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Abstract

Complex networks theory, although a relatively new research �eld, has al-

ready proved to be a powerful tool for the description of real systems of

di�erent nature. Its transversal nature makes it �exible enough to be ap-

plied to extremely diversi�ed contexts, not least economic and �nancial

systems. One of the ideas that have proved particularly e�ective is the con-

cept of communicability between nodes, introduced by E. Estrada in the

�eld of graph theory. This thesis collects some original contributions that

exploit this mathematical tool on many di�erent levels. The �rst one pro-

poses an extension of the concept of communicability that makes it possible

to introduce a new class of centrality measures on networks. These mea-

sures turn out to be depending not only on the topology of the network, but

also on an external stress factor which a�ects the level of risk-exposure of

the single nodes and of the whole network. Communicability also induces

a non-standard network metric. As a second result, we used this metric

for the �rst time from a community detection perspective, that is, in order

to identify strongly interacting clusters of nodes, speci�cally in the World

Trade Network. This new methodology will be compared with others al-

ready known in the literature and with a new multi-attribute approach we

propose here to cluster communities of countries that play a comparable role

within the international trade network. Finally, we introduce a preliminary

tensor analysis of the multi-level structure of a network, with particular

attention to clustering problems, in order to go deeper into the sectoral

structure of the world trade network and the interconnections between dif-

ferent trade sectors.
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Introduction

Modern economic and �nancial systems are characterized by a vast collection of inter-

acting agents. Their increasing complexity, the interdependence among highly inter-

connected entities, the mutual interaction between institutions of di�erent nature and

at di�erent levels make the theory of complex networks a suitable tool for describing

their local and global behaviour, from both a theoretical and an empirical perspective.

In network theory, vertices (equivalently, nodes) represent these entities - be they

individuals, banks, �rms, countries, etc. - and edges (equivalently, links) account for

the relationships between them [1].

A great e�ort has been expended in the literature to study the topological properties

of networks. Sometimes this is called static analysis since it does not assume any

mechanism of transmission of e�ects between nodes. Among such studies, it is frequent

to �nd analyses of clusters formed by groups of institutions, as well as investigations

on the centrality of individual nodes. Centrality measures, indeed, represent one of the

most useful topological characterizations of the nodes and their role in a network.

In the analysis of �nancial and economic networks, classical centrality measures

have some limitations, as they provide a static description of the interactions between

nodes and even measures based on dynamic processes, such as random walks based

centralities [2], do not capture the changing conditions to which networks could be

submitted in time.

A network can host multiple dynamical processes of di�erent types and their study

plays a role of primary importance. Typical examples are represented by di�usion,

percolation or contagion processes, like the spread of a virus, a disease, an opinion or a

�nancial default. Although a contagion process is typically a discrete dynamic process

in which each node can be in a binary state - susceptible or infected, for instance -

the most widely used contagion models describe the evolution, mostly in time, of a

continuous variable like the probability of each node to get infected. This probability

in turn depends on external factors such as the rate of infection and this rate may
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change in time, or, more in general, according to di�erent environmental conditions.

As an illustrative example, let us consider an interbank network. Typically we are

interested in analysing the risk-dependent exposure of the di�erent entities involved.

Any centrality measure will point out a speci�c and static ranking of the nodes. How-

ever, a bank, which is very central - and so more exposed to a contagion risk - at a low

infection rate, may not be as central when the rate is higher. The study of the propa-

gation of �nancial shocks through these networks and their dependence on external risk

conditions is therefore crucial and it is usually known as dynamic analysis [3, 4, 5, 6].

This is the reason why, in the �rst chapter of this work, we develop a mathematical

model to account for the risk exposure of entities, in economic or �nancial networked

systems, based on the relation between the Susceptible-Infected (SI) epidemiological

model and the so-called communicability functions of a network. Communicability

functions belong to a class of matrix functions which are widely used in the description

of network properties and which proved to be a powerful tool in many di�erent �elds.

Through the link between SI models and communicability functions, we propose new

centrality indices that quantify the level of risk an entity is exposed to, as a function

of the global external stress on the network. This global stress can be identi�ed for

instance with the value of the infection rate, which plays the same role of a temperature

if we imagine the network embedded in a thermal bath. Our approach takes advan-

tage of the bene�ts of both static and dynamic analyses. Indeed, unlike the standard

approaches, these risk-dependent centralities may vary according to the change of the

external global stress and, very peculiarly, it turns out that the ranking of the nodes in

terms of risk exposure depends on this external stress. A node, which is at low (high)

level of risk under given external conditions, can be at high (low) level under di�erent

conditions.

We test our model by using two di�erent systems, a network of assets based on

the daily returns of the components of the S&P 100 for the period ranging from Jan-

uary 2001 to December 2017 and a network representing the interconnection between

companies in the US top corporates according to Forbes in 1999. For the �rst one, we

extract the essential information about asset correlations through the minimum span-

ning tree. We measure how the centrality of the assets reacts to di�erent values of the

external stress. What emerges is a high volatility in the rankings during the �nancial

crisis of 2007-2008, when the node centrality proves to be more sensitive to the external

risk. For the second one, we analyze a sample of signi�cant companies, looking for a

correlation between the shareholders value creation (SVC) and their behavior during

and after the crisis period at which data were collected. We �nd that a remarkable

2
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increase in their risk-centrality ranking during a crisis corresponds to a less resilient

reaction to the external market turmoil [7].

In the second chapter, we exploit a further consequence of the idea of communi-

cability - the fact that it induces a proper metric on the network - to propose a new

approach to a long-standing problem in network theory, the detection of communities.

The community structure of a network reveals how it is internally organized, highlight-

ing the presence of special relationships between nodes, that might not be revealed by

direct empirical analyses. In particular, we aim at describing the inner structure of the

World Trade Network. International trade is based on a set of complex relationships

between di�erent countries. Both connections between countries and bilateral trade

�ows can be modelled as a dense network of interrelated and interconnected agents.

Our goal is to highlight subsets of nodes among which the interactions are stronger

than average.

In this framework, a critical role is assumed by the communicability distance be-

tween nodes. The neighbours of a given node are immediately connected to such a node

and they can a�ect its status in the most direct way. Nonetheless, more distant nodes

can in�uence this node while passing through intermediary ones. In the economic �eld,

a network perspective is actually based on the idea that indirect trade relationships may

be important [8]. For instance, it well known the impact of shocks on a given country

coming from indirect trade links. A measure of the distance between nodes that takes

into account also indirect connections is therefore crucial to grasp the deep interde-

pendencies between trading countries. In this work, we will focus on two measures

of distance or metrics on the network: the Estrada communicability distance [9] and

the vibrational communicability distance [10]. They both go beyond the limits of the

immediate interaction between neighbours and they look simultaneously, albeit di�er-

ently, at all the possible channels of interactions between nodes. The nearest two nodes

are in each metric, the stronger is their interaction or, in other words, the higher is

the level of communicability between them. By using communicability and vibrational

communicability metrics, we group nodes whose mutual distances are below a given

threshold, i.e. whose interactions are stronger than a given value. Then we identify the

optimal partition according to a maximum quality function criterion. It is well-known

that modularity, for instance, is a way to measure if a speci�c mesoscopic description of

the network in terms of communities is more or less accurate, or, at least, more or less

useful. But, unlike the most widely applied Girvan-Newman approach [11], we refer

to the quality function proposed in [12] for general metric spaces. We call it partition

quality index in order to immediately clarify the di�erent nature, speci�cally metric,

3
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of the quality function we adopt here with respect to classical Newman modularity or

its immediate modi�cations. In this way, we can exploit the additional information

contained in the metric structure of the network. Among all the di�erent partitions

we get at di�erent thresholds, we select the one providing the maximum quality index,

according to the criterion described in [12].

Our proposal provides several advantages and represents a viable alternative to

classical methodologies for community detection. Firstly, the method is very e�cient

from a computational viewpoint. Indeed, given the speci�c distance matrix, the opti-

mal solution can be easily evaluated varying the threshold. Classical Girvan-Newman

methodology is instead a NP-hard problem due to the fact that the space of possible

partitions grows faster than any power of the system size. For this reason, several

heuristic search strategies have been provided in the literature to restrict the search

space while preserving the optimization goal, see e.g. [13] or [14]. Secondly, we cluster

nodes going beyond the interactions between neighbours and considering all possible

channels of interaction between them. Thirdly, we allow for a degree of �exibility by

introducing a threshold. Varying the threshold, it is possible to depart from the opti-

mal solution so that only the strongest (or the weakest) channels of communications

emerge. Finally, the procedure o�ers a set of indicators that allow to exploit main

characteristics of the communities detected as well as the relevance of countries inside

the community and in the whole network.

In the third chapter, we change our paradigm as we provide a new methodology for

clustering countries in the World Trade Network based on a multi-criteria assessment

of several topological indicators. That is we look for a speci�c way to detect nodes

having a peculiar common feature and playing a similar role inside the network. The

method consists of two steps. In the �rst step, we rank countries according to a set of

centrality measures. In the second one, we compute a similarity index, based on those

rankings, between countries and then we apply the clustering algorithm based on the

Clique Partition model to detect communities.

More speci�cally, in the �rst step, and unlike classical methodologies, we consider

all the most prominent centrality de�nitions proposed in the literature and relevant

to international trade. Rather than advocate the superiority of one of them, we ag-

gregate this rich multi-criteria assessment by de�ning a proper measure of similar-

ity/dissimilarity between nations using their ranking positions. Next, we group to-

gether countries that have common structural features in terms of those rankings. The

main advantage of our proposal is that we do not focus on a single and speci�c indicator

of centrality, nor we come out with a detailed countries ranking. Rather, we are able

4
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to identify groups of countries that have similar structural properties. A speci�c tool

developed for our project is a new heuristic algorithm to �nd clusters, based on the

Clique Partition model [15]. The Clique Partition model consists of partitioning the

vertices of a graph into the smallest number of cliques. First, a measure of similarity or

dissimilarity between units must be established. This measure can take both positive

and negative values, respectively if two units are similar or dissimilar, and which play

the role of gain or cost in grouping together such elements. Then units must be parti-

tioned in subsets, in such a way to maximize the similarity between them. This model

has some advantages over, for instance, the classical k-means or hierarchical models.

First of all, the clique partition model does not require either that the number of clus-

ters were �xed in advance, e.g. the parameter k, or that the user should arbitrarily

analyse the chart of the hierarchical clusters. Rather, the number of clusters results by

the optimization of an objective function. Moreover, outliers are not forced to be in a

cluster, but they can form peculiar groups of a single element. Finally, the principle

of the method is that cluster are composed of mutually homogeneous data, while the

k-means models �rst try to establish cluster's centres and then groups are composed

by units that are similar to the centres.

In the last chapter, we propose an extension of some of the methodologies discussed

in the previous chapters to multilevel networks. More speci�cally, we illustrate how it

is possible to extend to multilayer networks three di�erent approaches to community

detection and we suggest a new way to look at clustering coe�cients on multilayer

networks. Multiplex and multilayer networks are an extremely challenging research

topic. The nature of the connections between the same set of nodes may be of di�erent

kind. According to the nature of the connections, di�erent networks are generated

on the same set of nodes. Each one can be interpreted as a level in a more complex

object, called multilevel network. Di�erent levels highlights a di�erent nature in the

interaction between nodes and each one is called monoplex. We can move from one

node to another on the same level following the links on that level. But we can also

move from one level to another one. The easiest way to do that is to imagine a jump

from a node on a level to the same node on a di�erent level. When this is the only

possibility to switch levels, we call the multilevel network a multiplex. Nothing prevents

us from conjecturing a jump from a node on one level to a completely di�erent node on

a second level. When this is allowed the multilevel network is called multilayer network.

This is the most general case and it is the one we are interested in. For instance, cities

and roads connecting them, on one side, and the same cities and railways connecting

them, on the another side, represent two possible monoplexes. When a traveller gets
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in a city by train, he can rent a car to go to another city. That is, he is switching

from the �rst monoplex (roads) to the second one (railways). Together they constitute

a multiplex. Of course, he cannot move from a city to a di�erent one without using

some form of transportation; so this is not a multilayer network. On the contrary, the

industrial chemical sector in di�erent countries is a monoplex, as it is the sector of the

pharmaceutical industry in di�erent countries, but the former can supply the latter

with materials and chemicals within the same country or to foreign nations in the same

way. This is an example of multilayer network.

In our work, we start from the tensorial approach in [16], to extend to multilayer

networks the community detection methodologies seen in the previous chapters, specif-

ically based on modularity, communicability and communicability distance. These

extended methodologies have been tested on some simple toy-models and, in a future

work, they will be applied to real multilayer networks too. Finally, since the problem

of community detection is strictly linked to how much the network is clustered or not,

at the end of the chapter we propose an extension of all the best known clustering

coe�cients in the literature to multilayer networks. In particular, it will be shown how,

in the tensorial setting, it is possible to give them a substantially uni�ed writing and

how the choice of a single reference tensor allows to switch from one to the other.

Note for the readers. Each chapter consists of an independent paper and can be

read separately from the others. For this reason, we preferred to keep in the indi-

vidual chapters the notations of the original corresponding paper, which of course are

completely consistent, even if this entails a not full uniformity in the notations on the

overall body of the thesis.

6



Chapter 1

Risk-Dependent Centrality in

Economic and Financial

Networks.

1.1 Introduction

Modern economic and �nancial systems are characterized by a vast collection of inter-

acting agents [17, 18, 19, 20, 21, 22]. In economic systems, for instance, the interdepen-

dence among entities characterizes the trade and exchange of goods in non-anonymous

markets as well as in risk sharing agreements in developing countries [17]. In this frame-

work, the agents' interaction is responsible for the nature of the relations between the

individual behaviour and the aggregate behaviour [22].

The human factor which underlies these economic and �nancial systems is also char-

acterized by the interconnectivity. The existence of networks of interpersonal relations

has been empirically observed to constitute a fundamental factor in shaping the inter-

institution networks, or in accounting for the networks of risk-sharing agreements [23],

the formation of buyer-seller networks [24, 25, 26], product adoption decisions [27, 28],

di�usive processes [29, 30, 31], industrial organization [21], trade agreements [20] and

even for the existence of interbank networks [17]. This is not surprising as humans are

responsible for the execution of deals between the institutions to which they belong to

[32, 33, 34].

From a mathematical perspective all these interdependencies between economic

and �nancial entities can be captured by the formal concept of network, in which nodes

represent the entities (individuals, �rms, countries, etc.) and edges account for the

7



1. RISK-DEPENDENT CENTRALITY IN ECONOMIC AND

FINANCIAL NETWORKS.

relations between such entities, ranging from social relations to trade agreements [1].

Hence, it is possible to use the tools of network theory to analyze the structure, the

evolution and the dynamic processes that take place on these systems. On one side,

researchers have studied the topological properties of these networks (sometimes called

static analysis), which do not assume mechanisms of transmission of e�ects through

the economic and �nancial entities [35, 36, 37]. Among such studies, it is frequent

to �nd analyses of clusters formed by groups of institutions, as well as the centrality

of individual nodes in the networks [38, 39, 40]. Speci�cally, centrality measures (see

Chapter 5 in [1] for a detailed analysis) are topological characterizations of the nodes

and their neighborhood in a network. In the analysis of �nancial and economic net-

works, the use of centrality measures is not so e�ective, as the classical ones provide a

static view of the network and even other measures based on dynamic processes, such

as random walks based centralities [2], do not capture the changing conditions to which

these networks could be submitted in relatively short periods of time. As an illustrative

example, let us consider a hypothetical interbank network for which we are interested

in analyzing the risk-dependent exposure of the various entities of the system. Any

centrality measure will point out a speci�c and static ranking of the nodes. However,

a bank which is very central at a low-level of external risk is not necessarily central

when such level of external risk increases, and vice versa. On the other hand, the

propagation of shocks through these networks is considered and it is usually known as

dynamic analysis [3, 4, 5, 6, 41, 42, 43]. In these studies, a speci�c way of transmission

of these shocks through the network is assumed � as in the case of �Susceptible-Infected�

and �Susceptible-Infected-Recovered� epidemiological models [44, 45, 46] � and then a

systemic risk analysis is based on the contagion e�ects observed through such models.

In this work we develop a mathematical model to account for the risk exposure

of an entity in a networked (economic or �nancial) system. This model is based on

the relation between the Susceptible-Infected epidemiological model and the so-called

communicability functions of a network [47]. Using this connection we derive new

centrality indices that quantify the level of risk at which an entity is exposed to as

a function of the global external level of risk. Our approach takes advantage of the

bene�ts of both static and dynamic analyses. Indeed, unlike the standard approaches

followed in the literature, these risk-dependent centralities are not static indices, as

most of centrality indices are, but they vary with the change of the external global risk

level at which the system is submitted to. More importantly, the ranking of the nodes

in these networks also depends on this global external level of risk. This means that

an entity � a node in the network � which is at low (high) level of risk under external

8
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conditions can be at high (low) level under di�erent conditions.

We test our model by using two di�erent systems, a network of assets based on the

daily returns of the components of the S&P 100 for the period ranging from January

2001 to December of 2017 and a network representing the interconnection between

companies in the US top corporates according to Forbes in 1999. In the �rst case

we extract the essential information about asset correlations through the minimum

spanning tree. We measure how the centrality of the assets changes at di�erent values

of the external risk. What emerges is a high volatility in the rankings during the

�nancial crisis of 2007-2008, when the node centrality proves to be more sensitive to

the external risk. In the case of the corporate network we analyze a sample of signi�cant

companies, looking for a correlation between the shareholders value creation (SVC) and

their behaviour during and after the crisis period at which data were collected. We �nd

that a remarkable increase in their risk-centrality ranking during a crisis corresponds

to a less resilient reaction to the external market turmoil.

The chapter is structured as follows. In Subsection 1.1.1 we recall the main litera-

ture about the use of epidemiological models for modeling �nancial contagion and we

motivate the choice of a Susceptible-Infected model. The necessary mathematical pre-

liminaries are given in Section 1.2. Therefore, we describe a Susceptible-Infected (SI)

model on a �nancial network (Section 1.3) and we de�ne the risk-dependent centrality

proving some mathematical properties (Section 1.4). We perform numerical analyses of

the proposed centrality for random networks (Section 1.5), then we apply the proposed

measure to real-world �nancial networks (Section 1.6) and we analyze the ranking in-

terlacement problem (Section 1.7). Section 1.8 remarks how the proposed model could

provide additional insights in the analysis of the economic and �nancial impacts of the

crisis related to the di�usion of the new coronavirus named SARS-COV-2. Conclusions

follow in Section 1.9.

1.1.1 Related literature and motivations

The process in which one �nancial institution spreads negative e�ects to another insti-

tution resembles very much the propagation of epidemics on networks [42, 48]. The fact

that such processes are known as ��nancial contagion� already captures part of these

similarities. Then, it is not strange that epidemiological models are frequently used to

capture the subtleties of �nancial contagion processes. There are many of such com-

partmental models in epidemiology, but the most widely used for modeling �nancial

contagion are the Susceptible-Infected-Recovered (SIR) [49, 50, 51, 52, 53, 54] and the

Susceptible-Infected-Susceptible (SIS) [55, 56] ones. They are not only used to model

9
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�nancial contagion per se, but also for the propagation of rumors and innovations of

interest for �nancial institutions [57, 58]. These models are well-suited in depicting

�nancial contagion because they do not require arbitrary assumption on loss rates and

balance sheets. As remarked by Toivanen [59], they capture the psychological aspects

of contagion process �by relating a bank's relative �nancial strength with the perceived

counterparty risk and expectations�.

The previously mentioned SIS/SIR models and their variants are mainly used in

studying the dynamics of contagion in a system in a post-mortem way. As it is well-

known, both SIS and SIR models are characterized by the presence of a threshold

τ , which is de�ned as the reciprocal of the principal eigenvalue λ1 of the adjacency

matrix. The below-the-threshold or above-the-threshold behaviour of the spreading

process depends on whether the e�ective infection rate is less than or greater than such

a threshold. Below the threshold, we have the extinction of the contagion and above

the threshold a non-zero fraction of infected nodes persists in the network even over

a wide range of timescales. The e�ective infection rate depends on both the infection

rate per link γ and on the curing or recovering rate δ. For instance in Figure 1.1(a)

we illustrate the evolution of a contagion dynamics for an Erd®s-Rényi graph with 100

nodes and connection probability 0.1 by using the SIS model. The principal eigenvalue

of the adjacency matrix is λ1 ≈ 10.71 so that the epidemic threshold is τ ≈ 0.093. The

infectivity rate per link is 0.002 for both curves and the initial infection probability

is 0.2 (20 nodes over 100 initially infected). The curing rate is 0.001 for the dashed

red line (epidemic) and 0.04 for the solid blue line (extinction). Then, the e�ective

infection rate is 2 > 0.093 for the the dashed red line (epidemic) and 0.05 < 0.093 for

the solid blue line (extinction).

In this work we are interested in the very early signals that the system can provide

for alerting about a propagation of a �nancial contagion. In this case it is very important

to consider the window of vulnerability between the time the contagion phenomenon

is �rstly recognized and the time an action is taken to face the infection. This window

could be arbitrarily wide. In any real condition, there is a non negligible time interval

in which a recovery tool is not available yet and the recovering rate is equal to zero.

It has been recently shown by Lee et al. [60] that, within this window, the spreading

phenomenon is better described by a SI model than by any other model with a non-null

recovering rate, e.g., SIR and SIS (see Figure 1.1(b)). In this framework, a key point is

to predict the �most at risk� nodes in the network. Therefore, we are interested in the

early times of the epidemic where it is possible to limit or avoid the distress propagation

by introducing speci�c measures on the risky nodes in the network.

10
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(a) (b)

Figure 1.1: (a) Illustrative example of an epidemic SIS process over an Erd®s-Rényi graph;

probability on the vertical axis represents the fraction of infected nodes; (b) Evolution of

contagion before and after the window of vulnerability. Adapted from Lee et al.[60]

Moreover, in order to be e�ective in reducing the spreading phenomenon, the curing

rate has to be large enough. More precisely, since λ1 > max
(
k̄,
√
kmax

)
(being k̄

the mean degree and kmax the maximum degree), the curing rate has to be at least

δ > γ ·max
(
k̄,
√
kmax

)
to get a below-the-threshold behaviour [61]. But for a big real

network
√
kmax can be very large, even if the mean degree is small. This implies that δ

has to be signi�cantly bigger than γ, or in other words, the infection signi�cantly weaker

than the self-recovering process. This fact could be totally unlikely in a real contagion

process on a real network and it makes the use of the SIS or SIR model extremely

unrealistic as remarked by Lee et al. [60]. Even when δ is small and the node infection

process is dominant, the corresponding epidemic dynamic is better captured by the

SI model. From an application point of view, this is possibly true over a wide range

of timescales under constrained environments where applying massive action to limit

contagion is practically infeasible.

As mentioned before, the detection of risky nodes in a network could be relevant

for limiting the risk propagation e�ects (see, e.g., [62, 63]). Hence, centrality of a given

institution as best spreader node in a contagion process has been widely explored (see,

for instance, [44]) in order to identify the most dangerous crisis epicenter. The idea

of best spreader node has also been studied in [64] in terms of topological centralities,

which was previously investigated under the name of vibrational centrality (see, e.g.,

11
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[65]). Centralities have been also used as measures to assess contagion in the interbank

market. In this framework, Dimitros and Vasileios [66] recommended the use of well-

established centrality measures as a way to identify the most important variables in a

network. Battiston et al. [38] introduce DebtRank, a centrality measure that accounts

for distress in one or more banks, based on the possibility of losses occurring prior to

default. The concept that some banks might be too central to fail originates from this

work (see, e.g., [38]).

1.2 Preliminaries

Here we use indistinctly the terms graphs and networks. Most of the network theoretic

concepts de�ned hereafter can be found in [1]. A graph Γ = (V,E) is de�ned by a set

of n nodes (vertices) V and a set of m edges E = {(u, v)|u, v ∈ V } between the nodes.

(u, u) ∈ E is a loop starting and ending in u. The degree of a node, denoted by ku, is the

number of edges incident to u in Γ. The adjacency matrix of the graph A = (Auv)n×n
with entries Auv = 1 if (u, v) ∈ E or zero otherwise. We consider here simple graphs, i.e.

without loops and multiedges. The theoretical model will be developed for unweighted

networks, we also recall here the de�nition of weighted graphs, as we consider in the

chapter two empirical real examples for which the network is weighted. A weighted

graph Γ′ = (V,E,W ) is a graph in which wuv ∈W is a positive number assigned to the

corresponding edge (u, v) ∈ E. In this case the sum of the weights for all edges incident

to a node is known as the weighted degree or strength. We consider here only undirected

networks, such that (u, v) ∈ E implies that (v, u) ∈ E. In this case the matrix A can

be expressed as A = UΛUT where U =
[
~ψ1 · · · ~ψn

]
is an orthogonal matrix of the

eigenvectors of A and Λ is the diagonal matrix of eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. The
entries of ~ψj are denoted by ψj,1, . . . , ψj,n.

An important quantity for studying communication processes in networks is the

communicability function [47], de�ned for a pair of nodes u and v as

Guv =
∞∑
k=0

(
Ak
)
uv

k!
= (exp (A))uv =

n∑
j=1

eλjψj,uψj,v. (1.1)

It counts the total number of walks starting at node u and ending at node v,

weighted in decreasing order of their length by a factor of 1
k! . A walk of length k in Γ

is a set of nodes i1, i2, . . . , ik, ik+1 such that for all 1 ≤ l ≤ k, (il, il+1) ∈ E. A closed

walk is a walk for which i1 = ik+1. Therefore, Guv is considering shorter walks as more

in�uential than longer ones. The matrix exponential is an example of a general class

12
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of matrix functions which are expressible as

(
f(A)

)
uv

=

∞∑
k=0

ck
(
Ak
)
uv
, (1.2)

where ck are coe�cients giving more weight to the shorter than to the longer walks,

and making the series converge. The term Guu, which counts the number of closed

walks starting at the node u giving more weight to the shorter than to the longer ones,

is known as the subgraph centrality of the node u.

We also consider here a Susceptible-Infected (SI) model over an undirected network.

Each susceptible node becomes infected at the infection rate γ per link times the number

of infected neighboring nodes. Let t∗ be the instant in which a node i is infected. Node

i remains in this state ∀t ≥ t∗ and does not come back susceptible. Let us introduce a

random variable Xi(t) denoting the state of a node i at time t

Xi (t) =

{
1

0

if t ≥ t∗

otherwise
(1.3)

Then we de�ne

xi(t) = P [Xi(t) = 1] = E[Xi(t)] ∈ [0, 1], (1.4)

which is the probability that node i is infected at time t. In other words, node i

is healthy at time t with probability 1 − xi(t). For the whole network, we de�ne the

vector of probabilities:

~x(t) = [x1(t), . . . , xn(t)]T . (1.5)

1.3 Model

Let us consider a SI model on a �nancial network. The nodes of a graph Γ = (V,E)

represent �nancial institutions and the edges connecting them represent an interaction

that can transmit a �disease� from one institution to another. A node can be susceptible

and then get infected from a nearest neighbor or it is infected and can transmit the

infection to other susceptible nodes. Let γ be the infection rate and let xi (t) be the

probability that node i get infected at time t from any infected nearest neighbor. Then,

dxi (t)

dt
= ẋi (t) = γ [1− xi (t)]

n∑
j=1

Aijxj (t) (1.6)

13
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which in matrix-vector form becomes:

~̇x (t) = γ [1− diag (~x (t))]A~x (t) , (1.7)

with initial condition ~x (0) = ~x0.

It is well-known that on a general strongly connected network1[45]:

1. if ~x0 ∈ [0, 1]n then ~x(t) ∈ [0, 1]n for all t > 0;

2. ~x(t) is monotonically non-decreasing in t;

3. there are two equilibrium points: ~x = ~0, i.e. no epidemic, and ~x = ~1 (the vector

of all ones), i.e. full contagion;

4. the linearization of the model around the point ~0 is given by

~̇x(t) = γA~x(t) (1.8)

and it is exponentially unstable; in fact, since, in a non-empty undirected graph,

A has at least one positive eigenvalue, any solution component in the direction

of the corresponding eigenvector grows unboundedly as t increases;

5. each trajectory with ~x0 6= ~0 converges asymptotically to ~x = ~1, i.e. the epidemic

spreads monotonically to the entire network.

In particular, the linearized problem comes from the following observation. It can be

checked that

ẋi(t) = γ[1− xi(t)]
n∑
j=1

Aijxj(t) ≤ γ
n∑
j=1

Aijxj(t) (1.9)

or

~̇x(t) ≤ γA~x(t), (1.10)

∀i and ∀t. Then, we can use the linear dynamical system

~̇x? (t) = γA~x? (t) , (1.11)

1Although in what follows we will refer only to undirected networks, we recall the following de�ni-

tion: A graph Γ = (V,E) is strongly connected if and only if for each pair of nodes i, j ∈ V there is a

directed walk starting at i and ending at j, and a directed walk starting at j and ending at i
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as an upper-bound for the original non-linear dynamical system, that has been used

in the literature (see [45]) as an approximation of the exact problem. One of its main

advantages is that it can be solved analytically and its solution ~x? (t) can be written

as:

~x?(t) = eγtA~x?0, (1.12)

which using the spectral decomposition of A can be written as

~x?(t) =

n∑
j=1

eγtλj ~ψj ~ψ
T
j ~x

?
0. (1.13)

This solution to the linearized model is a�ected by the following main problems:

1. ~x?(t) grows quickly without bound, in spite of the fact that ~x?(t) is a vector of

probabilities which should not exceed the unit;

2. ~x?(t) is an accurate solution to the nonlinear SI problem only if t → 0 and

~x?0 → 0.

The mathematical properties of the linear dynamical system 1.8 as well as of the

solution 1.12 have been extensively studied by Mugnolo in [67]. We direct the reader

to this reference for the details.

Hereafter we will follow the recent work of Lee et al. [60], who proposed the follow-

ing change of variable to avoid the aforementioned problems with the solution of the

linearized SI model:

yi (t) := − log (1− xi (t)) , (1.14)

which is an increasing convex function. Then, as 1− xi(t) is the probability that node

i is not infected at a given time t, the new variable yi (t) can be interpreted as the

information content of the node i or surprise of not being infected (see, e.g., [68]).

According to [60], the SI model 1.6 can be now written as

dyi (t)

dt
= ẏi (t) = γ

n∑
j=1

Aijxi (t) (1.15)

or

~̇y (t) = γA~x(t). (1.16)
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The approximate solution to the SI model provided by [60] is then given by

~x(t) = ~1− e−~y(t), (1.17)

where e−~y(t) is the vector in which the ith entry is e−yi(t) and

~y (t) = eγtAdiag(
~1−~x0) [− log (1− ~x0)]

+

∞∑
j=0

(γt)j+1

(j + 1)!

[
Adiag

(
~1− ~x0

)]j
A
(
~x0 +

(
~1− ~x0

)
log
(
~1− ~x0

))
. (1.18)

As stressed by [60], the interesting case of the dynamics is when ~x0 < ~1, in which

case the solution simpli�es to

~y(t) = ~y0 +
[
eγtAdiag(

~1−~x0) − I
]
· diag

(
~1− ~x0

)−1
~x0. (1.19)

Now, we can make the further assumption that the initial probabilities of being

infected are equal for every node, i.e. that at the beginning every node has the same

probability β to be infected and to be the one from which the epidemic starts. This

means that we are asking for

x0i = β =
c

n
, ∀i = 1, . . . , n (1.20)

for some scalar constant c. In this case diag
(
~1− ~x0

)
=
(
1− c

n

)
I = (1−β)I. If we set

α = 1− β, the approximate solution of the SI on the network becomes:

~y(t) = ~y0 +
1− α
α

[
eαγtA − I

]
~1. (1.21)

and since ~y0 = (− logα)~1,

~y(t) =

(
1

α
− 1

)
eαγtA~1−

(
logα+

1− α
α

)
~1. (1.22)

The component (eαγtA~1)i is called total communicability of node i and it will be

denoted by Ri. Hence, component-wise we have:

yi (t) =

(
1

α
− 1

)
Ri −

(
logα+

1− α
α

)
. (1.23)

Keeping in mind that − logα = yi(0) and α = 1 − β, we can write the previous

equation also as

∆yi (t) = yi (t)− yi (0) =
β

α
(Ri − 1), (1.24)
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which means that Ri−1 at time t is proportional to the variation in the information

content of node i from time 0 to time t. Finally, the probability of node i of being

infected at time t can be expressed in terms of Ri as

xi(t) = 1− (1− β)e
− β

1−β (Ri−1). (1.25)

When the parameter β is �xed, the number of infected nodes depends only on the

term eαγtA~1 and then on the total communicabilities Ri. It is worth noticing that the

probability given by 1.25 for a node i represents an upper bound for the exact solution of

the SI model. Hence, in this way we do not underestimate the contagion probabilities.

Let us consider, for instance, the time evolution of an infection propagation on an

Erd®s-Rényi network with 100 nodes and edge density δ = 0.1. Results are illustrated

in �gure 1.2 for two di�erent values of the infectivity rate, γ = 0.001 (left) and γ = 0.002

(right). The dashed red lines represent the mean probability that a node is infected at

time t as given by equation 1.25. The solid blue lines represent the same probability as

given by the exact solution of the Kermack-McKendrick SI model with the same mean

degree. In both plots, the initial probability is β = 0.01.

(a) (b)

Figure 1.2: Simulation of the progression of a SI epidemics on an Erd®s-Rényi network

with 100 nodes and edge density δ = 0.1. The parameters used in the model are: β = 0.01

and γ = 0.001 (left) and γ = 0.002 (right). Dashed (red) lines represent the upper bound

given by 1.25; solid (blue) lines represent the value of the same probability in a Kermack-

McKendrick SI model with the same mean degree k̄ = (n− 1)δ.
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1.4 Risk-dependent centrality

Let us designate ζ = αγt, which determines the level of risk to which the whole network

is submitted at time t. For instance, for γ = 0, i.e. ζ = 0, there is no risk of infection

on the network as a node cannot transmit the disease to a nearest neighbor. This

situation corresponds to the case of isolated nodes (no edges). When ζ → ∞ the risk

of infection is very high due to the fact that for a �xed value of c the infectivity is

in�nite. Therefore, we call Ri =
(
eζA~1

)
i
the risk-dependent centrality of the node i.

That is, the values of Ri re�ects how central a node is in �developing� the epidemics

on the network. As the networks considered are undirected, this centrality accounts

for both the facility with which the node gets infected as well as the propensity of this

node to infect other nodes. The index Ri can be expressed as

Ri =

[(
I + ζA+ ζ2

A2

2!
+ ζ3

A3

3!
+ · · ·

)
~1

]
i

, (1.26)

which indicates that it counts the number of walks of di�erent lengths, that have

started at the corresponding node, weighted by a factor
ζk

k!
. It is straightforward to

realize from the de�nition of the risk-dependent centrality that it can be split into two

contributions. That is, Ri is composed by a weighted sum of all closed walks that start

and end at i,
(
eζA
)
ii
and by the weighted sum of walks that start at the node i and

end elsewhere,
∑

j 6=i
(
eζA
)
ij

Ri =
(
eζA
)
ii

+
∑
j 6=i

(
eζA
)
ij

:= Ci + Ti, (1.27)

where the �rst term in the right-hand side represents the circulability of the disease

around a given node and the second one represents the transmissibility of the disease

from the given node to any other in the network. The circulability is very important

because it accounts for the ways the disease has to become endemic. For instance, a

large circulability for a node i implies that the disease can infect its nearest neighbors

and will keep coming back to i over and over again in a circular way. We start now

by proving some results about these risk-dependent centralities as functions of ζ.1 The

following theorem is a special case of results found, for instance, in [69].

Theorem 1. The node ranking given by the risk dependent centralities Ri(ζ), with

i = 1, . . . , n, reduces to the ranking given by the degree ki in the limit as the risk ζ → 0,

and to the ranking given by eigenvector centrality as ζ →∞.

1When needed, we will explicitate the dependence of Ri on ζ as Ri(ζ).
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Proof. We begin by observing that the ranking of nodes, in terms of their risk-dependent

centrality, is una�ected if all the centralities Ri are shifted and rescaled by the same

amount. That is, the same ranking is obtained using either Ri or the equivalent measure

R̂i =
Ri − 1

ζ
,

where ζ > 0. Now, we have

R̂i =

[(
A+

ζ

2!
A2 + · · ·

)
~1

]
i

= ki +
ζ

2!
(A2~1)i +O(ζ2). (1.28)

Hence, in the limit of ζ → 0, the ranking given by Ri is identical to degree ranking.

To study the limit for ζ large we write

Ri =
[
eζA~1

]
i

=
n∑
k=1

eζλk(ψTk ~1)ψk,i = eζλ1(ψT1 ~1)ψ1,i +
n∑
k=2

eζλk(ψTk ~1)ψk,i. (1.29)

We note again that for ranking purposes we can use the equivalent measure obtained

by dividing all risk-dependent centralities by the same quantity, eζλ1(ψT1 ~1), which is

strictly positive. That is, we can use

R̃i = ψ1,i +
1

ψT1
~1

n∑
k=2

eζ(λk−λ1)(ψTk ~1)ψk,i. (1.30)

Since the network is connected, the Perron�Frobenius Theorem insures that λ1 > λ2 ≥
· · · ≥ λn. Hence, each term eζ(λk−λ1) for k = 2, . . . , n vanishes in the limit as ζ → ∞,

and we see from 1.30 that the risk-dependent centrality measure gives the same ranking

as eigenvector centrality for ζ large.

It is interesting to observe that the risk-dependent centrality of every node also

depends on the (strictly positive) quantity

ψT1 ~1 =

n∑
j=1

ψ1,j ,

see equation 1.29. The larger this quantity is, the higher is the risk-dependent centrality

of each node. Assuming that the dominant eigenvector is normalized so as to have

Euclidean norm equal to 1, it is well known that this quantity is always between 1 and
√
n. The value 1 is never attained for a connected graph. It can only be approached

in the limit as all the eigenvector centrality is concentrated on one node, say node i,

where it takes values arbitrarily close to 1, with the values ψ1,j for all j 6= i taking
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arbitrarily small values. An example of this would be the star graph1 Sn for n → ∞.

The maximum value is attained in the case where all nodes have the same eigenvector

centrality: ψ1,1 = ψ1,2 = · · · = ψ1,n (i.e., in the case of regular graphs).

Let us return to the decomposition Ri = Ci+Ti of the risk-dependent centrality of a

node into its two components, circulability and transmissibility. Similar considerations

apply to these quantities. We summarize them in the following result.

Theorem 2. The node rankings given by the degree ki and the eigenvector centrality

represent the limiting cases of the ranking based on the risk-dependent circulability Ci(ζ)

as the external level of risk ζ → 0 and ζ → +∞, respectively. The same is true for the

risk dependent transmissibility Ti(ζ).

Proof. The proof for the circulability is a straightforward adaptation of that for the

total communicability; see also [69].

We give the details for the transmissibility, which has not been analyzed before. We

have for i 6= j that (
eζA
)
ij

= ζAij +
ζ2

2!
w

(2)
i,j +O(ζ3),

where w(2)
i,j denotes the number of walks of length two between node i and node j.

Dividing by ζ > 0, summing over all j 6= i and taking the limit as ζ → 0, we �nd

ζ−1Ti = ζ−1
∑
j 6=i

(
eζA
)
ij
→
∑
j 6=i

Aij = ki,

where we have used the fact that Aii = 0, for all i. Hence, transmissibility is equivalent

to node degree in the small ζ limit. For the large ζ limit we write

Ti =
∑
j 6=i

n∑
k=1

eζλkψk,iψk,j = eζλ1ψ1,i

∑
j 6=i

ψ1,j +
n∑
k=2

eζλk

∑
j 6=i

ψk,iψk,j

 .
Dividing by the positive constant eζλ1

∑
j 6=i ψ1,j and taking the limit as ζ →∞, the sec-

ond part of the right-hand side vanishes and we obtain again the eigenvector centrality

ψ1,i of node i.

Remark 1. A natural question is how rapidly the degree (for ζ → 0) and eigenvector

(for ζ → ∞) centrality limits are approached if the number of nodes n in the network

goes to in�nity. From the Taylor expansions (see for example equation 1.28) we see

that the degree limit is reached more slowly if the row sums of A2 grow as n → ∞.

1We recall that the star graph Sn consists of n − 1 nodes v1, . . . , vn−1, each attached to a central

node vn by an edge.
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In this case, as n increases ζ must be taken smaller and smaller before the ranking

reduces to the one given by the degree. On the other hand, if the network grows in such

a way that the maximum degree of any node remains uniformly bounded, then the rate

of convergence is independent of the number n of nodes, at least asymptotically.

The rate of convergence to the eigenvector centrality ranking is largely determined

by the spectral gap, λ1−λ2. If the gap remains bounded below by a positive constant as

n→∞, the value of ζ necessary to reach the eigenvector centrality limit is easily seen

to grow at most like O(lnn), and in practice the rate of convergence is scarcely a�ected

by the size of the network. If, on the other hand, the gap closes as n → ∞, then the

rate of convergence to the eigenvector centrality will become arbitrarily slow. The faster

the gap closes for n→∞, the more rapidly the rate of convergence deteriorates.

We conclude this section with some comments on the measures Ri, Ci and Ti.

While they all display the same limiting behaviour and provide identical rankings in

the small and large ζ limits, they provide di�erent insights on the network structure

(and therefore on node risk). For instance, it is well known that subgraph centrality

(which is the same as circulability, see [1, 70]) can discriminate between the nodes of

certain regular graphs, that is, graphs in which all the nodes have the same degree.

The same holds for transmissibility. Total communicability, on the other hand, is un-

able to discriminate between the nodes of regular graphs (and neither are degree and

eigenvector centrality, of course). These measures are also di�erent from a computa-

tional viewpoint. One advantage of the risk centrality based on total communicability

is that it only requires the computation of the action of the matrix exponential eζA on

the vector ~1. The entries of the resulting vector can be computed e�ciently without

having to compute any entry of eζA, see [71]. Modern Krylov-type iterative methods

(like those based on the Lanczos or Arnoldi process) can handle huge networks (with

many millions of nodes) without any di�culty. In contrast, the computation of the

circulability requires the explicit computation of the diagonal entries of eζA (the node

transmissibility is then easily obtained by subtracting the circulability from the total

communicability). Although there are techniques that can handle fairly large graphs

(see [72]), these calculations are much more expensive than those for the total commu-

nicability. This limits the size of the networks that they can be applied to. However,

for most �nancial networks the computation of the circulability is still feasible.

A �nal consideration regards the values assumed by the external risk parameter ζ.

Although, in principle, it can vary between 0 and in�nity, for the purposes of most

of the applications that follow, it may be su�cient to vary ζ between 0 and 1. The

rationale for using the interval [0, 1] relies on the fact that, at ζ = 1, the rankings
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given by Ri are already stabilizing around those provided by eigenvector centrality

and therefore no more interlacings between rankings are possible. As we will show, we

typically observe a single point of interlacement and it usually occurs before reaching

the value ζ = 1. Furthermore, this choice is equivalent to �x t = 1 in the epidemic

model solution 1.22, and, already as ζ approaches 1, all the probabilities involved in

that model become completely negligible or equal to 1.

1.5 Risk-dependent centrality on a random network

For the analysis of real-world (�nancial and economic) networks it is necessary to

investigate how informative the results obtained are with respect to the real system

under analysis. This signi�cance is typically addressed by comparing to those properties

obtained from network null models. As such null models we consider here Erd®s-

Rényi (ER) random networks ΓER (n, p) with n nodes and wiring probability p (see

[73, 74]), for which, in this section, we provide a series of analytical results. We start

by generating a family of simulated ER graphs and discarding simulations for which

the obtained graph is not connected.

In particular, we aim at testing how the external risk ζ and the probability p, and

hence the expected graph density δ, a�ect the results. For this purpose, we generate

1000 graphs ΓER(n; p) with n = 100 at di�erent values of p. For each graph, we

compute the main measures for alternative values of ζ. Firstly, we report in �gure 1.3

the behaviour of risk-dependent centrality Ri, circulability Ci and transmissibility Ti

as functions of the density, assuming a �xed high level of external risk, ζ = 1. Since

the values of Ri are signi�cantly increasing when the density of the graph increases,

we display, in �gure 1.3(a), the distributions of the ratio between the risk-dependent

centrality of each node Ri and its average value E(Ri).

As might be expected, the centralities of nodes tend to be similar when δ → 1 and we

move towards the complete graph, i.e. we observe a lower variability of the distribution

of the ratios. Similar behaviours are also observed for Ci and Ti, with an higher

volatility for the circulability (see �gures 1.3(b) and 1.3(c)). In 1.3(d), we show the

distributions of the incidence of the circulability Ci on the risk-dependent centrality

Ri, that is the distribution of the ratio Ci
Ri

again as a function of the density δ. When

ζ = 1, for all the graphs analyzed, the average value is around 1
n , implying that the

transmissibility has an average incidence of n−1
n on Ri. It is noteworthy to look at

the variability of the distributions. When the density is extremely low, i.e. we refer

to a very sparse graph, the heterogeneity of the nodes degree a�ects the ratio Ci
Ri
. For

22



1.5 Risk-dependent centrality on a random network

instance, when δ = 0.1, the circulability of a node ranges approximately from 0.15% to

2.5% of the risk-dependent centrality for the same node. A lower variability is observed

for higher densities. For instance, for δ = 0.5, the ratio Ci
Ri

varies between 0.6% and

1.3%. For δ = 0.95, we observe a ratio between 0.9% and 1.15%.

(a) (b)

(c) (d)

Figure 1.3: Figure a) displays the distributions of the ratios between the risk-dependent

centrality of each node Ri and the average risk-dependent centrality E (Ri), computed

assuming ζ = 1. Figure b) and c) display the analogous distributions for circulability and

transmissibility. Figure d) shows the distributions of the ratios between the circulability Ci

and the risk-dependent centrality of each node Ri, computed assuming ζ = 1. All Figures

are based on 1000 randomly generated ER networks ΓER(n; p) with a density varying

between 0.10 and 0.95.
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In �gure 1.4, we show the corresponding behaviours of risk-dependent centrality

Ri, circulability Ci and transmissibility Ti as functions of the density, but assuming a

�xed low level of external risk, ζ = 0.1. Again all Figures are based on 1000 randomly

generated ER networks ΓER(n; p) with δ varying between 0.10 and 0.95.

(a) (b)

(c) (d)

Figure 1.4: Figures a), b), c) and d) display the distributions of ratios Ri

E(Ri)
, Ci

E(Ci)
, Ti

E(Ti)

and Ci

Ri
respectively, computed in case of a low external risk (ζ = 0.1). All Figures are

based on 1000 randomly generated ER networks ΓER(n; p) with a density varying between

0.10 and 0.95.
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Focusing on the risk-dependent centrality ratio Ri
E(Ri) , we observe that the standard

deviation between nodes is lower in the low-risk framework (ζ = 0.1) than in the high-

risk one (ζ = 1). For instance, when the density is equal to 0.1, the standard deviation

of the ratio moves from 0.20 for ζ = 0.1 to 0.37 for ζ = 1. At a phenomenological

level, this behaviour can be justi�ed by the fact that di�erences between nodes tend

to be enhanced when the network is highly risk-exposed. Furthermore, the pattern of
Ci

E(Ci) for ζ = 0.1 is very peculiar. In this case, when the network is very sparse, nodes

show a similar circulability, while higher di�erences are observed when the density is

around 0.5. Lastly, in �gure 1.5, we focus on the ratio Ci
Ri

and we report the incidence

of the circulability on the risk-dependent centrality as a function of the external risk

ζ. In case of sparse networks (1.5(a)), when the external risk is low, we have that the

infection remains in larger part circulating in a loopy way around the nodes, while only

a lower proportion of risk tends to be transmitted to other nodes. This is due to the

fact that, for A sparse and ζ small, the matrix eζA = I+ ζA+ ζ2

2 A
2 +O(ζ3) is strongly

diagonally dominant. When the external risk is high, as already observed, we have

an average incidence of the circulability Ci on the risk-dependent centrality around 1
n .

On the contrary, when a very dense network is considered, the ratio Ci
Ri

is very little

a�ected by the external risk. In this case, both Ci and Ri increase on average at the

same rate when ζ increases. However, the decreasing behaviour of Ci
Ri

is noticeable for

very low values of ζ.

In what follows we provide an exhaustive proof of the behaviours observed so far.

Let us start with the pattern of the ratio Ci
Ri

at high density (see �gures 1.3(d), 1.4(d)

and 1.5(b)).

The asymptotic behaviour of this ratio can be explained as a consequence of Theo-

rem 5 in Appendix A, where we derive the close expressions of the three risk-dependent

centrality measures for a complete graph. In fact, as δ → 1, the ER network approaches

a complete network and, for ζ increasing, the ratio Ci
Ri

approaches 1/n, as shown in A.1.

Nonetheless, this result can be generalized. In fact, for an ER network which is

dense enough, the following property holds for any ζ.

Theorem 3. Let ΓER(n; p) be an Erd®s-Rényi random graph with n nodes and proba-

bility p. If the edge density of the graph is δ > (log n)6 /n and p (1− p) > (log n) 4/n,

then for any node i

lim
n→∞

nCi
Ri

= 1, (1.31)

independently of ζ.
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(a) (b)

Figure 1.5: Distribution of the ratios between Ci and Ri, computed for di�erent ζ and

by using generated ER graphs with a density equal to 0.1 (Figure a) and 0.9 (Figure b),

respectively. Both Figures are based on 1000 randomly generated ER networks ΓER(n; p).

Proof. Let us consider as usual that λ1 > λ2 ≥ · · · ≥ λn in a connected graph. It

is known that in an ER graph the spectral gap (λ1 − λ2) � 0. Indeed, as proved

in [75], limn→∞
λ1
np = 1, while λ2 and λn grow more slowly as limn→∞

λ2
nε = 0 and

limn→∞
λn
nε = 0 for every ε > 0.5, respectively.

Then, since we have np (1− p) > (log n) 4 for n large enough, all but the largest

eigenvalue lie with high probability in the interval
√
np (1− p) [−2 + o (1) ,+2 + o (1)]

(see [76] and [77]). Therefore,

lim
n→∞

Ci
Ri

= lim
n→∞

ψ2
1,ie

ζλ1 +
∑n

k=2 ψ
2
k,ie

ζλk

ψ1,i

(
~ψT1
~1
)
eζλ1 +

∑n
k=2 ψk,i

(
~ψTk
~1
)
eζλk

=
ψ1,i∑n
j=1 ψ1,j

. (1.32)

The edge density of an ER graph is δ = p. In [78], it was proved that for np >

(log n)6, there exists a positive constants C such that the following inequality holds

∥∥∥∥~ψ1 −
1√
n
~1

∥∥∥∥
∞
< C

1√
n

log n

log (np)

√
log n

np
, (1.33)

which in plain words means that an ER graph of density δ > (log n)6 /n is �almost�

regular when n → ∞. That is limn→∞
√
nψ1,i = 1 for every node i. Thus, the result

immediately follows.
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It is worth pointing out that, when the density of an ER network is very low, the

standard deviation of the ratio
Ci
Ri

is very large with respect to that of ER networks with

large densities (as shown in �gure 1.3(d)). As we have proved before, the convergence

of this ratio to the value n−1 takes place only when the density of the graph is relatively

large. Let us now analyze what happens when the edge density is very small for large

graphs. In this case, we observe a slower decay of the ratio
Ci
Ri

as a function of the

external risk in the range [0, 1] (see �gure 1.5(a)). This fact can be easily proven as

follows. In general, both the numerator and denominator of this ratio can be expressed

as in�nite series of the type:

C (ζ)i = Q (ζ) = 1 + a2ζ
2 + · · ·+ akζ

k + · · · ,

R (ζ)i = H (ζ) = 1 + b1ζ + (a2 + b2) ζ
2 + · · ·+ (ak + bk) ζ

k + · · · = Q (ζ) + L (ζ) ,

where ak counts the number of closed walks of length k starting and ending at node

i and bk counts all the open walks of length k starting at i and ending at any node

j 6= i. Let us consider

d

dζ

(
Q (ζ)

Q (ζ) + L (ζ)

)
=
L (ζ)Q′ (ζ)− L′ (ζ)Q (ζ)

[Q (ζ) + L (ζ)]2

=

(
2a2b1ζ

2 + · · ·+ 2a2bkζ
k+1 + · · ·

)
−
(
b1 + 2b2ζ + a2b1ζ

2 + · · ·+ b1akζ
k + · · ·

)
[Q (ζ) + L (ζ)]2

Then, for certain ζ < 1 the numerator of the previous expression is negative, which

means that the ratio
Ci (ζ)

Ri (ζ)
is monotonically decreasing with ζ. For instance, let us

make a second order approximation to the polynomials Q (ζ) and H (ζ). Then, we have

Q (ζ)

H (ζ)
=

1 + 1
2ζ

2ki

1 + ζki + 1
2ζ

2 (ki + P2,i)
,

where P2,i is the number of paths of length 2 (wedges) starting at node i. In an ER

graph E (ki) = (n− 1) p and E (P2,i) = (n− 1)2 p2 − (n− 1) p. Thus,

Q (ζ)

H (ζ)
≈

1 + 1
2ζ

2 (n− 1) p

1 + ζ (n− 1) p+ 1
2ζ

2 (n− 1)2 p2
=

1 +
k̄

2
ζ2

1 + k̄ζ +
k̄2

2
ζ2

,
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Figure 1.6: Illustration of the behaviour of the derivative of the ratio
Ci (ζ)

Ri (ζ)
for values

of 0 ≤ ζ ≤ 1 and for the parameter k̄ ≥ 1.

where k̄ = (n− 1) p is the mean degree. The �rst derivative of this rational function is

d

dζ

(
Q (ζ)

H (ζ)

)
=

2k̄2ζ2 −
(
4k̄
(
k̄ − 1

)
ζ + 4k̄

)(
2 + 2k̄ζ + k̄2ζ2

)2 ,

which is always negative for any k̄ ≥ 1 and 0 ≤ ζ ≤ 1 as can be seen in �gure 1.6.

Moreover, the absolute value of this derivative increases as k̄ decreases, implying a

slower decay in the function
Ci (ζ)

Ri (ζ)
for lower densities.

To conclude this section, we want to focus on the rankings produced by the two

main centrality measures Ri and Ci and on the similarities between them. In particular,

we are interested in determining if, or for what type of networks, the di�erent centrality

measures provide similar rankings. To this end, we display in table 1.1 the Spearman

correlation coe�cient between the risk dependent centrality Ri and the circulability Ci

for di�erent graph densities and for various values of ζ. On average, we observe a strong

positive monotonic dependence between the two centrality measures. As expected,

the two measures tend towards the perfect monotonicity as the density arises. It is

noteworthy the behaviour with respect to ζ. The higher dependence is observed in a

low-risk framework (ζ = 0.1), while a slight reduction is noticeable when higher risk

contexts are analyzed, providing again an empirical evidence of the fact that di�erences

between nodes are increased in stressed conditions. Furthermore, this result is in line
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1.6 Analysis of real-world �nancial networks

with the higher incidence of Ci on Ri as ζ vanishes, discussed in the previous lines.

For the sake of brevity, we do not report the Spearman correlation between Ri and Ti.

However, in all cases, the coe�cient is larger than 0.9999.

Table 1.1: Spearman correlation coe�cients between Ci and Ri in ER graphs with 100

vertices at di�erent densities and di�erent values of ζ.

Density

0.1 0.3 0.5 0.7 0.9

0.1 0.9947 0.9967 0.9971 0.9994 0.9998

ζ 0.5 0.9844 0.9950 0.9966 0.9994 0.9998

1.0 0.9813 0.9950 0.9966 0.9994 0.9998

1.6 Analysis of real-world �nancial networks

In this section, we perform some empirical studies in order to assess the e�ectiveness of

the proposed approaches. We consider two di�erent families of networks. In the �rst

one, we collected daily returns of a dataset referred to the time-period ranging from

January 2001 to December 2017, that includes 102 leading U.S. stocks constituents of

the S&P 100 index at the end of 2017. Data have been downloaded from Bloomberg.

Returns have been split by using monthly stepped six-months windows. It means that

the data of the �rst in-sample window of width six-month are used to build the �rst

network. The process is repeated rolling the window one month forward until the end

of the dataset is reached, obtaining a total of 199 networks. The �rst network, denoted

as �1-2001�covers the period 1st of January 2001 to 30th of June 2001. The latter one

(�7-2017�) covers the period 1st of July 2017 to 31th of December 2017.

Hence, for each window, we have a network Γt = (Vt, Et) (with t = 1, ..., 199),

where assets are nodes and links are weighted by computing the correlation coe�cient

tρi,j between the empirical returns of each couple of assets. Notice that the number

of assets can vary over time. Indeed, as mentioned, we have considered the 102 assets

constituents of the S&P 100 index at the end of 2017. Some of these assets have

no information available for some speci�c time periods. Therefore, in each window,

we have considered only assets, whose observations are su�ciently large to assure a

signi�cant estimation of the correlation coe�cient. However, it is not the aim of this

work to deal with the e�ects of alternative estimation methods. As a consequence, the

number of nodes in the 199 networks varies from 83 to 102 during the time-period.

Then, we follow the methodology proposed in [79, 80] and we use the non-linear
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transformation, based on distances tdi,j : tdi,j =
√

2(1− tρi,j). The distance matrix

Dt = [tdi,j ]i,j∈Vt , with elements 0 ≤ tdi,j ≤ 2, becomes the weighted adjacency matrix

of the graph Γt. As proposed in [80], we extract the minimum spanning tree Tt. This

is a simple connected graph that connects all nt nodes of the graph with nt − 1 edges

such that the sum of all edge weights
∑

tdi,j∈Tt tdi,j is minimum. As shown in [80], this

minimum spanning tree, as a strongly reduced representative of the whole correlation

matrix, bears the essential information about asset correlations. Furthermore, the

study of the centrality of nodes and the analysis of the evolution of the tree over time

are two critical issues in portfolio selection problem (see [80, 81, 82]).

The second dataset consists of a network of the top corporates in US in 1999 ac-

cording to Forbes magazine. The network is constructed as follows. First we consider

a bipartite network in which one set of nodes consists of companies and the other of

directors of such companies. As one director can be in more than one company, we

make a projection of this bipartite graph into the company-company space. In this way,

the nodes represent corporations and two corporations are joined by an edge if they

share at least one director. We consider two versions of this network, in the �rst we use

the number of directors shared by two companies as an edge weight, and in the second

we use the binary version of the �rst. We will refer to these as to the weighted and

binary network, respectively. The network has 824 nodes, made up of one giant com-

ponent of 814 nodes. We selected the giant component, with its binary and weighted

adjacency matrices. For a comprehensive description of this network see, for instance,

[83]. Networks, derived by both datasets, have been studied by computing the total

communicability, circulability and transmissibility for each node with ζ varying in (0, 1]

with step 0.01.

1.6.1 Network of assets

Starting from the asset trees Tt, we measure the relevance of each node by using the

risk-dependent centrality Ri and by testing di�erent values of ζ. We consider in �gure

1.7 the rankings' distribution of each asset. Di�erent outcomes of each distribution

have been obtained by computing the rankings based on Ri for alternative values of

ζ in the interval (0, 1] with step 0.01. These results regard the �rst network �1-2001�,

namely, the network based on data that cover the period 1st of January 2001 to 30th

of June 2001. We observe that some nodes show a signi�cant variability according to

di�erent values of ζ. Indeed, some assets have climbed more than 20 positions in the

ranking when ζ increases. For instance, Amazon (node 7 in �gure 1.7) moved from

position 66 to 41 in case of low and high risk, respectively. Vice versa, Exelon Group
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(node 32 in 1.7) lowered its ranking from 15 to 46. On the other hand, the most central

nodes in the network remain very central also when external risk is very high. We have

indeed that the top 6 is quite stable for di�erent values of ζ. Top assets only exchange

a bit their position, preserving their central role. For instance, United Technologies

Corporation (node number 79 in 1.7) is at the top of the ranking, independent of ζ.
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Figure 1.7: Figure reports the distribution of nodes' rankings based on Ri with respect

to ζ. For each distribution, the set of outcomes is given by the rankings of Ri computed

for alternative values of ζ. Results regard the network T1, i.e. the asset-tree in the �rst

window 1− 2001.

If we consider the period of the global �nancial crisis of 2007-2008 (see �gures 1.9

and 1.10), we observe an increase in the rankings' volatility. In shock periods, centrality

of nodes is more a�ected by the value of ζ. In particular, to catch rankings' volatility, we

report in �gure 1.8 the standard deviations of rankings of each asset computed varying

ζ. In shocks periods, results con�rm higher average volatility as well as positive skewed

distributions because of a greater number of assets whose ranking is highly a�ected by

the value of ζ. We also tested that di�erences in average volatility are signi�cant by

means of a paired t-test, useful for comparing the same sample of assets at di�erent

time periods. When the network 1-2001 is compared with the two networks covering

period of crisis (End 2007 or End 2008), we obtain p-values around 10−5 and 10−8 that

con�rm strong evidence against the null hypothesis that the average di�erence between

the two samples is zero. As expected, the test is not statistically signi�cant (p-value is
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0.31) when networks covering period of the global �nancial crisis are compared.

Figure 1.8: Figure reports the distribution of standard deviations of nodes' rankings

based on Ri with respect to ζ. For each distribution, the set of outcomes is given by the

standard deviation of rankings of Ri computed for alternative values of ζ. Results regard

respectively the network in the �rst window 1 − 2001, at the end of 2007 and at the end

of 2008. The dotted red lines indicate the average standard deviation: values are equal to

2.31, 4.27 and 4.80, respectively.

Concerning the behaviour of speci�c assets, we observe, for instance, that some as-

sets move down by approximately 60 positions from a low risk to an high risk framework.

Two examples are represented by Danaher Corporation and Honeywell International

(assets 28 and 43, respectively, in �gure 1.9). Instead, Accenture PLC (node 3 in 1.9)

increased its ranking from position 61 to 11.

Even top central nodes are a�ected by ζ as the volatilities of their rankings show. It

is instead con�rmed the relevance of United Technologies Corporation (node number

82 in 1.9 and 83 in 1.10) that is again at the top of the ranking at the end of 2017,

independent of ζ. At the end of 2008, the centrality of this asset is also con�rmed,

although, a bit of variability in the ranking is observed for this �rm.
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Figure 1.9: Figure reports the distribution of nodes' rankings based on Ri with respect

to ζ. For each distribution, the set of outcomes is given by the rankings of Ri computed

for alternative values of ζ. Results regard the asset-tree at the end of 2007.
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Figure 1.10: Figure reports the distribution of nodes' rankings based on Ri with respect

to ζ. For each distribution, the set of outcomes is given by the rankings of Ri computed

for alternative values of ζ. Results regard the asset-tree at the end of 2008.
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1.6.2 US corporate network

We now analyze the network of US top corporates in 1999 according to Forbes maga-

zine. Before starting our analysis let us explain the importance of studying a spreading

dynamics on this network. According to this network, the board of directors of a given

corporation is formed by a few members, some of which are also present in the board

of other corporations. Then, such directors serving on more than one board can act

as spreaders of information between the corresponding corporations. Such information

can be about future (favorable or unfavorable) economic situations, alarms, market

opportunities, or anything that could be of interest to the companies in which the

director is. Due to the global connectivity of the system, such �information� can be

spread across the whole network �infecting� all the corporations in a relatively short

time. As we have mentioned before, epidemiological models have also being used for

modeling such propagation dynamics (see Section 1.1.).

Hence, we devote this section to the investigation about whether a signi�cant increase

of the risk-dependent centrality is a proxy of the vulnerability of the corporate to �-

nancial infections propagating on the network. At �rst, we should remark the fact

that the network we are considering here was built based on data corresponding to

year 1999. At this year the level of stress of the international economic system was

relatively high due to the fact that the East Asian �nancial crisis occurred in the years

1997�1998, which was also followed by the Russian default of 1998. The two afore-

mentioned �nancial crises had a ripple e�ect on the US market. In the literature, for

instance, it is well-documented the so-called ��re-sale� FDI (Foreign Direct Investment)

phenomenon, that is, the surge of massive foreign acquisitions of domestic �rms during

a �nancial crisis [84, 85].Thus, the level of stress and infectability of the system for the

next few years after 1999 (we will eventually see that these correspond to the period

2000-2002) is expected to be signi�cantly larger than in the subsequent years when

the e�ects of these crises gradually relaxed. Therefore, we proceed our analysis by

considering that the level of infectability in 1999 is high and we investigate the e�ects

of relaxing such a condition to lower levels of stress. That is, we start by assuming

that in 1999 the external market turmoil could be represented by a value of ζ = 1

and we want to �nd out how the companies change their ranking positions in term of

risk-dependent centrality1 Ri as ζ vanishes. To this purpose, we set up di�erent initial

conditions in the contagion model described by 1.15, assigning to each year a di�erent

1The analysis has been also developed for circulability and transmissibility, but, since the signif-

icantly high rank correlation between Ri and Ti (with Spearman correlation coe�cients larger than

0.99), we focus here only on Ri.
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value of the infectability parameter γ, according to the environmental conditions of the

market. Therefore, we let ζ factors reduce year by year in order to re�ect a reduction

in the overall stress on the network. In particular, we decrease ζ linearly from 1 to 0

in the period 1999-2003. Therefore, rankings based on the risk-dependent centrality

computed for ζ = 1 allow to assess the relevance of each corporate in 1999. Lowering

ζ, we test how the positions of �rms vary over time when the external risk reduces. It

is noteworthy that the connection between this parameter and the risk could be quite

loose but as provided by the following analysis the model seems to work quite well in

describing �rms that reduce their SVC in the period.

The variation of rankings is then compared with the pattern of the shareholder value

creation (SVC) over time. According to the OECD Principles of Corporate Gover-

nance, corporations should be run, �rst and foremost, in the interests of shareholders

(OECD 1999). Therefore, companies should work to increase their shareholder values.

Increasing shareholders value cannot be done without risk. It is known [86] that in

the shareholder value model, companies usually take more risk than needed in order

to maximize SVC. As a consequence of this additional risk, companies acquire debts

which could make them unstable and more exposed to the risk of bankruptcy. Ac-

quiring large debts is seen as conductive to increasing shareholder value, due to the

potential of the company to increase value when it has started from a low baseline.

Thus, there is a relation between SVC and risk, because in searching for large SVC

the companies increase their risks to attract more investors and increasing potential

value gain, but, at the same time, the risk also puts the company in a more vulnerable

position to bankruptcy and collapse.

To support our interpretation, we make use of SVCs of the companies1 in the S&P500

for the period 1999-2003, that have been collected by FernÃ½ndez and Reinoso (see

[87]). Hence, we use SVC as a proxy for risk. Indeed, the global average of SVC re�ects

very well what happens for the period 1999-2003. After the �nancial crisis of 1998 the

world was at a higher level of risk which is re�ected by a dramatic drop of the SVC

in year 2000 from a positive value in 1999 to a negative one in 2000. This situations

remained until 2002, but eventually recovered to positive in 2003 (see �gure 1.11). It

is noteworthy that the data for SVC was reported by Fernandez and Reinoso for the

years 1993-2003. From this long period we select the segment 1999-2003 which contains

exactly the valley produced from the �nancial crisis of 1998 and also because the data

used for building the corporate network is of 1999. That is, it corresponds to a segment

1In particular, we use a sample of 337 companies in our network whose SVCs are made available

in the dataset available in [87].
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in time in which the world economy drop due to a crisis and then eventually recovered

from it.
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Figure 1.11: Total created shareholder value ($ billion) of �rms constituent the index

S&P500 for the period 1999-2003 (data taken from [87]).

We focus our statistical analysis on the predictability of the risk-dependent central-

ity on the evolution of the SVC. We consider the evolution of the SVC of a company for

the period 1999-2003, which is the period immediately after the network of corporate

elite in US was built. As a proxy for the evolution of the SVC of a company we consider

the Pearson correlation coe�cient ρ of the ranking position of the company based on

SVC versus the reciprocal of the year. In this case, a negative (positive) value of ρ

indicates that the corresponding company decreases (increases) its SVC from 1999 to

2003 when the global external infectability decreases. Therefore, we apply a Linear

Discriminant Analysis (LDA) to classify the companies into two groups: (i) those with

negative trend in the SVC for this period, and (ii) those with a positive one. The only

predictor used for this classi�cation is the parameter ∆Rank(Ri). This parameter is

the di�erence between the ranking position of the company i when ζ = 1 and the rank-

ing position of the same company when ζ = 0.01. In other words, a negative (positive)

value of ∆Rank(Ri) means that the company dropped (increased) its exposure to risk

when the infectability of the system is lower.

Before proceeding with the application of the LDA on the whole sample at disposal,

we eliminate a few companies whose correlation coe�cient between SVC and the re-

ciprocal of the year is marginal (i.e., close to zero). We test empirically the e�ect

produced by the removal of companies for which |ρ| < a for di�erent values of the

threshold a, e.g., a = 0.01, 0.025, 0.05, 0.075, 0.1. The best classi�cation of the compa-
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nies into the two groups analyzed is obtained by eliminating those companies for which

|ρ| < 0.05. In this case the total accuracy of the LDA model is 60.5%. That is, 200 out

of 332 of the companies are classi�ed correctly in their respective groups representing

their trends in shrinking SVC or expanding it. In particular, the �tted LDA model

is Ŷi = −0.3177 + 0.0102∆Rank(Ri), where Ŷi is the predicted response variable of

our analysis that allows to classify companies in their respective group. The positive

coe�cient of the variable ∆Rank(Ri) indicates that: (i) increasing the exposure to

risk (∆Rank(Ri) > 0) tends to expand the SVC of the company, and (ii) decreasing

the exposure to risk (∆Rank(Ri) < 0) tends to shrink the SVC of the company. For

both groups, we report in �gure 1.12(a) a comparison between the predicted value with

the LDA and the observed value for each �rm. Red squares below the line and blue

circles over the line are well classi�ed, while blue circles below the line and red squares

over the line are wrongly classi�ed. Furthermore, in �gure 1.12(b) we report the re-

lated confusion plot,where the number of true negative and true positive are on the

anti-diagonal (bottom and upper parts, respectively) and the number of false negative

and false positive are on the main diagonal (bottom and upper parts, respectively).

It is noticeable the low classi�cation performance of the model, when only companies

that expand their SVC are considered (in this regard, see in �gure 1.12(b) companies

that belong to the observed class denoted with the sign +). For instance, from 147

companies in the network which increase their SVC in the period 1999-2003 only 36

are correctly predicted by ∆Rank(Ri) in their class. On the contrary, from the 175

companies that shrink their SVC in the period 1999-2003, the variable ∆Rank(Ri) cor-

rectly predicts 157 companies in this class. That is, the risk-dependent centrality of the

companies clearly identi�es about 90% of the companies which will shrink their SVC

in the period 1999-2003, using only data referring to the year 1999. In plain words, our

results indicate that diminishing the exposure to risk when the external conditions of

infectability are low, with high probability, reduces the SVC of a company.
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Figure 1.12: (a) Illustration of the linear discriminant analysis (LDA) model classifying

the trend of corporations into those shrinking their SVC (red squares) and those expanding

it (blue circles). The black line represents the LDA model based on the change of Ri (ζ) for

the values of ζ = 0.01 and ζ = 1.0 to predict the trend in the SVC. Red squares below the

line and blue circles over the line are well classi�ed, while blue circles below the line and red

squares over the line are wrongly classi�ed. The LDA classi�es correctly about 90% of all

companies who shrank their SVC (red squares). (b) Plot of the confusion matrix. On the

x-axis we report the true class (Observed Class), on the y-axis the predicted class (Output

Class). The number of true negative and true positive cases are on the anti-diagonal

(bottom and upper parts, respectively) and the number of false negative and false positive

cases are on the main diagonal of the matrix (bottom and upper parts, respectively). In

the class minus (plus) we consider companies with negative (positive) trend in the SVC for

the period 1999-2003

Let us conclude with the following remark. Even if �good� companies increase

their risk-centrality ranking as ζ vanishes, it is worth noting that this occurs when

the global stress in the market is very low. When the infectability rate is very low,

the absolute probability of getting infected also remains very low for both �good� and

�bad� companies. To show this fact, let us consider that, according to our model, the

probability that a given corporate is not a�ected by a crisis propagating inside the

network is given by 1 − xi(t) = αe−
β
α
(Ri−1), where again β and α = 1 − β are the

initial probabilities to have infected and not-infected nodes, respectively. Hence, the

ratio between the probabilities of two nodes i and j to pass successfully through a

crisis is given by e
β
α
(Rj−Ri). We compute these ratios for di�erent couples of corporates
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operating in a similar sector, a �good� one and a �bad� one (see �gure 1.13).

(a) (b)

Figure 1.13: Figures display the ratios between the probabilities of not being infected by

a crisis for two di�erent couples of Corporates: a) Lucent Technologies Inc. over General

Electric Co. b) Morgan Stanley Co. over Bank One Corp. It is noteworthy that Lucent

Technologies Inc. and Morgan Stanley Co. reduced their rankings over time, while General

Electric Co. and Bank One Corp. increased their rankings.

As expected, at low ζ the probability of not being infected by a crisis is the same

for both high and low risk-centrality companies. But this ratio decreases very quickly

as ζ increases and this means that for companies that reduced their risk (e.g., Lucent

Technologies, Morgan Stanley, Union Carbide and American Express) the probabilities

to stay safe during a crisis are very small if compared with the analogous probabilities

for companies that increased their risk (e.g., General Electric, Bank One, Ashland and

Bank of America).

1.7 Ranking interlacement

During the analysis of the two real-world networks studied above, we have noticed that

with the change of ζ some nodes vary their ranking signi�cantly, to the point of changing

their positions relative to each other. For instance, in �gure 1.14 we illustrate six pairs of

corporates that interlace their positions with the change of the global infectability in the

network. In the �rst pair, 1.14(a), we see that at low levels of infectability, i.e., ζ → 0,

J.P. Morgan&Co Inc. (red) occupies a position in the ranking of Ci more at the bottom
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than Bank of America Corp. (blue). That is, at low global infectability J.P. Morgan&Co

is exposed to less risk than Bank of America. However, when the global infectability

in the network increases (ζ → 1), Bank of America is exposed to less risk than J.P.

Morgan&Co. A similar interlacement is observed between the other couples in �gure

1.14. For instance, in 1.14(f), the interlacement between rankings for General Motors

Corp. (red) and Boeing Co. (blue) occurs at a smaller value of ζ than for the previous

cases. Before proceeding with the analysis of this phenomenon, we would like to remark

that the existence of ranking interlacement means that the ranking of the nodes in a

network based on the risk-dependent centralities is not unique and �xed as in the case

of other classical centrality measures, e.g., degree, eigenvector, closeness, betweenness.

Here instead the ranking of nodes depends on the global external conditions to which

the network is submitted.

In order to shed light on the issue of ranking interlacement we will make use of

di�erent representations of the risk-dependent total communicability Ri(ζ) and circu-

lability Ci(ζ) measures (the transmissibility is obtained as the di�erence of these two

and can be treated accordingly). First, expanding the matrix exponential in a power

series gives the representation

Ri(ζ) =
(
eζA~1

)
i

=
∞∑
k=0

ζk

k!
w

(k)
i , (1.34)

where w(k)
i =

(
Ak~1

)
i
denotes the number of walks of length k starting from the node

i, with w(0)
i = 1. In particular, w(1)

i = ki, the degree of node i. Similarly,

Ci(ζ) =
(
eζA
)
ii

=

∞∑
k=0

ζk

k!
w

(k)
i,i , (1.35)

where now w
(k)
i,i =

(
Ak
)
ii
is the number of closed walks of length k through node i; in

particular, w(0)
i,i = 1, w(1)

i,i = 0, w(2)
i,i = ki, and w

(3)
i,i = 2ti, where ti is the number of

triangles node i participates in.

Second, we recall that the spectral theorem yields the formulas

Ri(ζ) =

n∑
k=1

eζλk
(
ψTk ~1

)
ψk,i, Ci(ζ) =

n∑
k=1

eζλk (ψk,i)
2 . (1.36)

Using 1.34-1.35, we readily see that both functions of ζ are absolutely monotonic

for ζ > 0, i.e. they are positive and in�nitely di�erentiable on (0,∞), with all the

derivatives being nonnegative. In particular, both functions are strictly increasing and

strictly convex.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.14: Illustration of the Circulability Ranking Interlacement for a) J.P. Mor-

gan&Co Inc. (red) and Bank of America Corp. (blue) b) P�zer Inc. (red) and Ashland

Inc (blue) c) Morgan Stanley & Co. (red) and Bank One Corp. (blue) d) AT&T Corp.

(red) and Airtouch Communications Inc. (blue) e) Union Carbide Corp. New (red) and

AON Corp. (blue) f) General Motors Corp. (red) and Boeing Co. (blue)
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De�nition 1. We say that the rankings of node i and node j based on the circulability

interlace at ζ∗ > 0 if Ci(ζ∗) = Cj(ζ∗) and there exists an ε > 0 such that Ci(ζ)−Cj(ζ)

changes sign exactly once in (ζ∗ − ε, ζ∗ + ε).

In other words, nodes i and j interlace at ζ∗ > 0 if the plots of Ci(ζ) and Cj(ζ)

cross for ζ = ζ∗. We note that, in principle, it is possible to have Ci(ζ∗) = Cj(ζ∗) for

some value of ζ∗ without interlacing taking place. Two cases are possible: in the �rst

one, the two curves touch at the isolated point ζ∗ (without crossing), and in the second

one the two functions are identical on an open neighborhood of ζ∗ and, therefore, for

all ζ since they are analytic functions. In practice, either scenario is very unlikely to

occur, at least for real world networks. Note that points of tangency must satisfy the

additional condition C ′i (ζ
∗) = C ′j(ζ

∗).

An analogous de�nition can be given for the ranking based on other ζ-dependent

measures, like the total communicability Ri(ζ). In the following we limit our discussion

to the interlacing of rankings according to the circulability, but analogous observations

hold for the total communicability and transmissibility functions.

Identifying the interlacing points (if they exist) requires to �nd the roots of the

transcendental equation Ci(ζ)− Cj(ζ) = 0, or

Ψ(ζ) :=
n∑
k=1

eζλk
[
ψ2
k,i − ψ2

k,j

]
= 0.

Even if we knew the eigenvalues and eigenvectors of A explicitly, there is no general

closed form expression for the roots of the transcendental function Ψ. Of course one

could resort to numerical root-�nding techniques, but this would be impractical for

large networks. Here and below we give a qualitative discussion followed by a heuristic

approach that yields approximations that seem to work well in practice.

We begin with the following result. It applies to both circulability and total commu-

nicability based rankings, and in fact for a much larger class of parameter-dependent

centrality ranking functions, including Katz centrality [88]. We remind the reader that

we restrict the risk rate ζ to positive values.

Theorem 4. Let i and j be two nodes with di�erent eigenvector centrality: ψ1,i 6= ψ1,j.

Then the number of interlacing points for i and j is necessarily �nite (possibly zero).

Proof. Let us assume that there is at least one pair of nodes, i and j, whose rankings

interlace, so that Ψ(ζ) = 0 has at least one positive root. Observe that the ranking of

node i provided by Ci(ζ) is identical to that obtained using

Ĉi(ζ) = e−ζλ1Ci(ζ) = ψ2
1,i +

n∑
k=2

eζ(λk−λ1)ψ2
k,i.

42



1.7 Ranking interlacement

As this quantity tends monotonically to ψ2
1,i for ζ → ∞, there exists a ζ̄ such that no

rank interlacing with node j can occur for ζ > ζ̄, since all the node rankings must stabi-

lize on the eigenvector rankings in the large ζ limit. Hence, all interlacing points must

fall within the compact interval [0, ζ̄]. Suppose that the number of interlacing points

is in�nite. By the Bolzano-Weierstrass Theorem, this set has a point of accumulation.

But since Ψ̂(ζ) := e−ζλ1Ψ(ζ) is analytic, and zero on this set, it must be identically

zero everywhere, which contradicts the assumption that there is at least one interlacing

point in (0,∞).

As a consequence:

Corollary 4.1. If all nodes in the network have di�erent eigenvector centralities, the

total number of interlacing points is �nite (possibly zero).

A su�cient condition for the existence of at least one interlacing point for the pair

of nodes i and j is that ki ≥ kj (or kj ≥ ki) while ψ1,i < ψ1,j (resp., ψ1,i > ψ1,j). This

follows from Theorem 2: since Ci(ζ) interpolates smoothly between degree centrality

and eigenvector centrality, the only way that a node with higher degree can have lower

eigenvector centrality than another node is that the corresponding circulabilities inter-

lace at some value ζ∗ > 0. If more than one interlacing point exists, this number must

be odd, for otherwise the node with higher degree would also have higher eigenvector

centrality than the other node. That the above condition is not necessary is made clear

considering the possibility of an even number of interlacing points. A necessary condi-

tion for the existence of at least one interlacing point is that there exist at least two

values of k, say k1 and k2, for which (Ak1)ii−(Ak1)jj and (Ak2)ii−(Ak2)jj have di�erent

sign. Indeed, it is obvious from equations 1.34 and 1.35 that if (say) (Ak)ii ≥ (Ak)jj for

all k, then no rank interlacing point exists. That this condition may not be su�cient

is suggested by the fact that the series expansions contain an in�nity of terms.

We mention that the same problem has been studied, for a di�erent centrality

function (the Katz resolvent), by [89] independently of us.

1.7.1 A back of envelop approach

We now consider heuristics based on truncated series expansions. Let k0 ≥ 3 be the

smallest value of k such that the sequence of values {(Ak)ii − (Ak)jj}k≥2 undergoes a
sign change (here zero is considered positive). If no such k0 exists, then no interlacing

can take place, as we already observed. We consider approximating Ci(ζ) with its
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truncation to an order k ≥ k0:

Ci(ζ) ≈ 1 +
1

2!
ζ2w

(2)
i,i +

1

3!
ζ3w

(3)
i,i + · · ·+ 1

k!
ζkw

(k)
i,i = C̃i(ζ), (1.37)

where we recall that w(k)
i,i = (Ak)ii. We emphasize that this polynomial approximation

assumes that ζ is small, since the error in it is O(ζk+1). In alternative we can also use

as a surrogate for Ci the same polynomial shifted by 1 and divided by ζ2:

C̃i(ζ)− 1

ζ2
=

1

2!
w

(2)
i,i +

1

3!
ζw

(3)
i,i + · · ·+ 1

k!
ζk−2w

(k)
i,i ,

where now the error is O(ζk−1). We can now use these polynomial approximations

to try to locate, approximately, any interlacing points su�ciently small in magnitude.

This requires �nding the (positive) roots, if any, of the polynomial equation of degree

k − 2:

q(ζ) =
(w

(k)
i,i − w

(k)
j,j )

k!
ζk−2 +

(w
(k−1)
i,i − w(k−1)

j,j )

(k − 1)!
ζk−3 + · · ·

+
(w

(3)
i,i − w

(3)
j,j )

3!
ζ +

(w
(2)
i,i − w

(2)
j,j )

2!
= 0.

(1.38)

It is well known that for degree greater than or equal to 5 there is no closed form

expression of the solutions of an algebraic equation involving only arithmetic operations

and root extractions, so in general if k ≥ 7 we will have to resort to numerical methods

for solving 1.38. Evaluation of the coe�cients requires computing the diagonal entries

of powers of the adjacency matrix A, which can be expensive for very large graphs and

large values of k.

As the simplest possible example, we consider the case where w(2)
i,i > w

(2)
j,j and

w
(3)
i,i < w

(3)
j,j (or vice-versa), i.e., k0 = 3. Taking k = k0, equation 1.38 becomes the

linear equation
(w

(3)
i,i − w

(3)
j,j )

3!
ζ +

(w
(2)
i,i − w

(2)
j,j )

2!
= 0,

which admits the unique solution ζ∗ =
3(w

(2)
i,i −w

(2)
j,j )

w
(3)
i,i −w

(3)
j,j

, which is of course positive. In terms

of the degree of the nodes and the number of triangles in which they take place, this

can be written in the form:

ζ∗ =
3

2

∣∣∣∣ki − kjti − tj

∣∣∣∣ . (1.39)

In the case of weighted networks, the degree is replaced by the weighted degree or

strength, and the number of triangles is replaced by the weighted number of cycles of
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length 3, i.e., the weight of a cycle of length 3 is the product of the weights at its three

edges. A priori, there is no reason to expect that this value is close to an actual interlac-

ing point (assuming it even exists), since the behaviour of higher order terms may more

than o�set the in�uence of the negative term involving ti − tj . Better approximations
might be obtained by considering higher order approximations; for example using k = 4

leads to an easily solved quadratic equation in ζ, k = 5 leads to a cubic, and so forth.

In any case, these are heuristics whose usefulness can only be assessed experimentally

on concrete examples. We emphasize that the use of power series truncation requires

knowledge of k0, since truncating the series at orders lower than k0 would lead to an

equation devoid of positive solutions and therefore to concluding that no interlacing

points exist for a given pair of nodes, even if such points do exist.

It is also worth recalling Descartes's Rule of Signs, according to which the number

of positive real roots of a polynomial (counted with their multiplicities) is equal to the

number of sign changes in the (nonzero) coe�cients or less than that by an even whole

number, when the powers are ordered in descending order. If, moreover, the polynomial

is known to have only real roots (as in the case of a symmetric adjacency matrix, i.e., of

undirected networks) then the number of sign changes is exactly equal to the number

of positive roots. It is then obvious that if the power series is truncated at order k0,

i.e., as soon as we observe the �rst sign change in the coe�cients, then there will be

exactly one positive root and therefore only one (approximate) interlacing point can

be found by this method. A polynomial truncation of higher degree k > k0 may have

more than one positive root, depending on the number of changes in the coe�cients

(assuming the network is undirected). We will come back to this case shortly.

To exemplify the previous �nding let us consider a pair of nodes with a small

di�erence in their degree, e.g., ki − kj = 2, then − (ki − 2)2 ≤ (ti − tj) ≤ k2i , such that

if, for instance, ki ≤ 10 and we let ζ vary from 0 to 0.1 we obtain the plot given in

�gure 1.15(a). As can be seen there are certain values of ∆ = ti − tj < 0 for which we

can obtain positive and negative values of Ci −Cj . This is illustrated in 1.15(b) where

we can see that when −100 ≤ ∆ ≤ −40 there are both positive and negative values of

Ci − Cj . In other words, it is possible to �nd pairs of nodes for which Ci (ζ1) > Cj (ζ1)

and then Ci (ζ2) < Cj (ζ2), which means that these nodes will change their ranking

position in terms of the risk-dependent centrality when the values of ζ change even for

a relatively narrow window. Notice that if ki − kj = 2, and ∆ ≥ −30 such change is

not observed for the corresponding range of ζ analyzed.
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Figure 1.15: (a) Illustration of the change in the di�erence in the risk-dependent centrality

of nodes having a small di�erence in degrees, ki − kj = 2, as a function of the di�erence

in the number of triangles, ti − tj , and of the network infectivity risk ζ. (b) Some of the

curves obtained for ki − kj = 2 and a given value of ∆ = ti − tj as a function of ζ.
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Figure 1.16: Illustration of the change in the di�erence in the risk-dependent centrality

of nodes having a small di�erence in degrees, ki − kj = 100, as a function of the di�erence

in the number of triangles, −100 ≤ ∆ ≤ 100 (a) and −5000 ≤ ∆ ≤ 5000 (b), and of the

network infectivity (risk) ζ.

If we now consider a large di�erence in the node degrees, e.g., ki−kj = 100, and the

same range of change for the di�erence in the number of triangles, e.g., −100 ≤ ∆ ≤ 100
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1.7 Ranking interlacement

we do not observe any variation in the ranking of pairs of nodes as can be seen in �gure

1.16(a). In this case the range of ∆ must be increased dramatically to obtain inversions

in the ranking of pairs of nodes (see 1.16(b)).

To illustrate how well the estimate 1.39 performs, we use it for approximating the

interlacement point for several pairs of corporates and compare them with the observed

values in 1.2 for the weighted version of the US corporate network.

Table 1.2: Calculation of the crossing point ζ∗ calc of ranking interlacement for several

pairs of corporates in the US corporates network of 1999 as well as the observed values ζ∗

obs at which such interlacements occur.

Plot Corporate 1 Corporate 2 ζ∗ calc ζ∗ obs

(a) J.P. Morgan&Co Inc. Bank of America Corp. 0.375 0.37

(b) P�zer Inc. Ashland Inc. 0.441 0.41

(c) Morgan Stanley & Co. Bank One Corp. 0.176 0.17

(d) AT&T Corp. Airtouch Communications 0.273 0.27

(e) Union Carbide Corp. New AON Corp. 0.353 0.32

(f) General Motors Corp. Boeing Co. 0.214 0.14

A few more general considerations on the validity of the power series truncation

heuristic can be made. The size of the interval containing any interlacing points is

dictated to a large extent by how quickly the rankings based on the measures Ci(ζ) (or

C̃i(ζ)) stabilize near the rankings obtained using eigenvector centrality. This, in turn,

depends on the spectral gap λ1 − λ2: the larger the gap, the faster the eigenvector

centrality rankings are approached for increasing values of ζ. Hence, in the case of

relatively large gaps, we expect any interlacing values to occur for fairly small values

of ζ. In this case, the heuristics based on polynomial approximations may be justi�ed,

since interlacing is likely to occur already for small values of ζ. As is well known,

however, it is not easy to determine when the spectral gap is �su�ciently large�. On the

other hand, when the spectral gap is tiny, then the interval [0, ζ̄] is going to be larger and

therefore there is �more room� for the occurrence of interlacing. Unfortunately, in this

case it is not clear that polynomial truncation will be e�ective in approximately locating

the interlacing points. In this case, a possible solution is to expand the functions Ci(ζ)

not around the value ζ = 0, but also around a few values ζ0 > 0. This strategy can

also be used to �nd a possible second point of interlacing after having found a �rst such
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point ζ∗. Expanding around ζ∗ leads to

Ψ(ζ∗ + η) = Ci(ζ
∗ + η)− Cj(ζ

∗ + η) =

1

2!
(w

(2)
i,i − w

(2)
j,j )η2 +

1

3!
(w

(3)
i,i − w

(3)
j,j )η3 + · · ·+ 1

k!
(w

(k)
i,i − w

(k)
j,j )ηk +O(ηk+1).

Dividing by η2 and setting the result equal to zero leads to an algebraic equation of

degree k− 2 for η; the smallest positive root η∗ of this equation, if there are any, leads

to the approximation ζ∗ + η∗ for the next interlace point, and so forth.

Completely analogous considerations apply to the approximation of interlacing

points when the ranking of nodes is done according to the risk-based total commu-

nicability measure Ri(ζ). In this case the transcendental equation to be solved is given

by

χ(ζ) = Ri(ζ)−Rj(ζ) =

n∑
k=1

eζλk
(
ψTk ~1

)
[ψk,i − ψk,j ] = 0.

Let w(k)
i = (Ak~1)i. Then, truncating the series expansion 1.34 and dividing by ζ > 0

leads to the approximation

(w
(k)
i − w

(k)
j )

k!
ζk−1 + · · ·+

(w
(2)
i − w

(2)
j )

2!
ζ + (w

(2)
i,i − w

(2)
j,j ) = 0 (1.40)

for the equation whose smallest positive solution approximates the �rst interlacement

value for the rankings of nodes i and j, assuming it exists; here again k ≥ k0 where

now k0 ≥ 2 is the smallest integer value for which the sequence {w(k)
i −w

(k)
i }k changes

sign. The simplest possible case is when k = k0 = 2, which occurs when w(2)
i,i − w

(2)
j,j

and w(2)
i − w

(2)
j = (A2~1)i − (A2~1)j have di�erent sign. In this case 1.40 reduces to the

linear equation
(w

(2)
i − w

(2)
j )

2
ζ + (w

(2)
i,i − w

(2)
j,j ) = 0,

with the unique root

ζ∗ = 2
w

(2)
i,i − w

(2)
j,j

w
(2)
j − w

(2)
i

> 0.

1.8 Risk prediction and COVID-19

Starting on December 2019, a pandemic has been expanding worldwide from the city

of Wuhan, Hubei province of China [90, 91]. This disease is produced by a new coron-

avirus named SARS-CoV-2 [92] and has a�ected in about three months more than 200

countries around the world. The major problem, at the time this thesis is written, is of
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a health and medical nature, but as stated by Balwing and Weder di Mauro this coron-

avirus is �as contagious economically as it is medically� [93]. One of the most important

characteristics of this pandemic in comparison with recent ones is that it is hitting very

strongly the most important economies in the world: China, USA, Germany, Italy,

Spain. There are some preliminaries studies about the macroeconomic impacts of this

pandemic (see for instance [93]). However, it is important to apply mathematical and

computational techniques to forecast, at regional, national and international level, the

impact of this crisis on �nancial institutions, corporations and small companies. All

of them are highly interconnected in a globally dependent economy, forming series of

complex networks. In this new scenario the current work represents an opportunity for

modelers to advance predictions on the potential risks to which di�erent institutions are

submitted to in the current situation. This modeling scenario consists of the networks

of interactions between the institutions under analysis assuming a high infectability in

the network. Using the transmissibility and circulability measures de�ned here, the

modeler can understand how at risk of transmitting the crisis to others or, respectively,

of staying in a cycle of repeated economic di�culties, a company is. At the same time,

the current work allows to model how di�erent palliative measures taken by regional

or global �nancial institutions in the European Union, USA or China can impact these

companies. In this case, the modeler should drop the infectivity of the system and

analyze how the ranking of risk for the di�erent companies changes to gain insights

about their potential recovery or bankruptcy.

1.9 Conclusions

In general, node centrality in networks are of either of two types: (i) node centrality

in networks of time-invariant topology [1], or (ii) node centrality in networks of time-

dependent topology (aka Holme2012) [94]. In this work we have developed a new

concept of node centrality, depending on both the topology of the network and the

external conditions to which the network as a whole is submitted. In particular, we

have focused on global risk as the external factor by which an economic and �nancial

network is a�ected. We started by considering the �Susceptible-Infected� model and its

connection to the communicability functions of nodes and edges in a network. Then,

we developed a few centrality measures which depend not only on the local and global

topological environment of a node but also on the level of infectivity stressing the

system as a whole. In this way we have been able to make predictions in �nancial

and economic systems about the changes in the risk-dependent centralities of nodes
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as a function of the global level of infectivity in the system. We observe that without

altering the topology of the network, i.e., without varying any connection between the

nodes, the ranking of the nodes, according to these new centrality measures, changes

signi�cantly as the infectivity rate changes. In the real-world networks studied here

we have been able to associate those changes in the risk-dependent centrality of nodes

with events of the real �nancial and economic worlds in which these networks are

embedded. In closing, we provide here both theoretical, computational and empirical

evidences that the node centrality is not a static function even when the topology of

the system is not varying at all. This new paradigm is expected to play a fundamental

role in assessing the robustness of �nancial and economic systems to the variation of

the external conditions which they are submitted to.
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Chapter 2

Community structure in the

World Trade Network based on

communicability distances

2.1 Introduction

International trade is based on a set of complex relationships between di�erent coun-

tries. Both connections between countries and bilateral trade �ows can be modelled as

a dense network of interrelated and interconnected agents. A long-standing problem

in this �eld is the detection of communities, namely subset of nodes among which the

interactions are stronger than average. Indeed, the community structure of a network

reveals how it is internally organized, highlighting the presence of special relationships

between nodes, that might not be revealed by direct empirical analyses.

In this framework, a speci�c role is assumed by the distance between nodes. Indeed,

the neighbours of a given node are immediately connected to such a node and they can

a�ect its status most directly. Nonetheless, more distant nodes can in�uence this node

while passing through intermediary ones. In the economic �eld, a network perspec-

tive is actually based on the idea that indirect trade relationships may be important

(see, e.g., [8]). For instance, the authors in [95] explain the impact of shocks on a

given country by indirect trade links. Based on a global VaR approach, [96] shows

that countries that do not trade (very much) with the U.S. are largely in�uenced by

its dominance over other trade partners linked with the U.S. via indirect spillovers. In

[97], the bilateral trade is assumed not independent of the production, consumption,

and trading decisions made by �rms and consumers in third countries. A measure of
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the distance between nodes that also considers indirect connections is therefore cru-

cial to catch deep interconnections between nodes. In this work, we will focus on two

measures of distance or metrics on the network: the Estrada communicability distance

[9] and the vibrational communicability distance [10]. They both go beyond the limits

of the immediate interaction between neighbours and they look simultaneously, albeit

di�erently, at all the possible channels of interactions between nodes. The nearest two

nodes are in each metric, the stronger is their interaction or, in other words, the higher

is the level of communicability between them.

With this chapter we contribute to the literature by proposing a speci�c method-

ology that exploits such metrics to inspect the mesoscale structure of the network, in

search for strongly interacting clusters of nodes. Indeed, our purpose is twofold. We

reveal hidden relationships between nodes due to non-immediate connections and long-

range interactions and we show how this approach turns out to be particularly suitable

when applied to a dense network like the World Trade Network (WTN). More specif-

ically, we exploit communicability and vibrational communicability metrics to group

nodes whose mutual distances are below a given threshold, i.e. whose interactions are

stronger than a given value. Then we identify the optimal partition according to a

maximum quality function criterion. It is well-known that classical modularity is a way

to measure if a speci�c mesoscopic description of the network in terms of communities

is more or less accurate. But, unlike the Girvan-Newman approach [11], we will refer to

the partition quality index proposed in [12] for general metric spaces. In this way, we

can exploit the additional information contained in the metric structure of the network.

Among all the di�erent partitions we get at di�erent thresholds, we select the one pro-

viding the maximum quality index, according to the criterion described in [12]. Our

proposal is very e�cient from a computational viewpoint. Indeed, given the speci�c

distance matrix, the optimal solution can be easily evaluated varying the threshold.

We cluster nodes going beyond the interactions between neighbours and considering all

possible channels of interaction between them. We allow for a degree of �exibility by

introducing a threshold. Varying the threshold, it is possible to depart from the opti-

mal solution so that only the strongest (or the weakest) channels of communications

emerge.

The chapter is organised as follows. After a short review of the literature in Sec-

tion 2.2, main preliminaries and the de�nitions of the communicability functions are

revised in Section 2.3. These functions lead to two important metrics on networks,

which are described in Section 2.4. Section 2.5 contains the description of the proposed
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methodology, which is also tested on a suitable toy-model. In Section 2.6, we apply our

methodology to the World Trade Network. In particular, main characteristics of the

network are described in Section 2.6.1. The steps of the methodology are summarized

in Section 2.6.2. We report in Section 2.6.3 main results based on communicability and

resistance distance, respectively. We show how the proposed methodology is able in

capturing key economic clusters as well as in providing additional insights into intraclus-

ter and intercluster characteristics and of countries' relevance both in the community

and in the whole network. Conclusions follow. Technical details are left in Appendices

A and B.

2.2 Literature Review

Community detection is an important topic in the analysis of the topological structure

of complex systems. Its importance has grown over time in light of the remarkable

progress in the description of large networks, together with the development of new

powerful data analysis tools [98]. These advances have made it possible to extend the

�eld of applicability of the theory not only to networks of enormous dimensions but

also to weighted networks and direct networks [99, 100, 101, 102]. Various methods

and algorithms to detect communities on networks have been studied. Some methods

are algorithm-based, such as methods based on hierarchical clustering or edge removal

[14]. Other methods are based on the optimization of speci�c criteria over all possible

network partitions. In this context, it is well known the optimization of a modularity

function according to Newman's de�nition [11]. An exhaustive review about methods

and algorithms can be found in [103] and [104]. Some authors proposed to detect

communities by means of a quality measure called surprise [105, 106]. Inspired by

this literature, recently the authors in [107] deal with detection of general mesoscale

structures, such as core-periphery structures.

More recently the role of non-local interactions between nodes has been highlighted,

that is interactions that do not exclusively involve the immediate neighbours of a given

node. In particular, results connected to the idea of communicability introduced by

Estrada in 2004 have proved to be extremely e�ective [9, 47, 70, 108]. All the more

so by allowing a metric di�erent from the shortest path metric to be introduced on

the network. The purpose of this new metric is precisely to take into consideration

long-range interactions between institutions. Some important similarities can be found

between this new metric and the resistance distance, a well-known metric in network

theory derived from the study of electric circuits [10, 60, 109], and its interpretation in
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terms of vibrational communicability [64, 65, 110, 111].

An area in which these concepts allow us to gain a deep insight into the hidden

structures of the network is properly the WTN. The topology of the world trade web

has been extensively analysed over time [112, 113, 114, 115, 116, 117]. The behaviour

of international trade �ows, the impact of globalization on the international exchanges,

the presence of a core-periphery structure or the evolution of the community centres of

trade, are just some of the issues addressed by the recent developments [118, 119, 120,

121, 122]. Many works have dealt with the network from a multi layers perspective

[123, 124] or aim to emphasize �nancial implications of the world trade or contagion

processes on the network [125, 126, 127, 128, 129, 130, 131, 132, 133, 134].

The impact of topology and metric properties on the stability and resilience of an

economic or �nancial system has been widely studied in order to describe the large-scale

pattern of dynamical processes inside the network [135, 136, 137]. These processes de-

termine the subsequent diversi�cation of the export of a country, which can be compared

with descriptive empirical indices of its potential growth, such as the one introduced in

a very fruitful way in [138].

2.3 Communicability in complex networks

The idea of communicability on a network is based on the ways in which a pair of nodes

can communicate, namely through walks connecting them. In the literature, two di�er-

ent de�nitions of communicability have been introduced: the Estrada Communicability

and the Vibrational Communicability [47, 65]. We recall them in this section.

2.3.1 Preliminary de�nitions

First of all, we brie�y remind some preliminary de�nitions. A network is formally rep-

resented by a graph G = (V,E) where V and E are the sets of n nodes and m edges,

respectively. Two nodes i and j are adjacent if there is an edge (i, j) ∈ E connecting

them. The network is undirected if (j, i) is an element of E whenever (i, j) is such. A

i − j-path is a sequence of distinct vertices and edges between i and j. The shortest

path, or geodesic, between i and j is a path with the minimum number of edges. The

length of a geodesic is called geodesic distance or shortest path distance d(i, j) = dij .

A graph G is connected if, ∀i, j ∈ V , a i− j-path connecting them exists.

Adjacency relationships are represented by a binary symmetric matrixA (adjacency

matrix). Graphs considered here will be always connected and without self-loops; in
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this case aii = 0 ∀i = 1, ..., n. We denote with λ1 ≥ λ2 ≥ · · · ≥ λn the eigenvalues of

A, and ϕi, i = 1, ..., n the corresponding eigenvectors.

The degree ki of a node i is the number of edges incident on it. The diagonal matrix

whose diagonal entries are ki is K. The Laplacian matrix is L = K−A. L is a positive

semide�nite symmetric matrix. We denote the eigenvalues of L by µ1 ≥ µ2 ≥ · · · >
µn = 0 and ψi, i = 1, ..., n the corresponding eigenvectors.

A graph G is weighted when a positive real number wij > 0 is associated with the

edge (i, j). We de�ne the strength si as the sum of the weights of the edges adjacent

to i. The de�nition of geodesic path still holds, and it is a weighted path with the

minimum sum of edge weights. In this case, the adjacency matrix is a non-negative

symmetric matrixW. When wij = 1 if (i, j) ∈ E, then the graph is unweighted. Thus,

the unweighted case can be viewed as a particular weighted one.

2.3.2 Estrada Communicability

The Estrada communicability [47] between two nodes i and j is de�ned as:

Gij =
+∞∑
k=0

1

k!
[Ak]ij =

[
eA
]
ij
. (2.1)

As the ij-entry of the k-power of the adjacency matrixA counts the number of walks

of length k starting at i and ending at j, Gij accounts for all channels of communication

between two nodes, giving more weight to the shortest routes connecting them. It can

also be interpreted as a measure of the likelihood that a particle starting at i ends up

at j after wandering randomly on the complex network. The communicability matrix

is denoted by G.

By de�nition, it follows that Gij > 0. Moreover, Gij can be conveniently expressed

using the spectral decomposition of A as follows [47]:

Gij =

n∑
k=1

ϕk(i)ϕk(j)e
λk ,

where ϕk(i) is the i-component of the k-th eigenvector associated with λk.

It is worth noting that since Gii characterizes the importance of a node according

to its participation in all closed walks starting and ending at it, we recover the so-called

subgraph centrality (see [70]).
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In the case of a weighted network the communicability function is de�ned as

Gij =
+∞∑
k=0

1

k!
[(S−

1
2WS−

1
2 )k]ij =

[
e(S

− 1
2WS

− 1
2 )

]
ij

(2.2)

where S is the diagonal matrix whose diagonal entries are the strengths of the nodes.

We will call this quantity weighted communicability.

2.3.3 Vibrational Communicability

Vibrational communicability represents an alternative de�nition of communicability,

di�erent from Estrada communicability, and which can be introduced through the fol-

lowing model. Let us suppose that nodes of the network are objects of negligible iden-

tical mass connected by springs in a plane grid. Nodes can oscillate in the direction

perpendicular to the plane and the displacement of the node i from its rest position

is zi. The elastic force applied to node i is given by Fi = K
∑

j Aij(zi − zj), where
K is the common elastic constant of each spring. An elastic potential energy can be

assigned to each perturbed spring and the potential energy of all the springs connected

with node i is given by Ui = 1
2 K

∑
j Aij(zi − zj)2.

The overall potential energy of the network is therefore

U =
1

4
K
∑
i,j

Aij(zi − zj)2 =
1

2
K
∑
i,j

ziLijzj (2.3)

where Lij is the ij-entry of L.

The reciprocal in�uence of two nodes i and j in their positions zi and zj is computed

by means of the Green's function, according to the classical Boltzmann's distribution

[10, 65]. This mutual in�uence can be interpreted as the correlation function between

the displacements z of two nodes in the network:

Gvij(β) = 〈zizj〉 =
1

Z

∫
zizje

−βUdz

where β is a constant and Z =
∫
e−βUdz is the partition function. Using the non-

zero eigenvalues of L, Z can be expressed as

Z =

∫
e−

1
2
βK

∑
ij ziLijzj

∏
k

dzk =
n−1∏
k=1

√
2π

βKµk
(2.4)
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so that the correlation function can be rewritten in the �nal form

Gvij(β) =
n−1∑
k=1

ψk(i)ψk(j)

βKµk
(2.5)

where ψk is the eigenvector associated with µk. Introducing the Moore-Penrose

pseudo-inverse of the Laplacian L+ [110, 139], the vibrational communicability between

nodes i and j is de�ned as

Gvij(β) =
1

βK
L+
ij (2.6)

The vibrational communicability matrix is denoted by Gv. In the remainder of the

chapter we will assume β = 1 and K = 1, so that Gvij = L+
ij .

The detailed computations for previous formulas are reported in Appendix B.

2.4 Metrics on networks

Metric properties play an important role in the study of the structure and dynam-

ics of networks. The best known metric is the so-called shortest path distance. In

the literature other metrics have been de�ned, each one stressing di�erent features of

the network. We remind the de�nitions of communicability distance and resistance

distance, in view of their following application to the WTN.

2.4.1 Communicability Distance

The communicability distance ξij is de�ned as (see [108]):

ξij = Gii − 2Gij +Gjj . (2.7)

As already observed, Gii is the subgraph centrality of i and it measures the amount

of information that starts from and returns to node i after having wandered through

the network. On the other hand, Gij measures the amount of information transmitted

from i to j. Notice that the word information is meant in its broadest sense. Therefore,

information �ow can be any kind of �ow along edges: money, current, tra�c and so on.

Thus, the quantity ξij accounts for the di�erence in the amount of information that

returns to the nodes i and j and the amount of information exchanged between them.

The greater is Gij , the larger the information exchanged and the nearer are the

nodes; the greater are Gii or Gjj , the larger the information that comes back to the

nodes and the farther are the nodes. In a matrix form, ξij can be expressed as follows:

57



2. COMMUNITY STRUCTURE IN THE WORLD TRADE NETWORK

BASED ON COMMUNICABILITY DISTANCES

Ξ = guT − 2G+ ugT

where g = [G11, . . . , Gnn]T is the vector of subgraph centralities and u the all 1's

n−vector. Since ξij is a metric, then Gii +Gjj ≥ 2Gij , i.e., no matter what the struc-

ture of the network is, the amount of information absorbed by a pair of nodes is always

larger than the amount of information transmitted between them.

2.4.2 Resistance Distance

The vibrational communicability distance between i and j is de�ned as (see [10, 64]):

ωij = Gvii − 2Gvij +Gvjj . (2.8)

Formula 2.8 can be written in a more suitable way. Indeed, recalling that Gvij = L+
ij ,

we have:

ωij = L+
ii − 2L+

ij + L+
jj

= (ei − ej)TL+(ei − ej)

= (ei − ej)T
[(

L+
1

n
J

)−1
− 1

n
J

]
(ei − ej)

= (ei − ej)T
(
L+

1

n
J

)−1
(ei − ej)

(2.9)

where ek, k = 1, . . . , n, is the standard basis in Rn and J = uuT is the matrix whose

entries are all 1. Note that in the previous chain of equalities we made use of the

following expression of the pseudo-inverse L+ =
(
L+ 1

nJ
)−1 − 1

nJ, proved in [139].

Equation 2.9 o�ers an interesting interpretation of the resistance distance. We

synthesize here the main idea, referring to Appendix C for a more detailed discussion.

Let v = [v1, v2, . . . , vn]T be a vector representing attributes of the nodes � for instance,

the Gross Domestic Product (GDP) of a country or the assets of a �nancial institution

� and suppose that there are currents or �ows (of money, for instance) along the edges

of the network. The operator
(
L+ 1

nJ
)−1

allows to obtain the state vector that gives

rise to a given set of �ows. In formula 2.9, the vector (ei − ej) refers to a global

�ow equal to +1 from node i, a �ow equal to −1 into node j and a �ow equal to 0

for the other ones. When we apply
(
L+ 1

nJ
)−1

to (ei − ej), we get the state vector
v = [v1, v2, . . . , vn]T of attributes on nodes that gives rise to these �ows. Finally, the
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left inner product with (ei − ej) in formula 2.9 gives vi − vj , namely, the di�erence

between attributes of nodes i and j. This gradient produces exactly the �ow +1 from

node i and −1 to node j. If vi − vj is big, we need a big di�erence in order to produce

such a unit �ow and so we have a big resistance between nodes i and j. If vi − vj is
small, it is enough a low di�erence in order to produce such a unit �ow and so we have

a low resistance between nodes i and j. If ωij is big we have a high resistance distance

between i and j. Therefore, these two nodes do not communicate easily. Vice versa a

low value of ωij means a high level of communication between the nodes. ωij is called

e�ective resistance between nodes i and j and Ω = [ωij ] is the resistance matrix.

In literature, it is known an important close form for L+ in terms of Ω:

L+ =
1

2

[
1

n
(ΩJ+ JΩ)− 1

n2
JΩJ−Ω

]
which allows us to rewrite the diagonal elements of the matrix L+ in a useful form1

L+
ii =

1

n

∑
j

ωij −
R

n2

where

R =
1

2

∑
i,j

ωij =

n∑
i=1

n∑
j=i+1

ωij =
1

2
uTΩu = n trL+ = n

n−1∑
k=1

1

µk

is the e�ective graph resistance (or Kirchho� index ) of the network, i.e. the sum

of the resistances between all possible pairs of nodes in the graph (see, e.g., [109]).

R re�ects the overall transport capability of the network: the lower R, the better the

network conducts �ows. In particular, it has been shown that this index is able to catch

the average vulnerability of a connection between a pair of nodes and, therefore, it is

a suitable tool for assessing the ability of a network to well react when it is subject to

failure and/or attack (see [140, 141, 142]).

E�ective resistances allow to give a speci�c de�nition of the centrality of a node

in the network. Indeed, the best spreader (or best connected) node in the network is

the node i? that minimizes the quantity
∑n

j=1 ωi?j = (Ωu)i? , i.e. the sum of all its

resistance distances from any other node in the network. Since L+
ii equals the di�erence

between the average resistance between node i and all the other nodes in the network

and the overall network mean resistance, then the best spreader node i? is the one such

1L+
ii = 1

2n
(ΩJ)ii + 1

2n
(JΩ)ii − 1

2n2 (JΩJ)ii − 1
2
(Ω)ii = 1

2n

∑
j ωijJji + 1

2n

∑
j Jijωji −

1
2n2

∑
jk JijωjkJki − 0 = 1

2n

∑
j ωij + 1

2n

∑
j ωij −

1
2n2

∑
jk ωjk = 1

n

∑
j ωij −

R
n2
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that L+
i?i? ≤ L+

jj for any j 6= i?. Node i? can be regarded as the best di�user of a �ow

to the rest of the network, and, to some extent, it is the most in�uential with respect

to a di�usion process inside the network, since it guarantees the highest �ow toward

other nodes (see [64]). Best di�user means that most of the information coming out

from this node is absorbed by other nodes. If L+
ii is big, then most of this information

comes back to node i and doesn't reach other nodes. The reciprocal of L+
ii can then be

regarded as a centrality measure of a node and it is called vibrational centrality.

2.5 Community detection based on communicability met-

rics

2.5.1 The model

As discussed in the previous section, ξij = Gii− 2Gij +Gjj and ωij = Gvii− 2Gvij +Gvjj
represent the two metrics induced on the network by the Estrada communicability and

the vibrational communicability, respectively.

In an economical context, referring to the international trade network, they measure

how well two countries, or companies, communicate in terms of commercial and trade

exchanges. For instance, the attributes on nodes may be identi�ed with the GDP and

the currents along nodes with the total trade or money �ow between two countries.

Information on the network may be replaced by money �ow. Therefore the quantity ξij
of equation 2.7 accounts for the di�erence in the amount of money �ow that returns to

the nodes i and j and the amount of money �ow exchanged between them. The bigger

is Gij , i.e. the money �ow exchanged, the nearer are the nodes; the bigger are Gii or

Gjj , i.e. the amount of money �ow that comes back to the each node, the farther they

are. A similar interpretation holds for ωij . In a trade network ωij accounts for the

di�erence between the mean resistance to export a given money �ow from each country

and the correlation between them. The bigger is Gvij , the more interconnected they are

and the nearer they are in the resistance metric; the bigger are Gvii and G
v
jj , the more

isolated they are in the network and between them and the farther they are.

In light of these observations, we formulate our proposal1, considering as members of

the same cluster nodes whose mutual distance is below a given threshold ξ0. Speci�cally,

we construct a new community graph where the elements of the adjacency matrix

M = [mij ] are given by:

1In what follows, we will refer to the communicability distance ξ, but similar arguments may be

repeated identically for the resistance distance ω
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mij =

{
1 if ξij ≤ ξ0
0 otherwise

with ξ0 threshold distance such that ξ0 ∈ [ξmin, ξmax], being ξmin and ξmax the

minimum and the maximum distances between couples of nodes, respectively. In this

way, clustered groups of nodes that strongly communicate emerge, in dependence of

the threshold. If ξ0 is high enough, all nodes in the network are at a mutual distance

lower than the threshold and the whole network behaves like a unique community. As ξ0
decreases, there will be nodes too far, such that to be considered disconnected and then

members of di�erent clusters, entailing the emergence of islands of connected nodes.

Hence, the number of communities depends on the threshold, precisely it increases as

ξ0 decreases.

It is important to observe that, with the proposed methodology, we do not choose

any a priori optimal number of communities. Our approach is more in line with the

classic Girvan-Newman approach [11].

The optimal partition is determined according to an optimization problem whose ob-

jective function is based on the idea of cohesion between nodes. Speci�cally, since we

deal with distances, following the approach for clustering in metric spaces proposed by

[12], we provide a cohesion measure γij between two nodes i and j, as follows:

γij =
(
ξ̄j − ξ̄

)
−
(
ξij − ξ̄i

)
where ξ̄i = 1

n−1
∑

k 6=i ξik is the average distance between i and nodes other than i and

ξ̄ is the average distance over the whole network. Thus, ξij − ξ̄i represents the relative
distance between nodes i and j and ξ̄j− ξ̄ represents the relative distance from a random

node to the node j.

Two nodes i and j are said to be cohesive (or incohesive) if γij ≥ 0 (γij ≤ 0).

Notice that γij ≥ 0 yields ξij + ξ̄ ≤ ξ̄i + ξ̄j , i.e., intuitively, two nodes are cohesive if

they are close to each other and, on average, they are both far away from the other

nodes. In other words, γij can be interpreted as the gain (when positive) or the cost

(when negative) related to the grouping of nodes i and j in the same cluster of a given

partition.

We assume to maximize an objective function that represents the global cohesion

function based on the mutual relative distances between every pairs of nodes. Therefore,

we refer to a speci�c partition quality index de�ned as

Q =
∑
i,j

γijxij (2.10)
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where xij is a binary variable equal to 1 if two nodes are in the same cluster and 0

otherwise and γij is the cohesion measure between nodes i and j. It is worth to notice

that when the partition is made up of a unique community, equal to the entire network,

xij = 1 ∀i, j. In this case1

Q =
∑
i,j

γij =
∑
i,j

ξ̄j +
∑
i,j

ξ̄i −
∑
i,j

ξ̄ −
∑
i,j

ξij

= n
∑
j

ξ̄j + n
∑
i

ξ̄i − n2ξ̄ −
∑
i,j

ξij

= 2n2ξ̄ − n2ξ̄ − n(n− 1)ξ̄

= nξ̄.

On the other hand, when the partition consists of n isolated nodes, xij = 0 ∀i 6= j

then

Q =
∑
i

γii =
∑
i

(ξ̄i − ξ̄)− (ξii − ξ̄i) = 2
∑
i

ξ̄i − nξ̄ = nξ̄.

Therefore, the partition quality index Q assigns to the two extreme cases the same

value nξ̄. This property will be con�rmed in the next illustrative example and appli-

cations to the World Trade Network.

2.5.2 An illustrative example

We start by testing our methodology on a simple example. Let us consider the weighted

undirected network displayed in Figure 2.1. The network has 10 nodes and 32 edges.

The thickness of links is proportional to weights. The network allows to easily identify

two natural communities, which are highlighted by the two closed lines containing nodes

1 to 5 (on the left) and nodes 6 to 10 (on the right).

We compute the Estrada communicability matrixG, then we get the communicabil-

ity distance matrix Ξ. The nearest nodes are 1 and 3 with a communicability distance

equal to ξmin = ξ13 = 1.18 and farthest nodes are 3 and 6 with a communicability dis-

tance equal to ξmax = ξ36 = 1.49. Figure 2.2 summarizes the number of communities

identi�ed at di�erent thresholds. The blue line represents the number of communities

while the red line represents the quality index Q of the corresponding partition. When

the threshold is greater than or equal to ξ0 = 1.38 all nodes are connected and the net-

work is partitioned in a single community, with quality index Q = nξ̄. As the threshold

decreases below 1.38, the network begins to split into disconnected components. When

1Notice that ξ̄ = 1
n

∑
i ξ̄i = 1

n(n−1)

∑
i,j ξij

62



2.5 Community detection based on communicability metrics

Figure 2.1: A weighted undirected network with 10 nodes and 32 edges. Edges weights

have been randomly sampled with replacement from integers between 1 and 6. The thick-

ness of edges is proportional to the weights. Nodes of two relevant communities are high-

lighted in blue and red.

the threshold becomes lower than the minimum distance, the network is partitioned

into ten communities and each node belongs to a di�erent community. The best par-

tition according to the maximum quality index criterion splits the network into two

clusters, which are easily identi�ed with the two expected natural communities. The

composition of the communities for alternative thresholds is reported in Figure 2.3. It

is noticeable that, lowering the threshold, the procedure allows to disentangle tightest

relationships. For instance, when ξ0 = 1.23 only nodes connected by edges with highest

weights are kept in the same community.

Similar results are derived by applying the procedure based on the vibrational

communicability. The nearest nodes are 1 and 3 with a resistance distance equal to

ωmin = ω13 = 1.22 and farthest nodes are 3 and 8 with a resistance distance equal

to ωmax = ω38 = 1.69. Again if we move the threshold from the maximum distance

to the minimum distance, we get an increasing number of communities from 1, the

whole network, to 10, isolated nodes. The best partition according to the maximum

quality index criterion splits the network into the two expected communities, as shown

in Figure 2.4.
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Figure 2.2: Quality index Q of the partition computed according to formula 2.10 and

number of components (on the secondary scale) for di�erent threshold values. The com-

municability distance has been used for the identi�cation of the communities.

2.6 Application to the World Trade Network

In this Section, we apply the proposed model in order to detect relevant communities

of countries in the WTN. As described before, the method aims at grouping strongly

interacting countries by means of their mutual distances. Two alternative distance

functions will be tested. On the one hand, we �nd clusters exploiting communicability

distance. Therefore we detect how much two countries are close in the network con-

sidering all possible weighted walks connecting them. On the other hand, we select

clusters by means of resistance distance. In this case countries are grouped together if

they have a similar relevance in the network in terms of vibrational centralities as well

as if they are correlated in terms of their expositions towards common countries.

We start with a general description of the dataset and the main characteristics of the
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Figure 2.3: Community structure at di�erent thresholds.

WTN. Then, we brie�y summarize the primary steps of the methodology, providing

a pseudo-code of the algorithm. Finally, we report the results in terms of community

structure with the related discussion.

2.6.1 Dataset and main characteristics of the WTN

We refer to the World Trade Data, available on the Observatory of Economic Com-

plexity database1. The database has been developed by the Research and Expertise

Center on the World Economy at a high level of product disaggregation and it is based

on original data provided by the United Nations Statistical Division (UN Comtrade).

In particular, a harmonization procedure, that reconciles the declarations of exporters

and importers, enables to extend considerably the number of countries for which trade

data are available, as compared to the original dataset. In this analysis, we refer to

the last version published in 2017, based on the Harmonized Commodity Description

and Coding System, and that provides aggregated bilateral values of exports for each

couple of origin and destination countries, expressed in billion dollars. We focus on the

aggregated data of last available year, namely, 2016.

Hence, we construct a weighted network where each node is a country and weighted

links represent the amount of product traded between couple of countries (see Figure

2.5). The mutually exchanged products between two countries are di�erent in terms

1The Observatory of Economic Complexity (OEC) is the world's leading data visualization tool for

international trade data. Data can be found at: https://atlas.media.mit.edu/en/
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Figure 2.4: Quality index Q of the partition and number of components (on the secondary

scale) for di�erent thresholds. The resistance distance has been used for the identi�cation

of the communities.

of entity, so that they can be better represented by oriented links from a country to

another one. However, we observed a strict relation between in and out strength dis-

tribution with a Spearman correlation coe�cient equal to 0.956. Hence, countries are

ranked in a very similar way in terms of in and out strength. Thus, we perform all the

analysis assuming the network as undirected.

The undirected network is characterized by 221 nodes and 14933 links. The network

is connected and its density is approximately 0.614: on average, each country has trades

with more than a half of the entire network. However, the network is not regular and

is far from being complete or, in other words, most countries do not trade with all

the others, but they rather select their partners. Furthermore, main trade �ows tend

to be concentrated in a speci�c sub-group of countries and a small percentage of the
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Figure 2.5: WTN based on 2016 data. Nodes are countries and links are product trades

between pair of countries. The size of the node is proportional to its strength.

total number of �ows accounts for a disproportionately large share of world trade. For

instance, the top 10 countries export more than 50% of the total �ow. The maximum

weight corresponds to the channel between China and USA and its value amounts to

277 billion dollars. Minimum, non null, weights are involved in the trade between

a number of very small countries, far from each others, and they are approximately

around 1 thousand dollars.

Finally, we expect that several countries trade with their geographical neighbours so

that we investigate the correlation between �ows and geographical distance of countries.

We computed the Spearman rank correlation between link weights (i.e. monetary �ows

between countries in the network) and the great circle distance between capital cities in

kilometers. We obtained a rank correlation of −0.27, that con�rms a little preference for

trading with physical neighbours. However, as stressed before, our aim is to go beyond

immediate neighbours by means of both communicability and resistance distances.
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2.6.2 Summary of the methodology

In this section we summarize by means of a pseudo-code the main steps of the method-

ology we are proposing. The code has been written taking into account the communi-

cability distance matrix Ξ, but the same procedure can be easily applied by considering

the resistance matrix Ω.

1. let G be the original directed weighted network with n nodes and weighted

adjacency matrix W;

2. build the undirected weighted network G1 with a symmetric adjacency matrix

de�ned as W1 = 1
2(W+WT );

3. build the undirected weighted network G2 with normalised weighted adjacency

matrix W2 = S−1/2W1S
−1/2, where S is the diagonal matrix of the strengths

of the network G1;

4. construct the distance matrix Ξ = guT − 2G+ ugT based on the communica-

bility matrix G;

5. de�ne the threshold interval [ξmin, ξmax], where ξmin and ξmax represent the min-

imum and the maximum communicability distances between couples of nodes,

respectively and set ξh = ξmin, with h = 0;

6. de�ne a n× n matrix Mh = [mij ] such that

mij =

{
1 if ξij ≤ ξh and i 6= j

0 otherwise
;

7. build the undirected unweighted network G3,h from the binary adjacency matrix

Mh;

8. select the partition Ph given by the components of the network G3,h;

9. compute the quality index Q =
∑

i,j γijxij of the network G2 with respect to

the partition Ph;

10. set the number of iterations r, compute k = ξmax−ξmin
r , set ξh = ξh−1 + k and

h = h+ 1 and repeat steps 6-9 while ξh ≤ ξmax;

11. select the optimal partition P ?h as the partition Ph that provides the maximum

quality index Q.
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We stress some key points of the presented methodology. We aim at clustering

countries on the basis of a speci�c distance. The two distances we have chosen high-

light relationships of a di�erent nature between countries and the di�erent community

structure emerging will support this fact. Varying the threshold we can disentangle the

role of very tight relationships between couples of countries. Of course, reducing the

threshold distance a great number of isolated nodes may appear. They are typically

very small countries whose trade volume is very low and whose commercial partners

are few. They play a marginal role in the WTN and they do not a�ect in a signi�cant

way the structure of the network in terms of relevant communities. This is the reason

why we will focus our attention on the main communities that are produced by our

methodology.

2.6.3 Results

2.6.3.1 Results in terms of communicability metric

We initially applied the methodology described in Section 2.6.2 by using the commu-

nicability distance. The rationale for using the communicability metric on the WTN

is the following. Two countries share a total volume of trade because they exchange a

given set of products, of any kind. But they can be linked even if they don't exchange

each other a given product, that is there is no direct �ow of such product between

them. A higher order exchange may occur between them. For instance, a country

A exports some raw materials - let's say, iron - to a country B; country B produces

mechanical parts from iron and exports them to country C. A and C communicate

via a higher order walk and they depend on each other even if the two countries are

not neighbours in the network. Indeed, communicability takes into account precisely

all possible weighted walks between two nodes.

Therefore, we calculate the communicability matrix G on the normalised network

G2 and the corresponding communicability distance matrix Ξ. Using this metric, we

�nd that the nearest countries are USA and Canada with a distance ξmin = 1.242 and

the farthest countries are USA and Seychelles Islands with a distance ξmax = 1.470.

Lowering the threshold distance value from maximum to minimum with a 0.001 step,

we look at the corresponding partition in communities. In Figure 2.6, we plot the value

of partition quality index Q (in red) and the number of communities (in blue), counting

each isolated node as an independent one. Both values are expressed as functions of

the threshold ξh. The maximum of Q is reached at a threshold distance ξh = 1.392. It

corresponds to 106 communities, among which we have 87 isolated nodes. Hence, we
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observe 19 signi�cant communities other than isolated nodes.

Figure 2.6: Partition quality index Q (red line) and number of communities (blue line)

as functions of the threshold communicability distance ξh. Maximum Q is observed for

ξh = 1.392.

We display in Figure 2.7 communities in the optimal partition and we list in Table

2.1 the countries belonging to the ten biggest communities in terms of numerousness.

Going deeper into the composition of the communities, the biggest one (see commu-

nity 1 in blue) includes almost all continental European countries, with Great Britain

and Ireland. This community acts on the screen of the global network as single player.

It is worth pointing out also the presence of Morocco, con�rming positive e�ects of

bilateral trade agreements (see, e.g., [143]). We also notice the presence of South Asian

countries that are economically linked together by the South Asian Association for Re-

gional Cooperation. Presence of these countries in the community is also an e�ect of

the bilateral foreign relations between the European Union (EU) and the Association
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Figure 2.7: Optimal community structure based on communicability distance. Results

have been derived by means of a maximum quality index criterion, with threshold ξh = 1.39

(Max Q Partition). Isolated nodes appear in white.

of Southeast Asian Nations (ASEAN). The partnership between the EU and ASEAN

dates back to 1972 when the EU countries became ASEAN's �rst formal dialogue part-

ner. Finally, to the same community belong African countries that are characterized

by close economic and cultural ties to European countries, in particular to France (see,

for instance, Ivory Coast, Burkina Faso, Angola, Senegal).

Opposed to this community, we see the second largest community (see, community 2

in red) which sees United States and China as main actors. This means that in Europe

there are preferential channels of internal exchanges, whereas, outside Europe, most

communication channels seem to be polarized around the exchange channel between

China and the US and all their satellites countries. Moreover, we can recognize other

well-identi�ed and coherent communities.

Furthermore, it is interesting the decomposition of post-Soviet States. While Baltic and

Eastern Europe States (except for Ukraine) have main partners in European countries,

Central Asian countries have Russia as their leading trade and economic partner (see

community 3). Although a positive trade balance and a priority of Russian government

of an increasing participation in the economic relations of Asia-paci�c region (see [144]),

at moment, results show preferential channels with border countries. Transcaucasia is

instead detected as a separate community (see community 10).
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Except for Mexico, characterized by strong ties with United States, the Latin American

and the Caribbean Economic System is decomposed into four relevant communities (see

communities 4, 6, 7 and 8). In particular, it is noticeable community 4 developed on

the basis of the South Common Market, namely the so-called MERCOSUR. Mercosur's

purpose is to promote free trade and the �uid movement of goods, people, and currency

in south America. Since its foundation, Mercosur's functions have been updated and

amended many times; it currently con�nes itself to a customs union, in which there is

free intra-zone trade and a common trade policy between member countries. In 2019,

the Mercosur had generated a nominal gross domestic product (GDP) of around 4.6

trillion US dollars, reaching the �fth economy of the world.

Finally, signi�cant blocks are also observed in central and south Africa (communities 5

and 9, respectively), polarized around Democratic Republic of the Congo and Republic

of South Africa.

Size Members

Community 1 54 AFG AGO ARE AUT BFA BGR BHR BIH BLX

CHE CIV CYP CZE DEU DNK ESP EST FIN

FRA GBR GRC GRL HRV HUN IND IRL IRN

IRQ ITA JOR LTU LVA MAR MDA MKD MLI

MNE NGA NLD NOR NPL OMN PAK POL PRT

ROU SAU SEN SRB SVK SVN SWE TUR YEM

Community 2 21 AUS CAN CHN HKG IDN JPN KHM KOR LAO

MEX MHL MMR MYS NZL PHL PNG SGP THA

USA VNM XXB

Community 3 7 BLR KAZ KGZ RUS TJK UKR UZB

Community 4 6 ARG BOL BRA CHL PRY URY

Community 5 6 BDI COD KEN RWA SSD UGA

Community 6 5 BES COL ECU PAN PER

Community 7 5 CRI GTM HND NIC SLV

Community 8 4 GUY JAM SUR TTO

Community 9 4 MOZ ZAF ZMB ZWE

Community 10 3 ARM AZE GEO

Table 2.1: Members of the top ten communities in terms of number of countries (for the

names of the countries we refer to the current o�cially assigned ISO 3166-1 alpha-3 codes.)
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If we reduce the threshold, we let very strong channels of communication between

countries emerge. For instance, Figures 2.8 and 2.9 show the community structure

lowering the threshold distance (equal to ξh = 1.37 and ξh = 1.35, respectively). Moving

from 1.39 to 1.37 some loose connections are lost (see Figure 2.8). Scandinavia and the

Nordic Region split up from community 1 creating a separate cluster together. The

South East Asian and former Yugoslavia appear as separate communities characterized

only by most relevant partnerships, Australia goes out from community 2, and the

strong community in the South of Africa loses some country. Furthermore, in South

America, only the relation between Brazil and Argentina survives. This result is in line

with the fact that the strategic relationship between Argentina and Brazil is considered

to be at the highest point in history: Brazil accounts indeed for Argentina's largest

export and import market.

Reducing further the threshold to 1.35, only the most closely interrelated communities

survive. The strongest community counts now, among its members, all North America,

Mexico, China and Japan (in red in Figure 2.9). In Europe two communities are saved.

On the one hand, the relation between Spain and Portugal is preserved. On the other

hand, a community emerged in central Europe around the channel between France

and Germany. Finally community 3 in Table 2.1, including Russia and Central Asian

countries, resists also when the threshold is lowered.

Figure 2.8: Intermediate Connected Community Structure - ξh = 1.37
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Figure 2.9: Top Connected Community Structure - ξh = 1.35

A signi�cant feature of our approach is the fact that it allows to get deeper insight

into the internal structure of each community and to give a measure of the mutual

relationships between communities. Let us refer now to the clusters depicted in Figure

2.7 and detected with the maximum quality index criterion. In this regard, we display in

Figure 2.10 the distributions of the communicability distances between pair of countries

that belong to the same community. In particular, we compare the distributions for

the �rst two relevant communities listed in Table 2.1

In fact, if we focus, for instance, on communities 1 and 2, we can inspect and

compare their internal structure by providing some synthetic indicators in Table 2.2.

From the analysis of Figure 2.10 and of the values shown in Table 2.2, we can say that

the community 2 (let's say, USA-China) shows slightly more intense interactions than

community 1 (let's say, Europe) since in the former the average intracluster distance is

slightly lower than in the latter. However, although the largest number of countries that

belong to community 1, a more compact distribution is observed with a lower volatility.

Trading interactions between countries in community 1 appear indeed somehow more

homogeneous than between countries in community 2. This is partially related to the

geographical distribution of the countries inside the two communities. We have indeed

that community 2 can be interpreted as the aggregation of di�erent blocks mainly

developed around USA, China and Japan.
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Figure 2.10: Distributions of Communicability Distances between countries of the same

community. We display only the distributions related to the two main communities sum-

marized in Table 2.1

Last column of Table 2.2 provides the same indicators computed on intercluster basis.

This analysis allows to provide additional information in terms of heterogeneity in the

group and between groups. It is worth pointing out the lower intercluster standard

deviation. It means that couple of countries that belong to a di�erent community has

a similar distance between them.

It is noteworthy that additional insights can be provided by assessing the relevance

of each country in the community. Indeed, communicability distance matrix provides

a metric on the network and on each subnetwork, like a community. Therefore, we

adapt the idea of closeness to our context, by providing the following communicability

closeness to assess how e�ectively a node is supposed to spread trade �ows through

the network. Similarly to the de�nition of closeness, we de�ne the communicability
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Intracluster Intercluster

Community 1 Community 2 Community 1 vs 2

Number of Nodes 54 21 �

Mean Distance 1.414 1.409 1.423

Min Distance 1.325 1.242 1.393

Closest Countries NLD-BLX USA-CAN SAU-KOR

Max Distance 1.444 1.467 1.469

Furthest Countries DEU-AFG USA-LAO USA-MNE

Standard Deviation 0.012 0.028 0.011

Table 2.2: Intercluster and Intracluster characteristics of the distributions of commu-

nicability distances. Columns Community 1 and Community 2 refer to the intracluster

properties of the two main detected communities, in terms of number of nodes. Last col-

umn reports the corresponding intercluster properties computed between the same two

communities.

closeness as:

Ci =
1∑

j∈C ξij
(2.11)

where the sum is over all the internal nodes of the cluster C to which the node i

belongs.

To exemplify, we rank in Figure 2.11 (left-hand side) the top 20 countries of com-

munity 2 on the basis of values of Ci. It is worth to stress that the centre of this

community is located in China, Japan and South Korea and not in the North Amer-

ican sub-community. The three Asian nations are nowadays major traders and their

high-level economic cooperation has been strengthened also because of the speed-up of

the negotiations on the trilateral Free Trade Agreement. The three parties unanimously

agreed to further increase the level of trade and investment liberalization based on the

consensus reached in the Regional Comprehensive Economic Partnership Agreement1.

Moreover, it is interesting to see that most central country in a community has not

necessarily the same relevance on the whole network. We have indeed that, in terms of

1See "Fifteenth Round of Negotiations on a Free Trade Agreement among Japan, China and the

Republic of Korea", April 12, 2019, , Ministry of Foreign A�airs of Japan and Free Trade Agreement

(FTA) and Economic Partnership Agreement (EPA), 4 November 2019, Ministry of Foreign A�airs of

Japan

76



2.6 Application to the World Trade Network

Figure 2.11: On the left-hand side, values of communicability closeness Ci for the top 20

countries inside community 2; on the right-hand side, world top 20 countries according to

subgraph centrality rankings.

subgraph centrality, when we deal with the whole network (see Figure 2.11, right-hand

side), USA appears as the key player followed by China and Germany. This ranking

is inline with the top three countries provided by the World Trade Organizations, in

terms of World's leading traders of goods and services [145].

Additionally, it is interesting to highlight that the relevance of countries reported in

Figure 2.11 (right-hand side) is consistent with the Economic Complexity Index (ECI),

introduced by [138]. The ECI allows to rank countries in the WTN according to the

diversi�cation of their export �ows, which re�ects the amount of knowledge that drives

their growth. The higher is the ECI, the more advanced and diversi�ed is an economy.

In particular, countries whose economic complexity is greater than expected (on the

basis of their global income), tend to grow faster than rich countries with a low ECI.

In this perspective, ECI represents a suitable tool for comparing countries in the WTN

independently of their total output and it has been extensively validated as a relevant

economic measure by showing its capability to predict future economic changes and to

explain international di�erences in countries incomes.

Although the network we analysed in the present work is based on the total normalised

output and this fact prevents us from comparing directly their values with the ECI for a

given country, there is a positive correlation between them. All the top 20 countries in

Figure 2.11 (right-hand side) show a positive and high value of ECI. More speci�cally,
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they kept a high value of ECI during the years preceding the year to which the net-

work refers (2016) and this can justify the high value in the aforementioned centrality

measures.

Finally, from the point of view a single country, it is worth to look for the clos-

est trade partners, that is the nearest nodes in terms of communicability distance.

Figures 2.12 show the distance pro�les for China and Germany, respectively. For in-

stance, looking at Figure 2.12 (right-hand side), we can notice countries, as Austria,

Poland, Czech Republic that are characterized by a condition of strong dependence

on Germany, that is a major player in the network. Similarly Figure 2.12 (left-hand

side) shows how strong is the commercial relationship between China and Hong Kong,

also as a result of the trade agreements between the two countries, like CEPA (Closer

Economic Partnership Arrangement) aimed at eliminating duties on large categories

of products. Indeed, it is well-known that, for the Chinese trade market, Hong Kong

plays a crucial role since foreign companies use Hong Kong as a springboard to invest

in China thanks to its infrastructure network that has no equal in the world, investor

protection, transparent and e�cient judicial system, legal certainty.

Figure 2.12: Top 20 nearest countries for China (left) and Germany (right)

2.6.3.2 Results in terms of resistance metric

The methodology described in Section 2.6.2 has also been applied using the resistance

distance ω. In this case, we consider the total trade of a given country as �ow of the
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global wealth that has been produced during a year. Therefore, the Gross Domestic

Product (GDP) is the attribute of interest on each node. In this regard, the e�ective

resistance of an edge expresses how easily (or not) a unit �ow moves from a country to

another one, i.e. how easily two countries trade a unit of wealth, independently of its

nature. It is noteworthy that, according to formula 2.8, the resistance distance between

a pair of countries depends on the values of the vibrational centralities of both countries

(the more central these countries are in the network, the less is the resistance distance

between them) and on the value of their mutual correlation (the more correlated they

are and again the less is their distance).

Therefore, we construct the vibrational communicability matrix Gv on the nor-

malised network G2, and the corresponding resistance distance matrix Ω. Using this

metric, we �nd that the nearest countries are, again, USA and Canada with a dis-

tance ωmin = 1.238 and the farthest countries are USA and Germany with a distance

ωmax = 1.497. For each value of the threshold distance between minimum and maxi-

mum, we obtain the corresponding partition in communities. The maximum partition

quality index Q corresponds to 15 communities plus isolated nodes. In Figure 2.13, we

plot the value of Q in red and the number of communities, counting each isolated node

as an independent one, in blue as functions of the threshold ωh. The maximum quality

index Q is reached at a threshold distance ωh = 1.365. The main characteristic of this

partition is the presence of a giant component of 127 nodes e 14 other components with

few nodes.

Main results in terms of geographical distribution are displayed in Figure 2.14 and, as in

the previous Section, we summarize in Table 2.3 main composition of top communities

in terms of number of constituents.

With respect to results based on communicability, we have that the �rst community

has a larger number of countries (equal to 127). Additionally, the larger community

includes again main Asian and Oceanian countries as well as several African countries.

It is noteworthy that North America behaves as a separate cluster. This result is

in line with the literature that emphasizes the interesting economic relation between

Asia and Oceania. Several works showed that the Asia-Oceania community collapsed

after China entered the WTO in 2001 and built strong trade relationships with other

communities, especially with the external cores, (i.e. the United States and Germany).

China then became regionally attractive and restored the Asia-Oceania community as

the community leader after it gained a signi�cant portion of trade globally (see, e.g.,

[146]).

Signi�cant di�erences are also observed for the European community (see community
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Figure 2.13: Partition quality index Q (red line) and number of communities (blue line)

as functions of the threshold resistance distance. Maximum Q is observed for ωh = 1.365.

2 in Table 2.3). Norway and Sweden and Great Britain and Ireland provide indeed two

separate groups with respect to main European economic groups.

It is worth pointing out that communities detected above represent groups of coun-

tries showing a positive correlation in their trade strength, whereas members of di�erent

clusters show a negative correlation. Being strongly anti-correlated means that when

the total trade de�cit of a country grows, the total trade surplus of a second country

grows too. For instance, Japan and USA have been classi�ed by the methodology in

di�erent communities. Indeed, in the literature, empirical analyses show a negative

correlation coe�cient between normalised trade strengths of these countries (see, e.g.,

[147] and [148]). Similar arguments can be extended also to other pairs of countries.

For instance, Germany is negatively correlated with USA (see [147]) and show a high

positive correlation with Belgium and France (see [148]), that belong to the same com-
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munity.

If we disentangle communities characterized by very tight relationships between

countries, the results seem strictly related to the ECI index. We may expect that, if two

countries communicate well, then their ECI's could be similar. That is, if their mutual

distance is small, both in terms of communicability metric and resistance metric, then

they display similar values of ECI. In fact, the existence of multiple channels of trade

exchange between them would result in a similar diversi�cation of their output. This

means that countries inside each community (could) share homogeneous values of ECI.

Concerning Table 2.3, we notice small clusters whose components show homogeneous

values of the ECI index. For instance, community 6 is formed by Russia (with an

ECI of 0.855 in 2016) and Belarus (with an ECI of 0.744 in the same year). Similarly

Canada (1.084), Mexico (1.160) and USA (1.781); Norway (1.199) and Sweden (1.862);

UK (1.549) and Ireland (1.409); Brazil (0.648) and Argentina (0.380) that constitute

communities 3, 4, 5 and 7, respectively.

Figure 2.14: Communities detected by using the procedure based on the resistance matrix

and considering the threshold ωh that maximize the partition quality index Q.

As in the previous Section, we explore main characteristics of two most relevant

communities (see Table 2.4), It is noticeable that, although the two groups show a very

similar mean distance, European countries are characterized by a higher heterogeneity.

Focusing on intercluster indicators, we notice also a lower similarity between the two
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Size Members

Community 1 127 AUS CHN HKG IDN IND IRN IRQ

JPN KOR LAO PHL THA and others

Community 2 11 AUT BLX CZE DEU ESP FRA HUN

ITA NLD POL PRT SVK

Community 3 3 CAN MEX USA

Community 4 2 NOR SWE

Community 5 2 GBR IRL

Community 6 2 BLR RUS

Community 7 2 ARG BRA

Table 2.3: Members for the seven main communities in terms of number of countries,

obtained by applying the procedure based on the resistance distance. (For the names of

the countries we refer to the current o�cially assigned ISO 3166-1 alpha-3 codes.)

communities with respect to Table 2.2 based on communicability.

Intracluster Intercluster

Community 1 Community 2 Community 1 vs 2

Number of Nodes 127 12 �

Mean Distance 1.414 1.391 1.418

Min Distance 1.290 1.324 1.395

Closest Countries CHN-HKG AUT-DEU SMR-DEU

Max Distance 1.429 1.424 1.466

Furthest Countries ARE-HKG AUT-PRT JPN-DEU

Standard Deviation 0.008 0.026 0.010

Table 2.4: Intercluster and intracluster characteristics of the distributions of resistance

distances. Columns Community 1 and Community 2 refer to the intracluster properties of

the two main detected communities, in terms of number of nodes. Last column reports the

corresponding intercluster properties computed between the same two communities.

The relevance of a country can be now assessed in terms of vibrational centrality.

To this end, we display in Figure 2.15, the top 20 countries, calculated over the whole

network. China, USA and Germany are again in the top 3, with China playing as

the best spreader node. Also in this case, almost all the top 20 has a positive ECI. A

comparison between Figures 2.11 and 2.15 con�rms the di�erent role played by USA

and China in the global network. As con�rmed by [145], USA is the leading commercial
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service provider and in such a way it is widespread well-integrated in the global market;

on the other side, China plays the role of hub for goods and represents the leading

merchandise trader and this gives to the country a very robust position which makes

it less vulnerable to market turmoil.

Figure 2.15: World top 20 countries according to vibrational centrality rankings

Finally, from the point of view a single country, it is worth to look for the clos-

est trade partners, that is the nearest nodes in terms of resistance distance. Figure

2.16 shows the distance pro�les for the most central country of community 1 and 2,

respectively. These plots can be interpreted as the list, in decreasing order, of countries

that are most positively correlated with the selected centre, China or Germany. For

instance, while in terms of communicability distance China is well-communicating with

USA (third position in Figure 2.12), USA does not belong to the top 20 most correlated

countries with China. Rather, the left-hand side in �gure 2.16 clearly shows a driving

and synchronizing e�ect of the Chinese giant in the entire South-East Asia area. Simi-
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larly, �gure 2.16 (right-hand side) con�rms the role of Germany in the European Union

and the strong correlation with Austria, Czech Republic and Poland.

Figure 2.16: Top 20 nearest countries for China (left) and Germany (right)

2.6.4 Comparison with di�erent approaches applied to the same net-

work

It is worth brie�y comparing our results with those obtained by other methodologies

on the same network (see [124] and [149]). In particular, in [149], several approaches

are proposed to analyse the community structure of the WTN at di�erent times. The

authors showed that the recognition of mesoscale structures is increasingly di�cult

also because the world is becoming increasingly global over time. This makes even

more compelling the search for a method that forces even slight deviations from a

random structure to emerge. Both directed and undirected networks have been tested,

although no signi�cant di�erences have been found. As in our case, results reported

in [149] show that geographical proximity still matters for international trade, jointly

with trade agreements, common language or religion, and traditional partnerships. In

particular, focusing on the application of a classical maximum modularity criterion,

the authors �nd in 2008 (the most recent year of their analyses) three big communities

containing 68, 66, and 47 countries, with the largest cluster associated with Asia and

Oceania. This is partially in line with our result in which a large relevant community

including China, Oceania and North America is observed. On the other hand, by using

either communicability or resistance distance, we found a higher level of granularity.
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Additionally, our approach provides a higher �exibility allowing to emphasize stronger

connections when the threshold decreases.

The authors in [149] also adopt a notion of distance among nodes based on ran-

dom walks by row-normalizing the weighted matrix. Modelling the WTN by stochastic

matrix corresponds to moving from absolute to relative trade values. That distance

between nodes is de�ned by complementing a similarity measure. A dendrogram is

computed initially by de�ning groups containing single nodes and then by iteratively

linking pairs of groups with minimal distance. This approach looks similar to ours

being based on a varying threshold. They choose to maximize the so-called cophenetic

correlation coe�cient, which is de�ned as the linear correlation between the distances

and the cophenetic distances, which are the heights of the link joining (directly or in-

directly) nodes in the dendrogram.

Some common evidences are noticeable also in this case. The United States and Canada

form one of the strongest partnerships: their distance in the dendrogram stays con-

stantly very small over time. France is strongly connected to some of its former colonies,

as we also pointed out above, whereas Germany is close to other European countries.

Main di�erences are related to the behaviour of very small countries. While, in our

case, small countries are often classi�ed as isolated nodes, in [149], very small coun-

tries are connected to much larger ones as an e�ect of the disassortativity observed in

the WTN. These links tend to be small in absolute terms, given the small economic

size of the countries, but they appear as relevant in relative terms, because the strong

preference for a given partner.

The authors in [149] also used stability and persistence to con�rm their results. A

random walker starting in a community is likely to remain for quite a long time within

that community, before leaving it to enter another one. The analysis of the persistence

probabilities induced in a network by a given partition has recently been proven to be an

e�ective tool for testing the existence and signi�cance of communities. Also in this case,

we observe that communities with high persistence probability have common features

with our results. Indeed, the top communities identi�ed in [149] considers the entire

set of European countries, plus a number of minor non-European partners, that is in

line with the top community selected by the communicability approach. Similarly, the

second large community with a high persistence probability includes the entire North

America and most of Central and South America, plus China, Australia, and many

others. Although less granular, this community is fully comparable with community 2

detected by the communicability approach.

A quantitative correlation between the world partition in communities obtained by
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a modularity criterion and geographical distances has been investigated in [124]. The

authors, both at an aggregate level and at a number of commodity-speci�c levels, com-

pare the two maximum modularity partitions of the input-output network and of the

weighted network of the geographical closenesses. They �nd a high similarity between

aggregate trade and geography-based communities, greater than, for instance, commu-

nities determined by regional trade agreements. They conclude that geographically-

related factors explain the patterns of global trade more than political determinants.

Although a positive correlation is present between monetary �ows and geographical

closenesses, we noticed that the geographical distances are less relevant when indirect

relationships are also considered via either communicability or resistance distances1.

As a consequence, the community structure we �nd appears more granular than the

groups found in [124] and the composition cannot be explained only by geographical

patterns. Other factors are involved as historical relationships, trade agreements and

strategic economic alliances.

To conclude, although some common results with [124] and [149] are observed,

our methodology has the advantage of clearly highlighting even small di�erences and

forcing the emergence of very strong ties between di�erent countries through the use

of a distance threshold. Furthermore the partition quality index Q we applied turns

out to be a simple and �exible tool, more homogeneous to the context of a network

interpreted as a metric space.

2.7 Conclusions and further research

Community detection is a key topic in the analysis of complex systems, where discov-

ering the inner structure plays a relevant role. In particular, the centrality of countries

and the relationships between them assume speci�c relevance in the World Trade Net-

work, where economical and geopolitical phenomena a�ect over time the structure of

the global network. In this framework, this work aimed at detecting di�erent levels of

clustered communities in the network on the basis of both communicability and resis-

tance distances. The proposed methodology allows to discover the hidden hierarchical

structure of the network, as it presents a degree of �exibility highlighting very tight

relationships by varying the threshold parameter, and revealing in this way the clusters

of nodes that more easily communicate. Moreover, it performs well also for weighted

and extremely dense network, as the case of the WTN.

1The rank correlation between these distances and the geographical distance between capital cities

is lower than 0.15.
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Features and properties of each community can be exploited in order to compare the

characteristics of di�erent clusters and to detect the most central countries inside the

single community as well in the whole network.

Numerical results depict the structure of the economic trade detecting main relevant

communities. In particular, main community sees United States and China as main

actors. Most �ows are polarized around the exchange channel between China and USA

and all their satellite countries. However, focusing on the correlation between trades,

the procedure emphasizes the di�erent role of these two countries. In particular, it is

worth mentioning the emerging of China-Oceania community when deep links emerge.

Furthermore, it is con�rmed that Germany plays a key role in Europe and preferential

channels of internal exchanges are observed in the European market. In line with [146],

emphasizing tight links, we obtain that although the strong trade relationships with

USA and Germany, China became regionally attractive and restored the leadership of

Asia-Oceania community. European community is highly centralized around founding

members of the European Economic Community with the central role of Germany.

High income countries in Northern Europe are instead in a separate community with

a less relevant role in the network.
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Chapter 3

Multi-attribute community

detection in International Trade

Network

3.1 Introduction

In network theory, a speci�c way to detect vertices having a peculiar common feature

is termed clustering or community detection. Formally, a cluster, or a community, is a

subgraph whose similarity or internal connections are stronger than the ones with the

rest of the graph [103]. In recent years there was a surge of interest on the commu-

nity structure of international trade [112, 113, 114, 115, 118, 124, 150]. The classical

approach consists in �nding sets of countries which are densely connected, through pref-

erential economic relationships. A typical representation of this phenomenon is through

a directed and weighted network, where nodes are countries and weighted links repre-

sent the aggregate trade �ows. This representation is named in the literature as the

International Trade Network (ITN).

Under this perspective, it becomes important to map the input-output interrelations

among the countries through an inspection of the communities, where two countries

share the same community if they have a comparable intensity in the trade �ows or if

they have preferential trade �ows.

International trade has been widely studied in the literature showing that main char-

acteristics have changed over time, with an acceleration of modi�cations occurring in

the last decades. In particular, over the years, the composition of trade �ows changed

making countries even more deeply interconnected. The geographical distribution of
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trade also varied, with an increasing role of the emerging countries, especially in Asia.1

To detect the network structure, a key function is played by the vertex centrality.

The idea of centrality is quite simple to grasp: a numerical score is assigned to each

node of the network so that the higher the score, the more central the node in the

network. The literature has highlighted the importance to be central in an economic

network (see [122, 130]). In particular, centrality may be associated with countries that

are the most important hub of the ITN, even though they are not leading import or

export countries [121, 122]. There are di�erent metrics describing centrality, but it has

been shown that di�erent measures (degree, coreness, etc.) identify di�erent in�uential

nodes [111]. For instance, a node could be central if it is directly connected with many

other nodes, if it has an intermediary role in communication, and so on. Indeed, there

is no consensus on an univocal de�nition of network centrality, because each measure

considers only one speci�c concept (see, e.g., [151]). But, resorting to only one of them is

discarding a large amount of the whole information available. Related to centrality, the

clustering coe�cient is also an important index to measure the interconnections within a

community. This coe�cient has been developed in all the cases of weighted, unweighted,

directed and undirected networks (see [99, 101, 152, 153, 154, 155]). In particular,

[156] discusses the clustering coe�cient in presence of already established communities

for directed networks and [102] presents a concept of clustering coe�cient which also

includes the presence of missing indirect links in the construction of triangles. The

association between communities and clustering coe�cients is quite natural. Triangles

are the easiest geometric visualization of communities, providing a picture of non-

exclusive interactions among di�erent agents. The relevance of this coe�cient has been

investigated also in the context of ITN (see, e.g., [120, 121, 132, 133]). As stressed

in [124], detecting the community structure of the ITN and how it correlates with

country-speci�c variables and geography (e.g., distances between countries) is crucial

from an international-trade perspective. Indeed, �nding communities in the ITN means

identifying clusters of countries that carry tightly interrelated trade linkages among

them, while being relatively less interconnected with countries outside the cluster. In

this work, we provide a new methodology for clustering countries based on a multi-

criteria assessment of several topological indicators of centrality. The method consists

of two steps. In the �rst step, we rank countries in ITN, according to various centrality

measures. In the second one, based on those rankings, we compute the similarities

between countries and then we apply the clustering algorithm based on the Clique

Partition model.

1https : //www.wto.org/english/res_e/publications_e/anrep10_e.htm
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More speci�cally, in the �rst step, and unlike classical methodologies, we consider

all the most prominent centrality de�nitions proposed in the literature that are rele-

vant to international trade. Rather than advocate the superiority of one of them, we

aggregate this rich multi-criteria assessment by de�ning a proper measure of similar-

ity/dissimilarity between nations using their ranking positions. Next, we group together

countries that have common structural features in terms of those rankings. The main

advantage of our proposal is that we do not focus on a single and speci�c indicator of

centrality, nor we come out with a detailed countries ranking. Rather, we are able to

identify groups of countries that have similar structural properties in the ITN. A spe-

ci�c tool developed for our project is a new heuristic algorithm to �nd clusters, based

on the Clique Partition model [15, 157, 158]. The Clique Partition model consists of

partitioning the vertices of a graph into the smallest number of cliques. First, a measure

of similarity/dissimilarity between units must be established. This measure can take

both positive and negative values, respectively if two units are similar or dissimilar.

Then units must be partitioned in subsets, in such a way to maximize the similarity

between them. This model has some advantages over the classical k-means or hierar-

chical models. First of all, the clique partition model does not require either that the

number of clusters were �xed in advance, e.g. the parameter k, or that the user should

arbitrarily analyse the chart of the hierarchical clusters. Rather, the number of cluster

results by the optimization of an objective function. Moreover, outliers are not forced

to be in a clusters, but they can form peculiar groups of a single element. Finally,

the principle of the method is that cluster are composed of mutually homogeneous

data, while the k-means models �rst try to establish cluster's centres and then groups

are composed by units that are similar to centres. Conversely, the clique partitioning

forms groups of similar units. Experimental comparison between the clique partition

and other clustering methods can be found in [159].

The chapter is organized as follows. In Section 3.2, we recall main literature related

to network theory, analysis of ITN and main solution methods for clique partitioning

problems. In Section 3.3, we describe the methodological framework and the integer

linear programming problem. In Section 3.3.2, we de�ne the maximum clique partition

problem as well as the algorithm applied for identifying the optimal solution. In Section

3.4, a numerical application is developed by using the paradigmatic case of the ITN.

Conclusions follow in Section 3.5.
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3.2 Related literature

In this section we brie�y remind the main literature related to network theory and

International Trade, as well as clique partitioning problems and the main solution

methods.

Network theory has been traditionally used in sociology and political science in order

to investigate international trade relations, being an e�ective tool in revealing the core-

periphery structure of the countries or in studying the impact of the globalization on the

international trade structure [123, 135, 160]. The topological and statistical properties

of the international trades, also in a time perspective, have been deeply studied in

several works (see for instance, [112, 116, 117]). More recently, complex networks have

also been used to investigate economic and �nancial implications of the world trade.

For instance, Kali and Reyes [136, 161] study the country's role in the ITN deducing

important implications in terms of economic growth and explaining the phenomenon

of �nancial contagion. Both international trade and �nancial integration patterns are

investigated by Fagiolo et al. [127]. Another important issue is the identi�cation of

communities in the trade network. Barigozzi et al. [124] deeply study the topology of

the international trade multi-network, aiming at discovering its community structure.

In [119], the authors analyse the evolution of communities (�islands�): from two large

trading communities, centred on UK and US, to a fairly heterogeneous �archipelago�

of trade, that seems to re�ect a phenomenon of globalization. Finally, dissimilarities

between di�erent layers of an international trade multiplex network have been studied

in [162]. The authors characterize each layer as a commodity network in a speci�c time

period. The de�nition of communities can be naturally associated with a partition in

clusters, and one of the most important model of community detection is the clique

partition. The presence of communities inside the network is revealed by the modularity

index (see [11, 163]), that corresponds to the objective function of a clique partition

model. By maximizing the partition modularity, one can determine the community

structure of the network [14, 164, 165, 166, 167]. The clique partition model, as a

combinatorial approach to cluster qualitative data, had a methodological development

independent of the problem of community detection, as it has been introduced in [15,

157, 158, 168] and its applications range in many di�erent �elds (see, for instance, [169]).

It has been recognized that it is a NP-hard problem, implying that the exact solution

cannot be computed in polynomial time, unless P=NP. In practice, exact methods can

solve instances that do not exceed one hundred nodes [167, 170], so that the use of

heuristic procedure is necessary in our applications [163, 171].
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3.3 The model

In this section, we describe our methodology for clustering countries on the basis of the

similarity attributes.

A network is described by a graph G = (V,E) where V and E are respectively the set

of n vertices and m links (or edges). Two nodes are adjacent if there is a link (i, j)

connecting them. The degree di of a node i is the number of links incident to it. If a

weight wij > 0 is associated with each link (i, j), a weighted graph G = (V,E,W ) is

obtained, being W the set of weights. In general, both adjacency relationships between

vertices of G and weights on the links are described by a nonnegative, real n-square

matrix W. In the unweighted case, matrix W is simply the classical binary adjacency

matrix A, of entries aij , where aij = 1 if (i, j) ∈ E, 0 otherwise. Since we consider

network without loops, aii = 0 (or wii = 0). The (i, j)−element of the k−power of
A is the number of walks of length k from i to j. The Laplacian matrix is de�ned as

L = D−A, where D is the diagonal matrix having the vertex degrees on the diagonal

entries.

A network is directed if each link is directed, that is an arc (i, j) ∈ E means that there

is a link starting from i and ending in j. The in-degree dini (out-degree douti ) of a node

i is the number of arcs pointing towards (starting from) i. The degree dtoti of a vertex

is then the sum of the in and out-degree. In the directed case, matrices A, for a binary

network, and W, for a weighted network, are not symmetric.

3.3.1 Network attributes and rankings

We are interested in speci�c characteristics of the nodes, such as their centrality or their

level of interconnection within the network. Since the network is weighted and directed,

we need appropriate measures that take into accounts both weights and directions.

Thus, according to the four dimensions classi�cation of centrality indices in [172], we

focus on four class of network indicators, each one computed using both incoming and

outgoing links. These are in and out-strength, in and out-clustering, hub and authority

and Laplacian centrality.

The strength (in and out) is the natural extension to the weighted and directed case

of the degree centrality. It counts both the number of ties and their intensity. Formally,

for a node i, we have:

sini = (ATW)ii = WT
i 1 (3.1)
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souti = (AWT )ii = Wi1 (3.2)

where Wi corresponds to the i− th row of the matrix W.

In particular, in our application, the in-strength sini measures the total trade �ows

incoming to the country i, that is the import. The out-strength souti measures the total

trade �ows outgoing from the country i, that is the export.

Clustering coe�cient measures the tendency of a node to be well interconnected

with its neighbours. Local clustering coe�cient of a node i counts the number of ob-

served weighted directed triangles connected to i, divided by all its potential unweighted

directed triangles:

ci(W̃) =
1
2 [(W̃[ 13 ] + (W̃T )[

1
3 ]]3ii

dtoti (dtoti − 1)− 2d↔i
, (3.3)

where W̃ = [w̃ij ]i,j∈V is the normalized weighted matrix whose elements are de�ned

as w̃ij =
wij

max(wij)
and d↔i =

∑
j 6=i aijaji is the degree of bilateral arcs between the node

i and its adjacent nodes.

As pointed out in [101] and [99], we have four types of directed triangles to which i

could belong. They generate four types of clustering coe�cients, that can be separately

computed.

Formula (3.3) includes all the four coe�cients described in [99]. Nevertheless, the

country i is part of the in-type and out-type triangles, highlighting the presence/role of

the node i in import/export between its neighbouring countries. Thus, in our analysis,

in-clustering and out-clustering coe�cients seem more appropriate in capturing the role

of the node i in the exchanges between the closest countries, distinguishing between

import and export:

cini (W̃) =
1
2(W̃TW̃2)ii

dini (dini − 1)
, (3.4)

couti (W̃) =
1
2(W̃2W̃T )ii

douti (douti − 1)
. (3.5)

In order to model the in�uence, or the prominence, of a country in a global scenario

of trade �ows, the eigenvector centrality is the most suitable measure. The generaliza-

tion of this measure to directed networks allows to associate with a node two status:

authority and hubness. The idea arises in the context of web page search to rank the

importance of a page [173]. A web page is an authority if it is pointed by many other
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pages. Hubs are pages that link to many authoritative pages. Formally, let ai and hi
be the authority and hub scores respectively. Then, the following relations hold:

ai = (WTh)i (3.6)

and

hi = (Wa)i (3.7)

where the vectors a and h collect respectively authorities and hubs scores of all

nodes.

By formulas (3.6) and (3.7), de�nitions of hubs and authorities are characterized

by a mutually reinforcing relationship: essentially, a good hub is a page that points to

many good authorities; a good authority is a page that is pointed to by many good

hubs. The use of these measures is motivated by their interpretation: on one hand,

authorities are central countries as they import in turn from central countries. On the

other hand, hubs are central as they export towards central countries.

To compute the scores (3.6) and (3.7), an iterative algorithm (HITS - Hyperlink

Induced Topic Search) is proposed in [173]. Starting with initial score vectors a0 and

h0, through the power iteration method on AAT and ATA, the process converges to

the principal eigenvectors a* and h* of the matrices AAT and ATA.

The idea behind the Laplacian centrality is that the importance of a vertex i is

related to the network ability to adapt itself to the deletion of the vertex, i.e. its

resilience. The Laplacian centrality of a vertex i is re�ected by the drop of the Laplacian

energy of the network deriving by the deletion of i from the network. According to [174],

the de�nition1 of the Laplacian energy is:

EL(G) =
∑
k

λ2k (3.8)

where λk are the eigenvalues of the Laplacian L. Therefore, the Laplacian centrality

is (see [176]):

li =
EL(G)− EL(Gi)

EL(G)
=

(∆E)i
EL(G)

. (3.9)

Since the denominator EL(G) has the same value for all vertices, we focus on the

numerator (∆E)i, that is always nonnegative for the interlacing property of the eigen-

values of the Laplacian matrix (see [177]). The Laplacian energy can be re-expressed
1It is noteworthy that an alternative de�nition of Laplacian energy has been provided in the lit-

erature (see [175]). Although this alternative de�nition has been widely explored in the literature, we

focus on the original version de�ned in [174] because it is related to the Laplacian centrality measure.
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in terms of strength1 (see [176], Th. 1):

EL(G) =
∑
k

s2k + 2
∑
k<j

w2
kj . (3.10)

Hence, the di�erence (∆E)i is:

(∆E)i = s2i +
∑

k∈N(i)

(w2
ki + 2skwki) (3.11)

where N(i) is the set of neighbours of the node i. This expression allows the

following interpretation of the Laplacian centrality of i. This centrality depends (in a

quadratic way) on the strength and on the weights of the neighbours of i.

As stressed in [176] and [178], compared with other standard centrality measures

proposed for weighted networks (e.g. strength or betweenness centrality), the Laplacian

centrality is an intermediate measure between global and local characterization of the

importance of a vertex. The generalization to directed and weighted case follows2,

giving an expression for weighted and directed Laplacian centrality (in and out) lini
and louti derived by formula (3.11).

In our analysis, we intend to aggregate di�erent indicators. Indeed, as already

stressed, each measure has peculiarities and characteristics that highlight various as-

pects of the exchange relations between countries,

This heterogeneity requires an approach that cannot be simply based on the direct

comparison among extremely di�erent measures.

Given that each index has speci�c unit measures and range of variations, we will fo-

cus on the various country centrality rankings rather than their absolute values. More

speci�cally, �rst we calculate the country rankings according to any index, then we

cluster countries according to their positions on those rankings. Indeed, each indicator

induces a ranking which represents the structural importance of a single node in the

network. Rankings analysis allows us to compare more than one centrality simultane-

ously. The comparison will be developed by computing a distance function between

rankings. In particular in this work we refer to the Minkowski distance, also known as

Lp-norm distance.

Let us order the scores of each node obtained for each centrality measure k and let

1In case of unweighted graphs, formula (3.10) gives the result provided in [174]: EL(G) =∑
k dk (dk + 1) =

∑
k d

2
k + 2m. The use of entries of the Laplacian matrix, instead of eigenvalues,

is meaningful especially for large networks.
2See [179] and [180] for two de�nitions of Laplacian energy for directed graphs.
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rki be the position of the node i with respect to k. The Minkowski distance d(ri, rj) is

d(ri, rj) = ||ri − rj ||p =

(
K∑
k=1

∣∣∣rki − rkj ∣∣∣p
)1/p

(3.12)

being ri the rankings vector of node i, K the number of considered centrality mea-

sures and p any real value such that1 p ≥ 1.

This distance measure is commonly used in the literature for computing the dissimilar-

ity of objects described by numeric attributes. It is a generalized distance metric that

includes others as special cases. In fact, although theoretically in�nite measures exist

by varying the value of p, just three have gained importance (Manhattan distance for

p = 1, Euclidean distance for p = 2 and Chebyshev distance for p→∞).

A remarkable feature of this distance consists in grouping more than one objects,

namely it allows to consider all the network indicators simultaneously, producing a

global �ctitious distance between couple of nodes ranking. Furthermore, this distance

allows to exploit several values of p in order to better highlight the general features of the

analysed data (see [181, 182]). For instance, [182] highlights how di�erent con�gurations

of data concentration can be caught varying p, so that Minkowski distance can be used

for e�ectively tackling data analysis problems.

In our context, we use this distance to construct a complete network Kn having the

same node set and weighted adjacency matrix Ω, whose entries are de�ned as:

ωij =

{
1

1+d(ri,rj)
for i 6= j

0 for i = j
. (3.13)

These weights range in [0; 1] and turn out to be e�ective in describing the similarities

between countries. Indeed, the more two countries have a similar behaviour, the smaller

is the distance and the higher is the weight.

3.3.2 The Maximum Clique Partition Problem

The Clique Partition (CP) problem, as applied to our model, is de�ned as follows. The

complete undirected graph G = (V,E) is given, with V = {1, . . . , n}. For each (i, j) ∈
E, gains/costs gij are de�ned, which can take both positive and negative values. In our

application, positive values of gij are similarities, negative values are dissimilarities. Let

P = {V1, V2, . . . , Vq} be a partition of V and let π(Vk) =
∑

i,j∈Vk gij be the gains/costs

1Although p can be any real number, when p < 1 the formula does not de�ne a metric, being the

triangle inequality not satis�ed.
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sum of subset Vk, for 1 ≤ k ≤ q. The CP problem consists of �nding the node partition

P that maximizes the objective function f(P ) =
∑q

k=1 π(Vk).

It is important to note that values gij must be both positive and negative, otherwise

there is no incentive to discard negative values and the best partition would be the

total set P = {V }. Therefore, we calculate gij as the di�erence between ωij (that

are positive and bounded between 0 and 1) and benchmark values ω∗ij , representing a

neutral threshold. Neutral thresholds are calculated as follows. Let ω =
∑

ij ωij be the

total network similarities and let ωi =
∑

j ωij the sum of similarities appointed to unit

i. The probability that a unit x of network similarity would be allocated to node i is

P[x incident to i] = ωi/ω. If similarity has no structure, that is, it is independent of

pairs (i, j) because data do not have clusters, then:

P[x incident to i ∩ x incident to j] =

P[x incident to i]× P[x incident to j] =

ωiωj/ω
2.

(3.14)

Then, if similarities are independent, the expected similarity between i and j should

be: ω∗i,j = 2
ωiωj
ω . So, we can calculate gain/cost gij as the di�erence between the actual

and the hypothetical similarity: gij = ωij − ω∗ij . In this way we obtain values gij that

are both positive and negative. The integer linear programming formulation of the

Clique Partition is then:

max
∑
i 6=j

gijxij (3.15)

subject to 
−xij + xik + xjk ≤ 1, ∀i < j < k, i, j, k ∈ V
−xik + xjk + xij ≤ 1, ∀i < j < k, i, j, k ∈ V
−xjk + xij + xik ≤ 1, ∀i < j < k, i, j, k ∈ V

xij ∈ {0, 1}, i < j, i, j ∈ V

where xij is equal to 1 if two nodes are in the same cluster and 0 otherwise.

We experimented very long computational times when we tried to solve it through

Integer Linear Programming. Therefore, we implemented a heuristic procedure based

on shrinking the vertices of the graph. Shrink is the subroutine by which we take

two vertices, representing single units or clusters, and we merge them together to

obtain a single cluster. Shrink is described in Algorithm 1. Input is a data structure
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Gh =< V h, gh, πh >, in which V h is the active node set, each node representing a

set of the partition, gh are the shrunken costs, de�ned for every pair i, j ∈ V h, πh

are the clique costs, de�ned for every active node i ∈ V h. Output is a data structure

Gq =< V q, gq, πq > in which |V q| = |V h| − 1. When we shrink i, j ∈ V q, we delete

j from the active nodes, see Line 1, and the clique pro�t πhi of i increases by the arc

pro�t ghij , while all others remain the same, see Lines 2 and 3. In the next steps, the

pro�t of i inherits the pro�ts of j's connections, see Lines 5-7.

Algorithm 1: Shrink

Input: The data structure: Gh =< V h, gh, πh >, the pair i, j ∈ V h

Output: The data structure: Gq =< V q, gq, πq >

V q ← V h − j
πq ← πh

πqi ← πhi + ghij
gq ← gh

for k ∈ V h do

gqjk ← 0

gqik ← gqik + ghjk

return Gq

Subroutine Shrink is used to join nodes or clusters every time we �nd an improve-

ment of the objective function, that is, when we �nd a pair (i, j) such that ghij > 0. The

procedure is described in Algorithm 2. At the beginning, Lines 1 and 2, the partition

V q is composed of subsets of one element and the pro�ts π associated to them are null.

Then, in the loop 3-9, the greatest pro�t gij is selected and, if positive, vertices (i, j)

are shrunken. Otherwise, the algorithm stops. The objective function is calculated in

Line 10.

We found that Algorithm 2 calculates quickly good quality solution. However, it

can be the case that the selected partition is suboptimal. Therefore, we implemented a

version of the Neighborhood Search procedure proposed in [183]. The procedure starts

with a feasible partition P , in our case the one calculated through Algorithm 2. Then

we select at random k vertices of V and try to relocate them to di�erent clusters,

searching for an improvement of the objective function. The procedure is repeated

several time and for di�erent values of k, until no improvement are found for many

consecutive attempts. But in our data, we found that most of the times the results of

Algorithm 2 were not improved.
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Algorithm 2: Clique Partition

Input: The CP Problem, de�ned with input V, g.

Output: The Clique Partition V q, clique costs πq, objective function f q

V q ← {1, . . . , n}
πq ← 0

while stop = False do

gqij ← max{gqkl|k, l ∈ V
q}

if gqij > 0 then

Gh ← Shrink(V q, i, j)

Gq ← Gh

else

stop← True

f q ←
∑

i∈V q π
q
i

return Gq, f q

3.3.3 A summary of the Ranking Aggregation/Clique Partitioning

procedure

The next pseudo-code (see Algorithm 3) summarizes the methodology that we are

proposing:

Algorithm 3: Aggregation and Partition

Calculate rankings rk, for every centrality measure k = 1, . . . ,K

Calculate similarity/dissimilarity ωij between every countries pairs i, j.

Calculate the gain/cost gij for all i, j pairs.

Solve the Clique Partition model whose input are gij 's.

In Step 1, we have K centrality measures, as de�ned in Subsection 3.3.1. For every

measure k, (k = 1, ...,K), we obtain the ranking rk, whose element rki is the position of

country i in the ranking according to the measure k. In Step 2, we calculate values ωij
according to Formula (3.13). In Step 3, we calculate the gains/costs needed to de�ne

the Clique Partition model explained in Subsection 3.3.2. Lastly, in Step 4, we apply

the Algorithm 2.
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3.4 Numerical application

3.4.1 International Trade Network

In this section, we apply the model previously described in order to study the structure

of the ITN. We focus on a World Trade dataset, made available by the Observatory of

Economic Complexity1. In particular, data regard the world trade database developed

by the research and expertise centre on the world economy (CEPII) at a high level of

product disaggregation. Original data are provided by the United Nations Statistical

Division (UN Comtrade) and then the dataset is constructed by CEPII using an original

procedure that reconciles the declarations of the exporter and the importer. This

harmonization procedure enables to extend considerably the number of countries for

which trade data are available, as compared to the original dataset (see [184]).

In particular, we consider the last version published in 2017, based on the Harmonized

Commodity Description and Coding System, and that provides aggregated bilateral

values of exports for each couple of origin and destination countries. We focus on the

aggregated data of the last available year, namely, 2014.

Hence, we construct a directed and weighted network (see Figure 3.1), where each

node is a country and weighted links represent the amount of product trades between

couple of countries expressed in US dollars. This network is characterized by 220

countries and 26034 links. Its arc density is approximatively 0.54, because on average

each country has a large number of trade partners and the entire system is intensely

connected. However, the network is far from being complete or, in other words, most

countries do not trade with all other countries, but they rather select their partners.

Furthermore, world trade tends to be concentrated among a sub-group of countries and

a small percentage of the total number of �ows accounts for a disproportionally large

share of world trade. We have indeed that, on average, each country has trades with

more than an half of the other countries in the world, but the top 10 countries export

more than 50% of the total �ow. To this end, key importers and exporters, classi�ed in

terms of strength, are displayed in Figure 3.2. Di�erences between import and export

ranking are remarkable. United States, China, Japan, South Korea and some European

countries (namely, France, Germany, Italy, Netherlands and United Kingdom) are world

largest importers and exporters. Russia and Canada display instead a top ranking in

terms of volume of exports. In particular, Russia is characterized by a signi�cant

positive trade balance, equal to approximatively 30% of its total exportations.

Furthermore, as expected, greater countries have more partners and they account for a

1See https://atlas.media.mit.edu/en/
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generally larger share of world trade. However, the relationship between the economic

size and the number of partners is far from perfect, as indicated by the correlation,

around 0.5, between the total value of (in or out) �ows and the number of partners for

each country.

Figure 3.1: World Trade Network of imports and exports at the end of 2014.

3.4.2 Numerical results and discussion

As described in Section 3.3, we aggregate the centrality indexes through a community

detection method. As a result, communities are determined by the Clique Partition

model, whose input is a weighted network constructed by the original one, in which

weights are determined taking into account all the topological indicators in a multi-

criteria approach. Four class of network indicators are initially computed by using the

network depicted in Figure 3.1. We report in Figure 3.3 the scatter plots of each couple

of centrality measures and the Spearman's rank-order correlation, in order to assess

the strength and the direction of association between di�erent ranked indicators. All

the correlation are positive, because a country with a high volume of exports is also

highly interconnected in the network. However, there are not fully correlated couples

and, in many cases, the correlation is far from one. It is also noteworthy the strong

dependence between in and out versions of the same indicator. This is mainly explained

by the similar patterns of imports and exports for several countries. Only hubs and
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Figure 3.2: In and out-strength of countries in world trade network. Categories are based

on the following classes [0−q50], (q50−q75],(q75−q95],(q95−q100] where qp is the p-quantile

of the in-strength and out-strength distribution, respectively.

authorities seem to emphasize the presence of speci�c exceptions. Table 3.1 reports the

top ten countries according to the rankings of the four used indicators. The rankings

re�ect the results about the correlations and they exemplify the di�erences in the role

of each country as importer or exporter.

Laplacian In Laplacian Out In-Strength Out-Strength In-Clustering Out-Clustering Hubs Authority

FRA THA USA CHN USA CHN CHN USA

SGP BLX CHN USA CHN DEU CAN HKG

CZE NLD DEU DEU DEU USA MEX JPN

USA FRA JPN JPN ARE JPN DEU CHN

GBR GBR GBR KOR GBR SAU JPN DEU

POL DEU FRA FRA JPN RUS USA GBR

BLX USA NLD NLD SAU FRA KOR KOR

NLD SGP HKG ITA NLD ITA FRA FRA

THA ITA KOR GBR ITA KOR GBR CAN

CAN CAN ITA RUS FRA GBR ITA MEX

Table 3.1: The top ten countries for each network indicator.
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Figure 3.3: On the left-hand side, spearman correlation between each couple of measures.

On the right-hand side, matrix of scatter plots between di�erent indicators.

By applying the methodology1 described in Section 3.3, we obtain at the �rst step

three communities, characterized by 69, 87 and 64 countries, respectively. We display in

Figures 3.4 the communities initially identi�ed by the algorithm. These three clusters

are also well separated in terms of countries' centrality. We have indeed that countries

belonging to community 1 have an average ranking of 38, the second community has

an average ranking of 113, while countries that belong to the lowest community have

an average ranking around 185. In other words, the most central countries are all in-

cluded in the top community. We also notice that the three clusters are characterized

by a very di�erent intra-group density. We have indeed that the density of the sub-

graphs (of the original ITN) induced by the countries belonging to the three clusters

is 0.97, 0.53, 0.05, respectively. This behaviour can be partially explained by the fact

that central countries tend to concentrate a high number of transactions between them.

Since in several contexts this initial division could be too raw, we can re�ne the

procedure in order to reduce the heterogeneity in each group. To this end, at the

subsequent step, we separately consider the ranking of centralities of countries, applying

the proposed method for community detection to the single group. Speci�cally, at step

2 we apply the proposed algorithm within each community detected at the previous

step. In other words, at this step the algorithm takes into account how a speci�c

country is ranked with respect to other countries of the same subgroup on the basis of

1In the application we set p = 2 for the computation of the Minkoski distance. Similar results have

been obtained by using other values of p.
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Figure 3.4: Clusters of countries identi�ed at the �rst step by the community detection

algorithm. The communities are ordered in terms of average ranking.

the centrality indicators computed on the whole network. The ranking position of each

country may change, but the global ranking remains the original one. For instance,

the community 1, characterized by 69 countries, splits into two groups of 32 and 37

countries, respectively. The two groups obtained have an average ranking of 19 and

55. The procedure is repeated in a similar way also for the other two communities

identi�ed at the step 1, resulting in 8 communities at step 2 (see dendrogram in Figure

3.5 and top left-hand side in Figure 3.6).

Further reductions of the heterogeneity in each cluster are possible of course, repeating

again this process at the next steps and, in general, a stopping criterion is needed. A

possible one consists in looking at the volatility of the ranking inside each cluster. If we

focus on community with larger standard deviation, we tend to produce a more re�ned

breakdown between low-ranking countries. Vice versa, looking at a measure of relative

volatility (as the coe�cient of variation (CV)), we deal with a higher decomposition of

top-ranking clusters. Here we follow this second approach and, at each step, we further

divide a community only if the CV of countries' average rankings is lower than 7.5%.

The complete structure representing the various division steps is represented by the

dendrogram in Figure 3.5. We notice that the number of communities increases at each

step, leading to 22 communities at step 4. As expected, the criterion based on CV leads
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Figure 3.5: Dendrogram that illustrates the arrangement of clusters by applying the

algorithm at four di�erent levels. Communities are ordered in terms of average ranking.

to a more granular breakdown for clusters characterized by a higher average ranking.

In this way, we are able to classify key countries in di�erent clusters. In Figure 3.6 we

report the subnetworks induced by the clusters. The analysis con�rms a tendency of top

communities in showing a higher intra-group density. For instance, the top community

at step 3 and the three higher ranking communities at step 4 are complete, that is

all central countries trade each other. However, there is not a monotonic behaviour

between ranking and intra-density. For instance, at step 2 community 4 has a higher

average ranking than community 5 (124 against 128), but a signi�cant lower intra

density (0.05 against 0.58). This peculiar behaviour can be justi�ed by the composition

of the groups1. Indeed, we are grouping countries on the basis of similarity in terms of

their central role in the network instead of using preferential economic relationships.

1Community 5 at step 2 is indeed characterized by various groups of countries that trade each

other. For instance, in this group, we have several countries, originated after the breakup of Jugoslavia

and Russia.
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Figure 3.6: Clusters of countries identi�ed at the second, third and fourth step, respec-

tively, by the community detection algorithm. The communities are ordered in terms of

average ranking.
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It is worth to compare our results with a well-known country-classi�cation method

based on the Economic Complexity Index (ECI). This index, introduced by Hidalgo

and Hausmann [138], allows to rank countries in the ITN according to the diversi�-

cation of their export �ows, which re�ects the amount of knowledge that drives their

growth. The higher is the ECI, the more advanced and diversi�ed is an economy. In

particular, countries whose economic complexity is greater than expected (on the basis

of their global income), tend to grow faster than rich countries with a low ECI. In this

perspective, ECI represents a suitable tool for comparing countries in the ITN inde-

pendently of their total output and it provides an independent measure of similarity.

For instance, in Table 3.2, we list the values of the ECI for the countries in the top

four clusters detected. As shown in Table 3.3, the mean value of such an index for

each cluster is positively correlated with their ranking in the �nal partition we found

at step 4. However, some exceptions are noticeable. For instance, China, in cluster 1,

is characterised by a lower ECI than some countries in cluster 2 (e.g. UK and Italy)

because of a lower diversi�cation of exported commodities. Indeed, its wealth comes

from a more homogeneous set of assets than UK and Italy, which can express a wider

diversi�cation in their total output. This could explain why the Standard Deviation

inside each one of our communities is signi�cantly high.

Now, we focus on the countries' role within the network. As shown in Figure 3.7,

the initial breakdown in communities gives a general feeling of the relevance of di�erent

macro-regions in the whole trade network. We have indeed that the top cluster, charac-

terized by 69 countries at step 1, includes all the most developed European countries1,

largest economies in Asia and Middle East, several countries in South America, Canada,

Mexico, USA, Australia and New Zealand. Furthermore, Algeria, Angola, Egypt, Mo-

rocco, Nigeria and South Africa are included for the African continent. Except for some

small countries, this community includes all the advanced economies identi�ed in the

World Economic Outlook (WEO) by the International Monetary Fund (IMF)2 and the

emerging economies identi�ed by IMF and by other analysts3.

At the end of the procedure, we obtain that the most central group is composed by

128 European Countries are included in community 1. Gibraltar, San Marino and Andorra and

some countries originated after the breakup of Jugoslavia and Russia are not included.
2List of advanced countries according to WEO are available at:

https://www.imf.org/external/pubs/ft/weo/2019/01/weodata/groups.htm#ea
3Various sources list countries as �emerging economies� exist. A few countries appear in every list

(BRICS, Mexico, Turkey). While there are no commonly agreed upon parameters on which the coun-

tries can be classi�ed as �Emerging Economies�, several �rms have developed detailed methodologies

to identify the top performing emerging economies every year.

108



3.4 Numerical application

China, Germany, Japan and United States. Higher volumes of trades are indeed moved

by these countries (e.g., see ranking of in and out-strength in Table 3.1) and, at the

same time, they also show the highest levels of interconnections.

In the second group, we have countries which either are positioned at a slightly lower

level (as GBR, FRA, ITA and NLD) or are outstanding for one speci�c indicator, but,

on average, they show a less relevant role in the network. For instance, Canada has the

second position in terms of hubs centrality (see Table 3.1), but shows an average rank-

ing around 14, because of a lower clustering. This is in line with its low value of the ECI.

Figure 3.7: Structure of communities at di�erent steps. Darker colours are associated to

communities with an higher average ranking. The number of communities is respectively

equal to 3, 8, 16, 22.
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Country Step 1 Step 2 Step 3 Step 4 ECI

CHN 1 1 1 1 1.16379

DEU 1 1 1 1 1.81367

JPN 1 1 1 1 2.31842

USA 1 1 1 1 1.30167

BLX 1 1 1 2 0.90581

CAN 1 1 1 2 0.411362

FRA 1 1 1 2 1.15748

GBR 1 1 1 2 1.40296

IND 1 1 1 2 -0.014696

ITA 1 1 1 2 1.24155

KOR 1 1 1 2 1.90646

MEX 1 1 1 2 0.953003

NLD 1 1 1 2 0.756212

AUS 1 1 2 3 -0.846322

BRA 1 1 2 3 -0.151225

CHE 1 1 2 3 1.99456

ESP 1 1 2 3 0.701443

MYS 1 1 2 3 0.828817

SGP 1 1 2 3 1.71171

THA 1 1 2 3 0.955651

AUT 1 1 2 4 1.64981

CZE 1 1 2 4 1.52129

IDN 1 1 2 4 -0.014696

POL 1 1 2 4 0.839266

SWE 1 1 2 4 1.6459

TUR 1 1 2 4 0.378481

ARE 1 1 2 4 -0.502072

HKG 1 1 2 4 1.35236

RUS 1 1 2 4 0.008439

SAU 1 1 2 4 -0.369927

VNM 1 1 2 4 -0.129961

XXB 1 1 2 4 NA

Table 3.2: Composition of top four clusters (in terms of average ranking) derived at step

4. Last column displays the ECI for each country.

Community Mean ECI SD ECI

1 1.6493875 0.526404666

2 0.968904556 0.559587598

3 0.742090571 0.990344256

4 0.579899091 0.844314087

Table 3.3: Mean and standard deviation of ECI inside each of the four top clusters

3.5 Conclusions

Community detection is a widely discussed topic in network theory. The analysis of

the mesoscale structure of a real network throws light on its inner structure. This

plays an even more signi�cant role when applied to ITN, in view of its multiple im-

plications. This work aimed at clustering countries according to similarities in their

role in the global market, rather than using only the preferential channels of exchange

between them. Centrality measures have represented, by now, a classical tool to rank

such a role in the network. In particular, each centrality measure expresses a di�erent

information about the nodes position. We proposed a way to collect all the informa-
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tion content, represented by suitable centrality measures, through a distance measure

between countries.

Among all possible similarity-dissimilarity distances, the Minkowski distance allows

to grasp di�erent data distributions, depending on a speci�c parameter p. In this way,

we constructed a weighted complete network where nodes are countries and weighted

links are related to similarities between them. By means of this similarity-network,

we set up a classical Clique Partitioning problem to identify the community structure

that maximizes the modularity. We proposed here a new algorithm which, loosely

speaking, merges di�erent nodes or clusters and shrinks the network in such a way to

get polynomial times for its solution.

When applied to the ITN in the year 2014, the optimal solution shows three big

clusters, more or less equivalent in size but very di�erent in terms of intra-cluster

density. This has been easily interpreted since the rate of exchanges between top

countries is far more intense than for poor ones. We iterated the same methodology

to each cluster, in order to reduce the internal heterogeneity. This allows to build a

dendrogram tree stemming at each step.

The top leader economies in the world result to be those of China, Japan, USA and

Germany. This is not unexpected but our proposal shows that these countries also play

a very similar role in the world economy on the basis of the set of selected indicators,

making our approach suitable for other network applications.
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Chapter 4

Community Detection in

Multilayer Networks

4.1 Introduction

In this last chapter we want to address the fact that networks are often more complex

objects than what may have emerged, for instance, from the analyses contained in the

previous chapters. A network is a set of interconnected nodes but the nature of the

connections between nodes in the same set may be of di�erent kind. According to the

nature of the connections, di�erent networks are generated on the same set of nodes.

Each one can be interpreted as a level in a more complex object, called multilevel

network. Di�erent levels highlight a di�erent nature in the interaction between nodes

and each one is called monoplex. When we focus on a single level, it is as if we are

observing a detail through a magnifying glass, enlightening a particular aspect of the

possible relationships between nodes. However, it is clear that a deeper insight into the

complexity of these relationships plays an important role for a global description of the

network. Multilevel networks are precisely the e�ective tool to catch such a complexity.

Generally speaking, in a multilevel network, we can move from one node to another

on the same level following the links on that level. But we can also move from one level

to another one. The easiest way to do that is to imagine a jump from a node on a level

to the same node on a di�erent level. When this is the only possibility to switch levels,

we call the multilevel network a multiplex. But nothing prevents us from conjecturing a

jump from a node on one level to a completely di�erent node on a second level. When

this is allowed the multilevel network is called multilayer network. This is the most

general case and it is the one we are interested in. [185, 186, 187, 188].
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For instance, cities and roads connecting them, on one side, and the same cities

and railways connecting them, on the another side, represent two possible monoplexes.

When a traveller gets in a city by train, he can rent a car to go to another city. That is,

he is switching from the �rst monoplex (roads) to the second one (railways). Together

they constitute a multiplex. Of course, he cannot move from a city to a di�erent one

without using some form of transportation; so this is not a multilayer network. On the

contrary, the industrial chemical sector in di�erent countries is a monoplex, as it is the

sector of the pharmaceutical industry in di�erent countries, but the former can supply

the latter with materials and chemicals within the same country or to foreign nations

in the same way. This is an example of multilayer network.

This chapter will be organized as follows. We start by recalling some mathematical

and notational issues. In particular, we adopt and extend the tensorial approach in

[16] to give a description as compact as possible to all the quantities involved. The

central purpose is then the extension to multilayer networks of the community detection

methods described in the previous chapters, with particular reference to three di�erent

approaches that rely respectively on modularity, on communicability and on a speci�c

metric partition quality index. Despite requiring further developments, the proposed

methodologies prove to work well when applied to some toy-model networks.

Finally, since the problem of community detection is strictly linked to how much the

network is clustered or not, at the end of the chapter we propose an extension of all the

best known clustering coe�cients in literature to multilayer networks. In particular, it

will be shown how, in the tensorial language, it is possible to give them a substantially

uni�ed writing and how the choice of a single reference tensor allows to switch from

one to the other. Also in this case, these coe�cients have been tested only on some

toy-model networks, reserving, as we will say at the end, to extend their application to

real networks in future works.

4.2 Preliminaries

4.2.1 Notations

In order to clarify the tensorial notations that will be used in the following, we list

here the symbols we will adopt for the indices of tensors, matrices and vectors. We

will consider a multilayer network with N nodes on each level and L levels. Links

can connect di�erent nodes within the same level, the same node on di�erent levels,

or di�erent nodes on di�erent levels. In general, we will use Latin letters for objects,

nodes or levels, and Greek letters for components of tensors, matrices and vectors.
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Speci�cally:

• i, j, k, l, . . . for the names of the nodes

• a, b, c, d, . . . for the names of the levels

• µ, ν, ρ, σ, . . . for components of quantities associated with nodes

• α, β, γ, δ, . . . for components of quantities associated with levels

For instance, vµ(i) and vν(i) represent respectively the contravariant and covari-

ant µ- and ν-component of a vector v related to node i (see, e.g, [189]); or Wµ
ν (a, b)

represents the µν - entry of the matrix W related to levels a and b. Throughout this

chapter we will adopt Einstein summation convection over repeated indices: when an

index variable appears twice in a single term, it implies summation of that term over

all the values of the index. For example: cµxµ means
∑n

µ=1 cµx
µ.

Let now eµ(i) be the canonical basis in RN , that is

eµ(i) =

{
1 if µ = i

0 if µ 6= i
(4.1)

We will use the following notations for the canonical tensors:

• Eµν (i, j) = eµ(i)eν(j) the canonical second order tensor basis in RN×N . This

tensor is represented by a N -square matrix whose (i, j)-entry is 1, and the other

entries are 0.

• Eαβ (a, b) = eα(a)eβ(b) the canonical second order tensor basis in RL×L. This

tensor is represented by a L-square matrix whose (a, b)-entry is 1, and the other

entries are 0.

• Eµα(i, a) = eµ(i)eα(a) the canonical second-order tensor basis in RN×L. This

tensor is represented by a N × L matrix whose (i, a)-entry is 1, and the other

entries are 0.

• Eµανβ (i, j; a, b) = eµ(i)eν(j)eα(a)eβ(b) the canonical fourth-order tensor basis in

RN×N×L×L, whose (i, j, a, b)-entry is 1, and the other entries are 0.
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4.2.2 Adjacency tensor

To describe adjacency relations between nodes in a multilayer network, we need a forth-

order adjacency tensor. Let us focus on two nodes on two levels: node µ on level α and

node ν on level β. The adjacency tensor is then de�ned as

Mµα
νβ =

L∑
a,b=1

Wµ
ν (a, b)Eαβ (a, b) (4.2)

where Wµ
ν (a, b) is the adjacency matrix between levels a and b, that is a matrix

whose entries are the weights of the links between nodes on level a and nodes on level

b. This matrix can be expressed as

Wµ
ν (a, b) =

N∑
i,j=1

wij(a, b)e
µ(i)eν(j)

=
N∑

i,j=1

wij(a, b)E
µ
ν (i, j) for a, b = 1, . . . , L

(4.3)

so that the adjacency tensor in 4.2 can be written equivalently as

Mµα
νβ =

L∑
a,b=1

N∑
i,j=1

wij(a, b)E
µα
νβ (i, j; a, b) (4.4)

In particular, the element wij(a, b) represents the intensity of the relationship be-

tween node i in level a and node j in level b, i.e. it is the scalar weight of the link between

the node (i, a) and the node (j, b) and, as before, Eµανβ (i, j; a, b) = eµ(i)eν(j)eα(a)eβ(b)

is the fourth-order tensor canonical basis in RN×N×L×L.
We will set Wµ

ν (a) := Wµ
ν (a, a) and wij(a) := wij(a, a) within a single level, that is

for the usual adjacency matrix of a single layer. Moreover, when Wµ
ν (a, b) is diagonal,

i.e. when wij(a, b) 6= 0 if and only if i = j, each node is connected only with its

counterparts in di�erent levels and the multilayer network is a multiplex. We exclude

the possibility of self-loops, that is wii(a) = 0, ∀i = 1, . . . , N and ∀a = 1, . . . , L.

4.2.2.1 Contractions and Projected Networks

Contraction operation allows to reduce the dimensions of a given tensor by adding over

repeated indices and it is useful to compute, for example, some elementary quantities

like the number of nodes or the number of edges in the network.
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Let us de�ne, throughout this chapter, uµ = (1, . . . , 1)T and uν = (1, . . . , 1) the

contravariant and covariant 1st order 1-tensor (all 1's vectors) and Uµν = uνu
µ the 2nd

order 1-tensor (all 1's matrix).

The number of nodes per level is given by δµµ = N , where δµν is the Kronecker delta

tensor. The number of edges between level a and level b is given by Wµ
ν (a, b)Uνµ and

the number of edges on level a by Wµ
ν (a)Uνµ .

In order to extract a single level adjacency matrix, we need to project the tensor

Mµα
νβ onto the canonical tensor Eαβ (c, c), where c is the level of interest:

Mµα
νβ E

β
α(c, c) =

L∑
a,b=1

Wµ
ν (a, b)Eαβ (a, b)Eβα(c, c) = Wµ

ν (c, c) = Wµ
ν (c)

The levels in a multilayer network can be collapsed into a single layer network in

two di�erent ways.

The monoplex projected network is the monoplex network whose adjacency matrix

is given by

Pµν = Mµα
νβ U

β
α =

L∑
a,b=1

Wµ
ν (a, b)Eαβ (a, b)Uβα =

L∑
a,b=1

Wµ
ν (a, b) (4.5)

Note that Eαβ (a, b)Uβα = 1 ∈ R. The sum in equation 4.5 is extended over all the

possible couples of levels, i.e. including both couples made up of the same level and

couples made up of di�erent levels. This means that both intralayer and interlayer links

are included. Speci�cally, links between homologous nodes in di�erent levels collapse

into loops in the monoplex projected network.

The overlay network is the monoplex network whose adjacency matrix is given by

Oµν = Mµα
να =

L∑
a,b=1

Wµ
ν (a, b)Eαα(a, b) =

L∑
a=1

Wµ
ν (a, a) (4.6)

Note that in Eαα(a, b) =
∑L

α=1E
α
α(a, b) we sum along the diagonal of Eαβ (a, b),

and this sum is 1 if and only if a = b, i.e.
∑L

α=1E
α
α(a, b) = δab . In the overlay

network interlayer links are excluded so that they do not collapse into loops in the �nal

projection.

Finally, we can deal with the network of levels, whose weighted adjacency tensor is

given by

Ψβ
α = Mµα

νβ U
ν
µ (4.7)
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In this network an entire level collapses into a single node and links only survive if

the levels are immediate neighbours.

4.2.2.2 Centrality measures: degree and strength

The multidegree centrality vector for a multilevel undirected binary network is the

N−vector whose components are the total degree of each node in all levels:

kµ = Mµα
νβ U

β
αu

ν (4.8)

Indeed,

Mµα
νβ U

β
αu

ν =
L∑

a,b=1

Wµ
ν (a, b)Eαβ (a, b)Uβαu

ν

=
L∑

a,b=1

N∑
i,j=1

wij(a, b)E
µ
ν (i, j)Eαβ (a, b)Uβαu

ν

=

L∑
a,b=1

N∑
i,j=1

wij(a, b)E
µ
ν (i, j)uν

=
L∑

a,b=1

N∑
i,j=1

wij(a, b)e
µ(i)

=

L∑
a,b=1

N∑
i=1

 N∑
j=1

wij(a, b)

 eµ(i)

=
L∑

a,b=1

kµ(a, b) = kµ

where
∑N

j=1wij(a, b) represents the degree of a node i ∈ a obtained by counting

only links from i whose second end is node j that lies on level b. By multiplying by

eµ(i) we assign this degree to a component µ of a given vector. The degree of a speci�c

node i is then given by k(i) = kνeν(i).

We can also de�ne a degree centrality matrix for multilevel undirected binary net-

work the N × L matrix with the degree of each node in each level:

Kµα = Mµα
νβ u

βuν (4.9)
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Similarly, we can de�ne a multistrength vector and strength centrality matrix for

multilevel undirected weighted network as

sµ = Mµα
νβ U

β
αu

ν (4.10)

and

Sµα = Mµα
νβ u

βuν (4.11)

It is straightforward to extend the previous de�nitions to a directed network. If we

refer to a weighted network we may have an out-strength, an in-strength and a total

strength. All of them can be given for the whole multilayer network or for a single

level. Finally, a strength related to the bilateral links only can be provided too. All of

them may be computed by means of the formulae synthetically listed below, where we

denoted by Aµανβ the binary version of the weighted adjacency tensor:

Multi-level out-strength sout contravariant vector:

sµout = Mµα
νβ U

β
αu

ν = Pµν u
ν (4.12)

Multi-level in-strength sin covariant vector:

sinν = uµM
µα
νβ U

β
α = uµP

µ
ν (4.13)

Multi-level total strength:

s = sout + sin (4.14)

Multi-level strength of bilateral arc on node i:

sbil(i) = Mµα
ρβ A

ρβ
ναeµ(i)eν(i) (4.15)

Single-level out-strength matrix:

Sµαout = Mµα
νβ u

βuν (4.16)

Single-level in-strength matrix:

Sin
νβ = uαuµM

µα
νβ (4.17)

Single-level total strength matrix:

S = Sout + Sin (4.18)

Single-level strength of bilateral arc on node (i, a) matrix:

Sbil(i, a) = Mµα
ργ A

ργ
νβEµα(i, a)Eνβ(i, a) (4.19)
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4.3 Community detection on multilayer networks

A large part of chapters 2 and 3 of this thesis is devoted to the problem of commu-

nity detection on monoplex networks. In particular in chapter 2 we proposed a new

methodology based on the idea of communicability metric to identify clusters of strongly

interacting nodes. The purpose of the present section is to lay the foundations for a

community detection on multilayer networks providing some extensions of the discussed

methodologies.

In particular, we aim to test and compare here three di�erent approaches to com-

munity detection on multilayer networks, based respectively on an extension to these

networks of a) the classical Newman modularity and the widely used Girvan-Newman

approach; b) the methodology based on the Estrada communicability graph; c) the

methodology we proposed in chapter 2 based on communicability metrics.

Following [16], each one of the proposed methodologies will be formulated in terms

of adjacency tensor. For the purpose of an easier visualization, hereafter we refer to

the multilayer binary and weighted networks in �gures 4.1 and 4.2, respectively, with

N = 4 and L = 3 and we will use these sample networks to test our methodologies.

Figure 4.1: Binary Multilayer Network
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Figure 4.2: Weighted Multilayer Network. The number on each link represents its weight.

4.3.1 Community detection on multilayer networks based on

Modularity

Here we refer to the classic community detection based on modularity (see, for in-

stance, [190]). In particular we de�ne the multilevel version of modularity and propose

a method to �nd the optimal partition of a multilayer network, the one for which

modularity is maximum.

4.3.1.1 Undirected Networks

Let Wµα
νβ be the actual adjacency tensor andMµα

νβ a null-model tensor that encodes the

random connections against which we compare the actual connections of the multilayer

network. Let P = {Pc}, c = 1, . . . , C be a given partition into C clusters of the

multi-layer network. Let us de�ne Qµαc ∈ RN×L×C such that

Qµαc =

{
1 if (µ, α) ∈Pc

0 if (µ, α) 6∈Pc

(4.20)

equal to 1 if node µ on level α belongs to cluster Pc, 0 otherwise. The modularity

of partition P is then given by the scalar

Q =
1

S
QcµαB

µα
νβQ

νβ
c (4.21)
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where Bµα
νβ = Wµα

νβ − Mµα
νβ and S is the total strength of the network, that is

S =
∑N

µ=1 s
µ = Wµα

νβ U
νβ
µα where sµ is the multistrength centrality vector de�ned in

formula 4.10. Alternative choices of the null model can be made, that is many di�erent

null model tensors Mµα
νβ can be used. Let us choose

Bµα
νβ = Wµα

νβ −
SµαSνβ

S
(4.22)

where Sµα = Wµα
νβ u

βuν as in 4.11.

4.3.1.2 Directed Networks

Let us outline how we can write modularity in the directed case. Let's de�ne

Bµα
νβ = Wµα

νβ −
2SµαSνβ

S
(4.23)

where S = sout + sin =
∑N

µ=1 s
µ +

∑N
ν=1 sν ; now sµ = Mµα

νβ U
β
αuν is the multilevel

out-strength (contravariant vector, sout) de�ned in 4.12 and sν = uµM
µα
νβ U

β
α is the

multilevel in-strength (covariant vector, sin) de�ned in 4.13.

Let us notice that SµαSνβ represents automatically the tensor product between

in-strength and out-strength matrices. Now, let BT be the transpose of tensor B

according to rule
[
Bµα
νβ

]T
= Bνβ

µα which transposes both nodes and levels and let us set

B̂ = B + BT . Then the modularity of a given partition P = {Pc}, c = 1, . . . , C is

given by

Q =
1

S
QcµαB̂

µα
νβQ

νβ
c (4.24)

4.3.1.3 Application

When we apply the maximum modularity approach to detect optimal communities to

the two toy networks in �gures 4.1 and 4.2, we obtain the partitions represented in

�gures 4.3 and 4.4 for the binary and weighted version respectively. For a straightfor-

ward visualization, we have simply grouped nodes belonging to the same community

by means of a closed blue line. As can be seen from �gure 4.3 in the binary case, the

network is partitioned into two transversal communities due to the presence of strong

complete triangles between homologous nodes on di�erent levels. When we add weights,

as in �gure 4.4, their role becomes dominant and, for example, the whole �rst level acts

as a community in itself. We will add further comments later when comparing the

di�erent methodologies.
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Binary case:

Figure 4.3: Binary Multilayer Network Communities obtained by modularity approach.

Weighted case:

Figure 4.4: Weighted Multilayer Network Communities obtained by modularity approach.
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4.3.2 Community detection on multilayer networks based on

Communicability Graph

Communicability can be used to identify network communities. The intuition behind

this methodology is that nodes inside a community communicate better than nodes

belonging to di�erent communities. In this context, a community is then de�ned as

a group of nodes in which each pair has larger intracluster communicability than in-

tercluster one. Let us brie�y remind some details about how to exploit this idea on

monoplex networks; next, we will extend it to multilayer networks.

4.3.2.1 Monoplex network

Communicability between a pair of nodes µ and ν has been de�ned in chapter 1, formula

1.1, and in chapter 2, formula 2.1. For the present purposes, it is convenient to write

communicability by using the spectral decomposition of the adjacency matrix A as [47]

Gµν =

n∑
i=1

ϕµ(i)ϕν(i)eλi (4.25)

where ϕ(i) are the eigenvectors of A and λi are the corresponding eigenvalues, with

λ1 ≥ λ2 ≥ · · · ≥ λn. Note that the expression ϕµ(i) is used here to represent component

µ of the eigenvector i. Let us rewrite this function in the following way:

Gµν = ϕµ(1)ϕν(1)eλ1+

+
∑
i

ϕ+
µ (i)ϕ+

ν (i)eλi +
∑
i

ϕ+
µ (i)ϕ−ν (i)eλi

+
∑
i

ϕ−µ (i)ϕ+
ν (i)eλi +

∑
i

ϕ−µ (i)ϕ−ν (i)eλi

(4.26)

where ϕ+
µ (i) and ϕ−µ (i) represent components of the i−th eigenvector having positive

and negative sign, respectively and each sum is made over components with the sign

pattern speci�ed in its general term. Now, we can interpret the sign of the eigenvector

components as a state of the corresponding node. For instance, if ϕµ(i) > 0, we say that

node µ is in a positive state for the eigenstate corresponding to λi. This state can be

visually represented as a small arrow on the node pointing in a given verse, let's say the

positive one. Then, ϕµ(i) < 0, means that the arrow on node is pointing in the opposite

verse, let's say the negative one. We can also interpret these states by considering that

an individual in a social or economic network has a positive or negative position with
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respect to some criterion depending on whether the sign of ϕµ(i) is positive or negative,

respectively (or neutral in case ϕµ(i) = 0).

Then, the �rst term ϕµ(1)ϕν(1)eλ1 in 4.26 represents the consensus con�guration in

which all the nodes share the same state or point in the same verse, since components

ϕµ(1) have all the same sign.

In the �rst and in the forth sum in 4.26, components µ and ν of the eigenvectors

(those actually considered in the sums) have the same sign, both positive or both

negative. In other words, nodes µ and ν are in a state where the arrows all point in

the same verse. Consequently, we can consider µ and ν in the same cluster.

The second and third sums, on the other hand, represent a lack of consensus in

the states of the nodes µ and ν, i.e. their eigenvector components have di�erent signs,

and their states point in di�erent verses. Then, we can consider that they belong to

di�erent clusters.

As a consequence of the previous sign pattern analysis, we call intracluster commu-

nicability and intercluster communicability between a pair of nodes, respectively

Gintracluster
µν =

∑
i

ϕ+
µ (i)ϕ+

ν (i)eλi +
∑
i

ϕ−µ (i)ϕ−ν (i)eλi (4.27)

and

Gintercluster
µν =

∑
i

ϕ+
µ (i)ϕ−ν (i)eλi +

∑
i

ϕ−µ (i)ϕ+
ν (i)eλi (4.28)

We stress again that the sums above are extended only to the eigenvectors whose

components µ and ν comply with the indicated criterion for signs.

The consensus con�guration does not give us any information about the community

structure of a network. In that state the whole network behave as a single community.

Consequently, we can write this term o� communicability, consider Gµν−ϕµ(1)ϕν(1)eλ1

and focus on the di�erence between the intra- and intercluster communicability:

∆Gµν = Gintracluster
µν +Gintercluster

µν = |Gintracluster
µν | − |Gintercluster

µν | (4.29)

or, equivalently, in matrix form

∆G = eA − eλ1ϕ(1)ϕ(1)T (4.30)

If ∆Gµν > 0, two nodes display larger intracluster than intercluster communica-

bility and they are members of the same communicability cluster; if ∆Gµν < 0, two

nodes display larger intercluster than intracluster communicability and they belong to
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4. COMMUNITY DETECTION IN MULTILAYER NETWORKS

di�erent communicability clusters. A community is therefore a subset of nodes C ⊆ V
such that the intracluster communicability is greater than the intercluster one for all

the couples (µ, ν) ∈ C.

Let us notice that the product eλ1ϕ(1)ϕ(1)T plays the role of null model like the

last term in equation 4.22 for classical modularity. Indeed, we are shifting each com-

municability value according to its value, in such a way to get a list of positive/negative

gains/costs in coupling two nodes into the same community. Moreover, the parallelism

between the two terms is further con�rmed by the fact that while, the �rst contains

the product of the eigenvector centralities, the second, typical of modularity, contains

the product of the degree or strength centralities.

In view of this observation we can extend to this new context the approach described

in the previous section. That is, we can use the entries of (the upper triangle of) the

matrix ∆G as gains/costs to set a linear programming problem to look for the partition

that maximises a new partition quality function.This quality function can be given the

same structure as modularity in equation 4.21

Qcomm = Qcµ∆GµνQ
ν
c (4.31)

where we arranged indices position so to apply the usual sum convention and Qµc is

equal to 1 if node µ belong to the community c in the partition Pc, 0 otherwise.

Note that the original proposal by Estrada was di�erent. He de�nes the binary

matrix C as Cµν = Θ(∆Gµν) where Θ is the Heavyside step function

Θ (x) =

{
1 if x > 0

0 if x ≤ 0
(4.32)

C is the adjacency matrix of the so called communicability graph. A communicability

community is given by a clique in the communicability graph. This means that, in

the original, methodology, we �nd communicability communities looking for cliques

in the communicability graph. Our choice makes this approach more homogeneous

to the �rst one, described in terms of classical modularity in the previous section -

and to the next one in terms of network metrics - and lends itself to being extended,

at least in terms of writing equivalence, to the case of multilevel networks. Finally,

although communicability can also be de�ned on directed networks, we prefer to limit

the discussion here to the case of undirected networks, both binary or weighted.
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4.3.2.2 Multilayer networks

Let Wµα
νβ be the adjacency tensor of a multilayer network. The communicability tensor

can be de�ned as

Gµανβ = eW
µα
νβ (4.33)

where the exponential of a tensor is de�ned as

eW
µα
νβ =

+∞∑
k=0

1

k!
(Wµα

νβ )k (4.34)

and (Wµα
νβ )k = Wµα

ρ1γ1W
ρ1γ1
ρ2γ2 . . .W

ρk−1γk−1

νβ . In the case of a weighted network,

the adjacency tensor can be preliminarily normalised as Tµαργ W
ργ
σδ T

σδ
νβ where Tµανβ =

[(diagS)µανβ ]−1/2 and S = Sµα is de�ned as in 4.11. Note that diagS transforms a 2nd

order matrix into a 4th order diagonal tensor. Now, by the singular value decomposition

of the tensor Wµα
νβ , we get the eigenvalues λ and the eigen-matrices Φµα:

Wµα
νβ Φµα = λΦνβ (4.35)

In particular we identify Φ
(1)
µα corresponding to the maximum eigenvalue λ1 and we

can consider the null model eλ1Φµα
(1)Φ

(1)
νβ to build

∆Gµανβ = Gµανβ − e
λ1Φµα

(1)Φ
(1)
νβ (4.36)

We can now use the entries of ∆Gµανβ to set a linear programming problem to look

for the partition that maximises the communicability quality function

Qcomm = Qcµα∆GµανβQ
νβ
c (4.37)

When we apply the maximum communicability quality function approach to detect

optimal communities to the two toy networks in �gures 4.1 and 4.2, we obtain the parti-

tions represented in �gures 4.5 and 4.6 for the binary and weighted version, respectively.

Again, for a straightforward visualization, we have simply grouped nodes belonging to

the same community by means of a closed blue line. Although in the binary case an

optimal partition equal to that by modularity is gained, in the weighted case a di�erent

partition is produced as a consequence of the strong intracluster communicability inside

triangles 1− 2− 3 on level 1 and 6− 7− 8 on level 2.
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Binary case:

Figure 4.5: Binary Multilayer Network Communities by communicability approach.

Weighted case:

Figure 4.6: Weighted Multilayer Network Communities by communicability approach.
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4.3.3 Community detection on multilayer network based on

Communicability Distance

The communicability distance ξµν has been de�ned in chapter 2, by means of equation

2.7 (see also [108]). For two nodes µ and ν in a monoplex network, it can be written as

ξµν = Gµµ − 2Gµν +Gνν . (4.38)

The diagonal element Gµµ represents the subgraph centrality of node µ and it

measures the amount of information that starts from and returns to node µ after

having wandered through the network. On the other hand, Gµν measures the amount

of information transmitted from µ to ν. Notice that the word information is meant in

its broadest sense. Therefore, information �ow can be understood as any kind of �ow

along edges: money, current, tra�c and so on. Thus, the quantity ξµν accounts for

the di�erence in the amount of information that returns to the nodes µ and ν and the

amount of information actually exchanged between them.

In a matrix form, ξµν can be expressed as in equation 2.4.1:

Ξ = guT − 2G+ ugT (4.39)

If we set a distance measure on the network, we can exploit the partition quality

index Q de�ned in [12] for general metric spaces. It is built starting from the cohesion

coe�cient de�ned as:

γµν = ξ̄µ + ξ̄ν − ξµν − ξ̄ (4.40)

where ξ̄µ is the mean communicability distance of node µ from all the other nodes

in the network, and ξ̄ is the mean distance over the whole network. Coe�cient γµν can

be interpreted as a cohesion measure between nodes µ and ν. Two nodes µ and ν are

said to be cohesive (or incohesive) if γµν ≥ 0 (γµν ≤ 0). In other words, γµν represents

the gain (when positive) or the cost (when negative) related to the grouping of nodes

µ and ν in the same cluster of a given partition P = {Pc}.
In equation 2.10, we introduced an objective function that represents the global

cohesion function in the form

Qmetric =
∑
µ,ν

γµν xµν (4.41)

where xµν are binary variables equal to 1 if two nodes are in the same cluster and

0 otherwise. We can give this function an alternative expression, more suitable for the
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present discussion, equivalent to equation 4.31:

Qmetric = Qcµ γ
µ
ν Q

ν
c (4.42)

Let us notice that, according to our de�nition, in both the extreme cases, i.e. the

partition Pc, c = 1, made up of a unique community equal to the entire network and

the partition Pc, c = 1, . . . , n, made up af all isolated nodes, Q reduces to nξ̄, as proved

in Chapter 3, section 2.5.1.

In order to extend this methodology to multilayer networks, we refer to the so called

unfolding procedure (named also �attening procedure or matricization) discussed in

Appendix D. A multilayer network can be equivalently described in terms of adjacency

tensor, as we did in the previous paragraphs, and in terms of a block matrix, with L2

square blocks each one of order N , called supradjacency matrix. This matrix is the

unfolding of the adjacency tensor Wµα
νβ : it contains in the diagonal block the adjacency

matrices of each level and in the out-of-diagonal block the adjacencies between di�erent

levels.

Supradjacency matrix can be used, like an ordinary adjacency matrix, to compute

distances ξνβµα between node µ on level α and node ν on level β.1

At this point we are able to calculate the cohesion tensor as

γνβµα = ξ̄µα + ξ̄νβ − ξνβµα − ξ̄ (4.43)

and we can use the γ's coe�cients as gain/costs for the partition quality index

Qmetric in a usual linear programming problem, being now

Qmetric = Qcµα γ
µα
νβ Q

νβ
c (4.44)

We look then for the maximum value for 4.44 in order to select the optimal partition.

When we apply the maximum metric quality factor approach to detect optimal

communities to the two toy networks in �gures 4.1 and 4.2, we obtain the partitions

represented in �gures 4.7 and 4.8 for the binary and weighted version respectively. For

a straightforward visualization, we have again simply grouped nodes belonging to the

same community by means of a closed blue line. The same partition obtained by the

previous methods is con�rmed in the binary case. In the weighed case, results are

1Let us notice that in this way, for the sake of simplicity, we are implicitly assigning the same

meaning to distances between nodes in the same level, distances between versions of the same node in

di�erent levels, and distances between di�erent nodes in di�erent levels. This could be a signi�cant

limitation to be overcome in the future by re�ning the discussion.
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consistent with those by the method based on the communicability graph, although

two previous distinct communities are now uni�ed in single one. This di�erence could

be explained in this way. The cohesion tensor depends not only on the distance but also

on the greater or lesser centrality of the nodes in the network through the average value

of their distances from all the other nodes as shown in the equation 4.43. Therefore,

for more peripheral nodes, with large average distance, it is not necessary to have a

very small distance for the gamma coe�cient to be positive and the nodes to be placed

in the same cluster.

Binary case:

Figure 4.7: Binary Multilayer Network Communities obtained by communicability dis-

tance approach.
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Weighted case:

Figure 4.8: Weighted Multilayer Network Communities obtained by communicability

distance approach.

4.3.4 Some remarks

We conclude this paragraph about community detection on multilayer networks with

some observations about our �ndings and some future perspectives. Firstly, when ap-

plied to the same binary network in 4.1 the three di�erent methodologies gave the same

optimal partition: the links between levels strongly tie nodes 1 and 2 on level 1 and

their counterparts on levels 2 and 3; similarly for nodes 3 and 4 and their counterparts.

Actually the choice in the arrangements of links made a node and its counterparts

linked in a cycle, a triangle; moreover nodes 9− 10 and nodes 11− 12 are disconnected

each other. The structural bonds, that is the unweighted triangles, are so strong that

they emerge immediately in any methodology and the bi-partition as optimal partition

is not unexpected. Secondly, the presence of weights on links in network 4.2 changes

things quite radically, producing three di�erent optimal partitions. This fact highlights

how the three methods allow to underline di�erent aspects of the interaction between

nodes in the network. In all cases we detect the presence of a community made up of

the triangle 6− 7− 8 on level 2 and, as a whole, the partitions obtained are consistent

with each other.
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Although having been described in tensorial terms, all the quantitative results were

obtained both by using the tensorial approach and by using the unfolding procedure,

and of course in both procedures results are always equal. The second and third

methodology still haven't been checked on directed networks but since communicability

matrix is de�ned on directed networks as well, we expect a quite easy extension to them

too. In all the methodologies applied here, we solved in exact form the underlying

linear programming problem by using R software. For larger networks, there would be

non trivial computational problems and heuristic algorithms, like the one we adopted in

chapter 3, would be necessary. This fact opens up the possibility of applying and testing

these methods to very dense networks, in particular to the World Trade Network, in

order to compare any new results with those obtained in the previous chapters.

To conclude we would like to emphasize that, in light of the complexity of the

multilayer networks, the proposed methodologies represent valid options to highlight,

according to the di�erent nature of the optimized function, di�erent aspects of the

mesoscale structure of the network, especially when the role of weights is crucial.

4.4 Clustering coe�cients

The last section of this chapter is devoted to the study of the clustering coe�cients in

multilayer networks. Our purpose is twofold. In the �rst instance, we aim at extending

the well-known de�nitions of clustering coe�cients in the literature to multilayer net-

works, in each case providing a version of such a coe�cient that takes into account the

role of a node in the entire network or in the level in which it is located, or by provid-

ing global coe�cients for the level and for the entire network. In the second instance,

we want to show that all these coe�cients can be re-expressed by means of a uni�ed

formula, provided that a certain null reference model is appropriately chosen for the

denominator. Indeed, the language of tensors allows to give them a unique expression

that di�ers only in the choice and nature of the tensors involved. But since, in general,

any clustering coe�cient is related to the number of actual and potential triangles in

the network, the premise is the very de�nition of triangle we will adopt for multilayer

networks.

4.4.1 Triangles in multilayer networks

Before introducing the de�nition of clustering coe�cients, we need to de�ne what a

triangle in a multilayer network is. A triangle in a multilayer network is a closed triplet

(a three-cycle) i, j, k such that the three nodes can belong to up to three di�erent levels
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and they are connected by inter or intra-layers links. By this de�nition, we mean to in-

clude all possible closed triplet, moving in all directions, along inter or intra-layer links.

This de�nition extends the one adopted in [16] for a monoplex unweighted network. In

particular, in a monoplex unweighted network, the number of actual triangles to which

node i belongs is given by

t(i) = Wµ
νW

ν
ρW

ρ
σeµ(i)eσ(i)

where Wµ
ν is the weighted adjacency matrix. Similarly, in a multilayer unweighted

network the number of actual triangles to which node i on level a belongs, taking into

account all possible three-cycles as claimed above, with vertices on the same level or

not, is given by

t(i, a) = Mµα
νβM

νβ
ργM

ργ
σδEµα(i, a)Eσδ(i, a) (4.45)

where Mµα
νβ is the weighted adjacency tensor de�ned in 4.2.

By contracting over all the levels on which node i lies, we get the total number of

three-cycles to which that node belongs

t(i) = Mµα
νβM

νβ
ργM

ργ
σαE

σ
µ(i) (4.46)

Finally, summing up over all nodes, we obtain the total number of triangles in the

multilayer network:

t = Mµα
νβM

νβ
ργM

ργ
µα (4.47)

In a weighted network, the previous de�nitions represent the weighted number of

triangles, where the weight of a single triangle is given by the product of the weights

of the edges that make it up.

4.4.2 General de�nitions

In this section we introduce the general de�nitions for local and global clustering coef-

�cients on multilayer networks. The clustering coe�cient is typically the ratio between

the number or weight of actual triangles to which a node belongs, and the number or

weight of potential triangles to which it could belong. But in a multilayer network we

have at �rst to decide where to take actual or potential triangles around a given node.

That's why, in this framework, we can de�ne three di�erent versions of local clustering

coe�cient depending on which nodes and levels are taken into account and one global

clustering coe�cient for the whole network. Speci�cally, we will denote with
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1. C(i, a) the clustering coe�cient of node i on level a;

2. C(i) the clustering coe�cient of node i over all its levels;

3. C(a) the clustering coe�cient of level a over all its nodes;

4. C the global clustering coe�cient of the network, over all nodes and levels.

We provide here a general expression for each of the four types of clustering coe�-

cients. In the next subsections we will adapt this general de�nitions to the cases of an

undirected weighted network and a directed weighted network respectively.

Let everywhere F νβργ = Uνβργ −δνβργ be the adjacency tensor of the complete multilayer

network. In this network, a node in one level is connected with all other nodes in all

levels except itself. Let us notice that the weights of a complete network will always be

understood to be 1.

Let H be any adjacency-like tensor with components Hµα
νβ . By adjacency-like tensor

we mean a possible and useful modi�cation of the binary or weighted adjacency tensor.

The actual choice of Hµα
νβ will be depending on the speci�c de�nition of an already

existing clustering coe�cient in literature or on the new de�nitions we will provide

in the present work. We aimed �rstly at showing how all existing de�nitions can

be traced back to a uni�ed writing. Let [Hk]
µα
νβ , k = 1, . . . , 5 be �ve not necessary

equal adjacency-like tensors all referring to the same network. Again their choice will

be depending on the particular coe�cient we are going to describe and they could be

binary or weighted, normalised or not, symmetrised or not, accordingly. Now, we de�ne

1. Clustering coe�cient of node i on level a:

C(i, a) =
[H1]

µα
νβ [H2]

νβ
ργ [H3]

ργ
σδEµα(i, a)Eσδ(i, a)

[H4]
µα
νβ [F ]νβργ [H5]

ργ
σδEµα(i, a)Eσδ(i, a)

(4.48)

2. Clustering coe�cient of node i (over the whole network):

C(i) =
[H1]

µα
νβ [H2]

νβ
ργ [H3]

ργ
σαEσµ(i)

[H4]
µα
νβ [F ]νβργ [H5]

ργ
σαEσµ(i)

(4.49)

3. Clustering coe�cient of the level a (over all the nodes on the level):

C(a) =
[H1]

µα
νβ [H2]

νβ
ργ [H3]

ργ
µδE

δ
α(a)

[H4]
µα
νβ [F ]νβργ [H5]

ργ
µδE

δ
α(a)

(4.50)
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4. Global clustering coe�cient of the whole network:

C =
[H1]

µα
νβ [H2]

νβ
ργ [H3]

ργ
µα

[H4]
µα
νβ [F ]νβργ [H5]

ργ
µα

(4.51)

These de�nitions encode in a unique general formula all the coe�cients already

existing in the literature for monoplex network, and extend them to unweighted or

weighted, undirected or directed, multilayer networks, by properly setting the adjacency

tensors [Hk]
µα
νβ . In the next two sections, we will show how to recover them in each

case.

4.4.3 Weighted undirected networks

In a weighted multilayer network, both intra-layer links and inter-layer links are weighted

and all tensors are symmetric.1

Let us denote by

• M the weighted adjacency tensor;

• A the corresponding binary adjacency tensor;

• M̃ = 1
W
M the normalised adjacency tensor, where W = maxµναβM

µα
νβ ;

• M̂ = M̃1/3 the classical entry-wise cubic root of M̃ .

We refer here to formula 4.48 but formulae 4.49, 4.50 and 4.51 can be adapted

in a similar manner. In monoplex weighted undirected networks the most important

clustering coe�cients in the literature are provided by De Domenico, Barrat and Onnela

coe�cients (see [16, 154, 155] respectively). These coe�cients can be recovered in our

context as follows:

1. De Domenico Clustering Coe�cient:

we set Hk = M̃ , for each k = 1, . . . , 5, and

C(i, a) =
M̃µα
νβ M̃

νβ
ργ M̃

ργ
σδEµα(i, a)Eσδ(i, a)

M̃µα
νβ F

νβ
ργ M̃

ργ
σδEµα(i, a)Eσδ(i, a)

(4.52)

1Symmetries of 4th order tensors present a richer set of possibilities than the symmetry of 2nd order

tensors, since a number of symmetries can be de�ned by applying di�erent 'symmetry rules' on the

four coe�cient indices. Indeed, we may have major symmetry, minor symmetry and total symmetry.

We refer here to the major symmetry whose rule is Hµα
νβ = Hνβ

µα
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Formula 4.52 generalizes the clustering coe�cient introduced by De Domenico

et al. in [16].

2. Barrat Clustering Coe�cient:

we set H1 = H4 = M and H2 = H3 = H5 = A, and

C(i, a) =
Mµα
νβ A

νβ
ργA

ργ
σδEµα(i, a)Eσδ(i, a)

Mµα
νβ F

νβ
ργ A

ργ
σδEµα(i, a)Eσδ(i, a)

(4.53)

Formula 4.53 generalizes the clustering coe�cient introduced by Barrat et al.

in [154].

3. Onnela Clustering Coe�cient:

we set H1 = H2 = H3 = M̂ and H4 = H5 = A, and

C(i, a) =
M̂µα
νβ M̂

νβ
ργ M̂

ργ
σδEµα(i, a)Eσδ(i, a)

AµανβF
νβ
ργ A

ργ
σδEµα(i, a)Eσδ(i, a)

(4.54)

Formula 4.54 generalizes the clustering coe�cient introduced by Onnela et al.

in [155].

4.4.4 Weighted directed networks

In a weighted directed multilayer network, both intra-layer links and inter-layer links

are weighted and tensors can be asymmetric. Let us denote by

• M the weighted adjacency tensor;

• A the corresponding binary adjacency tensor;

• M̃out = 1
W
M and M̃in = 1

W
MT where W = maxµναβM

µα
νβ and, by de�nition,

HT is given by
[
Hµα
νβ

]T
= Hνβ

µα;

• Let M̃ = 1
2

(
M̃out + M̃in

)
• Let M̂out =

(
M̃out

)1/3 and M̂in =
(
M̃in

)1/3;
• Let M̂ = 1

2

(
M̂out + M̂in

)
;

• Let similarly Ã = Â = 1
2

(
Aout +Ain

)
.
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4. COMMUNITY DETECTION IN MULTILAYER NETWORKS

We refer again to formula 4.48 but formulae 4.49, 4.50, and 4.51 can be adapted in

a similar manner.

1. De Domenico Clustering coe�cient:

we set Hk = M̃ , for each k = 1, . . . , 5, and

C(i, a) =
M̃µα
νβ M̃

νβ
ργ M̃

ργ
σδEµα(i, a)Eσδ(i, a)

M̃µα
νβ F

νβ
ργ M̃

ργ
σδEµα(i, a)Eσδ(i, a)

(4.55)

Formula 4.55 is the immediate generalisation of formula 4.52 to the directed

case and it is introduced here for the �rst time.

2. Clemente-Grassi Clustering Coe�cient:

we set H1 = H4 = M̃ and H2 = H3 = H5 = Ã, and

C(i, a) =
M̃µα
νβ Ã

νβ
ργ Ã

ργ
σδEµα(i, a)Eσδ(i, a)

M̃µα
νβ F

νβ
ργ Ã

ργ
σδEµα(i, a)Eσδ(i, a)

(4.56)

Formula 4.56 generalizes the clustering coe�cient introduced by Clemente and

Grassi in [101].1

3. Fagiolo Clustering Coe�cient:

we set H1 = H2 = H3 = M̂ and H4 = H5 = Â, and

C(i, a) =
M̂µα
νβ M̂

νβ
ργ M̂

ργ
σδEµα(i, a)Eσδ(i, a)

ÂµανβF
νβ
ργ Â

ργ
σδEµα(i, a)Eσδ(i, a)

(4.57)

Formula 4.57 generalizes the clustering coe�cient introduced by Fagiolo in [99].2

1Remind that, denoting by K(i, a) the total degree of node i on level a, S(i, a) the total strength

of node i on level a, and Kbil(i, a) the total bilateral degree of node i on level a, the local clustering

coe�cient de�ned by Clemente and Grassi is given by:

c(i, a) =
1

2

M̂µα
νβ Â

νβ
ργ Â

ργ
σδEµα(i, a)Eσδ(i, a)

S(i, a)
(
K(i, a)− 1

)
− 2Sbil(i, a)

.
2Remind that, denoting by K(i, a) the total degree of node i on level a and Kbil(i, a) the total

bilateral degree of node i on level a, the local clustering coe�cient de�ned by Fagiolo is given by:

c(i, a) =
M̂µα
νβ M̂

νβ
ργ M̂

ργ
σδEµα(i, a)Eσδ(i, a)

K(i, a)
(
K(i, a)− 1

)
− 2Kbil(i, a)
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4.4 Clustering coe�cients

4.4.5 Summary

We can summarize, in the following table, all the de�nitions of clustering coe�cient

given in the previous paragraphs. We refer to the notations introduced in those para-

graphs and we stress that they are written here in a synthetic and symbolic form in

order to highlight the extremely compact writing made possible by the introduction of

suitably modi�ed adjacency-like tensors.

De�nition

Name
Formula

Undirected network Directed network

De Domenico De Domenico M̃M̃M̃
M̃FM̃

Barrat Clemente-Grassi MAA
MFA

Onnela Fagiolo M̂M̂M̂
AFA

Table 4.1: Symbolic recap table of all the clustering coe�cients described in text.

Clustering coe�cients described in the previous sections via tensorial representation

can also be expressed by using the so called unfolding procedure (named also �atten-

ing procedure or matricization). We leave the details of this parallel and equivalent

description in the appendix D.

4.4.6 Interpretation

The clustering coe�cients de�ned in the previous paragraphs point out di�erent aspects

of the way a node is embedded in the network.

De Domenico clustering coe�cients take into account the weights of all the links

in the actual triangles and multiply them to assign a total weight to each triangle.

The weights of the links are normalized dividing by the maximum one, so that the

total weight of each triangle falls into [0, 1]. Due to the product of the three weights

in each triangle, the weights distribution could be very skewed and its mean could be

close to zero. Moreover, the weight of the link that completes the potential triangles

in the denominator is always 1, i.e. equal to the maximum one. Therefore, since this

clustering coe�cient is the ratio between the sum of the total weights of actual triangles

and the sum of the total weights of potential triangles, it tends to be very close to zero.

Of course, the closer is the weight of the actual triangles to that of potential triangles,
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4. COMMUNITY DETECTION IN MULTILAYER NETWORKS

the higher is the clustering coe�cient. The most signi�cant aspect is the fact that it

emphasizes more the role of the total weight of potential triangles than their number.

Onnela and Fagiolo coe�cients take into account the geometric mean of the weights

of the links in the actual triangles, each weight being normalised like in the De Domenico

coe�cient. In the numerator we �nd the sum of this geometric means used as total

weights of the actual triangles. In the denominator, we �nd the number of potential

triangles so that Onnela and Fagiolo coe�cients actually return the arithmetic mean of

the total weight of the actual triangles, assigning a value equal to zero to non existing

triangles. This fact results again in a compression towards zero of the values of the

resulting clustering coe�cients.

Barrat and Clemente-Grassi coe�cients take into account only the weights of the

two links between the node and its adjacent nodes in an actual triangle. In the numera-

tor, they take the sum of the arithmetic means of these weights and, in the denominator,

the mean strength multiplied by the number of potential triangles. Hence, in this way,

weights do not need to be normalized and the role of the strength of the node is em-

phasized. These coe�cients typically assume higher values than the previous ones and

their proposal seems more consistent when the distribution of weights is very skewed.

On the other hand, when the network is almost complete, this coe�cient is always very

close to 1 independently of the weights on the triangles.

Let us consider the simple undirected monoplex graph in �gure 4.9.

The di�erence between De Domenico, Onnela and Barrat coe�cients depends on

how we allocate the weights and their distribution among the links. If we give all the

links weight 1, the three coe�cients give the same result, that is in a binary network

all of them give the same description of the clustering of nodes.

Figure 4.9: Illustrative monoplex network
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4.4 Clustering coe�cients

Consider now node A. Node A belongs to one actual triangle and to three potential

triangles. The weight of the link A − D does not in�uence the Onnela coe�cient

(except in the case in which it a�ects normalization), while it in�uences De Domenico

and Barrat coe�cients: e.g. assume that the weights of A− B, A− C and B − C are

equal to 0.5 and the weight A−D equal to 1. For the Onnela coe�cient, we have that

the geometric mean is 0.5 and it is divided by 3, the number of potential triangles.

Whereas, in Barrat coe�cient the link A−D contributes to the total strength. In this

case the weight of the actual triangle is 0.5 but it is divided by the average strength 2
3

multiplied by the number of potential triangles, i.e. it is divided by 2.

Vice versa, the weight of the B − C link does not a�ect Barrat coe�cient, while

it a�ects Onnela coe�cients. In fact, the former is determined only by the weights of

the links A − B and A − C. Therefore, if the distribution of the weights on links is

very skewed (e.g. we have one very large weight and all the others are very small),

Onnela and Fagiolo are more a�ected by that skewness. For example, let's put A−D
equal to 1 and the other links equal to 0.01. The Onnela coe�cient of A will be 0.01/3.

Conversely Barrat is less a�ected by that skewness because the weights are also present

in the denominator and in this case we have: 0.01/(0.01 + 0.505 + 0.505) = 0.01/1.02.

If a node is involved in a number of triangles equal to the potential ones, its Barrat

coe�cient will always be 1, whatever the weights, while Onnela coe�cient will depend

on the weights. For instance, consider node C. Whatever the choice of weights, its

Barrat coe�cient will always be 1, whereas its Onnela coe�cient will depend on the

geometric mean of the weights of the triangle A−B, B − C, A− C divided by 1.

To sum up, the advantage-disadvantage of Onnela coe�cient is that in a very dense

graph we get very low clustering coe�cients if the weights are concentrated in a speci�c

way. So this is more a�ected by the weights than by the number of triangles. The

advantage-disadvantage of Barrat coe�cient is that it depends more on the number of

triangles than on their weights. The choice of the coe�cients strongly depends on the

empirical data we are dealing with and what we are interested in when we describe a

given network.

In the next section, we will test these observations on a simple multilayer network

to which we apply formulae in sections 4.4.3 and 4.4.4.

4.4.7 An illustrative example

Let us consider the undirected multilayer network in �gure 4.10, where a set of three

nodes are connected in two di�erent layers (N = 3 and L = 2). The weights of the

links are: M11
21 = 2, M11

31 = 4, M21
31 = 3, M12

22 = 1, M12
32 = 2, M22

32 = 5, M11
12 = 1 and
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4. COMMUNITY DETECTION IN MULTILAYER NETWORKS

M11
32 = 4. Tables 4.2 and 4.3 collect the values of the clustering coe�cients discussed

in section 4.4.3.

Figure 4.10: Illustrative example for undirected multilayer network

As shown in the tables, for the binary version of the network all coe�cients return

the same value, as expected. For the weighted version, Barrat coe�cients are always

greater than others; node 3 in level 2, for instance, has a very small clustering coe�cient

with De Domenico de�nition because the weight of actual triangles is very low with

respect to that of potential triangles; Onnela coe�cient for node 1 in level 2 and node

3 in level 2 are equal because actual triangles are the same and this coe�cient is not

a�ected by the weight of potential triangles.

Local Clustering Coe�cients C(i, a)

Version
Level 1 Level 2

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

Binary 0.333 1.000 1.000 0.667 1.000 0.667

De Domenico 0.152 0.800 0.400 0.720 0.400 0.095

Onnela 0.163 0.577 0.577 0.277 0.431 0.277

Barrat 0.333 1.000 1.000 0.750 1.000 0.591

Table 4.2: Values of di�erent clustering coe�cients for the network shown in �gure 4.10.

Binary refers to the common value of local clustering coe�cients for the binary version of

the network.
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4.4 Clustering coe�cients

Clustering Coe�cients

Version
C(i) C(a) C

Node 1 Node 2 Node 3 Level 1 Level 2 Network

Binary 0.444 1.000 0.750 0.500 0.714 0.600

De Domenico 0.213 0.618 0.168 0.267 0.192 0.233

Onnela 0.201 0.504 0.352 0.266 0.299 0.282

Barrat 0.415 1.000 0.690 0.511 0.694 0.593

Table 4.3: Values of di�erent clustering coe�cients for the network shown in �gure 4.10.

Binary refers to the common value of local clustering coe�cients for the binary version of

the network.

Let us consider now in �gure 4.11 a directed version of the multilayer network

in �gure 4.10. The weights of the oriented links are: M11
21 = 2, M11

31 = M31
11 = 4,

M21
31 = M31

21 = 3, M12
22 = M22

12 = 1, M32
12 = 2, M22

32 = 5, M11
12 = M12

11 = 1 and M11
32 = 4.

Tables 4.4 and 4.5 collect the values of the clustering coe�cients discussed in section

4.4.4.

Also in the direct case, it is con�rmed the fact that Clemente-Grassi coe�cient is

typically greater than the others. Finally, when all the weights are set equal to 1 but

the orientation is maintained, again all coe�cients return the same value.

Figure 4.11: Illustrative example for directed multilayer network
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Local Clustering Coe�cients C(i, a)

Version
Level 1 Level 2

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

Binary 0.231 1.000 0.500 0.250 0.500 0.667

De Domenico 0.133 0.800 0.200 0.300 0.200 0.095

Fagiolo 0.120 0.577 0.288 0.104 0.215 0.277

Clemente-Grassi 0.243 1.000 0.500 0.300 0.500 0.591

Table 4.4: Values of di�erent clustering coe�cients for the network shown in �gure 4.11

Binary here refers to the common value of local clustering coe�cients for a version of

the directed network in which all the weights are set equal to 1 but the orientation is

maintained.

Clustering Coe�cients

Version
C(i) C(a) C

Node 1 Node 2 Node 3 Level 1 Level 2 Network

Binary 0.238 0.750 0.571 0.368 0.384 0.375

De Domenico 0.154 0.527 0.153 0.211 0.153 0.194

Fagiolo 0.114 0.396 0.284 0.203 0.161 0.186

Clemente-Grassi 0.256 0.727 0.540 0.380 0.463 0.407

Table 4.5: Values of di�erent clustering coe�cients for the network shown in �gure 4.11.

Binary here refers to the common value of local clustering coe�cients for a version of

the directed network in which all the weights are set equal to 1 but the orientation is

maintained.

4.5 Conclusions

The previous discussion shows how it is possible to trace the clustering coe�cients

expressed up to now by means of ad hoc formulas to a single writing provided that

the necessary choice of the reference tensors is made. When applied to some simple

networks taken as a model to test their e�ectiveness they work very well and always

reduce to the known coe�cients when the network consists of only one level. Future

perspectives will see above all their application to real multilayer networks and the

identi�cation of criteria to prefer the application of one or the other of the described

coe�cients according to the nature and properties of the network.

144



Appendices

145





Appendix A

The following theorem follows theorem 3 in Chapter 1 and it provides a close expression

for Ri, Ci and Ti for a complete network.

Theorem 5. The risk-dependency Ri for each node in a complete graph is given by

Ri = e(n−1)ζ

and the circulability and transmissibility are given by

Ci(ζ) =
n− 1

n

[
e(n−1)ζ

n− 1
+

1

eζ

]
Ti(ζ) =

n− 1

n

[
e(n−1)ζ − 1

eζ

]

Proof. For a complete graph, ψTj · ~1 = 0, j 6= 1, because of the mutual orthogonality

between ψj , j 6= 1 and the principal eigenvector ψ1 of constant components. That

is, Ri is completely determined by the eigenvector centralities ψ1,i which of course are

equal for every node and equal to ψ1,i = 1√
n
. Since λ1 = n− 1, we obtain:

Ri = eζλ1
(
ψT1 ·~1

)
ψ1,i + 0 = e(n−1)ζ

(
1√
n
· n
)

1√
n

= e(n−1)ζ

Subgraph centrality close expression for a complete graph is provided in [70]:

Ci(1) = SC(i) =
1

n

[
en−1 +

n− 1

e

]
Multiplying each entry in A by ζ and summing up the power series, we get

Ci(ζ) =
n− 1

n

[
e(n−1)ζ

n− 1
+

1

eζ

]

By di�erence, we get Ti(ζ).
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An important remark concerns the ratio Ci
Ri
. Indeed:

lim
ζ→+∞

Ci
Ri

= lim
ζ→+∞

n−1
n

[
e(n−1)ζ

n−1 + 1
eζ

]
e(n−1)ζ

= lim
ζ→+∞

[
1

n
+
n− 1

n

1

enζ

]
=

1

n
. (A.1)

Similarly,

lim
ζ→+∞

Ci
Ti

=
e(n−1)ζ

n−1 + 1
eζ

e(n−1)ζ − 1
eζ

=
1

n− 1
.
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Appendix B

We report here thorough computations and proofs of formulae 2.3, 2.4 and 2.5 in section

2.3.3. The expression 2.3 of the total potential energy U can be handled in the following

way:

U =
1

4
K
∑
i,j

Aij [z
2
i − 2zizj + z2j ]

=
1

4
K

∑
i

z2i
∑
j

Aij − 2
∑
i,j

Aijzizj +
∑
j

z2j
∑
i

Aij


=

1

4
K

∑
i

z2i ki − 2
∑
i,j

Aijzizj +
∑
j

z2j kj

 =
1

2
K

∑
i

z2i ki −
∑
i,j

Aijzizj


=

1

2
K

∑
ij

zi(K-A)ijzj

 =
1

2
K

∑
ij

ziLijzj

 .
We compute now the expression of the partition function Z in formula 2.4. Using the

spectral decomposition of the Laplacian matrix L = MΛMT, where Λ is the diagonal

matrix of the eigenvalues and M is the corresponding matrix of the eigenvectors, we

have the following chain of equalities:

Z =

∫
e−

1
2
βK

∑
ij zi(MΛMT )ijzj

∏
k

dzk =

∫
e−

1
2
βKzT (MΛMT )z

∏
k

dzk

=

∫
e−

1
2
βK(MT

z)TΛ(MT
z)
∏
k

dzk =

∫
e−

1
2
βKxTΛx

∏
k

dxk

=

∫
e−

1
2
βK

∑
k µkx

2
k

∏
k

dxk

where we set x = MT z and dz = |detM|dx = dx.
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As usual in literature, we remove the contribution from µn = 0, providing the modi�ed

partition function we still call Z, (see [1] pag. 117); this yields:

Z =
n−1∏
k=1

∫
e−

1
2
βKµkx

2
kdxk =

n−1∏
k=1

√
2π

βKµk

the last equality being valid because all integrals are Gaussian with µk > 0, k =

1, ..., n− 1.

Finally we compute Gvij(β) (formula 2.5):

Gvij(β) =
1

Z

∫
zizje

−βUdz

=
1

Z

∫
zizje

− 1
2
βK

∑
ij ziLijzj

∏
k

dzk

=
1

Z

∫
(Mx)i(Mx)je

− 1
2
βK

∑
k µkx

2
k

∏
k

dxk

=
1

Z

∫ ( n∑
k=1

ψk(i)xk

)(
n∑
k=1

ψk(j)xk

)
n∏
k=1

e−
1
2
βKµkx

2
kdxk

Notice that, computing the product of the two sums inside the integral above, all

the integrals involving mixed terms are null, as the integrand is an odd function and

the integral is extended to R for each xk. Then, only the squared terms remain inside

the integral, so that:

Gvij(β) =
1

Z

∫ (
ψ1(i)ψ1(j)x

2
1 + · · ·+ ψn(i)ψn(j)x2n

) n∏
k=1

e−
1
2
βKµkx

2
kdxk

=
1

Z
ψ1(i)ψ1(j)

∫
x21e
− 1

2
βKµ1x21dx1 ·

∫
e−

1
2
βKµ2x22dx2 · . . . ·

∫
e−

1
2
βKµnx2ndxn + · · ·+

1

Z
ψn(i)ψn(j)

∫
e−

1
2
βKµ1x21dx1 ·

∫
e−

1
2
βKµ2x22dx2 · . . . ·

∫
x2ne

− 1
2
βKµnx2ndxn

We remove once again the contribution from µn = 0, then computing the integrals

we have:
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Gvij(β) =
1

Z
ψ1(i)ψ1(j)

√
2π√

(βKµ1)3
·
√

2π√
βKµ2

· . . . ·
√

2π√
βKµn−1

+ · · ·+

1

Z
ψn−1(i)ψn−1(j) ·

√
2π√

βKµ1
·
√

2π√
βKµ2

· . . . ·
√

2π√
(βKµn−1)3

=
1

Z

n−1∏
k=1

√
2π

βKµk

[
ψ1(i)ψ1(j)

βKµ1
+ · · ·+ ψn−1(i)ψn−1(j)

βKµn−1

]
=

n−1∑
k=1

ψk(i)ψk(j)

βKµk
.
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The expression of the pseudo-inverse of the Laplacian L+ =
(
L+ 1

nJ
)−1 − 1

nJ allows

an interesting interpretation of the resistance distance ωij in an economic, or �nancial,

networked system.

Suppose that, to each node, a value of a given attribute is assigned through a state

vector v = [v1, v2, . . . , vn]T (such an attribute could be, for instance, the GDP of a

Country or the assets of a �nancial institution), and let Iij = vi−vj be the �ow of such

an attribute from node i to node j. We denote by Ii the total outgoing �ow from the

node i to its adjacent nodes, i.e. Ii =
∑n

j=1 aij(vi − vj).
In matrix form, the total outgoing �ow of the nodes attribute is then

I = (K−A)v = Lv.

The Laplacian matrix transforms nodes attributes vi, i = 1, ..., n into outgoing �ows

from nodes Ii, under the assumption that a �ow Iij along a given edge is equal to the

gradient ∆vij = vi− vj . This assumption is equivalent to choose an e�ective resistance

equal to 1 along all edges. Of course, we may have both outgoing and ingoing currents

according to the sign of ∆vij : positive for outgoing �ows from i and negative for ingoing

�ows into i.

A similar meaning can be given to
(
L+ 1

nJ
)
v. Indeed,(

L+
1

n
J

)
v = Lv+

1

n
Jv = I+ vu,

where v = 1
n

∑n
k=1 vk, that is, the operator L + 1

nJ adds to the �ows a constant term

given by the mean value of all the attributes of the nodes. Then, the matrix
(
L+ 1

nJ
)

transforms nodes attributes v into total outgoing �ows I in the network, up to an

additive constant.

In a similar way, the inverse
(
L+ 1

nJ
)−1

acts on a current vector I and produces a

state vector v, which can be interpreted as the cause of such currents in the network.

Speci�cally
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v = L+I =

[(
L+

1

n
J

)−1
− 1

n
J

]
I =

(
L+

1

n
J

)−1
I− Iu

where, once again, the term 1
nJI = Iu is the average value of the outgoing currents

coming from every node.

Suppose now that in the system there are an outgoing �ow equal to 1 from a node

(node 1, for instance), an ingoing �ow equal to −1 into another node (for instance,

node 2), whereas for all the other nodes the �ow is zero. This is equivalent to a current

vector equal to I = [1,−1, 0, . . . , 0]T = e1 − e2. Loosely speaking, a unit information

is coming out from node 1 and goes entirely into node 2. To produce these �ows, we

have to start from an initial attributes vector on nodes given by

v = L+(e1 − e2) =

[(
L+

1

n
J

)−1
− 1

n
J

]


1

−1

0
...

0


=

(
L+

1

n
J

)−1


1

−1

0
...

0


where the last equality holds because J(e1 − e2) = 0, that is I = 0. Thus, the

resistance distance between nodes 1 and 2 is given by

ω12 = (e1 − e2)T
(
L+

1

n
J

)−1
(e1 − e2) = v1 − v2 = ∆v12.

If ∆v12 is small, a small gradient is enough to transmit such a unit �ow from node

1 to node 2; whereas, if v1 − v2 is big, a high gradient is needed in order to produce

the same unit �ow. More in general, let's imagine that in the node i the value vi is

positive. Then the fact that another attribute vj with j 6= i is positive means that

node i and node j are strongly correlated since it is enough a low attribute di�erence

to subtract from node i a unit �ow. This means that these two nodes communicate

a lot. Whereas, if for another node k with k 6= i, the corresponding component vk
is negative this implies that node i and node k are strongly anti-correlated since, in

order to produce a unit �ow from node i, node k has to be at a negative attribute,

i.e. the attribute di�erence between i and k must be high. This means that the two

nodes don't communicate well. The signs of the components of the vector v indicate

nodes that are positively or negatively correlated with node i according to the fact

these components have the same sign as vi or not. Let us observe that, in general,
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v = L+I = L+(ei − ej) = L+
i − L

+
j with L+

i i-th column of the matrix L+. That is, if

we want to decrease by 1 the attribute of node i and increase by 1 the attribute of node

j, we have to take an initial distribution of attributes on nodes equal to the di�erence

between i-th column of L+ and j-th column of L+, and these columns are also the

values of vibrational communicability Gv between nodes, as de�ned in the text.
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Appendix D

Clustering coe�cients introduced in sections 4.4.3 and 4.4.4 via tensorial representation

can also be expressed by using the so called unfolding procedure (named also �attening

procedure or matricization). It consists in representing the adjacency tensor by a block

matrix, with L2 square blocks each one of order N , called supradjacency matrix

W =


W1 W12 · · · W1L

W21 W2 · · · W2L

...
...

. . .
...

WL1 WL2 · · · WL


where the diagonal blocksWa, a = 1, ..., L represent the weighted adjacency matrix

of each layer and the out o� diagonal blocksWab, a, b = 1, ..., L, represent the weighted

adjacency relations between nodes on layers a and nodes on layer b.

Let us observe that, for instance, the fourth order tensor generated by a tensorial

product like Mµα
νβM

νβ
ργM

ργ
σδ can be represented by the square block matrix W3 of order

NL. It is also straightforward to observe that the number of triangles t(i, a) provided

in formula 4.45 is given by the i-diagonal entry of the block a in A3, that is by [(A3)a]ii.

In particular, the supradjacency matrix F, corresponding to the adjacency tensor Fµανβ
of the complete multilayer network, is the square matrix of order NL having 1 in all

positions but the diagonal entries, where it has 0.

Weighted undirected networks

In order to show how to represent coe�cients in terms of supradjacency matrices,

let us refer to node-level coe�cient in formula 4.48 for the Barrat version of the cluster-

ing coe�cient (formula 4.53). C(i, a) can be expressed in terms of the supradjacency

matrices W and A as

C(i, a) =
[(WA2)a]ii
[(WFA)a]ii

(D.1)
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where [(WA2)a]ii is the ii-entry of the a-diagonal block of the matrix WA2 and

[(WFA)a]ii is the ii-entry of the a-diagonal block of the matrix WFA. Observe that

the numerator of D.1 counts the number of actual triangles node i in the layer a belongs

to (triangles laying completely in layer a or with vertices in other layers) weighted with

the average weight of the two links on i. Notice that [(WFA)a]ii = si,a(ki,a−1), where

ki,a and si,a are degree and strength of i in the layer a.

Formula D.1 is the natural extension of the classical representation, in matrix terms,

of the local clustering coe�cient for monoplex networks.

Following this idea, in the same way we can represent the clustering coe�cient of

the node i in the whole network (formula 4.49) for the Barrat coe�cient:

C(i) =

∑L
a=1[(WA2)a]ii∑L
a=1[(WFA)a]ii

(D.2)

In this case it is easy to prove that
∑L

a=1[(WFA)a]ii is equal to si(ki − 1), where

ki and si are degree and strength of i in the whole multilayer network.

The clustering coe�cient of level a over all its nodes (formula 4.50) for the Barrat

coe�cient is:

C(a) =

∑N
i=1[(WA2)a]ii∑N
i=1[(WFA)a]ii

(D.3)

In this case,
∑N

i=1[(WFA)a]ii = sa(ka − 1), where ka and sa are the total degree

and strength on the level a.

Finally, the global clustering coe�cient in formula 4.51 again for the Barrat version

of the coe�cient is given by:

C =

∑L
a=1

∑N
i=1[(WA2)a]ii∑L

a=1

∑N
i=1[(WFA)a]ii

=
tr(WA2)

tr(WFA)
(D.4)

Similarly, we express formula 4.52 as:

C(i, a) =
[(W̃3)a]ii

[(W̃FW̃)a]ii
(D.5)

where W̃ = 1
W

W and formula 4.54 as

C(i, a) =
[(Ŵ3)a]ii

[(AFA)a]ii
(D.6)
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where Ŵ = W̃1/3.

Weighted directed networks

Consistently with notations in section 4.4.4, let us de�ne: W̃out = 1
W

W, W̃in =
1
W

WT and W̃ = 1
2

(
Wout + Win

)
. Similarly, Ã = 1

2

(
Aout + Ain

)
.

The coe�cient of formula 4.56 may be expressed as:

C(i, a) =
[ ˜(WÃ2)a]ii

[(W̃FÃ)a]ii
(D.7)

The numerator counts all the actual oriented triangles node i belongs to, on the

layer a or with neighbours in other layers. Triangles are weighted with the average

weight of the links connecting node i to its adjacent nodes. Notice that

[(W̃FÃ)a]ii = stoti,a (ktoti,a − 1)− 2s↔i,a

where ktoti,a and stoti,a are total degree and total strength of i in the layer a, whereas

s↔i,a is the strength of bilateral links on node i in layer a. The denominator represents

all possible (appropriately weighted) directed triangles that node i could form.

Similarly, the coe�cient of formulas (4.55) and 4.57 can be rewritten as:

C(i, a) =
[(W̃

3
)a]ii

[(W̃FW̃)a]ii
(D.8)

C(i, a) =
[(Ŵ3)a]ii

[(AFA)a]ii
(D.9)
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