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A B S T R A C T

The thesis deals with the problem of capital allocation. After a brief re-
view of the literature and of the standard methods, capital allocation
problems with respect to a particular class of risk measures, namely
the Haezendonck-Goovaerts (HG) ones [14, 47], are considered. We
first generalize the capital allocation rule (CAR) introduced by Xun
et al. [67] for Orlicz risk premia [48], using two different approaches,
in order to cover HG risk measures. We then provide robust versions
of the introduced CARs, both considering the case of ambiguity over
the probabilistic model and the one of multiple Young functions, fol-
lowing the scheme of [13].

Further on, we introduce a new approach to face capital alloca-
tion problems from the perspective of acceptance sets, by defining
the family of sub-acceptance sets. We study the relations between the
notions of sub-acceptability and acceptability of a risky position and
their impact on the allocation of risk. We define the notion of risk
contribution rule and show how in this context it is interpretable as a
tool for assessing the contribution of a sub-portfolio to a given port-
folio, in terms of acceptability, without necessarily involving a risk
measure. Furthermore, we investigate under which conditions on a
risk contribution rule a representation of an acceptance set holds in
terms of the risk contribution rule itself, thus extending to this set-
ting the interpretation, classical in risk measures theory, of minimal
amount required to hedge a risky position.

Finally, we provide a discussion on some possible further exten-
sions of the capital allocation problem. In particular, we discuss the
possibility of extending the latter to the framework of intrinsic risk
measures [37]. We briefly review the notions and results on intrin-
sic risk measures, providing a comparison with traditional ones. We
later discuss the suitability of the capital allocation problem in this
context, as well as that of the properties related to capital allocation
rules, considering both the standard setting and the one based on ac-
ceptance sets. We derive some results similar to the case of traditional
risk measures.
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P U B L I C AT I O N S

The dissertation includes a series of joint papers with Francesca Cen-
trone and Emanuela Rosazza Gianin, namely [20–22]. In particular,
the contents of [22] constitute Chapter 3, those of [21] are reported in
Chapter 4 and the numerical study in [20] constitutes Chapter 6.
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1
I N T R O D U C T I O N

Since the first version of the Basel Accord (see [9]), many studies on
risk measures and capital requirements have been led both from a
theoretical and an empirical point of view. It is well known indeed
that the Basel Accord (see [9, 10]) imposes to banks and financial
institutions a capital requirement or margin so to be able to face the
riskiness due to different sources (market risk, credit risk,. . . ). In the
first version of the accord, such a margin had to be measured by
means of Value at Risk (VaR for short). The latter is simply the upper
α-quantile of the random variable representing the profit and loss or
return of a financial position. Even if VaR has been shown to have a
lot of drawbacks, it has been used intensively because of its simple
interpretation and estimation. Among the different drawbacks, VaR
does not encourage diversification of risk in general and it is not able
to distinguish different tails but only considers the quantile (for a
more detailed study, please see Artzner et al. [4, 5]).

Although VaR is still widely used by practitioners and researchers,
Conditional Value at Risk (CVaR for short), also known as Expected
Shortfall or Average Value at Risk, is more and more considered;
see [1, 5, 39, 60]. It is well known that, compared to Value at Risk,
Conditional Value at Risk is a more conservative risk measure, that is,
it requires a higher margin, and encourages diversification. In particu-
lar, CVaR is a coherent risk measure (see [4, 5]), as it belongs to a pecu-
liar class of risk measures, namely the Haezendonck-Goovaerts (HG)
ones. Such risk measures, based on the so-called Orlicz premium in-
troduced by Haezendonck and Goovaerts [48], have been studied in
the last decades both from a mathematical point of view and from an
actuarial one (see, among others, [12–15, 47, 48]), as they are coherent
and generalize CVaR.

It is worth emphasizing that, for VaR or CVaR, a regulator has only
to choose a level α of probability. It is financially reasonable, how-
ever, to consider also risk measures taking into account preferences
and loss aversion of regulators, e. g. in terms of certainty equivalents.
A well-known and used risk measure of that kind is the so-called
entropic risk measure, defined by means of the certainty equivalent
with an exponential utility function (see [8, 39, 41] for more details).
We will recall the definitions of these three risk measures afterwards.

Anyway, whatever the risk measure chosen, the main idea and mo-
tivation of risk measures is related to capital requirements or margin
deposits. Indeed, given a financial position (or, better, its profit and
loss or its return) its riskiness is quantified by the minimal cash to be

1



2 introduction

deposited as a guarantee of the position or, in other words, such that
the new position is considered as acceptable by the regulator. More
precisely, given a position X belonging to some vector space X and a
cash-additive risk measure ρ : X → R, the riskiness of X by means of
ρ is given by

ρ(X) = inf {m ∈ R | X + m ∈ A} ;

where A ⊂ X is a set of positions which are acceptable for a specific
regulator. Such a set A is usually termed as acceptance set and pro-
vided with some minimal properties (see [5, 39]). Roughly speaking,
the greater is the riskiness of a position, the higher is the margin to
be deposited in order to reach the acceptability of the position (see [5,
39] for details).

Among the many, one of the most relevant problems connected to
the use of risk measures in firms and insurances, is the one of capital
allocation. It consists in, once fixed a suitable risk measure and deter-
mined the corresponding risk capital associated to a risky position,
finding a division of this aggregate capital among the constituents of
the activity, such as business units or various insurance lines. For in-
stance, this problem is particularly meaningful in the context of risk
management, or for comparing the return of various business units
in order to remunerate managers.

As it can be easily understood, there are many possible ways to
allocate the aggregate capital of a company to its sub-units, according
to the features one wants to capture and to the properties one wishes
to verify. In this respect, a huge literature has grown over the years,
and several methods have been proposed (see, for example, [23, 32,
50]), where the different approaches have motivations that can be
either axiomatic or financial.

In particular, Kalkbrener [50] defines a capital allocation rule as a
map whose values depend on the profit and loss or return of both a
portfolio and its sub-portfolios, and which is required to satisfy some
suitable properties w. r. t. the chosen risk measures, that is, he pro-
poses an axiomatic approach to the problem. More precisely, a capi-
tal allocation rule for a monetary risk measure ρ : X → R is a map
Λ : X × X → R such that Λ(X, X) = ρ(X) for every X ∈ X ; where
Λ(X, Y) is interpreted as the risk contribution of a sub-position X
to the risk of the aggregated position Y. For any coherent risk mea-
sure, Kalkbrener [50] shows that there exists a capital allocation rule
satisfying reasonable properties. When the coherent risk measure ρ

is also Gateaux differentiable, Kalkbrener’s approach yields the so-
called gradient or Euler allocation, which is largely applied in practice
and well-known in the literature (see also Tasche [62, 63]).

Dhaene et al. [32] highlight some of the financial aspects of capital
allocation: indeed, some of its core purposes for a firm consist in
distributing the cost of capital among the various business units, as
well as in being able to make a comparison of their performances
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through the return of allocated capital. The authors also provide an
overview on some of the most used algorithms in practice, namely
the proportional and the marginal ones, which we will review and use
as examples throughout the thesis.

Instead, the approach of Centrone and Rosazza Gianin [23], refers
both to the axiomatic approach and to the game theoretic stream pro-
posed by Denault [30], where firms are seen as players of a coopera-
tive cost game derived by a risk measure, and the allocation rule is
based on the idea of assigning to each player its marginal contribution
to the overall risk. Denault’s approach is anyway suitable fo coherent
and differentiable risk measures, while the capital allocation method
proposed in [23] is a generalization of the so-called Aumann-Shapley
capital allocation rule, suitable also for the class of (quasi-)convex and
non-differentiable risk measures.

In view of the above discussion, after providing a review of the
different capital allocation methods, we will first focus on capital
allocation problems with respect to HG risk measures. In such di-
rection, Xun et al. [67] have recently generalized the contribution to
shortfall provided by Overbeck [58] for CVaR, by introducing a capi-
tal allocation method that is “tailored” for Orlicz premia and works
beyond the special case of CVaR. However, the latter considers only
non-negative random variables and depends on the quantile (or VaR)
of the aggregated risk Y, which is still somehow connected to the
CVaR case. One goal of thesis is therefore to introduce a capital allo-
cation method for HG risk measures which is defined for any pair of
random variables (not only positive) and overcomes the special case
of CVaR.

Indeed, inspired by [15], we extend the work of Xun et al. [67] by
providing capital allocation rules for HG risk measures that are based
on generalized quantiles, namely the Orlicz ones (see [15]). We show
that such a capital allocation rule satisfies most of the usual properties
required for capital allocations and is also reasonable from a financial
point of view. We also propose and study an alternative and more
general capital allocation rule for HG risk measures that is based on
the new concept of linking function, that is, functions which take into
account both a position and a sub-position, going beyond the case
considered in [67]. A comparison among the approaches here intro-
duced and two popular capital allocation rules, that is the gradient
method and the Aumann-Shapley one [23, 50], is also provided. Very
recently, a deep analysis on the gradient approach has been done by
Gómez and Tang [46] for higher moment risk measures, correspond-
ing to HG risk measures for power Young functions.

Finally, inspired by robust Orlicz premia and robust HG risk mea-
sures recently introduced by Bellini et al. [13], we provide some exten-
sions of the proposed methods of capital allocation, in order to cover
the ambiguity about the probabilistic model and about the risk per-
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ception of the decision-maker. In particular, we first extend the results
in [13] by defining and studying robust Orlicz risk premia and HG
risk measures for α ∈ [0, 1) (while in [13] the authors assume α = 0).
We then introduce robust Orlicz quantiles and study their properties,
finding out similar results to the non-robust case. By using robust
Orlicz quantiles, we then provide robust versions of the presented
methods to account for ambiguity over the probability measure to
be chosen and for ambiguity over the utility/loss function. We find
out that the robust versions work well both for the quantile-based
methods and linking based ones, providing results very close to the
non-robust case.

So far, we have discussed capital allocation problems associated to
risk measures, as it is customary in the literature. Indeed, the defi-
nition of capital allocation rule (CAR) provided by Kalkbrener [50]
necessarily involved a risk measure as a primary object. However,
monetary risk measures are the natural counterpart of acceptance
sets (Artzner et al. [5] and Föllmer and Schied [39]) and hence, in the
classical sense, any capital allocation rule also takes into account the
acceptability of a stand-alone risky position X, allocating no positive
capital to acceptable positions.

What is instead missing is the consideration of what happens in
terms of acceptability when X is “merged into another position” Y
and how this possibly affects the allocation of capital. Indeed, con-
sider a situation where we are provided with a monetary risk mea-
sure ρ that qualifies a position X as non-acceptable. If X is anyway
considered as a sub-portfolio of another position Y, and we look at
the marginal contribution ρY(X) := ρ(Y)− ρ(Y−X), the risk of X can
potentially change, and it can become acceptable w. r. t. the monetary
risk measure ρY(·), not contributing to the risk of Y.

We wish thus to rephrase the problem of capital allocation in a way
that takes into account this eventuality, instead of simply sharing ρ(Y)
among its sub-units. In other words, if we consider a portfolio Y, we
want to define CARs as maps assigning to each sub-portfolio X of Y
a capital that reflects their acceptability as sub-units of Y, and does
not necessarily assign a share Λ(X, Y) of ρ(Y).

The capital allocation problem is thus disentangled from the use of
risk measures, and revisited in terms of a different definition and a
newly introduced concept, that is, the one of a sub-acceptance family
of sets. Under suitable assumptions, we derive capital allocation rules
reflecting the above idea starting from acceptance and sub-acceptance
sets and, conversely, we show that capital allocation rules having
some natural properties give rise to acceptance and sub-acceptance
sets in terms of which they can be represented, thus extending to
these capital allocation rules the classical interpretation of capital re-
quirement, typical of risk measures. The situation becomes even more
interesting when we consider quasi-convex risk measures, where ev-
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ery quasi-convex risk measure is associated to a family of acceptance
sets and one speaks of acceptability at different levels. In analogy with
what happens with monetary risk measures, in this case we will need
families of sub-acceptance sets.

It turns out that some well known capital allocation rules (such as
the Euler and the RORAC ones) are compatible with this approach.
Furthermore, the present approach is in line with the general con-
struction of capital requirements in Frittelli and Scandolo [43] and
with the systemic risk measures induced by acceptance sets in [17].

As a further discussion, we briefly consider the possibility of gener-
alizing the above results with respect to the chosen ordering among
random variables. That is, we drop the standard P-a.s. ordering used
throughout the work to consider a general preorder among random
variables. We then focus on the first stochastic order and related prop-
erties of law invariance.

Indeed, in the standard framework, monetary risk measures which
are monotone with respect to the first stochastic order are also law
invariant (see [27, 39, 66]). For the latter, only the distribution of the
financial position X matters in measuring its risk and this property
is reflected on acceptance sets, for the connection with risk measures
mentioned above. Since law invariant risk measures and stochastic
orders are largely studied (see [39, 42, 52, 66]), we also discuss cap-
ital allocation rules in this context, starting from the perspective of
acceptance sets.

Very recently, Farkas and Smirnow [37] provide an alternative ap-
proach to risk measurement, introducing the so-called intrinsic risk
measures. The latter differ from standard risk measures as they mea-
sure the risk by means of the minimal percentage of the position
which should be sold and reinvested in a given “eligible” asset, in
order to reach acceptability. Thus, such approach uses only internal
resources and does not require any external capital injection to make
the position acceptable. As a further extension, we also consider capi-
tal allocation problems in this context, both in the standard approach,
connected to risk measures, and in the one which starts from accep-
tance sets.

To sum up, the main contributions of the thesis are the following.
Firstly, we provide a review of the literature about capital allocation
problems and a comparison among different approaches with a nu-
merical example. We also highlight a peculiar property of capital al-
location rules, namely the no-undercut, which turns to be a “core”
property in the sense of the game theoretical approach. We then pro-
vide capital allocation rules for HG risk measures, overcoming the ap-
proach of Xun et al. [67]. Further, we introduce a new approach to cap-
ital allocation problems by means of the concepts of sub-acceptance
and acceptance sets. Finally, we investigate the possibility of extend-
ing the framework to account for general orderings, focusing on the
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first stochastic one, and also for the recent concept of intrinsic risk
measure.

The work is organized as follows. In Chapter 2, we provide the
main definitions and results about risk measures and capital allo-
cation, useful as a background for the rest of the work. Chapter 6

provides a further comparison among some well-known capital al-
location methods, through a numerical example. In Chapter 3, we
provide capital allocation rules for HG risk measures and related re-
sults. Chapter 4 is devoted to the new approach of capital allocation,
based on acceptance sets and sub-acceptance families. Finally, Chap-
ter 5 discusses the two further extensions mentioned above, that is,
to account for general orderings and for intrinsic risk measures. Ap-
pendix A collects some mathematical background.



2
R I S K M E A S U R E S A N D C A P I TA L A L L O C AT I O N

In this chapter, we define our setting and recall the main notions and
results about risk measures and capital allocation.

We present some well-known risk measures, used in practice and
throughout the work as examples. We recall the capital allocation
problem, which leads to the formal definition of capital allocation
rule. We also recall some capital allocation methods, their definition
in term of capital allocation rules and some results from the related
literature.

2.1 general setting

In this section, we set the notation and terminology used throughout
the thesis, as well as the financial interpretation of the mathematical
objects we deal with.

We recall a few concepts of functional analysis, useful to under-
stand the following. Most of them are also presented in Appendix A,
but for a proper and detailed treatment of those topics we refer to
Aliprantis and Border [2], among many others.

When any assumption of this section is dropped, or any notation
is changed, we explicitly mention it in the work.

We consider a one period economy with initial date t = 0 and final
date (or time horizon) T. We fix a probability space (Ω,F , P), where
Ω is a fixed set of scenarios, representing the possible states of the
world at time T.

A financial position is described by a random variable X : Ω → R,
where X(ω) represents the profit and loss (P&L) at time T if the sce-
nario ω ∈ Ω is realized. That is, positive values of X are interpreted
as gains, while negative ones as losses. However, in Chapter 3, we
adopt the actuarial notation about signs; that is, the converse of be-
fore: positive values have to be interpreted as losses while negative
ones as gains.

Throughout the work, L∞ := L∞(Ω,F , P) denotes the space of all
P-essentially bounded random variables on (Ω,F , P), interpreted as
above. Equalities and inequalities between random variables have to
be understood to hold P-almost surely. The space L∞ will be some-
times equipped with the essential supremum norm ‖·‖∞. Under such
a norm, L∞ becomes a Banach space, whose dual can be identified
with the space ba := ba(Ω,F , P), that is, the space of all finitely addi-
tive set functions (charges) µ : F → R with finite total variation and

7



8 risk measures and capital allocation

absolutely continuous with respect to P (see also Bhaskara Rao and
Bhaskara Rao [16]).

We also use the weak* topology σ(L∞, L1), in order to identify the
dual space of L∞ with L1 := L1(Ω,F , P) and, through the Radon-
Nikodym theorem, L1 with H, the space of all (countably additive)
measures absolutely continuous with respect to P. We then define Q
as the space of all probability measures belonging to H.

We only consider financial positions described by random variables
belonging to L∞, even if several results hold also in more general
spaces. Thus, risk measures, capital allocation rules and other objects
will be defined in such a framework.

2.2 risk measures

We recall here the main notions and results about risk measures, used
throughout the work, and the definition of some well-known risk
measures, useful for further examples and widely applied in prac-
tice.

We first recall from Föllmer and Schied [39] the standard defini-
tions of monetary, convex and coherent risk measures, and some key
results about them.

Definition 2.1. A map ρ : L∞ → R is called a monetary risk measure if
it satisfies the following conditions, for all X, Y ∈ L∞:

Monotonicity: if X ≤ Y then ρ(X) ≥ ρ(Y).

Cash-additivity: ρ(X + m) = ρ(X)−m, for all m ∈ R.

The financial meaning of the required properties is the following.
Monotonicity ensures that the risk of a position is reduced when its
the P&L is increased. Cash-additivity (sometimes called translation-
invariance or cash-invariance) ensures that, when a cash amount is
added to a financial position, its risk is reduced by the same amount.
In particular, cash-additivity implies ρ(X + ρ(X)) = 0 and ρ(m) =

ρ(0)−m. When the assumption ρ(0) = 0 is made, the monetary risk
measure ρ is called normalized.

Definition 2.2. A monetary risk measure ρ is called a convex risk
measure if it satisfies the following, for all X, Y ∈ L∞ and λ ∈ [0, 1]:

Convexity: ρ(λX + (1− λ)Y) ≤ λρ(X) + (1− λ)ρ(Y).

Convexity captures the idea that diversification should not increase
the risk. Indeed, if we invest only the fraction λ of the resources on
X and the remaining part 1− λ on Y, we obtain a position λX + (1−
λ)Y which is less risky than the convex combination of the risk of X
and Y (see, for more details, Föllmer and Schied [38, 39] and Frittelli
and Rosazza Gianin [41]).
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Definition 2.3. A convex risk measure ρ is called a coherent risk mea-
sure if it satisfies the following, for all X ∈ L∞:

Positive homogeneity: ρ(λX) = λρ(X), for all λ ≥ 0.

Positive homogeneity and convexity, together, are equivalent to pos-
itive homogeneity and

Subadditivity: ρ(X + Y) ≤ ρ(X) + ρ(Y), for all X, Y ∈ L∞.

Thus, a coherent risk measure is also referred as a monetary risk
measure satisfying positive homogeneity and subadditivity (see, for
instance, Artzner et al. [5] and Delbaen [28, 29]).

So far, we have presented risk measures in the cash-additive frame-
work, which has been the standard axiomatic setting for a long time.
Recently, different classes of risk measures have been introduced in
the literature to overcome some lacks of the cash-additivity frame-
work (see Cerreia-Vioglio et al. [24], El Karoui and Ravanelli [35] and
Munari [56] for a proper discussion). We first recall from Farkas et al.
[36] and Munari [56] the following.

Definition 2.4. A map ρ : L∞ → R is called an S-additive risk measure
if it satisfies monotonicity and the following, for all X ∈ L∞:

S-additivity: ρ(X + mST) = ρ(X)−mS0, for all m ∈ R, S eligible;

where an eligible asset can be identified with a couple S = (S0, ST)

with initial value S0 > 0 and terminal (random) payoff ST satisfying
P(ST ≥ 0) = 1.

By taking S = (1, 1Ω) as eligible asset, we see that cash-additivity
is a special case of S-additivity. In other words, for an S-additive risk
measure, not only cash can be used to hedge the risk of a position but
also assets with an almost surely positive payoff. Notice, however,
that an S-additive risk measure is not necessarily finite-valued (see
Farkas et al. [36] and Munari [56] for further details).

Instead, El Karoui and Ravanelli [35] introduced the following no-
tion, with the aim of weakening cash-additivity.

Definition 2.5. A map ρ : L∞ → R is called a cash-subadditive risk
measure if it satisfies monotonicity and the following, for all X ∈ L∞:

Cash-subadditivity: ρ(X + m) ≥ ρ(X)−m, for all m ≥ 0.

Cash-subadditive risk measures are suitable to asses the risk in
case of stochastic or ambiguous interest rates, as explained by El
Karoui and Ravanelli [35], differently from cash-additive risk mea-
sures, where the interest rate is usually assumed to be zero or anyway
constant (see Artzner et al. [5] and Delbaen [28, 29]).
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Among the properties presented so far, both convexity and subad-
ditivity express the idea of diversification of risk (see Artzner et al. [5],
Delbaen [28, 29], Föllmer and Schied [38] and Frittelli and Rosazza
Gianin [41]). However, as pointed out by Cerreia-Vioglio et al. [24]
(see also Drapeau and Kupper [33] or Frittelli and Maggis [40]), once
cash-additivity is dropped, the right formulation of diversification is
given by the weaker property of quasi-convexity. This gives rise to
the following class of risk measures.

Definition 2.6. A map ρ : L∞ → R is called a quasi-convex risk mea-
sure if it satisfies monotonicity and the following, for all X, Y ∈ L∞

and λ ∈ [0, 1]:

Quasi-convexity: ρ(λX + (1− λ)Y) ≤ max {ρ(X), ρ(Y)}.

We finally recall the class of law invariant risk measures, that is,
monetary, convex or coherent risk measures satisfying the property
contained in the following definition (see, among others, Frittelli and
Rosazza Gianin [42], Kusuoka [52] and Weber [66]).

Definition 2.7. A map ρ : L∞ → R is called law invariant if it satisfies
the following, for all X, Y ∈ L∞:

Law invariance: if X ∼ Y then ρ(X) = ρ(Y).

We recall that the notation X ∼ Y means that X and Y have the
same distribution under P, i. e. the distribution µX of X, defined by
µX(B) := P(X ∈ B), for every Borel set B, is equal to the distribution
µY of Y.

2.2.1 Risk measures and acceptance sets

We recall here the notion of acceptance set and the connections be-
tween acceptance sets and risk measures (see, for instance, Artzner
et al. [5], Farkas et al. [36] and Föllmer and Schied [38, 39]). We put a
special emphasis on this part, since acceptance sets play a fundamen-
tal role in Chapter 4.

Acceptance sets allow us to split the positions in two categories:
the acceptable ones and the unacceptable ones. The first ones do not
require extra capital, while the second ones do require it. Notice that
one can detect the acceptable positions without necessarily measure
their risk before, it is sufficient to consider some features of the po-
sitions, as shown in the following examples. Indeed, acceptance sets
are often considered as primary objects (see, among others, Farkas
et al. [36] and Farkas and Smirnow [37]).

The next definition formalizes the notion of acceptance set (see
Farkas et al. [36] or Farkas and Smirnow [37]).
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Definition 2.8. A set A ⊆ L∞ is called an acceptance set if it satisfies
the following conditions:

Non-triviality: ∅ 6= A 6= L∞.

Monotonicity: X ∈ A and Y ≥ X imply Y ∈ A.

Any position X ∈ A is then called acceptable.

It is easy to understand why we require that an acceptance set has
to be non-trivial: should we accept a position, say X = −100, which
leads us (almost-surely) to a loss? Or, conversely, should we require
extra capital for a position, say X = 100, which leads us (almost-
surely) to a profit? Monotonicity, too, is quite easy to understand: if a
position is acceptable, so is another one with greater or equal P&L.

As mentioned above, the acceptable positions do not require extra
capital to cover future possible losses. They are chosen according to a
criterion which involves some features of the positions and which
uniquely defines the acceptance set, without necessarily involving
any risk measure.

Example 2.1. Suppose that a regulator is very averse to risk and does
not want that any loss can occur. So, the regulator decides that the
only acceptable positions are those with (almost-surely) non-negative
P&L. Thus, the acceptance set of the regulator is described by

A = {X ∈ L∞ | P(X ≥ 0) = 1} = L∞
+ ,

that is, the positive cone of L∞. Clearly, A is an acceptance set accord-
ing to Definition 2.8: non-triviality and monotonicity are straightfor-
ward.

Notice that, once chosen the criterion (being non-negative a.s.), the
acceptance set is directly determined (positive cone of L∞) without
measuring the risk of the position or evaluating any other informa-
tion. Also, only features of the position itself are considered here, we
do not involve features of any other position; differently from the case
of sub-acceptance set, introduced in Chapter 4.

The acceptance set defined in the previous example is simple and
very prudent since it reflects the high risk aversion of the regulator.
In the next example, we consider an acceptance set still simple but
very tolerant.

Example 2.2. Suppose a portfolio manager constructs a high-return
portfolio. He or she is not particularly averse to risk and considers
acceptable all positions with non-negative expected P&L. In this case,
the acceptance set is

A = {X ∈ L∞ | E[X] ≥ 0} .
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It is clear that A is an acceptance set according to Definition 2.8: non-
triviality and monotonicity follow from the monotonicity of the ex-
pected value. As before, we chose a logical criterion, which involves
only a feature of the position itself, and the acceptance set is directly
determined without any other information about the risk of the posi-
tion or whatever else.

Although the previous examples are both explanatory, they are not
suitable to describe many realistic situations. The acceptance set of
Example 2.1 is clearly too prudent while the one of Example 2.2 is
clearly too tolerant, furthermore the latter is based only on the ex-
pected value. To fill this gap, we provide some more examples which
are suitable for different levels of prudence.

Example 2.3. Starting from Example 2.1, we construct an acceptance
set which is less prudent and suitable for various situations. Suppose
a regulator considers acceptable those positions with a probability of
being negative less or equal than a fixed level α ∈ (0, 1). In this case
the acceptance set is given by

A = {X ∈ L∞ | P(X ≤ 0) ≤ α}

which is the acceptance set of the Value at Risk (see, among many
others, Artzner et al. [5], Delbaen [28] and Föllmer and Schied [39]).
It is straightforward that A is an acceptance set according to Defini-
tion 2.8. Moreover, A depends on the parameter α, thus it is suitable
for several situations. A prudent firm can choose a small α level while
a more tolerant one can choose a higher α level.

Example 2.4. Let us move back to Example 2.2, where we have con-
sidered acceptable those positions with non-negative expected value.
Likewise the previous example, one can instead consider acceptable
those positions with expected value greater or equal than a constant
λ > 0. In this case, we obtain the acceptance set

A = {X ∈ L∞ | E[X] ≥ λ}

which is clearly non-trivial and monotone. It is also suitable for sev-
eral situations since it depends on the parameter λ.

Moreover, one could also consider the standard deviation σ of the
position, as a measure of its risk. In this case, for X such that σ(X) > 0,
we can look at the Sharpe ratio

E[X]

σ(X)

and consider acceptable those positions with Sharpe ratio greater or
equal than λ > 0. That yields the set

A∗ = {X ∈ L∞ | E[X] ≥ λ σ(X)}
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which looks meaningful but unfortunately it is not an acceptance set
because it is not monotone. To see this, consider X ∈ L∞ such that
X ∼ U [0, b], b > 0; that is, X is uniformly distributed in the closed
interval [0, b], where b is a positive real number. Then, take Y = eX so
that Y still belongs to L∞. In this case,

Eb[Y] =
1
b
(eb − 1);

σb(Y) =

√
1
2b

(e2b − 1)− 1
b2 (e

b − 1)2.

Now, notice that Y ≥ 0 and that 0 ∈ A∗ but for every λ > 0 we can
find b > 0 such that

Eb[Y]
σb(Y)

< λ

because

lim
b→+∞

Eb[Y]
σb(Y)

= lim
b→+∞

1
b (e

b − 1)√
1
2b (e

2b − 1)− 1
b2 (eb − 1)2

= 0+.

Thus, for every λ > 0, A∗ is not an acceptance set.

It is well known that there exists the following relation between
monetary risk measures and acceptance sets (see Föllmer and Schied
[39, Propp. 4.6-4.7]). Indeed, a monetary risk measure ρ induces the
acceptance set of ρ, that is, the set

Aρ := {X ∈ L∞ | ρ(X) ≤ 0}

of positions which are acceptable in the sense that they do not require
additional capital. The next proposition shows how the properties of
ρ translate into properties of Aρ.

Proposition 2.1 (Föllmer and Schied [39]). Let ρ : L∞ → R. Then the
following hold:

a. If ρ is a monetary risk measure then Aρ is an acceptance set as in
Definition 2.8. Moreover, ρ can be recovered from Aρ, for all X ∈ L∞:

ρ(X) = inf {m ∈ R | m + X ∈ Aρ} .

b. If ρ is a convex risk measure then Aρ is also convex.

c. If ρ is a coherent risk measure then Aρ is also a cone.

Conversely, one can take an acceptance set A as primary object,
and define the monetary risk measure ρA as the minimal amount m
such that m + X becomes acceptable:

ρA(X) := inf {m ∈ R | m + X ∈ A} .

As before, properties of A translate into properties of ρA as shown
below.
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Proposition 2.2 (Föllmer and Schied [39]). Let A ⊆ L∞. Then the
following hold:

a. If A is an acceptance set, as in Definition 2.8, then ρA is a monetary
risk measure.

b. If A is also convex then ρ is a convex risk measure.

c. If A is also a cone then ρ is a coherent risk measure.

d. A is a subset of AρA and if A is closed then A = AρA .

A similar result holds also for S-additive risk measures (see [56]).
Indeed, if ρ is an S-additive risk measure then Aρ is non-trivial and
monotone. Moreover, ρ can be recovered from Aρ as

ρ(X) = inf
{

m ∈ R

∣∣∣∣ m
S0

ST + X ∈ Aρ

}
.

Conversely, given a class A ⊆ L∞ of acceptable positions and an
eligible asset S, one can define

ρA,S(X) := inf
{

m ∈ R

∣∣∣∣ m
S0

ST + X ∈ A
}

. (2.1)

If A ⊆ L∞ is an acceptance set then ρA,S is an S-additive risk measure.
The correspondence between acceptance sets and risk measures be-

comes more complex in the quasi-convex case, as illustrated in Chap-
ter 4.

2.2.2 On the dual representation

We recall here the so-called dual representation for convex and co-
herent risk measures. Fore more details, we refer to Artzner et al. [5],
Delbaen [28, 29], Föllmer and Schied [38, 39] and Frittelli and Rosazza
Gianin [41], among others.

Let ba1 denote the space of all µ ∈ ba which are positive and nor-
malized, i. e. such that µ(A) ≥ 0 for all A ∈ F and µ(Ω) = 1. As
in Appendix A, the Choquet integral, with respect to µ ∈ ba1, is de-
noted by Eµ[·]. The notation EP[·] is instead devoted to the expecta-
tion under P, that is, a Choquet integral with respect to a probability
measure (see Appendix A for more details). We still denote by Q the
set of all probability measures absolutely continuous with respect to
P.

Proposition 2.3 (Föllmer and Schied [39]). Any convex risk measure
ρ : L∞ → R admits the representation

ρ(X) = max
µ∈ba1

{Eµ[−X]− β(µ)}
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where β(µ) := supX∈Aρ
Eµ[−X] is called the minimal penalty function.

If ρ is coherent then

ρ(X) = max
µ∈N

Eµ[−X]

where
N := {µ ∈ ba1 | β(µ) = 0} .

As we can see from the previous proposition, it is always possible
to represent a convex (or coherent) risk measure in term of charges,
through the Choquet integral. Instead, if we wish a representation in
terms of probability measures, through the expectation, we need to
require an additional property, as showed in the following proposi-
tion.

Proposition 2.4 (Föllmer and Schied [39]). A convex risk measure
ρ : L∞ → R admits the representation

ρ(X) = sup
Q∈Q
{EQ[−X]− β(Q)} (2.2)

if any of the following equivalent conditions is satisfied:

a. ρ is continuous from above: Xn ↓ X =⇒ ρ(Xn) ↑ ρ(X).

b. ρ has the Fatou Property: if (Xn) is a bounded sequence converging
P-a. s. to X then

ρ(X) ≤ lim inf
n→+∞

ρ(Xn).

c. ρ is lower semicontinuous for the weak* topology σ(L∞, L1).

d. The acceptance set Aρ of ρ is weak* closed in L∞.

Moreover, if ρ is coherent and satisfies any of the above conditions, then

ρ(X) = sup
Q∈M

EQ[−X]

where
M := {Q ∈ Q | β(Q) = 0} .

As we can see from the previous proposition, when a representa-
tion in terms of probability measures is used, we cannot guarantee
that the supremum is attained. However, for coherent risk measures,
it is possible to ensure that the supremum is attained, by requiring a
stronger property.

Proposition 2.5 (Föllmer and Schied [39]). A coherent risk measure
ρ : L∞ → R admits the representation

ρ(X) = max
Q∈M′

EQ[−X]

for someM′ ⊂ Q, if any of the following equivalent conditions is satisfied:
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a. ρ is continuous from below: Xn ↑ X =⇒ ρ(Xn) ↓ ρ(X).

b. The setM′ representing ρ is such that the set of densities

D :=
{

dQ

dP

∣∣∣∣ Q ∈ M′
}

is weakly compact in L1.

See also Delbaen [28, 29] for more details.

2.2.3 Some well-known risk measures

We now recall the well-known definitions of VaR, CVaR and entropic
risk measure (see, among many others, [5, 39, 49, 60]). Such risk mea-
sures are applied in the numerical example of Chapter 6. VaR and
CVaR are also used throughout the work as examples.

Definition 2.9. The Value at Risk (VaR) of X ∈ L∞ at the level α ∈
(0, 1) is defined as

VaRα(X) := − inf {x ∈ R | P(X ≤ x) > α} = −q+α (X),

where q+α (X) denotes the upper α-quantile of X.

Actually, VaR is defined for any X ∈ L0. We provided the definition
in term of X ∈ L∞ only for being coherent with our setting. VaR is
cash-additive, monotone and positive homogeneous but it fails to be
convex, hence, it does not encourage diversification; see Föllmer and
Schied [39] for an example and more details on VaR.

A common risk measure which is close to VaR and overcome the
lack of convexity is the following (see Föllmer and Schied [39] and
Rockafellar and Uryasev [60]).

Definition 2.10. The Conditional Value at Risk (CVaR) of X ∈ L∞ at
the level α ∈ (0, 1) is defined as

CVaRα(X) := inf
x∈R

{
E [(x− X)+]

α
− x
}

.

Since the infimum in the previous definition is actually attained at
any quantile qα(X) at the level α of X ∈ L∞ (see [60]), CVaR can be
equivalently formulated as

CVaRα(X) =
E [(qα(X)− X)+]

α
− qα(X).

Moreover, CVaR can be also expressed in terms of the Average Value
of Risk:

CVaRα(X) =
1
α

∫ α

0
VaRβ(X) dβ,

sometimes called Expected Shortfall (ES).
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Such a risk measure is a particular case of a larger class of risk mea-
sures, namely the Haezendonck-Goovaerts (HG) one, treated in detail in
Chapter 3.

Differently from VaR, CVaR is a coherent risk measure; hence, in
addition to other good properties, it encourages risk diversification.

While VaR can be seen as the maximal loss one can have with a
given probability level α, CVaR at level α represents the average of
losses exceeding VaR at the same level. So, by definition, the capital
requirement evaluated by CVaRα is always greater than or equal to
that evaluated by VaRα.

We now recall another well-known risk measure, which has the
peculiarity of being convex but not positive homogeneous, hence not
coherent.

Definition 2.11. The entropic risk measure of X ∈ L∞ at the level α ∈
(0, 1) is defined as

eα(X) = α log E
[
e−X/α

]
where log denotes the natural logarithm.

The previous definition slightly differs from the common one, since
here the parameter α is the reciprocal of the Arrow-Pratt coefficient of
absolute risk aversion, while it is customary to let such parameter be
exactly the Arrow-Pratt coefficient (see, among others, Föllmer and
Schied [39]). That is, in our setting, when α is low the risk aversion is
high and vice versa.

Such a risk measure is called entropic because it can be viewed as
the maximal expected loss over a set of scenarios penalized by a term
given by the relative entropy. That is, the representation in (2.2) holds
with minimal penalty function given by the relative entropy of the
probability measure appearing in the supremum, with respect to P

(see Föllmer and Schied [39] and Frittelli and Rosazza Gianin [41]).
The reason why this risk measure is quite popular is that it is a

convex risk measure fulfilling good properties in a dynamic setting
(see, among others, Barrieu and Karoui [8] for details).

2.3 capital allocation

We now recall the standard capital allocation problem and the def-
inition of capital allocation rule. We also present some well-known
capital allocation methods, used throughout the thesis as examples.
Some of them are also applied in the numerical example of Chap-
ter 6.

As before, X ∈ L∞ represents the profit and loss of a financial posi-
tion at a future date T. We henceforth assume that X is an aggregate
position and that it is decomposed into sub-units (or business lines)
X1, . . . , Xn such that X = ∑n

i=1 Xi. For instance, X can be interpreted
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as the financial position of a company and the sub-units of X as its
branches. Or, similarly, X can be interpreted as a financial portfolio
and the sub-units of X as the assets componing the portfolio. We also
assume that we are provided with a risk measure ρ, so that ρ(X)

represents the riskiness of X.
A capital allocation problem consists in finding “suitable” real num-

bers k1, . . . , kn such that ρ(X) = ∑n
i=1 ki. Each ki is then the capital

allocated to each sub-unit Xi, that is, the contribution of Xi to the
total risk ρ(X) of X.

Capital allocation problems are usually faced in a more general
setting (see, for instance, [23, 50]), where the sub-units are not neces-
sarily finite. Indeed, given a generic set of random variables X , we
say that X ∈ X is a sub-portfolio (or sub-unit) of Y ∈ X if there ex-
ists Z ∈ X such that Y = X + Z. Notice that every random variable
is a sub-portfolio of any other, whenever X is a vector space. Since
we set X = L∞ for most of the work, we simply consider every pair
of random variables as a pair of respectively a sub-portfolio and a
portfolio.

The standard tool to achieve the purpose of capital allocation prob-
lems, that is, to allocate the risk among the sub-units, is commonly
defined as follows.

Definition 2.12. Given a risk measure ρ, a capital allocation rule (CAR)
with respect to ρ is a map Λρ : L∞ × L∞ → R such that for all X ∈ L∞

Λρ(X, X) = ρ(X).

We refer the reader to Centrone and Rosazza Gianin [23], Denault
[30] and Kalkbrener [50] for more details. The dependence of ρ is
usually omitted when it is clear which risk measure is involved.

Notice that, in the previous definition, the risk measure ρ is con-
sidered as a primary object. In Chapter 4, we will go beyond this
approach.

In practice, it is customary to require that the whole capital has to
be allocated, this property being termed in the literature as

Full allocation: for all Y1, . . . , Yn, Y ∈ L∞ such that Y = ∑n
i=1 Yi,

Λ(Y, Y) =
n

∑
i=1

Λ(Yi, Y).

Thus, full allocation requires that the sum of the capital allocated to
any sub-unit Yi is equal to the capital allocated to the whole portfolio
Y = ∑n

i=1 Yi.
Although full allocation is largely required in practice and it is

a reasonable property, we will see that in some situations it is not
necessary to rely on it. Indeed, we provide in Chapter 4 a detailed
discussion on full allocation.
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The following properties (stronger than full allocation) are also
sometimes used in the literature (see, for example, [50]):

Linear aggregation: for all Y1, . . . , Yn, Y ∈ L∞ and a1, . . . , an ∈ R

such that Y = ∑n
i=1 aiYi,

Λ(Y, Y) =
n

∑
i=1

aiΛ(Yi, Y).

Linearity: for all X, Y, Z ∈ L∞ and a, b ∈ R,

Λ(aX + bZ, Y) = aΛ(X, Y) + bΛ(Z, Y).

Another desirable feature of a capital allocation rule, is that the
capital ki, allocated to each sub-unit Xi, does not exceed the capi-
tal requirement ρ(Xi) of Xi, when considered as a stand-alone unit
(pooling effect). Such idea is then extended to a general setting and
expressed via the property of

No-undercut: Λ(X, Y) ≤ Λ(X, X), for all X, Y ∈ L∞.

The latter extends the idea of the pooling effect to any X ∈ L∞

viewed as a sub-portfolio of any Y ∈ L∞. That is, when Λ satisfies no-
undercut, the capital allocated to any X considered as a sub-portfolio
of Y does not exceed the capital allocated to X considered as a stand-
alone portfolio. In other words, the risk contribution of X does not
exceed its risk capital, when Λ is a CAR. Notice that no-undercut is
also called no-split (see [64]) or diversification (see [50]). A further
discussion on no-undercut will be provided later.

Finally, we recall the following property, which, together with full
allocation and no-undercut, is required for a fair (also called coher-
ent) allocation of risk capital (see Centrone and Rosazza Gianin [23],
Denault [30] and Kalkbrener [50]):

Riskless: Λ(a, Y) = −a, for all a ∈ R and Y ∈ L∞.

Riskless is easy to understand: it means that the capital allocated to a
fixed monetary amount is exactly the opposite of such fixed monetary
amount. That is, if a > 0 then there is no need to allocate any risk
capital to such sub-unit, it actually decreases the aggregated risk by a,
so −a should be allocated to the sub-unit. Instead, if a < 0 then such
sub-unit increases the aggregated risk of −a, so the latter amount
should be allocated to the sub-unit.

2.3.1 On the no-undercut property

It is well-known that the no-undercut property includes some game-
theoretical features of stability, since it implies that a sub-portfolio



20 risk measures and capital allocation

X has no incentive to be split from the whole portfolio Y, as stay-
ing alone would be more costly. Indeed, when the number of sub-
portfolios is finite, Denault [30] provided results in such a way; we
summarize them as follows.

We fix X ∈ L∞, set N := {1, . . . , n} for n ∈ N and consider sub-
portfolios Xi ∈ L∞, i ∈ N, such that X = ∑i∈N Xi. We also assume
that we are provided with a coherent risk measure ρ and define

c(S) := ρ

(
∑
i∈S

Xi

)
for all S ⊆ N. Then, given a linear CAR Λ with respect to ρ, we define

Γ :=


Λ(X1, X)

Λ(X2, X)
...

Λ(Xn, X)

 .

We recall that here the core of a game γ is given by

Cγ :=

{
K ∈ Rn

∣∣∣∣∣ ∑
i∈S

Ki ≤ γ(S) for all S ⊆ N and ∑
i∈N

Ki = γ(N)

}

see Denault [30] for more details.
We also recall that, in the setting above and for a linear CAR Λ, the

no-undercut can be formulated as

Λ
(

∑
i∈S

Xi, X
)
≤ ρ

(
∑
i∈S

Xi

)
for all S ⊆ N, see Denault [30]. We have therefore the following result.

Proposition 2.6 (see [30]). Let Λ be a linear CAR with respect to ρ. Then,
Λ satisfies no-undercut if and only if Γ belongs to the core of c.

There are several ways to extend the discussion to the case where
the number of sub-portfolios is not necessarily finite. We propose the
following.

We recall that, for a normalized capacity ν, absolutely continuous
with respect to P, and X ∈ L∞,

ρν(X) := Eν[−X]

defines a monetary, positive homogeneous risk measure. Moreover, ρ

is also convex, hence coherent, whenever ν is sub-modular (see [39]
for more details). See also Appendix A for more details on games and
Choquet integrals.

A classical way is defining ν := f ◦P, where the function f : [0, 1]→
[0, 1] satisfies f (0) = 0, f (1) = 1. Such a ν is called the distortion of
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the probability measure P with respect to the distortion function f . It
is clear that ν is a normalized capacity, moreover if f is concave then
ν is sub-modular, see [29].

When ν is also sub-modular, that is, when ρν is coherent, the fol-
lowing representation holds:

ρν(X) = max
µ∈Cν

Eµ[−X],

see [29]. We henceforth assume that ν is sub-modular and thus that
the previous representation holds.

Then, for every fixed Y ∈ L∞, we can choose µY ∈ ba1 and define

Λ(X, Y) := EµY [−X]

for all X ∈ L∞. We recall that here the core of a game γ is defined as

Cγ := {µ ∈ ba(Ω,F ) | µ(A) ≤ γ(A), for all A ∈ F , µ(Ω) = γ(Ω)}

where ba(Ω,F ) denotes the space of all finitely additive set functions
(charges) µ : F → R with finite variation norm (see Appendix A or
Marinacci and Montrucchio [54] for more details). The following is
therefore straightforward.

Proposition 2.7. Λ satisfies the no-undercut if and only if µY ∈ Cν, for
all Y ∈ L∞. Moreover, Λ is a CAR with respect to ρν if and only if µY ∈
arg maxµ∈Cν

Eµ[−Y], for all Y ∈ L∞.

Proof. Fix Y ∈ L∞. If Λ satisfies no-undercut then

µY(A) = Λ(−1A, Y) ≤ ρν(−1A) = ν(A)

for every A ∈ F . Since µY ∈ ba1 by construction, the thesis follows.
Conversely, if µY ∈ Cν then

Λ(X, Y) = EµY [−X] ≤ max
µ∈Cν

Eµ[−X] = ρν(X)

holds for all X, Y ∈ L∞; that is, no-undercut holds.
If Λ is a CAR with respect to ρν then

EµY [−Y] = Λ(Y, Y) = ρν(Y) = max
µ∈Cν

Eµ[−Y]

thus µY is a maximizer. Conversely, if µY ∈ arg maxµ∈Cν
Eµ[−Y] then

Λ(Y, Y) = EµY [−Y] = max
µ∈Cν

Eµ[−Y] = ρν(Y).

Since Y ∈ L∞ is arbitrary, the thesis follows.

The previous proposition shows how the no-undercut property is
equivalent to µY belonging to the core of ν, thus it extends the result
of Denault [30] to the case where the number of sub-portfolios is not
necessarily finite.

We point out that an alternative way to prove the previous result is
to use the monotonicity of the integral with respect to the game (see
Appendix A or Denneberg [31]).
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2.3.2 Some well-known capital allocation methods

We present here some of the most popular capital allocation princi-
ples, used as examples throughout the work. Some of them, namely
the proportional and the marginal one, will be also illustrated in the
numerical example of Chapter 6, for VaR, CVaR and for the entropic
risk measure.

The first class of capital allocation methods we consider is the class
of proportional ones (see Dhaene et al. [32]). The method consists in
choosing a risk measure ρ and assigning the capital ki to each sub-
portfolio Xi, i = 1, . . . , n, via

ki =
ρ(X)

∑n
j=1 ρ(Xj)

ρ(Xi). (2.3)

We point out that, by using a proportional allocation method, we get
the desired pooling effect whenever the risk measure is such that
ρ(Xi) > 0 and it is subadditive. The proportional method may be
extended to a general framework, in term of capital allocation rules,
as follows.

Definition 2.13. Given a monetary normalized risk measure ρ, the
proportional CAR is given by

ΛP
ρ (X, Y) :=

ρ(X)

ρ(X) + ρ(Y− X)
ρ(Y), X, Y ∈ L∞;

with the following convention:

if ρ(X) + ρ(Y− X) = 0 then ΛP
ρ (X, Y) := 0.

It is easy to check that ΛP
ρ is actually a CAR in the sense of Defini-

tion 2.12, since ΛP
ρ (X, X) = ρ(X).

The second class of capital allocation methods we consider starts
from the idea of measuring how much a single asset contributes to
the total portfolio in terms of risk; that is, it aims at assessing marginal
contributions. We present the following rule (see Tasche [62]) applied
to a chosen risk measure ρ: the capital ki is attributed to each sub-
portfolio Xi, i = 1, . . . , n, via

ki = ρ(X)− ρ(X− Xi), (2.4)

that is, by the difference of the risk capital of the portfolio with sub-
unit i and the risk capital of the portfolio without sub-unit i. Since
the sum of marginal risk contributions underestimates the total risk,
it is customary to use an adjusted formula, given by

k∗i =
ρ(X)

∑n
j=1 k j

ki, (2.5)
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which ensures to get full allocation. The method presented above is
sometimes called the with-or-without allocation (see [62]) and the
marginal contributions are sometimes defined in term of directional
derivative:

MCi := lim
h→0

ρ(X + hXi)− ρ(X)

h
.

However, we prefer to call marginal method the one given by (2.4),
since the last formula above will be termed as gradient or Euler alloca-
tion, as properly explained in the following.

The marginal method (as in (2.4)) may be extended to a general
framework, in term of capital allocation rule, as follows.

Definition 2.14. Given a monetary normalized risk measure ρ, the
marginal CAR is given by

ΛM
ρ (X, Y) = ρ(Y)− ρ(Y− X), X, Y ∈ L∞.

Likewise the proportional method, it is easy to check that ΛM
ρ is a

CAR in the sense of Definition 2.12, since ΛM
ρ (X, X) = ρ(X).

These are just few of many possible capital allocation methods: we
first present them mainly because they are very intuitive, easy to im-
plement through a numerical example, and frequently used in the
practice, also for performance measurement purposes. We point out
that other very popular methods are inspired to cooperative game
theory concepts and principles (Shapley value, the interested reader
can see [30]).

In order to investigate how diversification impacts on capital allo-
cation methods, we will also consider the diversification index. For
X = X1 + · · · + Xn and any risk measure ρ such that ρ(Xi) > 0,
i = 1, . . . , n, the diversification index is given by

DIρ =
ρ(X)

∑n
i=1 ρ(Xi)

. (2.6)

The index shows how much a portfolio is diversified: when DI is
close to 0, it means high diversification, when the index is close to 1 it
means slight diversification. If the index is above 1 it means that the
risk measure is not subadditive.

As a further example, we also introduce the following.

Definition 2.15. Given a risk measure ρ, the total Return on Risk Ad-
justed Capital (RORAC) is defined as

Rρ(Y) :=
E[Y]
ρ(Y)

, Y ∈ L∞;

with the following convention: if ρ(Y) = 0 then Rρ(Y) := 0.



24 risk measures and capital allocation

In our numerical study (see Chapter 6), we also investigate the
contribution of the sub-portfolios to the total RORAC, that is, to the
one of the aggregated position. More precisely, the contribution of
each sub-portfolio Xi, i = 1, . . . , n, to the total RORAC is given by

Ri =
E[Xi]

ki

where ki, i = 1, . . . , n, can be obtained by using any capital allocation
method. Since the sum of contributions is not equal to the total port-
folio RORAC, and thus full allocation is not satisfied, it is customary
to use an adjusted formula:

R∗i =
R

∑n
j=1 Rj

Ri

see [62] for details. We formalize the contribution to the total RORAC
with the following definition.

Definition 2.16. Given a CAR Λ, with respect to a risk measure ρ,
the RORAC contribution is given by

ΛR(X, Y) :=
E[X]

Λ(X, Y)
, X, Y ∈ L∞;

with the following convention: if Λ(X, Y) = 0 then ΛR(X, Y) := 0.

2.3.2.1 On the gradient allocation

We now recall the so-called gradient allocation, also named as Euler
allocation, and we briefly summarize the work of Kalkbrener [50]. He
showed that for any coherent risk measure there exists a CAR satisfy-
ing linearity and no-undercut (diversification in his notation).

More precisely, Kalkbrener [50] firstly shows that any coherent risk
measure ρ : X → R, defined on a linear subspace X of L0, can be
represented as

ρ(X) = max
h∈Hρ

h(−X)

where Hρ is the space of all linear functionals h : X → R such that
h(x) ≤ ρ(X), for all X ∈ X . Then, for hY ∈ arg maxh∈Hρ

h(Y), he
defines

ΛK
ρ (X, Y) := hY(−X), X ∈ L∞.

It is clear, by construction, that ΛK
ρ is linear and satisfies no-undercut.

In our setting, since we consider risk measures on L∞, equipped
with the essential supremum norm ‖·‖∞, the functionals belonging
to Hρ are also continuous (see, for instance, Dunford and Schwartz
[34, Lemma II.3.4]). Hence, the element of Hρ are also element of the
norm-dual of L∞, i. e. the space ba. In such a way, we recover the
representation of Proposition 2.3. Thus, one can choose a maximizer



2.3 capital allocation 25

in the dual representation of Proposition 2.3 for defining a CAR with
the same desirable properties as above.

Notice also that Hρ is the subdifferential of ρ at 0 (see Appendix A
or Aliprantis and Border [2]), this justify the terminology used in the
following definition, which formalizes the discussion so far.

Definition 2.17. For a coherent risk measure ρ : L∞ → R, the sub-
differential CAR is given by

Λ∂
ρ(X, Y) := Eµ∗Y

[−X], X, Y ∈ L∞;

where µ∗Y is a maximizer in the dual representation of ρ(Y).

Notice that, Λ∂
ρ is a family of maps, whenever the maximizer in the

dual representation of ρ is not unique.
It then follows that, when ρ is also continuous from below, one can

choose a probability measure Q∗Y as a maximizer in the dual repre-
sentation of ρ(Y) and obtain

Λ∂
ρ(X, Y) = EQ∗Y

[−X] X, Y ∈ L∞;

see also Delbaen [28].
Suppose now that the coherent risk measure ρ is also Gateaux dif-

ferentiable at X, then its subdifferential reduces to a singleton with
the unique element being the gradient of ρ at X (see Appendix A
or [2]). This justify the following definition.

Definition 2.18. Given a Gateaux differentiable coherent risk mea-
sure ρ : L∞ → R, the Euler or gradient CAR is given by

Λ∇ρ (X, Y) := lim
h→0

ρ(Y + hX)− ρ(Y)
h

= EQ∗Y
[−X], X, Y ∈ L∞;

where dQ∗Y
dP

is the gradient of ρ at Y.

The gradient allocation is therefore linear (which implies full allo-
cation), satisfies no-undercut and riskless, among others. See Kalk-
brener [50] for more details.

We recall anyway that the Euler method is sometimes defined as a
partial derivative with respect to the weight of an asset in a portfolio.
It is called so since the full allocation is given by the validity of Euler’s
Theorem for coherent and differentiable risk measures (see [62]).

A more general class of capital allocation methods, namely the
Aumann-Shapley one, has been proposed by Tsanakas [64] and later
extended by Centrone and Rosazza Gianin [23] to risk measures that
are not necessarily differentiable. Hence, such methods overcome the
gradient allocation and represent a generalization.

We define here the method only for coherent risk measures, al-
though it also works with convex and quasi-convex risk measures;
see Centrone and Rosazza Gianin [23] for more details.
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Definition 2.19. Given a coherent risk measure ρ, which is continu-
ous from below, the Aumann-Shapley CAR is defined as

ΛAS
ρ (X, Y) :=

∫ 1

0
EQ∗γY

[−X] dγ, X, Y ∈ L∞;

where Q∗γY ∈ arg maxQ∈QEQ[γY], γ ∈ [0, 1].

As already pointed out by Centrone and Rosazza Gianin [23], Λρ
AS

is a family of maps whenever arg maxQ∈QEQ[γY] is not a singleton.
Instead, when the coherent risk measure ρ is also Gateaux differen-
tiable, ΛAS

ρ reduces to the gradient CAR.



3
H A E Z E N D O N C K - G O O VA E RT S C A P I TA L
A L L O C AT I O N R U L E S

In this chapter, we deal with the problem of capital allocation w. r. t.
to Haezendonck-Goovaerts (HG) risk measures [14, 47].

We generalize the capital allocation method introduced by Xun et
al. [67] for Orlicz risk premia [48], in order to cover HG risk measures.
We first present an approach based on Orlicz quantiles [15] and sec-
ond a more general one based on the concept of linking function. We
study the properties of the proposed CARs for HG risk measures,
both in the quantile-based setting and in the linking one. Finally, we
provide robust versions of the results, both considering the case of am-
biguity over the probabilistic model and the one of multiple Young
functions, as in [15].

The chapter is organized as follows: in Section 3.1 we briefly recall
some known facts about Orlicz risk premia and HG risk measures; in
Section 3.2 we present the capital allocation methods based on Orlicz
quantiles; in Section 3.3 we introduce those based on linking func-
tions. Sections 3.4 and 3.5 are instead devoted to the robust versions.

3.1 preliminaries

Throughout the chapter, we adopt the actuarial notation about signs,
that is, positive values have to be interpreted as losses while nega-
tive ones as gains. Therefore, in this setting, the Value at Risk of X at
level α ∈ (0, 1) is simply the upper α-quantile of X, without changing
the sign (compare with Definition 2.9). A similar argument holds for
CVaR and for a general coherent risk measure ρ; indeed, here mono-
tonicity means increasing monotonicity, i. e. if Y ≥ X implies ρ(Y) ≥
ρ(X), while cash-additivity corresponds to ρ(X + m) = ρ(X) + m for
all m ∈ R and X ∈ L∞.

Before recalling the definition and basic results of Orlicz risk pre-
mia and Haezendonck-Goovaerts risk measures, we give some pre-
liminaries on Orlicz spaces; see Appendix A for more details or Rao
and Ren [59] for a detailed treatment on Young functions and Orlicz
spaces.

Let Φ : [0,+∞)→ [0,+∞) be a convex and strictly increasing func-
tion satisfying Φ(0) = 0 and Φ(1) = 1. Such Φ is called a (normal-
ized) Young function. It follows that Φ is continuous and satisfies
limx→+∞ Φ(x) = +∞.

27
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Given a Young function Φ, the Orlicz space LΦ is defined as

LΦ :=
{

X ∈ L0
∣∣∣∣ E

[
Φ
(
|X|
a

)]
< +∞ for some a > 0

}
,

where L0 := L0(Ω,F , P) denotes the space of all random variables on
(Ω,F , P).

For the Orlicz duality, we also recall the convex conjugate Ψ of Φ,
defined as

Ψ(y) := sup
x≥0
{xy−Φ(x)} , y ≥ 0.

3.1.1 Orlicz premia and Haezendonck-Goovaerts risk measures

We now recall the definition and basic results on Orlicz risk premia
and Haezendonck-Goovaerts risk measures. See, for details, Bellini
and Rosazza Gianin [14], Goovaerts et al. [47] and Haezendonck and
Goovaerts [48].

Definition 3.1 (see [48]). Let a Young function Φ be given and let
α ∈ [0, 1) be fixed. The Orlicz risk premium of X ∈ L∞

+ , with X 6= 0, is
the unique solution HΦ

α (X) of

E

[
Φ
(

X
HΦ

α (X)

)]
= 1− α,

while, by convention, for X = 0, HΦ
α (0) := 0.

For simplicity of notation, the dependence on Φ is usually omitted
in HΦ

α (X), i. e. Hα := HΦ
α , and H(X) := H0(X).

As the Young function Φ can be seen as a loss function, Hα can
be interpreted as a positively homogeneous extension of the certainty
equivalent. Indeed, the certainty equivalent (also known as the mean
value principle in the actuarial literature) is given by

C(X) := Φ−1(E[Φ(X)]), X ∈ L∞,

and it is not positively homogeneous, in general. A way to obtain a
positively homogeneous premium is to define it as the solution λ of
the equation

C
(

X
λ

)
= 1.

Notice that λ coincides with H(X). The generalization to the case
α 6= 0 comes from the observation that an insurer could sell a fraction
α ∈ [0, 1] of the risk to a reinsurer at a proportional price αλ. We
refer to Bellini and Rosazza Gianin [14], Goovaerts et al. [47] and
Haezendonck and Goovaerts [48] for a further discussion.

Notice that a more general definition of Orlicz premia on Orlicz
spaces LΦ has been given by Haezendonck and Goovaerts [48] by
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means of the Luxemburg norm ‖·‖Φ (see Rao and Ren [59] for more
details on this norm), that is

H(X) = ‖X‖Φ := inf
{

k > 0
∣∣∣∣ E

[
Φ
(

X
k

)]
≤ 1

}
. (3.1)

Then, Hα is simply given by (3.1) with Φα := Φ
1−α instead of Φ.

Haezendonck and Goovaerts [48] proved also that Hα satisfies the
following properties:

Monotonicity: if X ≥ Y (with X, Y ∈ L∞
+), then Hα(X) ≥ Hα(Y).

Subadditivity: Hα(X + Y) ≤ Hα(X) + Hα(Y) for all X, Y ∈ L∞
+ .

Positive homogeneity: Hα(λX) = λHα(X) for all X ∈ L∞
+ , λ ≥ 0.

Since Orlicz risk premia are defined only for X ∈ L∞
+ and fail, in

general, to be cash-additive, Haezendonck-Goovaerts risk measures
were introduced by Haezendonck and Goovaerts [48] (see also Bellini
and Rosazza Gianin [14] and Goovaerts et al. [47]) to extend Orlicz
risk premia so to obtain cash-additive risk measures defined on the
whole L∞.

We present here the formulation introduced by Bellini and Rosazza
Gianin [14].

Definition 3.2 (see [14]). Let α ∈ [0, 1). The Haezendonck-Goovaerts
risk measure of X ∈ L∞ is defined by

πα(X) := inf
x∈R

πα(X, x) (3.2)

where
πα(X, x) := x + Hα

(
(X− x)+

)
.

Some properties of πα were then proved in Bellini and Rosazza
Gianin [14] (see also Gao et al. [44]). In particular, πα(X) defines a
coherent risk measure in our setting.

Proposition 3.1 (Bellini and Rosazza Gianin [15]). For any α ∈ (0, 1)
and X ∈ L∞, the infimum in the definition of the Haezendonck-Goovaerts
risk measure πα(X) is attained at some x∗X. Moreover, πα admits the follow-
ing representation:

πα(X) = max
Q∈Q

EQ[X]

where Q is a subset of DΨ :=
{

η ∈ LΨ
+

∣∣ E[η] = 1
}

and Ψ is the convex
conjugate of Φ.

If Φ is also differentiable and Hα

(
(X− ·)+

)
is differentiable at x∗X, then

πα(X) = EQX [X]

where

dQX

dP
=

Φ′
(

(X−x∗X)
+

‖(X−x∗X)
+‖Φα

)
1{X>x∗X}

E
[
Φ′
(

(X−x∗X)
+

‖(X−x∗X)
+‖Φα

)
1{X>x∗X}

] .
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3.1.2 Capital allocation

As in Chapter 2, a CAR for a monetary risk measure ρ is a map
Λ : L∞ × L∞ → R such that Λ(X, X) = ρ(X) for all X ∈ L∞. How-
ever, Brunnermeier and Cheridito [18] pointed out that the equal-
ity Λ(X, X) = ρ(X) might be not indispensable in some cases, for
example when the capital is collected for monitoring purpose. For
that reason, the requirement Λ(X, X) = ρ(X) can be replaced by
Λ(X, X) ≤ ρ(X) for all X ∈ L∞ (in that case, Λ will be called au-
dacious CAR) or by Λ(X, X) ≥ ρ(X) for all X ∈ L∞ (prudential CAR).
See also [23] for a further discussion.

Notice that, throughout the chapter and with an abuse of notation,
we still call CAR a map defined on a restricted domain D of L∞ × L∞

(e. g. on L∞
+ × L∞) and satisfying Λ(X, X) = ρ(X) for the correspond-

ing ρ restricted to X ∈ D.

We now recall some standard properties for a CAR which we are
going to study throughout the chapter. First of all, we will study the
no-undercut property, widely discussed in Chapter 2, and the riskless
one (see again Chapter 2). We will also investigate if the presented
CARs are monotone increasing in the first variable, that is, we inves-
tigate the following property, for all X, Y, Z ∈ L∞:

Monotonicity: if X ≥ Z then Λ(X, Y) ≥ Λ(Z, Y).

Thus, monotonicity means that the capital allocated to a position with
a higher loss has to be greater or equal than the capital allocated to
another position with a lower loss.

It is also clear, by definition of capital allocation rule, that a CAR
Λ inherits some properties from the underlying risk measure ρ. In
particular, if ρ is coherent risk measure then Λ satisfies Λ(X + c, X +

c) = Λ(X, X) + c and Λ(λX, λX) = λΛ(X, X) for all c ∈ R, λ ≥
0, X ∈ L∞. It is interesting to study if Λ preserves those properties
also for pairs (X, Y), with X 6= Y. That is, throughout the chapter we
also consider the following properties, for all X, Y ∈ L∞:

Cash-additivity: Λ(X + c, Y + c) = Λ(X, Y) + c for all c ∈ R.

Positive homogeneity: Λ(λX, λY) = λΛ(X, Y) for all λ ≥ 0.

Cash-additivity requires that, whenever we add any cash amount to
both the sub-portfolio X and the portfolio Y, the capital allocated to
such a pair is exactly that allocated to the pair (X, Y) plus the cash
amount. Positive homogeneity requires that the capital allocated to a
pair of sub-portfolio and portfolio formed by λ shares of both X and
Y is exactly λ times the capital allocated to (X, Y).

Some among the following further properties on Λ can be also
required for all X, Y, Z ∈ L∞ (see Chapter 4 for details):

1-cash-additivity: Λ(X + c, Y) = Λ(X, Y) + c for all c ∈ R.
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1-law invariance: if X ∼ Z then Λ(X, Y) = Λ(Z, Y).

1-positive homogeneity: Λ(λX, Y) = λΛ(X, Y) for all λ ≥ 0.

2-translation-invariance: Λ(X, Y + c) = Λ(X, Y) for all c ∈ R.

1-cash-additivity and 1-positive homogeneity have similar interpre-
tations to cash-additivity and positive homogeneity even if, in the
present case, they have only impact on the first variable of Λ, i. e.
on the sub-portfolio. 1-law invariance requires that the capital allo-
cated to any couple of sub-portfolios with the same distribution is
equal. 2-translation-invariance means that the capital allocated to X
considered as a sub-portfolio of Y is exactly that one of X viewed as
a sub-portfolio of any translation of Y; that is, no matter if we add or
remove any cash amount to the portfolio Y, the capital allocated to
the sub-portfolios does not change.

As regards the full allocation property (see Chapter 2), we recall
that it is always possible to modify a capital allocation rule, as in
Dhaene et al. [32], so to guarantee the full allocation property. By
defining the risk contribution of each Xi as

Λ̂(Xi, X) :=
ρ(X)

∑n
j=1 Λ(Xj, X)

Λ(Xi, X),

indeed, Λ̂ satisfies the full allocation property.
Another possibility to obtain full allocation is to shift the capital

allocation by a suitable exogenous amount (see [18]). That is, one can
find suitable ci, i = 1, . . . , n, such that ∑n

i=1
(
Λ(Yi, Y) − ci

)
= ρ(Y)

(see [18, 51]).
One possible motivation for the failure of full allocation, already

taken into account when introducing prudential and audacious cap-
ital allocation rules, is that Λ(X, X) 6= ρ(X), although the capital al-
location rule is possibly linear in the first variable (see [18]). Another
possible reason for a CAR not to satisfy full allocation is instead the
lack of linearity in the first variable. In a general framework and for
general risk measures, therefore, weaker assumptions than full alloca-
tion can turn out to be more suitable for capital allocation problems
(see the discussion in Centrone and Rosazza Gianin [23]).

However, we remind to the discussion on full allocation in Chap-
ter 4 for further details.

For the convention about signs explained above, we recall that, for
a Gateaux differentiable coherent risk measure ρ, the gradient alloca-
tion in this context is given by

Λ∇ρ (X, Y) := EQY [X], (3.3)

where dQY
dP

is the gradient of ρ at Y.
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Similarly, for a coherent risk measure ρ(Y) = supQ∈QEQ[Y] whose
supremum is attained at some QY, the Aumann-Shapley CAR is given
by

ΛAS
ρ (X, Y) :=

∫ 1

0
EQγY [X] dγ.

Quite recently, Xun et al. [67] introduced the following capital allo-
cation rule for Orlicz risk premia. In particular, they defined the risk
contribution HY,α(X) of X as a sub-portfolio of Y as the solution of1

E

[
Φ
(X 1{Y>VaRα(Y)}

HY,α(X)

)]
= 1− α (3.4)

where α ∈ [0, 1). Such definition reduces to the so-called “contribu-
tion to shortfall”, proposed by Overbeck [58] and given by

CSα(X, Y) := E[X | Y > VaRα(Y)], (3.5)

for Φ(x) = x and for continuous random variables Y. The fact of
considering the loss Y only in the event {Y > VaRα(Y)} comes from
the capital allocation approaches based on the insurer’s default op-
tion. More precisely, such approaches only consider the problem of
allocating the loss over a certain threshold (VaRα(Y) in this case), mo-
tivating it by the fact that the shareholders of a company have limited
liability and therefore, in the event of default, they are not obliged to
pay when the loss exceeds such fixed threshold. See, for more details,
Dhaene et al. [32] and Myers and Read [57].

Therefore, in the present chapter we generalize the CAR proposed
by Xun et al. [67] for Orlicz premia in three directions. First, in Sec-
tion 3.2 we will provide a CAR both for Orlicz risk premia Hα and
for HG risk measures πα not only in terms of VaRα as in (3.4) but also
of Orlicz quantiles (defined in [15]) that seem to be more appropri-
ate for general Φ. Second, in Section 3.4 we extend Xun et al. [67]’s
approach and ours so to cover ambiguity over P or over Φ. Third, a
new and more general approach by means of linking functions is also
proposed both in the classical and in the robust cases (see Section 3.3
and Section 3.5).

3.2 capital allocation via orlicz quantiles

In this section we are going to provide some capital allocation meth-
ods both for the Orlicz risk premium and for the HG risk measure
by means of the so called Orlicz quantiles introduced by Bellini and
Rosazza Gianin [15] (see also Bellini et al. [12]).

1 Differently from the present work, in [67] VaRα is defined as the lower α-quantile.
This different definition, however, is irrelevant for the study.
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We recall that for any α ∈ (0, 1) the infimum in Equation (3.2) defin-
ing πα is always attained at some point x∗α (see Bellini and Rosazza
Gianin [14]). Thus, πα can be written as

πα(X) = x∗α(X) + Hα

(
(X− x∗α(X))+

)
(3.6)

where
x∗α(X) ∈ arg min

x∈R

{
x + Hα

(
(X− x)+

)}
is called an Orlicz quantile (see Bellini and Rosazza Gianin [15] for
details).

Furthermore, in [15] the authors claimed the uniqueness of an Or-
licz quantile under the hypothesis of Φ being strictly convex. Unfor-
tunately, we have recently realized (see [22]) that such result does
not hold without some additional hypotheses (see also the example
below). Therefore, we correct and replace Proposition 3 (c-d) of [15]
with Proposition 3.2, whose proof is similar to those of [15, Prop. 3,
11] and of [12, Propp. 1, 5].

Example 3.1. Consider the Orlicz function Φ(x) = x2. It follows that

Hα(X) =

√
E[X2]

1− α
, πα(X, x) = x +

√
E[((X− x)+)2]

1− α
.

Consider now the probability space
(
Ω,F , P

)
with Ω = {ω1, ω2},

F = P(Ω) and P({ωi}) = 1
2 , i = 1, 2, and the random variable

X =

4 on ω1;

8 on ω2.

Hence,

πα(X, x) = x +

√
E[((X− x)+)2]

1− α

=


x +

√
(4−x)2+(8−x)2

2(1−α)
if x ≤ 4;

x + 8−x√
2(1−α)

if 4 < x ≤ 8;

x if x > 8.

It follows easily that πα(X, x) is linear in the interval (4, 8] (thus, not
strictly convex); it is even constant for α = 1

2 . Furthermore, for α = 1
2

the minimum is not unique but attained at any point of the interval
[4, 8], where πα(X, x) ≡ 8.

It is clear that such example may be extended to more general dis-
crete random variables and also to any Φ(x) = xp, with p ∈ (1,+∞).
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In the furthering, we will use the notations

x∗,−α (X) := inf arg min
x∈R

πα(X, x),

x∗,+α (X) := sup arg min
x∈R

πα(X, x).

Proposition 3.2. For any α ∈ (0, 1) and X ∈ L∞, the set of minimizers
is a closed interval, that is

arg min
x∈R

πα(X, x) =
[
x∗,−α (X), x∗,+α (X)

]
.

Moreover, it satisfies the following properties:

Cash-additivity: for all h ∈ R, X ∈ L∞,[
x∗,−α (X + h), x∗,+α (X + h)

]
=
[
x∗,−α (X) + h, x∗,+α (X) + h

]
.

Positive homogeneity: for all λ ≥ 0, X ∈ L∞,[
x∗,−α (λX), x∗,+α (λX)

]
=
[
λx∗,−α (X), λx∗,+α (X)

]
.

Riskless: if X = a ∈ R then x∗,−α (X) = x∗,+α (X) = a.

Boundedness from above: x∗,+α (X) ≤ ess sup(X) for all X ∈ L∞.

Proof. Since, for any α ∈ (0, 1) and X ∈ L∞, πα(X, x) is finite, convex
and limx→±∞ πα(X, x) = +∞, from [15, Prop. 3 (a-b)] it follows that
the set of minimizers is a closed interval.

Cash-additivity: for any h ∈ R and X ∈ L∞ it holds that[
x∗,−α (X + h), x∗,+α (X + h)

]
= arg min

x∈R

πα(X + h, x)

= arg min
x∈R

{πα(X, x− h) + h}

= arg min
x∈R

{πα(X, x− h)}

= arg min
x∈R

πα(X, x) + h

=
[
x∗,−α (X) + h, x∗,+α (X) + h

]
.

Law invariance: it follows immediately by law invariance of πα.

Positive homogeneity: take any λ > 0 and X ∈ L∞. Since, by positive
homogeneity of Hα,

πα(λX, x) = x + Hα

(
(λX− x)+

)
= λπα

(
X,

x
λ

)
,
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it follows that[
x∗,−α (λX), x∗,+α (λX)

]
= arg min

x∈R

πα(λX, x)

= arg min
x∈R

{
λπα

(
X,

x
λ

)}
= arg min

x∈R

{
πα

(
X,

x
λ

)}
= λ arg min

x∈R

πα(X, x)

=
[
λx∗,−α (X), λx∗,+α (X)

]
The case λ = 0 follows by riskless (proved here below).

Riskless: since

πα(a) = inf
x∈R
{x + Hα

(
(a− x)+

)
} = inf

x∈R

{
x +

(a− x)+

Φ−1(1− α)

}
for any a ∈ R and Φ−1(1− α) < 1 for any α 6= 0, it follows that the
unique minimizer is x∗α(a) = a.

Boundedness from above: notice that Y := X− ess sup(X) ≤ 0, thus

0 ≥ πα(Y) = x∗,+α (Y) + Hα

((
Y− x∗,+α (Y)

)+) ≥ x∗,+α (Y),

by monotonicity of πα. Therefore, x∗,+α (X) ≤ ess sup(X) follows by
cash-additivity.

Notice that Orlicz quantiles fail to be monotone, as they fail to
be bounded from below; furthermore, for Φ(x) = x, the upper Orlicz
quantile x∗,+α is exactly the Value at Risk at level α, thus it corresponds
to a given loss threshold with probability α. Unfortunately, the latter
interpretation is lost when we consider a general Young function Φ
(see [15] for details).

Going back to capital allocation rules, while the use of VaRα in the
CAR (3.4) proposed by Xun et al. [67] can be justified for Φ(x) = x by
the arguments above on Orlicz quantiles, this is no more the case for
general Φ. Roughly speaking, VaRα can be seen as the “right quantile”
for Φ(x) = x while it is not for a general Φ, where the use of Orlicz
quantiles seems to be more appropriate. Motivated by this, we aim
at generalizing the CAR of [67] in two directions: first, by replacing
VaRα with an Orlicz quantile in Equation (3.4); second, by defining
a CAR for HG risk measures πα starting from that for Orlicz risk
premia Hα so to obtain a CAR defined for any pair (X, Y) ∈ L∞ × L∞

and not only for X in L∞
+ .

3.2.1 Capital allocation rules for Hα

We now generalize the approach of Xun et al. [67] at the level of Hα

by means of Orlicz quantiles.
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Definition 3.3. Given the Orlicz risk premium Hα, we define the
map ΛH : L∞

+ × L∞ → R as

ΛH(X, Y) := Hα

(
X 1{Y≥x∗α(Y)}

)
(3.7)

where x∗α(Y) is an Orlicz quantile at level α of Y.

Differently from (3.4), in our definition we consider the loss Y on
the event {Y ≥ x∗α(Y)} (instead of {Y > VaRα(Y)}). In addition to
the use of Orlicz quantiles instead of VaRα, the choice of considering
{Y ≥ x∗α(Y)} (instead of a strict inequality) has been done to avoid
that, for constant Y, ΛH(X, Y) = 0 for all X ∈ L∞

+ .
Notice that the definition of ΛH depends on the choice of the Orlicz

quantile, thus, roughly speaking, ΛH can be seen as family of CARs
“parameterized” by the Orlicz quantile chosen.

In the following, x∗α(Y) (used in (3.7)) will be fixed to be the upper
Orlicz quantile; that is, we set x∗α(Y) := x∗,+α (Y). Similar arguments
would hold whether the lower Orlicz quantile was fixed.

Notice that ΛH : L∞
+ × L∞ → R+. Moreover, for X 6= 0 and P(Y ≥

x∗α(Y)) > 0, ΛH(X, Y) is the unique solution of

E

[
Φ
(X 1{Y≥x∗α(Y)}

ΛH(X, Y)

)]
= 1− α.

Condition P(Y ≥ x∗α(Y)) > 0 is quite commonly satisfied since, by
the properties of Orlicz quantiles, x∗α(Y) ≤ ess sup(Y) (see Proposi-
tion 3.2). When Φ(x) = x and Y is a continuous random variable, for
instance, P(Y ≥ VaRα(Y)) > 0 is guaranteed by definition of VaRα.

As for Orlicz premia, it holds also that

ΛH(X, Y) = inf
{

k > 0
∣∣∣∣ E

[
Φ
(X 1{Y≥x∗α(Y)}

k

)]
≤ 1− α

}
.

In the following result we list the main properties satisfied by ΛH.

Proposition 3.3. The map ΛH defined in (3.7) is an audacious CAR for
Hα satisfying: no-undercut with respect to Hα (that is, ΛH(X, Y) ≤ Hα(X)

for all X ∈ L∞
+ , Y ∈ L∞), monotonicity, 1-law invariance, 1-positive homo-

geneity and 2-translation-invariance. Moreover, the following holds:

ΛH(a, Y) = a
(

Φ−1
(

1− α

P(Y ≥ x∗α(Y))

))−1

for all a ≥ 0, Y ∈ L∞.

Proof. Audacious CAR, no-undercut and monotonicity follow easily
by monotonicity of Hα, while 1-law invariance and 1-positive homo-
geneity follow from the corresponding properties of Hα.

2-translation-invariance follows because, by cash-additivity of the
Orlicz quantile, {Y + c ≥ x∗α(Y + c)} = {Y ≥ x∗α(Y)} for all c ∈ R.

As regards the last statement, notice that

ΛH(a, Y) = Hα

(
a 1{Y≥x∗α(Y)}

)
= aHα

(
1{Y≥x∗α(Y)}

)
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holds for any a ≥ 0 and Y ∈ L∞ by positive homogeneity of Hα. By
taking A := {Y ≥ x∗α(Y)}, it follows that

Hα( 1A) = inf
{

k > 0
∣∣∣∣ E

[
Φ
(

1A

k

)]
≤ 1− α

}
= inf

{
k > 0

∣∣∣∣ E

[
Φ
(

1
k

)
1A

]
≤ 1− α

}
= inf

{
k > 0

∣∣∣∣ 1
k
≤ Φ−1

(
1− α

P(A)

)}
=

(
Φ−1

(
1− α

P(A)

))−1

where the second equality holds because Φ is a Young function while
the third one by strict monotonicity of Φ.

Notice that, for Φ(x) = x and for Y with P(Y = x∗α(Y)) = 0, ΛH

reduces to the CAR proposed by Xun et al. [67] since x∗α = x∗,+α =

VaRα. For Φ(x) = x and a general Y, however, the two definitions are
very similar.

3.2.2 Different capital allocation rules for πα

So far, we have generalized the CAR given by Xun et al. [67] for Hα,
by using Orlicz quantiles. In the following, we will propose different
CARs for HG risk measures πα and not only for Orlicz risk premia
Hα, again by means of Orlicz quantiles. A comparison among the
different CARs here proposed and the classical ones will be also pro-
vided.

Starting from the CAR proposed for Hα in (3.7) and from (3.6), we
propose the following CAR for πα.

Definition 3.4. Given πα, we define the map Λπ : L∞ × L∞ → R as

Λπ(X, Y) := x∗α(X) + ΛH
(
(X− x∗α(X))+, Y

)
(3.8)

= x∗α(X) + Hα

(
(X− x∗α(X))+ 1{Y≥x∗α(Y)}

)
where x∗α(X) (resp. x∗α(Y)) is an Orlicz quantile at level α of X (resp.
of Y).

Notice that in the previous definition we make use of two different
Orlicz quantiles: one for X, the other for Y. The second one plays
the role of a threshold for the whole portfolio Y. As for ΛH, also the
definition of Λπ depends on the choice of the two Orlicz quantiles
x∗α(X) and x∗α(Y), hence ΛH can be seen as a family of CARs.

In the following, we will again fix x∗α(Z) (used in (3.8)) to be the
upper Orlicz quantile of Z. Similar arguments would hold whether
the lower Orlicz quantiles were fixed.
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Example 3.2. Consider the case where Φ(x) = x. Then Λπ reduces
to

Λπ(X, Y) = qα(X) +
E
[
(X− qα(X))+ 1{Y≥qα(Y)}

]
1− α

= qα(X) +
P(AX,Y)

1− α
E[X− qα(X) | AX,Y]

where AX,Y := {X ≥ qα(X), Y ≥ qα(Y)} and qα(X) (resp. qα(Y)) is
the upper α-quantile of X (resp. Y). If X and Y are independent and
continuous then P(X ≥ qα(X), Y ≥ qα(Y)) = P(X ≥ qα(X))P(Y ≥
qα(Y)) = (1− α)2, therefore

Λπ(X, Y) = qα(X) + (1− α)E[X− qα(X) | X ≥ qα(X), Y ≥ qα(Y)]

= α VaRα(X) + (1− α)E[X | X ≥ VaRα(X), Y ≥ VaRα(Y)].

In other words, Λπ is a convex combination of VaRα(X) and of a
term that is somehow related to the contribution to shortfall (3.5) but
taking into account also VaRα(X).

Proposition 3.4. The map Λπ defined in (3.8) is a CAR for πα. Further-
more, it satisfies no-undercut, riskless, 1-cash-additivity, 1-law invariance,
1-positive homogeneity, 2-translation-invariance and cash-additivity.

Proof. We start to prove that Λπ is a CAR with respect to πα. For
any X ∈ L∞, indeed,

Λπ(X, X) = x∗α(X) + Hα

(
(X− x∗α(X))+ 1{X≥x∗α(X)}

)
= x∗α(X) + Hα

(
(X− x∗α(X))+

)
= πα(X).

No-undercut: by monotonicity of Hα, it follows that for all X, Y ∈ L∞

Λπ(X, Y) = x∗α(X) + Hα

(
(X− x∗α(X))+ 1{Y≥x∗α(Y)}

)
≤ x∗α(X) + Hα

(
(X− x∗α(X))+

)
= πα(X).

Riskless: it follows immediately by riskless of Orlicz quantiles. In-
deed, for any a ∈ R and Y ∈ L∞,

Λπ(a, Y) = x∗α(a) + Hα

(
(a− x∗α(a))+ 1{Y≥x∗α(Y)}

)
= x∗α(a) = a.

1-cash-additivity: by cash-additivity of Orlicz quantiles, it holds that
for any c ∈ R and X, Y ∈ L∞

Λπ(X + c, Y) = x∗α(X + c) + Hα

(
(X + c− x∗α(X + c))+ 1{Y≥x∗α(Y)}

)
= x∗α(X) + c + Hα

(
(X− x∗α(X))+ 1{Y≥x∗α(Y)}

)
= Λπ(X, Y) + c.
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1-law invariance: for any X, Y, Z ∈ L∞ with X ∼ Z it holds that

Λπ(X, Y) = x∗α(X) + Hα

(
(X− x∗α(X))+ 1{Y≥x∗α(Y)}

)
= x∗α(Z) + Hα

(
(Z− x∗α(Z))+ 1{Y≥x∗α(Y)}

)
= Λπ(Z, Y)

where the second equality follows from the law invariance of the
Orlicz quantile and of Hα.

1-positive homogeneity: by positive homogeneity of Orlicz quantiles
and of Hα, it follows that, for any λ ≥ 0 and any X, Y ∈ L∞,

Λπ(λX, Y) = x∗α(λX) + Hα

(
(λX− x∗α(λX))+ 1{Y≥x∗α(Y)}

)
= λ

(
x∗α(X) + Hα

(
(X− x∗α(X))+ 1{Y≥x∗α(Y)}

))
= λΛπ(X, Y).

2-translation invariance: for any c ∈ R and X, Y ∈ L∞ it holds that

Λπ(X, Y + c) = x∗α(X) + Hα

(
(X− x∗α(X))+ 1{Y+c≥x∗α(Y+c)}

)
= x∗α(X) + Hα

(
(X− x∗α(X))+ 1{Y≥x∗α(Y)}

)
= Λπ(X, Y)

where the second equality holds because of the cash-additivity of the
Orlicz quantile.

Cash-additivity: it follows easily by 2-translation-invariance and 1-
cash-additivity.

Notice that Λπ fails to be monotone, as a consequence of the same
failure of the Orlicz quantiles.

Here below we propose an alternative capital allocation rule for πα

that is in line with the definition of πα as an infimum and is based,
roughly speaking, on a “common quantile” whenever the infimum is
attained.

Definition 3.5. Given the Orlicz risk premium Hα, we define the
map Λ̄π : L∞ × L∞ → R as

Λ̄π(X, Y) := inf
x∈R

{
x + Hα

(
(X− x)+ 1{Y≥x}

)}
. (3.9)

We first establish some properties satisfied by Λ̄π, then we will
investigate whether the infimum in (3.9) is attained or not.

Proposition 3.5. Λ̄π is a CAR with respect to πα satisfying: no-undercut,
monotonicity, 1-law invariance, cash-additivity and positive homogeneity.
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Proof. Since for any X ∈ L∞

Λ̄π(X, X) = inf
x∈R

{
x + Hα

(
(X− x)+ 1{X≥x}

)}
= inf

x∈R

{
x + Hα

(
(X− x)+

)}
= πα(X),

then Λ̄π is a CAR with respect to πα.

No-undercut and monotonicity: they follow by monotonicity of Hα.
In particular, by monotonicity of Hα, it follows that, for all X, Y ∈ L∞,

Λ̄π(X, Y) = inf
x∈R

{
x + Hα

(
(X− x)+ 1{Y≥x}

)}
≤ inf

x∈R

{
x + Hα

(
(X− x)+

)}
= πα(X),

that is no-undercut, while for any X, Y, Z ∈ L∞ with X ≤ Z

Λ̄π(X, Y) = inf
x∈R

{
x + Hα

(
(X− x)+ 1{Y≥x}

)}
≤ inf

x∈R

{
x + Hα

(
(Z− x)+ 1{Y≥x}

)}
= Λ̄π(Z, Y),

that is monotonicity.

1-law invariance: by law invariance of Hα, for any X, Y, Z ∈ L∞ with
X ∼ Z it holds that

Λ̄π(X, Y) = inf
x∈R

{
x + Hα

(
(X− x)+ 1{Y≥x}

)}
= inf

x∈R

{
x + Hα

(
(Z− x)+ 1{Y≥x}

)}
= Λ̄π(Z, Y).

Cash-additivity: for any c ∈ R and X, Y ∈ L∞ it holds that

Λ̄π(X + c, Y + c) = inf
x∈R

{
x + Hα

(
(X + c− x)+ 1{Y+c≥x}

)}
= inf

y∈R

{
y + c + Hα

(
(X− y)+ 1{Y≥y}

)}
= Λ̄π(X, Y) + c,

hence cash-additivity.

Positive homogeneity: the case of λ = 0 is immediate. For any λ > 0
and X, Y ∈ L∞, instead,

Λ̄π(λX, λY) = inf
x∈R

{
x + Hα

(
(λX− x)+ 1{λY≥x}

)}
= inf

x∈R

{
x + Hα

(
λ
(

X− x
λ

)+
1{Y≥ x

λ}
)}

= inf
y∈R

{
λy + λHα

(
(X− y)+ 1{Y≥y}

)}
= λΛ̄π(X, Y)

where the third equality holds by positive homogeneity of Hα.
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Notice that the infimum is clearly attained whenever X ≤ Y be-
cause in such case Λ̄π coincides with πα.

As shown in the following example, however, the infimum in Equa-
tion (3.9) defining Λ̄π may be not attained in general.

To simplify the notation, we set for Φ(x) = x,

LX,Y(x) := x +
E
[
(X− x)+ 1{Y≥x}

]
1− α

.

Hence (3.9) becomes

Λ̄π(X, Y) = inf
x∈R

{
x +

E
[
(X− x)+ 1{Y≥x}

]
1− α

}
= inf

x∈R
LX,Y(x).

Example 3.3. Take Φ(x) = x and two random variables X, Y with the
following joint distribution:

P(X = k, Y = j) =
1
9

, for each k, j = −1, 0, 1.

It is easy to check that

LX,Y(x) =



−x α
1−α if x ≤ −1;

x
(

1− 4
9(1−α)

)
+ 2

9(1−α)
if − 1 < x ≤ 0;

x
(

1− 1
9(1−α)

)
+ 1

9(1−α)
if 0 < x ≤ 1;

x if x > 1.

For α = 1
9 , it can be easily seen that LX,Y is not convex in x and that

infx∈R LX,Y(x) = − 1
4 is not attained. A similar result holds also for

α = 5
9 , corresponding to P(X ≥ 0, Y ≥ 0) = 1− α = 4

9 , that is “more
or less” to the α-quantile of min {X, Y}.

For α = 8
9 or, equivalently, 1− α = 1

9 = P(X ≥ 1, Y ≥ 1), it holds
instead that infx∈R LX,Y(x) = 1 is attained at any point of the interval
(0, 1] but LX,Y is still not convex in x.

We have thus shown that the infimum in Equation (3.9) defining
Λ̄π(X, Y) may be attained or not. Also, due to non-convexity of LX,Y
in x, it is quite hard to obtain a general result for existence of a mini-
mum. We therefore consider the following particular case.

Proposition 3.6. If X and Y are two continuous random variables in L∞

and Φ(x) = x, then the infimum in (3.9) is attained at some

x∗ ∈
[
ess inf(min {X, Y}), ess sup(max {X, Y})

]
.

Proof. Assume that X and Y have joint density function fX,Y and
that Φ(x) = x. Then

LX,Y(x) = x +
1

1− α

∫ ess sup(X)

x

∫ ess sup(Y)

x
(z− x) fX,Y(z, y) dz dy
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is continuous in x ∈ R. Moreover, it is immediate to check that, for
x ≤ ess inf(min {X, Y}),

LX,Y(x) = x +
E[X− x]

1− α
= − α

1− α
x +

E[X]

1− α
;

while LX,Y(x) = x for x > ess sup(max {X, Y}). Hence, LX,Y is de-
creasing in the interval

(
−∞, ess inf(min {X, Y})

)
and increasing in

the interval
(
ess sup(max {X, Y});+∞

)
. By continuity of LX,Y in x, it

follows that there exists (at least) a minimum point belonging to the
interval

[
ess inf(min {X, Y}), ess sup(max {X, Y})

]
.

Proposition 3.7. Assume that X and Y are two independent and continu-
ous random variables in L∞ and that Φ(x) = x. If x∗ is a minimum point
in (3.9) satisfying x∗ ∈ (ess inf(min {X, Y}), ess sup(max {X, Y})) and
if the density function fY of Y is continuous at x∗, then x∗ has to satisfy the
following first order condition:

1− α = P(X ≥ x∗)P(Y ≥ x∗) + E
[
(X− x∗)+

]
fY(x∗). (3.10)

Proof. If X and Y are independent and continuous and Φ(x) = x,
then

Λ̄π(X, Y) = inf
x∈R

{
x +

E
[
(X− x)+

]
P(Y ≥ x)

1− α

}
where, by Proposition 3.6, the infimum is attained.

For simplicity of notation, set

L(x) := LX,Y(x),

J(x) := P(Y ≥ x),

K(x) :=
E
[
(X− x)+

]
1− α

;

so that L(x) = x + K(x)J(x).
By using similar arguments as in Bellini and Rosazza Gianin [15],

the left and right derivatives of L are given by

L′−(x) = 1 + K′−(x)J(x) + K(x)J′−(x) (3.11)

= 1− 1
1− α

P(X ≥ x)P(Y ≥ x)−
E
[
(X− x)+

]
1− α

fY(x−)

L′+(x) = 1 + K′+(x)J(x) + K(x)J′+(x) (3.12)

= 1− 1
1− α

P(X > x)P(Y ≥ x)−
E
[
(X− x)+

]
1− α

fY(x+),

where K′− and K′+ are given in Bellini and Rosazza Gianin [15] and
fY(x−) and fY(x+) denote the left and right limit of fY at x.
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Since X, Y are continuous, for any x ∈ R where fY is continuous it
holds that

L′−(x) = L′+(x)

= 1− 1
1− α

P(X ≥ x)P(Y ≥ x)−
E
[
(X− x)+

]
1− α

fY(x).

Since L is continuous and differentiable at any point x where fY is
continuous, a necessary condition for

x∗ ∈
(
ess inf(min {X, Y}), ess sup(max {X, Y})

)
being a minimum point is that L′(x∗) = 0, that is satisfying

1− α = P(X ≥ x∗)P(Y ≥ x∗) + E
[
(X− x∗)+

]
fY(x∗)

or, equivalently, by independence of X and Y,

1− α = P(X ≥ x∗, Y ≥ x∗) + E
[
(X− x∗)+

]
fY(x∗).

Here below we provide an example of Λ̄π when X and Y are inde-
pendent and continuous random variables.

Example 3.4. Consider two independent random variables X and Y,
where X is uniformly distributed on [−1, 1] and Y is uniformly dis-
tributed on [−2, 0]. Assume that Φ(x) = x and α = 1

2 . It follows that

Λ̄π(X, Y) = min
x∈R

{
x + 2 E

[
(X− x)+

]
P(Y ≥ x)

}
,

where

L(x) = x + 2E
[
(X− x)+

]
P(Y ≥ x)

=



−x if x ≤ −2;

x + x2 if − 2 < x ≤ −1;
3
4 x + 1

2 x2 − 1
4 x3 if − 1 < x ≤ 0;

x if x ≥ 0.

By direct computation or by applying (3.11) and (3.12), it follows that
x∗ = 2−

√
13

3 is the unique minimum point of L, satisfying the first
order condition (3.10).

We finally propose a last approach to CAR for πα in terms of Or-
licz quantiles. The idea of such an approach is in line with the sub-
differential method (see Chapter 2) where Λ∂

ρ(X, Y) = EQY [X] with
QY being an optimal scenario in the dual representation of ρ.2 In the
present case, indeed, we replace in the formulation of πα(X) the Or-
licz quantile x∗α(Y) realizing the infimum in the definition of πα(Y).

2 Remember that the sub-differential approach coincides with the gradient CAR when-
ever there is a unique optimal scenario, that is, when the risk measure is Gateaux
differentiable.
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Definition 3.6. Given πα as in Definition 3.2, we define the map
Λ̃π : L∞ × L∞ → R as

Λ̃π(X, Y) := x∗α(Y) + Hα

(
(X− x∗α(Y))

+
)

where x∗α(Y) is an Orlicz quantile at level α of Y.

In the following, we fix x∗α to be the upper Orlicz quantile. As pre-
viously, similar results would hold when the lower Orlicz quantiles
are considered.

Unfortunately, as shown below, Λ̃π fails to satisfy no-undercut.

Proposition 3.8. The map Λ̃π is a CAR with respect to πα satisfying
monotonicity, 1-law invariance and undercut, that is,

Λ̃π(X, Y) ≥ Λ̃π(X, X) = πα(X) for all X, Y ∈ L∞.

Furthermore,

Λ̃π(a, Y) = x∗α(Y) +
(a− x∗α(Y))+

Φ−1(1− α)
for all a ∈ R, Y ∈ L∞. (3.13)

Proof. Λ̃π is a CAR with respect to πα since, for any X ∈ L∞, it holds
that

Λ̃π(X, X) = x∗α(X) + Hα

(
(X− x∗α(X))+

)
= πα(X).

Monotonicity and 1-law invariance: they follow by monotonicity and
law invariance of Hα.

Undercut: for all X, Y ∈ L∞

πα(X) = x∗α(X) + Hα

(
(X− x∗α(X))+

)
≤ x∗α(Y) + Hα

(
(X− x∗α(Y))

+
)

= Λ̃π(X, Y)

where the inequality holds by

x∗α(X) ∈ arg min
x∈R

{
x + Hα((X− x)+)

}
,

and the latter contains x∗α(Y).

Finally, (3.13) follows easily by riskless of Hα.

3.2.3 Comparison among different approaches and full allocation

A comparison among the three approaches introduced above and
some well known capital allocation rules is provided here below.

Proposition 3.9. The following relations hold for all X, Y ∈ L∞:

Λ̃π(X, Y) ≥ πα(X) ≥ Λπ(X, Y) and Λ̃π(X, Y) ≥ Λ̄π(X, Y).
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Proof. First of all, for all X, Y ∈ L∞,

Λ̃π(X, Y) ≥ x∗α(X) + Hα

(
(X− x∗α(X))+

)
= πα(X)

≥ x∗α(X) + Hα

(
(X− x∗α(X))+ 1{Y≥x∗α(Y)}

)
= Λπ(X, Y)

where the first inequality holds by undercut of Λ̃π (or by definition
of x∗α) and the second one by no-undercut of Λπ. Concerning the last
inequality, instead, it holds that

Λ̃π(X, Y) = x∗α(Y) + Hα

(
(X− x∗α(Y))

+
)

≥ x∗α(Y) + Hα

(
(X− x∗α(Y))

+ 1{Y≥x∗α(Y)}
)

≥ inf
x∈R

{
x + Hα

(
(X− x))+ 1{Y≥x}

)}
= Λ̄π(X, Y).

As could be expected, Λ̃π dominates both Λπ and Λ̄π: indeed, Λ̃π

depends only on the Orlicz quantile of Y, while Λπ depends on both
the Orlicz quantiles of X and Y, and Λ̄π on a common quantile. So,
in a certain sense, Λ̃π does not take into account the possibility that
the risks of X and Y can compensate each other and hence assigns to
X a higher “cost”.

Notice that, by Proposition 3.1 (see also [15, 44]), for Haezendonck-
Goovaerts risk measures the gradient capital allocation (3.3) becomes

Λ∇π (X, Y) = EQY [X] =
E
[

X Φ′
(

(Y−x∗α(Y))+

‖(Y−x∗α(Y))+‖Φα

)
1{Y>x∗α(Y)}

]
E
[
Φ′
(

(Y−x∗α(Y))+
‖(Y−x∗α(Y))+‖Φα

)
1{Y>x∗α(Y)}

]
since

dQY

dP
=

Φ′
(

(Y−x∗α(Y))+

‖(Y−x∗α(Y))+‖Φα

)
1{Y>x∗α(Y)}

E
[
Φ′
(

(Y−x∗α(Y))+
‖(Y−x∗α(Y))+‖Φα

)
1{Y>x∗α(Y)}

] . (3.14)

This allows us to compare Λπ with the gradient approach and with
Aumann-Shapley method. Very recently, Gómez and Tang [46] stud-
ied in details the gradient allocation for higher moment risk measures,
corresponding to HG risk measures for power Young functions.

Proposition 3.10. For all X, Y ∈ L∞ it holds that

Λπ(X, Y) ≥ E

[X 1{Y≥x∗α(Y)}
Φ−1(1− α)

]
+ x∗α(X)

(
1− P(Y ≥ x∗α(Y))

Φ−1(1− α)

)
.

Moreover, if Φ(x) = x and Y is a continuous random variable, then

Λπ(X, Y) ≥ Λ∇π (X, Y) and Λπ(X, Y) ≥ ΛAS
π (X, Y) for all X ∈ L∞.
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Proof. For all X, Y ∈ L∞ it holds that

Λπ(X, Y) = x∗α(X) + Hα

(
(X− x∗α(X))+ 1{Y≥x∗α(Y)}

)
≥ x∗α(X) +

E
[
(X− x∗α(X))+ 1{Y≥x∗α(Y)}

]
Φ−1(1− α)

≥ x∗α(X) +
E
[
(X− x∗α(X)) 1{Y≥x∗α(Y)}

]
Φ−1(1− α)

= E

[X 1{Y≥x∗α(Y)}
Φ−1(1− α)

]
+ x∗α(X)

(
1− P(Y ≥ x∗α(Y))

Φ−1(1− α)

)
(3.15)

where the first inequality is due to Hα(Z) ≥ E[Z]
Φ−1(1−α)

for Z ∈ L∞
+ (see

Goovaerts et al. [47] and Haezendonck and Goovaerts [48]).
Since, for Φ(x) = x, (3.14) becomes

dQY

dP
=

1{Y>qα(Y)}
P(Y > qα(Y))

where qα is the upper α-quantile, and, for a continuous Y,

dQY

dP
=

1{Y≥x∗α(Y)}
1− α

,

(3.15) implies Λπ(X, Y) ≥ Λ∇π (X, Y).
Then, for each γ ∈ (0, 1), we have

Λπ(X, Y) ≥
E
[
X 1{Y>qα(Y)}

]
P(Y > qα(Y))

=
E
[
X 1{γY>qα(γY)}

]
P(γY > qα(γY))

= EQγY [X],

where the first equality holds by positive homogeneity of the quantile.
Thus

Λπ(X, Y) =
∫ 1

0
Λπ(X, Y) dγ ≥

∫ 1

0
EQγY [X] dγ = ΛAS

π (X, Y).

The previous proposition shows that Λπ exceeds the gradient allo-
cation whenever Φ(x) = x and Y is a continuous random variable.
However, even when Y is not a continuous random variable the same
relation may hold, as shown in the following example.

Example 3.5. Take Φ(x) = x and assume the following random vari-
ables are independent:

X =

−1 with prob. 1
3 ;

1 with prob. 2
3 .

Y =

0 with prob. 3
4 ;

2 with prob. 1
4 .

Then

Λ∇π (X, Y) =
E
[
X 1{Y>qα(Y)}

]
P(Y > qα(Y))

= E[X]
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where qα(Y) is the upper α-quantile of Y. For any α > 1
3 we have

Λπ(X, Y) = qα(X) +
E
[
(X− qα(X))+

]
P(Y ≥ qα(Y))

1− α

= 1 > E[X] =
1
3

.

Finally, we compare Λ̃π with the gradient and the Aumann-Shapley
allocations.

Proposition 3.11. Λ̃π ≥ Λ∇π and Λ̃π ≥ ΛAS
π .

Proof. From Proposition 3.9 it follows that for any X, Y ∈ L∞

Λ̃π(X, Y) ≥ πα(X) = EQX [X] ≥ EQY [X] = Λ∇π (X, Y)

where the second inequality is due to the fact that QX is the maxi-
mizer for X. By similar arguments it follows that

Λ̃π(X, Y) =
∫ 1

0
Λ̃π(X, Y) dγ

≥
∫ 1

0
EQX [X] dγ

≥
∫ 1

0
EQγY [X] dγ = ΛAS

π (X, Y)

holds for any X, Y ∈ L∞.

We summarize in Table 3.1 the main properties satisfied by the
proposed methods.

Λπ Λ̄π Λ̃π

No-undercut yes yes no

Comparison Λ∇π /ΛAS
π Φ(x) = x only no no

Monotone no yes yes

Table 3.1: Summary of the properties satisfied by different methods.

It is also easy to see that none of the proposed methods satisfies
full allocation, even when the allocation maps are CARs (Λ(X, X) =

ρ(X)), as they are not linear in the first variable. However, one can
always modify such CARs in order to get the desired property, as we
explained in Section 3.1.

3.3 capital allocation via linking functions

In this section, we introduce an alternative generalization of the work
of Xun et al. [67]. Such a generalization shares with the aforemen-
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tioned work the idea of linking X and Y in the argument of the Or-
licz risk premium but does not assume that such link has a specific
functional form, while the previous approaches do.

More precisely, looking at the contribution introduced by Xun et al.
[67], we can notice that HY,α(X), solution of (3.4), coincides with the
solution Hα

(
X 1{Y>VaRα(Y)}

)
of

E

[
Φ

(
X 1{Y>VaRα(Y)}

Hα

(
X 1{Y>VaRα(Y)}

))] = 1− α.

Thus, the contribution HY,α(X) introduced by Xun et al. [67] is exactly
the Orlicz risk premium Hα of X 1{Y>VaRα(Y)}.

In the present section, we generalize the approach above by con-
sidering a general function f : L∞

+ × L∞ → L∞
+ “aggregating” the two

positions X and Y. The particular case of

f (X, Y) := X 1{Y>VaRα(Y)}

corresponds then to the approach of Xun et al. [67]. We introduce
therefore the following notion.

Definition 3.7. A map f : L∞
+ × L∞ → L∞

+ is said to be linking if, for
all X ∈ L∞

+ ,
f (X, X) = X.

Here the interpretation is the following: f has two variables cor-
responding to the sub-portfolio X and to the portfolio Y, and links
them to yield another position f (X, Y) ∈ L∞

+ that can be seen as an
aggregated position. Then, we can follow the same construction of
Xun et al. [67] but considering a general linking function f .

We firstly provide a CAR for the Orlicz risk premium and later its
extension to the HG risk measure.

Definition 3.8. Let Hα be the Orlicz risk premium and let f : L∞
+ ×

L∞ → L∞
+ be a linking function. We define H-linking CAR as the map

Λ f
H : L∞

+ × L∞ → R+ given by

Λ f
H(X, Y) := Hα( f (X, Y)), X ∈ L∞

+ , Y ∈ L∞.

It is clear that Λ f
H is a capital allocation rule with respect to the

Orlicz risk premium if and only if f is linking. Hence, the risk contri-
bution defined by Xun et al. [67] is not a capital allocation rule with
respect to the Orlicz risk premium because the function f (X, Y) =

X 1{Y>VaRα(Y)} is not linking.

It is interesting now to study when Λ f
H satisfies some of the usual

properties required for a capital allocation rule.
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Proposition 3.12. Let f be a linking function.

a. If f (X, Y) ≤ f (X, X) for all X ∈ L∞
+ , Y ∈ L∞, then Λ f

H satisfies
no-undercut.

b. If f (a, Y) = a for all a ≥ 0 and Y ∈ L∞, then Λ f
H satisfies

Λ f
H(a, Y) =

a
Φ−1(1− α)

for all Y ∈ L∞, a ≥ 0. (3.16)

c. If f is monotone increasing in the first entry then Λ f
H is monotone.

Proof. a. For all X ∈ L∞
+ , Y ∈ L∞ it holds that

Λ f
H(X, Y) = Hα( f (X, Y)) ≤ Hα( f (X, X)) = Hα(X)

where the inequality holds by monotonicity of Hα and the last equal-
ity by definition of linking function. The no-undercut is then verified.

b. It follows immediately by riskless of Hα.

c. For all X, Z ∈ L∞
+ , Y ∈ L∞ with X ≤ Z it holds that

Λ f
H(X, Y) = Hα( f (X, Y)) ≤ Hα( f (Z, Y)) = Λ f

H(Z, Y)

where the inequality holds by monotonicity both of f and of Hα.

Notice that (3.16) reduces to the riskless property when α = 0.
We now present some examples of explicit formulas for Λ f

H.

Example 3.6. For Φ(x) = x, Λ f
H becomes

Λ f
H(X, Y) = Hα( f (X, Y)) =

E[ f (X, Y)]
1− α

.

By taking the linking function f (X, Y) = X 1{Y−X≥qα(Y−X)} where qα

is an α-quantile, Λ f
H reduces to

Λ f
H(X, Y) =

E
[
X 1{Y−X≥qα(Y−X)}

]
1− α

.

For continuous random variables X and Y, ΛH becomes then

Λ f
H(X, Y) = E

[
X | Y− X ≥ qα(Y− X)

]
,

similar to the contribution to shortfall proposed by Overbeck [58].

Example 3.7. For Φ(x) = xp, p ∈ (1,+∞), Λ f
H is given by

Λ f
H(X, Y) =

(
E[ f p(X, Y)]

1− α

) 1
p

=
‖ f (X, Y)‖p

(1− α)
1
p

.
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Then, if we consider again the linking function

f (X, Y) = X 1{Y−X≥x∗α(Y−X)}

where x∗α is an Orlicz quantile, we get

Λ f
H(X, Y) =

∥∥X 1{Y−X≥x∗α(Y−X)}
∥∥

p

(1− α)
1
p

.

For continuous X and Y, Λ f
H corresponds then to

Λ f
H(X, Y) =

(
E
[
Xp | Y− X ≥ x∗α(Y− X)

]) 1
p .

We now introduce a CAR for Haezendonck-Goovaerts risk mea-
sures πα based on that for Orlicz premia Hα, by using the same pro-
cedure as for the corresponding πα and Hα.

Definition 3.9. Given the map Λ f
H of Definition 3.8, we define π-

linking CAR as the map Λ f
π : L∞ × L∞ → R given by

Λ f
π(X, Y) := inf

x∈R

{
x + Λ f

H
(
(X− x)+, (Y− x)+

)}
= inf

x∈R

{
x + Hα

(
f
(
(X− x)+, (Y− x)+

))}
.

Proposition 3.13. Let f be a linking function.

a. Λ f
π is a CAR with respect to πα.

b. If f (Z, W) ≤ f (Z, Z) for all Z ∈ L∞
+ , W ∈ L∞, then Λ f

π satisfies
no-undercut.

c. If f (a, W) = a for all a ≥ 0 and W ∈ L∞, then Λ f
π satisfies riskless.

d. If f is monotone increasing in the first entry then Λ f
π is monotone.

e. If X, Y ∈ L∞
+ then Λ f

π(X, Y) ≤ Λ f
H(X, Y).

Proof. a. By definition of linking function, for all X ∈ L∞,

Λ f
π(X, X) = inf

x∈R

{
x + Hα

(
f
(
(X− x)+, (X− x)+

))}
= inf

x∈R

{
x + Hα

(
(X− x)+

)}
= πα(X).

b. For all X, Y ∈ L∞ it holds that

Λ f
π(X, Y) = inf

x∈R

{
x + Hα

(
f
(
(X− x)+, (Y− x)+

))}
≤ inf

x∈R

{
x + Hα

(
(X− x)+

)}
= πα(X)

where the inequality holds by hypothesis and by monotonicity of Hα.
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c. By the hypothesis on f and by riskless of πα (see [15] for details),
it follows that

Λ f
π(b, Y) = inf

x∈R

{
x + Hα

(
f
(
(b− x)+, (Y− x)+

))}
= inf

x∈R

{
x + Hα

(
(b− x)+

)}
= πα(b) = b

for all b ∈ R and Y ∈ L∞.

d. For all X, Y, Z ∈ L∞ with X ≤ Z it holds that

Λ f
π(X, Y) = inf

x∈R

{
x + Hα

(
f
(
(X− x)+, (Y− x)+

))}
≤ inf

x∈R

{
x + Hα

(
f
(
(Z− x)+, (Y− x)+

))}
= Λ f

π(Z, Y)

where the inequality holds by monotonicity both of f and of Hα.

e. For all X, Y ∈ L∞
+

Λ f
π(X, Y) = inf

x∈R

{
x + Hα

(
f
(
(X− x)+, (Y− x)+

))}
≤ Hα

(
f
(
X+, Y+

))
= Hα( f (X, Y))

= Λ f
H(X, Y)

where the inequality holds by taking x = 0.

Notice that, even under suitable hypothesis on f , there is no clear
comparison between Λ f

π and the gradient method or the Aumann-
Shapley one.

3.4 robust versions - quantile-based approach

So far, no ambiguity on the choice of the probability measure P or on
the choice of the Young function Φ has been considered. Following
the approach of Bellini and Rosazza Gianin [15] who introduced ro-
bust Orlicz premia and robust HG risk measures, in this section we
provide extensions and robust versions of the previously presented
approaches, in order to deal with ambiguity with respect to the prob-
abilistic model P as well as to the choice of the Young function Φ.

3.4.1 Ambiguity over P

Ambiguity over the probabilistic model has been largely considered
in decision theory, when facing the problem of maximizing the ex-
pected utility. The main feature of ambiguity is that the decision
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maker may not hold a unique belief about the realization of the future
states of the world. Rather, several scenarios of the possible states of
the world should be taken into account. This idea is commonly ex-
pressed by introducing a set of probability measures, instead of as-
suming a single one. For a detailed treatment of the argument see,
among others, Cerreia-Vioglio et al. [25], Gilboa and Schmeidler [45]
and Maccheroni et al. [53].

Throughout this subsection, we assume that Q is the set of all prob-
ability measures absolutely continuous with respect to P over which
there is ambiguity.

Robust versions of Orlicz risk premia were proposed by Bellini and
Rosazza Gianin [15] for α = 0 following robust versions of expected
utility. In particular, the aforementioned authors consider the multi-
ple priors, the variational preferences and the homothetic preferences
approaches (see [25, 26, 45, 53] for details on robust versions of ex-
pected utility) and show that these three different approaches can be
formulated in a unified way.

Since our aim is to generalize the capital allocations for Orlicz pre-
mia and HG risk measures introduced in Sections 3.2 and 3.3 by
taking into account ambiguity over P, we need to consider robust
Orlicz premia and robust HG risk measures for a general α ∈ [0, 1)
so to be able to introduce “robust” Orlicz quantiles. We focus here
on the “variational preferences” approach in the general case where
α ∈ [0, 1), referring to [15] for α = 0.

We then organize this section as follows. First of all, we generalize
to α ∈ [0, 1) the notions of robust Orlicz premia and robust HG risk
measures and the result concerning whether the infimum is attained
or not in the definition of robust πα. At that point, we will be able to
introduce and study robust Orlicz quantiles and to define CARs for
robust Orlicz premia and robust HG risk measures as in Section 3.2.
Notice that the first two points are slight extensions of what done in
Bellini and Rosazza Gianin [15] and the proofs can be derived in a
similar way.

3.4.1.1 Robust Orlicz premia and robust HG risk measures for α ∈ [0, 1)

The following definition extends robust Orlicz risk premia introduced
in [15] for α = 0.

Definition 3.10. Let a Young function Φ be given and let α ∈ [0, 1)
be fixed. The robust Orlicz risk premium of X ∈ L∞

+ is defined as

Hc,α(X) := inf

{
k > 0

∣∣∣∣∣ sup
Q∈Q

{
EQ

[
Φ
(

X
k

)]
− c(Q)

}
≤ 1− α

}

where c : Q → [0,+∞] is convex and lower semicontinuous, satisfy-
ing infQ∈Q c(Q) = 0.
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For α = 0, we set Hc := Hc,0. Notice that a further extension is
possible by requiring that the infimum of c is only finite but not ex-
actly zero. However, this is beyond the scope of the present work and
would produce unnecessary complications in the notation.

When c : Q → [0,+∞] is given by

c(Q) =

0 if Q ∈ S ;

+∞ if Q /∈ S ;

for S ⊆ Q, Hc,α reduces to the particular case of multiple priors, given
by

HS ,α(X) := inf

{
k > 0

∣∣∣∣∣ sup
Q∈S

EQ

[
Φ
(

X
k

)]
≤ 1− α

}
.

We now slightly generalize the results of [15] concerning the proper-
ties of robust Orlicz premia to the case where α ∈ [0, 1).

Proposition 3.14. For all X ∈ L∞
+ with X 6= 0, Hc,α(X) is the unique

solution of

sup
Q∈Q

{
EQ

[
Φ
(

X
Hc,α(X)

)]
− c(Q)

}
= 1− α. (3.17)

Moreover, Hc,α is monotone, subadditive, positive homogeneous and satisfies
Hc,α(b) = b

Φ−1(1−α)
, for any b ≥ 0.

Proof. The proof is similar to [15, Lm 5, Thm 3]. We omit to show
that Hc,α(X), X 6= 0, is the solution of (3.17), since the same argument
used in [15], for the case α = 0, applies here too. We prove instead
the following:

Monotonicity: take X, Y ∈ L∞
+ , X, Y 6= 0, with X ≥ Y. Then

sup
Q∈Q

{
EQ

[
Φ
(

Y
Hc,α(Y)

)]
− c(Q)

}
= sup

Q∈Q

{
EQ

[
Φ
(

X
Hc,α(X)

)]
− c(Q)

}
≤ sup

Q∈Q

{
EQ

[
Φ
(

Y
Hc,α(X)

)]
− c(Q)

}
where the equality holds by (3.17) and the inequality by monotonicity
of both Φ and the expectation. The thesis therefore follows, since, for
any Q ∈ Q, EQ

[
Φ
(X

h

)]
is decreasing in h > 0.

Subadditivity: take X, Y ∈ L∞
+ , such that X, Y 6= 0, and set

λH :=
Hc,α(X)

Hc,α(X) + Hc,α(Y)
∈ (0, 1).
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Then,

sup
Q∈Q

{
EQ

[
Φ
(

X + Y
Hc(X) + Hc(Y)

)]
− c(Q)

}
= sup

Q∈Q

{
EQ

[
Φ
(

λH
X

Hc(X)
+ (1− λH)

Y
Hc(Y)

)]
− c(Q)

}
≤ sup

Q∈Q

{
EQ

[
λHΦ

(
X

Hc(X)

)
+ (1− λH)Φ

(
Y

Hc(Y)

)]
− c(Q)

}
≤ λH sup

Q∈Q

{
EQ

[
Φ
(

X
Hc(X)

)]
− c(Q)

}
+ (1− λH) sup

Q∈Q

{
EQ

[
Φ
(

Y
Hc(Y)

)]
− c(Q)

}
= 1− α = sup

Q∈Q

{
EQ

[
Φ
(

X + Y
Hc(X + Y)

)]
− c(Q)

}
,

where the first inequality holds by convexity of Φ and the last two
equalities by (3.17). The thesis then follows, as before.

Positive homogeneity: the case λ = 0 is trivial. Take then λ > 0, for
X ∈ L∞

+ , X 6= 0, we have

Hc,α(λX) = inf

{
k > 0

∣∣∣∣∣ sup
Q∈Q

{
EQ

[
Φ
(

λX
k

)]
− c(Q)

}
≤ 1− α

}

= inf

{
λh > 0

∣∣∣∣∣ sup
Q∈Q

{
EQ

[
Φ
(

X
h

)]
− c(Q)

}
≤ 1− α

}
= λHc,α(X)

where we set h = k
λ to obtain the second inequality.

Finally, for b ≥ 0, we consider

Hc,α(b) = inf

{
k > 0

∣∣∣∣∣ sup
Q∈Q

{
EQ

[
Φ
(

b
k

)]
− c(Q)

}
≤ 1− α

}

= inf
{

k > 0
∣∣∣∣ Φ
(

b
k

)
≤ 1− α

}
=

b
Φ−1(1− α)

.

Further on, Bellini and Rosazza Gianin [15] defined the correspond-
ing robust version of the Haezendonck-Goovaerts risk measure by
using the same construction of the non-robust case. As before, we
consider the more general case of α ∈ [0, 1).

Definition 3.11. Let Hc,α be as in Definition 3.10. We define the robust
Haezendonck-Goovaerts risk measure of X ∈ L∞ as

πc,α(X) := inf
x∈R

{
x + Hc,α

(
(X− x)+

)}
. (3.18)
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The case of multiple priors reduces to

πS ,α(X) := inf
x∈R

{
x + HS ,α

(
(X− x)+

)}
. (3.19)

For α = 0, πc := πc,0 corresponds to the robust HG risk measure
studied by Bellini and Rosazza Gianin [15]. The authors showed that
πc is a coherent risk measure, see [15, Prop. 5]. The following result
investigates the case of α ∈ [0, 1).

Proposition 3.15. For any α ∈ [0, 1), πc,α is a coherent risk measure.

Proof. The proof follows the scheme of [14, Prop. 12].

Monotonicity: take X, Y ∈ L∞, with X ≥ Y. Then

πc,α(X) = inf
x∈R

{
x + Hc,α

(
(X− x)+

)}
≥ inf

x∈R

{
x + Hc,α

(
(Y− x)+

)}
= πc,α(Y),

where the inequality holds by monotonicity of Hc,α.

Subadditivity: take X, Y ∈ L∞, then

πc,α(X + Y) = inf
x∈R

{
x + Hc,α

(
(X + Y− x)+

)}
= inf

x,y∈R

{
x + y + Hc,α

(
(X + Y− x− y)+

)}
≤ inf

x,y∈R

{
x + y + Hc,α

(
(X− x)+ + (Y− y)+

)}
≤ inf

x,y∈R

{
x + y + Hc,α

(
(X− x)+

)
+ Hc,α

(
(Y− y)+

)}
= inf

x∈R

{
x + Hc,α

(
(X− x)+

)}
+ inf

y∈R

{
y + Hc,α

(
(Y− y)+

)}
= πc,α(X) + πc,α(Y).

where the inequalities hold by subadditivity of the positive part and
of Hc,α, respectively.

Cash-additivity: take X ∈ L∞ and a ∈ R, then

πc,α(X + a) = inf
x∈R

{
x + Hc,α

(
(X + a− x)+

)}
= inf

y∈R

{
y + a + Hc,α

(
(X− y)+

)}
= inf

y∈R

{
y + Hc,α

(
(X− y)+

)}
+ a

= πc,α(X) + a,

where we set y = x− a to obtain the second equality.
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Positive homogeneity: take X ∈ L∞ and λ > 0, then

πc,α(λX) = inf
x∈R

{
x + Hc,α

(
(λX− x)+

)}
= inf

x∈R

{
λx + Hc,α

(
(λX− λx)+

)}
= inf

x∈R

{
λx + λHc,α

(
(X− x)+

)}
= λπc,α(X),

where the third equality holds by positive homogeneity of Hc,α (and
of the positive part). Take now λ = 0, then

πc,α(0) = inf
x∈R

{
x + Hc,α

(
(−x)+

)}
= inf

x∈R

{
x +

(−x)+

Φ−1(1− α)

}
= inf

x∈R

{
x
(

1−
1{x<0}

Φ−1(1− α)

)}
= 0,

where the last equality holds because Φ−1(1− α) ≤ 1.

Our aim is now to generalize the approaches based on Orlicz quan-
tiles (and later on linking functions) of Section 3.2 to provide a robust
version of CAR. In order to do so, we first need to go back to the defi-
nition of Orlicz quantiles and notice that it depends on the particular
choice of the probability measure P. Therefore, a robust version of Or-
licz quantiles is needed for our purpose. We firstly establish whether
the infimum of (3.18) is attained or not. In such a case, then, we will
focus on the minimizers.

3.4.1.2 Existence of the minimum

To simplify the notation, for X ∈ L∞ and x ∈ R we set

πc,α(X, x) := x + Hc,α
(
(X− x)+

)
. (3.20)

so that πc,α(X) = infx∈R πc,α(X, x). We also set πc(X, x) := πc,0(X, x).
We now summarize those properties of πc,α(X, x) which will be

useful in the following.

Proposition 3.16. Let X ∈ L∞, α ∈ [0, 1) and πc,α(X, x) be given
by (3.20).

a. πc,α(X, x) is convex in x ∈ R.

b. πc,α(X + b, x) = πc,α(X, x− b) + b, for all x, b ∈ R.

c. πc,α(λX, x) = λπc,α
(
X, x

λ

)
, for all λ > 0.
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Proof. a. Convexity follows by simple computations and properties
of Hc,α. More precisely, for λ ∈ [0, 1] and x, y ∈ R we have

λπc,α(X, x) + (1− λ)πc,α(X, y)

= λx + λHc,α
(
(X− x)+

)
+ (1− λ)y + (1− λ)Hc,α

(
(X− y)+

)
≥ λx + (1− λ)y + Hc,α

(
λ(X− x)+ + (1− λ)(X− y)+

)
≥ λx + (1− λ)y + Hc,α

((
X− λx− (1− λ)y

)+)
= πc,α(X, λx + (1− λ)y),

where the inequalities hold by convexity of Hc,α and of the positive
part, respectively.

b. Take b ∈ R, then

πc,α(X + b, x) = x + Hc,α
(
(X + b− x)+

)
= y + Hc,α

(
(X− y)+

)
+ b

= πc,α(X, x− b) + b,

where we set y = x− b to obtain the second equality.

c. For λ > 0, we have

πc,α(λX, x) = x + Hc,α
(
(λX− x)+

)
= λ

(
y + Hc,α

(
(X− y)+

))
= λπc,α

(
X,

x
λ

)
,

where we set y = x
λ to obtain the second equality and we used the

positive homogeneity of Hc,α.

Similarly to the non robust case, also in the robust case the infimum
in (3.18) is always attained for any α 6= 0.

Proposition 3.17. If α 6= 0 then the infimum in the definition of πc,α,
given by (3.18), is always attained.

Proof. The proof follows the scheme of [14, Prop. 16]. Take X ∈ L∞

and πc,α(X, x) as in (3.20), α ∈ (0, 1). Since πc,α(X, x) is convex in x
(see Prop. 3.16) and πc,α(X, x) = x, for x ≥ ess sup(X), it is enough
to show that πc,α(X, x) is decreasing on some interval, to prove the
thesis. Take then x < ess inf(X); we are going to show that there exists
a b0 ∈ R such that πc,α(X, x− b)− πc,α(X, x) > 0 for any b > b0.

First, we notice that, for x < ess inf(X) and b > 0, we have

πc,α(X, x− b)− πc,α(X, x) = Hc,α(X− x + b)− Hc,α(X− x)− b.

It remains to compare Hc,α(X− x + b) and Hc,α(X− x) + b.
For b > 0, set

f (b) := sup
Q∈Q

{
EQ

[
Φ
(

X− x + b
Hc,α(X− x) + b

)]
− c(Q)

}
.
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On one hand,

f (b) ≥ sup
Q∈Q

{
EQ

[
Φ
(

ess inf(X)− x + b
Hc,α(ess sup(X)− x) + b

)]
− c(Q)

}

= Φ

(
ess inf(X)− x + b

ess sup(X)−x
Φ−1(1−α)

+ b

)
−−−→
b→+∞

Φ(1) = 1,

since infQ∈Q c(Q) = 0, both Hc,α and Φ are monotone and Φ is con-
tinuous. On the other hand, it follows similarly that

f (b) ≤ sup
Q∈Q

{
EQ

[
Φ
(

ess sup(X)− x + b
Hc,α(ess inf(X)− x) + b

)]
− c(Q)

}

= Φ

(
ess sup(X)− x + b

ess inf(X)−x
Φ−1(1−α)

+ b

)
−−−→
b→+∞

Φ(1) = 1.

Therefore,

lim
b→+∞

f (b) = 1 > 1− α = sup
Q∈Q

{
EQ

[
Φ
(

X− x + b
Hc,α

(
X− x + b

))]− c(Q)

}

holds because α ∈ (0, 1). Hence, since EQ

[
Φ
(X

h

)]
is decreasing in

h > 0 for each Q ∈ Q, it follows that there exists a b0 ∈ R such that
Hc,α(X − x + b) > Hc,α(X − x) + b for any b > b0. The thesis then
follows.

The result above shows that the infimum of πc,α is always attained
for α 6= 0, similarly to the non-robust case. We now consider the case
α = 0, starting from the following.

Proposition 3.18. If α = 0 then, for all X ∈ L∞, πc(X, x) is increasing
in x ∈ R.

Proof. Let X ∈ L∞ be arbitrarily fixed. For any x ≥ ess sup(X) it
holds that πc(X, x) = x, which is strictly increasing. For any x <

ess sup(X) and b > 0, it holds that

πc(X, x− b)− πc(X, x)

≤ Hc
(
(X− x)+ + b

)
− Hc

(
(X− x)+

)
− b

≤ Hc
(
(X− x)+

)
+ b− Hc

(
(X− x)+

)
− b = 0,

by Hc(b) = b and by subadditivity of the positive part and of Hc.

It follows from the proposition above that, for α = 0, either the infi-
mum in (3.18) is not attained or it is attained at any point of (−∞, x0]

for some x0 ≤ ess sup(X).
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It is true, instead, that the infimum is always attained for constant
random variables, even in the case α = 0. Indeed, in the latter case
we have, for a > 0,

πc(a, x) =

a if x < a;

x if x ≥ a;

and so the infimum is attained at any point of the interval (−∞, a].
The following result investigates the existence of the minimum for

α = 0 when Φ(x) = x, in terms of conditions on the penalty function.

Proposition 3.19. Let Φ(x) = x and let X ∈ L∞ be non-constant. If
infQ∈Q

c(Q)
1+c(Q)

> 0, then the infimum in πc(X) is not attained.

Proof. If Φ(x) = x, then Hc(X) = supQ∈Q
EQ[X]

1+c(Q)
for all X ∈ L∞

+ . By
(b) of Proposition 3.18, πc(X, x) is increasing in any x ∈ R.

For each X ∈ L∞, it is therefore enough to consider x ≤ ess inf(X).
Then for any b > 0 we have

πc(X, x− b)− πc(X, x)

= Hc(X− x + b)− Hc(X− x)− b

= sup
Q∈Q

EQ[X− x + b]
1 + c(Q)

− sup
Q∈Q

EQ[X− x]
1 + c(Q)

− b

≤ sup
Q∈Q

b
1 + c(Q)

− b

= b
(

sup
Q∈Q

1
1 + c(Q)

− 1
)

= −b inf
Q∈Q

c(Q)

1 + c(Q)
< 0

by hypothesis. So, πc(X, x) is strictly increasing on (−∞, ess inf(X)).
The thesis then follows.

Whenever infQ∈Q
c(Q)

1+c(Q)
= 0, it can be easily checked that the infi-

mum in πc(X) may be attained or not.

3.4.1.3 Robust Orlicz quantiles

Before introducing the notion of robust Orlicz quantiles we present
two illustrative and motivating examples.
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Example 3.8 (discrete distributions). Let (Ω,F , P) be a probability
space, where Ω = {ω1, ω2, ω3} and P({ωi}) > 0, for each i = 1, 2, 3.
We consider the random variable

X =


−4 on ω1;

4 on ω2;

8 on ω3;

and the set S = {Q1, Q2} of probability measures absolutely continu-
ous with respect to P such that:

Q1(ω1) = Q1(ω2) =
1
4

; Q1(ω3) =
1
2

Q2(ω1) =
1
8

; Q2(ω2) =
1
2

; Q2(ω3) =
3
8

.

For Φ(x) = x, it follows that (see Bellini and Rosazza Gianin [15])

HS ,α(X) = sup
Q∈S

EQ[X]

1− α

and

πS ,α(X) = inf
x∈R

{
x + sup

Q∈S

EQ

[
(X− x)+

]
1− α

}
.

We then compute

x +
EQ1 [(X− x)+]

1− α
=



x + 4−x
1−α if x ≤ −4;

x +
(4−x) 1

4+(8−x) 1
2

1−α if − 4 < x ≤ 4;

x +
(8−x) 1

2
1−α if 4 < x ≤ 8;

x if x > 8;

and

x +
EQ2 [(X− x)+]

1− α
=



x +
9
2−x
1−α if x ≤ −4;

x +
(4−x) 1

2+(8−x) 3
8

1−α if − 4 < x ≤ 4;

x +
(8−x) 3

8
1−α if 4 < x ≤ 8;

x if x > 8.

Thus, it can be easily checked that

arg max
Q∈S

EQ

[
(X− x)+

]
=


Q2 if x < 0;

Q1 if 0 < x < 8;

{Q1, Q2} if x = 0 or x ≥ 8.
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For α = 1
4 , it then follows that πS ,α(X) = 20

3 and the infimum
in (3.19) is attained at any point of the interval [0, 4]. For α = 1

2 , it
follows that πS ,α(X) = 8 and the infimum in (3.19) is attained at any
point of the interval [4, 8]. So that the infimum is not unique in such
cases.

For Φ(x) = x2, it follows that (see Bellini and Rosazza Gianin [15])

HS ,α(X) = sup
Q∈S

√
EQ

[
X2
]

1− α

and

πS ,α(X) = inf
x∈R

x + sup
Q∈S

√
EQ[((X− x)+)2]

1− α

 .

We then compute

x +

√
EQ1 [((X− x)+)2]

1− α
=



x +
√

x2−8x+40
1−α if x ≤ −4;

x +

√
3
4 x2−10x+36

1−α if − 4 < x ≤ 4;

x + 8−x√
2(1−α)

if 4 < x ≤ 8;

x if x > 8;

and

x +

√
EQ2 [((X− x)+)2]

1− α
=



x +
√

x2−9x+34
1−α ; if x ≤ −4;

x +

√
7
8 x2−10x+32

1−α if − 4 < x ≤ 4;

x +
√

3
8(1−α)

(8− x) if 4 < x ≤ 8;

x if x > 8.

Thus, it holds that

arg max
Q∈S

EQ

[(
(X− x)+

)2
]
=


Q2 if x < −6;

Q1 if − 6 < x < 8;

{Q1, Q2} if x = −6 or x ≥ 8.

For α = 1
2 , we have πS ,α(X) = 8 and the infimum in (3.19) is at-

tained at any point of the interval [4, 8]. For α = 5
8 , we have πS ,α(X) =

8 and the infimum in (3.19) is attained at x∗ = 8. Notice that, for
α = 1

2 , the minimum point is not unique, even if Φ is strictly convex.

Example 3.9 (continuous distributions). Given a probability space
(Ω,F , P) and a random variable X ∈ L∞, consider the set S =

{Q1, Q2, Q3} of probability measures absolutely continuous with re-
spect to P such that:
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• Under Q1, X has density function fX(x) = 1
2 1[−1,1], that is, X

has Uniform distribution on [−1, 1].

• Under Q2, X has density function fX(x) = (1− |x|) 1[−1,1], that
is, X has symmetric Triangular distribution on [−1, 1].

• Under Q3, X has density function fX(x) = 3
4 (1− x2) 1[−1,1].

Take now Φ(x) = x. As before, we have

HS ,α(X) = sup
Q∈S

EQ[X]

1− α
and πS ,α(X, x) = x + sup

Q∈S

EQ

[
(X− x)+

]
1− α

.

Therefore, we compute

EQ1

[
(X− x)+

]
=


−x if x ≤ −1;

(1−x)2

4 if − 1 < x ≤ 1;

0 if x > 1;

EQ2

[
(X− x)+

]
=


−x if x ≤ −1;

−x2|x|+3x2−3x+1
6 if − 1 < x ≤ 1;

0 if x > 1;

EQ3

[
(X− x)+

]
=


−x if x ≤ −1;

−x4+6x2−8x+3
16 if − 1 < x ≤ 1;

0 if x > 1;

so that the sup is attained at Q1 and

πS ,α(X, x) = x +
EQ1

[
(X− x)+

]
1− α

=


− α

1−α x if x ≤ −1;

x + (1−x)2

4(1−α)
if − 1 < x ≤ 1;

x if x > 1.

For α = 1
2 , it follows that πS ,α(X) = 1

2 and the infimum in (3.19)
is attained at x∗ = 0. For α = 1

4 , it follows that πS ,α(X) = 1
4 and the

infimum in (3.19) is attained at x∗ = − 1
2 .

Take now Φ(x) = x2. It follows that

HS ,α(X) = sup
Q∈S

√
EQ[X2]

1− α
,

πS ,α(X, x) = x + sup
Q∈S

√
EQ

[
((X− x)+)2

]
1− α

.
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Therefore,

EQ1

[
((X− x)+)2] =


1
3 + x2 if x ≤ −1;

−x3+3x2−3x+1
6 if − 1 < x ≤ 1;

0 if x > 1;

EQ2

[
((X− x)+)2] =


1
6 + x2 if x ≤ −1;

x3|x|−4x3+6x2−4x+1
12 if − 1 < x ≤ 1;

0 if x > 1;

EQ3

[
((X− x)+)2] =


1
5 + x2 if x ≤ −1;

x5−10x3+20x2−15x+4
40 if − 1 < x ≤ 1;

0 if x > 1;

so that the sup is attained at Q1 and

πS ,α(X, x) = x +

√
EQ1

[
((X− x)+)2

]
1− α

=


x +

√
3x2+1
3(1−α)

if x ≤ −1;

x +
√
−x3+3x2−3x+1

6(1−α)
if − 1 < x ≤ 1;

x if x > 1.

For α = 1
2 , it follows that πS ,α(X) = 5

9 and the infimum in (3.19) is
attained at x∗ = − 1

3 . For α = 1
4 , it follows that πS ,α(X) = 1

3 and the
infimum in (3.19) is attained at x∗ = −1. While, for instance, if α = 1

9 ,
it follows that πS ,α(X) = 1

2
√

6
and the infimum in (3.19) is attained at

x∗ = − 2
3

√
6. Therefore, in such a case we have x∗ < −1 = ess inf(X).

The latter also shows that the minimizers of (3.20) are not monotone:
by simply taking Y = −1, we obtain that y∗ = −1 while x∗ < −1,
even though X ≥ Y.

The examples above motivate us to extend the definition of Or-
licz quantiles (depending on the probability P given a priori) to the
present setting dealing with ambiguity on the choice of P. Differently
from the non-robust case, where for Φ(x) = x the minimizers x∗α re-
duce to classical quantiles with respect to P, in the present setting
(corresponding to ambiguity and to multiple priors - penalized by c
or not) the minimizers take into account all the multiple priors, hence
they can be interpreted as “robust quantiles”. Referring to the previ-
ous example, indeed, while qQ1,α = [−4, 4] and qQ2,α = {4} for α = 1

4 ,
qQ1,α = [4, 8] and qQ2,α = {4} for α = 1

2 (where qQ,α denotes the set
of α-quantiles with respect to Q), in the robust case qS ,α = [0, 4] for
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α = 1
4 and qS ,α = [4, 8] for α = 1

2 (where qS ,α denotes the set of
minimizers in the multiple prior case, later called robust α-quantiles).

In Proposition 3.17, we established that, for any α 6= 0, the infimum
in πc,α is always attained. Motivated also by the previous examples, it
looks then natural to follow the same scheme of the non-robust case
and call any

x∗c,α(X) ∈ arg min
x∈R

πc,α(X, x)

a robust Orlicz quantile at level α of X.
We now study in detail the properties of robust Orlicz quantiles,

using the notations

x∗,−c,α (X) := inf arg min
x∈R

πc,α(X, x),

x∗,+c,α (X) := sup arg min
x∈R

πc,α(X, x).

Proposition 3.20. For any α ∈ (0, 1) and X ∈ L∞, the set of robust
Orlicz quantiles is a closed interval satisfying cash-additivity, positive ho-
mogeneity and riskless. Moreover, robust Orlicz quantiles are bounded from
above, i. e. x∗,+c,α (X) ≤ ess sup(X) for all X ∈ L∞.

Proof. The proof follows from Propositions 3.16 and 3.17, similarly
to the non-robust case.

Since robust Orlicz quantiles satisfy most of the properties of the
non-robust ones, we extend now the definitions of CARs given in
Section 3.2 to the robust case.

Definition 3.12. Given the robust Orlicz risk premium Hc,α and the
robust HG risk measure πc,α, we define Λc

H : L∞
+ × L∞ → R+ as

Λc
H(X, Y) := Hc,α

(
X 1{Y≥x∗c,α(Y)}

)
and the map Λc

π : L∞ × L∞ → R as

Λc
π(X, Y) := x∗c,α(X) + Λc

H
((

X− x∗c,α(X)
)+, Y

)
= x∗c,α(X) + Hc,α

((
X− x∗c,α(X)

)+
1{Y≥x∗c,α(Y)}

)
where x∗c,α(X) is a robust Orlicz quantile at level α of X.

As previously, in the following we fix x∗c,α(X) to be the upper robust
Orlicz quantile at level α of X.

Proposition 3.21. The map Λc
H is an audacious CAR for Hc,α satisfy-

ing no-undercut, monotonicity, 1-positive homogeneity and 2-translation-
invariance, while Λc

π is a CAR for πc,α satisfying no-undercut, riskless, 1-
cash-additivity, 1-positive homogeneity, 2-translation-invariance and cash-
additivity.
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Proof. The proof can be driven from the non-robust case.

Similarly to the non-robust case, it is possible to extend also Λ̄π of
Definition 3.5 and Λ̃π of Definition 3.6 to the robust case.

3.4.2 The case of multiple Φ

In the previous section, we have considered robust versions of Orlicz
premia that overcome the ambiguity over the true probabilistic model
P. Here, instead, we consider the situation whereby the decision-
maker is uncertain about the Young function to be used, while we
assume there is only one probabilistic model P. As before, we follow
the scheme of Bellini and Rosazza Gianin [15] and take a worst-case
approach for the multiplicity of possible Young functions.

We begin by clarifying which set of Young functions is suitable for
the purpose.

Definition 3.13. A non-empty set P of Young functions, equipped
with the pointwise order (i. e. Ψ ≥ Φ :⇐⇒ Ψ(x) ≥ Φ(x), ∀x > 0), is
said to be proper if (supP)(x) = supΦ∈P Φ(x) < +∞, ∀x > 0.

Notice that supP is still a Young function, whenever P is proper.
Before going further, we provide an example of such a set P .

Example 3.10. Consider the set

P =
{

Φp(x) = xp, x ≥ 0
∣∣ 1 ≤ p ≤ k

}
for some fixed k > 1. It is clear that each element of P is a Young
function, moreover

(supP)(x) =

x if 0 ≤ x ≤ 1;

xk if x > 1;

is still a Young function even if it does not belong to P . Suppose now
we slightly modify the previous set and define

P ′ =
{

Φp(x) = xp, x ≥ 0
∣∣ 1 ≤ p < +∞

}
.

Each element of P ′ is still a Young function but now we have

(supP ′)(x) =

x if 0 ≤ x ≤ 1;

+∞ if x > 1;

which is no longer finite for any x > 1.

We generalize here below to α ∈ [0, 1) the definition introduced by
Bellini and Rosazza Gianin [15] for α = 0.
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Definition 3.14. Let P be a proper set of Young functions and let
α ∈ [0, 1) be fixed. The Φ-robust Orlicz risk premium of X ∈ L∞

+ is
defined as

HP ,α(X) := inf

{
k > 0

∣∣∣∣∣ sup
Φ∈P

E

[
Φ
(

X
k

)]
≤ 1− α

}
. (3.21)

It then follows that HP (0) = 0. For α = 0, HP := HP ,0 reduces to
that of Bellini and Rosazza Gianin [15].

We now consider the properties of HP ,α, in the case α ∈ (0, 1). We
will use the notation HΦ

α (X) = Hα(X), introduced in the beginning,
for any Young function Φ.

The leading result, fundamental to prove any following one, is con-
tained in the next proposition.

Proposition 3.22. Let P be a proper set of Young functions. Then, for all
X ∈ L∞

+ , it holds that

HP ,α(X) = HsupP
α (X).

Proof. Take X ∈ L∞
+ . Bellini and Rosazza Gianin [15, Prop. 25 (b)]

shows that HP (X) = supΦ∈P HΦ(X) holds; since the same argument
remains valid for α 6= 0, we assume such result here too. Therefore,
we only need to prove that supΦ∈P HΦ

α (X) = HsupP
α (X). To this end,

since P is proper, it is enough to prove that HΦ
α is monotone increas-

ing in Φ. Take any Ψ, Φ ∈ P , with Ψ ≥ Φ, then

E

[
Φ
(

X
HΨ

α (X)

)]
≤ E

[
Ψ
(

X
HΨ

α (X)

)]
= 1− α = E

[
Φ
(

X
HΦ

α (X)

)]
hence HΨ

α (X) ≥ HΦ
α (X), since E

[
Φ
(X

h

)]
is decreasing in h > 0.

The following result is then straightforward.

Proposition 3.23. Let P be a proper set of Young functions. Then HP ,α

is monotone, subadditive and positive homogeneous. Moreover, if supP is
strictly convex then HP ,α also satisfy the following, for X, Y ∈ L∞

+ :

Strict monotonicity: if X ≥ Y, P(X > Y) > 0 then HP ,α(X) > HP ,α(Y).

Strict subadditivity: if X 6= Y, X 6= 0 6= Y and at least one of them is not
constant then HP ,α(X + Y) < HP ,α(X) + HP ,α(Y).

Proof. By Proposition 3.22, we have HP ,α = HsupP
α , where supP is a

Young function, since P is proper. All the results then follow by [14,
Prop. 2], since they hold for any Young function.

We now provide an example of a proper set of Young functions P
such that supP is strictly convex.
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Example 3.11. Consider the set

P =

{
Φβ(x) =

eβx − 1
eβ − 1

, x ≥ 0
∣∣∣∣ 0 < α < β ≤ γ

}
for some fixed γ > 0. Each member of P is a strictly convex Young
function, moreover

(supP)(x) =


eαx − 1
eα − 1

if 0 ≤ x ≤ 1;

eγx − 1
eγ − 1

if x > 1;

is still a strictly convex Young function.

Similarly to the case of ambiguity over P, we provide a Φ-robust
version of the Haezendonck-Goovaerts risk measure as an extension
of that introduced in [15] for α = 0 .

Definition 3.15. Let HP ,α be defined by (3.21) and α ∈ [0, 1). The
Φ-robust Haezendonck-Goovaerts risk measure of X ∈ L∞ is defined as

πP ,α(X) := inf
x∈R

{
x + HP ,α

(
(X− x)+

)}
.

Thanks to Proposition 3.22, the following properties of πP ,α are
straightforward.

Proposition 3.24. For each α ∈ [0, 1), πP ,α is a law invariant coherent
risk measure.

Proof. By Proposition 3.22, we have HP ,α = HsupP
α , where supP is

a Young function, since P is proper. The result then follows by [14,
Prop. 12], since it holds for any Young function.

As in the case of ambiguity about the probabilistic model, to pursue
our purpose we need to establish if the infimum of πP ,α is attained or
not. However, in this case, it is clear that infimum is always attained
for α 6= 0, since πP ,α is simply πα with supP as Young function.

We define, indeed, a Φ-robust Orlicz quantile at level α of X as any

x∗P ,α(X) ∈ arg min
x∈R

πP ,α(X, x).

It is clear that Φ-robust Orlicz quantiles satisfy the same properties
of non-robust ones, as in Proposition 3.2. Therefore, we can define
Φ-robust CARs with the same properties of the non-robust ones.

Definition 3.16. Given the Φ-robust Orlicz risk premium HP ,α and
the Φ-robust HG risk measure πP ,α, we define ΛPH : L∞

+ × L∞ → R+

as
ΛPH(X, Y) := HP ,α

(
X 1{Y≥x∗P ,α(Y)}

)
.
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and ΛPπ : L∞ × L∞ → R as

ΛPπ (X, Y) := x∗P ,α(X) + ΛPH
((

X− x∗P ,α(X)
)+, Y

)
= x∗P ,α(X) + HP ,α

((
X− x∗P ,α(X)

)+
1{Y≥x∗P ,α(Y)}

)
where x∗P ,α(X) is a Φ-robust Orlicz quantile at level α of X.

As previously, we fix x∗P ,α(X) to be the upper Φ-robust Orlicz quan-
tile at level α of X.

The following is then straightforward.

Proposition 3.25. ΛPH is an audacious CAR for HP ,α which satisfies no-
undercut, monotonicity, 1-law invariance, 1-positive homogeneity and 2-
translation-invariance; while ΛPπ is a CAR for πP ,α satisfying no-undercut,
riskless, 1-cash-additivity, 1-law invariance, 1-positive homogeneity, 2-trans-
lation-invariance and cash-additivity.

Proof. Thanks to Proposition 3.22, the proof is similar to the non-
robust case and thus omitted here.

As previously, it is possible to extend also Λ̄π of Definition 3.5 and
Λ̃π of Definition 3.6 to the Φ-robust case.

3.5 robust versions - linking-based approach

We provide here robust versions of the linking based approaches,
both considering the ambiguity over the probabilistic model and the
uncertainty over the Young function to be chosen.

Definition 3.17. Let Hc,α be the robust Orlicz risk premium, given
by Definition 3.10, and let f : L∞

+ × L∞ → L∞
+ be a linking function.

We define the robust H-linking CAR as the map Λc, f
H : L∞

+ × L∞ → R+

given by

Λc, f
H (X, Y) := Hc,α( f (X, Y)), X ∈ L∞

+ , Y ∈ L∞.

It is clear that Λc, f
H is a capital allocation rule with respect to the ro-

bust Orlicz risk premium, since f is linking. Moreover, for f (X, Y) 6=
0, Λc, f

H (X, Y) is the unique solution of

sup
Q∈Q

{
EQ

[
Φ
(

f (X, Y)

Λc, f
H (X, Y)

)]
− c(Q)

}
= 1.

We now study when Λc, f
H satisfies some of the usual properties

required for a capital allocation rule. The result turns out to be very
similar to the non-robust case.
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Proposition 3.26. Let f be a linking function.

a. If f (X, Y) ≤ f (X, X) = X for any X ∈ L∞
+ and Y ∈ L∞, then Λc, f

H
satisfies no-undercut.

b. If f (a, Y) = a for any a ≥ 0 and Y ∈ L∞, then Λc, f
H satisfies riskless.

c. If f is monotone increasing in the first entry then Λc, f
H is monotone.

Proof. The proof is the same as in the non-robust case and omitted
here.

We now provide a robust version of the π-linking CAR and study
its properties. The results are again very similar to the non-robust
case, due to the properties of Hc,α.

Definition 3.18. Given the map Λc, f
H of Definition 3.17, we define the

robust π-linking CAR as the map Λc, f
π : L∞ × L∞ → R given by

Λc, f
π (X, Y) := inf

x∈R

{
x + Λc, f

H
(
(X− x)+, (Y− x)+

)}
= inf

x∈R

{
x + Hc,α

(
f
(
(X− x)+, (Y− x)+

))}
.

Proposition 3.27. Let f be a linking function.

a. Λc, f
π is a CAR with respect to πc.

b. If f (Z, W) ≤ f (Z, Z) = Z for any Z ∈ L∞
+ and W ∈ L∞, then Λc, f

π

satisfies no-undercut.

c. If f (a, W) = a for any a ≥ 0 and W ∈ L∞, then Λc, f
π satisfies riskless.

d. If f is monotone increasing in the first entry then Λc, f
π is monotone.

e. If X, Y ∈ L∞
+ then Λc, f

π (X, Y) ≤ Λc, f
H (X, Y).

Proof. The proof is the same as in the non-robust case and omitted
here.

We now provide a Φ-robust version of the H-linking CAR, given
by Definition 3.8, and study its properties.

Definition 3.19. Let HP ,α be given by (3.21), and let f : L∞
+ × L∞ →

L∞
+ be a linking function. We define the Φ-robust H-linking CAR as

the map ΛP , f
H : L∞

+ × L∞ → R+ given by

ΛP , f
H (X, Y) := HP ( f (X, Y)), X ∈ L∞

+ , Y ∈ L∞.
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It is clear that ΛP , f
H is a capital allocation rule with respect to

the robust Orlicz risk premium, since f is linking. Moreover, for
f (X, Y) 6= 0, ΛP , f

H (X, Y) is the unique solution of

sup
Φ∈P

E

[
Φ
(

f (X, Y)

ΛP , f
H (X, Y)

)]
= 1.

We now study when ΛP , f
H satisfies some of the usual properties

required for a capital allocation rule. As before, we obtain results
very similar to the non-robust case.

Proposition 3.28. Let f be a linking function.

a. If f (X, Y) ≤ f (X, X) = X for any X ∈ L∞
+ and Y ∈ L∞, then ΛP , f

H
satisfies no-undercut.

b. If f (a, Y) = a for any a ≥ 0 and Y ∈ L∞, then ΛP , f
H satisfies riskless.

c. If f is monotone increasing in the first entry then ΛP , f
H is monotone.

Proof. The proof is the same as in the non-robust case and omitted
here.

In the following, we provide a Φ-robust version of the π-linking
CAR and study its properties. Once again, the results are very similar
to the non-robust case, thanks to the properties of HP ,α.

Definition 3.20. Let ΛP , f
H be as in Definition 3.19. We define the Φ-

robust π-linking CAR as the map ΛP , f
π : L∞ × L∞ → R given by

ΛP , f
π (X, Y) := inf

x∈R

{
x + ΛP , f

H
(
(X− x)+, (Y− x)+

)}
= inf

x∈R

{
x + HP ,α

(
f
(
(X− x)+, (Y− x)+

))}
.

Proposition 3.29. Let f be a linking function.

a. ΛP , f
π is a CAR with respect to πP .

b. If f (Z, W) ≤ f (Z, Z) = Z for any Z ∈ L∞
+ and W ∈ L∞, then ΛP , f

π

satisfies no-undercut.

c. If f (a, W) = a for any a ≥ 0 and W ∈ L∞, then ΛP , f
π satisfies

riskless.

d. If f is monotone increasing in the first entry then ΛP , f
π is monotone.

e. If X, Y ∈ L∞
+ then ΛP , f

π (X, Y) ≤ ΛP , f
H (X, Y).

Proof. The proof is the same as in the non-robust case and omitted
here.
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C A P I TA L A L L O C AT I O N R U L E S A N D A C C E P TA N C E
S E T S

In this chapter, we discuss a new approach to face capital allocation
problems from the perspective of acceptance sets, by introducing the
notion of sub-acceptance family.

We first provide an example motivating the introduction of the no-
tion of sub-acceptability, and later a formal definition, studying the
relations with acceptability. We then define the notion of risk con-
tribution rule, a tool which is similar to capital allocation rules but
does not involve any risk measure. We show that, in this context, risk
contribution rules are suitable for assessing the contribution of a sub-
portfolio to a given portfolio, in term of acceptability. Moreover, we
study under which conditions on a risk contribution rule a represen-
tation of an acceptance set holds in terms of the risk contribution
rule itself, extending the interpretation of minimal amount required
to hedge a risky position, classical in risk measures theory. Finally,
we discuss some generalizations of the previous results to account
for S-additive and quasi-convex risk measures.

The chapter is organized as follows. In Section 4.1 we introduce
the notion of sub-acceptance sets, while in Section 4.2 we define the
notion of risk contribution rule and prove the main results. Finally,
Section 4.3 contains extensions to the S-additive and quasi-convex
cases.

4.1 acceptance and sub-acceptance sets

In the classical approach to capital allocation, given a position Y and
a sub-portfolio X, Λ(X, Y) reflects ρ(Y). However, the capital alloca-
tion problem can be seen from another standpoint, as the following
example shows.

Example 4.1. Suppose we are provided with a normalized monetary
risk measure ρ to quantify the riskiness of financial positions, together
with its acceptance set Aρ. Given a portfolio Y ∈ Aρ we can look for
those positions which do not increment the risk of Y, that is belonging
to the set

AY,ρ = {X ∈ L∞ | ρ(Y)− ρ(Y− X) ≤ 0} .

Roughly speaking, AY,ρ is formed by positions such that the risk of
the portfolio containing the position is at most equal to the risk of the
portfolio without the position.

71
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Note that ρY(·) := ρ(Y)− ρ(Y − ·) is still a normalized monetary
risk measure and evaluates the riskiness of X as a sub-portfolio of Y.
In this case, AY,ρ can be viewed as the set of all acceptable positions
with respect to ρY, i. e. the acceptance set of ρY.

Notice that it is possible to find a position Z which is not accept-
able according to Aρ but belongs to AY,ρ. A simple example is the
following. For the probability space

(
Ω = [−1, 1],F = B(Ω), P = λ

2

)
,

where λ is the Lebesgue measure on [−1, 1], consider the random
variables Y = 1

2 and Z = 1[0,1] − 1[−1,0). Then, for ρ(·) := ess sup(−·)
we have that ρ(Z) = 1; hence Z /∈ Aρ but

ρ(Y)− ρ(Y− Z) = −1
2
− 1

2
= −1 < 0,

so Z ∈ AY,ρ.

The previous example shows that there may exist some positions
which do not contribute to the risk of the portfolio, even if they re-
quire extra capital when considered as stand-alone portfolios. Hence,
in that case, ρ may be not enough to establish whether a position is
acceptable or not as a sub-portfolio of Y, but only to measure the
riskiness of positions by itself. It would be more suitable, instead, to
measure the risk of sub-portfolios by using ρY and not to allocate
any part of the risk capital to those sub-portfolios belonging to AY.
The relevance of this fact and the lack of literature about it lead us to
formalize the idea with the following definition.

Definition 4.1. Let A be an acceptance set, in the sense of Defini-
tion 2.8. A family of sets (AY)Y∈L∞ is called a sub-acceptance family of
A if the following properties hold:

a. AY is an acceptance set for every Y ∈ L∞.

b. A = {Y ∈ L∞ | Y ∈ AY}.

Any AY is called a sub-acceptance set of Y and any position X ∈ AY is
called sub-acceptable with respect to Y.

Condition a of the previous definition means that the positions
belonging to AY are acceptable with respect to a fixed position Y, that
is when they are considered as sub-portfolios of Y. This implies also
that the sub-acceptance criterion, i. e. the one which leads us to detect
AY, involves features of both the position itself and of Y. Condition b

requires that Y is acceptable if and only if it belongs to AY, that is, if
and only if it is sub-acceptable with respect to itself.

In the following, we provide two examples of sub-acceptance fam-
ily, pointing out that the criterion defining the above family depends
also on the fixed acceptance set A.
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Example 4.2. Consider the acceptance set of Example 2.2, that is

A = {Y ∈ L∞ | E[Y] ≥ 0} .

Starting from this simple acceptance set, we can fix a portfolio Y ∈
L∞ and consider a position X ∈ L∞ to be sub-acceptable whenever
the expected P&L of X + Y is still non-negative. This yields the sub-
acceptance set

AY = {X ∈ L∞ | E[X + Y] ≥ 0} .

Notice that a position belongs to AY when the expected P&L of X
is less or equal than the P&L of −Y. So, when Y is acceptable, we
consider as sub-acceptable those positions with expectation greater
or equal than the negative number E[−Y]. Hence, in such case, some
sub-acceptable positions have a negative expectation. We point out
that, according to the chosen criterion, those positions are still sub-
acceptable with respect to Y, while they would not be acceptable if
they were considered as stand-alone portfolios.

The collection of sets given by AY is actually a sub-acceptance fam-
ily in the sense of Definition 4.1. Non-triviality and monotonicity fol-
lows straightforwardly from the properties of the expectation and A
can be recognized from the family via

A = {Y ∈ L∞ | Y ∈ AY}
= {Y ∈ L∞ | E[2Y] ≥ 0}
= {Y ∈ L∞ | E[Y] ≥ 0} .

Suppose now we slightly modify A and consider the acceptance
set of Example 2.4:

A′ = {Y ∈ L∞ | E[Y] ≥ λ} for some λ > 0.

In this case, (AY)Y∈L∞ is no more a sub-acceptance family of A′, since
Condition b of Definition 4.1 fails. Indeed,

{Y ∈ L∞ | Y ∈ AY} = {Y ∈ L∞ | E[Y] ≥ 0} 6= A′.

Example 4.3. We now consider the acceptance set of Example 2.3:

A = {X ∈ L∞ | P(X ≤ 0) ≤ α}

for a fixed level α ∈ (0, 1). We will use the same construction of
the previous example to define a sub-acceptance family. Hence, once
fixed Y ∈ L∞, we consider sub-acceptable those positions X ∈ L∞ for
which the probability that the sum X + Y becomes negative is less or
equal than the fixed level α. In this case, we get the sub-acceptance
set

AY = {X ∈ L∞ | P(X + Y ≤ 0) ≤ α}
which gives rise to a sub-acceptance family, as in Definition 4.1. Non-
triviality and monotonicity are straightforward and A is actually re-
coverable from the family. Notice that, as before, AY is detected by a
criterion which involves both the sub-portfolio X and the position Y.
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4.2 risk contribution rules

Acceptance and sub-acceptance sets are tools to detect whether a posi-
tion needs to be covered by extra capital or not, both when considered
as a stand-alone portfolio and when considered as a sub-portfolio of
another position. We now provide a tool suitable for assessing the
contribution of a sub-portfolio to a given portfolio in terms of accept-
ability. As shown in the previous section, we need to go beyond the
standard approach by linking directly capital allocation rules (or risk
contribution rules) and (sub-)acceptance sets. To this aim, we define a
map Λ, where Λ(X, Y) is interpreted as the risk contribution (or the
capital allocated) of X as a sub-portfolio of Y.

Definition 4.2. A function Λ : L∞ × L∞ → R is called a risk contribu-
tion rule if it satisfies the following properties, for all X, Y ∈ L∞:

1-cash-additivity: Λ(X + c, Y) = Λ(X, Y)− c, for all c ∈ R.

Normalization: Λ(0, Y) = 0.

Notice that risk contributions are essentially similar to capital al-
location rules but they do not satisfy in general full allocation and,
moreover, may not depend on a risk measure.

1-cash-additivity means that if we add a cash amount c to the sub-
portfolio X, its risk contribution decreases exactly of c. Notice that
some known capital allocation rules in the literature satisfy 1-cash
additivity, as for example those based on directional derivatives and
extensions (see Centrone and Rosazza Gianin [23], Denault [30] and
Kalkbrener [50]). Normalization property is quite clear: there is no
reason to allocate any capital to a position which yields an almost
surely null profit and loss.

Let us now consider the following example, based on the two well-
known marginal and proportional methods (see Chapter 2).

Example 4.4. Let ρ be a normalized monetary risk measure. We recall
that the marginal method is given by

ΛM
ρ (X, Y) = ρ(Y)− ρ(Y− X), X, Y ∈ L∞;

see Definition 2.14. While the proportional method is given by

ΛP
ρ (X, Y) =

ρ(X)

ρ(X) + ρ(Y− X)
ρ(Y), X, Y ∈ L∞;

provided that ρ(X) + ρ(Y− X) 6= 0; see Definition 2.13.
It is easy to check that ΛM

ρ is a CAR (in the sense of Definition 2.12)
satisfying normalization and 1-cash-additivity, thanks to the cash-
additivity of ρ. Thus, ΛM

ρ is also a risk contribution rule according
to Definition 4.2. While ΛP

ρ is normalized but not 1-cash-additive and
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hence it is not a risk contribution rule, despite it is a capital allocation
rule, because ΛP

ρ (X, X) = ρ(X).

The following additional property will be sometimes required:

Cash-additivity: Λ(Y + c, Y + c)=Λ(Y, Y)− c, for all c ∈ R, Y∈ L∞.

Note that the cash-additivity property is automatically satisfied in
the standard case when a monetary risk measure is involved, while
this does not necessarily hold for 1-cash-additivity.

4.2.1 From acceptance sets to risk contribution rules

We now investigate the connections between risk contribution rules
and acceptance sets. To this aim, take an acceptance set A, a sub-
acceptance family (AY)Y∈L∞ and define, for all X, Y ∈ L∞,

ΛA(X, Y) := inf {m ∈ R | m + X ∈ AY} . (4.1)

The subscript A will be omitted when no misunderstandings can
arise. Here, Λ(X, Y) can be interpreted as the capital allocated to X
(or the risk contribution of X), considered as a sub-portfolio of Y, in
terms of the minimum amount of capital which should be added to
X to make it sub-acceptable. Notice that, in general, Λ(Y, Y) does not
define the minimum amount of capital which should be added to Y
to make it acceptable but only the minimum amount of capital m to
make m +Y sub-acceptable with respect to AY. However, under addi-
tional conditions on the sub-acceptance family, the previous property
is fulfilled. We thus introduce the following notion.

Definition 4.3. A sub-acceptance family (AY)Y∈L∞ is said to be trans-
lation invariant if it satisfies the following property:

Translation invariance: AY = AY+m for all m ∈ R, Y ∈ L∞.

Translation invariance can be interpreted as follows: no matter if
we add or remove a fixed amount of capital m to the portfolio Y,
the sub-acceptable positions keep being so. This property can be too
restrictive, even if it works for some capital allocation methods, as we
are going to show in the following examples.

Example 4.5. Consider the set of Example 4.1:

AY = {X ∈ L∞ | ρ(Y)− ρ(Y− X) ≤ 0} , Y ∈ L∞;

for a given (normalized) monetary risk measure ρ. By cash-additivity
of ρ, it follows that (AY)Y∈L∞ is translation invariant. Indeed, for any
m ∈ R and Y ∈ L∞ it holds that

AY+m = {X ∈ L∞ | ρ(Y + m)− ρ(Y + m− X) ≤ 0}
= {X ∈ L∞ | ρ(Y)− ρ(Y− X) ≤ 0} = AY.
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Example 4.6. Consider instead the set discussed in Example 4.2:

AY = {X ∈ L∞ | E[X + Y] ≥ 0} , Y ∈ L∞.

It is easy to check that (AY)Y∈L∞ is not translation invariant. However,
the following inclusions hold for any Y ∈ L∞:

AY+m ⊆ AY if m < 0,

AY+m ⊇ AY if m > 0.

To continue our study, we need to define the following property
which an acceptance set A can fulfill or not:

No certain losses: inf {m ∈ R | m ∈ A} = 0.

No certain losses means that the smallest constant random variable
which is acceptable is 0, i. e. no positions with a (certain) negative
profit and loss can be acceptable. We will show in the following that
no certain losses is strictly related to the normalization property of a
risk contribution rule.

We are now ready to state a result generalizing the one true for risk
measures; see Chapter 2 or, for more details, Föllmer and Schied [39,
Prop. 4.7].

Proposition 4.1. If A is an acceptance set, (AY)Y∈L∞ is a sub-acceptance
family and they both satisfy no certain losses property, then Λ defined in (4.1)
is a risk contribution rule.

Moreover, if the sub-acceptance family is also translation invariant then

Λ(Y, Y) = inf {m ∈ R | m + Y ∈ A} , for all Y ∈ L∞.

Proof. Finiteness of Λ(X, Y): by the essential boundedness of X and
the monotonicity of AY it holds that

{m ∈ R | m + X ∈ AY} ⊇ {m ∈ R | m + ess inf X ∈ AY} 6= ∅.

No certain losses implies that Λ(X, Y) < +∞. Moreover, by similar
arguments,

Λ(X, Y) ≥ inf {m ∈ R | m + ess sup X ∈ AY} = − ess sup X > −∞

by essential boundedness of X, monotonicity of AY and no certain
losses of AY.

1-cash-additivity: for any X, Y ∈ L∞ and c ∈ R it holds that

Λ(X + c, Y) = inf {m ∈ R | m + X + c ∈ AY}
= inf {k ∈ R | k + X ∈ AY} − c

= Λ(X, Y)− c

by taking k = m + c.
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Normalization: no certain losses of AY implies that

Λ(0, Y) = inf {m ∈ R | m ∈ AY} = 0 for all Y ∈ L∞.

Monotonicity: fix Y ∈ L∞ and consider Z ≥ X (with Z, X ∈ L∞). By
monotonicity of AY,

{m ∈ R | m + Z ∈ AY} ⊇ {m ∈ R | m + X ∈ AY} ,

hence Λ(Z, Y) ≤ Λ(X, Y).

It remains to prove the last statement. For any Y ∈ L∞ it holds that

Λ(Y, Y) = inf {m ∈ R | m + Y ∈ AY}
= inf {m ∈ R | m + Y ∈ AY+m}
= inf {m ∈ R | m + Y ∈ A} ,

where the second equality holds by translation invariance and the last
one by definition of sub-acceptance family.

Remark 4.1. Notice that, when the sub-acceptance family is transla-
tion invariant, Λ(Y, Y) defines exactly the minimum amount of cap-
ital which should be added to Y to make it acceptable, even if the
acceptance set A is not involved in the definition of Λ.

We will give now some examples of risk contribution rules associ-
ated to the acceptance and sub-acceptance sets presented in the pre-
vious section.

Example 4.7. Consider the acceptance set and the sub-acceptance
family given by

A = {X ∈ L∞ | ρ(X) ≤ 0}
AY = {X ∈ L∞ | ρ(Y)− ρ(Y− X) ≤ 0}

for ρ being a monetary risk measure and Y ∈ L∞. By cash-additivity
of ρ, ΛA defined in (4.1) becomes

ΛA(X, Y) = inf {m ∈ R | m + X ∈ AY}
= inf {m ∈ R | ρ(Y)− ρ(Y− (X + m)) ≤ 0}
= inf {m ∈ R | ρ(Y)− ρ(Y− X) ≤ m}
= ρ(Y)− ρ(Y− X),

hence corresponding to the marginal method; see Chapter 2 and the
references therein.

Moreover, ΛA is a risk contribution rule. Indeed, 1-cash-additivity
is immediate and normalization follows by no certain losses property
of AY. Furthermore, it is also a CAR: ΛA(Y, Y) = ρ(Y) follows by
translation invariance of AY.
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Example 4.8. Consider the acceptance set and the sub-acceptance
family given by

A = {Y ∈ L∞ | P(Y ≤ 0) ≤ α}
AY = {X ∈ L∞ | P(X + Y ≤ 0) ≤ α}

for some α ∈ (0, 1) and for any Y ∈ L∞. Then

ΛA(X, Y) = inf {m ∈ R | m + X ∈ AY}
= inf {m ∈ R | P(X + m + Y ≤ 0) ≤ α}
= − sup {k ∈ R | P(X + Y ≤ k) ≤ α}
= −q+α (X + Y) = VaRα(X + Y),

where q+α (Z) := inf {m ∈ R | P(Z ≤ m) > α} is the upper α-quantile
and VaRα(Z) is the Value at Risk at level α of Z (see Definition 2.9).
Hence, ΛA is 1-cash-additive but not normalized, so it is not a risk
contribution rule. Moreover,

ΛA(Y, Y) = −2q+α (Y) 6= inf {m ∈ R | m + Y ∈ A} = −q+α (Y).

Indeed, the sub-acceptance family is not translation invariant.

We now define some properties on acceptance sets corresponding
to those already introduced on risk contribution rules.

First of all, it may be reasonable to require that any acceptable posi-
tions is also sub-acceptable for every portfolio, that is, to require the
following property:

A-no-undercut: A ⊆ AY for all Y ∈ L∞.

As shown in the following result, A-no-undercut corresponds to no-
undercut of the associated Λ.

Proposition 4.2. Let A be an acceptance set and let (AY)Y∈L∞ be a trans-
lation invariant sub-acceptance family. If the family (AY)Y∈L∞ satisfies A-
no-undercut, then ΛA defined in (4.1) satisfies no-undercut.

Proof. Given arbitrary X, Y ∈ L∞, A-no-undercut implies

{m ∈ R | m + X ∈ A} ⊆ {m ∈ R | m + X ∈ AY} .

Hence,

ΛA(X, Y) ≤ inf {m ∈ R | m + X ∈ A} = ΛA(X, X)

where the last equality holds by translation invariance of the sub-
acceptance family.

We conclude this section by discussing the compatibility of our
approach with the Euler’s allocation and the RORAC (see Chapter 2

or [6, 18, 50, 62] for more details).
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Example 4.9. Let Q be a set of probability measures that are abso-
lutely continuous with respect to P and let ρ(Y) = supQ∈QEQ[−Y]
be a coherent risk measure.

Consider the acceptance set and the sub-acceptance family given
by

A = {X ∈ L∞ | EQX [−X] ≤ 0}
AY = {X ∈ L∞ | EQY [−X] ≤ 0}

for a given Y ∈ L∞ and QY ∈ arg maxQ∈QEQ[−Y]. In other words,
we assume that in the representation of ρ the supremum is always
attained.

It follows then that ΛA coincides with the Euler capital allocation.
Indeed,

ΛA(X, Y) = inf {m ∈ R | m + X ∈ AY} = EQY [−X],

that is the Euler (or gradient) allocation of Definition 2.18 (see [6, 18,
23, 28, 50, 62] for more details).

Example 4.10. Consider an acceptance set A, a sub-acceptance family
(AY)Y∈L∞ and the associated ΛA defined in (4.1). It is then possible
to define the RORAC risk contribution rule induced by ΛA as

ΛR,A(X, Y) :=
E[X]

ΛA(X, Y)

similarly to Definition 2.16, where a CAR Λ with respect to a risk
measure ρ is given. However, ΛR,A fails to satisfy 1-cash-additivity,
hence it is not a risk contribution in general. Normalization holds
whenever we assume that 0

0 = 0.
Furthermore, even if ΛA satisfies no-undercut, the same is no more

true for the associated RORAC risk contribution rule. Indeed, when-
ever E[X] ≥ 0,

ΛR,A(X, Y) =
E[X]

ΛA(X, Y)
≥ E[X]

ΛA(X, X)
= ΛR,A(X, X).

4.2.2 From risk contribution rules to acceptance sets

So far, we have defined a risk contribution rule starting from an accep-
tance set and a sub-acceptance family and studied some properties of
that risk contribution rule corresponding to those required for the
sets. We now investigate the converse.

Let us start with the case when Λ is a risk contribution rule that is
also induced by a monetary risk measure ρ such that Λ(X, X) = ρ(X)

for all X ∈ L∞.
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Consider the acceptance set Aρ of ρ, that is, the set of all X ∈ L∞

such that Λ(X, X) ≤ 0. Then define, for all Y ∈ L∞,

AY := {X ∈ L∞ | Λ(X, Y) ≤ 0} .

Every position X in AY is sub-acceptable in the sense that it does not
need any capital injection when seen as a sub-portfolio of Y. Notice
that Aρ = {Y ∈ L∞ | Y ∈ AY}.

The following representation result is then straightforward.

Proposition 4.3. If Λ is a risk contribution rule induced by a monetary
risk measure ρ, then

Λ(X, Y) = inf {m ∈ R | m + X ∈ AY} ,

Λ(Y, Y) = inf {m ∈ R | m + Y ∈ A}

for any X, Y ∈ L∞.
If, moreover, Λ is monotone, thenAY is an acceptance set for any Y ∈ L∞,

and Λ(·, Y) = ρY(·) is a monetary risk measure satisfying ρY(Y) = ρ(Y).

Proof. If Λ is a risk contribution rule then, by 1-cash-additivity,

inf {m ∈ R | m + X ∈ AY} = inf {m ∈ R | Λ(m + X, Y) ≤ 0}
= Λ(X, Y)

holds for any X, Y ∈ L∞.
Moreover, Λ(Y, Y) = ρ(Y) = inf {m ∈ R | m + Y ∈ A}, where the

former equality holds since Λ is induced by ρ, while the latter fol-
lows from the relation between monetary risk measures and accep-
tance sets. If Λ is monotone, the monotonicity of each AY follows
straightforwardly.

The modified monetary risk measure ρY reflects the “true” risk of
X as a sub-portfolio of Y. This risk contribution rule is not linear in
general, but this is justified by the fact that we are not trying to share
the risk ρ(Y) among the various sub-units of Y but to assign to each
sub-unit exactly its risk contribution as a sub-unit of Y.

We now investigate if the previous representation result still holds
true for a general Λ not necessarily induced by a monetary risk mea-
sure. Unfortunately, this is not the case without imposing some addi-
tional properties on the risk contribution rule. The main problems are
related to the lack of cash-additivity and of monotonicity, which are
instead automatically fulfilled in the standard framework, whenever
a monotone risk measure is involved.

There are several ways to fill those gaps: in the following, we will
discuss and investigate the different properties to be required to ob-
tain results similar to Proposition 4.3.
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Given a risk contribution rule Λ, we define the following sets:

AΛ := {Y ∈ L∞ | Λ(Y, Y) ≤ 0} (4.2)

AY,Λ := {X ∈ L∞ | Λ(X, Y) ≤ 0} , Y ∈ L∞, (4.3)

where the subscript Λ will be omitted when it is clear which risk
contribution rule is involved.

Proposition 4.4. If Λ is a risk contribution rule satisfying monotonicity,
cash-additivity and no-undercut, then A defined in (4.2) is an acceptance
set and (AY)Y∈L∞ given by (4.3) is a sub-acceptance family with respect to
A. Moreover, Λ can be written as:

Λ(X, Y) =

inf {m ∈ R | m + X ∈ AY} if X 6= Y

inf {m ∈ R | m + Y ∈ A} if X = Y.
(4.4)

Proof. Non triviality of A: first of all, A 6= ∅ since 0 ∈ A by nor-
malization. In order to check A 6= L∞, let us consider c < Λ(Y, Y).
Then, by cash-additivity of Λ, Λ(Y + c, Y + c) = Λ(Y, Y)− c > 0 so
that Y + c /∈ A. A similar argument clearly holds for each AY.

Monotonicity of each AY: consider X ∈ AY and Z ≥ X with Z, X ∈
L∞. Then, by monotonicity of Λ and (4.3), it follows that

Λ(Z, Y) ≤ Λ(X, Y) ≤ 0,

hence Z ∈ AY.

Monotonicity of A: take X ∈ A and Y ≥ X. Then

Λ(Y, Y) ≤ Λ(X, Y) ≤ Λ(X, X) ≤ 0 (4.5)

where the first inequality holds by monotonicity of Λ, the second one
by no-undercut and the last one because X ∈ A. Therefore, Y ∈ A
and A is an acceptance set. Since

A = {Y ∈ L∞ | Y ∈ AY} = {Y ∈ L∞ | Λ(Y, Y) ≤ 0} ,

then (AY)Y∈L∞ is a sub-acceptance family with respect to A.
It remains to show that Λ can be represented as in (4.4). Consider,

firstly, the case where X 6= Y. Then

Λ(X, Y) = inf {m ∈ R | Λ(X, Y) ≤ m}
= inf {m ∈ R | Λ(X + m, Y) ≤ 0}
= inf {m ∈ R | X + m ∈ AY}

where the second equality holds by 1-cash-additivity of Λ and the
last one by definition of AY. Finally, by cash-additivity of Λ and by
definition of A, for any Y ∈ L∞ it holds that

Λ(Y, Y) = inf {m ∈ R | Λ(Y, Y) ≤ m}
= inf {m ∈ R | Λ(Y + m, Y + m) ≤ 0}
= inf {m ∈ R | Y + m ∈ A} .
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It is worth mentioning that other properties on a risk contribution
rule could guarantee the same thesis of the previous result. Mono-
tonicity is clearly needed to prove that eachAY is monotone and there
are no significant alternatives. Notice that no-undercut is required to
fill the lack of the following property:

Full monotonicity: if Y ≥ X (Y, X ∈ L∞), then Λ(Y, Y) ≤ Λ(X, X).

The previous property is automatically satisfied in the standard capi-
tal allocation framework when Λ is induced by a monotone risk mea-
sure. However, full monotonicity follows from monotonicity and no-
undercut, as we can see from inequalities in (4.5).

Notice, moreover, that Λ satisfying no-undercut does not imply the
same property on acceptance and sub-acceptance sets.

4.2.3 Full allocation

This section is devoted to a discussion of a crucial property for capital
allocations, namely full allocation (see Chapter 2 or [50] for more
details).

Different motivations can be given that would lead to including or
not full-allocation in capital allocation models: in the following we
will give some reasons for not requiring this property, but also will
explore some consequences of assuming it in our framework.

First, for capital allocations induced by risk measures requiring or
not full allocation would depend also on how general the consid-
ered risk measure is. As shown by Kalkbrener [50, Thm 4.2], indeed,
for Λ induced by a risk measure ρ full allocation, combined with
no-undercut and Λ(Y, Y) = ρ(Y), implies subadditivity of ρ, while
linearity and no-undercut imply its positive homogeneity. In other
words, we cannot expect that a capital allocation related to general
risk measures satisfies both full allocation and no-undercut. Although
the combination of the two properties is especially significant and
used in practice (see, for example, [19, 63]), in the literature the prob-
lem of capital allocation has been faced also beyond the context of
coherent risk measures. Indeed, for example, Tsanakas [64] extends
the Aumann-Shapley capital allocation method to the context of con-
vex risk measures.

Moreover, as remarked by Brunnermeier and Cheridito [18], the
need of imposing full allocation or not to a capital allocation would
depend also on the purpose of such a capital allocation. When such
a capital allocation is mainly used to monitor the position, full allo-
cation may not be required. Indeed, the authors introduce a convex
measure ρ of systemic risk and study capital allocation w. r. t. some
popular methods, such as the marginal ones, not satisfying in gen-
eral full allocation. Some other well-known capital allocations, for
instance the RORAC, do not satisfy full allocation. Furthermore, it is
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always possible to modify a capital allocation Λ so to guarantee full
allocation, as we showed in Chapter 3, but at the cost of losing some
other properties.

We also point out that, in order to make capital allocation, it is
not always requested to start with the specification of a given risk
measures. In fact, as pointed out in [6], Remark 2.4, the total capital
may be adjusted according to different possible scenarios.

Since our aim is to focus on capital allocations (or, better, risk con-
tribution rules) that are not necessarily related to risk measures but,
even in such a case, the risk measure is quite general and not nec-
essarily coherent, we have not assumed full allocation in general. To
better clarify our point about dispensing of full allocation, consider
for instance the case of a convex risk measure ρ. In general, there may
exist a portfolio Y = Y1 +Y2 where ρ(Y) > ρ(Y1) + ρ(Y2). As pointed
out in [23], if Λρ is a capital allocation satisfying no-undercut and
Λ(Y, Y) = ρ(Y), then Λ(Y, Y) = ρ(Y) > ρ(Y1) + ρ(Y2) ≥ Λ(Y1, Y) +
Λ(Y2, Y); that is, full allocation fails. Since the no-undercut property
guarantees that there is no incentive to split a sub-portfolio from the
whole portfolio, it would be therefore more reasonable to replace full
allocation with the following property, introduced by Centrone and
Rosazza Gianin [23]:

Sub-allocation: for all Y1, . . . , Yn, Y ∈ L∞ such that Y = ∑n
i=1 Yi,

Λ(Y, Y) ≥
n

∑
i=1

Λ(Yi, Y).

While for full allocation the capital requirement Λ(Y, Y) is fully di-
vided into the different business lines (or sub-units) Y1, . . . , Yn, for
sub-allocation there is some undivided cost that is not shared be-
tween the sub-units because it is due to some fixed costs to be faced
by the whole portfolio (such as taxes, common costs, . . . ) that is not
proportional to the riskiness of any business line. Furthermore, the
undivided Λ(Y, Y)−∑n

i=1 Λ(Yi, Y) > 0 can be also interpreted as an
extra security requirement.

It is clear that sub-allocation is weaker than full allocation. As
shown in Centrone and Rosazza Gianin [23, Prop. 4], there exists a
CAR induced by a monetary convex risk measure and satisfying no-
undercut and sub-allocation.

Another property which is compatible with no-undercut for Λ that
are induced by monetary convex risk measures is the following:

1-weak convexity: for all Y1, . . . , Yn, Y ∈ L∞ and αi ∈ [0, 1] such
that ∑n

i=1 αi = 1 and Y = ∑n
i=1 αiYi,

Λ(Y, Y) ≤
n

∑
i=1

αiΛ(Yi, Y).



84 capital allocation rules and acceptance sets

The name of the previous property is justified by the fact that it is a
sort of convexity in the first variable, holding for weighted Yi’s sum-
ming to Y.

The following results investigate the impact (on the sub-acceptance
family) of imposing full allocation or the other weaker conditions on
a risk contribution rule Λ.

Proposition 4.5 (Full allocation). a. If Λ : L∞ × L∞ → R is a map
which satisfies full allocation, then each AY,Λ satisfies the following con-
dition for all Y1, . . . , Yn, Y ∈ L∞:

Yi ∈ AY,Λ for each i = 1, . . . , n with
n

∑
i=1

Yi = Y =⇒
n

∑
i=1

Yi ∈ AY,Λ.

b. If (AY)Y∈L∞ is a family of acceptance sets satisfying the following condi-
tion, for all Y1, . . . , Yn, Y ∈ L∞ with ∑n

i=1 Yi = Y:

mi + Yi ∈ AY for each i = 1, . . . , n ⇐⇒
n

∑
i=1

(mi + Yi) ∈ AY,

then ΛA satisfies full allocation.

Proof. a. Let Y1, . . . , Yn, Y ∈ L∞ be such that ∑n
i=1 Yi = Y and Yi ∈

AY,Λ for each i = 1, . . . , n. By full allocation of Λ, it follows that

Λ(Y, Y) = Λ
( n

∑
i=1

Yi, Y
)
=

n

∑
i=1

Λ(Yi, Y) ≤ 0,

hence also Y = ∑n
i=1 Yi ∈ AY,Λ.

b. It can be proved similarly as in Frittelli and Scandolo [43, Prop. 3.3].
It follows, indeed, that

n

∑
i=1

ΛA(Yi, Y) =
n

∑
i=1

inf {mi ∈ R | mi + Yi ∈ AY}

= inf

{
n

∑
i=1

mi ∈ R

∣∣∣∣∣ mi + Yi ∈ AY for all i = 1, . . . , n

}

= inf

{
n

∑
i=1

mi ∈ R

∣∣∣∣∣ n

∑
i=1

(mi + Yi) ∈ AY

}
= ΛA(Y, Y),

where the third equality is due to the hypothesis on AY.

Notice that the condition in a implies that, under full allocation,
if a position Y is not acceptable, then every decomposition of Y into
sub-positions will contain at least a sub-position which is not sub-
acceptable. Moreover, the condition in b in the previous result implies
that, if (AY)Y∈L∞ is a sub-acceptance family, a position Y is acceptable
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if and only if every sub-position of Y is also sub-acceptable. So, in a
certain sense, the concept of sub-acceptability can highlight that full
allocation is quite a strong requirement.

Proposition 4.6 (Sub-allocation). a. If Λ : L∞× L∞ → R is a map that
satisfies sub-allocation, then each AY,Λ satisfies the following condition for
all Y1, . . . , Yn, Y ∈ L∞:

Yi /∈ AY,Λ for each i = 1, . . . , n with
n

∑
i=1

Yi = Y =⇒
n

∑
i=1

Yi /∈ AY,Λ.

b. If each AY is monotone and each Ac
Y ∩ L∞ is subadditive, i. e. for all

X1, . . . , Xn, Y ∈ L∞ it holds that

Xi /∈ AY for each i = 1, . . . , n =⇒
n

∑
i=1

Xi /∈ AY,

then ΛA satisfies sub-allocation.

Note that the necessary condition on Ac
Y ∩ L∞ in item a is weaker

than subadditivity since it is satisfied only for Y1, . . . , Yn, Y ∈ L∞ such
that ∑n

i=1 Yi = Y.

Proof. a. Let Y1, . . . , Yn, Y ∈ L∞ be such that ∑n
i=1 Yi = Y and Yi /∈

AY,Λ for each i = 1, . . . , n. By sub-allocation of Λ it follows that

Λ(Y, Y) = Λ
( n

∑
i=1

Yi, Y
)
≥

n

∑
i=1

Λ(Yi, Y) > 0,

hence also Y = ∑n
i=1 Yi /∈ AY,Λ.

b. It follows that

n

∑
i=1

ΛA(Yi, Y) =
n

∑
i=1

inf {mi ∈ R | mi + Yi ∈ AY}

=
n

∑
i=1

sup {mi ∈ R | mi + Yi /∈ AY}

= sup

{
n

∑
i=1

mi ∈ R

∣∣∣∣∣ mi + Yi /∈ AY for all i = 1, . . . , n

}

≤ sup

{
n

∑
i=1

mi ∈ R

∣∣∣∣∣ n

∑
i=1

(mi + Yi) /∈ AY

}
= ΛA(Y, Y),

where the inequality is due to subadditivity of Ac
Y while the second

equality to monotonicity of each AY.
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Proposition 4.7 (1-weak convexity). a. If Λ : L∞ × L∞ → R is a map
that satisfies 1-weak convexity, then each AY,Λ satisfies the following condi-
tion for all Y1, . . . , Yn, Y ∈ L∞:

Yi ∈ AY,Λ for all i = 1, . . . , n with
n

∑
i=1

αiYi = Y =⇒
n

∑
i=1

αiYi ∈ AY,Λ.

b. If each AY is convex, then ΛA satisfies 1-weak convexity.

Proof. a. Let Y1, . . . , Yn, Y ∈ L∞ and α1, . . . , αn ∈ [0, 1] be such that
∑n

i=1 αi = 1, ∑n
i=1 αiYi = Y and Yi ∈ AY,Λ for each i = 1, . . . , n. By

1-weak convexity of Λ it follows that

Λ(Y, Y) = Λ
( n

∑
i=1

αiYi, Y
)
≤

n

∑
i=1

αiΛ(Yi, Y) ≤ 0,

hence also Y = ∑n
i=1 αiYi ∈ AY,Λ.

b. It can be proved as in Frittelli and Scandolo [43, Prop. 3.3]. By
convexity of each AY, indeed,

n

∑
i=1

αiΛA(Yi, Y)

=
n

∑
i=1

αi inf {mi ∈ R | mi + Yi ∈ AY}

= inf

{
n

∑
i=1

αimi ∈ R

∣∣∣∣∣ mi + Yi ∈ AY for each i = 1, . . . , n

}

≥ inf

{
n

∑
i=1

αimi ∈ R

∣∣∣∣∣ n

∑
i=1

αi(mi + Yi) ∈ AY

}
= inf {m ∈ R | m + Y ∈ AY} = ΛA(Y, Y).

In conclusion, while full allocation seems to be a too strong require-
ment for general risk contribution rules, sub-allocation or 1-weak con-
vexity seem to be more appropriate.

4.3 some extensions

So far, we focused on the cash-additive case, that is related to a 1-
cash-additive CAR or to a translation invariant sub-acceptance fam-
ily. In the following, we generalize the approach above to the case
where translation invariance of the acceptance family either holds
with respect to a reference asset (not necessarily a risk-free asset) or
is dropped. More precisely, we will focus both on the S-additive case
and on the quasi-convex case.



4.3 some extensions 87

4.3.1 S-additivity

As pointed out by Farkas et al. [36] and Munari [56], the idea of the
milestone work of Artzner et al. [5] is to measure the risk of a position
by describing how close or far from acceptability the position is, given
a “reference instrument” that does not necessarily correspond to a
cash account. In our framework, capital allocation rules assess the
capital to be allocated to a sub-portfolio by means of the distance to
a sub-acceptance set, which is, in some cases, related to the risk of
the sub-portfolio. Therefore, in general, it is too restrictive to impose
the cash-additivity assumption to capital allocation rules. Following
the approach of Farkas et al. [36] and Munari [56] who introduced
the so-called S-additive risk measures, we would like to admit the
possibility to make a portfolio acceptable or sub-acceptable by adding
not necessarily cash but also shares of a “suitable” asset.

Fix now a time horizon T and an asset S given by S = (S0, ST),
where S0 ∈ R is the initial value and ST ∈ L∞ is the value of S at
time T. We assume the existence of a financial market where assets
are traded. We recall the following definition to clarify which are the
“suitable” assets we wish to add to sub-portfolios in order to reach
acceptability.

Definition 4.4. (see Farkas and Smirnow [37]) Given a time horizon
T ≥ 0 and an acceptance set A, an asset S = (S0, ST) is called eligible
if ST ∈ A and its initial value S0 is strictly positive.

In the following, S will denote, with an abuse of notation, both
the asset and its terminal value ST, while E will denote the set of all
eligible assets. The previous definition slightly differs from the one
of Farkas et al. [36] and Munari [56], where they require the same
condition on S0 but a different one on ST, i. e. P(ST ≥ 0) = 1.

Our aim is now to investigate whether the results of the previous
section can be generalized to the present case where we introduce the
following definition of S-risk contribution rules.

Definition 4.5. A function Λ : L∞ × L∞ → R is called an S-risk con-
tribution rule if it satisfies the following properties, for all X, Y ∈ L∞:

1-S-additivity: Λ(X + mS, Y)=Λ(X, Y)−mS0, for all m∈ R, S∈ E .

Normalization: Λ(0, Y) = 0.

Compared to risk contribution rules of Definition 4.2, in S-risk con-
tribution rules the assumption of 1-cash-additivity has been replaced
by 1-S-additivity. Therefore, for S-risk contribution rules, not only
cash amounts m ∈ R are suitable to reduce the capital allocated to a
sub-portfolio but also eligible assets S ∈ E .
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Similarly to the previous section, given an acceptance set A and a
sub-acceptance family (AY)Y∈L∞ we define, for all X, Y ∈ L∞,

ΛA(X, Y) := inf
{

m ∈ R

∣∣∣∣ m
S0

S + X ∈ AY

}
, (4.6)

where the subscript A will be omitted when no misunderstandings
can arise. Before going further, we need to introduce the following
properties for a sub-acceptance family (AY)Y∈L∞ :

S-translation invariance: AY = AY+mS for all m ∈ R and S ∈ E .

S-no certain losses: inf
{

m ∈ R

∣∣∣∣ m
S0

S ∈ A
}

= 0 for all S ∈ E .

S-translation invariance property means that those positions which
are sub-acceptable with respect to a given portfolio Y are also sub-
acceptable with respect to any sum Y + mS where S is eligible and m
is any cash amount. In other words, no matter if we add or remove
any quantity (even negative) of eligible asset S to the portfolio Y, the
sub-acceptable positions keep being so. S-no certain losses property,
instead, requires that the smallest share of eligible asset which is ac-
ceptable is 0, i. e. no short positions on S can be acceptable.

Proposition 4.8. If A is an acceptance set, (AY)Y∈L∞ is a sub-acceptance
family and they both satisfy no certain losses property, then ΛA defined
in (4.6) is a monotone S-risk contribution rule.

Moreover, if the sub-acceptance family is also S-translation invariant then

ΛA(Y, Y) = inf
{

m ∈ R

∣∣∣∣ m
S0

S + Y ∈ A
}

for all Y ∈ L∞.

Proof. Finiteness of ΛA(X, Y): since AY is an acceptance set (hence
it is monotone and AY 6= ∅, L∞) and X ∈ L∞,{

m ∈ R

∣∣∣∣ m
S0

S + X ∈ AY

}
6= ∅, R.

Hence ΛA(X, Y) ∈ R.

1-S-additivity: for any X, Y ∈ L∞, S eligible and k ∈ R we consider

ΛA(X + kS; Y) = inf
{

m ∈ R

∣∣∣∣ m
S0

S + X + kS ∈ AY

}
= inf {(c− k)S0 ∈ R | cS + X ∈ AY}
= inf {cS0 ∈ R | cS + X ∈ AY} − kS0

= inf
{

β ∈ R

∣∣∣∣ β

S0
S + X ∈ AY

}
− kS0

= ΛA(X, Y)− kS0.
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Normalization: S-no certain losses implies, for every Y, that

ΛA(0, Y) = inf
{

m ∈ R

∣∣∣∣ m
S0

S ∈ AY

}
= 0.

Monotonicity: fix any X, Y ∈ L∞ and consider Z ≥ X. By monotonic-
ity of AY,{

m ∈ R

∣∣∣∣ m
S0

S + Z ∈ AY

}
⊇
{

m ∈ R

∣∣∣∣ m
S0

S + X ∈ AY

}
hence ΛA(Z, Y) ≤ ΛA(X, Y).

Finally, by S-translation invariance of AY and by definition of sub-
acceptance family it follows that for any Y ∈ L∞

ΛA(Y, Y) = inf
{

m ∈ R

∣∣∣∣ m
S0

S + Y ∈ AY

}
= inf

{
m ∈ R

∣∣∣∣ m
S0

S + Y ∈ AY+ m
S0

S

}
= inf

{
m ∈ R

∣∣∣∣ m
S0

S + Y ∈ A
}

.

Assume now that an S-risk contribution rule Λ is given. We can
wonder which properties are fulfilled by the acceptance sets induced
by Λ. To this aim, we introduce the following property:

S-additivity: Λ(Y + mS, Y + mS) = Λ(Y, Y)− mS0, for all m ∈ R,
S ∈ E , Y ∈ L∞;

generalizing cash-additivity of Λ.

Proposition 4.9. If Λ is an S-risk contribution rule satisfying monotonic-
ity, S-additivity and no-undercut, then the corresponding A and (AY)Y∈L∞

are, respectively, an acceptance set and a sub-acceptance family with respect
to A. Moreover, Λ is given by

Λ(X, Y) =


inf
{

m ∈ R

∣∣∣∣ m
S0

S + X ∈ AY

}
if X 6= Y;

inf
{

m ∈ R

∣∣∣∣ m
S0

S + Y ∈ A
}

if X = Y.
(4.7)

Proof. A 6= ∅, L∞: 0 ∈ A by normalization of Λ. Given an arbitrary
S ∈ E there exists m ∈ R such that mS0 < Λ(Y, Y). S-additivity
implies then

Λ(Y + mS, Y + mS) = Λ(Y, Y)−mS0 > 0,

hence Y + mS /∈ A. Non triviality of any AY can be checked similarly.
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Monotonicity of each AY: consider X ∈ AY and Z ≥ X. Then, by
monotonicity of Λ,

Λ(Z, Y) ≤ Λ(X, Y) ≤ 0.

Hence Z ∈ AY.

Monotonicity of A: take X ∈ A and Y ≥ X then, by monotonicity
and no-undercut of Λ,

Λ(Y, Y) ≤ Λ(X, Y) ≤ Λ(X, X) ≤ 0,

where the last inequality is due to X ∈ A. Therefore Y ∈ A and A is
an acceptance set. Since

A = {Y ∈ L∞ | Y ∈ AY} = {Y ∈ L∞ | Λ(Y, Y) ≤ 0} ,

(AY)Y∈L∞ is a sub-acceptance family with respect to A.

It remains to show that Λ can be represented as in (4.7). For any
X, Y ∈ L∞ with X 6= Y it holds that

Λ(X, Y) = inf {m ∈ R | Λ(X, Y) ≤ m}

= inf
{

m ∈ R

∣∣∣∣ Λ
(

X +
m
S0

S, Y
)
≤ 0

}
= inf

{
m ∈ R

∣∣∣∣ X +
m
S0

S ∈ AY

}
,

where the second equality holds by 1-S-additivity and the last one
by definition of AY. Finally, by S-additivity, it follows that, for any
Y ∈ L∞,

Λ(Y, Y) = inf {m ∈ R | Λ(Y, Y) ≤ m}

= inf
{

m ∈ R

∣∣∣∣ Λ
(

Y +
m
S0

S, Y +
m
S0

S
)
≤ 0

}
= inf

{
m ∈ R

∣∣∣∣ Y +
m
S0

S ∈ A
}

.

Notice that when the only eligible asset is the risk-free asset with
ST = S0, the previous results reduce to Proposition 4.1 and to Propo-
sition 4.4, respectively.

4.3.2 Quasi-convex case

We now consider the case of families of sub-acceptance sets in quite a
general framework. This is in line with the approach of quasi-convex
risk measures where no cash-additivity is assumed on the risk mea-
sure and, consequently, neither on the family of acceptance sets. See
Cerreia-Vioglio et al. [24], Drapeau and Kupper [33] and Frittelli and
Maggis [40] for a detailed treatment on quasi-convex risk measures.
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As pointed out in Drapeau and Kupper [33], in the case of quasi-
convex risk measures the one-to-one correspondence between risk
measures and acceptance sets (see Chapter 2) is no more true but
has to be formulated in terms of acceptance sets at different levels.
Differently from the cash-additive case where only the set at level 0 is
relevant since all the other sets can be obtained from it by translation
invariance, in the quasi-convex case the whole family of acceptance
sets at different levels is needed.

Let (AY,m)Y∈L∞,m∈R be a family of sub-acceptance sets at different
levels m ∈ R. That is:

• For any fixed Y ∈ L∞, (AY,m)m∈R is a family of acceptance sets
at the level m; i. e. every AY,m is an acceptance set parametrized
by m ∈ R.

• For any fixed m ∈ R, (AY,m)Y∈L∞ is a monotone sub-acceptance
family with respect to an acceptance set Am. More precisely,
AY,m is monotone increasing in Y ∈ L∞.

Roughly speaking, the level m ∈ R can be seen as a degree of accept-
ability. Given such a family, we define, for all X, Y ∈ L∞,

ΛA(X, Y) := inf {m ∈ R | X ∈ AY,m} , (4.8)

and consider the following result.

Proposition 4.10. Let (AY,m)Y∈L∞,m∈R be a family of sub-acceptance sets
at the level m ∈ R. Then ΛA defined in (4.8) satisfies the following proper-
ties:

i. Decreasing monotonicity in X ∈ L∞.

ii. Decreasing monotonicity in Y ∈ L∞.

iii. Normalization, whenever 0 ∈ AY,0 and 0 /∈ AY,m for all m < 0.

Furthermore, the following hold:

a. If each AY,m is convex, then ΛA is quasi-convex in the first variable.

b. If AY,m ⊆ AY,m+c + c for all m ∈ R, c ≥ 0 and Y ∈ L∞, then ΛA is
cash-subadditive in the first variable.

c. If AY,m = AY,m+c + c for all m, c ∈ R and Y ∈ L∞, then ΛA is
1-cash-additive.

Proof. i. Take any Z ≥ X. By monotonicity of AY,m, it follows that

ΛA(X, Y) = inf {m ∈ R | X ∈ AY,m}
≥ inf {m ∈ R | Z ∈ AY,m} = ΛA(Z, Y).

ii. It follows similarly, by monotonicity of AY,m in Y.
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iii. It is immediate.

The proofs of a and b are similar to those in Drapeau and Kupper [33].
We include them for reader’s convenience.

a. Let α ∈ [0, 1] and X, Y, Z ∈ L∞ be arbitrarily fixed. Assume now
that X, Z ∈ AY,m̄ for some m̄ ∈ R. It follows that both ΛA(X, Y) ≤ m̄
and ΛA(Z, Y) ≤ m̄. Then, by convexity of AY,m̄, also αX + (1− α)Z ∈
AY,m̄. Consequently, ΛA(αX + (1 − α)Z, Y) ≤ m̄. By a well-known
result on quasi-convex functionals, it follows that ΛA(·, Y) is quasi-
convex for any Y ∈ L∞.

b. For any m ∈ R, c ≥ 0 and X, Y ∈ L∞ it holds that

ΛA(X + c, Y) = inf {m ∈ R | X + c ∈ AY,m}
≥ inf {m ∈ R | X + c ∈ (AY,m+c + c)}
= inf {m ∈ R | X ∈ AY,m+c}
= inf {m ∈ R | X ∈ AY,m} − c

= ΛA(X, Y)− c,

where the inequality above is due to the assumption AY,m ⊆ AY,m+c +

c for c ≤ 0.

c. It can be proved similarly to item b.

Notice that, thanks to the previous result, it holds that ΛA(X +

c, Y) ≤ ΛA(X, Y) for any c ≥ 0 and X, Y ∈ L∞ (by monotonicity
in the first variable). Moreover, normalization and cash-subadditivity
(whenever satisfied) imply that ΛA(c, Y) ≥ −c for any c ≥ 0 and Y,
while ΛA(c, Y) ≤ −c for any c < 0 and Y.

So far, we have defined a risk contribution rule starting from a
family of sub-acceptance sets at different levels. We are now going
to investigate the converse. Consider a risk contribution rule Λ, not
necessarily satisfying cash-additivity, and define

AY,m := {X ∈ L∞ | Λ(X, Y) ≤ m}
Am := {Y ∈ L∞ | Λ(Y, Y) ≤ m}

(4.9)

for all m ∈ R and Y ∈ L∞.

Proposition 4.11. If Λ is a monotone risk contribution rule, then the cor-
responding AY,m and Am defined as in (4.9) satisfy the following properties:

i. For each fixed m ∈ R: (AY,m)Y∈L∞ , is a sub-acceptance family of

Am = {Y ∈ L∞ | Y ∈ AY,m} .

ii. For each fixed Y ∈ L∞:

a. AY,m is monotone for every m ∈ R.



4.3 some extensions 93

b. AY,m is monotone in m ∈ R w. r. t. set inclusion.

c. AY,m is convex whenever Λ(X, Y) is quasi-convex in X ∈ L∞.

Proof. i. We start to prove the properties once m ∈ R is fixed arbi-
trarily. We have only to check the first statement since the second is
immediate. AY,m 6= ∅ follows immediately by the assumptions on Λ
implying that −m ∈ AY,m for any m ∈ R (since, by 1-cash-additivity,
Λ(m, Y) = Λ(0, Y)−m = −m). AY,m 6= L∞: again by the assumptions
on Λ it follows that −m̄ /∈ AY,m for any m̄ > m, hence the thesis.

ii. Let now Y ∈ L∞ be fixed and let m ∈ R be arbitrary.

a. Assume that X ∈ AY,m and Z ≥ X. By monotonicity of Λ in
the first variable, it follows that Λ(Z, Y) ≤ Λ(X, Y) ≤ m. Hence,
Z ∈ AY,m.

b. It follows immediately by the definition of AY,m in (4.9).

c. It follows immediately as in b.





5
F U RT H E R E X T E N S I O N S

In this chapter, we discuss some possible further extensions of the
standard capital allocation setting, similarly to the previous chapter.
However, here the topics only represent ideas for further works.

We first briefly discuss a generalization with respect to the order-
ing among random variables. That is, we drop the P-a.s. order and
assume a general preorder; we then focus on the first stochastic one
(see Föllmer and Schied [39]). We find connections between the prop-
erties of acceptance sets and those of capital allocation rules very
close to the results of the previous chapter.

Later, we discuss the capital allocation problem in the setting of
intrinsic risk measures (see Farkas and Smirnow [37]). We begin with
a discussion on intrinsic measures and then we state the capital al-
location problem in this context. We further try to understand if ex-
tensions of the standard results and methods apply here. Finally, we
consider the connections between capital allocation rules in the intrin-
sic context and acceptance sets, following the scheme of the previous
chapter.

The chapter is organized as follows. In Section 5.1 we discuss the
generalization with respect to the ordering; while in Section 5.2 we
provide the discussion on intrinsic risk measures and the extension
to capital allocation rules.

5.1 capital allocation and general preorders

So far, we have only considered capital allocation problems assum-
ing the P-a.s. ordering between random variables. In this section, we
briefly discuss the possibility of extending the framework to a general
preorder and later we focus on the first stochastic order (see Föllmer
and Schied [39]). In particular, we discuss the extension of the results
of Chapter 4. We refer to Appendix A for the standard notions about
orderings, or, for more details, to Aliprantis and Border [2].

It is easy to see that the results presented in Chapter 4 still hold
when we consider a general preorder, with the only requirement of
being a vector preorder; that is, compatible with the vector structure
of L∞. Indeed, monotonicity, such as the one required for the accep-
tance sets and risk measures, may be considered with respect to a
general preorder instead of the P-a.s. order, with essentially the same
meaning.

95
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Therefore, given a preorder � on L∞, a subset A ⊆ L∞ is called an
acceptance set with respect to � if it is non-trivial and �-monotone:

X ∈ A, Y � X =⇒ Y ∈ A.

The same applies to sub-acceptance families. A monetary risk mea-
sure with respect to � is a cash-additive map ρ : L∞ → R which is
�-monotone (decreasing):

X, Y ∈ L∞, Y � X =⇒ ρ(Y) ≤ ρ(X).

The same applies to monotone capital allocation or risk contribution
rules.

Notice that acceptance sets and risk measures with respect to gen-
eral preorders have been already considered in Arduca et al. [3],
Farkas et al. [36] and Munari [56].

It is then clear that results such as those of Proposition 4.1 or Propo-
sition 4.3 still hold with the minimal requirement of � being a vector
preorder. The latter is needed to allow us summing up constant ran-
dom variables to reach acceptability, that is, to ensure that there exist
m ∈ R such that X + m ∈ A; where X ∈ L∞ and A is an acceptance
set.

5.1.1 Stochastic orders

We now focus on a particular ordering, namely the first stochastic
one, and study their impact on our results.

We recall that X ∈ L∞ dominates Y ∈ L∞ in the first stochastic
order, written X �1 Y, if and only if for all increasing functions
u : R→ R,

E[u(X)] ≥ E[u(X)]

or, equivalently, if and only if for all x ∈ R,

FX(x) ≤ FY(x)

where FX(x) := P(X ≤ x) denotes the (cumulative) distribution func-
tion of X. See Appendix A or Bäuerle and Müller [11], Dana [27],
Föllmer and Schied [39] and Müller et al. [55] for more details.

Under the first stochastic order, monetary risk measures turns out
to be law invariant, as in Definition 2.7 (see Bäuerle and Müller [11],
Dana [27], Wang et al. [65] and Weber [66]). While acceptance sets
satisfy the following property:

A-law invariance: if X ∼ Y, Y ∈ A then X ∈ A.

The notation X ∼ Y means that X and Y are equal in distribution, as
we recalled in Chapter 2.

We are interested in studying capital allocation problems under
the first stochastic order. That is, when only the distribution of the
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positions matters in allocating the capital or assessing the risk of the
sub-portfolios. To this end, we introduce the following property for a
risk contribution rule Λ:

1-law invariance: if X ∼ Z then Λ(X, Y) = Λ(Z, Y) for all Y ∈ L∞.

The latter means that the risk contribution of X as a sub-portfolio
of Y is equal to the risk contribution of any sub-portfolio Z of Y
which has the same distribution of X; that is, for 1-law invariant risk
contribution rule, only the distribution of the sub-portfolios matters
in assessing their risk contribution.

Before going further, we need to introduce another property, which
reflects the situation whereby Λ is linked with a law invariant risk
measure:

Law invariance: if X, Y ∈ L∞, X ∼ Y then Λ(X, X) = Λ(Y, Y).

We can now consider the following result.

Proposition 5.1. Let A be an acceptance set and (AY)Y∈L∞ be a sub-
acceptance family, both with respect to the first stochastic order �1. Then
ΛA as in (4.1) is 1-law invariant. Moreover, if the sub-acceptance family is
translation invariant then ΛA is law invariant.

Proof. Fix Y ∈ L∞. If AY is an acceptance set with respect to �1 then
it is also A-law invariant. Hence, every m ∈ R such that X + m ∈ AY
is also such that Z + m ∈ AY, whenever Z ∼ X. This implies

{m ∈ R | m + X ∈ AY} ⊆ {m ∈ R | m + Z ∈ AY} .

But also the converse is true: reversing the role of X and Z we get

{m ∈ R | m + X ∈ AY} ⊇ {m ∈ R | m + Z ∈ AY} .

Thus the two sets are equal and

inf {m ∈ R | m + X ∈ AY} = inf {m ∈ R | m + Z ∈ AY}
ΛA(X, Y) = ΛA(Z, Y).

By replacing AY with A, we obtain that ΛA is also law invariant
when the sub-acceptance family is translation invariant (see Proposi-
tion 4.1).

Now, we consider the impact of a (1-)law invariant risk contribution
rule on the acceptance set and the sub-acceptance family induced by
such a risk contribution rule.

Proposition 5.2. If Λ is a 1-law invariant risk contribution rule then
each member of the sub-acceptance family given by (4.3) is A-law invariant.
Moreover, if Λ is also law invariant then the acceptance set given by (4.2) is
A-law invariant.
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Proof. Fix Y ∈ L∞, take X ∈ AY and Z ∼ X. It follows that

Λ(Z, Y) = Λ(X, Y) ≤ 0

where the equality holds by 1-law invariance and the inequality by
definition of AY; thus Z ∈ AY. Now take X ∈ A and Y ∼ X, then

Λ(Y, Y) = Λ(X, X) ≤ 0

where the equality holds by law invariance and the inequality by
definition of A; thus Y ∈ A.

So far, we have only considered the first stochastic order and shown
that it is strictly related to the law invariance property, even in the con-
text of capital allocation. However, it is possible to consider higher
stochastic orders, such as the second one, that are not strictly related
to the law invariance property and does not depend only on the cho-
sen probability measure.

Moreover, we point out that 1-law invariance holds only for those
Λ defined by means of a linear functional, that is, only when it is pos-
sible to separate the impact of X and Y. For instance, this happens
for ΛA derived as in (4.1) from a sub-acceptance family defined by
means of the expected value, as in Example 4.2. Otherwise, Λ is not
expected to be 1-law invariant with respect to the reference probabil-
ity measure but only with respect to the conditional probability given
Y; consider indeed the setting of Example 4.3. Thus, a possible exten-
sion is to consider a sort of conditional 1-law invariance, that is, with
respect the conditional probability given Y instead of the reference
probability measure.

5.2 intrinsic capital allocation rules

We discuss here the problem of capital allocation with respect to
the recent concept of intrinsic risk measure, proposed by Farkas and
Smirnow [37].

In particular, we first discuss the meaning of the capital allocation
problem when an intrinsic risk measure is involved, providing also
some considerations on the intrinsic approach for risk measurement.
We later define the notion of intrinsic capital allocation rule and dis-
cuss which properties are suitable (from a financial point of view)
for this object. We finally discuss the intrinsic capital allocation prob-
lem from the point of view of acceptance sets, without involving any
(intrinsic) risk measure, following the scheme of Chapter 4.

5.2.1 Intrinsic risk measures

In the traditional risk measure theory, given an acceptance set A, the
induced risk measure ρA is interpreted as a tool to quantify the mini-
mal amount of money which should be added to a position to reach
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acceptability. In the generalized framework of Farkas et al. [36] and
Munari [56], not only cash is considered to reach acceptability but
also eligible assets. Anyway, both the approaches require an external
source of capital which should be injected in the position.

The main idea of the intrinsic approach is instead to sell a part of
the position and reinvest the gain in a given eligible asset, in order
to reach acceptability. That is, in the intrinsic approach, only internal
resources are used. Before going further, we provide some consider-
ations of the two approaches. The traditional one, as highlighted by
Farkas and Smirnow [37], has two main lacks:

• the procedure to acquire external capital is not addressed;

• the possibility of failing to acquire capital is not considered.

For instance, it is possible that the company does not have any liq-
uidity to purchase the eligible asset (or to directly hedge the position)
and it is not able to acquire such capital quickly. In that case, the idea
of selling a part of the position to get some liquidity for buying the el-
igible asset, that is the intrinsic approach, looks interesting. However,
we notice two main lacks of the intrinsic approach as well:

• the case of indivisible positions is not addressed;

• the possibility of failing to sell (a part of) the position is not
considered.

In particular, when X represents the net asset value (assets minus
liabilities) of a firm, it is not possible in general to sell a part of X,
because it is not possible to sell out liabilities. Therefore, the proce-
dure works only when X represents only the asset value of the firm
(without considering the liabilities). Notice that Baes et al. [7] pro-
posed a similar approach that works in the last case: looking for the
proportion of each asset to sell in order to create optimal portfolios
of eligible assets to reach acceptability.

We therefore claim that intrinsic risk measures cannot substitute
the traditional ones, but they might be used as a complement. More
precisely, for each risky position to be measured, one could both con-
sider the intrinsic approach and the traditional one, then apply the
one which is more suitable for the specific case.

We now recall from Farkas and Smirnow [37] the definition of in-
trinsic risk measure, as well as some key results.

Here, we consider financial positions as couples X = (X0, XT) be-
longing to the product space R++ × L∞, where X0 represents the
value of the position at the initial time 0, and XT its the payoff, at
time T ≥ 0. We will use the two following orderings on R++ × L∞:

Element-wise: X ≥el Y :⇐⇒ X0 ≥ Y0 and XT ≥ YT.

Return-wise: X ≥re Y :⇐⇒ XT
X0
≥ YT

Y0
.
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Definition 5.1 (Farkas and Smirnow [37]). Given an acceptance set
A containing 0 and an eligible asset S, an intrinsic risk measure is a
map RA,S : R++ × L∞ → [0, 1] defined by

RA,S(X) := inf
{

λ ∈ [0, 1]
∣∣∣∣ (1− λ)XT + λ

X0

S0
ST ∈ A

}
.

We will simply write R rather than RA,S when the reference to
the acceptance set and the eligible asset is clear. Actually, Farkas and
Smirnow [37] do not require 0 ∈ A in the definition of intrinsic risk
measure, but they point out that for well-definedness of R, A must
be either a cone or contain 0. Therefore, we include the latter in the
previous definition.

In the previous definition, RA,S(X) is interpreted as the smallest
λ ∈ [0, 1] such that selling the fraction λ of X and investing the mone-
tary amount λX0 in the eligible asset S yields an acceptable position
(see Farkas and Smirnow [37] for more details).

We now recall some results on intrinsic risk measures.

Proposition 5.3 (Farkas and Smirnow [37]). Let A be an acceptance
set containing 0, S be an eligible asset and X, Y ∈ L∞ ×R++. Then, the
following hold:

a. R is ≥el-monotone decreasing: if X ≥el Y then R(X) ≤ R(Y).

b. If A is conic then R is ≥re-monotone decreasing.

c. If A is convex then R is quasi-convex.

Proposition 5.4 (Farkas and Smirnow [37]). Let A be an acceptance set.
If A is closed and conic then RA,S admits the following representation:

RA,S(X) =

(
ρA,S(XT)

)+
X0 + ρA,S(XT)

where ρA,S is given by (2.1). Moreover, under the same assumptions, RA,S
is scale invariant:

RA,S(αX) = RA,S(X), for each α > 0 and X ∈ R++ × L∞.

Proposition 5.5 (Farkas and Smirnow [37]). Let A be an acceptance set.
If A is σ(L∞, L1)-closed, convex and it contains 0 then, for any eligible asset
S, RA,S admits the following representation:

RA,S(X) = sup
Q∈Q

(
EQ[−XT]− β(Q)

)+
X0
S0

EQ[ST]−EQ[XT]

where β(Q) := supXT∈AEQ[−XT], for all Q ∈ Q.

We add to the previous results the following one, not contained
in [37].
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Proposition 5.6. Let A be an acceptance set. If A is closed, convex, conic
and it contains 0 then R is subadditive.

Proof. The result follows by quasi-convexity and scale invariant of
R. More precisely, for X, Y ∈ R++ × L∞ the following holds:

R(X + Y) = R
(

1
2
(X + Y)

)
≤ max {R(X), R(Y)} ≤ R(X) + R(Y),

where the first equality is due to scale invariant, the first inequality
by quasi-convexity and the last one because R(·) is positive.

5.2.2 Intrinsic capital allocation

We discuss here the problem of capital allocation in the intrinsic
framework. More formally, we assume that an intrinsic risk measure
R, as in Definition 5.1, is given and we think of assigning a share
of R(Y) to the sub-units of Y. We remember that R(Y) ∈ [0, 1], so it
can be interpreted as the percentage of the aggregated position Y that
should be sold and reinvested in a given eligible asset to reach accept-
ability. With this idea in mind, it makes sense to look for which (part
of the) sub-units should be sold in order to ensure that the “new”
aggregated position reaches the acceptability.

We therefore restate the capital allocation problem as follows. We
assume that X = (X0, XT) ∈ R++ × L∞ is an aggregate position and
that it is decomposed into sub-units

X1 = (X1
0 , X1

T), . . . , Xn = (Xn
0 , Xn

T)

all belonging to R++ × L∞; that is, X = ∑n
i=1 Xi. We also assume that

an acceptable A and eligible asset S are given, so that R := RA,S is
well defined. In such context, a capital allocation problem consists in
finding “suitable” real numbers l1, . . . , ln, belonging to [0, 1], such that

R(X)X0 =
n

∑
i=1

liXi
0.

Here, R(X)X0 is the monetary amount obtained by selling the frac-
tion R(X) of the aggregated position X. The latter, if invested in the
eligible asset, ensures the acceptability of the new aggregated posi-
tion. Such monetary amount R(X)X0 should be the sum of the mone-
tary amounts obtained by selling the fractions li of the sub-positions
Xi, i = 1, . . . , n. Each li is then the percentage of the sub-unit Xi which
should be sold and reinvested in the eligible asset to ensure that the
new aggregated position reaches acceptability.

We now provide the following definition, which gives us the tool to
face capital allocation problems in the intrinsic framework. We then
discuss some properties reasonable for such a tool, in order to clarify
the term “suitable” mentioned above.
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Definition 5.2. Let A be an acceptance set containing 0, S be an
eligible asset and R be an intrinsic risk measure as in Definition 5.1.
An intrinsic capital allocation rule (ICAR) with respect to R, is a map
LR : (R++ × L∞)× (R++ × L∞)→ [0, 1] such that, for all X ∈ R++ ×
L∞,

LR(X, X) = R(X).

We will simply write L when the reference to the intrinsic risk mea-
sure is clear.

The previous definition is very close to the one of capital allocation
rule (Definition 2.12). This is because the requirement LR(X, X) =

R(X) makes sense in this context as well. Consider indeed the capital
allocation problem presented above: if X is the only sub-unit of itself,
then the problem reduces to finding a suitable l ∈ [0, 1] such that
R(X)X0 = lX0; thus such l must be equal to R(X).

Here, L(X, Y) represents the fraction of the position X, viewed as a
sub-portfolio of Y, which should be sold and reinvested in the eligible
asset to ensure that the new aggregated position reaches acceptability.
In some sense, L(X, Y) reflects the “intrinsic risk” of Y, equal, by
definition, to L(Y, Y).

We now discuss the main properties to be required for a ICAR,
starting from those commonly required for CARs.

Full allocation. This property, as stated in Chapter 2, does not ap-
ply in this context, since here we work with general risk measures
which furthermore yield numbers in [0, 1]. However, it can be restated
as follows: for all Y1, . . . , Yn, Y ∈ R++ × L∞ such that Y = ∑n

i=1 Yi,

L(Y, Y)Y0 =
n

∑
i=1

L(Yi, Y)Yi
0.

That is, we require that the sum of the monetary amounts obtained
by selling the fractions L(Yi, Y) of the sub-positions Yi, i = 1, . . . , n is
equal to the monetary amount obtained by selling the fraction L(Y, Y)
of the aggregated position Y.

No-undercut. It looks meaningful to require the no-undercut here
too, since we still do not want the sub-units to split from the company.
Moreover, it is meaningful to require that the percentage of a position,
viewed as sub-unit of an aggregated position, to be sold to reach
acceptability should be less than that of the sub-unit viewed as a
stand-alone portfolio. Thus, no-undercut is still meant as

L(X, Y) ≤ L(X, X)

for all X, Y ∈ R++ × L∞.

Riskless. It does not apply here since we are working with per-
centages. Moreover, it may be needed to sell only a part of a constant
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position a ∈ R++×R to guarantee the acceptability of the aggregated
one, so there are no significant alternatives to this property.

We now consider a simple example of ICAR, derived from the
marginal method of capital allocation.

Example 5.1. We recall that the marginal CAR is given by Defini-
tion 2.14. We rephrase the method in the intrinsic framework and we
discuss its meaning.

Assume that A is an acceptance set containing 0, S is an eligible
asset and R is an intrinsic risk measure. Assume also that, for all
X, Y ∈ R++ × L∞,

X−Y := (|X0 −Y0|, XT −YT) ∈ R+ × L∞

and, for all ZT ∈ L∞,

R((0, ZT)) :=

0 if ZT ∈ A;

1 if ZT /∈ A;

so that R(X−Y) makes sense for all X, Y ∈ R++ × L∞.
We then define the marginal ICAR as

LM
R (X, Y) :=

(
R(Y)− R(Y− X)

)+, X, Y ∈ R++ × L∞.

It is clear that the method is an intrinsic capital allocation rule with
respect to R, because the assumptions above imply LM

R (X, X) = R(X)

for all X ∈ R++ × L∞. Moreover, whenever A is also convex and
conic, that is, whenever R is subadditive, the marginal method satisfy
no-undercut.

As regards full allocation, we can use a trick similar to the standard
case. Indeed,

L̂M
R (X, Y) :=

R(Y)Y0

LM
R (X, Y)X0 + LM

R (Y− X, Y)(Y− X)0
LM

R (X, Y)

satisfies full allocation, as stated above.

5.2.3 ICAR and acceptance sets

We now rephrase the intrinsic capital allocation setting, provided
above, from the perspective of acceptance sets and sub-acceptance
families, as in Chapter 4.

We start from acceptance sets, define a map induced from those
and study how the properties on sets impact on the map. We then
investigate the converse.

Given a family (AYT )YT∈L∞ of sets and a position S ∈ R++ × L∞,
we define, for all X, Y ∈ R++ × L∞,

LA,S(X, Y) := inf
{

λ ∈ [0, 1]
∣∣∣∣ (1− λ)XT + λ

X0

S0
ST ∈ AYT

}
. (5.1)
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As usual, we will simply write L when no misunderstandings can
arise.

The following definition introduce a property for sub-acceptance
families which is similar to translation invariance but suitable for this
context.

Definition 5.3. A sub-acceptance family (AYT )YT∈L∞ is said to be in-
trinsic invariant if it satisfies the following property:

Intrinsic invariance: AYT = AαYT+βST for all α, β ≥ 0 and S ∈ E .

Thus, for intrinsic invariance sub-acceptance families the positions
which are sub-acceptable with respect to YT are also so with respect
to any combination of YT and the payoff of the eligible asset ST, with
weights α, β ≥ 0.

When A is an acceptance set and (AYT )YT∈L∞ is a sub-acceptance
family, we say that S ∈ R++× L∞ is eligible for the family if ST ∈ AYT

for all YT ∈ L∞. In particular, the latter implies ST ∈ AST , thus, by
definition of sub-acceptance family, ST ∈ A and so S is also eligible.

We can now state the following result.

Proposition 5.7. IfA is an acceptance set, (AYT )YT∈L∞ is a sub-acceptance
family such that 0 ∈ AYT for all YT ∈ L∞ and S ∈ R++ × L∞ is eligible
for the family, then L as in (5.1) satisfies the following:

a. L(X, Y) ∈ [0, 1] for all X, Y ∈ R++ × L∞.

b. There exists X ∈ R++ × L∞ such that L(X, Y) > 0 for all Y ∈
R++ × L∞.

c. L
(
(X0, 0), Y

)
= 0 for all Y ∈ R++ × L∞ and X0 ∈ R++.

d. Decreasing ≥el-monotonicity.

Moreover, if the sub-acceptance family is also intrinsic invariant then

LA,S(Y, Y) = inf
{

λ ∈ [0, 1]
∣∣∣∣ (1− λ)YT + λ

Y0

S0
ST ∈ A

}
.

Proof. a. Fix Y ∈ R++ × L∞. Notice that LA(X, Y) = RAYT ,S(X) for
all X ∈ R++ × L∞ and S eligible. The thesis then easily follows.

b. It follows by non-triviality of each AYT . In particular, AYT 6= L∞

implies L(Z, Y) > 0 for some Z ∈ R++ × L∞.

c. It follows easily because each AYT contains 0.

d. Fix X, Y, Z ∈ R++ × L∞ and assume Z ≥el X. Then

(1− λ)ZT + λ
Z0

S0
ST ≥ (1− λ)XT + λ

X0

S0
ST



5.2 intrinsic capital allocation rules 105

holds for any λ ∈ [0, 1] and S eligible. By monotonicity of AYT ,{
λ ∈ [0, 1]

∣∣∣∣ (1− λ)XT + λ
X0

S0
ST ∈ AYT

}
⊆
{

λ ∈ [0, 1]
∣∣∣∣ (1− λ)ZT + λ

Z0

S0
ST ∈ AYT

}
hence L(Z, Y) ≤ L(X, Y).

As regards the last statement, for any Y ∈ R++ × L∞ it holds that

L(Y, Y) = inf
{

λ ∈ [0, 1]
∣∣∣∣ (1− λ)YT + λ

Y0

S0
ST ∈ AYT

}
= inf

{
λ ∈ [0, 1]

∣∣∣∣ (1− λ)YT + λ
Y0

S0
ST ∈ A(1−λ)YT+λ

Y0
S0

ST

}
= inf

{
λ ∈ [0, 1]

∣∣∣∣ (1− λ)YT + λ
Y0

S0
ST ∈ A

}
,

where the second equality holds by intrinsic invariance and the last
one by definition of sub-acceptance family.

We now provide a result which links the A-no-undercut of a sub-
acceptance family and the no-undercut of the map L induced by such
family, as in Chapter 4.

Proposition 5.8. Let A be an acceptance set and let (AYT )YT∈L∞ be an
intrinsic invariant sub-acceptance family. If the family (AYT )YT∈L∞ satisfies
A-no-undercut, then LA satisfies no-undercut.

Proof. Fix X, Y ∈ R++ × L∞, A-no-undercut implies{
λ ∈ [0, 1]

∣∣∣∣ (1− λ)XT + λ
X0

S0
ST ∈ A

}
⊆
{

λ ∈ [0, 1]
∣∣∣∣ (1− λ)XT + λ

X0

S0
ST ∈ AYT

}
.

Hence,

LA(X, Y) = inf
{

λ ∈ [0, 1]
∣∣∣∣ (1− λ)XT + λ

X0

S0
ST ∈ AYT

}
≤ inf

{
λ ∈ [0, 1]

∣∣∣∣ (1− λ)XT + λ
X0

S0
ST ∈ A

}
= LA(X, X),

where the last equality holds thanks to intrinsic invariance of the sub-
acceptance family.

Conversely, given a map L : (R++× L∞)× (R++× L∞)→ [0, 1], we
define the following sets, for YT ∈ L∞:

AL := {YT | Y = (Y0, YT) ∈ R++ × L∞, L(Y, Y) = 0}
AYT ,L := {XT | X = (X0, XT) ∈ R++ × L∞, L(X, Y) = 0}

(5.2)
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where the subscript L will be omitted when it is clear which map is
involved. Notice that AL and AYT ,L have basically the same meaning
of AΛ and AY,Λ (see (4.2) and (4.3)). In this context, the requirement
≤ 0 does not make any sense, so it is replaced by = 0 which looks
meaningful, thinking at the interpretation of intrinsic risk measures
or intrinsic capital allocation rules.

Proposition 5.9. Let L : (R++ × L∞)× (R++ × L∞) → [0, 1] be such
that the following are satisfied:

a. There exists X ∈ R++ × L∞ such that L(X, Y) > 0 for all Y ∈
R++ × L∞.

b. L
(
(X0, 0), Y

)
= 0 for all Y ∈ R++ × L∞ and X0 ∈ R++.

c. Decreasing ≥el-monotonicity.

d. Decreasing ≥el-full monotonicity:

X ≥el Y =⇒ L(X, X) ≤ L(Y, Y).

Then, A and (AYT )YT∈L∞ given by (5.2) are, respectively, an acceptance
set containing 0 and a sub-acceptance family such that 0 ∈ AYT for all
YT ∈ L∞.

Proof. AYT 6= ∅, L∞: it follows easily by a. and b. Moreover, b. im-
plies that 0 ∈ AYT .

Monotonicity of each AYT : it follows by decreasing ≥el-monotonicity
of L. In particular, take X, Z ∈ R++ × L∞ such that ZT ∈ AYT and
X ≥el Z. Then

L(X, Y) ≤ L(Z, Y) = 0

holds because ZT ∈ AYT and L is decreasing ≥el-monotone. Thus,
L(X, Y) ∈ [0, 1] implies L(X, Y) = 0, so XT ∈ AYT .

A 6= ∅, L∞: a. implies L(X, X) > 0 for some X ∈ R++ × L∞ and b.
implies L

(
(X0, 0), (X0, 0)

)
= 0 so that 0 ∈ A and A 6= L∞.

Monotonicity of A: it follows by decreasing ≥el-full monotonicity of
L, similarly to the monotonicity of each AYT .

As we can see from the previous proposition, we do not obtain a
representation of L in term of the acceptance sets, as in the standard
case. Moreover, we did not involve any eligible asset in the previous
proposition.

As pointed out in the beginning, these are just a few notes on the
topic, containing some ideas which could be developed in a further
work.



6
A N U M E R I C A L A N D C O M PA R AT I V E S T U D Y

In this chapter, we make a short survey on the problem of capital al-
location through the use of risk measures and we apply some of the
most popular capital allocation methods to a portfolio of risky posi-
tions. In particular, we consider the proportional and the marginal
methods, presented in Chapter 2, together with the Value at Risk, the
Conditional Value at Risk and the entropic risk measure. Indeed, this
chapter can be considered as an appendix of Chapter 2, with the aim
of illustrating some of the standard methods of capital allocation, in
order to better understand their connections with risk measures. For
this reason, we do not provide here numerical examples of the new
capital allocation rules introduced in Chapter 3 and Chapter 4, as
they could be subject of a dedicated work.

Since such risk measures are law invariant, that is, the capital re-
quirement of a risky position only depends on its distribution, the
same holds for the proportional and marginal method. The situation
is different if we use such methods with the covariance as a risk mea-
sure, that is, if we set ρ(Xi) := Cov(Xi, X) for any sub-unit Xi of the
fixed position X. In this case, the dependence among the P&Ls of the
various sub-units matters. Therefore, we also include this method in
the survey.

6.1 data collection and analysis

We apply the capital allocation methods mentioned above to a port-
folio of five stocks of the FTSE-MIB index, chosen in different sectors:
Atlantia (ATL), Brembo (BRE), Eni (ENI), Intesa San Paolo (ISP) and
Telecom Italia (TIT). We collected from Bloomberg five years of daily
closing prices of the stocks listed above, in the period December 2013-
2018, obtaining a sample of 1269 observations for each asset.

We model the daily P&L instead of daily prices, i. e. each stock is
represented by the random variable

Xi := Si
t − Si

t−1

where Si
t is the price at day t of the i-th stock, i = 1, . . . , 5. The port-

folio X is simply given by X := ∑5
i=1 Xi; that is, we buy one unit of

each stock. Figure 6.1 shows the dynamic of the portfolio prices and
of the portfolio P&Ls; some descriptive statistics of the P&Ls of the
stocks and of the portfolio are reported in Table 6.1.

Looking at Figure 6.1, we notice some high peaks followed by a
drop, this shows high volatility of data; to be more precise, we ana-
lyze Table 6.1. The means are close to zero, in particular for Intesa
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Figure 6.1: Daily portfolio prices and P&Ls.

ATL BRE ENI ISP TIT Port

Mean 0.0011 0.0045 -0.0023 0.0002 -0.0001 0.0034

StDev 0.3638 0.1618 0.2291 0.0547 0.0188 0.6538

Min -5.2400 -0.7440 -1.3400 -0.5180 -0.1375 -5.5933

Max 1.3000 0.8840 0.8500 0.3100 0.1010 2.3360

Skew -2.3574 0.2630 -0.2875 -0.5681 -0.0890 -0.8073

Kurt 36.3471 6.0586 5.3169 11.1909 6.9823 9.8177

Table 6.1: Daily P&L descriptive statistics.



6.2 risk capital computation 109

and Telecom. This is reasonable since we consider one-day P&Ls.
Standard deviations and ranges confirm high volatility of the port-
folio P&Ls, since the first three stocks have a high standard deviation.
Skewness is positive for Brembo, while it is negative for the others
and far from zero for Atlantia. Kurtosis is very high, in particular
for Atlantia: this can be also seen from the minimum P&L which
Atlantia performed in the considered period. Skewness and Kurto-
sis highlight how the data are far from being normally distributed,
taking into account that Normal distribution has zero Skewness and
Kurtosis equal 3. Rather, they seem to come from heavy-tailed distri-
butions. In such situations, therefore, it may happen that VaR does
not encourage diversification of risk.

6.2 risk capital computation

We apply the considered risk measures to each stock and to the whole
portfolio, using the historical simulation method (see for instance Jo-
rion [49]); that is, we replace the theoretical distribution of the P&L
with the observed time series and we compute risk measures using
these data. To illustrate the procedure, we show how we compute the
historical VaR, i. e. how we sample the empirical quantile. We first
take each time series and sort the data concerning daily P&Ls from
the smallest to the largest, we then assign to each price a weight of
1/1268, where 1268 is the number of observed daily P&Ls. We com-
pute the empirical cumulative distribution function by computing cu-
mulative weights: starting from the smallest P&L, we sum the weight
of the previous P&L to the weight of the current one, until the last
observed P&L. Then we set α = 0.01 and look for the smallest value
which has a cumulative weight greater than 0.01; changing the sign
of this value, we obtain the VaR at the level 0.01. We compute in a
similar way the other risk measures, letting α = 0.01; this means, for
the entropic risk measure, a high risk aversion and so a more conser-
vative risk measure. We also compute the diversification index, given
by Equation (2.6), for each risk measure. The results we obtained are
shown in Table 6.2.

ATL BRE ENI ISP TIT Port DI

VaRα 0.8951 0.4216 0.5600 0.1453 0.0480 1.5721 0.7595

CVaRα 1.4950 0.5155 0.7815 0.2045 0.0660 2.4820 0.8104

eα 5.1685 0.6725 1.2685 0.4465 0.0662 5.5218 0.7244

Var 0.1356 0.0262 0.0525 0.0030 0.0004 0.4275 1.9644

Table 6.2: Daily risk measures of stocks and portfolio (α = 0.01).
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Looking at Table 6.2, we notice that the entropic risk measure is
the most conservative one; this is due to the small α value we set,
as we explained before. A diversification effect is obtained for the
first three risk measures, despite VaR and the entropic risk measure
are, in general, not subadditive. We check this simply by looking at
the diversification index: the first three risk measures have a DI less
than 1, hence they are subadditive in this example. In particular, the
entropic risk measure obtained the highest diversification effect. The
diversification effect is not achieved from the variance, which is super-
additive in this example, in fact it has a diversification index greater
than 1. However, being convex, the variance should not penalize di-
versification (see the discussion on convex risk measures provided
in Chapter 2). The reason is that we defined (as it is customary) the
diversification index in terms of sums and not convex combinations.
This shows how different diversification concepts can sometimes con-
flict with each other.

6.3 risk capital allocation

In the previous section, we have computed the risk capital of each
stock and of the portfolio. The latter will now be allocated to each
stock, while the first one will be useful to evaluate the pooling effect
(see Chapter 2). We compute the capital allocations using the pro-
portional and the marginal methods (see again Chapter 2). We also
include the RORAC contributions as a further comparison.

6.3.1 Proportional methods

We first apply the proportional methods. The results are shown in
Table 6.3.

ATL BRE ENI ISP TIT

VaRα
0.6798 0.3202 0.4253 0.1103 0.0365

(43.2%) (20.4%) (27%) (7%) (2.4%)

CVaRα
1.2116 0.4178 0.6334 0.1658 0.0535

(48.8%) (16.8%) (25.5%) (6.7%) (2.2%)

eα
3.7442 0.4872 0.9190 0.3235 0.0480

(67.8%) (8.8%) (16.6%) (5.9%) (0.9%)

Cov
0.2123 0.0666 0.1154 0.0259 0.0072

(49.7%) (15.6%) (27%) (6%) (1.7%)

Table 6.3: Daily proportional capital allocations of stocks (α = 0.01).
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Looking at Table 6.3, we notice that, for the first three capital alloca-
tion methods, the risk capital allocated to each stock considered as an
element of the portfolio does not exceed the risk capital allocated to
the stock considered as a stand-alone portfolio. To check this, we sim-
ply compare the results of Table 6.3 to the results of Table 6.2; since
each value of the first three rows of Table 6.3 is less than the respec-
tive value of Table 6.2, the pooling effect mentioned above is obtained.
This follows straightforwardly from the diversification effect we ob-
tained in Table 6.2: as on our data the considered risk measures turn
out to behave subadditively and as ρ(Xi) ≥ 0 for all i, Equation (2.3)
shows that risk capitals allocated via proportional allocation methods
benefit from the pooling effect. In particular, the proportional method
based on the entropic risk measure has benefited from the highest
pooling effect. The reason is clear, since the entropic risk measure has
the highest diversification index and the proportional methods allo-
cate the capital via Ki = DIρ ·ρ(Xi), the allocated capital by using the
entropic risk measure is, for each unit of risk capital ρ(Xi), less than
the capital allocated via proportional methods based on different risk
measures. Since variance is super-additive in this example, the pool-
ing effect is not obtained from this risk measure and the risk capi-
tal allocated to each stock considered as an element of the portfolio
exceeds the risk capital allocated to the stock considered as a stand-
alone portfolio. The full allocation property is satisfied for each risk
measure: summing by row the values in Table 6.3 we obtain exactly
the last column of Table 6.2; that is, the sum of risk capitals allocated
to each stock is equal to the risk capital allocated to the portfolio us-
ing the respective risk measure. Furthermore, the results of Table 6.3
show also that all the capital allocation rules here considered agree in
putting more weight on Atlantia than on others, reflecting the large
risk capital assigned to this single stock. Moreover, also the ranking
of capital allocation weights across the different sub-units is more or
less the same for all the different rules that have been considered.

6.3.2 Marginal methods, RORAC contributions and comparison

So far, we have considered proportional capital allocations using VaR,
CVaR, the entropic risk measure and covariance. We investigate now
what happens with marginal or RORAC methods and we compare
the results with those of proportional methods. A priori we could ex-
pect that the marginal method would distribute differently the capital
to be allocated by putting more weight on the riskier assets.

Here below (see tables 6.4, 6.5, 6.6 and 6.7) we present the results
obtained by computing the risk capital allocated to each stock, via
marginal methods and the contribution of stocks to the total portfo-
lio RORAC. Each table reports the risk capital allocated to each stock
using both proportional methods and marginal ones and the contri-
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bution of each stock to the total portfolio RORAC, for any single risk
measure. For what concerns the contribution to the total RORAC, we
compute the contributions of stocks by using just the proportional
allocation methods.

ATL BRE ENI ISP TIT

Proportional
0.6798 0.3202 0.4253 0.1103 0.0365

(43.2%) (20.4%) (27%) (7%) (2.4%)

Marginal
0.7755 0.2850 0.3633 0.0928 0.0555

(49.3%) (18.1%) (23.1%) (5.9%) (3.6%)

RORAC
0.0004 0.0033 -0.0013 0.0004 -0.0007

(17.1%) (154%) (-58.7%) (20.5%) (-32.9%)

Table 6.4: VaR daily contributions of stocks.

ATL BRE ENI ISP TIT

Proportional
1.2116 0.4178 0.6334 0.1658 0.0535

(48.8%) (16.8%) (25.5%) (6.7%) (2.2%)

Marginal
1.3998 0.2518 0.6140 0.1651 0.0514

(56.4%) (10.1%) (24.7%) (6.7%) (2.1%)

RORAC
0.0002 0.0020 -0.0007 0.0002 -0.0004

(12.1%) (148.6%) (-49.7%) (17.2%) (-28.2%)

Table 6.5: CVaR daily contributions of stocks.

Looking at tables 6.4, 6.5, 6.6 and 6.7 we notice not too significant
differences between the proportional methods and the marginal one:
among different risk measures, both methods agree in putting more
weight on Atlantia than on others and the ranking of capital alloca-
tion weights across the different stocks is the same for both methods.
Nevertheless, apart from the case of covariance that however is not
really a risk measure, it is worth to emphasize that our “intuition”
concerning marginal contributions was correct. Compared to propor-
tional capital allocations, indeed, marginal contributions put more
weight (in terms of capital allocation) on Atlantia, that is, on the riski-
est asset in the portfolio. Among different risk measures, the ranking
of the contributions to the total RORAC is still the same: Brembo
gives the best contribution, which is even more than the total RO-
RAC, and Eni gives the worst contribution, which is negative; i. e. it
is not worth having such an asset in the portfolio, since it reduces the
total RORAC.
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ATL BRE ENI ISP TIT

Proportional
3.7442 0.4872 0.9190 0.3235 0.0480

(67.8%) (8.8%) (16.6%) (5.9%) (0.9%)

Marginal
4.9476 0.1788 0.3283 0.0658 0.0013

(89.6%) (3.2%) (6%) (1.1%) (0.1%)

RORAC
0.0000 0.0010 -0.0003 0.0001 -0.0003

(5.3%) (171.2%) (-46%) (11.8%) (-42.3%)

Table 6.6: Entropic daily contributions of stocks.

ATL BRE ENI ISP TIT

Proportional
0.2123 0.0666 0.1154 0.0259 0.0072

(49.7%) (15.6%) (27%) (6%) (1.7%)

Marginal
0.1938 0.0718 0.1195 0.0328 0.0094

(45.3%) (16.8%) (28%) (7.7%) (2.2%)

RORAC
0.0009 0.0117 -0.0034 0.0014 -0.0026

(11%) (148.2%) (-43.4%) (17.5%) (-33.3%)

Table 6.7: Covariance daily contributions of stocks.
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Risk capitals allocated via marginal methods benefit from the pool-
ing effect for the first three risk measures, except the capital allocated
to Telecom using VaR: this amount is larger than VaR of Telecom con-
sidered as a stand-alone portfolio. As well as for proportional meth-
ods, the marginal method based on the entropic risk measure has
benefited from the highest pooling effect. Despite this result it is not
evident from marginal methods’ formula, the data confirm: compar-
ing the values of Table 6.2 with those of tables 6.4, 6.5 and 6.6, we can
notice that the marginal method based on the entropic risk measure
has the highest difference between the risk capital of the titles and the
capital allocated to them by using this method. The pooling effect is
not achieved by the covariance marginal allocation method, as well as
for the proportional one, as we noted above. The full allocation prop-
erty for marginal allocation methods is, of course, satisfied for each
risk measure since we use the adjusted formulation of Equation (2.5).
By the same argument, the sum of RORAC contributions is equal to
the total portfolio RORAC, for each risk measure.

To sum up, considering the numerical example above, we cannot
conclude that a given method allocates always more or less capital
than another. However, for the risk measures examined the results ob-
tained by proportional and marginal methods are substantially very
different from those of the RORAC method. Even if proportional
and marginal contribution methods seem to provide similar results,
marginal one better reacts and takes into account riskier assets.
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M AT H E M AT I C A L B A C K G R O U N D

The appendix is devoted to collect some mathematical background
about notations and results used throughout the work. However, the
topics presented here are just summarized and not discussed in detail;
we mainly refer to Aliprantis and Border [2], for a proper discussion.
Many results can be also found in Dunford and Schwartz [34] or in
Rudin [61]. Further references will be given for specific topics.

The focus is on those topics which are mostly used throughout
the work. However, we skip the basics of set theory and those of
vector spaces, even if largely used throughout the work, since they
are assumed to be well known. The reader can still refer to [2, 34, 61]
for such topics.

a.1 orderings

Let X be any non-empty set. A binary relation � on X is a preorder
if it satisfies the following conditions, for all X, Y, Z ∈ X :

Reflexivity: X � X.

Transitivity: if X � Y and Y � Z then X � Z.

A preorder � induces an asymmetric relation � via

X � Y :⇐⇒ Y � X

and an equivalence relation ∼ via

X ∼ Y :⇐⇒ X � Y and Y � X.

The notations X � Y :⇐⇒ X � Y and X ≺ Y :⇐⇒ X � Y are also
commonly used. A preorder � on X is called:

Order if it is antisymmetric: X � Y and Y � X imply X = Y (i. e.
X and Y coincide, X, Y ∈ X ).

Total if it is complete: for all X, Y ∈ X , either X � Y or Y � X or
both must hold.

Let X be a vector space over R. A preorder � on X is said to be a
vector preorder if X � Y implies X + Z � Y + Z for any Z ∈ X and
λX � λY for any λ ≥ 0. Similarly, when � is an order on X , we say
that it is a vector order if the above condition is satisfied.

Let � be a vector order on X . The positive cone induced by � is
given by

X+ := {X ∈ X | X � 0} .

115



116 mathematical background

Notice that X+ is a convex cone. We will use the notation X := X ∪
{±∞}, where +∞ � x � −∞, for every x ∈ X .

An upper bound of A ⊆ X is an element x ∈ X satisfying x � y
for all y ∈ A. Similarly, a lower bound of A is an element x ∈ X
satisfying x � y for all y ∈ A. The supremum of A, denoted by sup A,
is its least upper bound and the infimum of A, denoted by inf A, is its
greatest lower bound. Notice that the supremum and the infimum are
unique because � is an order. Moreover, note that sup A = − inf−A,
for any A ⊆ X .

a.2 topology

Let X be a topological vector space over R with topology τ. That is, a
vector space X and a topology τ such that the two vector operations
(sum and multiplication by a scalar) are continuous with respect to τ.

Whenever τ′ is another topology on X and τ′ ⊆ τ, we say that τ′

is coarser than τ, or, equivalently, that τ is finer than τ′.
We denote by X ′ the topological dual of X ; that is, the set of all

linear functionals ` : X → R which are continuous with respect to τ.
Notice that X ′ is itself vector space over R, when endowed with the
pointwise operations.

A dual pair is a pair (X ,Y) of vector spaces, together with a bilin-
ear functional 〈·, ·〉 : X × Y → R, called the duality of the dual pair
(X ,Y), that separates the points of X and Y . That is: if 〈x, y〉 = 0 for
all y ∈ Y , then x = 0; if 〈x, y〉 = 0 for all x ∈ X , then y = 0.

The topology denoted by σ(X ,X ′) is called the weak topology and
it is the coarsest topology on X that makes every functional ` ∈ X ′
continuous. Similarly, the weak* topology σ(X ′,X ) is the coarsest
topology on X ′ that makes the maps Tx : X ′ → R, defined by Tx(`) :=
`(x), x ∈ X , continuous.

Whenever X ′ is isomorphic to a set Y , it is customary to write
σ(X ,Y) or σ(Y ,X ), instead of σ(X ,X ′) and σ(X ′,X ), respectively.

a.3 functionals

Let X be a topological vector space over R, equipped with a vector
preorder �. Consider a functional f : X → R. We say that f is �-
monotone increasing (resp. decreasing) if for all x, y ∈ X

x � y =⇒ f (x) ≥ f (y) (resp. f (x) ≤ f (y)).

We simply say that f is monotone (increasing or decreasing) when-
ever it is clear that we refer to �.

We say that f is convex if for all x, y ∈ X and λ ∈ [0, 1]

f
(
λx + (1− λ)y

)
≤ λ f (x) + (1− λ) f (y).
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A functional f is concave whenever − f is convex. We say that f is
positive homogeneous if for all x ∈ X and λ ≥ 0

f (λx) = λ f (x).

We say that f is subadditive if for all x, y ∈ X

f (x + y) ≤ f (x) + f (y).

Notice that convexity and positive homogeneity are equivalent to sub-
additivity and positive homogeneity. We use the notation

{ f ≤ c} := {x ∈ X | f (x) ≤ c} ;

and similarly { f ≥ c}, { f < c}, { f > c}, { f = c} are meant as above.
We say that f is lower semicontinuous if { f ≤ c} is closed for each

c ∈ R. Equivalently, f is lower semicontinuous if for each net xα → x
in X we have

f (x) ≤ lim inf
α

f (xα).

Given a convex functional f : X → R, we say that ` ∈ X is a subgra-
dient of f at x ∈ X if it satisfies

f (y)− f (x) ≥ `(y− x)

for all y ∈ X . The set of all subgradients at x is called the subdiffer-
ential of f at x and denoted by ∂ f (x). If ∂ f (x) is non-empty, we say
that f is subdifferentiable at x.

The directional derivative of f at x ∈ X , in the direction y ∈ X , is
given by

D f (x; y) := lim
t→0

f (x + ty)− f (x)
t

.

The function f is said to be Gateaux differentiable at x ∈ X , with
Gateaux derivative ` ∈ X ′, if D f (x; y) = `(y) for all y ∈ X . That is,
if the directional derivative is linear in the direction. If f is Gateaux
differentiable at x ∈ X , then its subdifferential at x is a singleton,
with the unique element being the Gateaux derivative, usually called
the gradient of f at x and denoted by ∇ f (x).

a.4 games and choquet integrals

For this topic, we also refer to Bhaskara Rao and Bhaskara Rao [16],
Denneberg [31] and Marinacci and Montrucchio [54].

Let (Ω,F ) be a measurable space. A game is a set function ν : F →
R satisfying ν(∅) = 0. A game ν is called:

Positive if ν(A) ≥ 0 for all A ∈ F .

Capacity if it is monotone: ν(A) ≤ ν(B) whenever A ⊆ B, with
A, B ∈ F .
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Charge if it is finitely additive: ν(A ∪ B) = ν(A) + ν(B) for all
pairwise disjoint sets A, B ∈ F .

Measure if it is countably additive: ν
(⋃+∞

i=1 Ai
)
= ∑+∞

i=1 ν(Ai) for all
pairwise disjoint sequence of sets (Ai)i∈N ⊆ F .1

Normalized if ν(Ω) = 1.

Probability measure if it is a normalized positive measure.

Submodular if ν(A∪ B)+ ν(A∩ B) ≤ ν(A)+ ν(B) for all A, B ∈ F .

Let P be a probability measure on (Ω,F ) and define ν := f ◦ P,
where the function f : [0, 1]→ [0, 1] satisfies f (0) = 0, f (1) = 1. Such
a ν is called the distortion of the probability measure P with respect
to the distortion function f . It is clear that ν is a normalized capacity,
moreover if f is concave then ν is sub-modular, see [39].

For the measurable function X : Ω → R, the game ν : F → R and
any t ∈ R, we recall the notation

ν(X ≤ t) := ν
(
{ω ∈ Ω | X(ω) ≤ t}

)
.

We assume that the notation above still holds whenever we replace ≤
with ≥,<,>,= or whenever we replace t with a set B ∈ B(R) and ≤
with ∈.

Given a game ν, its variation norm is given by

‖ν‖ := sup
n

∑
i=1
|ν(Ai)− ν(Ai−1)|

where the supremum is taken over all finite chains ∅ = A0 ⊆ A1 ⊆
· · · ⊆ An = Ω. We denote by ba(Ω,F ) the space of all charges with
finite variation norm.

Given two games, ν and µ, we say that ν is absolutely continuous
with respect to µ, written ν� µ, whenever µ(A) = 0 implies ν(A) =

0, for all A ∈ F .
The core of a game ν is defined as

Cν := {µ ∈ ba(Ω,F ) | µ(A) ≤ ν(A), for all A ∈ F , µ(Ω) = ν(Ω)} .

Let B(F ) be the set of all bounded F -measurable functions. That
is, bounded functions X : Ω → R such that X−1(B) ∈ F for all B ∈
B(R), letting B(R) denote the Borel σ-algebra on R. The Choquet
integral of X ∈ B(F ) with respect to a capacity ν is defined as∫

X dν :=
∫ 0

−∞

(
ν(X ≥ t)− ν(Ω)

)
dt +

∫ +∞

0
ν(X ≥ t) dt.

The Choquet integral, with respect to ν, is also denoted by Eν[·], or
simply E[·], when it is clear which game is involved. The notation

1 Notice that some authors ([2] for instance) define a measure as a positive countably
additive game.
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EP[·], or simply E[·], is devoted to the expectation under P, that is, a
Choquet integral with respect to a probability measure.

The Choquet integral is monotone, positive homogeneous and also
translation invariant. If ν is sub-modular, then the Choquet integral is
also subadditive. Moreover, it is finitely additive when ν is a charge
and coincides with the standard Lebesgue integral when ν is a posi-
tive measure. Furthermore, the Choquet integral is monotone with
respect to the game, that is, if ν and µ are two games such that
ν(A) ≤ µ(A) for all A ∈ F , then Eν[X] ≤ Eµ[X] for all X ∈ B(F ).

a.5 spaces of functions

Given a measurable space (Ω,F ), we denote by L0 the (vector) space
of all real-valued F -measurable functions on Ω. Let X ⊆ L0 and P

be a probability measure. The triplet (Ω,F , P) is called a probability
space and the functions X ∈ X are also called random variables.

The pointwise ordering on X is defined by

X ≥p Y :⇐⇒ X(ω) ≥ Y(ω) for all ω ∈ Ω.

The pointwise relation is an order but it is not total. The P-almost
surely (P-a.s.) ordering on X is defined by

X ≥P Y :⇐⇒ P(X ≥ Y) = 1.

The P-a.s. ordering is a preorder on X but it is neither an order nor
total. Indeed, X ≥P Y and Y ≥P X imply just X =P Y, that is P(X =

Y) = 1, but X and Y may not coincide. Moreover, for some X, Y ∈ X
it happens that neither X ≥P Y nor Y ≥P X hold.

The quotient space of L0 with respect to the P-a.s. equivalence
relation is denoted by L0. As usual, we do not distinguish between
equivalence classes in L0 and their representative elements in L0.

Given a random variable X ∈ X , its essential supremum is defined
as

ess sup(X) := inf {c ∈ R | P(X ≤ c) = 1} ;

similarly, its essential infimum is defined as

ess inf(X) := sup {c ∈ R | P(X ≥ c) = 1} .

We denote by L∞ the subspace of L0 consisting of all functions that
are P-a.s. bounded; that is, ess sup |X| < +∞ for all X ∈ L∞. The
space L∞ becomes a Banach lattice under the essential supremum
norm:

‖X‖∞ := ess sup |X|.

The dual of L∞ can be identified with ba := ba(Ω,F , P), the set of
all finitely additive set functions µ : F → R (charges) that have finite
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total variation and that are absolutely continuous with respect to P.
For any X ∈ L∞ and µ ∈ ba, the duality is given by

〈X, µ〉 = Eµ[X].

However, under the weak* topology σ(L∞, L1), the dual of L∞ can
be identified with L1, the space of all random variables belonging
to L0 whose absolute value is integrable (see below). Through the
Radon-Nikodym theorem, it is then possible to identify L1 with the
space of all (countably additive) measures absolutely continuous with
respect to P.

We denote by Lp, p ∈ (0,+∞), the subspace of L0 consisting of all
random variables satisfying E[|X|p] < +∞. We do not consider the
case p ∈ (0, 1). For p ∈ [1,+∞), the space Lp is a Banach lattice under
the norm

‖X‖p :=
(
E[|X|p]

) 1
p .

The dual of Lp can be identified with Lq for q = p
1−p , using the con-

vention 1
0 := +∞. In particular, the dual of L1 can be identified with

L∞. For any X ∈ Lp and Y ∈ Lq, the duality is given by

〈X, Y〉 = E[XY].

The indicator function of the set A ∈ F is the measurable function
1A : Ω→ {0, 1} defined by

1A(ω) :=

1 if ω ∈ A;

0 otherwise.

Notice that, for λ ∈ R, λ1Ω is the function constantly equal to λ. In
such a case, we simply write λ instead of λ1Ω. The indicator function
is monotone with respect to set inclusion, subadditive with respect to
set union and additive when the sets are disjoint.

The positive part is the operator ·+ : X → X+ defined by

X+ := max {X, 0} =

X if X > 0;

0 otherwise.

The positive part can be also written as X+ = X 1{X>0}. The posi-
tive part is monotone, positive homogeneous and subadditive, with
respect to the pointwise order.

Given α ∈ (0, 1), an α-quantile of X ∈ X is any number q ∈ R

satisfying
P(X ≤ q) ≥ α ≥ P(X < q).

The set of α-quantiles is a closed interval where

q−α := sup {x ∈ R | P(X < x) < α}

is called the lower α-quantile of X and

q+α := inf {x ∈ R | P(X ≤ x) > α}

is called the upper α-quantile of X.
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a.6 stochastic orders

For this topic, we refer to Dana [27], Föllmer and Schied [39] and
Müller et al. [55]. Notice that, in [39] the second stochastic order is
called “uniform preferences”.

Let (Ω,F , P) be a probability space and X, Y ∈ L1, that is, the space
of P-integrable random variable. The first stochastic order is defined
as

X �1 Y :⇐⇒ E[u(X)] ≥ E[u(X)]

for all monotone increasing functions u : R→ R. We recall that

X �1 Y ⇐⇒ FX(x) ≤ FY(x) for all x ∈ R;

where FX(x) := P(X ≤ x) denotes the distribution function of X.
Notice that X and Y are equal in distribution if and only if X �1 Y
and Y �1 X. The equality in distribution is denoted by ∼. Therefore,
a functional f : L1 → R which is �1-monotone is also distribution
invariant, that is, f (X) = f (Y) whenever X ∼ Y.

The second stochastic order is defined as

X �2 Y :⇐⇒ E[u(X)] ≥ E[u(X)]

for all monotone increasing and concave functions u : R → R. We
recall that

X �2 Y ⇐⇒
∫ t

−∞
FX(x) dx ≤

∫ t

−∞
FY(x) dx for all t ∈ R.

Here the interpretation is the following: X �1 Y means that any agent
which is a profit maximizer (increasing utility function) prefers X to
Y, while X �2 Y means that any agent which is a profit maximizer
and risk averse (increasing and concave utility function) prefers X to
Y.

It is clear that the following relations hold among the two stochastic
orders and the P-a.s. relation, for all X, Y ∈ L1.

X ≥P Y =⇒ X �1 Y =⇒ X �2 Y.

Moreover, it also clear that whenever f : L1 → R is �2-monotone
increasing (resp. decreasing) then it is ≥P-monotone increasing (resp.
decreasing).

a.7 orlicz spaces

Here, we also refer to Rao and Ren [59], for more details.

Let Φ : [0,+∞)→ [0,+∞) be a convex and strictly increasing func-
tion satisfying Φ(0) = 0 and Φ(1) = 1. Such Φ is called a (normal-
ized) Young function. It follows that Φ is continuous and satisfies
limx→+∞ Φ(x) = +∞.
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Given a Young function Φ, the Orlicz space LΦ is defined as

LΦ :=
{

X ∈ L0
∣∣∣∣ E

[
Φ
(
|X|
a

)]
< +∞ for some a > 0

}
.

The space LΦ is a Banach lattice under the Luxembourg norm:

‖X‖Φ := inf
{

λ > 0
∣∣∣∣ E

[
Φ
(
|X|
λ

)]
≤ 1

}
.

The Orlicz heart MΦ as

MΦ :=
{

X ∈ L0
∣∣∣∣ E

[
Φ
(
|X|
a

)]
< +∞ for all a > 0

}
.

We recall that LΦ = MΦ whenever satisfies the so-called ∆2 condition,
that is, whenever there exists x0 > 0 and α > 0 such that

x > x0 =⇒ Φ(2x) ≤ αΦ(x).

For the Orlicz duality, it is also useful to consider the convex conju-
gate Ψ of Φ, defined for y ≥ 0 as

Ψ(y) := sup
x≥0
{xy−Φ(x)} .

The Orlicz norm of X ∈ LΦ is defined as

‖X‖∗Φ := sup
‖Y‖Ψ≤1

E[|XY|]

for Ψ being the convex conjugate of Φ. The dual space of (MΦ, ‖·‖Φ)

can be identified with (LΨ, ‖·‖∗Ψ).
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