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Simple Summary: Detecting and monitoring exotic and invasive beetles is a complex activity, and
multiple species still manage to evade controls. Citizen science can be an important adjunct in alien
species monitoring programs, but to have a greater chance of success, it must employ traps and
attractants that are easy to gather and use. Bottle traps baited with food products are successfully
used during long term faunistic surveys, and the same methodology can be adapted to alien species
detection and monitoring. In this article, we tested the use of bottles baited with apple cider vinegar,
red wine, and 80% ethyl alcohol in capturing exotic and invasive beetles in the surroundings of
Malpensa Airport (Italy). The traps proved effective, and in the traps with vinegar as an attractant,
they captured four out of five invasive Nitidulidae, as well as the only invasive Scarabaeidae present
in the area. Popillia japonica’s response to apple cider vinegar is documented for the first time and
suggests the use of this attractant in monitoring surveys for this species, especially if supported by
citizen science programs. The substantial reduction in the activity time of the traps seems to have
considerably reduced collateral catches of native fauna.

Abstract: Detecting and monitoring exotic and invasive Coleoptera is a complex activity to imple-
ment, and citizen science projects can provide significant contributions to such plans. Bottle traps are
successfully used in wildlife surveys and can also be adapted for monitoring alien species; however,
a sustainable, large scale trapping plan must take into account the collateral catches of native species
and thus minimize its impact on local fauna. In the present paper, we tested the use of bottles baited
with standard food products that can be purchased in every supermarket and immediately used
(apple cider vinegar, red wine, and 80% ethyl alcohol) in capturing exotic and invasive beetles in
the area surrounding Malpensa Airport (Italy). In particular, we reduced the exposition type of the
traps in each sampling round to three days in order to minimize native species collecting. We found
a significant effect of the environmental covariates (trap placement, temperature, humidity, and
forest type) in affecting the efficiency in catching target beetles. Nearly all invasive Nitidulidae and
Scarabaeidae known to be present in the area were captured in the traps, with apple cider vinegar
usually being the most effective attractant, especially for the invasive Popillia japonica.

Keywords: alien species; biodiversity; Coleoptera; Nitidulidae; Popillia; vinegar

1. Introduction

Among European countries, Italy has the most exotic taxa (species that are not native
to a specific ecosystem), several of which are invasive (organisms that cause ecological or
economic harm in an ecosystem where they are not native) [1]; among these, Coleoptera
alone account for more than 300 intercepted or established species [2–13]. Insect introduc-
tions through human-mediated dispersal is ever increasing because of globalization, and
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represents a serious threat to biodiversity, local economies and animal and plant health [14].
The ever-increasing number and types of goods transported and the speed at which com-
mercial traffic occurs, associated with the opening of new trade routes, are increasingly
resulting in faunal exchanges among and within biogeographic realms [15]. Italy’s pre-
disposition to beetle (Coleoptera) introductions is likely associated with its geographic
position in the center of the Mediterranean, being at the crossroads of much commerce to
and from Europe [1,16].

Attention and awareness towards alien species have increased in recent decades, even
though strategies to reduce future invasions have not yet been implemented in an effective
and widespread manner on a global scale [17].

If we consider the number of exotic species recorded in the last few years, and espe-
cially those collected fortuitously, it is clear that current monitoring strategies are ineffective
at detecting several beetle families. It is for this reason that great effort has been invested
in improving monitoring strategies, survey methods, and traps [18,19], with a focus on
the main entry points such as seaports and airports (i.e., [20,21]). However, much of these
recent developments have targeted primarily families of forest insects, mostly wood borers,
such as Curculionidae: Scolytinae and Platypodinae, Cerambycidae, and Buprestidae
(e.g., [22–24]). Furthermore, biosecurity surveillance suffers from two major issues, namely:
(1) effective monitoring strategies, especially those that target multiple taxa, which are
generally expensive because of the cost of traps and pheromones, and (2) difficulty in
applying targeted monitoring strategies simultaneously and on a national scale.

For this reason, the scientific community is increasingly availing itself of the support of
citizen science as a means of strengthening its surveillance capacity (e.g., [25,26]). However,
for a monitoring plan supported by citizen science to be effective, it is necessary that it is
easily reproducible, low-cost, and does not involve a heavy workload for volunteers.

Bottle traps is a methodology commonly and successfully used in faunistic sur-
veys [27,28]. Bottle traps are inexpensive, easy to make and transport, and have been
recently suggested and applied in bark and ambrosia beetle (Scolytinae and Platypodinae)
monitoring through citizen participation [29–31].

Based on these concepts, we decided to conduct a trial intended to evaluate if bottle
traps could be used to monitor certain exotic beetles that are not commonly targeted with
standard traps (e.g., Lindgren funnels traps and cross-vane panel traps) and pheromones,
especially using food products as lures that can be purchased directly at the supermarket.
In the scientific literature, there are many attractive mixtures made from fermented goods
(such as honey, bananas, and beer; e.g., [32,33]). However, as we could not expect all
volunteers to produce such attractive mixtures, we opted for three affordable products that
can be used directly as they are when purchased, namely: food-grade ethyl alcohol (which
will be referred to as alcohol), red wine, and apple cider vinegar.

However, as the objective of this trial was to target exotic species, the exposure times
of our traps were reduced to only three days each during each survey round. This decision
started from the assumption that invasive species are characterized by biological and
ecological traits that make them more prone to rapidly respond to generic olfactory stimuli
(e.g., food/reproduction sources) compared with native species. Given the collateral catch
that these monitoring activities can have on native species, we expected that reducing the
traps’ exposure time would maintain the capture of exotics, while minimizing the impact
on native species.

In the present study, we evaluated (1) the effectiveness of bottle traps baited with
non-fermented goods and short exposure times in catching exotic beetles, (2) the beetle
families and species collected in terms of diversity and abundance, and (3) how the different
baits varied in attractiveness to target beetle species. Furthermore, we tried to assess the
effect of temperature, humidity, environmental surroundings, and trap placement on
trapping efficiency.
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2. Materials and Methods
2.1. Study Area

The study area is centered on the Malpensa International Airport (MXP), the largest
international airport in northern Italy, located in the Ferno Municipality (Varese Province),
within the Lombardy Regional Park of Ticino Valley, about 50 km northwest of Milan.
The airport grounds are largely surrounded by deciduous and mixed (broad-leaved and
coniferous) forests and urban areas, and, to a lesser extent, agricultural areas and shrubland
(Figure 1). Among the trees, the dominant taxa are oaks (Quercus spp.), maples (Acer spp.),
and Scots pine (Pinus sylvestris). Most of the woodlands are managed as coppice, and the
presence of exotic trees is not negligible, with the Locust tree (Robinia pseudoacacia) among
the most widespread species.
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Figure 1. Study area. Map illustrating land use classes and the sampling localities in the surrounding
of the Malpensa International Airport, MXP (Ferno and Somma Lombardo municipalities, Varese
Province, Italy); numbers indicate the 13 sampling sites where the trial was performed.

2.2. Experimental Design, Traps, and Baits

The traps were placed in 13 sampling sites identified to account for habitat covariates,
i.e., the forest type (broadleaved vs. mixed) and forest edge vs. forest interior condition
(interior: condition with forest fractional cover >90% evaluated in a buffer of 250 m around
trapping site), based on DUSAF digital cartography [34] (Table 1). In each sampling site,
three traps were used, each baited with either 80% food alcohol, commercial red wine (11.5%
alcohol), and apple cider vinegar (4% acetic acid), for a total of 39 traps. No preservatives
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were added. In each sampling site, the three traps were placed along the perimeter of an
ideal circle with about a 15 m radius (thus having a distance of at least 30 m among traps) to
avoid their mutual influence on capture events; all traps were placed 2.5 m from the ground.
Each trap was built using a 500 mL volume PET (polyethylene terephthalate). A 5 × 8.5 cm
window was created on half of each bottle by removing a sizeable lateral portion, leaving
the rest of the bottle intact (to guarantee the structural integrity and support of the modest
weight of the bait). Each set of baited traps was left in action for 72 h, and then removed and
emptied each week between 31 July and 29 September 2020, for a total of seven trapping
periods. For each trapping session, we recorded the absolute minimum and maximum
temperature during the three days of activity of the traps, the three-days mean of the
mean daily temperatures, and the three-days mean of the humidity degree. As the three
temperature values were correlated within each trapping session, we used the absolute
maximum temperature (Table 2). The meteorological data were obtained from the airport
meteorological station.

Table 1. Location of the sampling sites in which the group of three traps was triggered with different baits. The forest covers
in a buffer of 250 m around the sampling site used to define the forest conditions (interior condition: forest cover >90%) and
forest type.

Site Number Nord (WGS84/UTM
Zone 32N)

East (WGS84/UTM
Zone 32N)

Forest Cover
(250-m Buffer) Forest Condition Forest Type

1 5,053,409 476,170 98% interior broadleaved
2 5,055,451 476,779 100% interior mixed
3 5,057,292 477,621 58% edge broadleaved
4 5,056,847 478,549 52% edge mixed
5 5,055,783 478,335 87% edge mixed
6 5,052,549 480,498 79% edge broadleaved
7 5,052,204 480,113 88% edge broadleaved
8 5,053,714 480,070 76% edge mixed
9 5,054,249 480,724 99% interior mixed

10 5,050,105 478,906 82% edge broadleaved
11 5,049,577 478,796 100% interior broadleaved
12 5,056,516 479,151 100% interior mixed
13 5,054,071 479,998 99% interior mixed

Table 2. Meteorological data obtained from the airport station for each of the three-days trapping sessions.

Session
Number Placement Date Control Date Abs. Min. Temp. (◦C)

3-Day Session
Abs. Max. Temp. (◦C)

3-Day Session
Mean Temp. (◦C)

3-Day Session
Mean Humidity3-Days

Session

1 31 July 2020 3 August 2020 18 36 26.3 64.0
2 7 August 2020 10 August 2020 17 34 26.5 58.0
3 14 August 2020 17 August 2020 18 32 24.5 68.0
4 28 August 2020 31 August 2020 13 27 21.0 77.0
5 4 September 2020 7 September 2020 14 29 20.8 73.0
6 11 September 2020 14 September 2020 17 31 23.3 70.5
7 25 September 2020 28 September 2020 4 21 13.0 64.3

All of the non-Coleoptera (i.e., Diptera, Lepidoptera, Hymenoptera, and Hemiptera)
collected during the survey were not considered in the analyses and were discarded.

2.3. Analyses

We evaluated the overall effectiveness of each type of bait (red wine, vinegar, or alco-
hol), considering the overall number of individuals of exotic species pooled together caught
by each kind of bait in each site and session, accounting for both habitat and meteorological
covariates. The same model was applied to the overall number of individuals for the
native species subset. The analysis was performed using a negative binomial regression
for modelling count data using MASS package [35] in R version 4.0.3 [36]. The assessment
of the data distribution for the dependent variable was performed using the fitdistrplus



Insects 2021, 12, 462 5 of 15

package [37]. Plots of the conditional effects (habitat variables) and main effect (meteorolog-
ical variables) of covariates were made using the sjPlot package [38], whose functionality
depends on the ggplot2 package [39]. The same analysis was then performed to evaluate the
specific overall effectiveness of each bait, considering the number of individuals pertaining
to the most commonly trapped species.

3. Results

During the two-months survey period (i.e., seven three-day sessions), in the 13 sam-
pling sites, we caught a total of 531 individuals (437 pertaining to exotic and 94 to native
species). The 14 species of beetles collected belonged to Scolytinae, Nitidulidae, and
Scarabaeidae (Figure 2 and Table 3). Among the species collected, five are considered
invasive in Europe (Carpophilus lugubris, Epuraea luteola, Epuraea ocularis, Glischrochilus
quadrisignatus, and Popilia japonica; Figure 3).
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Table 3. Coleoptera species collected during the survey. (V—Vinegar; W—wine; E—Alcohol.)

Species Family/Subfamily Origin Status Attractant N◦ of
Individuals

Carpophilus lugubris Murray 1864 Nitidulidae Nearctic Invasive V(3); W(2) 5
Cryptarcha strigata (Fabricius, 1787) Nitidulidae W-Palaearctic Native W(1) 1

Epuraea guttata (Olivier, 1811) Nitidulidae W-Palaearctic Native V(6); W(1) 7
Epuraea luteola (Erichson, 1843) Nitidulidae E-Palaearctic Invasive V(5) 5

Epuraea ocularis (Fairmaire, 1849) Nitidulidae E-Palaearctic Invasive V(176); W(28); E(1) 205
Epuraea unicolor (Olivier, 1790) Nitidulidae Palaearctic Native V(5) 5

Glischrochilus quadrisignatus (Say, 1835) Nitidulidae Nearctic Invasive V(3); W(1) 4
Soronia grisea (Linnaeus, 1758) Nitidulidae Palaearctic Native V(2); W(9) 11

Anisandrus dispar Fabricius, 1792 Scolytinae Palaearctic Native E(4) 4
Xyleborinus saxesenii (Ratzeburg, 1837) Scolytinae Palaearctic Native W(1) E(581) 59

Cetonia aurata (Linnaeus, 1758) Scarabaeidae W-Palaearctic Native W(1) 1
Popillia japonica (Newman, 1838) Scarabaeidae E-Palaearctic Invasive V(161); W(51); E(6) 218
Potosia cuprea (Fabricius, 1775) Scarabaeidae W-Palaearctic Native W(1) 1
Protaetia speciosa (Adams, 1817) Scarabaeidae W-Palaearctic Native W(1) 5
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The most common species caught were P. japonica (Scarabaeidae: Rutelinae), with
212 individuals (40% of the overall individual caught and 49% of the individuals of exotic
species), and E. ocularis (Nitidulidae), with 159 individuals (30% of the overall individual
caught and 36% of the exotic species). The third most common species was the native X.
saxesenii (Scolytinae), with 58 individuals (11% of the overall individual caught and 62% of
native species).

The negative binomial regression models used to assess each bait’s effectiveness in
attracting the overall number of exotic and native species explained 40% and 13% of the
sample deviance, respectively. For the exotic species subset, the model identified the type of
bait, the absolute maximum temperature, and the mean humidity as statistically significant
for affecting the overall number of individuals caught in each of the three traps per site
and session (Table 4). The conditional effect of each covariate is depicted in Figure 3.
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Table 4. Exotic species. Effectiveness of baits in attracting individuals of all species pooled together,
accounting for the effects of habitat and meteorological covariates considered in the negative binomial
regression model.

Covariates Estimate SE of Estimate z-Value p

(intercept) −1.657 2.998 −0.553 0.581
Bait: vinegar 4.311 0.584 7.379 <0.001

Bait: wine 2.705 0.594 4.552 <0.001
Forest type: mixed forests 0.201 0.367 0.549 0.583

Forest cover condition: interior −0.579 0.371 −1.559 0.119
Absolute maximum temperature 0.127 0.044 2.901 0.004

Mean humidity −0.075 0.033 −2.296 0.022

The same model applied to the native species subset identified the type of bait and the
mean humidity as statistically significant (Table 5). The conditional effect of each covariate
is depicted in Figure 4.

Table 5. Native species. Effectiveness of baits in attracting individuals of all species pooled together,
accounting for the effects of habitat and meteorological covariates considered in the negative binomial
regression model.

Covariates Estimate SE of Estimate z-Value p

(intercept) −6.772 3.344 −2.025 0.042
Bait: vinegar −1. 187 0.479 −2.479 0.013

Bait: wine −0.986 0.467 −2.110 0.035
Forest type: mixed forests 0.345 0.403 0.857 0.391

Forest cover condition: interior −0.411 0.406 −1.012 0.312
Absolute maximum temperature 0.039 0.050 0.786 0.431

Mean humidity 0.073 0.036 2.038 0.042

For the three most common trapped species (two exotic and one native), the models
for the P. japonica, E. oculari, and X. saxesenii explained 72%, 40%, and 32% of the sample
deviance, respectively. We must highlight that all of the individuals, but one of X. saxesenii,
were caught in alcohol. Thus, to find the covariate that affects the number of individuals
caught, we used only those collected by the traps triggered by alcohol.

For P. japonica, the type of bait’s effectiveness differed significantly, and both the
habitat and meteorological covariates significantly affected the number of individuals
caught. Specifically, both vinegar and wine positively enhanced the trap efficiency in
collecting P. japonica, with vinegar being more effective than wine. Furthermore, the
number of collected specimens increased with increasing temperatures and captures, and
were substantially higher when traps were placed at the edges of broadleaved forests
(Table 6). The conditional effect of each covariate is depicted in Figure 5.

Table 6. Popillia japonica. Effectiveness of baits in attracting individuals of the species, account-
ing for the effects of habitat and meteorological covariates considered in the negative binomial
regression model.

Covariates Estimate SE of Estimate z-Value p

(intercept) −9.751 9.453 −1.032 0.302
Bait: vinegar 3.136 0.922 3.401 0.001

Bait: wine 2.047 0.940 2.178 0.029
Forest type: mixed forests −1.827 0.680 −2.685 0.007

Forest cover condition: interior −2.574 0.795 −3.237 0.001
Absolute maximum temperature 0.519 0.172 3.012 0.003

Mean humidity −0.147 0.078 −1.893 0.058
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For E. ocularis, the type of bait also significantly influenced the effectiveness of trapping,
but only the habitat covariates showed a substantial effect on the number of individuals
caught, and particularly the forest type. For this species, vinegar and wine positively
enhanced the trap efficiency, with vinegar also being more efficient than wine in this case;
in addition, mixed forest enhanced the traps’ efficiency (Table 7). The conditional effect of
each covariate is depicted in Figure 6.
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Figure 5. Popillia japonica: effect of the covariates of the negative binomial regression model affecting the number of
individuals caught by each of the three traps per site and per session; (a) conditional effect of habitat covariates (forest type:
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Table 7. Epuraea ocularis. Effectiveness of baits in attracting individuals of the species, account-
ing for the effects of habitat and meteorological covariates considered in the negative binomial
regression model.

Covariates Estimate SE of Estimate z-Value p

(intercept) −8.111 3.705 −2.189 0.029
Bait: vinegar 5.382 1.115 4.829 <0.001

Bait: wine 3.410 1.129 3.019 0.003
Forest type: mixed forests 1.083 0.466 2.327 0.020

Forest cover condition: interior −0.392 0.461 −0.851 0.395
Absolute maximum temperature −0.016 0.052 −0.311 0.756

Mean humidity 0.051 0.040 1.292 0.196
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For X. saxesenii, only the bait type was significant in determining the number of
individuals caught in the traps Table 8. The conditional effect of covariates is depicted in
Figure 7.
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Table 8. Xyleborinus saxesenii. Effectiveness of alcohol in attracting individuals of the species,
accounting for the effects of habitat and meteorological covariates considered in the negative binomial
regression model.

Covariates Estimate SE of Estimate z-Value p

(intercept) −64.815 45.690 −1.419 0.156
Forest type: mixed forests 1.544 0.860 1.796 0.073

Forest cover condition: interior −0.972 0.861 −1.129 0.259
Absolute maximum temperature 0.711 0.596 1.194 0.233

Mean humidity 0.597 0.390 1.530 0.126
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4. Discussion

The survey allowed for the collection of thirteen different species among Scolytinae,
Nitidulidae, and Scarabaeidae. It is striking that no other beetle family responded positively
to the attractants, suggesting that neither the type of traps nor the attractants were adequate;
it is also plausible that the sampling season was too late compared with most of the species’
phenology. If we exclude Scolytinae, represented by two native species which were almost
exclusively collected with alcohol baited traps, both Nitidulidae and Scarabaeidae were
included as invasive species. Four out of the eight species of Nitidulidae belong to invasive
taxa, representing the 90% of the total number of the nitidulid specimens. Carpophilus
lugubris is one of the ten Carpophilus species indicated as invasive in Italy [40]; however,
it most probably is the only species present in the area, given its recent introduction and
expansion throughout Veneto and Friuli Venezia Giulia [41,42]. Epuraea luteola and Epuraea
guttata are two of the three invasive Epuraea occurring in Italy, but the only occur in
Lombardy, as the third species is limited to southern Italy [40]. Glischrochilus quadrisignatus
is the only invasive species of the genus in Italy [40]. Stelidota geminata (Say, 1825), the only
other invasive nitidulid present in Lombardy [43], was not recorded in our survey. Popillia
japonica is the only invasive Scarabaeidae in Italy [16]; this species alone constituted about
97% of the scarabaeoid specimens.

The fact that this simple trial was able to detect almost, if not all, of the exotic Nitidul-
idae and Scarabaeidae present in the area suggests, at least for these two families, how
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home-made traps baited with food products, using apple cider vinegar in particular, may
be effective at detecting exotic and invasive beetles, and could be an important addition to
monitoring plans around entry points. Long standing food-baited traps are very effective in
catching beetles and, in several cases, they have to be modified in order not to kill rare and
threatened species (e.g., [44,45]). The proportion of exotic compared with native species
collected in our trial suggests that minimizing the activity period of the traps does not
substantially affect the traps’ capacity in catching non-native species. Trapping efficiency
against exotic species seems to be substantially affected by trap placement (margin vs.
interior of forest), absolute maximum temperature, and mean humidity; however, this
result may be substantially biased by the two overrepresented E. ocularis and P. japonica.
A similar effect may be caused by X. saxesenii on the native species pool. As expected,
Scolytinae was the only group responding systematically to alcohol traps, and the fact that
the native X. saxesenii constituted almost all of the individuals collected is perfectly in line
with the tendencies of this species to respond to a wide range of ethanol concentrations [46].
Furthermore, the efficiency when catching X. saxesenii is not affected by the environmental
covariates, and is most probably attributable to the species dispersal capabilities, long
phenology, and polyphagy.

Nitidulidae is a group of primary interest, given the number of exotic and invasive
species introduced in Europe [40]. The effectiveness of vinegar traps in rapidly detecting
exotic sap beetles may serve as an important tool in monitoring new introductions or the
spread of newly acclimatized species. Fermented baits are commonly used to investigate
Nitidulidae [47,48]; the capability of E. luteola, E. ocularis, C. lugubris, and G. quadrisignatus
to rapidly respond to wine and vinegar seems promising in using bottle traps for their
capture; furthermore, given the similar ecological niche that these have with most of the
others invasive species, we may expect a similar attraction efficiency by both attractants.
In addition to direct damage to crops, Nitidulidae can be vectors of important pathogenic
fungi such as Ophiostomatales [49] and Microascales [50]; consequently, their early detec-
tion may have a relevant role as phytosanitary security. The substantial effect given by the
forest type in the capture efficiency of E. ocularis is probably attributable to its generalist
habits and polyphagy, with adults able to feed on rotten fruit, flowers, sapping trees, and
larvae developing in the fruit body of tree-fungi or decaying organic matter [40,51].

Popillia japonica is a highly polyphagous invasive pest outside its native range, so far
limited to Lombardy and Piedmont in Italy [52]. Because of the substantial damage it is
able to cause, as well as its excellent dispersal capacity, this species is currently controlled
through mass trapping, with traps commonly baited with chemical attractants such as
food-type volatile and sex pheromones [53–55]. The capture of this species with both wine
and vinegar traps was unexpected and constituted an absolute novelty, as it is the first
response of P. japonica towards these two attractants, vinegar in particular. Scarabaeidae
Rutelinae are rarely collected with fruit/fermented and baited traps in the Palearctic [56,57],
while they constitute a substantial fraction of the tropics’ trapped biomass [58]. However,
a particular sensitivity of P. japonica towards volatile compounds released during fruit
ripening or rotting can be deduced from Hammons et al. [59,60], where the species have
been repeatedly documented as feeding on grapes in the USA. Concerning environmental
covariates, the trapping efficiency against P. japonica is substantially affected by forest type,
forest cover condition, and absolute maximum temperature. Forest composition and trap
placement (forest edge/interior) have a significant effect, as P. japonica prefers ecotones,
areas hosting the greater variety of feeding plants, and where the species move by flying.
Furthermore, ecotonal areas may present grass patches suitable for egg deposition and
larval development [61]. The positive effect of high temperatures in increasing trapping
efficiency is defined by a general increase of P. japonica activity combined with a greater
attractant volatility [62].

Vinegar efficiency against Nitidulidae and P. japonica in heterogeneous habitats sug-
gests a good effectiveness of the traps in agricultural and peri-urban environments, as
well as other anthropized entry points such as airports and ports. Furthermore, adopting
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short trapping sections repeated over time seems to not affect native beetles through an
unnecessary over-trapping.

5. Conclusions

The traps used in this study can be produced in a short time, using recycled or easily
available materials. Furthermore, as the traps are light and compact, they can be comfort-
ably managed by one person, even in large numbers. The attractants are readily available
at a low cost, making this survey technique very useful in citizen science projects for
large-scale monitoring projects. Apple cider vinegar has proven to be the most affordable
and still the most efficient bait, capable of attracting exotic and invasive beetles in almost all
conditions; wine has intermediate attractivity and may be used as a coadjutant of vinegar;
conversely, in our context, high-grade alcohol targets exclusively native Scolytinae. As
what has been presented here is only a first trial, it will certainly be interesting to replicate
the monitoring using different types of vinegar or wine and to evaluate the influence of
other potential co-factors, including seasonality. It would be interesting to identify and test
new types of inexpensive attractants for other families of beetles other than those used in
this study.

As citizen science data are not usually collected following a sampling design typical
of standardized monitoring programs, we stress that the collection of environmental
variables, beside the collection of the specimens, is crucial for a correct interpretation of
the records. Specifically, the position of the traps is essential information that must be
provided by citizens involved in monitoring activities, along with the baits used and the
time of exposure of the traps. In particular, if these monitoring projects are directed against
invasive species, citizen scientists should keep in mind that the time exposure of baited
traps should be minimized in order to reduce the impact on native fauna.

Given the strong attractivity of vinegar against P. japonica, it is plausible that the
massive trapping of this species through a supervised citizen science action may become
a substantial contribution and integration to the control strategies developed by local
phytosanitary institutions, especially in cultivated and suburban areas.
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