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Simple Summary: Alien bee species could have detrimental effects; in particular, they may compete
with native bee species for floral resources or nesting sites. Here, we first studied the interaction in
artificial trap nests, installed in a semi-urban area of north-western Italy, between the first exotic bee
in Europe, Megachile sculpturalis, and native wild bees. Second, we evaluated the performance of the
exotic bee by means of the sex ratio, and we screened for the presence of natural enemies affecting its
brood. Our results showed that M. sculpturalis brood cells cohabited tunnels with the native Osmia
cornuta. Given the exotic cells’ position within tunnels and their resin-based material, exotic cells may
act as a block for native bee emergence. Moreover, our study revealed a strong male-biased sex ratio,
suggesting a suboptimal reproductive trend for the M. sculpturalis local population. Additionally, we
documented for the first time the presence of three natural enemies on the brood of the exotic bee
that are common on native co-nesting bees. These novel findings broaden the knowledge on solitary
bee invasions.

Abstract: Megachile sculpturalis (Smith, 1853) is the first exotic bee species in Europe. Its remarkably
fast expansion across this continent is leading to a growing concern on the extent of negative impacts
to the native fauna. To evaluate the interactions of exotic bees with local wild bees, we set up trap
nests for above-ground nesting bees on a semi-urban area of north-western Italy. We aimed to
investigate the interaction in artificial traps between the exotic and native wild bees and to assess
offspring traits accounting for exotic bee fitness: progeny sex ratio and incidence of natural enemies.
We found that the tunnels occupied by exotic bees were already cohabited by O. cornuta, and thus the
cells of later nesting alien bees may block the native bee emergence for the next year. The progeny
sex ratio of M. sculpturalis was strongly unbalanced toward males, indicating a temporary adverse
population trend in the local invaded area. In addition, we documented the presence of three native
natural enemies affecting the brood of the exotic bee. Our results bring out new insights on how the
M. sculpturalis indirectly competes with native species and on its performance in new locations.

Keywords: exotic bee; wild bees; Megachile sculpturalis; bee invasion; nesting behavior; trap nest;
competition; sex ratio; natural enemies

1. Introduction

Introduced non-native bees (Hymenoptera apoidea) can enhance pollination service,
but they can also have detrimental effects on local ecosystems [1]. Competition for floral
resources or nesting sites, diseases transmission and changes in the pollination network are
the mechanisms that have been deemed responsible for impacts directly on native bees [2]
and indirectly on plant communities [3].

Megachile sculpturalis Smith, 1853, native from eastern Asia (China, Korea, Japan), is
the first unintentionally introduced bee species in Europe, and it showed a remarkably fast
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spread across this continent. Since 2008, it expanded from southern France [4] towards
eastern Europe [5–10], reaching the Crimea peninsula in 2018 [11] and westwards eastern
Spain [12,13]. Moreover, according to an evaluation of suitable climatic areas, M. sculpturalis
is predicted to keep on spreading in most of Europe [14]. Similarly, this species had rapidly
colonized the entire eastern half of the USA since its arrival in 1994 [15,16].

The fast spread of the M. sculpturalis has been linked to some characteristics: the likely
wide flight range according to its large body size (18–39 mm in length) [17,18], the passive
human-mediated dispersion via traded goods [19], and the wide diet spectrum that includes
different flowering plants, such as nectar and pollen sources (polylectic diet) [5,8,20].
In parallel to these aspects, M. sculpturalis is well-adapted to colonize anthropogenic
environments, since it has a strong preference for ornamental plant pollen [9,12], and it
has an opportunistic nesting behavior, as it uses a diversity of pre-existing above-ground
cavities regardless of their natural or human origin [11]. Despite the great expansion of
the M. sculpturalis, the species has also displayed a male-biased sex ratio [21]. This trait is
usually associated with a poor reproductive potential [22], and it could be a response to
disadvantageous conditions due to eroded genetic diversity, resources shortage, inadequate
climatic conditions or parasite pressure [23–27]. Therefore, whether the unbalanced sex
ratio is a low fitness response or a generalized trait is still to be unveiled.

M. sculpturalis is a competitor for nesting resources against some native Apoidea
species. In fact, the exotic bee has been found to evict pre-existing nesting sites of Os-
mia and Xylocopa [10,17,28,29]. Such an antagonistic nesting trait is likely to affect other
above-ground nesting species that need a similar nesting substrate (holes in logs, stems,
reeds, wooden trap nests) and similar cavity diameter (8–12 mm) [5,21]. A previous study
has pointed out that the eviction mechanism may be among the reasons for the nega-
tive correlation seen between native bees and the exotic bee in an urban area in south
France [21]. Nevertheless, giant resin bee nesting biology has not yet been widely studied,
and besides the eviction mechanism, other direct or indirect interactions may be involved
in the competition for nesting resources. The competition mechanisms with native bees are
particularly important aspects for assessing the hypothesis that M. sculpturalis could harm
native wild bees in Europe, and novel information on its behavior are essential to have a
better understanding of its potential negative impacts.

The host-parasite system is among the factors facilitating the success of an inva-
sion [30]. Parasites might mediate the invasion of an introduced species by modifying
native host-parasites relationships [31]. To our knowledge, parasites and natural enemies
of M. sculpturalis in either its home range or new locations have never been studied.

This study provides new insights on traits linked to M. sculpturalis fitness in the new
colonized area in Italy where it has been present since 2009 [5], and it adds novel evidence
of likely negative effects of this exotic bee on native bee species. Specifically, our aims
were: (1) to evaluate the interaction in artificial trap nests, located in Italian study areas,
between native bees and the alien bee, (2) to explore the offspring progeny weight and sex
ratio as parameters indicating species fitness, also in relation to the sex ratio detected for
M. sculpturalis populations in the native and colonized areas, and (3) to provide the first
report on natural enemies affecting the M. sculpturalis brood.

2. Materials and Methods
2.1. Study Organism

Megachile sculpturalis is a univoltine and protandric species, whose males emerge
earlier than females [10]. According to several reports, its nesting season starts in late
June to early July and generally ends in mid-September [5,16]. Like most Megachilidae
species, it exhibits a sexual size dimorphism in which females are larger than males. This
difference is also evident enough in brood cell sizes to allow preliminary gender recognition
(Figure 1c). M. sculpturalis, like most solitary bees, has a high control over the size and sex
of its offspring [22]. It is a precavity nester bee, unable to excavate its own cavities and thus
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depending on the availability of suitable nesting places [23]. Brood cells and nest closures
are created using a mixture of wood fibers, leaf fragments, clay and resin [32] (Figure 1a–c).
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Figure 1. (a) Trap nests made of grooved boards stacked together in a solid block. (b) Opened individual grooved board
showing the upper part (left) and lower part (right) of the same tunnels. (c) Detail of cohabitated tunnel with parasitized
Osmia cocoons in the inner cells (black arrows), M. sculpturalis female prepupa situated next to O. cornuta cells (red arrow)
and M. sculpturalis male prepupa (green arrow).

2.2. Study Area and Sampling

In January 2018, we placed four trap nests in two towns south of Turin (north-western
Italy). The locations were chosen since the presence of M. sculpuralis had been reported
nearby in previous years. The climate is typically continental, with cold winters and
moderate summers [33]. The mean annual temperature is 12.5 ◦C, and the mean annual
rainfall is 900 mm [34].

We used two private gardens, one close to the hilly Monte San Giorgio natural park
and the other encircled by farmland (municipalities of Piossasco and Volvera, respectively)
(Figure S1).

Each trap nest consisted of a medium density fibreboard block of 20 × 20 × 15 cm
made by a series of individual boards grooved with channels (also called grooved boards
or laminates), which were stacked together to form 81 tunnels of 1 cm diameter (Figure 1).
To avoid the effect of the cavity size on the alien bee sex progeny [35,36], all nesting cavities
had the M. sculpturalis preferred diameter of 9.5–10 mm [5,21], which overlapped with
the accepted diameters for other solitary wild bees [36]. Trap nests were secured on walls
between 2–4 m above the ground and sheltered from rain.

Trap nests were opened to analyze their content during late November 2018, when
the wild bee nesting season ended. For each nest, we recorded the number of intact brood
cells, the number of cells attacked by natural enemies, their position inside the tunnel and
the species (if possible). The low diversity of species in trap nests allowed us to identify
them during opening. The species’ identity was confirmed after adult emergence. Natural
enemies were identified using studies by Fliszkiewicz et al., Krunić et al., Zajdel et al.
and Majka et al. [37–40]. We only kept and reared intact brood cells using specimens that
had reached the prepupal or adult stage, depending on the species (Figure 1c). Prepupae
and cocoons were then wintered separately in glass vials, in complete darkness, inside an
environmental chamber at ambient temperature.
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During spring and summer 2019, we checked specimens every three days, and we
identified the sex and weight at emergence. When adults did not emerge, we inferred
the sex from the cell size and the sex of bees in the neighbouring cells, according to
Seidelmann’s methods for protandric solitary bee species [41].

2.3. Data Analysis
2.3.1. Offspring Traits and Parasitism

We compared the progeny weight between sexes using a linear model after having log-
transformed the weight to reach normality. The model did not improve when taking into
account the nest as a random effect, so it was not included. Then, focusing on M. sculpturalis
progeny, we calculated the observed sex ratio and the expected one according to Fisher’s
sex allocation theory. In particular, the theory predicts that the parental investment must
be divided equally between sexes in panmictic populations [24,42]. In this context, for
sexually dimorphic species, the progeny sex ratio is expected to be proportionally biased
toward the sex with the lower investment.

The expected frequencies were calculated based on Torchio and Tepedino’s for-
mula [23], where the expected sex ratio is equal to the ratio between the mean female
weight and mean male weight. The sex ratio and expected frequencies were calculated
individually for each trap nest. The comparison of the observed sex ratio with the expected
one was tested for each nest through a paired t-test. Furthermore, we aimed to compare
these observed and expected sex ratios with the sex ratio recorded by open access global
data. We used M. sculpturalis distribution data collected from two sources, either ento-
mology collections or field observations, available in the Global Biodiversity Information
Facility (GBIF) [43]. Records that did not include sex identification were removed. Then,
data were grouped between observations in the native area (China, Korea and Japan) and
those placed in the new colonized area (North America and Europe). Records without
a location assignment but dated before 1993 were assigned to the native area since the
species has never been reported outside its native range before this year [15]. The sex
ratio was calculated separately to verify changes in the sex allocation strategy between the
native and colonized areas. The proportions of females and males from the two areas were
compared through a chi-square test. We assumed that the effect of bias in the sex detection,
due to how the GBIF data were collected, was negligible.

The parasitism rate was computed as the ratio between parasite-infected cells divided
by overall bees belonging to the same species.

All statistical analyses were carried out with the R software (version 3.5.1) using the
lme4 package [44].

3. Results
3.1. Above-ground Nesting Community

229 out of a total of 324 available tunnels were occupied by two species, M. sculpturalis
and O. cornuta, and none of the trap nests were colonized by further wild bee species.
Overall, 25% of nests were built by M. sculpturalis, while 75% were built by O. cornuta
(Table 1). For both species, the nests consisted of a series of female brood cells (the later-
emerging sex) in the inner part of the nest tunnel and a series of males (the earlier-emerging
sex) at the entrance.

3.2. Interaction between the Exotic and the Native Bee

We recorded the coexistence of both species cohabitating in 26 tunnels. 44% of tunnels
occupied by the exotic bee were built under cohabitation despite empty tunnels being
available (Figure S2 and Database in Supplementary Materials).

We observed a maximum number of nine brood cells within the cohabited tunnels.
Inner tunnel positions were mostly occupied by O. cornuta, while the outer positions
(toward the entrance) were filled by M. sculpturalis (Figures 1c and 2).
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Table 1. Cavity-nesting bees and their natural enemies in trap nests.

Species
Nests

(Occupied
Tunnels)

Total
Brood
Cells

Mean
Number of
Cells per

Nest

Maximum
Number of
Cells per

Nest *

% of
Parasitized
Brood Cells

Emerged
Adults Natural Enemies

Osmia
cornuta 171 1013 5.9 15 93 12

Cacoxenus indagator
Chaetodactylus osmiae

Melittobia acasta
Monodontomerus

obscurus
Ptinus sexpunctatus

Megachile
sculpturalis 58 244 4.9 7 7 213

Cacoxenus indagator
Monodontomerus

obscurus
Ptinus sexpunctatus

* Number of cells within a tunnel belonging to one species only.

Insects 2021, 12, x 5 of 11 
 

 

Table 1. Cavity-nesting bees and their natural enemies in trap nests. 

Species 
Nests 

(Occupied 
Tunnels) 

Total 
Brood 
Cells 

Mean 
Number of 

Cells per Nest 

Maximum Number 
of Cells per Nest * 

% of 
Parasitized 
Brood Cells 

Emerged 
Adults 

Natural Enemies 

Osmia 
cornuta 

171 1013 5.9 15 93 12 

Cacoxenus indagator 
Chaetodactylus osmiae 

Melittobia acasta  
Monodontomerus obscurus 

Ptinus sexpunctatus 

Megachile 
sculpturalis 

58 244 4.9 7 7 213 
Cacoxenus indagator 

Monodontomerus obscurus 
Ptinus sexpunctatus 

* Number of cells within a tunnel belonging to one species only. 

3.2. Interaction between the Exotic and the Native Bee 
We recorded the coexistence of both species cohabitating in 26 tunnels. 44% of 

tunnels occupied by the exotic bee were built under cohabitation despite empty tunnels 
being available (Figure S2 and Database in supplementary materials). 

We observed a maximum number of nine brood cells within the cohabited tunnels. 
Inner tunnel positions were mostly occupied by O. cornuta, while the outer positions 
(toward the entrance) were filled by M. sculpturalis (Figures 1c and 2).  

 
Figure 2. Proportion of species brood cells according to their position inside cohabitated tunnels, 
with a maximum of nine occupied positions (from the bottom to the entrance). 

3.3. Progeny Weight and Sex Ratio of Exotic Bee 
Female M. sculpturalis were significantly heavier than males (x̅ male weight = 0.203 

g, x̅ female weight = 0.350 g, F = 129.1, df = 201, p < 0.001) (Figure 3a). We observed a sex 
ratio strongly biased toward males, resulting in 4.2 males for each female (Figure 3b and 
Table A1). This result was significantly higher than the expected sex ratio estimated by 
the ratio between male and female weights (t = 3.48, df = 3, p = 0.04). Regarding the GBIF 

Figure 2. Proportion of species brood cells according to their position inside cohabitated tunnels,
with a maximum of nine occupied positions (from the bottom to the entrance).

3.3. Progeny Weight and Sex Ratio of Exotic Bee

Female M. sculpturalis were significantly heavier than males (x male weight = 0.203 g,
x female weight = 0.350 g, F = 129.1, df = 201, p < 0.001) (Figure 3a). We observed a sex ratio
strongly biased toward males, resulting in 4.2 males for each female (Figure 3b and Table A1
in Appendix A). This result was significantly higher than the expected sex ratio estimated
by the ratio between male and female weights (t = 3.48, df = 3, p = 0.04). Regarding the GBIF
database, we found 331 records of M. sculpturalis from the native area and 351 from the
new colonized area having a sex identification. The sex ratio was 1.72 and 0.91, respectively,
in the colonized and native ranges. The former was very close to the predicted Fisher’s
sex ratio, while the latter was significantly lower than the sex ratio in the colonized range
(χ2 = 15.994, df = 1, p < 0.001) and, in turn, highly different from the observed sex ratio
(Figure 3b).
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3.4. Natural Enemies

Most O. cornuta cells were parasitized, and as a consequence only 12 bees emerged
from stored cocoons. In contrast, 213 M. sculpturalis adults emerged from 244 brood cells.

Five species of natural enemies were found infesting 93% of O. cornuta cells (Table 1).
Among these natural enemies, three parasitized M. sculpturalis as well: Cacoxenus

indagator, Monodontomerus obscurus and Ptinus sexpunctatus (Figure 4). However, these
enemies were found exclusively in 7% of overall alien bee brood cells.
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4. Discussion

The fast spreading of M. sculpturalis and its aggressive nesting behavior suggested
a likely successful invasive performance [8,10,14]. Novel empirical evidence on the in-
teractions and traits of introduced species can indicate if they are thriving in the new
location. Moreover, the understanding of how the alien wild bee impacts the native fauna
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is a challenging and complex issue [1]; hence, investigations that highlight interaction
mechanisms are useful for understanding what impacts should be expected. In this study,
we found broods of M. sculpturalis and O. cornuta cohabitating inside the same tunnels.
This evidence, together with the different phenologies of the two species, may implicate
an interaction mechanism, which negatively affects the native bee. The fact that the exotic
bee occupied outer positions (i.e., toward the entrance) in cohabitated tunnels is the result
of its later nesting period, following that of O. cornuta. In addition, exotic brood cells
are sealed with resin and remain locked until the following summer. Consequently, the
spring-emerging O. cornuta from the inner positions of the tunnel may get trapped, due to
the barrier of resin and M. sculpturalis cell contents blocking the Osmia emergence. Previous
studies have consistently demonstrated that M. sculpturalis is capable of evicting pre-adult
stages of other bees from their cells [10,28,44–46]. Thus, our results indicate the possibility
of a potential combining effect of direct (eviction) and indirect competition (emergence
blocking) acting at different times on the same nests. In this study, we detected the interac-
tion with one native bee species only, probably because of a low richness of cavity-nesting
bees in the study areas and the exclusive cavity diameter used in our trap nests. However,
it is expected that other species of the genera Osmia, Anthidium and Xylocopa might be
affected by the abovementioned mechanisms [8,47], although emergence blocking should
only occur in earlier-emerging species, particularly in Osmia sp.

In the assessment of the progeny sex ratio, M. sculpturalis showed a greater male unbal-
ance than expected, based on Fisher’s theory of parental investment and sex allocation [42].
This result is in agreement with the high proportion of males (83%) found by Geslin et al.
in southern France [21]. A recent research on the genetic variability of the giant resin bee
provides insights into the skewed male sex ratio, as it detected a high percentage of diploid
males among individuals sampled in Vienna (Austria) [48]. Diploid males are probably the
consequence of a founder effect in new colonized areas. Furthermore, it has been discov-
ered that a low genetic diversity and the associated skewed sex ratio, even if temporarily
limiting the performance of invasive species, do not always limit their spread over time, as
theoretically expected [49,50]. In particular, in invading social species, the haplo-diploid
system is capable of overcoming the issue through multiple introductions [48,51] and
natural selection mechanisms, which increases average heterozygosis at the sex locus over
time [49].

Despite the expectation of a higher male-biased sex ratio as a common pattern in a
new colonized area, we found that the sex ratio of the M. sculpturalis from global data met
the theoretical Fisher’s prediction. Therefore, it seems that the overall exotic population
did not suffer from a skewed male sex ratio like our local Italian population and the French
one showed. This result also suggests that the unbalanced sex ratio might be a location-
dependent limiting factor for the alien bee [52]. Additionally, the sex ratio from native
ranges were lower than expected. We believe that our results should be considered as
baseline data to verify whether the skewed sex ratio is a factor involved in the M. sculpturalis
invasion dynamic.

It has been argued that the success of a biological invasion might be facilitated by the
invader species escaping from their natural enemies and by the modification of parasitism
relationships in new locations [30]. While a parasite introduction due to the spread of an
alien species may occur, invasive species can act as new hosts and also acquire parasites
from native species [53]. We detected three generalist natural enemies [53] in the exotic
brood cells that were also present in O. cornuta cells. Two of them (Cacoxenus indagator
and Monodontomerus obscurus) have a European native range [54], while the third (Ptinus
sexpunctatus) has a Paleartic distribution, and thus it should be present in the M. sculpturalis
original range. Our observations provide the first record of parasitism in M. sculpturalis in
the European territory. Despite potential adverse consequences of this parasite acquisition
for the exotic bee, it was the most successful species in terms of emerging adults, and the
overall parasitism rate was very low (7%) compared to that of O. cornuta cells (93%). This
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suggested that M. sculpturalis was potentially less susceptible to natural enemies than the
native bee.

The novelties introduced in this study are essential knowledge on the competitive
dynamic between native and alien bees, on species-fitness traits and on the incidence
of natural enemies. Our results indicate that the giant resin bee might be a competitor
with the native O. cornuta for nesting resources. Future studies using nesting traps and
long-monitoring data will help to characterize the impacts of this fast-spreading exotic bee.

Supplementary Materials: The following will be available online at https://www.mdpi.com/article/
10.3390/insects12060545/s1. Figure S1: Map of sampling sites; Figure S2: Graphical nest visualization
of species occupation for each tunnel in trap nests; Database: raw data of trap nests is also available.
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Appendix A

Table A1. Progeny weight differences and sex ratios in adult M. sculpturalis.

Nest F Mean
Weight (g) M Mean

Weight (g)
Observed
Sex Ratio

Expected
Sex Ratio

A 11 0.353 46 0.205 4.2 1.7
B 10 0.352 39 0.215 3.9 1.6
C 15 0.341 53 0.199 3.5 1.7
D 4 0.370 30 0.199 7.5 1.9

Total 40 0.350 168 0.203 4.2 1.7
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