λ ∈ L(Q; T0; T1,B) has T0(λ) = 0. This fact is immediate
if the law of one price (2.1) holds together with T0(0) = 0 and T1(0) = 0. Otherwise assume that
Q and T0 are convex, T1 is concave and proceed by contradiction. Let λ ∈ L(Q; T0; T1,B) be such
that T0(λ) < 0. Clearly T1(λ) = 0. We divide the proofs of the two statements.

1. We find µ on the segment joining λ and λ∗ such that T0(µ) ≤ 0 and T1(µ) ∈ B \ {0}, which
contradicts the no acceptable deal hypothesis. Indeed, t ∈ (0, 1) can be chosen so that

T0(µ) ≤ t T0(λ) + (1− t) T0(λ
∗) ≤ 0

where µ = t λ + (1− t)λ∗. By concavity of T1 we have that

T1(µ) ≥ t T1(λ) + (1− t) T1(λ
∗) = (1− t) T1(λ

∗) ∈ B.

Since B is a monotone cone, T1(µ) ∈ B and T1(µ) is nonzero because T1(λ
∗) /∈ −X+.

2. Being T0 continuous on RN , there is an open neighborhood U of λ on which T0 is strictly
negative. Consider the open nonempty set Ũ := U ∩ (λ + RN

++). If µ ∈ Ũ, then T1(µ) ∈ B because
T1 and B are monotone, implying that µ ∈ L(Q; T0; T1,B) and hence T1(µ) = 0. Now, T1 is a
concave function that equals 0 on the open set Ũ. Then it is dominated by 0 on RN . Indeed, if λ in
RN and µ in Ũ, for t strictly positive and sufficiently near to 0

0 = T1
(
t λ + (1− t) µ

)
≥ t T1(λ) + (1− t) T1(µ) = t T1(λ).

This fact contradicts the existence of λ∗ ∈ RN such that T1(λ
∗) is not dominated by 0.

The next proposition gives a set of assumptions that allows to invert Proposition 2.4.2.

Proposition 2.4.7. Assume that Q = RN , B is convex, closed and contains 0, T1 is concave, monotone
increasing and T1(0) = 0, T0 is convex and T0(0) = 0, there is λ∗ ∈ Q such that T1(λ

∗) /∈ −X+, the
kernel of T0 or T1 does not contain nontrivial segments. If NAD(RN ; T0; T1,B) holds, then

L(RN ; T0; T1,B) = {0}.

Proof. By Proposition 2.4.6 it holds that L(RN ; T0; T1,B) = ker(T0) ∩ ker(T1). Moreover by our
assumptions L(RN ; T0; T1,B) is convex and does not contain any nontrivial segment, hence it co-
incides with {0}.

We close this section by focusing on the simple case where the market is perfectly liquid and A
is a pointed cone.

Proposition 2.4.8. If P is a linear subspace of RN , V0 and V1 are linear maps, A is a cone such that
A ∩ (−A) = {0}, there exists λ∗ ∈ P such that V1(λ

∗) ∈ A \ {0}, then the following statements are
equivalent:
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a) NAD(P ; V0; V1,A)

b) L(P ; V0; V1,A) = ker(V0) ∩ ker(V1)

c) L(P ; V0; V1,A) is a linear space

d) L(P ; V0; V1,A) = −L(P ; V0; V1,A).

If in addition V1 is injective, they are also equivalent to

e) L(P ; V0; V1,A) = {0}.

Proof. The implications =⇒ c =⇒ d and b =⇒ a are trivial. For a =⇒ b see Proposition 2.4.6,
while d =⇒ b is a clear consequence of linearity of P , V0, V1 and pointedness of A. Finally e =⇒
d is obvious, and if V1 is injective, b =⇒ e.

2.4.1 ABOUT THE L-TYPE CONDITIONS OF THEOREMS 2.3.10 AND 2.3.12

The aim of this section is to compare the assumptions of the two main theorems of Section 2.3,
namely L = {0} in Theorem 2.3.12 and L linear in Theorem 2.3.10, with different types of no
acceptable deal conditions to investigate which implications in general hold true. We first state the
results, and then we provide a number of examples.

Proposition 2.4.9. Assume that P∞ ⊂ P , V1(0) = 0, V∞
0 ≥ V0. Then the implications in the following

diagram hold true, and in general no other implication among the statements holds:

NAD(P∞; V∞
0 ; V1,A∞) NAD(P∞; V0; V1,A∞) NAD(P ; V0; V1,A∞)

L = {0} L(P∞; V0; V1,A∞) = {0} L(P ; V0; V1,A∞) = {0}

Ex 2.4.15 Ex 2.4.16 Ex 2.4.17

Proof. The arrows towards left hold true because V0 ≤ V∞
0 and P∞ ⊂ P , while upward arrows

hold because of Proposition 2.4.2 and V1(0) = 0 ∈ A∞. The examples provided in the references
on the diagram show that no other implication can be proved without further assumptions.

Remark 2.4.10. In Proposition 2.4.9, A∞ can be replaced by any monotone nonempty set B ⊂ X
containing 0. We have used A∞ so as to have the set L in the left corner of the diagram.

Proposition 2.4.11. Assume that X+ ⊂ A∞ ⊂ A and V1(0) = 0. Then the implications in the following
diagram hold true, and in general no other implication among the statements holds:

NAD(P∞; V∞
0 ; V1,X+) NAD(P∞; V∞

0 ; V1,A∞) NAD(P∞; V∞
0 ; V1,A)

L(P∞; V∞
0 ; V1,X+) = {0} L = {0} L(P∞; V∞

0 ; V1,A) = {0}

Ex 2.4.15 Ex 2.4.18 Ex 2.4.19

Proof. The arrows towards left hold true because X+ ⊂ A∞ ⊂ A, while upward arrows hold be-
cause of Proposition 2.4.2 and V1(0) = 0. The examples provided in the references on the diagram
show that no other implication can be proved without further assumptions.

Remark 2.4.12. In Proposition 2.4.11, P∞ and V∞
0 can be replaced by any subsetP of RN containing

0 and any function V0 : P → R. We have used P∞ and V∞
0 so as the set L to appear in the diagram.

Proposition 2.4.13. Assume that V0 is convex and lower semicontinuous with V0(0) = 0, V1 is concave
with V1(0) = 0, P∞ is convex and A∞ ∩ (−A∞) = {0}. Then the implications in the following diagram
hold true, and in general no other implication among the statements holds:
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NAD(P∞; V∞
0 ; V1,A∞) NAD(P∞; V0; V1,A∞)

L linear L(P∞; V0; V1,A∞) linear

Ex 2.4.4 Ex 2.4.16

If moreover A is convex closed and A ∩ (−A) = {0}, and V1 is superlinear, the following diagram
holds too:

NAD(P∞; V∞
0 ; V1,A∞) NAD(P∞; V∞

0 ; V1,A)

L linear L(P∞; V∞
0 ; V1,A) linear

Ex 2.4.19Ex 2.4.4

Proof. Upward arrows hold because of Proposition 2.4.2, while leftward arrows in the top level of
the first (second) diagram hold because V∞

0 ≥ V0 (A∞ ⊂ A).
Now, we claim that whenever V0 is convex and lower semicontinuous with V0(0) = 0, if

L(P∞; V0; V1,A∞) is a cone, then it coincides with L. Indeed, the inclusion “⊃” is trivial, while
for the other it is enough to recall that V∞

0 (λ) = supt>0
V0(tλ)

t by virtue of Proposition B.2.5. This
shows the leftward arrow at the bottom level of the first diagram.

We also claim that whenever V1 is superlinear and A is convex, closed and contains 0, if
L(P∞; V∞

0 ; V1,A) is a cone, then it coincides with L. Indeed, one inclusion is trivial, while for the
other it is enough to recall that A∞ =

⋂
t>0 tA thanks to Corollary B.1.7. This shows the leftward

arrow at the bottom level of the second diagram.
The examples provided in the references on the diagram show that no other implication can be

proved without further assumptions.

Remark 2.4.14. In Proposition 2.4.13, V∞
0 can be replaced by V0. We have used V∞

0 so as the set L
to appear in the diagram.

Example 2.4.15. Assume X , N, P , V0, R and g are like in Example 2.4.5, and define

V1 : P → R2, V1(λ1, λ2) =

(
g
(

R(λ1, λ2)
)
, g
(

R(λ1, λ2)
))

Moreover, let A coincide with the positive cone of R2. In this case we have A = A∞, P = P∞ and V0 =
V∞

0 . Since V1(λ) ∈ A holds iff λ2 ≥ λ1, we have that L = L(P ; V0; V1,A) = {(λ1,−λ1) : λ1 ∈ R}

like in Example 2.4.5. If λ ∈ L(P ; V0; V1,A), then V1(λ) =

(
g
(

λ1√
2

, 0
)

, g
(

λ1√
2
, 0
))

= (0, 0), implying

that NAD(P ; V0; V1,A) holds.

Example 2.4.16. Consider the simple case where X = R, A = R+, N = 2 and P = R2. Define

V0 : P → R, V0(λ1, λ2) = max
{

λ2 + 2λ1, λ2 +
1
2

λ1 − 1
}

and
V1 : P → X , V1(λ1, λ2) = λ1 + λ2
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λ1

λ2

V1 = 0

V0 = 0

V∞
0 = 0

FIGURE 2.2: Example 2.4.16

We have that A = A∞ and P = P∞. By Proposition B.2.5 we have

V∞
0 (λ1, λ2) = sup

t>0

V0(tλ1, tλ2)

t

= sup
t>0

max
{

λ2 + 2λ1, λ2 +
1
2

λ1 −
1
t

}
= max

{
λ2 + 2λ1, λ2 +

1
2

λ1

}
≥ V0(λ1, λ2).

As shown in Figure 2.2, we haveL = {0}, hence NAD(P ; V∞
0 ; V1,A) holds. MoreoverL(P ; V0; V1,A) )

{0} and on it V1 does not take only value 0. Hence NAD(P ; V0; V1,A) does not hold.

Example 2.4.17. Consider the simple case where X = R, A = R+, N = 2. Assume

P = R2
+ ∪ {(x, y) ∈ R2 : y ≥ x2}

and for (λ1, λ2) ∈ P define V0(λ1, λ2) = λ1 + λ2 and V1(λ1, λ2) = λ2. Since P∞ = R2
+, A = A∞ and

V0 = V∞
0 onP∞, we haveL(P∞; V0; V1,A) = {0}. Now, given (−1, 1) ∈ P , we have that V0(−1, 1) = 0

and V1(−1, 1) = 1 ∈ A \ {0}, violating the NAD(P ; V0; V1,A) condition.

Example 2.4.18. Assume that X = R2, N = 2, P = R2 and

A = {(x1, x2) ∈ R2 : x2 ≥ max{−x1,−x1/2}},

V0 : P → R, V0(λ1, λ2) = λ2 + 2λ1

V1 : P → X , V1(λ1, λ2) = (λ1, λ2).

Being V0 linear and P and A conic, V0 = V∞
0 , A = A∞ and P = P∞.

Since V1(λ) ≥ 0 iff λ ∈ R2
+, we have that L(P ; V0; V1,X+) = {0}. But

L(P ; V0; V1,A) = {(λ1, λ2) ∈ R2 : λ1 + λ2 ≥ 0, 2λ1 + λ2 ≤ 0}

which is not contained in the kernel of V1, showing that NAD(P ; V0; V1,A) does not hold.

Example 2.4.19. Let X be the space of random variables on the finite probability space (Ω,F , P), where
Ω = {ω1, ω2}, F = 2Ω, pi = P({ωi}) Suppose

p1 ≥ p2 > 0.

(note that X can be identified with R2 as in the bulk of previous examples. Here we prefer to talk about
random variables as we want to use the language of expectations and utility functions).
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λ1

λ2

V0 = 0

A = A∞

V1 = 0

FIGURE 2.3: Example 2.4.18

For a fixed γ > 0, consider the real valued function u defined on R with its inverse u−1 defined on
(−∞, 1)

u : R→ R, u(x) = 1− e−γx

u−1 : (−∞, 1)→ R u−1(y) = − 1
γ

log(1− y)

and the acceptance set A := {X ∈ X : E[u(X)] ≥ 0}. In the usual identification of X with R2,

A = {(x1, x2) : p1 u(x1) + p2 u(x2) ≥ 0}

=

{
(x1, x2) : u(x2) ≥ −

p1

p2
u(x1), −

p1

p2
u(x1) < 1

}
=

{
(x1, x2) : x2 ≥ u−1

(
− p1

p2
u(x1)

)
, x1 > u−1

(
− p1

p2

)}
=

{
(x1, x2) : x2 ≥ h(x1), x1 > − 1

γ
log
(

1 +
p2

p1

)}
= epi(h)

where

h :
(
− 1

γ
log
(

1 +
p2

p1

)
,+∞

)
→ R, h(x) = − 1

γ
log
(

1 +
p1

p2
− p1

p2
e−γx

)
.

Note that h is convex, strictly decreasing, h(0) = 0, h′(0) = − p1
p2

and

lim
x→+∞

h(x) = − 1
γ

log
(

1 +
p1

p2

)
.

In particular, note that if p1 = p2 = 1
2 , then h′(0) = −1 and A∩ (−A) = {0}. Since A is monotone and

bounded from below, A∞ equals to X+.
Valuation and liquidation operators V0 and V1 are defined on P = R2 as follows:

V0 : P → R, V0(λ1, λ2) = λ1 + βλ2

V1 : P → X , V1(λ1, λ2) = (λ1, λ2)

where β ∈ R is such that p2
p1

> β > 0. As Figure 2.4 clearly displays, L = {0}, but V1 does not vanish on

L(P ; V0; V1,A) = {(λ1, λ2) ∈ R2 : λ1 + βλ2 ≤ 0, λ2 ≥ h(λ1)} ) {0}

implying that the condition NAD(P ; V0; V1,A) does not hold.
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x1

x2

V0 = 0

A

V1 = 0

FIGURE 2.4: Example 2.4.19

2.5 DUAL REPRESENTATIONS

In the last section of this chapter, we focus on the case where ρ is convex or quasi convex and lower
semicontinuous, and we establish a dual representation. The preceding sections provide sufficient
conditions for ρ to have the mentioned properties.

2.5.1 CONVEX CASE

In this section we assume that ρ is convex and lower semicontinuous, and we investigate its dual
representation.

The technique we are going to use to establish the dual representation consists in a straightfor-
ward application of the Fenchel-Moreau Theorem followed by an analysis of the penalty function
ρ∗. Our proof mimics that of Proposition 3.9 in Frittelli and Scandolo [51]. There, portfolios λ
are not specified and initial prices are defined on payoffs V1(λ). Our result is a generalization of
Proposition 3.9 in [51] as it holds also if the law of one price (2.1) does not hold. In case it holds,
our representation is a direct application of Proposition 3.9 in [51] by setting M and π like in
Subsection 2.1.3.

Theorem 2.5.1. Assume that ρ is proper, convex and lower semicontinuous. Then for every X ∈ X the
following representation holds:

ρ(X) = sup
ψ∈D

{
ψ(−X) + σA(ψ)−V∗,V1

0 (ψ)
}

where V∗,V1
0 : X ′ → (−∞, ∞] is a convex and w∗-lower semicontinuous function defined as

V∗,V1
0 (ψ) := sup

λ∈P
{ψ(V1(λ))−V0(λ)}

and
D := bar(A) ∩ {ψ ∈ X ′+ : V∗,V1

0 (ψ) < ∞}.

Proof. The Fenchel-Moreau representation of ρ (see Theorem A.1.6) is

ρ(X) = sup
ψ∈X ′+

{ψ(−X)− ρ∗(−ψ)} , ρ∗(−ψ) := sup
X∈X
{−ψ(X)− ρ(X)}
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Now, we calculate ρ∗:

ρ∗(−ψ) = sup
X∈X

{
ψ(−X)− inf{V0(λ) : λ ∈ P , X + V1(λ) ∈ A}

}
= sup

X∈X
sup{ψ(−X)−V0(λ) : λ ∈ P , X + V1(λ) ∈ A}

= sup{ψ(−Z + V1(λ))−V0(λ) : λ ∈ P , Z ∈ A}
= sup{ψ(−Z) + ψ(V1(λ))−V0(λ) : λ ∈ P , Z ∈ A}
= sup

z∈A
{ψ(−Z)}+ sup

λ∈P
{ψ(V1(λ))−V0(λ)},

and we have achieved the desired representation.

Remark 2.5.2. Representation of Theorem 2.5.1 can also be derived with a more geometric ap-
proach, based on the dual representation of sets (namely epigraphs) instead of functions. We do
not mean to be too detailed in the description of this technique, since it substantially mimics the
procedure applied in Chapter 1 for finding pricing densities and moreover Theorem 2.5.1 is al-
ready exhaustive. The key point is that whenever ρ is lower semicontinuous, from equation (2.4)
we derive that epi(ρ) = cl(C) by virtue of Proposition A.1.8 and

ρ(X) = min{m ∈ R : (X, m) ∈ cl(C)}.

If ρ is also convex, we have the following representation by Proposition A.1.10:

cl(C) =
⋂

(ψ,β)∈bar(C)
{(X, m) ∈ X ×R : ψ(X) + βm ≥ σC(ψ, β)}

where
bar(C) =

{
(ψ, β) ∈ X ′ ×R : ψ ∈ bar(A), sup

λ∈P
{ψ(V1(λ))− βV0(λ)} < ∞

}
and

σC(ψ, β) = σA(ψ)− sup
λ∈P
{ψ(V1(λ))− βV0(λ)}.

If we assume further that 0 ≥ ρ(0) > ∞, then (0, 0) ∈ cl(C) and (0, n) /∈ cl(C) for some n < 0.
These facts allow to find (ψ, β) ∈ bar(C) with β > 0 and hence to reduce the representation as
follows:

cl(C) =
⋂

ψ∈D
{(X, m) ∈ X ×R : ψ(X) + m ≥ σA(ψ)−V∗,V1

0 (ψ)}.

Note that D = {ψ ∈ X ′ : (ψ, 1) ∈ bar(C)}. The representation of ρ is now straightforward:

ρ(X) = min{m ∈ R : ψ(X) + m ≥ σA(ψ)−V∗,V1
0 (ψ) for every ψ ∈ D}

= sup
ψ∈D

{
ψ(−X) + σA(ψ)−V∗,V1

0 (ψ)
}

.

One could wonder whether the functionals ψ appearing in the representation act as pricing
functionals defined on the whole space X that are, in some sense, consistent with the market and
the acceptance set. This is indeed one of the ways dual representations have been interpreted in
the literature about linear market models, for instance in Farkas et al. [46].

If ψ is intended as a pricing functional consistent with the market, we may expect that it assigns
nonnegative price to acceptable positions, or at least there is a lower bound for these prices (i.e.
ψ ∈ bar(A)), and that it assigns to every payoff obtained through the liquidation of the basic
securities a price that is sandwiched in the bid ask spread:

ψ(V1(·)) ≤ V0(·) on P

and
−V0(−·) ≤ ψ(−V1(−·)) ≤ ψ(V1(·)) ≤ V0(·) on P ∩ (−P).
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Unfortunately, none of the inequalities holds in general for ψ ∈ D. The central one holds if V1 is
linear, while the others are equivalent to V∗,V1

0 (ψ) ≤ 0. In general, by definition of V∗,V1
0 , we only

have that
ψ(V1(·))−V∗,V1

0 (ψ) ≤ V0(·) on P .

In the next proposition we claim that in presence of positive homogeneity, those ψ that appear
in the dual representation induce prices on the payoffs of eligible portfolios that are dominated
by V0. But this fails if we relax the request of positive homogeneity, replacing it with convex-
ity/concavity. If P and V0 are convex and V1 is positively homogeneous, we may use recession
functions (Proposition 2.5.4) to regain homogeneity and we achieve the same type of dominance,
only on P∞, by means of pricing functional V∞

0 and V1.

Proposition 2.5.3. Assume that P is a cone, and V0 and V1 are positively homogeneous. Then for ψ ∈ X ′

V∗,V1
0 (ψ) =

{
0 if ψ ∈ Dc
+∞ if ψ /∈ Dc

where Dc := {ψ ∈ X ′+ : ψ(V1(λ)) ≤ V0(λ) for every λ ∈ P} is convex and w∗-closed. In this case, the
dual representation of ρ is:

ρ(X) = sup
ψ∈bar(A)∩Dc

{ψ(−X) + σA(ψ)}. (2.10)

Proof. Since 0 ∈ P and V0 and V1(0) take value 0 in 0, it is enough to show that if ψ0(V1(λ0)) >

V0(λ0) for ψ0 ∈ X ′+ and λ0 ∈ P , then V∗,V1
0 (ψ) = ∞. This is the case since for t > 0 we have

V∗,V1
0 (ψ0) ≥ ψ0(V1(tλ0))−V0(tλ0) = t

(
ψ0(V1(λ0))−V0(λ0)

)
−−−→
t−→∞

∞.

Proposition 2.5.4. Assume that P is convex with 0 ∈ P , V0 is convex with V0(0) = 0 and V1 is concave
with V1(0) = 0. Then for ψ ∈ X ′ the following equivalences hold:

V∗,V1
0 (ψ) = 0 ⇔ ψ(V1(λ)) ≤ V0(λ) ∀λ ∈ P

⇔ ∃π : RN −→ R linear such that ψ(V1(λ)) ≤ π(λ) ≤ V0(λ) ∀λ ∈ P .

Proof. In this case V∗,V1
0 only takes nonnegative values, hence the first equivalence is trivial, while

the second one holds due to “Sandwich Theorem” in Section 4 of [14].

Proposition 2.5.5. Assume P is convex closed and contains 0, V0 is convex and V0(0) = 0, V1 is positively
homogeneous. If ψ ∈ X ′+ is such that V∗,V1

0 (ψ) < +∞, then

ψ(V1(λ)) ≤ V∞
0 (λ) ∀λ ∈ P∞.

Proof. If V∗,V1
0 (ψ) < +∞, for every t > 0 and λ0 ∈ P∞ the following holds:

t
(
ψ(V1(λ0))−V∞

0 (λ0)
)
= ψ(V1(tλ0))−V∞

0 (tλ0) ≤ sup
λ∈P∞

{ψ(V1(λ))−V∞
0 (λ)} ≤ V∗,V1

0 (ψ) < ∞.

Note that the last results are sort of generalizations of Lemma 3.10 in [51].

2.5.2 QUASI CONVEX CASE

Here, we study the dual representation of ρ when it is quasi convex and lower semicontinuous.
Throughout this section, we will make use of the following function defined for X ∈ X and ψ ∈ X ′:

ρ(X|ψ) := inf{ρ(Y) : Y ∈ X such that ψ(Y) ≤ ψ(X)}.

We start with a preparatory lemma.
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Lemma 2.5.6. For every X ∈ X and ψ ∈ X ′, the following identity holds:

ρ(X|ψ) = inf
{

V0(λ) : λ ∈ P , X + V1(λ) ∈ A+ {ψ ≥ 0}
}

.

Proof. The result is achieved through simple computations:

ρ(X|ψ) = inf{ρ(Y) : Y ∈ X , ψ(Y− X) ≤ 0}
= inf{ρ(X + Z) : Z ∈ X , ψ(Z) ≤ 0}
= inf {inf{V0(λ) : λ ∈ P , X + Z + V1(λ) ∈ A} : Z ∈ X , ψ(Z) ≤ 0}
= inf{V0(λ) : λ ∈ P , Z ∈ X , ψ(Z) ≤ 0, X + Z + V1(λ) ∈ A}
= inf{V0(λ) : λ ∈ P , X + V1(λ) ∈ A+ {ψ ≥ 0}}.

From Lemma 2.5.6, we derive that ρ(·|ψ) corresponds to the risk measure with the same set of
admissible actions and valuation and liquidation operators, and with augmented acceptance set
A+ {ψ ≥ 0}. It thus indicates the minimum amount to be invested today in the basic securities
in order to make our capital position X acceptable after adding something freely available in a
complete market where buying prices are expressed through ψ. Furthermore, by writing ρ(X|ψ)
as

ρ(X|ψ) = inf
{

V0(λ) : λ ∈ P , A∩ {ψ ≤ ψ(X + V1(λ))} 6= ∅
}

,

we can also interpret it as the amount required today so that the value of the capital position X
added to the liquidated portfolio of the basic securities will be grater at maturity than the value of
an acceptable claim, in a world where values are obtained through the pricing functional ψ.

Now, we establish the dual representation of ρ.

Theorem 2.5.7. Assume that ρ is proper, quasi convex and lower semicontinuous. Then if bar(A) is not
empty, for every X ∈ X the following representation holds:

ρ(X) = sup
ψ∈bar(A)

ρ(X|ψ).

Otherwise ρ(X) = inf{V0(λ) : λ ∈ P} for every X ∈ X .

Proof. The following representation

ρ(X) = sup
ψ∈X ′+

ρ(X|ψ)

is just an application of dual representation of quasi convex functions (Theorem A.1.7). Now, as-
sume that ψ /∈ bar(A) and take X ∈ X . We find Y ∈ A for which ψ(X − Y) ≥ 0 holds, so that
X = Y + (X − Y) ∈ A + {ψ ≥ 0}. Thus A + {ψ ≥ 0} equals the space X and by virtue of
Lemma 2.5.6, ρ(·|ψ) coincides with inf{V0(λ) : λ ∈ P} on X . This shows the desired represen-
tation in case bar(A) is empty. Otherwise, take ψ1 ∈ bar(A) and ψ0 /∈ bar(A), and observe that
ρ(·|ψ0) ≤ ρ(·|ψ1) by Lemma 2.5.6, showing that for every X ∈ X

ρ(X) = sup
ψ∈X ′+

ρ(X|ψ) = sup
ψ∈bar(A)

ρ(X|ψ).

Remark 2.5.8. The closure of A + {ψ ≥ 0} is equal to {ψ ≥ σA(ψ)}. Indeed every element of
A+ {ψ ≥ 0} is trivially contained in the closed set {ψ ≥ σA(ψ)}. On the other hand, take X ∈ X
such that ψ(X) ≥ σA(ψ) and a neighborhood U of X. If ψ is not identically zero, there is Y ∈ U such
that ψ(Y) > ψ(X) and hence ψ(Y) ≥ ψ(Z) for some Z ∈ A. Thus Y = Z + (Y− Z) ∈ A+ {ψ ≥ 0}
and X ∈ cl(A+ {ψ ≥ 0}). In general, the sum of A and {ψ ≥ 0} is not closed, but note that if A is
a cone, A+ {ψ ≥ 0} = {ψ ≥ 0} and the sum is automatically closed.
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CHAPTER 3

DUAL REPRESENTATIONS FOR
SYSTEMIC RISK MEASURES BASED ON
ACCEPTANCE SETS

The study of risk measures for multivariate positions was first developed in the set-valued case
by Jouini et al. [62], which triggered Hamel and Heyde [57], Hamel et al. [58] and Molchanov
and Cascos [74]. Following a different approach, the real valued case was developed by Burgert
and Rüschendorf [25], Rüschendorf [89] and Ekeland and Schachermayer [42]. In this literature,
multivariate positions are typically interpreted as (random) portfolios of financial assets. In recent
years, there has been significant interest in extending the theory of risk measures to a systemic risk
setting, in which multivariate positions represent the (random) vector of future capital positions,
i.e. assets net of liabilities, of financial institutions. In this setting, one considers a system of d
financial institutions whose respective capital positions at a fixed future date is represented by a
random vector

X = (X1, . . . , Xd).

The bulk of the literature assumes that a macroprudential regulator specifies an “aggregation func-
tion”

Λ : Rd → R

by means of which the system is summarized into a single (univariate) aggregated position Λ(X).
The simplest aggregation function is given by Λ(x) = ∑d

i=1 xi and corresponds to aggregating
the entire system into a single consolidated balance sheet. The regulator also specifies a set A of
“acceptable” aggregated positions: The level of systemic risk of the financial system is deemed
acceptable whenever Λ(X) belongs to the prescribed acceptance set A. Two main classes of sys-
temic risk measures based on aggregation functions and acceptance sets have been studied in the
literature.

A first branch of the literature adopts a so-called “first allocate, then aggregate” approach,
which is the macroprudential equivalent of the fundamental idea introduced in the context of
microprudential regulation by Artzner et al. [9]: To ensure that the financial system has an ac-
ceptable level of systemic risk, the macroprudential regulator can require each of the member
institutions to raise a suitable amount of capital. Such a requirement is represented by a vector
m = (m1, . . . , md) ∈ Rd, where mi corresponds to the amount of capital raised by institution i. This
leads to a systemic risk measure of the form

ρ(X) = inf

{
d

∑
i=1

mi : m ∈ Rd, Λ(X + m) ∈ A
}

.

The quantity ρ(X) corresponds to the minimum amount of aggregate capital that needs to be in-
jected into the financial system to ensure acceptability. This type of systemic risk measures has
been studied in Feinstein et al. [47], Armenti et al. [7], Ararat and Rudloff [4], and Biagini et al. [19,
20] (where random allocations of the aggregate capital requirement are also considered).
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A second branch of the literature advocates a “first aggregate, then allocate” approach and
studies systemic risk measures of the form

ρ̃(X) = inf{m ∈ R : Λ(X) + m ∈ A}.

In this case, the quantity ρ̃(X) represents the minimal amount of capital that has to be added to the
aggregated position to reach acceptability. In contrast to ρ, the operational interpretation of ρ̃ is not
straightforward since it is unclear how much each of the member institutions should contribute to
the aggregate amount of required capital or, if the outcome of the above risk measure is interpreted
as a bail-out cost, which institution should obtain which amount. Such systemic risk measures
have been studied in Chen et al. [31], Kromer et al. [70], and Ararat and Rudloff [4].

The main objective of this chapter is to establish dual representations for the above systemic risk
measures in a general setting with special emphasis on systemic risk measures of the “first allocate,
then aggregate” type. By doing so, we provide a unifying perspective on the existing duality results
in the literature. More precisely, we consider an arbitrary probability space (Ω,F , P) and assume
that the multivariate positions belong to a space of d-dimensional random vectors X that is in
duality with another space of d-dimensional random vectors X ′ through the pairing

(X, Z) 7→
d

∑
i=1

EP[XiZi]

for X ∈ X and Z ∈ X ′. This setup is general enough to cover all the interesting examples en-
countered in the literature. Dual representations for ρ have been studied by Armenti et al. [7] and
Biagini et al. [20] in the setting of Orlicz hearts and acceptance sets based on (multivariate) utility
functions and by Ararat and Rudloff [4] in the setting of bounded random variables with only mild
restrictions on the acceptance set. The strategy in [7] is to apply Lagrangian techniques while that
of [4] is to rely on the dual representation of ρ̃, which is tackled by using Fenchel-Moreau tech-
niques for composed maps. Similarly to [20], the point of departure of this chapter is to observe
that ρ can be written as

ρ(X) = inf{π(m) : m ∈ Rd, X + m ∈ Λ−1(A)}

where the “acceptance set” Λ−1(A) and the “cost functional” π : Rd → R are given by

Λ−1(A) = {X ∈ X : Λ(X) ∈ A}, π(m) =
d

∑
i=1

mi.

This shows that ρ belongs to the class of “multi-asset risk measures” introduced in Frittelli and
Scandolo [51] and thoroughly studied in Farkas et al. [46]. Under suitable conditions on Λ and A,
the general duality results obtained in those papers yield the representation

ρ(X) = sup

{
σ(Q)−

d

∑
i=1

EQi [Xi] : Q1, . . . , Qd � P,
dQ

dP
∈ X ′

}

where Q = (Q1, . . . , Qd),
dQ
dP

=
( dQ1

dP
, . . . , dQd

dP

)
and the objective function is given by

σ(Q) = inf
X∈Λ−1(A)

d

∑
i=1

EQi [Xi].

The map σ corresponds to the (lower) support function of the systemic acceptance set Λ−1(A)
and plays a fundamental role in the dual representation. The main technical contribution of this
chapter is to provide a detailed analysis of these objects. In particular, we devote some effort to
obtain a more explicit description of σ in terms of the primitives Λ and A. It is worth noting that,
in the systemic setting, the closedeness of the acceptance set Λ−1(A) does not necessarily imply
the lower semicontinuity of ρ, which is a necessary condition for ρ to admit a dual representation.
Hence, it is important to provide conditions on the primitives Λ and A to ensure that ρ is lower
semicontinuous in the first place. To this effect, we rely on the abstract results in Farkas et al. [46],
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where an effort was made to derive properties of risk measures, such as lower semicontinuity, from
the properties of the underlying acceptance sets. In particular, the duality results for acceptance
sets obtained there build the starting point for our analysis of the systemic acceptance set Λ−1(A).

On the other side, dual representations for ρ̃ have been studied by Chen et al. [31] in a finite-
dimensional setting, by Ararat and Rudloff [4] in the setting of bounded random vectors, and by
Kromer et al. [70] at our level of generality. In line with those papers, our starting point is to observe
that ρ̃ can be expressed as a standard cash-additive risk measure (namely the cash-additive risk
measure associated with A, which we denote by ρA) applied to the aggregated univariate position
as

ρ̃(X) = ρA(Λ(X)).

However, instead of working out the Fenchel-Moreau representation of a composition of maps, we
exploit the standard dual representation for ρA to derive the desired representation in a direct way.
In this case, conditions to ensure the lower semicontinuity of ρ̃ are also easier to formulate.

Finally, to illustrate the convenience of our approach to duality based on acceptance sets, we
provide a simple and self-contained proof of the dual representation for utility-based risk measures
for univariate positions, which can be viewed as special systemic risk measures where d = 1 and
Λ is a von Neumann-Morgenstern utility function.

The necessary mathematical background is collected in the appendices and we refer to the List
of Symbols on page 117 for notations.

3.1 THE SETTING

In this section, we describe our setting.

3.1.1 BASIC NOTATION

Throughout, we fix a probability space (Ω,F , P) and we refer to Appendix A for the necessary
terminology and notation and to Aliprantis and Border [1] for a general presentation of Banach
lattices.

A (nonzero) linear subspace L ⊂ L0(P) is said to be admissible if it is a Banach lattice (with
respect to the almost-sure partial order) such that L∞(P),⊂ L ⊂ L1(P). In this case, we set

L′ := {Z ∈ L0(P) : EP [|XZ|] < ∞, ∀X ∈ L}.

Note that we always have L∞(P),⊂ L′ ⊂ L1(P).

Example 3.1.1. The class of admissible spaces contains Orlicz spaces (and hence Lp(P) spaces), which
include the standard examples encountered in the literature. For an overview, see Appendix A. The following
statements hold; see e.g. Edgar and Sucheston [41] or Meyer-Nieberg [73]:

(1) L = LΦ(P) is admissible and L′ = LΦ∗(P);

(2) L = HΦ(P) is admissible if Φ is finite valued, in which case L′ = LΦ∗(P);

(3) L = Lp(P) is admissible if p ∈ [1, ∞], in which case L′ = L
p

p−1 (P) (with the convention 1
0 = ∞ and

∞
∞ = 1).

Fix m ∈N. We always consider the standard inner product 〈·, ·〉 : Rm ×Rm → R defined by

〈a, b〉 :=
m

∑
i=1

aibi.

We say that a linear subspace L ⊂ L0
m(P) is admissible whenever

L = L1 × · · · × Lm

with admissible L1, . . . ,Lm ⊂ L0(P). Note that, being the product of Banach lattices, the space
L is also a Banach lattice. In particular, the lattice operations on L are understood component by
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component. As above, we define
L′ := L′1 × · · · × L′m.

The pair (L,L′) is equipped with the bilinear form (·|·) : L×L′ → R given by

(X|Z) := EP[〈X, Z〉] =
m

∑
i=1

EP[XiZi].

The coarsest topology on L making the linear functional X 7→ (X|Z) continuous for every Z ∈ L′
is denoted by σ(L,L′). Similarly, the coarsest topology on L′ making the linear functional Z 7→
(X|Z) continuous for every X ∈ L is denoted by σ(L′,L). Equipped with these topologies, L and
L′ are locally-convex topological vector spaces (which are also Hausdorff because the above form
is separating).

3.1.2 FINANCIAL SYSTEMS AND SYSTEMIC RISK

We consider a one-period economy in which uncertainty at the terminal date is modeled by the
probability space (Ω,F , P). In this economy, we assume the existence of a financial system consist-
ing of d member institutions (for completeness we also allow for the case d = 1). The possible
terminal capital positions, i.e. assets net of liabilities, of these d institutions belong to an admissible
space

X = X1 × · · · × Xd ⊂ L0
d(P).

For every X = (X1, . . . , Xd) ∈ X the random variables X1, . . . , Xd correspond to the capital posi-
tions of the various member institutions. Since X contains all bounded random vectors, the space
Rd can be naturally viewed as a linear subspace of X . We denote by e the constant random vector
with all components equal to 1, i.e.

e := (1, . . . , 1) ∈ Rd.

The impact of the financial system on systemic risk is measured through an impact map

S : X → E

where E is a suitable admissible subspace of L0(P). Hence, for every X ∈ X , the random variable
S(X) is interpreted as an indicator of the systemic risk posed by X; see Remark 3.1.5.

Definition 3.1.2. We say that S is admissible if it satisfies the following five properties:

(S1) Discrimination: S is not constant;

(S2) Normalization: S(0) = 0;

(S3) Monotonicity: S(X) ≥ S(Y) for all X, Y ∈ X such that X ≥ Y;

(S4) Concavity: S(λX + (1− λ)Y) ≥ λS(X) + (1− λ)S(Y) for all X, Y ∈ X and λ ∈ [0, 1];

(S5) Semicontinuity: The map X 7→ EP[S(X)W] is σ(X ,X ′)-upper semicontinuous for every W ∈
E ′+.

The next proposition provides a number of sufficient conditions for the technical assumption
(S5) to hold. Recall that the lattice operations on X are performed component by component. Here,
we use the standard notation for the limit superior of a sequence of random variables.

Definition 3.1.3. We say that S has the Fatou property if for every sequence (Xn) ⊂ X and every
X ∈ X

Xn → X a.s., sup
n∈N

|Xn| ∈ X =⇒ S(X) ≥ lim sup
n→∞

S(Xn).

We say that S is surplus invariant if S(X) = S(−X−) for every X ∈ X .

Proposition 3.1.4. Assume that (S3) and (S4) hold. Then, (S5) holds in any of the following cases:
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(i) X ′i is the norm dual of Xi for every i ∈ {1, . . . , d}.

(ii) Xi = LΦi (P) with Φ∗i being ∆2 (e.g. Xi = L∞(P),) for every i ∈ {1, . . . , d} and S has the Fatou
property.

(iii) S is surplus invariant and has the Fatou property.

Proof. Throughout the proof fix W ∈ E ′+ and define a functional ϕW : X → R by setting

ϕW(X) := EP[S(X)W].

Note that ϕW is concave and nondecreasing by (S3) and (S4). Assume that (i) holds. In this case, we
can apply the Extended Namioka-Klee Theorem from Biagini and Frittelli [21] to infer that ϕW is
upper semicontinuous (in fact, continuous) with respect to the norm topology on X . As the space
X ′ coincides with the norm dual of X by assumption, it follows from Corollary 5.99 in Aliprantis
and Border [1] that ϕW is also σ(X ,X ′)-upper semicontinuous.

We make some preliminary observations before proceeding with the proof of (ii) and (iii). First,
we note that the Fatou property of S implies that ϕW is sequentially upper semicontinuous with
respect to order convergence, i.e. dominated almost-sure convergence. Indeed, consider a sequence
(Xn) ⊂ X that converges almost surely to some X ∈ X and such that supn∈N |Xn| ≤ M for some
M ∈ X . Since |S(Xn)| ≤ max(|S(M)|, |S(−M)|) for every n ∈N by (S3), it follows from the Fatou
property of S and from the Fatou Lemma that

ϕW(X) ≥ E
[

lim sup
n→∞

S(Xn)W
]
≥ lim sup

n→∞
EP[S(Xn)W] = lim sup

n→∞
ϕW(Xn),

as claimed. Second, Theorem 2.6.4 in Meyer-Nieberg [73] tells us that, for every i ∈ {1, . . . , d}, the
order-continuous dual of Xi, i.e. the space of linear functionals that are continuous with respect
to order convergence, coincides with X ′i . This implies that the order-continuous dual of X also
coincides with X ′. Denote by X∼n the order-continuous dual of X . We establish (S5) by showing
that the upper semicontinuity of ϕW with respect to order convergence implies its σ(X ,X∼n )-upper
semicontinuity.

Assume that (ii) holds. If d = 1, the desired assertion follows from Theorem 4.4 in Delbaen and
Owari [38] (see also Theorem 3.2 in Delbaen [37] for the bounded case and Theorem 3.7 in Gao et
al. [52] for the Orlicz case in a nonatomic setting). This result can be extended to a multivariate
setting by using the results in Leung and Tantrawan [93]. We use their notation and terminology.
Observe first that the constant vector e is a strictly-positive element in X∼n . Second, note that all
the spaces Xi’s are monotonically complete by Theorem 2.4.22 in [73], admit a special modular by
Example 3.1 in [93], and their norm duals are order continuous by Remark 3.5 in [38]. This implies
that X is also monotonically complete, admits a special modular, and its norm dual is order con-
tinuous. As a result, we can apply Theorem 3.4 in [93] to conclude that X satisfies property (P1) of
that paper. This property implies that every concave functional on X that is upper semicontinuous
with respect to order convergence, as our ϕW , is automatically σ(X ,X∼n )-upper semicontinuous.
This delivers the desired result.

Finally, assume that (iii) holds. In this case, the functional ϕW is surplus invariant in the sense
of Gao and Munari [53]. Since ϕW is concave and upper semicontinuous with respect to order
convergence, we can apply Theorem 21 in [53] to infer that ϕW is σ(X ,X∼n )-upper semicontinuous.
As above, this delivers the desired result.

Remark 3.1.5. (i) In the literature, the impact map is typically derived from an aggregation function

Λ : Rd → R

by setting S(X) = Λ(X) for every X ∈ X . We refer to the literature cited in the introduction for
a discussion of concrete examples. Clearly, the choice of Λ limits the choice of the space E since,
for instance, one needs to ensure that the random variables Λ(X)’s are integrable. This is typically
done either by working in a space of bounded positions or by working in an Orlicz space where
the Orlicz functions are defined in terms of Λ. To avoid having to worry about this aspect, we have
defined the impact map as a map between abstract spaces.
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(ii) If Λ is assumed to be nonconstant, nondecreasing, concave, and to satisfy Λ(0) = 0, then the
corresponding S clearly fulfills properties (S1)-(S4). Moreover, as Λ is automatically continuous by
concavity, S has automatically the Fatou property. Hence, we can use Proposition 3.1.4 to ensure
property (S5).

We now assume that the regulator has defined acceptable levels of systemic risk by specifying
a set

A ⊂ E

called the acceptance set: The financial system with capital positions X ∈ X is deemed to have an
acceptable level of systemic risk if the systemic risk indicator S(X) belongs to A.

Definition 3.1.6. We say that A is admissible if it satisfies the following properties:

(A1) Discrimination: S−1(A) is a nonempty proper subset of X ;

(A2) Normalization: 0 ∈ A;

(A3) Monotonicity: A+ E+ ⊂ A;

(A4) Convexity: λA+ (1− λ)A ⊂ A for every λ ∈ [0, 1];

(A5) Closedness: A is σ(E , E ′)-closed.

The next proposition highlights a variety of situations where assumption (A5) is always satis-
fied.

Definition 3.1.7. We say that A is Fatou closed if for every sequence (Un) ⊂ A and every U ∈ E

Un → U a.s., sup
n∈N

|Un| ∈ E =⇒ U ∈ A.

We say that A is law invariant if for every U ∈ A and every V ∈ E with the same probability
distribution as U we have V ∈ A. Moreover, we say that A is surplus invariant if for every U ∈ A
and every V ∈ E such that V− = U− we have V ∈ A.

Proposition 3.1.8. Assume that (A3) and (A4) hold. Then, (A5) holds in any of the following cases:

(i) E ′ is the norm dual of E and A is norm closed.

(ii) E = LΦ(P) with Φ∗ being ∆2 (e.g. E = L∞(P),) and A is Fatou closed.

(iii) E = LΦ(P) with (Ω,F , P) nonatomic and A is law invariant and Fatou closed.

(iv) A is surplus invariant and Fatou closed.

Proof. The desired assertion holds under (i) by Theorem 5.98 in Aliprantis and Border [1]; under (ii)
by Theorem 4.1 in Delbaen and Owari [38] (see also Theorem 3.2 in Delbaen [37] in the bounded
case and Theorem 3.7 in Gao et al. [52] in the Orlicz case in a nonatomic setting); under (iii) by
Corollary 4.6 in Gao et al. [55]; under (iv) by Theorem 8 in Gao and Munari [53].

3.2 “FIRST ALLOCATE, THEN AGGREGATE”-TYPE SYSTEMIC RISK

MEASURES

In this section we focus on systemic risk measures of “first allocate, then aggregate” type. After
discussing some conditions for their representability, we establish a general dual representation
and provide a detailed analysis of the properties of the corresponding systemic acceptance sets and
“penalty functions”. Throughout the section we fix an admissible impact map S and an admissible
acceptance set A.
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3.2.1 THE SYSTEMIC RISK MEASURE ρ

“First allocate, then aggregate”-type systemic risk measures are defined as follows (we adopt the
usual convention inf ∅ = ∞):

Definition 3.2.1. We define the map ρ : X → [−∞, ∞] by setting

ρ(X) := inf

{
d

∑
i=1

mi : m ∈ Rd, S(X + m) ∈ A
}

. (3.1)

The above map determines the minimum amount of aggregate capital that can be allocated to
the member institutions to ensure that the level of systemic risk of the financial system is accept-
able. We start by observing that (3.1) can be rewritten as

ρ(X) = inf{π(m) : m ∈ Rd, X + m ∈ S−1(A)}, π(m) =
d

∑
i=1

mi. (3.2)

As a result, ρ belongs to the broad class of risk measures introduced in Frittelli and Scandolo [51]
and thoroughly studied in Farkas et al. [46]. We exploit this link in a systematic way. It is also easy
to see that ρ belongs to the class of generalized risk measures studied in Chapter 2, with P = Rd,
V0(m) = π(m), V1(m) = m and acceptance set S−1(A).
Remark 3.2.2. The systemic risk measure ρ furnishes an example where the model of Chapter 2
may have a different interpretation from that described in Subsection 2.1.2.

The first proposition collects some basic properties of the “systemic acceptance set” S−1(A) and
of the risk measure ρ.

Proposition 3.2.3. (i) The set S−1(A) is monotone, convex, σ(X ,X ′)-closed, and contains 0.

(ii) The systemic risk measure ρ is nonincreasing, convex, and satisfies ρ(0) ≤ 0. Moreover, ρ satisfies the
multivariate version of cash-additivity, i.e.

ρ(X + m) = ρ(X)−
d

∑
i=1

mi

for every X ∈ X and every m ∈ Rd.

Proof. (i) It is straightforward to prove that S−1(A) contains 0 and that it is monotone and convex.
To show σ(X ,X ′)-closedeness, it is enough to recall that bar(A) ⊂ E ′+ and use Proposition A.1.10
to get

S−1(A) = {X ∈ X : EP[S(X)W] ≥ σA(W), ∀W ∈ bar(A)}.

The claim follows immediately from (S5).
(ii) The stated properties of ρ are straightforward; see also Lemma 2 in Farkas et al. [46].

3.2.2 PROPERNESS AND LOWER SEMICONTINUITY OF ρ

In order to admit a dual representation, the risk measure ρ needs to be proper and lower semi-
continuous. We highlight a number of sufficient conditions for this to be the case. We start with a
simple characterization of properness provided we already know that ρ is lower semicontinuous.
Recall that, by definition, ρ is proper if it never attains the value −∞ and is finite at some point.

Proposition 3.2.4. If ρ is σ(X ,X ′)-lower semicontinuous, then ρ is proper if and only if ρ(0) > −∞.

Proof. We know that ρ(0) < ∞ by Proposition 3.2.3. As a result, the above equivalence follows
from the fact that a σ(X ,X ′)-lower semicontinuous convex map that assumes the value−∞ cannot
assume any finite value; see e.g. Proposition 2.2.5 in Zălinescu [95].

In contrast to the standard univariate (cash-additive) case, the closedeness of S−1(A) does not
imply the lower semicontinuity of ρ; see Example 1 in Farkas et al. [46]. The purpose of the next
result is to provide a number of sufficient conditions for ρ to be lower semicontinuous. The last
two conditions are particularly easy to verify and often satisfied in the literature.
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Proposition 3.2.5. The following statements hold:

(i) Assume that Ω is finite. If ρ(0) > −∞, then ρ is finite valued and continuous.

(ii) Assume that X ′i is the norm dual of Xi for every i ∈ {1, . . . , d}. If ρ is finite valued, then ρ is
σ(X ,X ′)-lower semicontinuous.

(iii) Assume that X ′i is the norm dual of Xi for every i ∈ {1, . . . , d}. If S−1(A) has nonempty interior in
the norm topology and ρ(0) > −∞, then ρ is finite valued and σ(X ,X ′)-lower semicontinuous.

(iv) SetM0 :=
{

m ∈ Rd : ∑d
i=1 mi = 0

}
. If S−1(A) ∩M0 = {0}, then ρ is proper and σ(X ,X ′)-

lower semicontinuous.

(v) If A ∩ (−R+) = {0} and S(m) ∈ (−∞, 0) for every nonzero m ∈ M0, then ρ is proper and
σ(X ,X ′)-lower semicontinuous.

Proof. (i) Since Ω is finite, e is an interior point of X+. Then, the desired result follows from Propo-
sition 1 in Farkas et al. [46].

(ii) It follows from the Extended Namioka-Klee Theorem in Biagini and Frittelli [21] that ρ is
lower semicontinuous (in fact, continuous) with respect to the norm topology. Then, ρ is also lower
semicontinuous with respect to σ(X ,X ′) by virtue of Corollary 5.99 in Aliprantis and Border [1].

(iii) Note that e is a strictly-positive element of X , i.e. for every Z ∈ X ′+ \ {0} we have

EP[〈e, Z〉] =
d

∑
i=1

EP[Zi] > 0.

Proposition 2 in [46] implies that ρ is finite valued so that (ii) can be applied.
(iv) For every X ∈ X it is not difficult to show that

ρ(X) = inf
{

r ∈ R : X +
r
d

e ∈ S−1(A) +M0

}
;

see Lemma 3 in [46]. Then, it follows from Proposition 3.2.3 that

S−1(A) +M0 −
r
d

e ⊂ {X ∈ X : ρ(X) ≤ r} ⊂ cl
(

S−1(A) +M0 −
r
d

e
)

for every r ∈ R, where cl denotes the closure operator with respect to σ(X ,X ′). To establish
the desired lower semicontinuity, we show that S−1(A) +M0 is σ(X ,X ′)-closed. To this effect,
recall from Proposition 3.2.3 that S−1(A) is convex and σ(X ,X ′)-closed. Moreover,M0 is a finite-
dimensional vector space and S−1(A) ∩M0 = {0}. The closedness criterion in Dieudonné [39]
now implies that S−1(A) +M0 is σ(X ,X ′)-closed. Properness follows from Proposition 3.2.4.

(v) Let m ∈ M0. By assumption, we have S(m) ∈ A if and only if m = 0. This yields S−1(A) ∩
M0 = {0} and the desired statement immediately follows from point (iv).

3.2.3 THE DUAL REPRESENTATION OF ρ

We have already mentioned that, in view of (3.2), the risk measure ρ belongs to the class of risk
measures studied in Farkas et al. [46]. The general results established in that paper can be exploited
to derive a dual representation for ρ. This also follows from the general dual representation in
Frittelli and Scandolo [51].

Definition 3.2.6. We denote by D the convex subset of X ′+ defined by

D := {Z ∈ X ′+ : EP[Z1] = · · · = EP[Zd] = 1}.

Remark 3.2.7. Note that, with reference to Chapter 1, elements of D may be interpreted as pricing
densities, as they extend the functional π defined on the subspace Rd to the entire space X . Indeed,
for m ∈ Rd and Z ∈ D, we have that π(m) = ∑i mi = EP[〈m, Z〉].
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Theorem 3.2.8. If ρ is proper and σ(X ,X ′)-lower semicontinuous, then bar(S−1(A)) ∩D 6= ∅ and

ρ(X) = sup
Z∈D
{σS−1(A)(Z)−EP[〈X, Z〉]}

for every X ∈ X . The supremum can be restricted to D ∩X ′++ provided that bar(S−1(A)) ∩D ∩X ′++ 6=
∅.

Proof. Note that the cost functional π in equation (3.2) is defined on Rd ⊂ X . It is easy to see that,
for every Z ∈ X ′, the functional X 7→ EP[〈X, Z〉] is a positive extension of π to X if and only if Z
belongs to D. Since ρ is proper and σ(X ,X ′)-lower semicontinuous, it follows from Proposition 6
in [46] that the barrier cone of S−1(A) contains positive linear extensions of the cost functional π
to X , i.e. we have bar(S−1(A)) ∩ D 6= ∅. The desired representation is now a consequence of
Theorem 3 in [46].

Now, assume we find Z∗ ∈ bar(S−1(A)) ∩D ∩ X ′++ and take any element Z ∈ bar(S−1(A)) ∩
D. For every X ∈ X and every λ ∈ (0, 1) we have λZ∗ + (1− λ)Z ∈ D and

λ(σS−1(A)(Z∗)−EP[〈X, Z∗〉]) + (1− λ)(σS−1(A)(Z)−EP[〈X, Z〉])
≤ sup

Z′∈D∩X ′++

{σS−1(A)(Z′)−EP[〈X, Z′〉]}

by concavity of σS−1(A). Letting λ tend to 0 and taking a supremum over Z yields

ρ(X) ≤ sup
Z′∈D∩X ′++

{σS−1(A)(Z′)−EP[〈X, Z′〉]}.

The converse inequality is clear. This establishes the last assertion and concludes the proof.

Remark 3.2.9. (i) We highlight the link between the dual representation in Theorem 3.2.8 and the
standard Fenchel-Moreau representation; see also Remark 17 in Farkas et al. [46]. To see it, note
that the map −σS−1(A)(−·) + δD(−·) is convex and lower semicontinuous and, if ρ is proper and
σ(X ,X ′)-lower semicontinuous, it satisfies

ρ(X) = sup
Z∈X ′
{EP[〈X, Z〉] + σS−1(A)(−Z)− δD(−Z)}

for every X ∈ X by Theorem 3.2.8. From the Fenchel-Moreau Theorem it follows that for every
Z ∈ X ′

ρ∗(Z) = −σS−1(A)(−Z) + δD(−Z) =

{
supX∈S−1(A) EP[〈X, Z〉] if Z ∈ −D,
∞ otherwise.

(ii) The dual elements inD can be naturally identified with d-dimensional vectors of probability
measures on (Ω,F ) that are absolutely continuous with respect to P or, in case they have strictly-
positive components, equivalent to P. This allows to reformulate the above dual representation
in terms of probability measures. More concretely, denote by Q(P), respectively Qe(P), the set of
all d-dimensional vectors of probability measures over (Ω,F ) that are absolutely continuous with
respect to P, respectively equivalent to P. For every Q = (Q1, . . . , Qd) ∈ Q(P) and for every
X ∈ X we set

dQ

dP
:=
(

dQi
dP

, . . . ,
dQd
dP

)
, EQ[X] := E

[〈
X,

dQ

dP

〉]
=

d

∑
i=1

EQi [Xi].

Moreover, for every Q ∈ Q(P) we define

σ(Q) := σS−1(A)

(
dQ

dP

)
= inf

X∈S−1(A)
EQ[X].
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If ρ is proper and σ(X ,X ′)-lower semicontinuous, then for every X ∈ X we can write

ρ(X) = sup
Q∈Q(P), dQ

dP
∈X ′
{σ(Q)−EQ[X]}.

We can replace Q(P) by Qe(P) in the above supremum provided that bar(S−1(A)) ∩D ∩ X ′++ 6=
∅.

The condition bar(S−1(A)) ∩D ∩X ′++ 6= ∅ is necessary to be able to restrict the domain in the
above dual representation to strictly-positive dual elements. In the terminology of convex analysis,
this condition requires that the convex set S−1(A) admits a strictly-positive supporting functional
that belongs to the special set D. In the next proposition we show that this always holds if the
acceptance set A is supported by a strictly-positive functional and the impact map S is bounded
above by a strictly-increasing affine function of the consolidated capital position.

Proposition 3.2.10. Assume that Xi = E for every i ∈ {1, . . . , d}. Moreover, suppose that bar(A) ∩
E ′++ 6= ∅ and there exist a ∈ (0, ∞) and b ∈ R such that

S(X) ≤ a
d

∑
i=1

Xi + b

for every X ∈ X . Then, bar(S−1(A)) ∩D ∩X ′++ 6= ∅.

Proof. Take W ∈ bar(A) ∩ E ′++ and set Z = (aW, . . . , aW) ∈ D ∩X ′++. Then, we easily see that

σS−1(A)(Z) = inf
X∈S−1(A)

EP[〈X, Z〉] ≥ inf
X∈S−1(A)

EP[(S(X)− b)W] ≥ σA(W)− bEP[W] > −∞.

This delivers the desired assertion.

3.2.4 CHARACTERIZING THE SYSTEMIC ACCEPTANCE SET S−1(A)

Through the support function of the “systemic acceptance set” S−1(A), the dual representation of
the systemic risk measure ρ in Theorem 3.2.8 highlights the dependence on the two fundamental
underlying ingredients: The impact map S and the acceptance set A. The aim of this subsection is
to provide a dual description of the systemic acceptance set by using “penalty functions” that are
related to (but different from) the support function σS−1(A) and to investigate the main properties
of these maps. Our analysis is based on the following definition.

Definition 3.2.11. We define two maps α, α+ : X ′ → [−∞,+∞] by setting

α(Z) := sup
W∈bar(A)

{
σA(W) + inf

X∈X
{EP[〈X, Z〉]−EP[S(X)W]}

}
,

α+(Z) := sup
W∈bar(A)∩(E ′++∪{0})

{
σA(W) + inf

X∈X
{EP[〈X, Z〉]−EP[S(X)W]}

}
.

Remark 3.2.12. (i) It is easy to see that α and α+ are different in general. For example, if d > 1 and
Xi = E for every i ∈ {1, . . . , d} and we set S(X) = ∑d

i=1 Xi for every X ∈ X and A = E+, then we
have

α = −δG 6= −δG∩(X ′++∪{0}) = α+

where G = {Z ∈ X ′+ : Z1 = · · · = Zd}.
(ii) The above maps belong to the class of maps αK : X ′ → [−∞,+∞] defined by

αK(Z) := sup
W∈K

{
σA(W) + inf

X∈X
{EP[〈X, Z〉]−EP[S(X)W]}

}
,

where K is a convex cone in bar(A) such that λK+ (1− λ) bar(A) ⊂ K for every λ ∈ [0, 1]. This
will allow us to prove properties for α and α+ simultaneously. In fact, all properties of α and α+

we will consider are shared by the entire class.
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The next theorem records the announced dual representation of the systemic acceptance set and
shows why the above maps are natural “penalty functions”.

Theorem 3.2.13. The systemic acceptance set S−1(A) can be represented as

S−1(A) =
⋂

Z∈X ′
{X ∈ X : EP[〈X, Z〉] ≥ α(Z)}.

If bar(A) ∩ E ′++ 6= ∅, then S−1(A) can also be represented as

S−1(A) =
⋂

Z∈X ′
{X ∈ X : EP[〈X, Z〉] ≥ α+(Z)}.

Proof. Let K ⊂ bar(A) be a convex cone as in Remark 3.2.12. Note that, by concavity of σA, we can
equivalently rewrite the representation in Proposition A.1.10 applied to A as

A =
⋂

W∈K
{U ∈ E : EP[UW] ≥ σA(W)}.

Now, for each W ∈ K ⊂ E ′+ we consider the functional ϕW : X → R defined by

ϕW(X) := EP[S(X)W].

As remarked in the proof of Proposition 3.1.4, the functional ϕW is concave by (S3) and (S4) and
σ(X ,X ′)-upper semicontinuous by (S5). Hence, it follows from the Fenchel-Moreau Theorem A.1.6
that

ϕW(X) = inf
Z∈X ′
{EP[〈X, Z〉]− (ϕW)•(Z)}

for every X ∈ X (see Appendix A for the definition of (ϕW)•). As a result, we obtain

S−1(A) = {X ∈ X : S(X) ∈ A}
= {X ∈ X : EP[S(X)W] ≥ σA(W), ∀W ∈ K}
= {X ∈ X : EP[〈X, Z〉]− (ϕW)•(Z) ≥ σA(W), ∀W ∈ K, ∀Z ∈ X ′}

=
⋂

Z∈X ′

{
X ∈ X : EP[〈X, Z〉] ≥ sup

W∈K
{σA(W) + (ϕW)•(Z)}

}
=

⋂
Z∈X ′
{X ∈ X : EP[〈X, Z〉] ≥ αK(Z)}.

This delivers the desired representation when applied to K = bar(A) and K = bar(A) ∩ (E ′++ ∪
{0}).

The next proposition collects some properties of the maps α and α+ and shows the relation
between them. We recall that we denote by dom(α) the domain of finiteness of α (similarly for α+).
In addition, we denote by cl the closure operator with respect to the topology σ(X ′,X ).

Proposition 3.2.14. The maps α, α+ : X ′ → [−∞, ∞] satisfy the following properties (the statements
about α+ require that bar(A) ∩ E ′++ 6= ∅):

(i) α and α+ take values in the interval [−∞, 0].

(ii) α and α+ are concave and positively homogeneous.

(iii) α+ ≤ α with equality on dom(α+).

(iv) dom(α+) ⊂ dom(α) ⊂ cl(dom(α+)) ⊂ X ′+.

Proof. Throughout the proof we fix a convex cone K ⊂ bar(A) as in Remark 3.2.12. The desired
assertions will follow by taking K = bar(A) and K = bar(A) ∩ (E ′++ ∪ {0}).

(i) The representation of the systemic acceptance set S−1(A) established in the proof of Theo-
rem 3.2.13 yields αK(Z) ≤ σS−1(A)(Z) ≤ 0 for every Z ∈ X ′.
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(ii) To show that αK is concave, set for all Z ∈ X ′ and W ∈ E ′

Φ(Z, W) := inf
X∈X
{σA(W) + EP[〈X, Z〉]−EP[S(X)W]}.

Being the infimum over the parameter X of a function that is clearly jointly concave in Z and W,
we see that Φ is itself jointly concave. Since

αK(Z) = sup
W∈K

Φ(Z, W)

for every Z ∈ X ′, we infer that αK is concave. To show that αK is positively homogeneous, note first
that 0 always belongs to K, so that αK(0) ≥ 0. Together with point (i), this implies that αK(0) = 0.
Finally, for Z ∈ X ′ and λ ∈ (0, ∞) we have

αK(λZ) = sup
W∈K

{
σA(W) + inf

X∈X
{λEP[〈X, Z〉]−EP[S(X)W]}

}
= λ sup

W∈K

{
σA

(
1
λ

W
)
+ inf

X∈X

{
EP[〈X, Z〉]−EP

[
S(X)

1
λ

W
]}}

= λ sup
W∈K

{
σA(W) + inf

X∈X
{EP[〈X, Z〉]−EP[S(X)W]}

}
= λαK(Z),

where we used that K is a cone. This shows that αK is positively homogeneous.
(iii) It is clear that α+ ≤ α. To show that α+ = α on dom(α+), take Z ∈ dom(α+) and note that

α(Z) = sup
W∈bar(A)

Φ(Z, W), α+(Z) = sup
W∈bar(A)∩E ′++

Φ(Z, W).

Take W∗ ∈ bar(A) ∩ E ′++ such that Φ(Z, W∗) is finite. For each W ∈ bar(A) set Wλ = λW + (1−
λ)W∗ for λ ∈ [0, 1). Note that (Wλ) ⊂ bar(A) ∩ E ′++, so that

α+(Z) ≥ Φ(Z, Wλ) ≥ λΦ(Z, W) + (1− λ)Φ(Z, W∗)
λ↑1−−→ Φ(Z, W).

Taking a supremum over W delivers α+(Z) ≥ α(Z).
(iv) Note that dom(α+) ⊂ dom(α) by point (iii). Since α ≤ σS−1(A) as proved in point (i),

we also have dom(α) ⊂ bar(S−1(A)) ⊂ X ′+. As X ′+ is σ(X ′,X )-closed, it remains to show that
dom(α) ⊂ cl(dom(α+)). To this effect, let Z ∈ dom(α) and note that Φ(Z, W) must be finite for
some W ∈ bar(A). Take Z∗ ∈ dom(α+) and W∗ ∈ bar(A) ∩ E ′++ such that Φ(Z∗, W∗) is finite.
Then, for every λ ∈ [0, 1] we have

α+(λZ + (1− λ)Z∗) ≥ Φ(λZ + (1− λ)Z∗, λW + (1− λ)W∗)
≥ λΦ(Z, W) + (1− λ)Φ(Z∗, W∗) > −∞

by the joint convexity of Φ. The claim follows by letting λ ↑ 1.

THE CASE WHERE S IS INDUCED BY Λ

As mentioned in Remark 3.1.5, the bulk of the literature has focused on the case where the impact
function is based on an aggregation function Λ : Rd → R. The last part of this subsection is devoted
to provide an equivalent formulation of α and α+ in this situation. We focus on the positive cone
X ′+ because both maps take nonfinite values elsewhere. For ease of notation, for every Z ∈ X ′+ we
set

E+(Z) :=
d⋃

i=1

{Zi > 0} ∈ F .

Proposition 3.2.15. Assume that X is closed with respect to multiplications by characteristic functions,
i.e. for every X ∈ X and E ∈ F we have (1EX1, . . . ,1EXd) ∈ X . Moreover, consider a nonconstant,
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nondecreasing, concave function Λ : Rd → R satisfying Λ(0) = 0 and assume that S(X) = Λ(X) for
every X ∈ X . Then, the following statements hold for every nonzero Z ∈ X ′+:

(i) We have bar(A) ∩ {W ∈ E ′+ : W > 0 on E+(Z)} 6= ∅ and

α(Z) = sup
W∈bar(A), W>0 on E+(Z)

{
σA(W) + E

[
1{W>0}Λ

•
(

Z
W

)
W
]}

.

(ii) If bar(A) ∩ E ′++ 6= ∅, then

α+(Z) = sup
W∈bar(A)∩E ′++

{
σA(W) + E

[
Λ•
(

Z
W

)
W
]}

In both cases, the ratio Z
W is understood component by component.

Proof. Let K ⊂ bar(A) be a convex cone as in Remark 3.2.12 and fix a nonzero element Z ∈ X ′+.
Inspired by Ararat and Rudloff [4], we invoke Theorem 14.60 in Rockafellar and Wets [86] to get

inf
X∈X
{EP[〈X, Z〉]−EP[Λ(X)W]} = E

[
inf

x∈Rd
{xZ−Λ(x)W}

]
(3.3)

for every W ∈ K (this result requires that X be closed with respect to multiplications by character-
istic functions). Recall that K ⊂ E ′+ and note that for every W ∈ K we have

inf
x∈Rd
{xZ−Λ(x)W} =


Λ•
( Z

W
)
W on {W > 0},

0 on {W = 0} ∩ (E+(Z))c,
−∞ on {W = 0} ∩ E+(Z).

(3.4)

It follows from the definition of αK and (3.3) that

αK(Z) = sup
W∈K

{
σA(W) + E

[
inf

x∈Rd
{xZ−Λ(x)W}

]}
.

Clearly, no W ∈ bar(A) with P({W = 0} ∩ E+(Z)) > 0 contributes to the above supremum, so
that

αK(Z) = sup
W∈K, W>0 on E+(Z)

{
σA(W) + E

[
inf

x∈Rd
{xZ−Λ(x)W}

]}
= sup

W∈K, W>0 on E+(Z)

{
σA(W) + E

[
1{W>0} inf

x∈Rd
{xZ−Λ(x)W}

]}
= sup

W∈K, W>0 on E+(Z)

{
σA(W) + E

[
1{W>0}Λ

•( Z
W
)
W
]}

,

where we used (3.4) in the last equality. The desired assertions follow by taking K = bar(A) and
K = bar(A) ∩ (E ′++ ∪ {0}).

3.2.5 CHARACTERIZING THE SUPPORT FUNCTION σS−1(A)

As we have already noticed, the dual representation in Theorem 3.2.8 depends on the impact map S
and the acceptance set A through the support function of the systemic acceptance set S−1(A). The
goal of this subsection is to provide an equivalent description of the support function that relies on
the “penalty functions” α and α+. This is a direct consequence of the results in the preceding sub-
section. Here, we denote by usc(α) the σ(X ′,X )-upper semicontinuous hull of α, i.e. the smallest
σ(X ′,X )-upper semicontinuous map dominating α (similarly for α+).

Theorem 3.2.16. The support function σS−1(A) can be represented as

σS−1(A) = usc(α).
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If bar(A) ∩ E ′++ 6= ∅, then σS−1(A) can also be represented as

σS−1(A) = usc(α+).

Proof. Let K ⊂ bar(A) be a convex cone as in Remark 3.2.12. In the proof of Theorem 3.2.13 we
established that

S−1(A) =
⋂

Z∈X ′
{X ∈ X : EP[〈X, Z〉] ≥ αK(Z)}. (3.5)

This implies that αK ≤ σS−1(A). It follows from the σ(X ′,X )-upper semicontinuity of σS−1(A) that
we also have usc(αK) ≤ σS−1(A). In particular, usc(αK) never takes the value ∞. Moreover, note
that usc(αK)(0) ≥ αK(0) = 0. As a result, Proposition 2.2.7 in Zălinescu [95] tells us that usc(αK)
inherits concavity and positive homogeneity from αK. Note that αK can be replaced by usc(αK)
in (3.5). Since the only σ(X ′,X )-upper semicontinuous map σ : X ′ → [−∞, ∞) that is concave and
positively homogeneous and satisfies

S−1(A) =
⋂

Z∈X ′
{X ∈ X : EP[〈X, Z〉] ≥ σ(Z)}

is precisely the support function of S−1(A), see e.g. Theorem 7.51 in Aliprantis and Border [1], we
conclude that usc(αK) = σS−1(A) must hold. The desired assertions follow by taking K = bar(A)
and K = bar(A) ∩ (E ′++ ∪ {0}).

It is natural to ask whether taking the upper semicontinuous hull in Theorem 3.2.16 is redun-
dant in the sense that α and/or α+ are upper semicontinuous in the first place and, hence, coincide
with the support function σS−1(A). As illustrated by the following example, the answer is negative
in general.

Example 3.2.17. Let (Ω,F , P) be nonatomic and consider the pairs given by (X ,X ′) = (L∞
d (P), L1

d(P))

and (E , E ′) = (L∞(P), L1(P)). Fix λ ∈ (0, 1) and for every U ∈ L0(P) define the Value at Risk and
Expected Shortfall of U at level λ by

VaRλ(U) := inf{m ∈ R : P(U + m < 0) ≤ λ}, ESλ(U) :=
1
λ

∫ λ

0
VaRµ(U) dµ.

Define S : X → E and A ⊂ E by setting

S(X) =
d

∑
i=1
−X−i , A = {U ∈ E : ESλ(U) ≤ 0}.

It is immediate to see that S−1(A) = X+, so that

σS−1(A) = −δX ′+ = −δL1
d(P)+

.

To determine α, take any Z ∈ X ′+ and recall from Theorem 4.52 in Föllmer and Schied [49] that

σA = −δbar(A), bar(A) =
{

W ∈ E ′+ : W ≤ 1
λ

EP[W]

}
.

As a result, we infer that

α(Z) = sup
W∈E ′+ , W≤EP [W]

λ

inf
X∈X

EP

[
d

∑
i=1

(XiZi + X−i W)

]

= sup
W∈E ′+ , W≤EP [W]

λ

inf
X∈X+

EP

[
d

∑
i=1

Xi(W − Zi)

]
.
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Now, if Zj is not bounded for some j ∈ {1, . . . , d}, then P(W − Zj < 0) > 0 for every W ∈ bar(A) and

inf
X∈X+

EP

[
d

∑
i=1

Xi(W − Zi)

]
≤ inf

n∈N
EP[n1{W−Zj<0}(W − Zj)] = −∞.

In this case, we have α(Z) = −∞. Otherwise, if Z is bounded, set W = maxi∈{1,...,d} ‖Zi‖∞ ∈ bar(A)
and observe that

0 ≥ α(Z) ≥ inf
X∈X+

EP

[
d

∑
i=1

Xi(W − Zi)

]
= 0.

In conclusion, we have
α = −δX+ = −δL∞

d (P)+ .

Since L∞(P) 6= L1(P) when the underlying probability space is nonatomic, we conclude that σS−1(A) 6=
α. The same conclusion holds for α+ as well (note that bar(A) ∩ E ′++ 6= ∅). This follows because, by
Proposition 3.2.14, we always have α+ ≤ α . Alternatively, we can repeat the above argument and find that
α+ = α in our situation.

Remark 3.2.18. By combining the dual representation in Theorem 3.2.8 and the representation of
σS−1(A) obtained in Theorem 3.2.16, we see that

ρ(X) = sup
Z∈D
{usc(α)(Z)−EP[〈X, Z〉]} = sup

Z∈X ′
{usc(α)(Z)− δD(Z)−EP[〈X, Z〉]} (3.6)

for every X ∈ X . If the equality σS−1(A) = α holds, then we can drop the upper-semicontinuous
hull in the representation (3.6) and obtain

ρ(X) = sup
Z∈D
{α(Z)−EP[〈X, Z〉]} = sup

Z∈X ′
{α(Z)− δD(Z)−EP[〈X, Z〉]} (3.7)

for every X ∈ X . One may wonder whether the “simplified” representation (3.7) holds even if
the equality σS−1(A) = α does not hold. Note that usc(α) − δD is concave and σ(X ′,X )-upper
semicontinuous and that α − δD is concave. As a result, the “simplified” representation holds if
and only if

usc(α− δD) = usc(α)− δD .

The same holds with α+ instead of α (provided that bar(A) ∩ E ′++ 6= ∅). It is unclear whether this
equality holds without additional assumptions on S and A because, in general, it is not possible to
take an indicator function out of an upper-semicontinuous hull. For example, consider the simple
situation where Ω = {ω} and d = 2. In this case, we have the identification (X ,X ′) = (R2, R2).
Consider the concave and positively homogeneous function f and the convex closed set D defined
by

f = −δG , G = {z ∈ R2 : 0 ≤ z1 < z2} ∪ {(0, 0)}, D = {z ∈ R2 : z1 = z2 = 1} = {(1, 1)}.

Then, it is easy to see that

usc( f − δD) = −δ∅ 6= −δ{(1,1)} = usc( f )− δD .

3.2.6 CONDITIONS FOR THE IDENTITY σS−1(A) = α TO HOLD

We know from Theorem 3.2.16 that the support function of the systemic acceptance set S−1(A)
always coincides with the upper semicontinuous hull of the penalty function α. However, as illus-
trated by Example 3.2.17, there are simple situations where the map α fails to be upper semicontin-
uous and, hence, the equality σS−1(A) = α does not hold. In this subsection we establish a variety
of sufficient conditions for this equality to hold. Clearly, one could also ask when σS−1(A) = α+,
which would automatically imply the statement for α. While it is easy to find examples where this
holds, none of the conditions in this section apply to α+.



96 CHAPTER 3. DUAL REPRESENTATIONS FOR SYSTEMIC RISK MEASURES

As a first step, we highlight that the desired equality can be equivalently expressed in terms of
a suitable minimax problem.

Lemma 3.2.19. Let Z ∈ X ′ and define a map K : X × E ′ → [−∞, ∞] by setting

KZ(X, W) := σA(W) + EP[〈X, Z〉]−EP[S(X)W].

The following statements are equivalent:

(a) σS−1(A) = α.

(b) α is σ(X ′,X )-upper semicontinuous.

(c) For every Z ∈ X ′ we have

inf
X∈X

sup
W∈E ′

KZ(X, W) = sup
W∈E ′

inf
X∈X

KZ(X, W).

Proof. The equivalence between (a) and (b) is clear by Theorem 3.2.16. To establish equivalence
with (c), fix Z ∈ X ′ and note that

α(Z) = sup
W∈E ′

inf
X∈X

KZ(X, W)

by definition of α. It remains to show that

σS−1(A)(Z) = inf
X∈X

sup
W∈E ′

KZ(X, W).

Consider the auxiliary functions fZ : X → (−∞, ∞] defined by

fZ(X) := EP[〈X, Z〉] + δS−1(A)(X)

and FZ : X × E → (−∞, ∞] defined by

FZ(X, U) := EP[〈X, Z〉] + δA−S(X)(U).

Note that for every X ∈ X the map FZ(X, ·) is convex and lower semicontinuous and satisfies

(FZ(X, ·))∗(W) = sup
U∈E
{EP[UW]− FZ(X, U)}

= sup
U∈E , U+S(X)∈A

{EP[UW]−EP[〈X, Z〉]}

= sup
V∈E
{EP[(V − S(X))W]−EP[〈X, Z〉]}

= −σA(−W)−EP[〈X, Z〉] + EP[S(X)(−W)]

= −KZ(X,−W)

for every W ∈ E ′. As FZ(X, 0) = fZ(X) for every X ∈ X , we can apply Fenchel-Moreau to get

σS−1(A)(Z) = inf
X∈X

fZ(X) = inf
X∈X

sup
W∈E ′
{EP[0W]− (FZ(X, ·))∗(W)} = inf

X∈X
sup

W∈E ′
KZ(X, W).

This concludes the proof.

The preceding lemma shows that, for every Z ∈ X ′, the identity σS−1(A)(Z) = α(Z) is equiv-
alent to the existence of a saddle value for the function KZ. Unfortunately, the standard minimax
theorems, see e.g. Fan [43], rely on compactness assumptions that do not hold in our setting. The
remainder of this subsection is devoted to showing a number of situations where the identity holds
or, equivalently, the above minimax problem has a solution.
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THE LINEAR CASE

We start by proving the desired equality in the simple case where the impact map is given by the
aggregated, or consolidated, capital position of all the d financial institutions. In this case, there is
no restriction on the acceptance set.

Proposition 3.2.20. Assume that Xi = E for every i ∈ {1, . . . , d}. If S(X) = ∑d
i=1 Xi for every X ∈ X ,

then α = σS−1(A).

Proof. First of all, we show that for every Z ∈ X ′+ we have

σS−1(A)(Z) =

{
σA(Z1) if Z1 = · · · = Zd,
−∞ otherwise.

To see this, assume first that P(Zi > Zj) > 0 for some distinct i, j ∈ {1, . . . , d} and for every n ∈N

define a random vector Xn ∈ X by

Xn
k =


−n1{Zi>Zj} if k = i,

n1{Zi>Zj} if k = j,

0 otherwise.

Since S(Xn) = 0 ∈ A for every n ∈N, we clearly have

σS−1(A)(Z) ≤ inf
n∈N

EP[〈Xn, Z〉] = inf
n∈N

nEP[1{Zi>Zj}(Zj − Zi)] = −∞.

Next, assume that Z1 = · · · = Zd and note that, in this case, we have

σS−1(A)(Z) = inf
X∈S−1(A)

EP[S(X)Z1] = σA(Z1).

This proves the above claim. Now, for every Z ∈ X ′+ note that

α(Z) = sup
W∈bar(A)

{
σA(W) + inf

X∈X
EP

[
d

∑
i=1

Xi(Zi −W)

]}
=

{
σA(Z1) if Z1 = · · · = Zd ∈ bar(A),
−∞ otherwise.

This yields the desired assertion.

THE CONIC CASE

Next, we deal with the case where S is positively homogeneous and A is a cone. In this case, we
first show that α is given by a suitable indicator function and provide a general sufficient condition
for the equality between σS−1(A) and α. At a later stage, we apply this general condition to a variety
of concrete situations.

Lemma 3.2.21. Assume that S is positively homogeneous and A is a cone. Then, we have α = −δG for

G := {Z ∈ X ′+ : ∃W ∈ bar(A) : EP[〈X, Z〉] ≥ EP[S(X)W], ∀X ∈ X}.

Proof. Clearly, for every Z ∈ G there exists WZ ∈ bar(A) such that

inf
X∈X
{EP[〈X, Z〉]−EP[S(X)WZ]} = EP[〈0, Z〉]−EP[S(0)WZ] = 0.

As a result, for every Z ∈ G we have 0 ≥ α(Z) ≥ σA(WZ) + 0 = 0, showing that α(Z) = 0. Now,
fix Z ∈ X ′ \ G and observe that, for every W ∈ bar(A), we find XW ∈ X such that EP[〈XW , Z〉] <
EP[S(XW)W]. Then,

inf
X∈X
{EP[〈X, Z〉]−EP[S(X)W]} ≤ inf

n∈N
{EP[〈nXW , Z〉]−EP[S(nXW)W]}

= inf
n∈N
{n(EP[〈XW , Z〉]−EP[S(XW)W])}

= −∞.
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This implies that α(Z) = −∞ and concludes the proof.

Lemma 3.2.22. Assume that S is positively homogeneous and A is a cone. Moreover, assume that S(e) ∈
R+ \ {0} and that bar(A) ∩ {W ∈ L1(P) : ‖W‖1 ≤ 1} is σ(E ′, E)-compact. Then, σS−1(A) = α.

Proof. Recall that σS−1(A) = α holds if and only if α is σ(X ′,X )-upper semicontinuous. Hence, by
Lemma 3.2.21, it suffices to show that G is σ(X ′,X )-closed. To this effect, take a net (Zγ) ⊂ G
converging to some Z ∈ X ′ in the topology σ(X ′,X ). Note that Z ∈ X ′+. By definition of G, for
each γ we find Wγ ∈ bar(A) such that

EP[〈X, Zγ〉] ≥ EP[S(X)Wγ]

for every X ∈ X . To establish the desired closedness, it is enough to show that (Wγ) admits a
subnet that converges to some element of bar(A) in the topology σ(E ′, E). Note that bar(A) =
{σA ≥ 0} by conicity ofA, showing that bar(A) is σ(E ′, E)-closed. Since bar(A) ⊂ E ′+, we see that

EP[〈e, Zγ〉] ≥ EP[S(e)Wγ] ≥ 0,

or equivalently
EP[〈e, Zγ〉]

S(e)
≥ EP[Wγ] ≥ 0,

for every γ. Since EP[〈e, Zγ〉] → EP[〈e, Z〉], the net (Wγ) is bounded in L1(P) and, hence, by
using the compactness assumption, it admits a convergent subnet in the topology σ(E ′, E). In view
of the σ(E ′, E)-closedness of bar(A), we infer that the limit belongs to bar(A). This concludes the
proof.

The next proposition describes a number of situations where we can ensure the above compact-
ness condition and, thus, we can establish that σS−1(A) = α.

Proposition 3.2.23. Assume that S is positively homogeneous and A is a cone. Moreover, assume that
S(e) ∈ R+ \ {0}. Then, σS−1(A) = α in each of the following cases:

(i) Ω is finite.

(ii) A is polyhedral, i.e. there exist W1, . . . , Wn ∈ E ′+ and a1, . . . , an ∈ R such that

A =
n⋂

i=1

{U ∈ E : EP[UWi] ≥ ai}.

(iii) A is induced by Expected Shortfall, i.e. there exists λ ∈ (0, 1) such that

A = {U ∈ E : ESλ(U) ≤ 0}.

(iv) (E , E ′) = (L∞(P), L1(P)) and A is induced by Weighted Value at Risk, i.e. there exists a probability
measure µ on [0, 1] such that

A =

{
U ∈ E :

∫
[0,1]

ESλ(U) dµ(λ) ≤ 0
}

.

Proof. (i) In the case that Ω is finite, the space E ′ is finite dimensional and the compactness condi-
tion in Lemma 3.2.22 is clearly satisfied because bar(A) = {σA ≥ 0} is always σ(E ′, E)-closed.

(ii) If A is polyhedral, then it is easy to see that bar(A) is a finitely-generated convex cone, i.e.
there exist W1, . . . , Wn ∈ E ′+ such that

bar(A) =
{

n

∑
i=1

λiWi : λ1, . . . , λn ∈ [0, ∞)

}
.
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Note that for all λ1, . . . , λn ∈ [0, ∞) we have∥∥∥∥∥ n

∑
i=1

λiWi

∥∥∥∥∥
1

=
n

∑
i=1

λi‖Wi‖1.

As a result, bar(A) ∩ {W ∈ L1(P) : ‖W‖1 ≤ 1} is easily seen to be σ(E ′, E)-compact and we can
apply Lemma 3.2.22 to get the desired result.

(iii) If A is induced by Expected Shortfall as in Example 3.2.17, then

bar(A) =
{

W ∈ E ′+ : W ≤ 1
λ

EP[W]

}
.

As a result, we easily see that

bar(A) ∩ {W ∈ L1(P) : ‖W‖1 ≤ 1} ⊂ {W ∈ L∞(P)+ : W ≤ λ−1}.

Since the set bar(A) ∩ {W ∈ L1(P) : ‖W‖1 ≤ 1} is σ(L∞(P), L1(P))-closed, it follows from the
Banach-Alaoglu Theorem that it is even σ(L∞(P), L1(P))-compact. As E ⊂ L1(P), we automati-
cally have σ(E ′, E)-compactness and we conclude by applying Lemma 3.2.22.

(iv) If A is induced by Weighted Value at Risk, then bar(A) ∩ {W ∈ L1(P) : ‖W‖1 ≤ 1} is
norm closed in L1(P) by Exercise 4.6.6 [49], and hence σ(L1(P), L∞(P))-closed. It follows from
the Banach-Alaoglu Theorem that it is even σ(L1(P), L∞(P))-compact and we may conclude by
applying Lemma 3.2.22.

THE CASE WHERE THE IMAGE OF S INTERSECTS THE INTERIOR OF A

As a final step, we follow Rockafellar [84] to establish the identity σS−1(A) = α under a suitable
interiority condition, which also appears in Armenti et al. [7] and Biagini et al. [20].

Proposition 3.2.24. (i) If there exists X∗ ∈ X such that S(X∗) belongs to the σ(E , E ′)-interior of A,
then α = σS−1(A).

(ii) Assume that E ′ is the norm dual of E . If there exists X∗ ∈ X such that S(X∗) belongs to the norm
interior of A, then α = σS−1(A).

Proof. (i) By assumption, we find a σ(E , E ′)-neighborhood of zero U ⊂ E such that S(X∗) +U ⊂ A.
Now, fix an element Z ∈ X ′ and define a map ψZ : E → [−∞, ∞] by setting

ψZ(U) := inf
X∈X

FZ(X, U).

Here, we have adopted the notation introduced in the proof of Lemma 3.2.19. It is easy to verify
that FZ is jointly convex and, hence, ψZ is convex. Note that

ψZ(U) ≤ FZ(X∗, U) = EP[〈X∗, Z〉]

for every U ∈ U , so that ψZ is bounded from above on U . In view of Lemma 3.2.19, the desired
assertion follows from Theorem 17 in Rockafellar [84] (by taking ϕ = ψZ and F = FZ in the notation
of that result).

(ii) Since the norm topology on E is compatible with our bilinear form on E × E ′ under the
assumption that E ′ is the norm dual of E , we can repreat the same argument as in (i) by exploiting
the fact that Theorem 17 in [84] holds under any compatible topology.

3.3 “FIRST AGGREGATE, THEN ALLOCATE”-TYPE SYSTEMIC RISK

MEASURES

In this short section we turn to systemic risk measures of “first aggregate, then allocate” type and
their dual representations. Throughout the section we fix an admissible impact map S and an
admissible acceptance set A.
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3.3.1 THE SYSTEMIC RISK MEASURE ρ̃

“First aggregate, then allocate”-type systemic risk measures are defined as follows.

Definition 3.3.1. We define a map ρ̃ : X → [−∞, ∞] by setting

ρ̃(X) = inf{m ∈ R : S(X) + m ∈ A}.

The difference with respect to ρ is that, instead of injecting capital into the system in order to
reach an acceptable level of systemic risk, one looks at the minimum level of the chosen systemic
risk indicator that ensures acceptability. In particular, if the impact function is expressed in mone-
tary terms, then ρ̃(X) can be interpreted as a bail-out cost for the “aggregated position” S(X). For
a thorough presentation of this type of systemic risk measures we refer to the literature cited in the
introduction.

In what follows, we exploit the fact that ρ̃ can be expressed as the composition between the
impact map and the standard cash-additive risk measure ρA : E → [−∞, ∞] given by

ρA(X) := inf{m ∈ R : X + m ∈ A}.

The next result records the key properties of ρ̃. In particular, differently from the systemic risk
measure ρ, we show that ρ̃ is always lower semicontinuous under our standing assumptions on
the impact map and the acceptance set.

Proposition 3.3.2. The systemic risk measure ρ̃ is convex, σ(X ,X ′)-lower semicontinuous, and satisfies
ρ̃(0) ≤ 0. Moreover, ρ̃ is proper if and only if ρ̃(0) > −∞ if and only if A∩ (−R+) 6= −R+.

Proof. Convexity is clear by composition. To show lower semicontinuity, note that ρA is σ(E , E ′)-
lower semicontinuous by the σ(E , E ′)-closedness of A. Now, take r ∈ R and note that

{X ∈ X : ρ̃(X) ≤ r} = S−1({U ∈ E : ρA(U) ≤ r}).

Following the argument in the proof of Proposition 3.2.3 we can show that the above set is σ(X ,X ′)-
closed, which delivers the desired lower semicontinuity. To show properness, observe first that
ρ̃(0) ≤ 0 because S(0) = 0 ∈ A. The above equivalence can now be established as in the proof of
Proposition 3.2.4.

3.3.2 THE DUAL REPRESENTATION OF ρ̃

The purpose of this subsection is to derive a dual representation of ρ̃ and to compare it with the dual
representation of ρ. In this case, the acceptability test is performed on S(X) and the acceptance set
isA. This suggests to rely on the dual representation of ρA in order to achieve in a straightforward
way the desired dual representation of ρ̃. The following maps are the fundamental ingredients of
the desired representation.

Definition 3.3.3. We define two maps α̃, α̃+ : X ′ → [−∞,+∞] by setting

α̃(Z) := sup
W∈bar(A), EP[W]=1

{
σA(W) + inf

X∈X
{EP[〈X, Z〉]−EP[S(X)W]}

}
,

α̃+(Z) := sup
W∈bar(A)∩(E ′++∪{0}), EP[W]=1

{
σA(W) + inf

X∈X
{EP[〈X, Z〉]−EP[S(X)W]}

}
.

Remark 3.3.4. The above maps belong to the class of maps α̃K : X ′ → [−∞,+∞] defined by

α̃K(Z) := sup
W∈K, EP[W]=1

{
σA(W) + inf

X∈X
{EP[〈X, Z〉]−EP[S(X)W]}

}
,

where K is a convex cone in bar(A) such that λK + (1− λ) bar(A) ⊂ K for every λ ∈ [0, 1]; see
also Remark 3.2.12. This will allow us to prove properties for α̃ and α̃+ simultaneously. In fact, all
properties of α̃ and α̃+ we will consider are shared by the entire class.
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Before we establish the desired dual representation we highlight some relevant properties of
the above maps and point out their relationship with the penalty functions α and α+. Recall that
we denote by dom(α̃) the domain of finiteness of α̃ (similarly for α̃+), and by cl the closure operator
with respect to the topology σ(X ′,X ).

Proposition 3.3.5. The maps α̃, α̃+ : X ′ → [−∞, ∞] satisfy the following properties (the statements about
α̃+ require that bar(A) ∩ E ′++ 6= ∅):

(i) α̃ and α̃+ take values in the interval [−∞, 0].

(ii) α̃ and α̃+ are concave.

(iii) dom(α̃+) ⊂ dom(α̃) ⊂ cl(dom(α̃+)) ⊂ X ′+.

(iv) α is the smallest positively homogeneous map dominating α̃, i.e. for every Z ∈ X ′

α(Z) = sup
λ>0

α̃(λZ)
λ

.

(v) α+ is the smallest positively homogeneous map dominating α̃+, i.e. for every Z ∈ X ′

α+(Z) = sup
λ>0

α̃+(λZ)
λ

.

Proof. (i)-(ii), (iv)-(v) Let K ⊂ bar(A) be a convex cone as in Remark 3.3.4. It is clear that

αK(Z) = sup
λ>0

α̃K(λZ)
λ

for every Z ∈ X ′. In particular, α̃K ≤ αK. It follows from the proof of Proposition 3.2.14 that α̃K
takes value into [−∞, 0]. Moreover, the proof of the concavity of αK in that result can be repeated
to establish the concavity of α̃K. The desired assertions follow by taking K = bar(A) and K =
bar(A) ∩ (E ′++ ∪ {0}).

(iii) The assertion can be proved by repeating the proof of the corresponding statement in Propo-
sition 3.2.14.

We record the announced dual representation of ρ̃ in the next result.

Theorem 3.3.6. (i) If ρ̃ is proper, then we have

ρ̃(X) = sup
Z∈X ′+

{α̃(Z)−EP[〈X, Z〉]}

for every X ∈ X . The supremum can be restricted to X ′++ provided that dom(α̃) ∩ X ′++ 6= ∅.
(ii) Assume that bar(A) ∩ E ′++ 6= ∅. If ρ̃ is proper, then we have

ρ̃(X) = sup
Z∈X ′+

{α̃+(Z)−EP[〈X, Z〉]}

for every X ∈ X . The supremum can be restricted to X ′++ provided that dom(α̃+) ∩ X ′++ 6= ∅.

Proof. Let K ⊂ bar(A) be a convex cone as in Remark 3.3.4. Note that the dual representation in
Proposition A.1.10 applied to A yields

A =
⋂

W∈K
{U ∈ E : EP[UW] ≥ σA(W)} =

⋂
W∈K, EP[W]=1

{U ∈ E : EP[UW] ≥ σA(W)}, (3.8)

where we used the positive homogeneity of σA (together with the fact that K ⊂ E ′+). As a result,
for every U ∈ E we get

ρA(U) = sup
W∈K, EP[W]=1

{σA(W)−EP[UW]}.
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Using the notation introduced in the proof of Theorem 3.2.13, we immediately get

ρ̃(X) = sup
W∈K, EP[W]=1

{σA(W)−EP[S(X)W]}

= sup
W∈K, EP[W]=1

sup
Z∈X ′+

{σA(W)−EP[〈X, Z〉] + (ϕW)•(Z)}

= sup
Z∈X ′+

sup
W∈K, EP[W]=1

{σA(W)−EP[〈X, Z〉] + (ϕW)•(Z)}

= sup
Z∈X ′+

{α̃K(Z)−EP[〈X, Z〉]}

for every X ∈ X . If, in addition, dom(α̃K) ∩ X ′++ 6= ∅, then we get

ρ̃(X) = sup
Z∈X ′++

{α̃K(Z)−EP[〈X, Z〉]}

for every X ∈ X by the same argument used to reduce the domain of the supremum in the proof
of Theorem 3.2.8. The desired assertions now follow by taking K = bar(A) and K = bar(A) ∩
(E ′++ ∪ {0}).

Remark 3.3.7. (i) As in Remark 3.2.9, we highlight the link between the dual representation in
Theorem 3.3.6 and the standard Fenchel-Moreau representation. We claim that, if ρ̃ is proper, then

ρ̃∗(Z) = −usc(α̃)(−Z) = −usc(α̃+)(−Z)

for every Z ∈ X ′ (where the last equality holds provided that bar(A) ∩ E ′++ 6= ∅). Here, we have
denoted by usc(α̃) the σ(X ′,X )-upper semicontinuous hull of α̃ (similarly for α̃+). To see this, note
first that

ρ̃(X) = sup
Z∈X ′
{α̃(Z)−EP[〈X, Z〉]} = sup

Z∈X ′
{usc(α̃)(Z)−EP[〈X, Z〉]}

for every X ∈ X . The left-hand side equality holds because α̃ = −∞ outside X ′+ by Proposi-
tion 3.3.5. The right-hand side equality follows from Theorem 2.3.1 in Zălinescu [95]. Since usc(α̃)
is concave and σ(X ′,X )-upper semicontinuous, the desired claim is a consequence of the Fenchel-
Moreau Theorem. The argument for α̃+ is identical.

(ii) The dual elements in the above representation can be identified with d-dimensional vectors
of probability measures on (Ω,F ) that are absolutely continuous (or equivalent) with respect to
P up to a normalizing vector that collects their expectations. This allows to express the above
representation in terms of probability measures. Indeed, for every w ∈ Rd

+ define

Qw(P) := {Q ∈ Q(P) : Qi = P if wi = 0, ∀i ∈ {1, . . . , d}}, Qw
e (P) = Qe(P) ∩Qw(P),

where we have used the notation from Remark 3.2.9. Then, if ρ̃ is proper, we easily see that

ρ̃(X) = sup
w∈Rd

+ , Q∈Qw(P), dQ
dP
∈X ′

{
α̃

(
w1

dQ1

dP
, . . . , wd

dQd
dP

)
−

d

∑
i=1

wiEQi [Xi]

}

for every X ∈ X . We can replaceQw(P) byQw
e (P) in the above supremum provided that dom(α̃)∩

X ′++ 6= ∅. The same holds with α̃+ instead of α̃ (provided that bar(A) ∩ E ′++ 6= ∅).

The condition dom(α̃) ∩ X ′++ 6= ∅ is needed to restrict the domain in the above dual represen-
tation to strictly-positive dual elements (similarly for α̃+). We conclude this section by providing a
sufficient condition for this to hold; see also Proposition 3.2.10.

Proposition 3.3.8. Assume that Xi = E for every i ∈ {1, . . . , d}. Moreover, suppose that bar(A) ∩
E ′++ 6= ∅ and there exist a ∈ (0, ∞) and b ∈ R such that

S(X) ≤ a
d

∑
i=1

Xi + b
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for every X ∈ X . Then, dom(α̃+) ∩ X ′++ 6= ∅ (and, a fortiori, dom(α̃) ∩ X ′++ 6= ∅).

Proof. Take W ∈ bar(A) ∩ E ′++ and note that we can always assume that EP[W] = 1 by conicity of
bar(A). Setting Z = (aW, . . . , aW) ∈ X ′++, we easily see that

α̃(Z) ≥ α̃+(Z) ≥ σA(W) + inf
X∈X
{EP[〈X, Z〉]−EP[S(X)W]} ≥ σA(W)− bEP[W] > −∞.

This delivers the desired assertion.

3.4 RISK MEASURES BASED ON UNIVARIATE UTILITY FUNCTIONS

In this final section we provide a simple proof of the dual representation of shortfall risk mea-
sures, see Theorem 4.115 in Föllmer and Schied [49], that uses our general strategy to obtain dual
representations. For ease of comparison, we focus on bounded positions.

Throughout the entire section we fix a nonconstant, concave, increasing function u : R → R,
which is interpreted as a standard von Neumann-Morgenstern utility function. We fix u0 ∈ R such
that u(x) > u0 for some x ∈ R and define a map ρu : L∞(P),→ [−∞, ∞] by

ρu(X) := inf{m ∈ R : EP[u(X + m)] ≥ u0}.

Theorem 3.4.1. The risk measure ρu is convex and σ(L∞(P), L1(P))-lower semicontinuous. Moreover,

ρu(X) = sup
Q�P

{
EQ[−X] + sup

λ>0

{
1
λ

(
u0 + EP

[
u•
(

λ
dQ

dP

)])}}

for every X ∈ L∞(P),.

Proof. It is well-known that ρu is convex and σ(L∞(P), L1(P))-lower semicontinuous. To estab-
lish the above representation, note that ρu can be viewed as a “first allocate, then aggregate”-type
systemic risk measure corresponding to the case d = 1 and the specifications

(X ,X ′) = (L∞(P), L1(P)), (E , E ′) = (L∞(P), L1(P)),

S(X) = u(X), A = {U ∈ L∞(P) : EP[U] ≥ u0}.

First of all, note that bar(A) = R+ and σA(λ) = λu0 for every λ ∈ R+. Since bar(A) ∩ E ′++ is
nonempty, we can work with α+; see Definition 3.2.11. It follows from Proposition 3.2.15 that

α+(Z) = sup
W∈bar(A)∩E ′++

{
σA(W) + E

[
u•
(

Z
W

)
W
]}

= sup
λ>0

{
λu0 + E

[
u•
(

Z
λ

)
λ

]}
= sup

λ>0

{
1
λ
(u0 + EP[u•(λZ)])

}
for every nonzero Z ∈ X ′+. The representation of S−1(A) in Theorem 3.2.13 yields

S−1(A) =
⋂

Z∈X ′+\{0}
{X ∈ X : EP[XZ] ≥ α+(Z)} =

⋂
Q�P

{
X ∈ X : EQ[X] ≥ α+

(
dQ

dP

)}
,

where we used that dom(α+) ⊂ X ′+ and that α+ is positively homogeneous; see Proposition 3.2.14.
It remains to observe that

ρu(X) = inf{m ∈ R : X + m ∈ S−1(A)}

for every X ∈ X .
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APPENDIX A

BASICS IN ANALYSIS AND
PROBABILITY

This appendix is a brief collection of definitions and results from Mathematical Analysis and Prob-
ability that are used throughout the thesis. It does not mean to be an exhaustive review of the
involved topics, but just a quick way to refresh some standard knowledge. For this reason, we do
not provide proofs. The interested reader will find proofs and details e.g. in Aliprantis and Border
[1] and Zalinescu [95]. For more details about Orlicz spaces, we refer to Rao and Ren [83] and
Meyer-Nieberg[73]. For the necessary notation, we refer to the List of Symbols on page 117.

A.1 CONVEX ANALYSIS

Let X be a locally convex Hausdorff topological vector space such that X ′ is its topological dual
(or a space identified with it).

Remark A.1.1. In Chapters 1 and 3, we encounter the following situation. Let X ,Y be nonzero real
vector spaces and let 〈·, ·〉 : X × Y → R be a bilinear mapping. The weakest linear topology on
X with respect to which the map 〈·, Y〉 is continuous for every Y ∈ Y is denoted by σ(X ,Y). The
bilinear mapping is said to be separating for X if for all nonzero X ∈ X there exists Y ∈ Y such
that 〈X, Y〉 6= 0. In this case, the topology σ(X ,Y) is both Hausdorff and locally convex, and Y
is identified with the topological dual of X equipped with σ(X ,Y). Similarly, Y can be equipped
with the σ(Y ,X ) topology. The results contained in this appendix are repeatedly applied to this
type of topological paired spaces.

A number of definitions follow. Note that for the first three we actually need only the vector
structure on X . First, we define the types of sets and functions that we cope with all along the
thesis.

Definition A.1.2. A subset C ⊂ X is said:

(i) Convex if tC + (1− t)C ⊂ C for every t ∈ [0, 1].

(ii) Conic (or a cone) if tC ⊂ C for every t ≥ 0.

(iii) Closed under addition if C + C ⊂ C.

(iv) Star shaped about 0 if tC ⊂ C for every t ∈ [0, 1].

Definition A.1.3. Let C ⊂ X be a nonempty set and consider a function f : C → R.

(i) f is said proper if there exists X ∈ C such that f (X) ∈ R and f never attains the value −∞.

(ii) If C is convex, f is said convex if f (tX + (1− t)Y) ≤ t f (X) + (1− t) f (Y) for every X, Y ∈ C,
t ∈ [0, 1] (equivalently, if epi( f ) is a convex set).

(iii) If C is convex, f is said concave if − f is convex (equivalently, if hypo( f ) is a convex set).

(iv) If C is convex, f is said quasi convex if f (tX +(1− t)Y) ≤ max{ f (X), f (Y)} for every X, Y ∈ C,
t ∈ [0, 1] (equivalently, if {X ∈ C : f (X) ≤ m} is a convex set for every m ∈ R).
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(v) If C is conic, f is said positively homogeneous or conic if f (tX) = t f (X) for every X ∈ C, t ≥ 0
(equivalently, if epi( f ) is a conic set and f (0) = 0).

(vi) If C is closed under addition, f is said subadditive if f (X+Y) ≤ f (X)+ f (Y) for every X, Y ∈ C
(equivalently, if epi( f ) is closed under addition).

(vii) If C is closed under addition, f is said superadditive if − f is subadditive (equivalently, if
hypo( f ) is closed under addition).

(viii) If C is a convex cone, f is said sublinear if it is subadditive and positively homogeneous.

(ix) If C is a convex cone, f is said superlinear if it is superadditive and positively homogeneous.

We define conic hulls of sets and functions. For other sets and functions obtained through a
“conification” procedure, see Appendix B.

Definition A.1.4. The conic hull of a set C ⊂ X is the smallest cone containing C and is denoted by
cone(C), that is

cone(C) :=
⋃
t≥0

tC.

The conic hull of a function f : X → R such that f (0) = 0 is the largest conic function dominated
by f and is denoted by cone( f ), that is, for X ∈ X ,

cone( f )(X) := inf
t>0

f (tX)

t
.

The definition of Fenchel-Moreau conjugate function follows, together with the Fenchel-Moreau
Theorem. We assume that the reader is familiar with the notion of lower semicontinuity for ex-
tended real valued functions on X .

Definition A.1.5. Consider a function f : X → (−∞, ∞]. The convex conjugate of f is the function
f ∗ : X ′ → (−∞, ∞] defined by

f ∗(ψ) := sup
X∈X
{ψ(X)− f (X)}.

Consider a function g : X → [−∞, ∞). The concave conjugate of g is the function g• : X ′ → [−∞, ∞)
defined by

g•(ψ) := inf
X∈X
{ψ(X)− g(X)} = −(−g)∗(−ψ).

Theorem A.1.6 (Fenchel-Moreau). If a function f : X → (−∞,+∞] is convex and lower semicontinu-
ous, then

f (X) = sup
ψ∈X ′
{ψ(X)− f ∗(ψ)}

for every X ∈ X , and if a function g : X → [−∞, ∞) is concave and upper semicontinuous, then

g(X) = inf
ψ∈X ′
{ψ(X)− g•(ψ)}

for every X ∈ X .

The next theorem is the standard dual representation of quasi convex lower semicontinuous
functions, which has been derived in Penot and Volle [82].

Theorem A.1.7 (Penot-Volle). Let f : X −→ (−∞,+∞] be a quasi convex lower semicontinuous func-
tion. Then

f (X) = sup
ψ∈X ′

inf{ f (Y) : ψ(Y) ≤ ψ(X)}.

for every X ∈ X .

The next proposition regards epigraphs of lower semicontinuous functions. Recall that for any
function f : X → R the following holds for every X ∈ X :

f (X) = inf{m ∈ R : (X, m) ∈ epi( f )}. (A.1)
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Proposition A.1.8. Let G ⊂ X ×R be such that if (X, m) ∈ G, then (X, n) ∈ G for every n ≥ m, and
consider the function f : X → R defined for every X ∈ X as

f (X) := inf{m ∈ R : (X, m) ∈ G}.

The following statements hold:

(i) If f is lower semicontinuous, then epi( f ) = cl(G) (closure in the product topology on X ×R).

(ii) If G is closed in the product topology on X ×R, then f is lower semicontinuous and epi( f ) = G.

We now define support functions and barrier cones.

Definition A.1.9. Let C ⊂ X be a nonempty set. The support function of C and the upper support
function of C are the maps σC : X ′ → [−∞,+∞) and σC : X ′ → (−∞,+∞] defined for ψ ∈ X ′ by

σC(ψ) := inf
X∈C

ψ(X), σC(ψ) := sup
X∈C

ψ(X).

The barrier cone of C is defined as follows:

bar(C) := {ψ ∈ X ′ : σC(X) > −∞}.

Note that, since σC(ψ) = −σC(−ψ), then

− bar(C) = {ψ ∈ X ′ : σC(X) < ∞}.

For every nonempty set C ⊂ X , σC is superlinear and σ(X ′,X )-upper semicontinuous, σC is sub-
linear and σ(X ′,X )-lower semicontinuous, and bar(C) is a convex cone. If moreover C is a cone,
then bar(C) is σ(X ′,X )-closed and

σC(ψ) =

{
0 if ψ ∈ bar(C)
−∞ otherwise

, σC(ψ) =

{
0 if ψ ∈ − bar(C)
∞ otherwise

.

Note that, unless C is conic, bar(C) may fail to be σ(X ′,X )-closed. The indicator function of a set
A ⊂ X is the map δA : X → [0, ∞] given by

δA(X) :=

{
0 if X ∈ A,
∞ otherwise.

For every ψ ∈ X ′, we have σA(ψ) = (−δA)
•(ψ) = −δ∗A(−ψ).

The following dual representation for closed convex sets is a direct consequence of the Hahn-
Banach Separation Theorem.

Proposition A.1.10. For every convex and closed set C ⊂ X we have

C =
⋂

ψ∈X ′
{X ∈ X : ψ(X) ≥ σC(ψ)} =

⋂
ψ∈bar(C)

{X ∈ X : ψ(X) ≥ σC(ψ)}.

A.2 FUNCTIONS VALUED IN ORDERED TOPOLOGICAL VECTOR

SPACES

In this section, let X be an Hausdorff ordered locally convex topological vector space (for details,
see [1]), and let us denote the compatible quasiorder with ≥ and the positive cone with X+, that is

X+ := {X ∈ X : X ≥ 0}.

If X ′ is the topological dual of X , we assume that it is equipped with the natural order induced by
the cone of positive functionals

X ′+ := {ψ ∈ X ′ : ψ(X) ≥ 0 ∀X ∈ X+}.
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As usual, a positive functional ψ is strictly positive if ψ(X) > 0 for every nonzero X ∈ X+. The set of
strictly positive functionals is denoted by X ′++. Similarly X ∈ X is said strictly positive if ψ(X) > 0
for every nonzero ψ ∈ X ′+, and the set of strictly positive elements of X is denoted by X++. For a
subset L of X , L+ and L++ are defined as follows

L+ := L ∩ X+, L++ := L ∩ X++.

Similarly for a subset L′ of X ′.
We now define monotone sets and maps. Note that actually topology is not needed for these

definitions.

Definition A.2.1. A set C ⊂ X is monotone if C + X+ ⊂ C. A function f : Y → X , where Y is
ordered by �, is monotone increasing (decreasing) if f (X) ≥ f (Y) whenever Y � X (X � Y).

When it is clear from the context we do not distinguish between increasing and decreasing
monotonicity. It is easy to show that if C is a monotone set, its barrier cone bar(C) is contained in
the positive cone X ′+, and if f : X → R is a monotone increasing function, then the supremum
in the Fenchel-Moreau convex representation and in the quasi convex representation can be taken
over ψ ∈ X ′+.

For functions valued in X , the definition of convex (concave, positively homogeneous, subadditive,
superadditive, sublinear, superlinear) function, extends naturally that of Definition A.1.3 by using the
quasiorder of X . For the scopes of this thesis, we also define upper semicontinuity for functions
valued in X .

Definition A.2.2. Let C be a nonempty subset of a topological space Y , and take Y0 ∈ C. A function
f : C → X is upper semicontinuous at Y0 if for every neighborhood U of f (Y0), one finds a neigh-
borhood V of Y0 such that f (V) ⊂ U − X+. The function f is upper semicontinuous if it is upper
semicontinuous at Y for every Y ∈ C.

The next proposition gives some characterizations of upper semicontinuity if Y coincides with
RN (note that some of them are valid for every topological space). Since this type of upper semi-
continuity is rarely used, in this case we furnish a proof of the proposition.

Proposition A.2.3. Let C be a nonempty subset of RN . Consider a function f : C → X and λ ∈ C. The
following statements are equivalent:

(i) f is upper semicontinuous at λ.

(ii) For every net (or for every sequence) (λα) ⊂ C, λα → λ and for every U ∈ N f (λ), there is αU such
that if α � αU one finds Yα

U ∈ U such that f (λα) ≤ Yα
U .

(iii) For every net (or for every sequence) (λα) ⊂ C, λα → λ, there is a subnet (λβ) ⊂ (λα) and (Yβ) ⊂ X
such that Yβ → f (λ) and f (λβ) ≤ Yβ.

If X is first countable, they are also equivalent to the following statement:

(iv) For every sequence (λn) ⊂ C, λn → λ, there is (Yn) ⊂ X such that Yn → f (λ) and f (λn) ≤ Yn.

Proof. It is clear that (i) implies (ii).
We now show that (ii) implies (iii) for nets, and the same proof holds for sequences. Take a net

(λα)α∈A ⊂ C, λα → λ. The set B := {(α,U ) : U ∈ N f (λ), α ∈ A, α � αU} is directed by the binary
relation (α,U ) ≥ (α′,U ′) iff α � α′ and U ⊆ U ′. It is easily verified that the net (λ(α,U ))(α,U )∈B
defined as λ(α,U ) := λα, is a subnet of (λα)α∈A. Due to statement (ii), for every (α,U ) ∈ B, we find
Y(α,U ) ∈ U such that f (λ(α,U )) ≤ Y(α,U ) and clearly Y(α,U ) → f (λ).

It remains to prove that (iii) implies (i). By contradiction, assume f is not upper semicontinuous
at λ. Let U be a neighborhood of f (λ) such that every neighborhood V of λ contains λV such that
f (λV ) is not dominated by any point of U . Take (Un)n∈N a fundamental system of neighborhoods
of λ and the corresponding λUn . By (iii) there is Y ∈ U such that f (λUk ) ≤ Y for some k, which is a
contradiction.

Now assume X is first countable. Clearly if (iv) holds, (iii) holds. We prove that (ii) implies (iv).
Take (λn) ⊂ C, λn → λ, and let (Uk)k be a fundamental system of neighborhood of f (λ) such that
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Uk ⊃ Uk+1. From (ii), we know that for every k, we find a corresponding nk (αU in the statement)
such that for n ≥ nk there is Yn

k ∈ Uk such that f (λn) ≤ Yn
k . We can assume that (nk)k is strictly

increasing. The sequence we are seeking is defined as Yn := Yn
k if nk ≤ n < nk+1.

Incidentally, note that from (iii) it follows that for an upper semicontinuous map f : C → X ,
the counterimage of closed monotone sets is closed, generalizing the standard notion of upper
semicontinuity of real valued functions.

A.3 SET VALUED MAPPINGS

We use the notation ⇒ for set valued mappings, that is, functions that assign a subset of the image
to every element of the domain. Here, we collect some definitions about continuity properties of
set valued mappings. For a reference, see Aliprantis and Border [1] and Bank et al. [12].

Definition A.3.1. Let F : Y ⇒ Z be a set valued mapping between topological spaces, and let
Y0 ∈ Y . We say that:

(i) F is closed at Y0 if for (Yα) ⊆ Y , (Zα) ⊆ Z with the properties Yα → Y0, Zα ∈ F(Yα), Zα →
Z0 ∈ Z , it follows that Z0 ∈ F(Y0).

(ii) F is upper semicontinuous at Y0 if for every open set U ⊆ Z containing F(Y0), there is a neigh-
borhood V if Y0 such that F(Y) ⊆ U whenever Y ∈ V .

(iii) F is lower semicontinuous at Y0 if for every open set U ⊆ Z that has nonempty intersection
with F(Y0), there is a neighborhood V if Y0 such that F(Y) ∩ U 6= ∅ whenever Y ∈ V .

(iv) F is strongly lower semicontinuous at Y0 if for every Z ∈ F(Y0), there are neighborhoods U and
V respectively of Z and Y0 such that U ⊆ F(Y) whenever Y ∈ V .

A.4 RANDOM VARIABLES

We fix a probability space (Ω,F , P). A random variable is a Borel measurable function X : Ω→ R.
The positive and negative part of X are

X+ := max{X, 0}, X− := max{−X, 0},

and the modulus of X is
|X| := X+ − X−.

The elements of R are identified with constant random variables. We denote by EP the expectation
with respect to P and use a similar notation when other probability measures are considered. If
Q is a probability measure that is absolutely continuous with respect to P, we denote by dQ

dP
its

Radon-Nikodym derivative. In some chapters, we find convenient to apply expectations to generic
random variables regardless of their integrability. We do this by setting

EP[X] := EP[X+]−EP[X−],

where we adopt the convention ∞ −∞ = −∞. This means that a non-integrable negative part
prevails over a non-integrable positive part.

We denote by L 0(P) the set of all random variables. It is an ordered vector space, equipped
with the natural pointwise operations and partial order. Equipped with the topology of the point-
wise convergence, it is a topological vector space that fails to be locally convex. We denote by L0(P)
the set of equivalence classes of random variables with respect to almost-sure equality under P. As
usual, when the reference space is a subset of L0(P), we do not explicitly distinguish between an
element of L0(P) and any of its representatives. We equip L0(P) with its canonical algebraic oper-
ations and almost sure partial order induced by P. It is an ordered topological vector space when
equipped with the topology of the convergence in probability, and it fails to be locally convex as
well.
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The positive cones of L 0(P) and L0(P) are the convex cones consisting of all positive random
variables (or equivalence classes):

L 0(P)+ := {X ∈ L 0(P) : X(ω) ≥ 0 ∀ω ∈ Ω}, L0(P)+ := {X ∈ L0(P) : P(X ≥ 0) = 1}.

Moreover we define the sets of strictly positive elements as follows:

L 0(P)++ := {X ∈ L 0(P) : X(ω) > 0 ∀ω ∈ Ω}, L0(P)++ := {X ∈ L0(P) : P(X > 0) = 1}.

Similarly, the sets of positive and strictly positive elements from a given set L ⊂ L0(P) are defined
by L+ := L ∩ L0(P)+ and L++ = L ∩ L0(P)++, and the same for subsets of L 0(P). The space of
m-dimensional random vectors (equivalence classes of m-dimensional random vectors) is denoted
by L 0

m(P) (L0
m(P)).

For a measurable set A ∈ F , the indicator function on A is defined as:

1A(ω) :=

{
1 if ω ∈ A
0 if ω /∈ A.

A.5 ORLICZ SPACES

A nonconstant function Φ : [0, ∞)→ [0, ∞] is called an Orlicz function if it is convex, left-continuous,
increasing, finite on a right neighborhood of zero, and satisfies Φ(0) = 0. The conjugate of Φ is the
Orlicz function defined by

Φ∗(u) := sup
t∈[0,∞)

{tu−Φ(t)}.

For every X ∈ L0(P) define the Luxemburg norm by

‖X‖Φ := inf
{

λ ∈ (0, ∞) : EP

[
Φ
(
|X|
λ

)]
≤ 1

}
.

The corresponding Orlicz space is given by

LΦ(P) := {X ∈ L0(P) : ‖X‖Φ < ∞}.

The heart of LΦ(P) is the space

HΦ(P) :=
{

X ∈ LΦ(P) : ∀λ ∈ (0, ∞) : EP

[
Φ
(
|X|
λ

)]
< ∞

}
.

These spaces are Banach lattices with respect to the Luxemburg norm. The classical Lebesgue
spaces are special examples of Orlicz spaces. Indeed, if Φ(t) = tp for p ∈ [1, ∞) and t ∈ [0, ∞), then
LΦ(P) = HΦ(P) = Lp(P) and the Luxemburg norm coincides with the usual p norm. Moreover,
if we set Φ(t) = 0 for t ∈ [0, 1] and Φ(t) = ∞ otherwise, then we have LΦ(P) = L∞(P) and the
Luxemburg norm coincides with the usual esssup norm. Note that, in this case, HΦ(P) = {0}.

We say that Φ satisfies the ∆2 condition if there exist s ∈ (0, ∞) and k ∈ (0, ∞) such that
Φ(2t) < kΦ(t) for every t ∈ [s, ∞). If Φ is ∆2, then LΦ = HΦ. In a nonatomic setting. also the
opposite implication holds. A well-known example of a nontrivial HΦ(P) that is strictly contained
in Lφ(P) is obtained by setting Φ(t) = exp(t)− 1 for t ∈ [0, ∞).

The norm dual of LΦ(P) cannot be identified with a subspace of L0(P) in general. However,
if Φ is finite valued (otherwise HΦ(P) = {0}), the norm dual of HΦ(P) can always be identified
with LΦ∗(P). For the case Lp(P), for p ∈ [1, ∞), this is simply the well-known identification of the
norm dual of Lp(P) with Lq(P) and q = p

p−1 (with the usual convention 1
0 := ∞).
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APPENDIX B

ASYMPTOTIC CONES AND
FUNCTIONS

In this appendix, we aim to collect the definitions of asymptotic cone and asymptotic function
together with a number of elementary properties. The reference space X is a general Hausdorff
topological vector space, and asymptotic cones and functions are defined for any subset of X and
any extended real valued function on X . In finite dimensional vector spaces the terms horizon cone
and horizon function are sometimes used with the same meaning. For convex sets and functions,
we also define the recession cone and the recession function, which in presence of closedness or lower
semicontinuity coincide with the asymptotic cone and the asymptotic function.

For a wide treatment of asymptotic analysis in finite dimensional spaces see Rockafellar and
Wets [86], and Rockafellar [85] for the convex case. The generalization to nonconvex and infinite
dimensional sets has been firstly introduced in Dedieu [36]. Asymptotic cones in inifinite dimen-
sional spaces have been widely studied in relation with asymptotical properties like asymptotical
compactness and boundedness (see e.g. Zalinescu [96] and Barbu et al. [13]). The results stated in
these pages are either trivial or may be found in the cited literature.

B.1 ASYMPTOTIC AND RECESSION CONES

Throughout this appendix, let X be a Hausdorff topological vector space. First, we define the
asymptotic cone of a subset of X . Note that this definition depends on the chosen topology.

Definition B.1.1. Let C ⊂ X be a nonempty set. The asymptotic cone of C is defined as follows:

C∞ := {X ∈ X : ∃ (Xα)α ⊂ C, (tα)α ⊂ R+ such that tα → 0 and tαXα → X}.

If C = ∅, then its asymptotic cone is C∞ := {0}.

The next proposition states that the asymptotic cone of any set is closed and conic, and offers a
characterization.

Proposition B.1.2. The asymptotic cone of C ⊂ X is a closed cone and the following equivalence holds:

C∞ =
⋂
t>0

cl([0, t]C).

Proof. By definition it is immediate to see that C∞ is a cone, and its closedness follows once proved
the representation. Let X = lim

α
tαXα for (Xα)α ⊂ C and (tα)α ⊂ R+, and let t > 0. Eventually, tα <

t and hence tαXα ∈ [0, t]C, proving the inclusion “⊂”. Not take X ∈ C∞. For any neighborhood U
of X and any t > 0, there is X(U ,t) ∈ C and t(U ,t) ∈ [0, t] such that t(U ,t)X(U ,t) ∈ U . By considering
on the set {(U , t) : U neighborhood of X, t ∈ R+} the partial order (U , t) � (U ′, t′) iff U ⊂ U ′
and t ≤ t′, we have that the net (t(U ,t)) converges to 0 and (t(U ,t)X(U ,t)) converges to X, showing
that the other inclusion holds too.

The asymptotic cone of C may be regarded as what remains of tC as t → 0. The following
observation may help to visualize this fact. Immerse X in the Cartesian product R× X via the
map X 7→ (1, X). Let K be the cone generated by the immersion of C in R×X . As K = {(t, X) :
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t ≥ 0, X ∈ tC}, it intersects the plane with R-coordinate 0 only in the vertex. But, when closing
K in the product topology, some nonzero points with R-coordinate 0 may be enclosed. Those
points are precisely the nonzero elements of C∞ (i.e. X ∈ C∞ iff (0, X) ∈ cl(K)), and represent the
directions in which C is unbounded.

We have said that intuitively the asymptotic cone consists of those directions along which C is
unbounded. The next proposition records the precise link between asymptotic cone and bounded-
ness.

Proposition B.1.3. The following statements hold for C ⊂ X :

(i) If C is bounded, then C∞ = {0}.

(ii) If C∞ = {0} and C has finite dimension, then C is bounded.

Proof. (i): If C = ∅, there is nothing to prove. Otherwise take X ∈ C∞ and U a neighborhood of 0.
By boundedness, for t > 0 sufficiently small, tC ⊂ U . This delivers X = 0.

(ii): If C has finite dimension, any compatible norm on span(C) induces the original topology
on C. Assume by contradiction that C is unbounded, and let (Xn)n ⊂ C be such that ‖Xn‖ ≥ n.
Possibly passing to a subsequence, by compactness of the finite dimensional sphere there is X ∈
span(C) such that ‖X‖ = 1 and

Xn

‖Xn‖
→ X.

Hence X ∈ C∞, which contradicts ‖X‖ = 1.

Now we enumerate some properties of the asymptotic cone.

Proposition B.1.4. Let C ⊂ X be a nonempty subset. The following statements hold:

(a) C∞ = (cl(C))∞.

(b) C∞ = (C − X)∞ for every X ∈ X .

(c) C∞ = (tC)∞ for evrery t > 0.

(d) If C is a cone, then C∞ = cl(C).

(e) If C is monotone, then C∞ is monotone.

(f) If C is star shaped about 0, then C∞ ⊂ cl(C).

Proof. Assertion (a) follows from the characterization in Proposition B.1.2 since cl([0, t]C) = [0, t] cl(C),
while (b) and (c) are easily proved using the definition of asymptotic cone. Now, assume C is a cone.
Then [0, t]C = C for every t > 0, hence C∞ = cl(C) and (d) is proved. Let C be a monotone set, and
take Y ≥ X ∈ C∞. Hence we find nets (Xα) ⊂ C, (tα) ⊂ R+ such that tα → 0, tαXα → X, and

Y = X + (Y− X) = lim
α

tα

(
Xα +

Y− X
tα

)
,

which is in C∞ since Y − X ∈ X+ and (e) is proved. Finally, if C is star shaped about 0, then
[0, 1]C ⊂ C, and (f) follows.

We treat separately the case of a convex set C.

Proposition B.1.5. Let C ⊂ X be a nonempty convex set. Then C∞ is convex and for every X0 ∈ C the
following equalities hold:

C∞ =
⋂
t>0

t
(

cl(C)− X0
)

(B.1)

= {Z ∈ X : X0 + tZ ∈ cl(C) ∀t ≥ 0} (B.2)
= {Z ∈ X : X + tZ ∈ cl(C) ∀t ≥ 0, ∀X ∈ C} (B.3)

and C + C∞ ⊂ cl(C). If moreover C is closed, then

C∞ = {Z ∈ X : Z + C ⊂ C}. (B.4)
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Proof. Since C is convex and X0 ∈ C, then [0, t](C − X0) = t(C − X0) for t > 0. By point (b) of
Proposition B.1.4, we have

C∞ = (C − X0)
∞ =

⋂
t>0

cl
(
[0, t](C − X0)

)
=
⋂
t>0

cl
(
t(C − X0)

)
=
⋂
t>0

t
(

cl(C)− X0
)
,

proving (B.1). Equality in (B.2) is straightforward, and equality in (B.3) holds since the set in (B.2)
is independent on the choice of X0 ∈ C. It follows from (B.3) that C + C∞ ⊂ cl(C) holds, implying
that the inclusion “⊂” in (B.4) holds too. For the other inclusion, take Z ∈ X such that Z + C ⊂ C.
For X ∈ C, we have that nZ + X ∈ C for n ∈ N, and also for n = 0. By convexity, X + tZ ∈ C for
every t ≥ 0.

For convex nonempty sets, we also define the recession cone as follows.

Definition B.1.6. Let C ⊂ X be a nonempty convex set and let X0 ∈ C. The recession cone of C is
defined as follows, and the definition does not depend on X0:

rec(C) :=
⋂
t>0

t(C − X0).

From the first characterization in Proposition B.1.5 it is clear that the recession cone and the
asymptotic cone of a nonempty closed convex set coincide.

Corollary B.1.7. If C ⊂ X is a nonempty convex closed set, then

C∞ = rec(C).

The next proposition shows the behavior of asymptotic cones with respect to sets lattice opera-
tion. We omit the proof as it is immediate using the definition or the characterizations of asymptotic
cones.

Proposition B.1.8. Let {Ci}i be a family of subsets of X . The following statements hold:

(i) (⋂
i

Ci

)∞
⊂
⋂

i
C∞

i ,

with equality if Ci are convex and closed, and
⋂

i Ci 6= ∅.

(ii) (⋃
i

Ci

)∞
⊃
⋃

i
C∞

i .

We now prove a simplified version of the Dieudonné Theorem about the closedness of the
difference of closed sets, which is enough for the scopes of this thesis. For the original version, see
Dieudonné [39], and for extensions see Barbu et al. [13].

Theorem B.1.9 (Dieudonné). Assume that B and C are closed subsets of X such that B is finite dimen-
sional and

B∞ ∩ C∞ = {0}.

Then B − C is closed.

Proof. There is nothing to prove if either B or C is empty. So let B and C be nonempty, and take
Z ∈ X and nets (Xα) ⊂ B and (Yα) ⊂ C such that Xα − Yα → Z. Denote byM the linear space
generated by B. If (Xα) has a convergent subnet, then possibly passing to a subnet Xα → X ∈ B.
Hence Yα = (Yα − Xα) + Xα → −Z + X ∈ C and Z ∈ B − C. Now, assume that (Xα) has no
convergent subnets and let ‖·‖ be a norm on M that induces the unique Hausdorff topology on
M compatible with the linear structure. We find a subnet (that for convenience we still denote by
Xα) such that ‖Xα‖ → ∞. Possibly passing to a subnet, we find a nonzero X such that

Xα

‖Xα‖
→ X ∈ B∞.
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Moreover
Yα

‖Xα‖
=

Yα − Xα

‖Xα‖
+

Xα

‖Xα‖
→ 0 + X ∈ C∞.

This fact contradicts that X is not 0 and the proof is concluded.

B.2 ASYMPTOTIC AND RECESSION FUNCTIONS

We define the asymptotic function of an extended real valued function on X . This definition de-
rives from the observation that the asymptotic cone of an epigraph is itself an epigraph.

Definition B.2.1. Consider a function f : X → R that is not identically ∞. The asymptotic function
of f is defined as the extended real valued function f ∞ : X → R such that

epi( f ∞) =
(

epi( f )
)∞.

It is possible to extend the definition of asymptotic function to functions defined on strict sub-
sets of X .

Definition B.2.2. Let C ⊂ X be a nonempty set and consider a function f : C → R that is not
identically ∞. The asymptotic function of f , f ∞ : X → R, is defined as the asymptotic function of f̃ ,
where

f̃ : X → R

X 7→
{

f (X) X ∈ C
+∞ X /∈ C

Proposition B.2.3. Let C ⊂ X be a nonempty set and let f : C → R be not identically ∞. Then

epi( f ∞) =
(

epi( f )
)∞

and f ∞(X) = ∞ for X /∈ C∞.

Proof. The following holds:

epi( f ∞) = epi( f̃ ∞) =
(

epi( f̃ )
)∞

=
(

epi( f )
)∞.

Now, assume X /∈ C∞ and (X, m) ∈ epi( f ∞) for some m ∈ R. Hence (X, m) ∈
(

epi( f )
)∞, so we

find (tα) ⊂ R+ and (Xα) ⊂ C such that tα → 0 and tαXα → X. It follows that X ∈ C∞ which is a
contradiction.

The fact that Definition B.2.2 relies on B.2.1, allow us to state the next results for functions
defined on X . The reader could easily generalize them to strict subsets of X .

Before stating the next proposition, we recall that for an extended real valued function, if the
epigraph is a cone and the function is real valued in 0, then it is positively homogeneous.

Proposition B.2.4. Let f : X → R be not identically ∞. Then f ∞ is lower semicontinuous and f ∞(0) is
either 0 or −∞. If moreover f ∞(0) = 0, then f ∞ is positively homogeneous.

Proof. The epigraph of f ∞ is an asymptotic cone, hence is a closed cone, showing that f ∞ is lower
semicontinuous and f ∞(tX) = t f ∞(X) for X ∈ X and t > 0. If moreover f ∞(0) = 0, then f ∞ is
also positively homogeneous.

We now consider the convex case.

Proposition B.2.5. If f : X → R is a convex function not identically ∞, then f ∞ is convex. If moreover f
is proper and lower semicontinuous, then for every X0 in the domain of f and X ∈ X

f ∞(X) = sup
t>0

f (X0 + tX)− f (X0)

t
.
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Proof. If f is convex, the epigraph of f ∞ is convex by Proposition B.1.5, proving that f ∞ is convex
as well. Now, assume that f is lower semicontinuous and that f (X0) ∈ R. By Corollary B.1.7,

epi( f ∞) =
⋂
t>0

t
(

epi( f )−
(
X0, f (X0)

))
,

hence for X ∈ X

f ∞(X) = inf{m ∈ R : (X, m) ∈ epi( f ∞)}
= inf{m ∈ R : (tX, tm)− (X0, f (X0)) ∈ epi( f ) ∀t > 0}
= inf{m ∈ R : tm + f (X0) ≥ f (X0 + tX) ∀t > 0}

= sup
t>0

f (X0 + tX)− f (X0)

t
.

Like for sets, one defines the recession function of a convex functions and shows that in presence
of lower semicontinuity it coincides with the asymptotic function.

Definition B.2.6. Let f : X → R be a convex function and fix X0 in the domain of f . The recession
function rec( f ) : X → R is defined for every X ∈ X as follows, and the definition does not depend
on X0:

rec( f )(X) := sup
t>0

f (X0 + tX)− f (X0)

t
.

The recession function of a convex function f is the smallest sublinear map dominating f .

Corollary B.2.7. If f : X → R is a proper, convex, lower semicontinuous function, then

rec( f ) = f ∞.

We close this appendix by showing the relationship among sublevels of a function and its
asymptotic function.

Proposition B.2.8. Let f : X → R be not identically ∞. Then for r ∈ R:

{X ∈ X : f (X) ≤ r}∞ ⊂ {X ∈ X : f ∞(X) ≤ 0}.

The above inclusion is an equality if f is convex, lower semicontinuous and proper, and {X ∈ X : f (X) ≤
r} is not empty.

Proof. If {X ∈ X : f (X) ≤ r}∞ is empty, the result is trivial. So take X in this set. By definition of
asymptotic cone, we find nets (tα) ⊂ R+ and (Xα) ⊂ X such that tα → 0, tαXα → X and f (Xα) ≤ r.
This shows that the couple (X, 0) ∈ (epi( f ))∞ since (Xα, r) ∈ epi( f ) and tα(Xα, r)→ (X, 0). Hence
f ∞(X) ≤ 0.

Now assume that f is convex and lower semicontinuous, and let X0 ∈ X be such that f (X0) ≤ r.
If f ∞(X) ≤ 0 for some X ∈ X , by Proposition B.2.5

f (X0 + tX) ≤ f (X0) ≤ r for all t > 0.

This shows that X ∈ ⋂t>0 t({Y ∈ X : f (Y) ≤ r} − X0) that coincides with the recession cone of
{X ∈ X : f (X) ≤ r}.

Corollary B.2.9. Let f : C → R be a not identically ∞ function defined on a nonempty set C. Then for
r ∈ R:

{X ∈ C : f (X) ≤ r}∞ ⊂ {X ∈ C∞ : f ∞(X) ≤ 0}.

The above inclusion is an equality if C is convex and closed, f is convex, lower semicontinuous and proper,
and {X ∈ C : f (X) ≤ r} is not empty.
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LIST OF SYMBOLS

iff if and only if
∅ empty set
inf ∅ ∞
sup ∅ −∞
R the real numbers
R the extended real numbers, i.e. R∪ {∞,−∞}
R+ the nonnegative real numbers, i.e. x ∈ R such that x ≥ 0
R++ the strictly positive real numbers, i.e. x ∈ R such that x > 0
Rn n-dimensional vectors with real components
Rn

+ n-dimensional vectors with components in R+

Rn
++ n-dimensional vectors with components in R++

N the natural numbers (excluding zero)
e the vector (1, 1, . . . , 1) ∈ Rn

ei the vector (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn (ith component 1, other components 0)
min{x, y} the minimum between x and y
max{x, y} the maximum between x and y
x+ the positive part of x, i.e. max{x, 0}
x− the negative part of x, i.e. max{−x, 0}
|x| the modulus of x, i.e. x+ + x−

A + B the algebraic sum of sets, i.e. {a + b : a ∈ A, b ∈ B}
A− B the algebraic difference of sets, i.e. A + (−B) = {a− b : a ∈ A, b ∈ B}
b + A the algebraic sum {b}+ A
tA the set {tX : X ∈ A}
[x, y]A the set {tX : x ≤ t ≤ y, X ∈ A}
RX the linear space generated by X, i.e. {tX : t ∈ R}
A⊥ the orthogonal complement of A
span(A) the smallest linear space containing A
conv(A) the smallest convex set containing A
cone(A) the smallest cone containing A, i.e.

⋃
t≥0 tA

rec(A) the recession cone of A, i.e.
⋂

t>0(A− X) for X ∈ A
A∞ the asymptotic cone of A
dom( f ) the domain of finiteness of the function f : D → R, i.e. {X ∈ D : f (X) ∈ R}
epi( f ) the epigraph of the function f : D → R, i.e. {(X, m) ∈ D ×R : f (X) ≤ m}
hypo( f ) the hypograph of the function f : D → R, i.e. {(X, m) ∈ D ×R : f (X) ≥ m}
{ f ≤ m} the sublevel of the function f : D → R, i.e. {X ∈ D : f (X) ≤ m}
f (A) the image of A through the function f , i.e. { f (X) : X ∈ A}
∂+ f (0) the right derivative of f at 0
cone( f ) the conic hull of the function f , i.e. cone( f )(X) = inft>0

f (tX)
t

rec( f ) the recession function of the function f , i.e. rec( f )(X) = supt>0
f (tX)

t
f ∞ the asymptotic function of f
usc( f ) the upper semicontinuous hull of f
δA the characteristic function of the set A, i.e. δ(X) = 0 if X ∈ A, δ(X) = ∞ if X /∈ A
F : X ⇒ Y set valued mapping
(Xn)n sequence (also denoted by (Xn))
(Xα)α net (also denoted by (Xα))
cl(A) the closure of A
int(A) the interior of A
X+ the positive cone of X
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X++ the set of strictly positive elements of X
X ′ the topological dual of X
X ′+ the positive dual of X , i.e. {ψ ∈ X ′ : ψ(X) ≥ 0 ∀X ∈ X+}
X ′++ the strictly positive dual of X , i.e. {ψ ∈ X ′ : ψ(X) > 0 ∀X ∈ X+, X 6= 0}
σ(X ,Y) the weak topology on X with dual Y
NX the collection of neighborhoods of X
σA the support function of the set A, i.e. σA(ψ) = infX∈A ψ(X)
σA the upper support function of the set A, i.e. σA(ψ) = supX∈A ψ(X)
bar(A) the barrier cone of A, i.e. {ψ ∈ X ′ : σA(ψ) > −∞}
f ∗ the convex conjugate function of f
f • the concave conjugate function of f
L 0(P) the space of of random variables
L0(P) the space of equivalent classes of random variables
L0

m(P) the space of m-dimensional random vectors
EP the expectation under P

1A the indicator function on the set A
a.s. almost surely
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