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50Santissima Trinità di Cagliari, Cagliari, Italy
51Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana University of Pisa, Pisa, Italy
52Dipartimento di Farmacia, Università di Pisa, Pisa, Italy
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58UOCMalattie Infettive Ad Alta Intensità di Cura, National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
59Infectious and Tropical Diseases Unit, Deparment of Medical and Surgical Sciences, Magna Graecia University,
Catanzaro, Italy

60Department of Epidemiology, Boston University School of Public Health, Boston, USA

2 Journal of Healthcare Engineering



Correspondence should be addressed to Licia Iacoviello; licia.iacoviello@uninsubria.it

Received 19 February 2021; Revised 8 April 2021; Accepted 16 May 2021; Published 25 June 2021

Academic Editor: Matteo Russo

Copyright © 2021 Augusto Di Castelnuovo et al. +is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

+e efficacy of hydroxychloroquine (HCQ) in treating SARS-CoV-2 infection is harshly debated, with observational and ex-
perimental studies reporting contrasting results. To clarify the role of HCQ in Covid-19 patients, we carried out a retrospective
observational study of 4,396 unselected patients hospitalized for Covid-19 in Italy (February–May 2020). Patients’ characteristics
were collected at entry, including age, sex, obesity, smoking status, blood parameters, history of diabetes, cancer, cardiovascular
and chronic pulmonary diseases, and medications in use. +ese were used to identify subtypes of patients with similar char-
acteristics through hierarchical clustering based on Gower distance. Using multivariable Cox regressions, these clusters were then
tested for association with mortality and modification of effect by treatment with HCQ. We identified two clusters, one of 3,913
younger patients with lower circulating inflammation levels and better renal function, and one of 483 generally older and more
comorbid subjects, more prevalently men and smokers. +e latter group was at increased death risk adjusted by HCQ (HR
[CI95%]� 3.80[3.08-4.67]), while HCQ showed an independent inverse association (0.51[0.43-0.61]), as well as a significant
influence of cluster∗HCQ interaction (p< 0.001).+is was driven by a differential association of HCQ with mortality between the
high (0.89[0.65-1.22]) and the low risk cluster (0.46[0.39-0.54]). +ese effects survived adjustments for additional medications in
use and were concordant with associations with disease severity and outcome.+ese findings suggest a particularly beneficial effect
of HCQ within low risk Covid-19 patients and may contribute to clarifying the current controversy on HCQ efficacy in Covid-
19 treatment.

1. Introduction

Hydroxychloroquine (HCQ) is an antimalarial drug sug-
gested to be effective in inhibiting Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-Cov-2) replication in vitro
[1, 2]. Indeed, HCQ is characterized by antiviral, anti-in-
flammatory, and antithrombotic actions, contrasting the
main disruptive effects of SARS-CoV-2 infection on the
organism [3]. For this reason, it has been heavily used in
treating patients affected by SARS-CoV-2 infection related
disease (commonly known as Covid-19), especially in the
first phases of the current pandemics, when Covid-19 was
quite unknown [4].

Despite these elements and initial suggestive evidence of
efficacy based on daily clinical practice, in the last months,
the potential benefit of HCQ for Covid-19 patients has been
harshly debated [3, 5]. In particular, evidence supporting
protective effects from observational studies [6–13] was in
contrast with that suggesting no effect at all by recent
randomized clinical trials (RCTs) [14–18]. More recently, a
meta-analysis combining both RCTs and observational
studies over more than 44,000 patients supported a pro-
tective effect of HCQ, driven by the findings of observational
studies [5]. A potential explanation for this discrepancy may
be due to the usually high dosage administered in RCTs
(800mg/day), compared to lower dosages reported in ob-
servational studies supporting HCQ efficacy (≤400mg/day),
as hypothesized elsewhere [5]. As an alternative explanation,
it is likely that the efficacy of HCQ treatment for Covid-19
may vary across patients and is influenced by subtypes of the
disease, which in turn is largely dependent on patients’
characteristics and their nonlinear combinations [19]. In this

“personalized medicine” view, response to HCQ may not be
the same across all patients of the same age, or with similar
circulating inflammation levels. In order to identify these
combinations, the use of big data like Electronic Health
Records (EHRs) and of machine learning (ML) algorithms to
interpret hidden HCQ response patterns is of fundamental
importance. ML is an umbrella term covering different al-
gorithms designed for the identification of hidden patterns,
information mining, and variable classification/estimation
through modelling complex (including nonlinear) func-
tions, usually adopted in a big data setting. +ese algorithms
can be generally classified into supervised and unsupervised
approaches. +e formers are designed to learn to predict
specific outcomes after proper training of the algorithm in
independent datasets, trying to model relationships and
dependencies between the input variables (or features) and
the target prediction output (or label). In unsupervised al-
gorithms, the machine simply learns to identify hidden
patterns across a high number of observations over many
features, without the need for labels, and is more descr-
iptive—rather than predictive—in nature. +ese algorithms
have shown promising findings in public health, in the
management of both chronic [20] and acute health condi-
tions [21, 22], but also during the current pandemics. In
particular, useful ML applications have been reported in the
prediction of Covid-19 diagnosis and prognosis [23]. Not-
withstanding this, to the best of our knowledge, only one
study attempted so far to predict response to HCQ treatment
within Covid-19 patients, through the application of a su-
pervised ML technique (gradient boosting). Interestingly,
the authors reported a reduction of in-hospital mortality
within patients treated with HCQ, which was even more
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pronounced within those patients predicted to benefit most
from the drug, in line with expectations [19].

Here, we attempted a personalized Covid-19 patient
characterization to better disentangle the beneficial effects of
HCQ previously reported within the COVID-19 RISK and
Treatments (CORIST) study, a large retrospective cohort of
patients hospitalized for SARS-CoV-2 infection in Italy [13].
+is approach consisted of i) identifying the existence of
subtypes of Covid-19 patients through an unsupervised ML
algorithm—hierarchical clustering—comparing their char-
acteristics and their clinical risks, ii) testing the resulting
patients’ clusters for association with mortality and modi-
fication of effect by treatment with HCQ, and iii) analyzing
potential interactions between clusters and HCQ use. +is
approach represents a prominent example of how person-
alized medicine may support clinicians in Covid-19
treatment.

2. Methods

2.1. Analyzed Cohort. +e COVID-19 RISK and Treatments
(CORIST) study includes 4,396 patients hospitalized for
SARS-Cov-2 infection in 35 hospitals across Italy, between
February 2020 and May 2020. Molecular diagnosis of SARS-
CoV-2 infection was based on polymerase chain reaction
(PCR) of viral DNA extracted and amplified from naso-
pharyngeal swabs. Within each participating hospital,
clinical data were abstracted at one-time point from elec-
tronic medical records or charts and collected using either a
centrally designed electronic worksheet or a centralized web-
based database. Collected data included patients’ demo-
graphics, laboratory tests, medications in use, history of
disease, and prescribed pharmacological therapy for Covid-
19 treatment. For each participant, the study index date was
defined as the date of hospital admission, while the study end
point was death. Follow-up time was computed as the time
between the index date and death, or alternatively between
the index date and the date of discharge, applying right-
censoring. Further details on the study are reported else-
where [13, 24, 25].

2.2. Statistical Analyses

2.2.1. Cluster Analysis. All analyses were carried out in R
4.0.2 (https://www.r-project.org/) [26]. We applied a hier-
archical clustering analysis on Covid-19 patients using their
main clinical, lifestyles, and sociodemographic character-
istics, which were suggested as the most influential on
mortality risk by previous studies in the field [25, 27, 28].
+ese included age (years), sex, glomerular filtration rate
(eGFR, mL/min/1.73m2) and high-sensitivity plasma
C-reactive protein levels (mg/L) at in-hospital admission,
obesity (body mass index (BMI)≥ 30 kg/m2), hypertension
(Yes/No), and smoking status (never/previous/current
smoker), as well as history of myocardial infarction, heart
failure, chronic pulmonary disease, cancer, and diabetes
(Yes/No). Missing data were imputed through a k-Nearest
Neighbor approach, implemented in the knn() function of
the VIM package (version 6.1.0; https://cran.r-project.org/

web/packages/VIM/index.html), with k� 10 [29]. CRP was
transformed on the natural logarithm scale to reduce
skewness, and all the continuous variables were normalized
through the normalize() function in Keras v2.3.0 (https://
cran.r-project.org/web/packages/keras/index.html).

Cluster analyses were then performed on the 4,396 pa-
tients, using the variables specified above, through the Cluster
package v2.1.0 (https://cran.rproject.org/web/packages/
cluster/index.html). First, we computed a dissimilarity ma-
trix based on Gower pairwise distance (Figure S1), through
the daisy() function. Gower distance is a parameter in the [0;
1] range representing the average of partial dissimilarities
across individuals (the higher the distance, the more the
dissimilarities for a given pair of subjects) [30]. Second, we
performed hierarchical clustering through the hclust() func-
tion applied to the Gower distance matrix computed above,
which separated subjects based on their degree of pairwise
dissimilarity, both from lowest to highest (agglomerative
clustering) and from highest to lowest (divisive clustering).
+ird, we determined the appropriate number of clusters for
patient classification, based on the Average Silhouette method
(Figure S2). +is computes the number of clusters, which
maximizes the average silhouette width, a measure of the
quality of clustering indicating how well each object lies
within its cluster [31]. +is method, applied through the
fviz_nbclust() function of the Factoextra package (v1.0.7,
https://cran.rproject.org/web/packages/factoextra/index.
html), computed k� 2 as the optimal number of clusters.
Finally, each patient was assigned to one of the two clusters
determined above, through application of the cutree() func-
tion (Cluster package) to the results of the cluster analysis
previously carried out.

2.2.2. Comparison of Clusters. First, we compared the
classifications made through agglomerative and hierarchical
clustering, which revealed high consistency (Odds
Ratio� 34.0 [26.7-43.7], Fisher Exact Test p value< 10−15). In
light of this homogeneity of classification, and since divisive
clustering has been reported to be more accurate and robust
[32], all the subsequent analyses were performed on cluster
classification identified through the latter approach.

+e two clusters of patients identified were then
compared for all anamnestic variables mentioned above,
through Fisher’s Exact Test (for binary variables), Chi-
squared test (for nonbinary categorical variables), and
through Student’s t-test or Wilcoxon Rank Sum tests (for
continuous variables meeting and not meeting parametric
assumptions, respectively). Similarly, we compared Covid-
19 disease severity, classified by recruiting centers in
asymptomatic/mild, nonsevere pneumonia, severe pneu-
monia, and acute respiratory distress syndrome (ARDS).
Moreover, we compared the use of six common drugs for
Covid-19 treatment between the two clusters, including
hydroxychloroquine, antihypertensive drugs, anti-inter-
leukin-6 antibody, antivirals (Remdesivir, Lopinavir,
Darunavir), and corticosteroids. +ese were reported as
binary variables (Yes/No) and were, therefore, compared
with clusters through Fisher Exact Tests.
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2.2.3. Survival Analyses. Once the clusters were character-
ized, we modelled incident mortality risk as a function of
patients clusters and use of HCQ through Cox Proportional
Hazards (PH) models, using the cox.zph() function of the
survival package (v3.2.7, see URLs: https://cran.r-project.
org/web/packages/survival/index.html) [33]. Only patients
with complete information needed in each model were
included in the analysis (case-complete approach; see be-
low). A preliminary check of the basic Cox PH assumptions
revealed no influential observations based on dfbeta resid-
uals (Figure S3a), while Schoenfeld residuals tests revealed a
statistical violation of the proportionality of hazards as-
sumption, although these did not show any evident trend at
a visual inspection (Figure S3b). For this reason, we carried
out Cox PH models both with and without including an
interaction term with time-to-event, a strategy commonly
used to overcome this violation [34]. Incrementally adjusted
models were analyzed: i) a crude model including only
patients’ clusters (Model 1; N� 4,319); ii) a model testing
additive influence of clusters and HCQ use (Model 2: Model
1 +HCQ; N� 4,212); and iii) a model testing both additive
and synergistic influence of clusters and HCQ use (Model 3:
Model 2 + clusters∗HCQ; N� 4,212). Additional sensitivity
analyses were carried out to rule out potential confounding
effects of additional drugs in use for Covid-19 treatment
(Model 4: Model 3 + other drugs). Risk estimates were
computed as hazard ratios (HR) with 95% confidence in-
tervals (95% CI) of dying, and HR with p values below
α� 0.05 were considered significant. To quantify the po-
tential for unmeasured confounding effects, the E-value was
calculated for all the HRs observed in Model 3, as described
in [35] (https://www.evalue-calculator.com/). +is repre-
sents the minimum association required for a potential
unmeasured confounder with both the exposure and the
outcome to explain away the observed association. In other
words, the higher the E-value, the harder it is to attribute an
association to an unmeasured covariate [36].

2.2.4. Associations with Additional Endpoints. To better
evaluate the associations of Covid-19 patients clusters and
HCQ use with negative outcomes other than death, we built
a composite endpoint based on the occurrence of at least one
of the following outcomes: in-hospital death, access to in-
tensive care unit during hospitalization, or severe disease
manifestation (either severe pneumonia or ARDS). In this
case, the resulting binary variable was assigned a value of 1.
Conversely, the variable got “0” value if one of the following
alternative conditions is applied: (i) none of the above
mentioned outcomes was verified; (ii) a patient survived
without recurring to intensive cares or (iii) without showing
severe manifestations of the disease. Six patients with
missing values on survival were removed.+en, wemodelled
the risk of manifesting a bad outcome through a logistic
regression (glm() function in R), modelling both additive
and interactive models of Covid-19 patients cluster and
HCQ use, as above. +is analysis was motivated by the fact
that the curse of disease often differs across patients, e.g.,
with some subjects with less severe forms suddenly

worsening their conditions until death and others having
severe manifestations but still surviving, possibly thanks to
intensive cares. +erefore, a composite outcome variable
represented a robust way to measure potential risk/pro-
tective effects of patients’ clusters and HCQ use.

3. Results

While both agglomerative and divisive clustering ap-
proaches were developed, all statistical analyses presented
below are based on clusters identified through the latter
approach, since this showed a high homogeneity with the
results of agglomerative clustering (see Methods section),
and divisive clustering has been reported to be more ac-
curate and robust [32, 34].

3.1. Characteristics of theClusters. We identified two clusters
of Covid-19 patients (with N� 3,913 and 483, Figure 1). A
comparison of the continuous variables used for their de-
termination is reported in Figures 2(a)–2(d). +e larger
cluster was younger (mean (SD) age: 65.2 (15.6) vs 77.9 (9.2)
years; t-test� -25.9, p< 10−15), with better kidney function
(eGFR: 77.9 (26.9) vs 52.6 (25.6) mL/min/1.73m2; t-
test� 20.3, p< 10−15) and lower circulating inflammation
levels (CRP: 34.6 (62.4) vs 36.5 (58.6) mg/L; Wilcoxon-
test� 847,660, p � 2.5× 10−14). Conversely, BMI did not
show strong differences between the two clusters (28.0 (4.2)
vs 27.5 (4.2) Kg/m2; t-test� 2.3, p � 0.02). Moreover, pa-
tients belonging to the larger cluster were less frequently
men (60% vs 75%) and smokers (11.5% vs 19.5%) and
showed a lower prevalence of chronic health conditions like
myocardial infarction, heart failure, diabetes, hypertension,
cancer, and lung disease (all p< 0.0001), while no significant
difference was observed in the prevalence of obesity
(Table 1).

Clusters were also associated with severe Covid-19
disease manifestations, with 65.8% of patients in the smaller
cluster presenting with either severe pneumonia or ARDS,
compared to 45.9% in the larger cluster (Chi-squared� 76.4,
p< 10−15; Table S1). For the characteristics mentioned
above, the large and small clusters will be hereafter named as
“low risk” and “high risk” cluster. When we compared the
use of specific drugs, in the high risk cluster, we observed a
less frequent use of HCQ (p< 0.001) and of Lopinavir/
Darunavir (p< 0.05) and a more frequent use of cortico-
steroids and antihypertensive medications (p< 0.001),
compared to the low risk cluster (Table S2).

3.2.Combined Influence ofClusters andHCQUseonMortality
Risk. In Cox PH regressions modelling mortality risk as a
function of clusters (Model 1), we analyzed 4,319 patients with
a case-complete approach, with a total of 799 deaths and a total
of 73,924 person-days follow-up (median 13 days). In this
model, patients belonging to the high risk cluster showed a
significant increase of incident mortality risk, compared to
those of the low risk cluster (HR [CI]� 3.81 [3.12-4.65]; Ta-
ble 2). +is association remained stable in a Cox regression
modelling additive effects of clusters and HCQ use (Model 2:
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N� 4,212, 743 events, a total of 72,239 person-days follow-up,
median 14days). Indeed, the high risk cluster was associated
with a significant increase of mortality (3.80 [3.08-4.67]), while

HCQ use was associated with a significant independent re-
duction (0.51 [0.43-0.61]). When we modelled additive and
interactive associations of clusters and HCQ in a single model
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Figure 2: Characteristics of sample according to the two clusters identified.Comparison of the continuous variables used for hierarchical
clustering—including (a) age (years), (b) BMI (Kg/m2), (c) eGFR (mL/min/1.73m2), and (d) C-reactive protein plasma levels (mg/L, log-
scale) between the two clusters of Covid-19 patients identified, namely, the low (green) and the high risk (red) cluster. Here, these variables
are represented through boxplots, with boxes showing the interquartile ranges (IQR�Q1-Q3), continuous lines showing the whole
distribution range from Q1 – 1.5∗IQR through Q3 + 1.5∗IQR, and dots showing more extreme values in the dataset.

0.0

0.2

0.4

0.6

0.8

Figure 1: Hierarchical divisive clustering of Covid-19 hospitalized patients. Two main clusters of patients were identified, with N� 3,913
(green) and 483 (red), respectively. Each line on the x axis represents a patient, while on the y axis the Gower distance between patients is
reported. +e higher the distance, the later the two patients join into a subcluster, and the more dissimilar they are.
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(Model 3), we observed a substantially stable protective as-
sociation of HCQ (0.46 [0.38-0.55]), a reduced but still sig-
nificant direct association of the “high risk” cluster (2.45 [1.69-
3.54]), and a significant association of the cluster∗HCQ in-
teraction term with incident mortality (p � 2.1×10−4). +is
was driven by a differential association of HCQ use within the
different clusters, since this was associated with a notable re-
duction of mortality risk in the low risk cluster (HR [CI]� 0.46
[0.39-0.54], p< 10−15) and with a milder nonsignificant re-
duction in the high risk cluster (0.89 [0.65-1.22],p � 0.47).+e
abovementioned associations were quite robust against po-
tential unmeasured cofounding effects, with E-values of 3.1, 2.8,
and 2.5 for the associations of mortality with the risk cluster,
HCQ use, and cluster∗HCQ interaction inModel 3. Moreover,
these associations remained substantially stable in Cox PH
models including additional drugs in use (Table 2, Model 4), as
well as in those including an interaction term with time
(Table S3).

3.3. Associations with a Combined Covid-19 Outcome.
When we modelled the risk of bad clinical outcomes of the
disease—i.e., severe Covid-19 manifestations, access to in-
tensive care unit or death—as a function of clusters and
HCQ use, we observed results in line with survival analyses,
with increased risk for cluster 2 and decreased risk for HCQ
users, both in the additive and in the interactive model

(Table 3). While the cluster∗HCQ interaction showed only a
trend of significance (p � 0.08), HCQ still presented a
significant protective association in the low risk cluster (OR
[CI]� 0.67 [0.56-0.79], p � 4.0× 10−6) and a substantially
null association in the high risk cluster (OR [CI]� 0.98
[0.66-1.46], p � 0.92).

4. Discussion

In the present work, we report differential influence of HCQ
treatment on Covid-19 mortality through a hierarchical
clustering analysis applied to patients hospitalized for SARS-
CoV-2 infection. +is revealed the existence of two separate
clusters of Covid-19 patients, based on their clinical and
sociodemographic characteristics: one of younger patients
with less comorbidities, lower circulating inflammation, and
better renal function (“low risk” cluster), and one of older
and more comorbid patients, more prevalently men and
smokers (“high risk” cluster). +e former cluster showed a
higher prevalence of severe manifestations of Covid-19,
ranging from severe pneumonia to ARDS. Moreover, sur-
vival analyses showed an almost four-fold increase of in-
cident in-hospital mortality for the high risk compared to
the low risk cluster. Although a previous study attempted to
identify subtypes of Covid-19 patients, associating them
with disease severity [37], this represents the first attempt to
use clustering in disentangling the effect of HCQ on different

Table 2: Results of Cox PH regressions modelling incident mortality risk.

Model N
(deaths) Cluster 2 vs 1 HCQ Yes vs no Cluster∗HCQ

Model 1: Death ∼ cluster 4,319 (799) 3.81 [3.12-4.65]
(<10−15)

Model 2: Death ∼ cluster +HCQ 4,212 (743) 3.80 [3.08-4.67]
(<10−15)

0.51 [0.43-0.61]
(8.8 × 10−15)

Model 3: Death ∼ cluster +HCQ+
Cluster∗HCQ 4,212 (743) 2.45 [1.69-3.54] (4.9 × 10−4) 0.46 [0.38-0.55]

(<10−15)
1.90 [1.21-2.96]
(2.1 × 10−4)

Model 4: Death ∼ cluster +HCQ
+Cluster∗HCQ+other drugs 3,736 (664) 1.65 [1.20-2.26] (2.2 × 10−3) 0.52 [0.43-0.63]

(2.0 × 10−11)
1.98 [1.36-2.89]
(4.0 × 10−4)

Associations between incident mortality risk, Covid-19 clusters identified, and use of Hydroxychloroquine (HCQ) were tested in the incremental models and
in a sensitivity analysis including all the drugs used for Covid-19 treatment. No other covariates were included in the analysis. Hazard Ratios with 95%
confidence intervals (HR [CI]) and relevant p-values (in brackets) are reported. Significant HRs (p< 0.05) are highlighted in bold.

Table 1: Comparison of main categorical variables between the two clusters identified.

Category (%) Cluster 1 – low risk N� 3,913 Cluster 2 – high risk N� 483 p for difference
Men 2,346 (60.0%) 362 (74.9%) 6×10−11

Smoke
<10−15Current smokers 450 (11.5%) 94 (19.5%)

Previous smokers 268 (6.8%) 94 (25.3%)
Obesity (BMI≥ 30Kg/m2) 546 (13.9%) 64 (13.3%) 0.73
Myocardial infarction 127 (3.2%) 335 (69.4%) <10−15

Heart failure 171 (4.4%) 315 (65.2%) <10−15

Diabetes 621 (15.9%) 276 (57.1%) <10−15

Hypertension 1,828 (46.7%) 453 (93.8%) <10−15

Cancer 392 (10.0%) 89 (18.4%) 2×10−07

Lung disease 415 (10.6%) 207 (42.8%) <10−15

P for difference resulting from comparison of the clusters—through Fisher’s Exact Test (for binary variables) or Chi-squared test (for nonbinary categorical
variables, i.e., smoke)—are reported, along with absolute and % frequency of each condition within each cluster.
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types of patients, by testing associations with incident in-
hospital mortality risk. Specifically, we tested and observed
both additive and interactive associations of HCQ and
Covid-19 subtypes. Indeed, the high risk cluster was con-
sistently associated with increased mortality across all
models, while treatment with HCQ was generally associated
with a halving of death risk, in line with previous evidence
from both observational [6–13] and experimental studies
[19]. While we already reported evidence suggesting a
protective influence of HCQ against mortality in a largely
overlapping sample [13], here, we have further deepened this
relationship by testing and reporting a significant association
between cluster-by-HCQ interaction and mortality, which
was driven by a differential association within the two
clusters. Indeed, the low risk cluster showed a significant
“protective” influence of HCQ on in-hospital deaths, while
the high risk cluster showed a concordant but nonsignificant
association. +is represents an element of novelty of the
present study, since, in our previous work, we observed a
“protective” association between HCQ and mortality within
the totality of patients (about 75% of the current sample
size), and when stratifying by age, sex, and other charac-
teristics [13], but not within different subtypes of patients
combining all these characteristics together in a nonlinear
setting, as can be built through unsupervisedML algorithms.
Moreover, here, our evidence is supported also by con-
cordant associations with a composite and possibly more
robust outcome of the disease, based on the occurrence of
death, access to ICU, and severity of manifestations.

Recently, an approach based on the definition of sub-
types of Covid-19 patients has been already proven to be
successful in identifying which patients benefit most from
HCQ treatment, in a multicenter trial involving six US
hospitals and 290 patients hospitalized for Covid-19, the
IDENTIFY study [19]. HCQ treatment was associated with
higher survival in the treated harm, and especially within
those patients that were predicted to benefit most based on a
supervised ML algorithm applied to their characteristics,
which included blood pressure, heart rate, temperature,
respiratory rate, oxygen saturation, white blood cell and
platelet count, lactate, blood urea nitrogen, creatinine, and
bilirubin levels [19]. Interestingly, lactate and creatinine
levels were the most important features in this algorithm

[19], the latter representing an index of renal function, which
was also a characteristic feature of the low risk cluster in the
present study, where HCQ was more effective. Moreover,
patients eligible for HCQ treatment as derived by the al-
gorithm of [19] were shown to be younger and less comorbid
than the whole population studied, in line with the evidence
reported in the present work, suggesting that HCQ treat-
ment may be more effective for younger patients with better
general health conditions.

4.1. Strengths and Limitations. Although, to the best of our
knowledge, this study represents the largest and broadest
cluster analysis on Covid-19 patients and a novel approach
in analyzing the influence of a pharmacological treatment on
Covid-19 mortality and outcomes, it also presents few
limitations.

First, the observational retrospective design does not
allow us to completely control for confounders and ran-
domization of treatments across individuals. +e former
aspect is quite unlikely, since a potential residual con-
founder should be strongly associated with in-hospital
mortality to take away observed associations in the in-
teractive model, as suggested by the computed E-values
[35, 36]. As for drug therapy, we cannot rule out that
assignment to specific treatments was driven also by
clinical conditions of the participants, as usually found in
common clinical practice. For the same reason, the pro-
tective association observed for HCQ may be hypothesized
to be driven by other coadministered medications. How-
ever, here, HCQ and patients’ cluster showed significant
independent associations, which remained substantially
stable across models and survived correction for other
drugs in use for Covid-19 treatment. Lastly, our evidence is
in contrast with RCTs published so far [14–18], which are
commonly conceived as the gold standard for establishing
drug efficacy and safety. While we generally agree with this
view, we would like to underline that these studies did not
randomize patients to treatment arms based on combi-
nations of their features, but rather based on single
characteristics such as age and sex. +is may be the reason
for this discrepancy, along with the hypothesis that the high
dosage of HCQ administered in RCTs may be harmful for

Table 3: Results of logistic regressions modelling Covid-19 composite bad outcome risk.

Model N Cluster 2 vs 1 HCQ Cluster∗HCQ

Bad outcome∼ cluster 4,373 2.53 [2.09-3.08]
(<10−15)

Bad outcome∼ cluster +HCQ 4,265 2.53 [2.08-3.09]
(<10−15)

0.71 [0.61-0.83]
(2.1 × 10−5)

Bad outcome∼ cluster +HCQ+Cluster∗HCQ 4,265 1.94 [1.35-2.79]
(3.8 × 10−4)

0.67 [0.56-0.79]
(4.0 × 10−6)

1.46 [0.95-2.26]
0.08

Bad outcome∼ cluster +HCQ+Cluster∗HCQ+other
drugs 3,786 1.80 [1.21-2.68]

(3.8 × 10−3)
0.55 [0.45-0.66]
(9.0 × 10−10)

1.47 [0.92-2.36]
(0.10)

+e composite bad outcome was defined as one of the following: death, access to intensive care unit, or severe Covid-19 manifestation (either severe
pneumonia or ARDS). Associations were tested in three incremental models and in a sensitivity analysis including all the drugs used for Covid-19 treatment,
as for Cox PH regressions. Odds Ratios with 95% confidence intervals (OR [CI]) and relevant p-values (in brackets) are reported. Significant ORs (p< 0.05)
are highlighted in bold.
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patients, compared to lower dosages reported in obser-
vational studies supporting HCQ efficacy [5]. Of interest, a
recent critical review underlined the aspect of suboptimal
randomization methods of RCTs, which often do not take
into account the whole patient profile and disease severity
and may lead to misleading conclusions [38].

5. Conclusions

Overall, the evidence supported here and elsewhere [19]
suggests that HCQ treatment may be more effective in
specific subtypes of Covid-19 patients and indicates machine
learning as a useful approach to identify the most “prom-
ising” patients in terms of success rate of this treatment. In
the future, further studies on independent datasets are
warranted, possibly using supervised ML techniques as in
other clinical settings (e.g., [39, 40]), to validate this hy-
pothesis and test the feasibility of predicting responsiveness
to HCQ before intervention. Ideally, a trial administering
low dosages of HCQ (≤400mg/day) and randomizing
subjects based on their Covid-19 subtype profile rather than
on single characteristics may be warranted to clarify the
effects of HCQ on mortality risk in SARS-CoV-2 infection,
especially within those patients with a “low risk” profile.

+is may help solving current controversies on the use of
HCQ as a medication for Covid-19 and maximize the ef-
ficacy of treatment strategies for this yet largely unknown
disease, especially in low-income and developing countries
with poorer national health systems.
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