
SCUOLA DI DOTTORATO
UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

Department of Informatics, Systems and Communication

PhD program in Computer Science, Cycle XXXIII

Understanding and Improving Automatic Program
Repair: A Study of Code-removal Patches and a

New Exception-driven Fault Localization
Approach

Davide Ginelli

Registration number: 727654

Tutor: Prof. Giuseppe Vizzari

Supervisor: Prof. Leonardo Mariani

Coordinator: Prof. Leonardo Mariani

ACADEMIC YEAR 2019/2020

iii

UNIVERSITY OF MILANO - BICOCCA

Abstract
School of Science

Department of Informatics, Systems and Communication

Doctor of Philosophy

Understanding and Improving Automatic Program Repair: A Study of
Code-removal Patches and a New Exception-driven Fault Localization Approach

by Davide GINELLI

Debugging and bug fixing are extremely important activities that are regularly per-
formed to eliminate defects from software. They are however time consuming, and
thus improving their degree of automation is increasingly important in a competi-
tive world. A possible solution is offered by Automatic Program Repair (APR) tech-
niques, through which it is possible to automatically generate patches that can be
either presented to developers as candidate patches or directly integrated into the
target programs. Although many different APR techniques have been developed
in the last few years, there are still open challenges related to their introduction as
stable and working solutions in development pipelines. Indeed, most of the APR
techniques rely on test cases to evaluate the correctness of patches, which is a weak
validation method that can lead to the generation of incorrect patches. In particular,
recent empirical studies show that APR techniques often result in the generation of
code-removal patches, that are patches that drop functionalities to address the faults
that afflict programs. Yet another aspect that strongly influences the success of APR
is fault localization. Indeed, if the correct location to generate the patch is not found,
it is hard or even impossible to generate a patch. Experimental evidence shows that
current strategies used for the fault localization are often unable to identify the cor-
rect statements to be modified, making the generation of patches extremely hard. In
this context, this Ph.D. thesis provides two key contributions: 1) an empirical study
about the factors that influence the generation of code-removal patches and an anal-
ysis of the useful information that can be extracted from them; and 2) a new fault
localization technique that exploits the semantic of exceptions to accurately guide
the fault localization process.

HTTP://WWW.UNIMIB.IT/
https://www.scienze.unimib.it/
https://www.disco.unimib.it/

v

Acknowledgements
I would like to thank my supervisor, Prof. Leonardo Mariani, who guided me during
the Ph.D., inspiring me with his passion for research and helping me along the way.

I also want to thank the research group that I worked with, supporting me in the
various stages of my Ph.D.

I would like to thank my friends, with whom I shared joys and disappointments,
and who contributed to make this experience unforgettable .

Finally, a special thank you to my family, that was always with me.

vii

Contents

Abstract iii

Acknowledgements v

Introduction 1

1 Software Testing, Debugging and APR in the Development Pipeline 3
1.1 Software Testing . 3

Verification and Validation . 4
Levels of Testing . 4
Test Automation . 5
Possible Results of Test Cases . 6

1.2 Software Debugging . 7
Delta Debugging . 8

1.3 Bug Fixing and Modern Development Models 8
1.3.1 DevOps . 8

Continuous Integration . 9
Continuous Delivery . 9

1.4 APR in the Software Development Pipeline 10

2 Automatic Program Repair 13
2.1 Overview of Automatic Program Repair Techniques 13

2.1.1 Program Repair Process . 13
2.1.2 Generate-and-validate Techniques 14

Techniques that use Atomic Change Operators 14
Techniques that use Template-based Change Operators 16
Techniques that use Example-based Template Operators 17

2.1.3 Semantics-driven Techniques . 18
2.1.4 Learning-based Repair Techniques 20

2.2 The Problem of Overfitting Patches . 20
2.2.1 Studies about Overfitting Patches 22

Approaches to Mitigate the Overfitting Patches Problem 22
2.2.2 Challenge of Overfitting Patches in Automatic Program Repair 24

2.3 Fault Localization . 24
2.3.1 Spectrum-based Fault Localization 24

Tarantula . 25

viii

Ochiai . 25
Jaccard . 26
GenProg Fault Localization Strategy 26

2.3.2 Augmented Spectrum-based Fault Localization 27
2.3.3 Information Retrieval-based Fault Localization 28
2.3.4 Challenges of Fault Localization in Automatic Program Repair 28

3 Effectiveness of Code-removal Patches 31
3.1 Code-removal Patches . 31
3.2 Experimental Methodology . 32

3.2.1 Goals & Research Questions . 33
3.2.2 Data Collection . 33
3.2.3 Analysis of Failed Continuous Integration Builds 35
3.2.4 Analysis of Human Patches and Automated Code-removal Patches 38
3.2.5 Summary . 41

3.3 Experimental Results . 41
3.3.1 What is the relation between assertion failures and the gener-

ation of test-suite-adequate code-removal patches? (RQ1) . . . 41
Analysis of the Results . 42
Comparison of the Results with Previous Studies 42

3.3.2 What is the relation between crashing tests and the generation
of test-suite-adequate code-removal patches? (RQ2) 43
Comparison of the Results between Builds with Failing and

Crashing Test Cases . 43
Analysis of the Results . 44

3.3.3 To what extent can code-removal patches, even if incorrect,
give valuable information to developers to find weaknesses in
test suites? (RQ3) . 46
Correct Patches . 46
Weak Test Suite . 46
Buggy Test Case . 47
Rottening Test . 47
Flaky Test . 48

3.3.4 How do developers fix the failed builds associated with a test-
suite-adequate code-removal patch? (RQ4) 48
Patches Produced by Developers 48
Relation between Code-removal Patches and Developers Patches 50

3.4 Threats to validity . 54
3.5 Discussion . 54

4 Exception-Driven Fault Localization for APR 55
4.1 Fault Localization in APR . 55
4.2 Except . 57

ix

4.2.1 Stack Trace Analysis . 59
4.2.2 Ranking Generation . 61

4.3 Supported Exceptions . 63
4.3.1 ArrayIndexOfOutBoundsException 64
4.3.2 StringIndexOutOfBoundsException 65
4.3.3 NullPointerException . 66
4.3.4 IllegalArgumentException . 67

4.4 Empirical Evaluation . 69
4.4.1 Empirical Setup . 70
4.4.2 What is the fault localization effectiveness of Except? (RQ1) . . 70
4.4.3 How does Except affect the capability of modifying the faulty

statements of APR techniques that use SBFL? (RQ2) 73
4.4.4 What is the accuracy of the guessed fault? (RQ3) 75
4.4.5 Threats to validity . 76

4.5 Discussion . 76

5 Conclusion 77

Bibliography 79

xi

List of Figures

2.1 Description of the Program Repair Process. 14

4.1 Except applied to the program in Listing 5. 57
4.2 Functioning of EXCEPT. 59
4.3 Comparison between Except and Ochiai according to the probabilistic

usage of the rank. 73
4.4 Comparison between Except, ssFix, and Ochiai according to the one-

by-one usage of the rank. 74

xiii

List of Tables

3.1 Classification of reasons for failing test cases. 37
3.2 Classification of code-removal patches. While the literature has fo-

cused on WT, reasons CP, BT, RT and FT have never been studied
before. 39

3.3 Classification of human patches when a code-removal patch exists. . . 40
3.4 Relation between the test failure categories and code-removal patches. 41
3.5 Relation between the types of crashing exceptions and code-removal

patches. 44
3.6 Relation between the failing builds and code-removal patches. 46
3.7 Strategies actually used by developers to fix builds patched by jKali. . 49
3.8 Comprehensive Data of the 48 Builds with Code-removal Patches. . . . 51

4.1 Analysis of ArrayIndexOfOutBoundsException. 64
4.2 Analysis of StringIndexOutOfBoundsException. 66
4.3 Analysis of NullPointerException. 67
4.4 Analysis of IllegalArgumentException. 68
4.5 Effectiveness results. 71

1

Introduction

Software is everywhere and plays an important role in the daily life of every per-
son. It is present in smartphones, TVs, cars, vending machines, and in many other
systems designed to help and simplify the life of people. Nowadays, a single appli-
cation is enough to carry out several different tasks, such as finding paths, turning
on the heating system before going home, or buying items online.

The society is highly and dangerously dependent on software. Indeed, software
may have problems related to defects not discovered before its release, or also related
to human errors not necessarily made during the developing phase.

For example, in May 2015, a bug in iOS allowed iPhone users to make other
iPhones rebooting and shutting down continuously by simply sending a text mes-
sage containing a string of specific Arabic characters, the meaning of which was "ef-
fective. Power". The crash was caused by the way Unicode characters are decoded,
which overloaded the device’s memory [28].

An example of software failure caused by accidental errors is the one occurred to
the Amazon S3 Service on February 28th, 2017. In that occasion, the developers that
were debugging an already present issue executed a command with the intention
to remove a small number of servers related to the issue, but one of the inputs to
the command was wrong and a larger number of servers was removed, causing
malfunction to the applications based on the Amazon cloud infrastructure [4].

Thus, the activities of testing and debugging are extremely important to try to
minimize the presence of defects and to avoid their reappearance. On the other
hand, these types of activities are time consuming, and this is a critical aspect in an
increasingly competitive world, where it is important to always have a stable version
of the software, in order to avoid the users dissatisfaction, and to have more time to
develop new features and release them in short development cycles.

Nowadays, to be able to address these types of requirements, the automation of
the different phases involved in the traditional software development life cycles has
a key role. In this regard, development practices like Continuous Integration (CI)
and Continuous Delivery (CD) can be used to build and run test cases to find and
address bugs in a faster way than the past, and to deploy and release software in
production safely and quickly with minimal human intervention.

However, also when exploiting CI and CD, developers have often to work on
faults, to identify their root causes and understand how to fix them. This activity
might be challenging and time consuming, because it requires the analysis and un-
derstanding of potentially complicated executions. In this regard, a possible solution

2

is offered by Automatic Program Repair (APR) techniques, through which it is possi-
ble to automatically generate patches that can be integrated into the target programs
or suggested to developers as candidate patches. Thanks to APR techniques, devel-
opers can reduce the time usually allocated to understand the problem and localize
where and how to change the program to produce a patch. In this way, it is possible
to speed up the repair process, alleviating the developers’ effort in testing and de-
bugging activities, and letting the developers to allocate their effort more effectively
on other tasks.

Research in APR is particularly active. Although many different techniques have
been developed in the last few years, there are still open challenges related to the
introduction of APR techniques as stable and working solutions in development
pipelines. Indeed, most of the APR techniques rely on test cases to evaluate the cor-
rectness of patches, but this is a weak validation method that can lead to the gener-
ation of test-suite-adequate patches that are incorrect. In particular, recent empirical
studies show that APR techniques often result in the generation of code-removal
patches [95, 69], that are patches that drop functionalities to address the faults that
afflict programs. Another aspect that strongly influences the success of the genera-
tion of a patch is related to the fault localization. Indeed, if the correct location to
create the patch is not found, it is hard or even impossible to generate a patch [66].
Experimental evidence shows that current strategies used for the fault localization
are not able to rank the suspicious statements at top positions, making the genera-
tion of patches extremely hard.

In this context, this Ph.D. thesis provides two key contributions:

• An empirical study about the factors that influence the generation of code-
removal patches and an analysis of the useful information that can be extracted
from code-removal patches;

• A new fault localization technique that exploits the semantic of the exceptions
to accurately guide the localization process.

This Ph.D. thesis is organized as follows: Chapter 1 introduces software testing, de-
bugging, and automatic program repair. Chapter 2 discusses state of the art APR
techniques and their limitations. Chapter 3 presents the results obtained with an
empirical study on the effectiveness of code-removal patches. Chapter 4 presents a
new approach to fault localization that exploits the semantics of exceptions. Finally,
Chapter 5 provides final remarks, summarizing the main findings and the open chal-
lenges.

3

Chapter 1

Software Testing, Debugging and
APR in the Development Pipeline

This chapter introduces software testing and debugging, providing definitions and
describing the main approaches. It finally describes some of the challenges related to
testing and debugging activities, and discusses how automatic program repair can
be introduced in the software development pipeline to support developers.

1.1 Software Testing

Software testing is one of the most relevant activities concerning software develop-
ment.

Definition 1.1.1 (Software testing). Software testing is the process related to the ex-
ecution of a program or a system in order to reveal faults, and it comprises any
activity that aims to evaluate an attribute or a capability of a program to determine
if the required results are satisfied [85, 36, 89].

Definition 1.1.2 (Fault or Defect). A fault (or defect) is an anomaly in the software
that may cause an incorrect behavior. It is also possible to use the term bug to indicate
a fault [12].

A fault in a program is a direct consequence of an error made by a developer.

Definition 1.1.3 (Error). An error is a human action that produces an incorrect result.
For example, a developer might make a mistake when typing a variable name [12].

Although a program may contain a fault, it could run for a long period, without
showing any incorrect behavior. Indeed, to ensure that this happens, it is necessary
that three conditions occur: 1) the input of the software must exercise the faulty state-
ment, 2) the faulty statement must produce a different result compared to the correct
one, and 3) this wrong result must propagate to the output, so that it is possible to
detect the wrong behavior [116].

When these tree conditions are satisfied, it means that a software failure oc-
curred.

Definition 1.1.4 (Failure). A failure is the inability of a system or component to per-
form its required functions within specified performance requirements [12].

4 Chapter 1. Software Testing, Debugging and APR in the Development Pipeline

Verification and Validation

Software testing embraces two different processes: 1) verification, and 2) validation.
The first one is related to the evaluation of a software (or its component) to determine
if the products of a certain development phase satisfy the conditions established at
the beginning of that phase. This process is usually performed inspecting and re-
viewing the software deliverables [12]. The second one is related to the evaluation of
a software (or its component) in order to establish if it satisfies the specified require-
ments. This process is usually performed executing test cases [12]. Thus, through the
verification process, it is possible to verify if the specifications defined by the devel-
opers about how the program should be are correctly implemented, while through
the validation process, it is possible to establish if developers are implementing the
right program that satisfies the user’s needs defined on the basis of the agreed re-
quirements [93]. If the specifications are wrong, the verification process cannot help
the developers to detect if the program does what the stakeholders really want.

The test cases used in the validation process are characterized by three aspects: 1)
a set of test inputs, that are the data received from an external source (e.g., hardware
or humans) used by the code under test, 2) the execution conditions, that represent
the conditions under which to run the test cases (e.g., environment settings, as a
specific version of a database), and 3) the expected outputs, that represent the results
that the program under test should produce.
To determine if a program produces an incorrect behavior, it is necessary to use a
test oracle.

Definition 1.1.5 (Test oracle). A test oracle is a document or a piece of software
with which it is possible to establish if a test case passes (correct behavior) or fails
(wrong behavior) by comparing the expected output with the output produced by
the program under test [12, 103].

A common way of implementing oracles is by adding assertions in the test cases.

Definition 1.1.6 (Assertion). An assertion is a formal statement usually implemented
as a Boolean expression that must be evaluated to true to make the test pass [103].
A test case can be characterized by one or more assertions. If it has more than one
assertion, all the assertions must be evaluated to true to make the test pass.

Levels of Testing

Based on the element under test, it is possible to distinguish three main categories
of tests: 1) unit tests, 2) integration tests, and 3) system tests.

Unit Test The main goal of a unit test is to ensure that each individual unit of a
software is working according to its specification, where a unit is the smallest possi-
ble testable software component. It is possible to test different features of each unit,

1.1. Software Testing 5

such as functions, performance requirements, states, states transitions, control struc-
tures, and data flow patterns. Usually, considering procedural languages, a unit is a
function or a procedure; considering object-oriented languages, a unit can be both a
method or a class [12].

1 import static org.junit.jupiter.api.Assertions.assertEquals;

2 import example.util.Calculator;

3 import org.junit.jupiter.api.Test;

4

5 public class ExampleTest {

6

7 private final Calculator calculator = new Calculator();

8

9 @Test

10 void addition() {

11 assertEquals(3, calculator.add(1, 2));

12 }

13 }

LISTING 1: Example of Unit Test.

Listing 1 shows an example of unit test. In this case, the aim of the test is to evaluate
if the method add of the class Calculator behaves correctly. In particular, the
assertion at line 11 verifies if the expected output (3) is equal to the one computed
with the method add under test, that receives as input two integer values (1, and 2).

Integration Test The goal of an integration test is to evaluate the interaction of
components, that are tested as a group. In general, once a unit passed unit testing,
the unit is integrated with the set of the previously integrated modules, so as to eval-
uate the subsystem [12]. Once all the units are integrated successfully, it is possible
to proceed with the system tests.

System Test The goal of a system test is to evaluate the system as a whole, consid-
ering both functional behaviors and quality requirements, such as reliability, usabil-
ity, security, and performance. System testing can detect defects related to external
hardware and software interfaces, like the ones that cause deadlocks or problems
with an ineffective usage of the memory [12].

Test Automation

Interestingly, test execution can be automated. Through the use of automated tools
for testing, it is possible to increase the productivity, to shorten the time of the dif-
ferent stages of development, to reduce the risks, and to improve both the software

6 Chapter 1. Software Testing, Debugging and APR in the Development Pipeline

product and the process quality [12]. Once created, tests can be run over and over,
every time that there is a change in the program, without manual effort and in a
faster way compared to the manual tests.

For instance, JUnit, Mockito, Hamcrest, Selenium, and Appium are among the
most used libraries for Java.

JUnit [113] is an open source unit testing framework, designed with the purpose
to write repeatable tests.

Mockito [110] is an open source mocking framework to write JUnit test cases.
A mock object is an implementation for an interface or a class, that simulates their
behavior, allowing to set the output of certain methods. For example, to simulate
the source of a data, through Mockito it is possible to create a mock that works as
data provider, ensuring that the test conditions are always the same.

Like JUnit, Hamcrest [34] has been designed to implement unit tests. In particu-
lar, it offers the possibility to define customized assertion matchers to check certain
conditions.

Selenium [102] is a suite of tools for automating web browsers. It provides exten-
sions that allow the emulation of user interactions with browsers, and a distribution
server for scaling browser allocation. It is designed to support functional tests, such
as unit, integration, and usability tests.

Appium is an open source test automation framework compatible with native,
hybrid and mobile web apps.

Possible Results of Test Cases

If a test case fails to produce the expected output, developers have to investigate the
cause of the failure. When a test fails, it is possible to distinguish two main cases:
failing test cases and crashing test cases.

Definition 1.1.7 (Failing test case). A failing test case is a test case that fails due to a
violated assertion. It means that the actual values generated by the program under
test violate one of the assertions present in the tests. Per the terminology of JUnit,
this is a test failure [56]. Thus, a failing test case reports an invalid test result.

Definition 1.1.8 (Crashing test case). A crashing test case is a test case for which
the program under test generates an exception during its execution. The excep-
tion can be caught or uncaught. In the former case, the exception is caught using a
try-catch statement in the test case that, for example, uses the instruction Asser-
tion.fail()1 in the body of the catch to make the test fail. In the latter case, the
execution terminates with an uncaught exception, per terminology of JUnit, causing
a test error [56]. A frequent case is the case of the program raising a NullPoint-
erException2, which occurs when a program attempts to use an object that has
not a value.

1https://junit.org/junit4/javadoc/4.12/org/junit/Assert.html#fail()
2https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/

NullPointerException.html

https://junit.org/junit4/javadoc/4.12/org/junit/Assert.html#fail()
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/NullPointerException.html
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/NullPointerException.html

1.2. Software Debugging 7

Considering Listing 1, the test addition is a failing test case if the assertion at
line 11 is not satisfied, that is the result of the instruction calculator.add(1,

2) is not equal to the expected value (3). On the other hand, the test
addition is a crashing test case if during the execution of the instruction calcula-

tor.add(1, 2) the program throws a NullPointerException, and thus the
assertion is not evaluated.

1.2 Software Debugging

A test failure normally requires developers to investigate the test and the program
to identify its causes. This activity is referred to as debugging.

Definition 1.2.1 (Software debugging). Software debugging is the process related to
localize the defects, repairing the code, and restarting the software [12].

There are several techniques that can be used in the debug process to help develop-
ers when there is a failing or crashing test case in a program. In particular, some of
the most used are: Trace-based debugging, Spectrum-based debugging, and Delta
debugging.

Trace-based Debugging Trace-based debugging is based on the concept of break-
point, that is a point in the source code set by the developer in which the program
stops its execution, so that it is possible to analyze its state in that moment (e.g., the
value of a variable). After reaching the breakpoint, the developer can examine the
state of the program executing it line by line, or passing between the invoked func-
tions. The limitation of this approach is that if a developer chooses a line of code that
is not related to the fault, she will not be able to get useful information to address
the fault. In this regard, Whyline is a debugging tool proposed by Ko and Myers,
that allows developers to select a question, instead of a line code, about the program
output [49]. In this way, developers can focus directly on the questions related to
the behavior of the program, and not on choosing which lines of code are useful to
investigate.

Spectrum-based Debugging Spectrum-based Debugging, also known as Spectrum-
based Fault Localization, uses the result of test cases and the information about the
executed statements in order to compute the likelihood that an entity of a program
(e.g., a statement) is faulty [114]. The techniques that belong to this category can
follow different strategies to find the bugs. The majority of them rank the suspicious
entities of a program by using specific formulas, based on spectrum information
derived by the execution of test cases. The idea shared by most formulas is that
program entities that are executed more often by failing test cases and less often by
passing test cases have a higher suspiciousness score, and thus are more likely to be
faulty [20]. Testers are supposed to follow the ranking when inspecting the program
looking for the fault that originated a failure.

8 Chapter 1. Software Testing, Debugging and APR in the Development Pipeline

Delta Debugging

Delta Debugging approaches debug by simplifying the failing test case, turning it in
a minimal test case, that is a test case that only includes the inputs that are relevant
to reproduce the failure. This means that a failing test case is considered minimal
when any code element cannot be removed without making the test unable to reveal
the failure. Delta debugging is fully automated, indeed whenever a regression test
fails (i.e., a test case already executed in a previous phase with success, starts to fail
after a new change in the program), the algorithm can automatically determine the
circumstances that induce the failure [137].

1.3 Bug Fixing and Modern Development Models

Besides the technical aspects of software testing, like techniques, methods, and tools
used to evaluate the quality of software, there is the economic aspect that plays an
important role. The cost of software failures is often significantly high. For instance,
a report conducted by the Consortium for IT Software Quality (CISQ) indicates that
the cost of poor-quality software in the US in 2018 has been approximately $2.84
trillion, with 37.46% due to software failures, and 16.87% due to activities performed
to find and fix bugs [53]. Similarly, multiple studies show that developers can spend
up to 75% of their time in debugging and fixing activity [11, 108, 16].

Thus, software testing and debugging are time consuming activities that can be a
problem in an increasingly competitive world, where it is important to always have
a stable, working, and updated software, in order to avoid the users dissatisfaction,
possible loss of money, and to have more time allocated for the development of new
features and releasing them in short time periods.

Nowadays, to be able to satisfy these requirements, a key role is represented by
the automation of the different phases involved in the traditional software develop-
ment life cycles.

Definition 1.3.1 (Software Development Life Cycle). Software Development Life Cy-
cle (SDLC) is the process related to the build and maintenance of a software system.
Usually, it comprises different phases, starting from the requirement analysis to the
testing and evaluation phase [63].

The approach that best represents the idea to automatize every phase is DevOps.

1.3.1 DevOps

Definition 1.3.2 (DevOps). DevOps can be defined as an approach to software de-
velopment used by both developers and operations teams to build, test, deploy, and
monitor programs, ensuring speed, quality, and control [39].

The idea of DevOps is to integrate the two often separated worlds of Develop-
ment and Operations using automated development, deployment, and infrastructure

1.3. Bug Fixing and Modern Development Models 9

monitoring, with the aim of delivering software faster and continuously, reducing
problems related to misunderstandings between team members [26].

DevOps implementations generally rely on an integrated set of tools to remove
the manual steps, and thus reducing the errors. In particular, considering testing and
debugging activities, there are two main practices in the software development for
which the automation plays an important role to help the developers: 1) Continuous
Integration (CI), and 2) Continuous Delivery (CD).

The first one can help in finding and eliminating the bugs early in the develop-
ment cycle, and the second one ensures that the software can be reliably released at
any time.

Continuous Integration

In the past, developers were used to work on their local copy of the project and
merge the changes only at the end. This behavior made the operation of merging
difficult and time consuming due to the conflicts between the different changes ap-
plied by the developers.

To avoid this problem, modern software development can rely on CI, that is a
software development practice in which the software is built and tested every time
a change is applied to the application [32].

With CI, developers frequently commit the changes to a shared repository using
a version control system. Then, the CI service automatically builds and runs units
test cases to detect any errors.

The main goals of CI are to find and address bugs in a faster way than the past,
improve the software quality and reduce the time needed for the validation and
releasing of software updates [9].

Some of the most used CI services are Jenkins3, Travis CI4, that can be used by
projects hosted at GitHub and Bitbucket, and GitLab CI5, that can be used by projects
hosted on GitLab.

Continuous Delivery

CD is a software engineering approach in which CI, automated testing, and auto-
mated deployment capabilities allow software to be deployed and released in pro-
duction safely and quickly with minimal human intervention [38, 32].

With CD, every code change is built, tested, and then pushed to a non-production
testing or staging environment.

The automation of tests is focused to verify how a software feature/update works
considering different aspects that go beyond the unit tests, such as the usability of
the user interface, the integration with other modules of the software or external
services, and the reliability of the API. The final decision to deploy the artifact to

3https://www.jenkins.io
4https://travis-ci.org
5https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/

https://www.jenkins.io
https://travis-ci.org
https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/

10 Chapter 1. Software Testing, Debugging and APR in the Development Pipeline

a production environment is triggered by the developers [8]. If the deployment is
done without the explicit intervention of a human, the expression that is used is
continuous deployment, and not continuous delivery.

1.4 APR in the Software Development Pipeline

Debugging techniques can provide useful information about the possible locations
of faults and the states of the application in relation to a failure, but still significant
effort is required to developers for analyzing this information to identify the faults
and understand how to fix them. Considering both the user experience and losses
of money that a fault can potentially cause, it is important to be able to fix a fault in
a fast way, as soon as it is detected. Moreover, it is important also to have a system
that allows to detect and fix the defects without consuming too many resources of
the developers.

CI and CD represent a working solution to help the developers in constantly
monitor software in order to detect as soon as possible any faults, but a lot of time is
still necessary by developers to identify the root cause of the fault and understand
how to fix it.

A new solution is represented by Automatic Program Repair (APR) techniques,
which are able to automatically suggest patches [30, 81]. The idea at the basis of these
techniques is to try to automatically fix the faults in a program, reducing develop-
ers’ effort. Indeed, the patch both explains the reason of the failure and provides a
possible solution to the problem. Thus, even if a change proposed by an APR tool is
incorrect, developers can exploit it to have more details about the fault and reduce
the time needed to find the error and to fix the bug [30].

The research in this field is currently active, and many approaches and tech-
niques have been designed and developed. Recent studies are trying to integrate the
APR tools in the development pipeline, with the idea to have a bot that constantly
monitors the build status in the CI system, and tries to create a patch for every build
failures using different repair techniques [10, 115]. Even outside the academia, there
are solutions in this direction, like Dependabot6, that is a bot integrated in GitHub
that checks for outdated or insecure dependencies in projects and it automatically
creates a pull request to update every dependency that does not pass its security
check. In this way, the developers can review the pull request and decide if to merge
the changes proposed by the bot or not.

Despite the numerous studies in the field of APR, there are still open challenges.

Overfitting Patches A key challenge is related to the correctness of patches. Even
a patch that passes all the available test cases is not always good enough to fix bugs,
due for instance to weaknesses of the test suite. As a consequence, a synthesized

6https://dependabot.com

https://dependabot.com

1.4. APR in the Software Development Pipeline 11

patch may introduce new problems not discovered by the test suite [95, 132], some-
time even removing faults by removing the entire functionality that includes the
faulty code [31]. These types of problematic patches are called overfitting patches,
and they are discussed in detail in Section 2.2.

Fault Localization Another challenge is related to the localization of the faults to
be fixed [66], since current repair techniques are good in modifying programs, but
are not always effective in the localization of the faulty statements [66, 6, 91].

This Ph.D. thesis focuses on the analysis of these open challenges, providing new
findings and possible solutions. In particular, Chapter 2 describes the main ap-
proaches in the field of APR, and analyzes in detail the problem of overfitting patches
and the difficulties related to the fault localization. After explaining more in de-
tail APR and these limitations, Chapter 3 investigates the effectiveness of code-
removal patches, that are among the most common and problematic type of over-
fitting patches. The chapter shows how these patches may be generated, identifies
the reason why they pass test cases, and discusses how they can be exploited by
developers even when they are not correct. Chapter 4 describes the current limita-
tions of the strategies used by APR techniques to localize faults, and proposes a new
approach that exploits the semantic of the failure to guide the localization process.

13

Chapter 2

Automatic Program Repair

This chapter provides an overview of the main approaches in the field of Automatic
Program Repair (APR), and discusses two of the main limitations of program repair
techniques: the generation of overfitting patches and the challenge of fault localiza-
tion.

2.1 Overview of Automatic Program Repair Techniques

APR techniques can automatically generate patches that can be integrated in the
target programs or suggested to developers as candidate patches. In the following,
the description of how the repair process works and the main related approaches are
provided.

2.1.1 Program Repair Process

As shown in Figure 2.1, program repair can be defined as a process that receives
a program with at least a failing or crashing test case in input and produces either
a patched program or no patch in output. The first step of the process consists of
the localization of the locations where the patch could be applied. As described in
Section 2.3, there are different strategies for fault localization, and the most widely
used techniques are spectrum-based fault localization (SBFL) solutions, which rank
the suspicious statements by suspiciousness based on test coverage information.

Once the set of candidate locations is available, the repair process tentatively
modifies the program according to a strategy. It can 1) generate a candidate solution
(i.e., a new variant of the program), and then validate the candidate solution using
the available test cases (i.e., the program is patched if it passes all the test cases), or
2) formally encode the program repair problem such that a solver can be used to
obtain a patched program. This part of the process can be repeated multiple times
for multiple program locations, according to the output of fault localization. This
process continues until 1) a patch is found, 2) no other patches can be produced, or
3) the time allocated for the repair process expires [30].

It is possible to distinguish three repair strategies based on how the faulty pro-
gram is defined and the fault is addressed: 1) generate-and-validate, 2) semantics-
driven, and 3) learning-based repair techniques [30, 62].

14 Chapter 2. Automatic Program Repair

X

Program with
a failing/crashing

test case

Patched program
Localize where to

apply a change Patch generation

Candidate solution
generation

Validate

The variant does not pass all the test cases

New candidate
solution

Problem
generation

Formal encoding
of the repair

problem
Solve

problem
No solution

No patch

No patch

FIGURE 2.1: Description of the Program Repair Process.

2.1.2 Generate-and-validate Techniques

Generate-and-validate techniques follow an iterative process characterized by two
activities: 1) generate activity that produces the candidate solutions, and 2) validate
activity that verifies if the candidate solutions are correct (i.e., they pass all the test
cases) or not [30].

The generate activity uses a set of change operators to modify the original buggy
program, and it produces new variants of the same program, that are called candi-
date solutions. There are different types of change operators: 1) atomic change oper-
ators, that change a program in one single point, 2) predefined template operators,
that change a program according to some predefined strategy, and 3) example-based
template operators, that change a program following the example of what has been
done in the past by the developers to fix a similar fault.

The validate activity uses the available test cases to establish if a candidate solu-
tion produced during the generate activity passes all the test cases, and thus it can be
considered a possible patch or not.

The generate and validate activities can be executed according to two main strate-
gies: 1) search-based, that applies the change operators randomly or following a cer-
tain heuristic search algorithm, and 2) brute-force, that systematically produces every
possible change using the chosen set of operators on the suspicious points identified
by fault localization.

Techniques that use Atomic Change Operators

Atomic change operators modify a program in one single point of its representation,
that is the Abstract Syntax Tree (AST). These operators can add, delete, or modify a
node in the AST, that can correspond to an entire statement or part of it, such as a
variable or an operator [30].

2.1. Overview of Automatic Program Repair Techniques 15

Search-based Techniques The techniques belonging to this category use a ran-
domized search process to potentially manage any type of fault.

One of the first tool that implements this approach is GenProg [61], that exploits
the genetic programming in order to guide the repair process. This process consists
in one ore more iterations in which every time an atomic operator is applied in a
location based on its suspiciousness as described in Section 2.3.1. Moreover, if af-
ter an iteration no patches are found but there are at least two candidate solutions,
GenProg exploits single-point crossover. Single-point crossover consists in randomly
taking two candidate solutions (A and B) and randomly selecting a program point
per solution to produce two new candidate solutions by merging the initial part of
A with the final part of B, and vice versa. GenProg validates every candidate solu-
tion using the test suite and using a fitness function, that allows to discard or to keep
a candidate solution for the next iteration based on a score computed taking into
consideration the number of passed and failed test cases.

A similar technique to GenProg is Marriagent [50]. The difference is related to
the way in which the crossover is applied. Indeed, Marriagent chooses the candi-
date solutions to be merged based on their difference. The more is the difference
expressed as the changes applied to the original program, the higher is the probabil-
ity to merge two candidate solutions. The idea behind this strategy is that selecting
candidate solutions that are similar has more likelihood to create new solutions with
similar results, that thus do not improve the quality of the previous solutions.

Another technique based on genetic programming is pyEDB [3]. Its peculiarity
is related to how it represents a candidate solution. Indeed, while GenProg uses a
full representation of the source code associated with a candidate solution, pyEDB
represents a candidate solution as the set of changes applied to it compared to the
original version of the program. This representation is more compact to the one used
by GenProg and thus it is easier to handle and it requires less memory consumption.

Also MUT-APR [7] works in the same way of GenProg, but it is able to change
only the operators in a program, thus it can fix only faults that are related to a wrong
use of arithmetic, relational, bitwise, and shift operators.

The genetic programming is not the only solution adopted by the search-based
techniques. Indeed, instead of using the evolutionary approach of genetic program-
ming, RSRepair [94] is an example of tool that uses a random search, and prioritizes
the execution of the test cases that are able to discard more candidate solutions. The
idea is that these tests could have more likelihood to faster detect if a candidate solu-
tion has to be discarded or not, so as to speed up the repair process. This technique
can apply only one single change to every single candidate solution. If this passes
all the test cases, it is considered a possible patch, otherwise it is discarded.

An extension of RSRepair is SCRepair [40], that uses a particular metric to guide
the selection strategy of a piece of code that can be used to replace another one that
is supposed to be faulty. In particular, the approach searches for pieces of code that
are not identical to the code that has to be replaced, but that can be integrated well

16 Chapter 2. Automatic Program Repair

with code around the location that needs the change. The idea is that similar code
fragments may contain the ingredients to create the patches.

To increase the randomness of selecting a location in which to apply a patch,
there are approaches like JAFF [5] that randomly selects n locations, and then it
selects only the ones that have an higher suspicious score.

Finally, unlike the other techniques that focus only on changing the source code
of the program, CASC [123] is a program repair tool that evolves not only the source
code, but also the test cases. The idea is that evolving the test case allows to bet-
ter find defects in the programs, and also to discard program variants that are not
correct.

Brute-force Techniques The techniques belonging to this category explore the search
space systematically, that is they try to create a patch changing a point in a program
applying every possible type of change.

PACHIKA [18] is a program repair technique which aim is to infer the precon-
ditions that have to be satisfied by the methods called during the execution of a
program, so that the program passes all the test cases. The technique works only if
the failing test case that reveals the fault violates one or more of these preconditions.
The approach systematically adds or removes the method calls to influence the vio-
lated preconditions so as to find one version of the program able to pass all the test
cases.

AE [119] systematically applies one single change to a single statement. Its main
characteristic is the reduction of the search space by discarding the candidate solu-
tions that are semantically equivalent to others although syntactically different. In
this way, it is possible to speed up the evaluation process, since it is not necessary
running again the test cases for these candidate solutions.

Kali [95] is another technique that tries to fix a program by systematically delet-
ing functionalities. The removal of a functionality is performed by 1) changing an
if condition in order to avoid the execution of a specific path of the program, 2) by
removing a statement, or 3) by adding a return statement that allows to avoid the
execution of the subsequent statements. This approach has been designed by the
observation that the majority of the patches produced by systems like GenProg [61],
RSRepair [94], and AE [119] consist in a deletion of a single functionality. The au-
thors showed the effectiveness of this system and pointed out the attention about the
fact that test suite are a too weak proxy to be used in the evaluation of patches pro-
duced by program repair systems. In this thesis, the effectiveness of code-removal
patches has been in-depth investigated and the results are available in Chapter 3.

Techniques that use Template-based Change Operators

These techniques try to create a patch modifying a program in one or more loca-
tions following predefined templates based on the type of fault. For example, a

2.1. Overview of Automatic Program Repair Techniques 17

template could be a set of changes that add specific code to manipulate the pro-
gram conditions. Most of these techniques use the brute-force approach instead of
the search-based one, because the application of templates can be very expensive in
terms of time, reducing the speed of the evolution of program variants performed in
the search-based approach [30].

Search-based Techniques In this area, it is possible to find techniques specialized
only for specific types of faults. For example, ARC [47] is a technique designed to
address concurrency faults. The approach consists in evolving the buggy program
using genetic programming and a set of templates that allow to perform changes
related to the concurrency, such as the addition of piece of code to synchronize un-
protected shared resources.

Brute-force Techniques The repair process performed by these techniques consists
in applying every possible template to every location until the patch is created or the
time allocated for the repair activity ends.

AutoFix-E [118] is a program repair technique that works with programs written
in Eiffel, a programming language that supports the use of contracts. This technique
aims to create a patch applying a set of templates so that the program does not vio-
late none of the contracts defined in it. These templates are 1) the addition of a new
piece of code before the one related to the fault, 2) the addition of an if-statement be-
fore the faulty statement to execute a new piece of code if a contract is violated, 3) the
addition of an if-statement to execute the old piece of code if the contract is not vio-
lated, and 4) the addition of an if-else statement, that allows to execute a new piece
of code if the conditions of the contract are violated, and the old code vice-versa.

AutoFix-E2 [92] is an evolution of AutoFix-E that improves the way in which a
template is applied exploiting not only the information extracted from the contracts,
but also the one extracted from the conditions evaluated during the execution of the
test cases.

Another example of these type of techniques is SPR [70], that exploits a set of
parameterized templates with the aim of synthesizing a condition that allows to
assign the values to the parameters of the applied template making the program
passing all the test cases.

Techniques that use Example-based Template Operators

The techniques that belong to this category modify a program using a set of tem-
plates extracted from patches produced in the past. The extraction of the templates
can be done manually or automatically using for example mining techniques [30].

Search-based Techniques In this area, the templates are automatically recombined
by search-based algorithms with the aim to maximize their application in the repair

18 Chapter 2. Automatic Program Repair

process. The idea is that some faults might require the application of different tem-
plates to create the patch [30].

History-driven repair [59] uses the evolutionary approach of GenProg, without
using the concept of crossover, and it extracts patch patterns considering the patches
developed in the past for different projects to guide the repair process.

PAR [48] exploits templates defined after performing a manual analysis of more
than 60,000 real-word patches. These templates are encoded as a sequence of rewrit-
ing rules applied to the Abstract Syntax Tree of a program.

A similar approach is implemented in Relifix [111], that is a technique designed
to address regression problems. Also in this case, to create a patch, it uses a set
of patterns extracted by the manual analysis of 73 real regression faults, such as
replacing a statement with the previous version.

Brute-force Techniques The techniques belonging to this area can automatically
extract templates every time from a different set of samples [30]. They can address
general types of faults or specific ones, such as buffer overflow problems.

An example of generic technique is R2Fix [64], that exploits the bug reports filed
by the users and a set of predefined templates associated with the patches for those
bug reports. Using the machine learning, the technique identifies the bug reports
that are similar to the bug report of the fault that has to be fixed, and then it sys-
tematically applies the templates associated with the identified bug reports to the
program, contextualizing them to the code of the new fault.

On the other side, CodePhage [104] is an example of technique specifically de-
signed to address buffer overflow problems. This approach uses a set of donor pro-
grams, that are programs that implement the same functionality of the faulty one, to
determine the conditions that should be used to fix the buffer overflow problem in
the program under repair. The idea is that at least one of the donor programs might
have the check that is missing in the faulty program, and the addition of this check
would repair the program.

2.1.3 Semantics-driven Techniques

Semantics-driven techniques encode the program repair problem formally either
explicitly using for example a formula which solutions correspond to the possible
patches of the program under repair or implicitly as an analytical procedure which
outcome is a patch [30].

SemFix [86] is a program repair technique which aim is to synthesize a patch
through the change of a branch predicate or through the change of the right part
of an assignment. The tool implementing this technique replaces the expression
associated with the branch predicate or with the right part of the assignment with a
symbolic expression, and after that it runs the program using the test cases in order
to get a set of constraints for the symbolic expression that makes the program pass
all the test cases. During the execution, the program is run concretely until reaching

2.1. Overview of Automatic Program Repair Techniques 19

the symbolic expression, and then it is executed symbolically. Using the constraints
and a set of components (e.g., arithmetic operators or logical operators), SemFix tries
to synthesize the patch. This technique can create patches only for faults that do not
require changes in multiple points.

DirectFix [80] translates the faulty program in a trace formula f to encode its be-
havior, and it translates the failed test cases into a set of oracle constraints O. To
synthesize the patch, the idea behind DirectFix is to modify the formula f so that
putting it in conjunction with O, it is satisfiable. The repair process consists in re-
ducing the logic problem into an instance of the partial MaxSAT problem, and in
using a partial MaxSMT solver to generate a new formula f ′ that is able to satisfy
the condition f ′ ∧O. The patch is possible only if a solution to this problem is found.

Angelix [79] exploits the concepts of angelic path and angelic forest to guide the
repair process. The first one is used to encode part of the repair problem as a set
of triples, where each of them is characterized by: 1) the suspicious expression, 2)
the value that the expression should return to pass the test cases (it is called angelic
value, and 3) the set of variables that are in the scope of the suspicious expression
(this set is called angelic state). The concept of angelic forest allows to encode the
repair problem as a set of angelic paths and is passed to a patch synthesis engine to
produce a patch that can consist of multiple lines.

SearchRepair [46] uses the failing and passing test cases to encode the correct
behavior as an input-output constraint for every part of the code that could be faulty,
and then it exploits a database of patches written by developers in the past encoded
as SMT formulas. The tool searches in the database to find if there is a formula that
allows to satisfy the constraints. If it is found, it is then applied in the source code of
the program. The process is repeated for every part of the program that is considered
faulty.

Nopol [131] is able to create a patch for faults that are related to a wrong condi-
tion used in a if-statement or in a loop. The repair process is characterized by three
main phases: 1) the angelic fix localization is used to find the values that the wrong
condition should have to pass the test cases, 2) the runtime trace collection to col-
lect the variables and their actual values, and 3) the encoding of these data into an
instance of a Satisfiability Modulo Theory problem. If a solution to this problem is
found, this represents the patch and it is applied to the program.

A similar approach to Nopol is Infinitel [55], that was designed to address prob-
lems of infinite loops. The technique determines the number of times that a loop
should be executed to make the program pass all the test cases, and this number
is called angelic record. The approach works in this way: it forces the condition of
the loop to be evaluated true until the number of iterations is smaller than the an-
gelic record, and to be evaluated false when they are equal. Once the constraints are
found, it tries to solve the fault encoded as an instance of SMT problem.

20 Chapter 2. Automatic Program Repair

2.1.4 Learning-based Repair Techniques

The recent improvements in the area of machine learning, especially in deep learn-
ing, and the large number of patches available in the online public repositories (e.g.,
GitHub, and GitLab) allowed developers to implement program repair tools that
can learn how to generate a patch.

Unlike the template-based techniques, where the templates are defined manu-
ally considering also patches implemented by developers in the past, learning-based
techniques automatically learn the templates analyzing the previous patches with-
out human intervention. Thus, learning-based techniques can every time be trained
with a different dataset.

One of the first example is Prophet [69], that exploits the information about soft-
ware revision changes in order to improve the likelihood to have a correct patch.
Indeed, the idea is that it is possible to find patches for similar bugs done in the past
by the developers, and thus it is possible to exploit them to learn how to create a
patch that addresses a specific type of fault.

Another technique is the one proposed by Long et al. [68], that infers code trans-
formation templates from the patches developed in the past. In particular, the ap-
proach determines the AST-to-AST transformation templates used to create a patch,
and then it uses these templates for its repair process.

There are then approaches that exploit the machine learning to train models that
are able to predict the repaired code for a given piece of faulty code, without relying
on a test suite or constraint solvers [62].

For example, DeepFix [54] trains a neural network to create patches that fix com-
pilation errors. A compiler is used as an oracle to validate the generated patches.

R-Hero [10] is a repair bot that applies the continual learning to determine bug
fixing strategies from continuous streams of commits that characterize the builds
on Continuous Integration systems, such as Travis CI. The idea is that feeding con-
tinuous integration build streams to continual learning techniques, it is possible to
develop a model that can be used to create patches for different types of bugs, in-
cluding the compilations errors.

2.2 The Problem of Overfitting Patches

Even though a program repair tool modifies a program until none of the available
test cases fails or crashes, the resulting program is not necessarily correct. In fact,
test suites cannot feasibly cover every expected behavior of a program, and thus
programs modified by the patches generated by APR techniques may yet be incor-
rect [136]. It is possible to distinguish between test-suite-adequate, overfitting, and
correct patches.

Definition 2.2.1 (Test-suite-adequate patch (also known as plausible patch)). Given a
program and its test suite containing at least a failing test case, a test-suite-adequate

2.2. The Problem of Overfitting Patches 21

patch is a patch that makes the program pass all the available test cases. Test-suite-
adequate patches are not necessarily correct. For example, a patch that simply re-
moves the faulty instruction may make a program pass all the test cases without
producing a correct patch.

Definition 2.2.2 (Overfitting patch). An overfitting patch is a test-suite-adequate
patch that is not correct because it does not comply with the intended semantics of
the program, and thus it does not satisfy the requirements of the application. There
are two kinds of overfitting issues: 1) incomplete fixing and 2) regression introduc-
tion [135]. The first issue is related to patches that work for the inputs used in the
available failing test cases, but they do not work for every possible input that exer-
cises the fault. The second issue is related to patches that work for all inputs that
exercise the fault, but they break some already correct behaviors of the program.

Definition 2.2.3 (Correct patch). Given a program and its test suite containing at
least a failing test case, a correct patch is a test-suite-adequate patch that satisfies the
requirements of the application.

Since the programs available in the benchmarks used to evaluate the effectiveness
of program repair tools do not have requirements to establish how the applications
should behave, it is difficult for researchers to determine if a patch satisfies the re-
quirements of the application. For this reason, the evaluation of the correctness of a
patch is often approximated as the capability of generating a patch equivalent to the
one produced by the developers, if available.

Definition 2.2.4 (Equivalent patch). Given a human patch and a patch generated by
an APR tool, these two patches are equivalent if they are equal (i.e., they implement
the same changes) or if the semantic of the changes is the same.

When the human patch is not available, the evaluation process is often limited to
test-suite-adequateness, that is, to simply checking if a patch passes the available
test cases.

Unlike the process used to establish if a patch is test-suite-adequate, which can
be automated by simply running the available test cases, the process to establish
if a patch is correct cannot be automatized and it is time consuming. Indeed, to
evaluate the correctness of a patch, it is necessary to manually analyze the patch, to
understand the context of the program in which it is implemented.

However, only considering test suite adequateness does not allow to distinguish
between correct and overfitting patches, undermining the evaluation process. Sub-
section 2.2.1 discusses both the studies that analyzed this problem, and the solutions
to mitigate it.

22 Chapter 2. Automatic Program Repair

2.2.1 Studies about Overfitting Patches

The work by Smith et al. [107] is the first one about overfitting patches [82]. Their
analysis shows that the quality of the patches produced by APR tools is propor-
tional to the coverage of the test suite used during the repair process. In particular,
adding a white-box test suite generated automatically with KLEE1 to increase the
code coverage obtained with a black-box test suite written by humans based on the
program specifications, the patches generated by GenProg are overfitting, because
they pass only the 75% of the new test cases generated with KLEE, and thus many of
the patches should be discarded. This aspect points out that the test suite associated
with the programs under repair is often not good enough to be used as an oracle for
patch verification.

Also the study conducted by Qi et al. [95] shows that most of the patches gener-
ated by APR techniques are not correct, due to the weaknesses of the available test
suites. Moreover, the study shows that patches often remove functionalities, simply
avoiding the execution of faulty code, rather than repairing the code.

Approaches to Mitigate the Overfitting Patches Problem

Several studies investigated how to alleviate the problem of overfitting patches.
Xiong et al. [128] propose to exploit the behavior similarity of test case executions

as a way to reduce the number of incorrect patches generated by APR tools. The idea
is based on two observations: 1) when a correct patch is applied, a passing test case
should behave similarly as in the buggy program, while a failing test case should
behave in a different way; 2) when two test cases have similar executions, there is
more likelihood to have the same test results. The similarity is measured considering
the complete-path spectrum [35], that represents the sequence of executed statement
IDs during a program execution. Their results are encouraging since the approach
prevented the generation of 56.3% incorrect patches, without discarding any of the
correct patches.

The analysis of Yu et al. [135] propose an approach to mitigate overfitting patches
by using automatically generated test cases. The idea is that the repair constraints
extracted using the test suite are not strong enough to completely express the in-
tended semantics of a program, and thus augmenting the initial test suite with more
automatically generated tests would allow to generate more correct patches. They
demonstrated that their approach can reduce the issue related to the introduction of
regression problems, but it has a minimal impact on reducing the number of incom-
plete patches. This is due to the fact that the test cases generated by their approach
are not likely to be able to generate additional repair constraints for input points in
the set of buggy inputs, and thus the overfitting patches that are incomplete patches
cannot be detected with an high success rate.

1https://klee.github.io

https://klee.github.io

2.2. The Problem of Overfitting Patches 23

Another study [17] uses the natural language processing on the source code in
order to establish the reliability of patches generated by APR repair tools. The as-
sumption is that a correct program is more similar to the original one compared to
other patches that apply more changes in the program. The researchers found that
the similarity is associated with the understandability, and when a patch is more un-
derstandable, the likelihood that a patch is correct is higher. To measure the source
code similarity, they used Doc2vec [57] and Bert [22], that are two state of the art
techniques used in the field of natural language processing. In the presented study,
this approach successfully filtered out 16 out of the 35 overfitting patches under
analysis.

Wang et al. [117] evaluated the effectiveness of the patch correctness assess-
ment techniques comparing them on a dataset of 902 patches generated by 21 APR
techniques. In particular, they considered 9 different techniques and 3 heuristics
based on static code features. The nine techniques considered can be divided in two
groups: 1) dynamic techniques that require an oracle (Evosuite [29], Randoop [88],
DiffTGen [126], and Daikon [27]), and 2) dynamic techniques that do not require
an oracle (PATCH-SIM [128], E-PATCH-SIM [117], R-Opad [134], E-Opad [134], and
Anti-patterns [112]). The three heuristics are the ones used in three APR techniques
and they do not require an oracle to work (ssFix [127], CapGen [121], and S3 [58]). In
their study, they measured the precision and recall of the techniques, considering as
true positive the overfitting patches identified as overfitting, false positive the cor-
rect patches identified as overfitting, false negative the overfitting patches identified
as correct, and true negative the correct patches identified as correct. The result show
that most of these techniques label correct patches as overfitting. This is due to dif-
ferent reasons that are related to the test cases generated by the tools. For example,
in the case of Evosuite, the test cases generated by the tool broke the program pre-
conditions, causing a wrong classification of the patches. In the case of DiffTGen, the
problem is related to the fact that the test cases generated automatically are too strict
(e.g., the test case checks not only if the program throws an exception, but also the
message of the exception). Daikon uses extremely strict rules to compare identical
invariants, checking also the line numbers of the exit points of a function, and this
aspect causes the wrong classification of the patches. Finally, in other cases (PATCH-
SIM and E-PATCH-SIM), the problem is related to the complexity of the original test
suite, that leads to a wrong classification of the generated tests, and consequently
also the patches are labeled in wrong way. Moreover, heuristics based on static code
features allow to get higher level of recall, but they are less precise since they gener-
ate a greater number of false positives. These approaches are indeed not designed
as a standalone technique to identify overfitting patches directly, but they have been
analyzed to compare them to the standard techniques.

24 Chapter 2. Automatic Program Repair

2.2.2 Challenge of Overfitting Patches in Automatic Program Repair

Although there are many different techniques in the field of APR, none of them is
free of the problem of overfitting patches. As explained in Subsection 2.2.1, current
studies explain the problem of overfitting with test suites that are often too weak,
and thus they do not cover the programs well enough.

A family of overfitting patches is represented by code-removal patches, that are
patches that drop functionalities of programs. Through the manual analysis of code-
removal patches described in Chapter 3, it has been possible to discover that weak
test suites are not the only reason that allows the generation of an overfitting patch.
Indeed, there are other reasons, such as errors in the test cases, and rottening test
cases (i.e., test cases that are executed only under some conditions).

2.3 Fault Localization

One of the main steps of APR techniques is the fault localization, which aims to
automatically find the locations to apply the patches.

Spectrum-Based Fault Localization(SBFL), which uses test coverage information, is
probably the most widely used fault localization approach [66, 30], since it is easy to
apply and scalable to large programs [124]. A particular case, here defined as aug-
mented spectrum based fault localization is represented by the techniques that enrich
the information provided by SBFL techniques exploiting different sources such as
the stack trace in the case of failures that generate an exception. Finally, a limited
number of techniques use also information retrieval-based approach, which uses in-
formation contained in bug reports to find the locations that are likely to be faulty.

These techniques may identify the possible locations of the faults at different
granularity levels, ranging from a file to a method or a line of code [66].

2.3.1 Spectrum-based Fault Localization

Spectrum-based techniques use the concept of path spectrum, that is a characteriza-
tion of a program’s execution based on a certain input. Different executions of the
same program generate different path spectra, that thus correspond to different pro-
gram behaviors [97]. Through the concept of program spectrum, it is possible for
example to know how many times each statement of a program is executed [96].
Using the spectrum information for the fault localization, it is possible to identify
which are the parts of the program involved with the failure so as to narrow the
search space of the possible faulty locations. The idea is that program elements exe-
cuted by many failing test cases and few passing test cases have more likelihood to
be faulty. On the other hand, program elements executed by many passing test cases
and few or no failing test cases have less likelihood to be faulty [30].

2.3. Fault Localization 25

APR techniques exploited four main SBFL algorithms so far: Tarantula [43],
Ochiai [2], Jaccard [15] and the algorithm defined in GenProg [61]. The next sub-
sections describe the formulas used by each technique to localize the likely fault
location, based on the spectra collected from passing and failing test cases. Here, we
introduce the notation shared among the presented approaches.

In particular, to compute the suspiciousness of a statement s, it is used the follow-
ing notation: failed(s) indicates the number of failed test cases in which the statement
s has been executed one or more times, passed(s) indicates the number of passed test
cases in which the statement s has been executed one or more times, totalFailed in-
dicates the total number of failed test cases, totalPassed indicates the total number
of passed test cases, and execute(s) indicates the number of test cases in which the
statement s has been executed one or more times. For all the presented formula, the
higher the suspiciousness of a statement is, the more likely the statement is faulty.

Tarantula

Tarantula computes the suspiciousness of each statement through the Equation 2.1.

suspiciousness(s) =
f ailed(s)

totalFailed
passed(s)

totalPassed +
f ailed(s)

totalFailed

(2.1)

The suspiciousness of a statement s can vary from 0 to 1. If any of the denominators
evaluate to zero, the suspiciousness is computed as 0. The higher is the number,
the more is the likelihood that the statement s is faulty. Thus, 0 is associated to
the statements with less suspiciousness to be faulty, and 1 is associated with the
statements with most suspiciousness to be faulty.

The idea behind Tarantula is that the statements that are executed mainly by
failed test cases have more likelihood to be faulty compared to the ones executed
mainly by passed test cases. Moreover, the formula allows some tolerance for the
faults that are occasionally executed by passed test cases. According to the inventors
of the formula, this aspect often improves the effectiveness of fault localization [43].

Ochiai

The Ochiai formula comes from molecular biology [87], and then Abreu et al. were
the first ones to evaluate it in the field of fault localization [2].

Ochiai computes the suspiciousness of a statement s as the ratio between the
number of failed test cases that execute that statement and the square root of the
product between the total number of failed test cases and the sum of the failed and
passed test cases that execute the statement s. More formally, Ochiai computes the
suspiciousness of a statement s using the Equation 2.2.

suspiciousness(s) =
f ailed(s)√

totalFailed× (f ailed(s) + passed(s))
(2.2)

26 Chapter 2. Automatic Program Repair

The suspiciousness value can vary from 0 to 1, and also in this case 0 is associated
with the statements that are less likely to be faulty, while 1 is associated with the
statements that are more likely to be faulty. Ochiai is often reported as one of the
most effective technique in finding the root causes of faults [138, 125, 109].

Jaccard

To assign the suspiciousness score to a statement s, the Jaccard formula computes
the corresponding value as the ratio between the intersection of the statements that
execute s and the failed test cases (the numerator of the Equation 2.3) and the union
between the statements that execute s and the failed test cases (the denominator of
Equation 2.3).

suspiciousness(s) =
f ailed(s)

execute(s) + totalFailed− f ailed(s)
(2.3)

The suspiciousness value can vary between 0 and 1, and like Ochiai, the higher is
the value, and the higher is the likelihood that a statement is faulty.

GenProg Fault Localization Strategy

Unlike the other techniques, the approach used by GenProg to compute the suspi-
ciousness of a statement s consists in assigning one of three different possible values,
as shown in Equation 2.4.

suspiciousness(s) =

0 if f ailed(s) = 0

1.0 if passed(s) = 0∧ f ailed(s) > 0

0.1 otherwise

(2.4)

The value 0 is assigned to every statement that is not executed by any failed test case,
the value 1 is assigned to each statement that is not executed by any passed test case
and if there is at least one failed test case that executes that statement, while the
value 0.1 is assigned to the statements that are executed by both failed and passed
test cases.

In this way, the formula associates the biggest weight (1.0) with the statements
that are executed only by failed test cases, because it is more likely that statements
never involved in the executions of passed test cases are faulty. On the other hand,
statements that are executed only by passed test cases should be correct and it is
less likely that are part of the failure reason, and this why the formula assigns to
them the weight 0. The value 0.1 associated with the statements executed by both
passed and failed test cases allows to consider them for the generation of the ranking
of suspicious statements, but with a lower score compared to the ones executed by
only failed test cases.

2.3. Fault Localization 27

2.3.2 Augmented Spectrum-based Fault Localization

To increase the likelihood to generate a correct patch, there are some tools that ex-
ploit additional information and not only use the suspiciousness ranking provided
by SBFL techniques [130].

In some particular cases, program repair techniques can exploit more informa-
tion to improve the ranking returned by spectrum based techniques. For example,
HDRepair [59] assumes that the faulty methods are known, and only considers the
lines of code inside these methods during the fault localization step. ssFix [127] gives
priority to the statements contained in the stack trace of programs that crash. Sim-
Fix [42] exploits the concept of test case purification that consists in replacing every
failing test case with k assertions by k single-assertion test cases and in removing
the irrelevant statements for the failed assertion in each of them, with the goal to
use these transformed tests to refine the ranking provided by Ochiai. ACS [129] uses
the technique of predicate switching that consists in simulating the state changes by
changing the branch predicate outcomes at runtime, to identify the most suspicious
lines considering bugs related to faulty conditional statements [66]. The idea is to
repeat the executions of the program on the failing input and switch the conditional
branch outcomes until the program produces the correct output, so as to identify
which are the conditional statements that are responsible of the fault.

There are then techniques that only consider a subset of the statements reported
by Ochiai, such as SketchFix [37] that considers only the top 50 most suspicious
statements, and Elixir [99] that considers only the top 200 most suspicious locations.

Finally, Guo et al. [33] propose to combine the dynamic slicing with spectrum-
based fault localization, showing that it is possible to increase the performance of
APR tools. Indeed, the results show that error propagation involves one single
class for the majority of the faulty programs, and thus fault localization approaches
should focus on the statements in the failure class reported in the bug report.

These approaches exploit specific assumptions that might be valid in certain con-
texts but that hardly generalize to every context.

There are also approaches that instead of exploiting only control-flow spectra,
use also data-flow analysis. Data-flow analysis is related to the analysis of dynamic
interactions between a memory definition (def) and subsequent uses of that definition
during the program execution [105]. For example, Ribeiro et al. propose Jaguar [98],
a tool to assist developers visually during the debugging, in which the suspicious-
ness ranking of def-use associations guides the search for the buggy program loca-
tions. In particular, Jaguar supports both control-flow and data-flow analysis, and
it computes the suspiciousness score of each element according to a chosen rank-
ing metric, such as Ochiai and Tarantula. Santelices et al. [100] propose a technique
that first uses Tarantula to assign a suspiciousness score to every def-use association,
then each of them is mapped to statements following three rules: 1) a def-use pair
is associated with the definition statement; 2) a def-use pair is also associated with

28 Chapter 2. Automatic Program Repair

all statements that precede the definition statement in the same basic block; 3) an un-
mapped statement is associated with all def-use pairs whose uses are located in that
statement. Then, the suspiciousness score of each statement is computed consider-
ing the highest score of all def-uses associated with that statement.

2.3.3 Information Retrieval-based Fault Localization

iFixR is a program repair tool that replaces the standard SBFL with information
retrieval-based fault localization computed on the bug reports [52]. Indeed, the idea
is to leverage the potential similarity between the terms contained in a bug report
and the source code in order to identify which are the statements that are most likely
faulty. Starting from the most suspicious files extracted with D&C [51], a tool that
implements the Information Retrieval-based fault localization approach, the tech-
nique parses these files to get only the statements that according to the analysis of
Liu et al. [65] are considered more error prone. These statements are if statements,
expression statements, field declarations, return statements and variable declaration
statements. Based on the experiment that the authors conducted, the results of Infor-
mation Retrieval-based fault localization and spectrum based fault localization are
comparable.

R2Fix [64] is another technique that exploits the information retrieval approach
to localize the faults and it exploits free-form bug reports. The tool analyzes the bug
report in order to extract the information about the bug type, and then it generates a
patch based on that information.

Other approaches combine multiple fault localization techniques. For example,
Motwani et al. [84] propose to use both spectrum based and Information Retrieval
approaches. Based on their experiment that involved 818 real world defects, the uni-
fied approach is able to localize more bugs and rank better the suspicious statements
compared to the single techniques.

Although promising, these approaches can be applied only in presence of bug
reports filed by either users or developers.

2.3.4 Challenges of Fault Localization in Automatic Program Repair

In the field of APR, there are several studies about the influence of fault localization
on the effectiveness of patch generation [120, 33, 133, 66]. Indeed, if localization
is unable to identify the correct statements to be fixed, the APR tool cannot create
a patch [66]. In the following, we discuss three main challenges that affect fault
localization used in the context of APR.

Weak Discriminating Power A relevant challenge is about the low discriminating
power of the techniques. Even though techniques give higher suspiciousness scores
to the faulty statements, they tend to also assign high scores to statements that are

2.3. Fault Localization 29

not faulty. This aspect increases the risk that APR tools change also these state-
ments, producing many variants of the original program that are not correct [133].
The study by Liu et al. shows that Ochiai, which is the most used fault localization
algorithm in APR, ranks the faulty statements at the top position for only 11% of the
investigated faults, and in one of the top ten positions for only 35% of the investi-
gated faults [66]. The study by Assiri and Bieman reports a mean position of the
faulty statement in the ranking returned by Ochiai equals to 26.1 [6]. Finally, Pear-
son et al. provides extensive empirical evidence of the difficulty of SBFL techniques
in identifying patch locations with real faults [91]. The results of the analysis con-
ducted by Wen et al. show that the accuracy of fault space, that is the ranked list of
the suspicious statements affects the effectiveness and the efficiency of search based
APR techniques [120]. Considering GenProg, the results indicate that it is likely to
generate more patches in a faster way when the mean average precision of the fault
space has an accuracy over 0.9.

Size of the Rank A second challenge of fault localization techniques is related to
the number of statements that are reported. For big programs, the number of top
ranked statements can be more than one hundred. Large ranks increase the likeli-
hood that APR techniques try mutating many potentially irrelevant code location,
dramatically increasing the time of the repair process [133].

To mitigate this problem, xJiang et al. [41] performed a manual analysis of 50 de-
fects from Defects4J, and proposed to incorporate richer dynamic information about
test failure in the ranking algorithm in order to exclude locations associated with
methods that are unlikely to be faulty, such as methods of library function or meth-
ods that are just wrapper of others. In line with the work described in this thesis,
they also suggest to try to introduce a way to identify the statements that introduce
undesirable value changes in a test execution, since these statements are the ones
responsible of the fault.

Nothing more than locations Another challenge is related to the weak integration
between the fault localization and the patch generation steps. Indeed, fault localiza-
tion techniques suggest a ranked list of statements, but there is no information about
how these locations may relate to the failures and how they should be changed. For
example, if a suspicious location is related to the initialization of an array, giving this
extra information to the repair step may allow program repair techniques to create
certain types of patches targeting that specific problem, that is the initialization of
the array. This aspect allows to guide the repair process, giving the possibility to
limit the search space and to create patches based the guessed fault. How to gener-
ate this additional piece of information is also studied in this thesis.

In this context, considering these challenges, Chapter 4 describes a new exception-
driven fault localization technique that, exploiting the semantic of the exceptions,

30 Chapter 2. Automatic Program Repair

provides some specific locations related to the exception, enriched with information
about the guessed fault. Program repair techniques could exploit this extra informa-
tion to apply only specific types of change based on the guess.

31

Chapter 3

Effectiveness of Code-removal
Patches

This chapter presents the study about the factors that may influence the genera-
tion of code-removal patches and the information that can be derived from them.
The analysis results in the definition of a comprehensive taxonomy of code-removal
patches that can be exploited to better understand the current limitations of program
repair techniques. The analysis also includes a comparison of human patches and
code-removal patches, demonstrating the possibility to extract valuable information
from the analyzed patches.

3.1 Code-removal Patches

As described in Chapter 2, one of the limitations of APR techniques is related to
the generation of overfitting patches. Indeed, current repair techniques rely on
the test cases to evaluate the candidate solutions, but this is a too weak validation
method, and it causes the generation of patches that are not correct, even though
they pass all the test cases. The overfitting patches represent a serious problem be-
cause they apparently fix the bug, but actually they can introduce new bugs not
revealed by the test cases, or they can also drop the functionality so that the previ-
ous failing/crashing test cases are no longer executed. In this last case, the buggy
functionality is not fixed, but it is simply removed from the program, and so the
patch is meaningless. Analyzing this type of patches in order to understand which
are the reasons that make possible their creation is important to improve the current
repair techniques and also to find a way to exploit them in order to automatically im-
prove the test suite associated with the programs. Code-removal patches, generated
by the Kali system [95] (presented in Subsection 2.1.2) are an example of overfitting
patches. There are multiple implementations of the Kali strategy. In particular, As-
tor is an automatic software repair framework for Java programs that implements
different repair approaches, including jKali, a Java implementation of Kali [95]. In
some cases, when it is correct to delete some part of the code to fix the bug, these
patches are correct, but they are overfitting most of the time.

32 Chapter 3. Effectiveness of Code-removal Patches

Definition 3.1.1 (Code-removal Patch). A code-removal patch is a patch that simply
removes functionality, by deleting, or skipping code. This latter case can be done
through the replacement of a condition in order to force the execution of a specific
branch, or through the addition of a return statement in a function body. Despite
functionality removal, a code-removal patch may change a program making a full
test suite to pass [95].

Listing 2 shows an example of a code-removal patch generated by Kali for the
bug php-309892-309910, related to the PHP’s standard library function
substr_compare. In this case, the code-removal patch changes the if condition
adding the instruction && !(1), thus the body of the if statement is skipped, be-
cause the condition is always evaluated to false. This patch is semantically equiv-
alent to the patch implemented by the developers, which entirely removes the if
statement [13].

1 - if (len > s1_len - offset) {

2 + if (len > s1_len - offset && !(1)) {

3 len = s1_len - offset;

4 }

LISTING 2: Example of code-removal patch generated by Kali for the
bug php-309892-309910.

Interestingly, recent empirical studies show that Kali is effective in finding test-suite-
adequate patches in large and complex systems [95, 69]. The intuition behind the
study presented in this chapter is that the very presence of code-removal patches
carry some meaning, that can be exploited to fix code.

In particular, the study investigates the reasons and the scenarios that make
the generation of code-removal patches possible, and the relation of code-removal
patches with the human-written patches. In addition, the study investigates if code-
removal patches carry valuable information for developers, even when they are in-
correct.

The proposed analysis results in a comprehensive taxonomy of code-removal
patches that both improves the level of understanding of program repair techniques
and that can be exploited to support program debugging tasks performed by the
developers.

3.2 Experimental Methodology

This section describes the experimental procedure and discusses the design choices
relevant to the study.

3.2. Experimental Methodology 33

3.2.1 Goals & Research Questions

The goal of this study is to understand the nature of test-suite-adequate code-removal
patches and to investigate how these patches relate to human patches, with a thor-
ough qualitative study. To our knowledge, this is novel in program repair research,
nobody has ever studied this important point.

In particular, the study aims to answer to the following research questions:

RQ1 What is the relation between assertion failures and the generation of test-
suite-adequate code-removal patches?

This research question investigates the ability of jKali to generate code-removal
patches for tests that fail due to the violation of an assertion.

RQ2 What is the relation between crashing tests and the generation of test-suite-
adequate code-removal patches?

This research question investigates the ability of jKali to generate code-removal
patches for the crashing faults revealed by crashing test cases.

RQ3 To what extent can code-removal patches, even if incorrect, give valuable
information to developers to find weaknesses in test suites?

The goal of this research question is to study if a code-removal patch can
give valuable information about the cause of the problem, while revealing
weaknesses in test suites, regardless of its correctness.

RQ4 How do developers fix the failed builds associated with a test-suite-adequate
code-removal patch?

The goal of this research question is to study if developers fix bugs according
to some patterns when the bug can be also addressed with a code-removal
patch. The study also investigate the semantic and syntactic similarities be-
tween the patch produced by developers and the patch produced by jKali.

The experimental methodology is organized in three main phases: the collection
of build failures, presented in Subsection 3.2.2; the analysis of the collected build
failures, to identify the ones amenable to code-removal patches, presented in Sub-
section 3.2.3; and the analysis of the code-removal patches and their comparison to
developers’ patches, presented in Subsection 3.2.4.

3.2.2 Data Collection

The first phase of the study consists in collecting the build failures, and the related
artifacts, necessary to answer to RQs 1-4. As source of build failures, the study con-
siders the Repairnator-Experiments repository.

34 Chapter 3. Effectiveness of Code-removal Patches

Definition 3.2.1 (Repairnator-Experiments). Repairnator-Experiments is an open sci-
ence repository1 that contains the metadata information of the Travis CI builds that
Repairnator tried to repair [115]. It hosts 14,132 failed builds (collected in the pe-
riod February 2017 - September 2018) for 1,609 Java open-source projects hosted on
GitHub. It provides detailed information about the builds, such as the event that
triggered the build, the number of failing and crashing test cases, and the type of
failures. Moreover, for every build, Repairnator-Experiments stores the source code
associated with the failing commit.

Definition 3.2.2 (Repairnator). Repairnator is a software engineering bot that mon-
itors program bugs discovered during Continuous Integration, and tries to fix them
automatically [83]. Repairnator implements multiple repair strategies, including the
generation of code-removal patches using jKali.

For each failed build, the following artifacts are considered:

• The failure-related artifacts.

• The code-removal patches generated for the failed builds.

• The human patches associated with the failed builds that also have a code-
removal patch.

All these data have been saved on a GitHub repository2 for the sake of scientific
reproducibility. The description of how these artifacts were obtained is provided
below.

Failure-related artifacts. The builds relevant to the study are all the builds stored
in the Repairnator-Experiments repository with either one failing or one crashing
test case. In total, there are 2,381 builds with only one failing test case, and 1,724
builds with only one crashing test case. Overall 4,105 out of the 14,132 builds (29.05%)
satisfy the selection criterion. For each failed build, from the Repairnator-Experiments
repository, the following items have been collected: the source code versioning the
commit that made the build fail, the metadata associated with the failed build (e.g.,
the build id), and finally the information about the failure (e.g., the name of the class
and the test method that fails or crashes).

Code-removal patches. For every selected build, jKali was run to generate code-
removal patches, if such patches exist. The jKali patches already present in the
Repairnator-Experiments repository were not used because they have been gener-
ated with a previous version of jKali, which was affected by several bugs that are
now fixed. These new runs ensured that a project code associated with a failed build
is still executable. In fact, sometime there are problems with deletion of branches or
dependencies that now make the execution of jKali impossible.

1https://github.com/repairnator/repairnator-experiments
2https://github.com/repairnator/open-science-repairnator/

https://github.com/repairnator/repairnator-experiments
https://github.com/repairnator/open-science-repairnator/

3.2. Experimental Methodology 35

Given the computational nature of the task, jKali was run with a timeout of 3
hours for every build. This 3 hours period comprises all phases of jKali, from down-
loading the source code from the repository to the execution of the repair attempts.
The core repair loop of jKali itself is set to run for a maximum of 100 minutes. This
setup is based on previous research [25]3. Note that jKali is set to stop after finding
the first test-suite-adequate patch, thus for every failing build there is at most one
code-removal patch. This process produced 48 code-removal patches (27 patches for
builds with a failing test case and 21 patches for builds with a crashing test case).

Human Patches. The data collection step finally includes the identification of the
human patches associated with the builds for which jKali created a code-removal
patch. To determine the corresponding human patch, automatic and manual analy-
sis are performed: Travis CI API4 is used to automatically determine the commits
that may include the patch and the presence and appropriateness of the human
patch is manually checked.

Using the Travis CI API, the first build 1) that follows the one under analysis, 2)
that is on the same branch and 3) that is associated with a status passed is retrieved.
Then, all the commits between the failed build under analysis and the first passed
build are extracted.

If only one commit with a simple change is extracted, the patch is confirmed by
directly applying this transformation to the failed build and running the test suite. If
a commit includes multiple changes, the likely fixing changes are selected manually
and they are applied to the code that fails the build. If the build passes all the avail-
able tests with the extracted change, this change is considered as the ground-truth
human patch.

Sometimes, the set of commits contains too many different changes involving
many parts of the program, and it is infeasible to precisely identify the ones that
actually contribute to fixing the bug. Overall, this combination of automated and
manual analysis has taken 3.5 hours per code-removal patch on average and 21 days
in total.

3.2.3 Analysis of Failed Continuous Integration Builds

The second part of the study consists in the analysis of the collected builds, which is
organized in the following two steps:

• A sanity check of the builds is performed.

• Essential information about the failure is retrieved.

Sanity Check of Builds. The goal of the first step is checking if the results ob-
tained with jKali are the same as the ones reported in the Repairnator-Experiments
repository. Indeed, even if a build failed in the past, there is no guarantee that the

3Repair tools demonstrated to require 13.5 minutes on average to generate a patch, so allocating
100 minutes is 7.4 times the average repair time.

4https://docs.travis-ci.com/user/developer/

https://docs.travis-ci.com/user/developer/

36 Chapter 3. Effectiveness of Code-removal Patches

same build fails with the same error after several months: this is due to changing ex-
ternal dependencies, closed third-party services that the application under test uses,
flakiness5 of the tests, etc. In addition, the selection criterion requires builds that
include only one failing or crashing test case. To sum up, the sanity check ensures
the following two conditions:

• the build process terminates correctly,

• the execution of the tests terminates with either a failing or a crashing test case

Thus, the 4,105 selected builds were downloaded and their test cases were exe-
cuted, discarding the builds that did not pass the sanity check. At the time of the
experiment in March 2020, this step results in 2,187 builds discarded for the follow-
ing reasons:

• 635 builds had errors during the build phase (e.g., because some dependencies
are not resolvable);

• 393 builds passed all the test cases, suggesting the presence of flaky tests caus-
ing the failure on the first place;

• 75 builds generated a timeout during the execution of the test cases;

• 1,084 builds had multiple failing and crashing test cases.

After the sanity check, the number of relevant builds for the study amounts to
1,918. In particular, 950 builds have only one failing test case, and 968 builds have
only one crashing test case.

Retrieval of Information about the Failure. The second step consists of collect-
ing qualitative and quantitative information about the failed builds. For the builds
with one crashing test case only, the type of the exception responsible for the fail-
ure (e.g., NullPointerException) is collected. For the builds with a failing test case
only, information about the type of the failure is collected. However, differently
from crashing test cases, failures do not have an explicit type information assigned.
Thus, failures were classified based on a manual analysis of the test and of the failed
assertion in particular.

Table 3.1 shows the categories that were identified. The first column (Failing
Assertion Category) specifies the category of the assertion failure, the second column
(Definition) defines the category, and finally the third column (Example of potentially
failing test code for this reason) contains a sample failure assertion extracted from the
benchmark to exemplify the category.

Wrong Values generally represents all those cases in which there is a difference
between the expected value and the one generated by the program under test. The

5As observed in a study conducted by Durieux et al. [24], 0.80% of the builds of their dataset, which
contains 3,286,773 Travis CI builds, are flaky. In particular, 46.77% of the restarted builds (1.72% of the
builds of their dataset) change their state from failed to passed. Thus, builds that fail due to flaky tests
are not unusual.

3.2. Experimental Methodology 37

TABLE 3.1: Classification of reasons for failing test cases.

Failing
Assertion
Category

Definition Example of potentially failing test code for this reason

Wrong Val-
ues

The value generated by
the program is not ac-
ceptable according to
the expected value in
the test assertion.

CloseableHttpResponse response =
httpclient.execute(httpGet);

assertEquals(200,
response.getStatusLine().getStatusCode());

Mocking Ver-
ification Fail-
ure

The test execution does
not pass a check per-
formed on a mocked
component.

Processor<String> mockProc = mock(Processor.class);
verify(mockProc, times(2)).process(eq("k1"));

Exception
Difference

The failure is caused by
the generation of an ex-
ception of the wrong
type or with the wrong
message, or by a miss-
ing exception.

@Test(expected = ParseException.class)
public void whenGivenBadScnlThrowHelpfulExcept() {

parser.parse("not a SCNL");
}

Timeout The failure is caused by
the program not gen-
erating an output in
the maximum allowed
time.

TestObserver<String> test = rxResponse.test();
test.awaitTerminalEvent(1, TimeUnit.SECONDS);

Environment
Misconfigu-
ration

The failure is caused by
an incorrect execution
environment (e.g., an
environment variable is
not set).

assertNotNull("ensure ${env.CI_OPT_MVN_CENTRAL_USER}
and ${env.CI_OPT_MVN_CENTRAL_PASS} is set.",
plainText);

code snippet shows an example of a test case whose aim is to verify if the status code
of the HTTP response is 200.

Mocking Verification Failure represents a failure reported by a Mock framework,
for instance because a specific method is not called the expected number of times.
The code snippet shows the case of a failure reported by Mockito because the method
process is called a number of times different than 2 with the argument k1.

Exception Difference represents failures caused by a difference between the ob-
served exception and the expected exception. The code snippet shows the case of a
test case that fails because the expected exception of type ParseException is not
generated.

Timeout represents tests that fail due to the timeout of an operation. The code
snippet shows an example of a test case that fails because the Subscriber does not
receive a notification within a second from the time Observable finished its job.

Finally, Environment Misconfiguration represents failures caused by problems in
the testing environment. The software environment includes every entity external
to the program, such as configuration files, system variables, external programs.
The code snippet shows a test case that fails because the username and password
associated with the Maven environment have not been properly set up.

38 Chapter 3. Effectiveness of Code-removal Patches

3.2.4 Analysis of Human Patches and Automated Code-removal Patches

The third part of the methodology consists of a quantitative and qualitative analysis
of both the generated code-removal patches and the ground truth human patches.
The rest of this section presents the analysis and the identified categories.

Classification of Code-removal Patches. Code-removal patches are analyzed to
first determine their correctness. To this end, similarly to previous studies [74, 95], a
patch is considered to be correct if it is either identical or semantically equivalent to
the corresponding human patch.

In Listing 3, the case of a code-removal patch generated by jKali for the failing
Travis CI build with id 3224062776 associated with the project pac4j is exemplified.
This patch is semantically equivalent to the human patch, and is thus considered cor-
rect. The code-removal patch changes the if statement using false as condition,
which forces the execution of the else branch, and consequently forcing the method
to always return null. The human patch removes the overriden method shown in
Listing 37. The program without the overridden method has the same behavior
as the program with the code-removal patch. Thus, even though the code-removal
patch does not entirely delete the overriden method internalConverter(Object),
it generates a program with the same behavior of the one that includes the human
patch.

1 @java.lang.Override

2 protected String internalConvert(final Object attribute) {

3 - if (null != attribute) {

4 + if (false) {

5 return attribute.toString();

6 } else {

7 return null;

LISTING 3: Example of code-removal patch generated by jKali for
failing Travis CI build 322406277.

If the code-removal patch is not correct, it is classified according to its nature.
In particular, four different potential issues affecting the test cases that caused the
acceptance of wrong code-removal patches were identified: Weak Test Suite, Buggy
Test Case, Rottening Test, and Flaky Test. Table 3.2 summarizes these cases.

Well known in the literature, a weak test suite might be responsible of the accep-
tance of a wrong code-removal patch. This was confirmed by showing that asser-
tions can be manually added to existing tests or that new test cases discarding the
code-removal patch can be added.

6https://travis-ci.org/github/pac4j/pac4j/builds/322406277
7https://github.com/pac4j/pac4j/pull/1076

https://travis-ci.org/github/pac4j/pac4j/builds/322406277
https://github.com/pac4j/pac4j/pull/1076

3.2. Experimental Methodology 39

Sometime there are buggy test cases, that is, a wrong code-removal patch is not
discarded because the test expects the wrong behavior from the program. This is
revealed and confirmed by manual patches made to the test cases after the failure.

A rottening test is a test that contains assertions that are executed only based on
some conditions [21]. If the code-removal patch changes the program in a way that
the execution of the assertion is skipped, the test is now green (because the assertion
is not executed) and the patch is accepted even if the program is still faulty. This is
the first work showing that such test issues affect the acceptability of program repair
patches.

Finally, the presence of flaky tests [72] may let jKali accept a patch. When a flaky
test stops failing, it has actually no causal relation with the generated patch, and the
patch is then wrongly assumed as being correct.

TABLE 3.2: Classification of code-removal patches. While the litera-
ture has focused on WT, reasons CP, BT, RT and FT have never been

studied before.

Category Definition

CP: Correct Patch The code-removal patch is equal or semantically
equivalent to the human patch.

W
ro

ng
Pa

tc
h

WT: Weak Test Suite The available test suite does not cover the pro-
gram well enough, better assertions and better
tests might be needed.

BT: Buggy Test Case The code-removal patch works due to a fault in a
test case (e.g, the expected value in the test case is
not correct).

RT: Rottening Test The code-removal patch disables the execution of
the failing assertion, that is located in a control
flow statement. This means that the code-removal
patch affects the return values used in the expres-
sion of the control flow statement containing the
failing assertion, thus avoiding its execution.

FT: Flaky Test A code-removal patch is accepted due to a flaky
test that now passes.

Classification of Human Patches. In this study, for 32 out of 48 cases (66.67%) the
human patch corresponding to a code-removal patch is found. For each of them, the
patch is classified based on the type of changes implemented by the developers. The
classification takes into account the size of the change (e.g., if changes are localized
in a statement or in a method) and the target of the changes (e.g., if the changes
target the program or the tests). Code-removal changes made by developers which
match the type of changes produced by jKali were also looked for. Table 3.3 shows a
summary of all the categories found by analyzing the patches.

40 Chapter 3. Effectiveness of Code-removal Patches

TABLE 3.3: Classification of human patches when a code-removal
patch exists.

Patch Type Category Definition

Fix in Test

Fix Test Code
The patch fixes the logic of one or more test
cases to properly reflect the expected behavior.

Fix Test Data
The patch fixes the data used in one or more
test cases.

Statement-
Level
Change

Change Condi-
tion

The patch modifies a condition used in the
program, for example in a if-statement or
in a cycle.

Add if-else
Statement

The patch adds a new if-else statement to
conditionally execute part of the code.

Method-
Level
Change

Change Method
Implementation

This patch modifies multiple statements in-
side a same method.

Override
Method

This patch introduces an method that over-
rides another method present in the program.

Code
Removal

Remove Vari-
able Assignment

This patch removes an assignment statement
from the program.

Remove Vari-
able Annotation

This patch removes an annotation from the
program.

Revert The patch reverts to a previous commit.

Not
Available

No Change

This patch includes no changes, or if they are
present, they are not related to the failure, typ-
ically because the build failure is due to the
presence of flaky tests.

Not Found

It is not possible to determine the changes that
make the patch, for instance because they are
mixed with many other changes not related to
the removed fault.

The first two categories, Fix Test Code and Fix Test Data, correspond to patches im-
plemented by changing the code of the test, while distinguishing between changes
to the logic of the tests and changes to the data used in the tests. A number of cate-
gories capture the case of actual modifications implemented in the code of the faulty
program (excluding code-removal only patches). These changes might be at the
level of the individual statements or at the level of the methods. Changes to individual
statements involved either conditions or if-else statements. Although other types of
changes to individual statements are possible, patterns for which no code-removal

3.3. Experimental Results 41

patch exists in the dataset of this study are not listed. Changes to methods involved
either a method or the addition of an overriden version of a method.

Interestingly, a number of human patches that consist of Code Removal operations
have been found. Cases in which the developers removed assignments, annotations
or revert a code change are reported.

Finally, sometimes the human patch is not available, either because the failed
build has been intentionally not fixed (e.g., because the failure was caused by a flaky
test) or because the procedure used was not able to uniquely identify the human
patch, as already described.

3.2.5 Summary

In this section, a novel methodology to analyze program repair patches has been
presented. In particular, the taxonomy of failures (Table 3.1, the classification of
code-removal patches based on the causes that make them work (Table 3.2), and the
categorization of ground-truth human patches (Table 3.3) is novel. This can provide
a solid foundation for future studies of program repair patches.

3.3 Experimental Results

This section presents the results of the analysis and provides the answers to the
research questions.

3.3.1 What is the relation between assertion failures and the generation
of test-suite-adequate code-removal patches? (RQ1)

In this research question, the relation between the category of assertion failures and
the proportion of generated code-removal patches is analyzed per the methodology
of Section 3.2. Table 3.4 reports the information about the number of builds per cate-
gory of assertion failures and the corresponding code-removal patches generated by
jKali.

TABLE 3.4: Relation between the test failure categories and code-
removal patches.

Failing Assertion Category Occurrences # Builds with Patch % Builds

Wrong Values 843 21 2.49%
Exception Difference 39 3 7.69%
Mocking Verification Failure 20 2 10.00%
Timeout 46 1 2.17%
Environment Misconfiguration 2 0 0%

Total 950 27 2.84%

The first column (Failing Assertion Category) lists the different categories of assertion
failures, the second column (Occurrences) shows the number of builds that have a

42 Chapter 3. Effectiveness of Code-removal Patches

failing test case for each category of assertion failure, the third column (# Builds with
Patch) indicates the number of builds that have a code-removal patch generated by
jKali, and the fourth column (% Builds) indicates the percentage of builds with a
code-removal for every failing assertion category and over all 950 builds. The data
are presented in descending order by the number of patched builds.

Analysis of the Results

The most frequent category of assertion failure is Wrong Values with 843 occurrences,
while the least frequent category is Environment Misconfiguration with 2 occurrences.

jKali generates a patch for all failure categories, with the exception of Environ-
ment Misconfiguration. This is due to both the few occurrences in this category, but
also to the missing capability of changing the environment configuration files in
jKali. In fact, jKali is designed to create patches that change the source code of the
target program, and cannot make any change to the environment.

Wrong Values is the category of assertion failure with the highest number of oc-
currences (843) and the highest number of code-removal patches (21). The high num-
ber of patches is only due to the high number of failing builds in that category. The
assertion failures with the highest percentage of code-removal patches are Mocking
Verification Failure (10.00%) and Exception Difference (7.69%). While this percentage
is high, it is still a rare event and the absolute number of patches is still low (2 for
Mocking Verification Failure and 3 for Exception Difference). Due to this event rarity, it
is not possible to make strong claims that those failures types are more amenable to
code-removal patches.

To study if the generation of code-removal patches is dependent on the category
of the assertion failure, Fisher’s exact test is applied on the number of patched builds
per assertion failure category. The null hypothesis of the test is that the number of
patched builds is independent of the assertion failure category. The p-value is 0.07852,
that is greater than the significance level α set to 0.05. This means that the null
hypothesis cannot be rejected, and the capability to generate code-removal patches
is independent of the category of assertion failure.

Comparison of the Results with Previous Studies

Another interesting aspect is that the proportion of generated code-removal patches
is significantly lower than in previous studies. Indeed, in this case, the likelihood
is 2.84%, while in the previous studies is 36.23% [69], 25.71% [95], and 9.28% [74].
The best explanation is that it is due to the small size of the datasets used in former
experiments, which consist of 69 cases for [69], 105 cases for [95], and 224 cases
for [74]. A second explanation is that those previous studies did not sample over
builds but over commits. A third explanation is that the benchmarks of those studies
used some kind of selection, which results in a biased sampling.

3.3. Experimental Results 43

Yet, the result is aligned with Durieux et al. [25], in which the proportion of
patches generated by jKali on the bugs of Bears is about 3.0%. Unlike the other
benchmarks, Bears is a benchmark which uses CI builds to identify buggy and
patched program version candidate, and it contains bugs associated with more dif-
ferent programs (72 projects) compared to the other ones (8 for ManyBugs bench-
mark [60], and 5 for Defects4J benchmark [44]). Both Bears and this study sample
builds, which explains the strong consistency.

What is the relation between assertion failures and the generation of test-
suite-adequate code-removal patches? (RQ1) jKali has been able to create a
patch for 27 out of 950 (2.84%) builds having only one failing test case. One
patch for every category of assertion failure was obtained, with the exception
of Environment Misconfiguration, which is out of scope for current generators of
code-removal patches. The results show that the generation of a code-removal
patch is independent of the category of assertion failure. The analysis suggests
that former studies tended to over-estimate the prevalence of code-removal
patches, because of the selection criteria considered. The results are useful for
program repair researchers, they give a better understanding of the somewhat
limited repair capability of code-removal patches.

3.3.2 What is the relation between crashing tests and the generation of
test-suite-adequate code-removal patches? (RQ2)

In this research question, the relation between the type of exceptions and the pro-
portion of generated code-removal patches for crashing tests is analyzed per the
methodology of Section 3.2. Table 3.5 shows the details about the number of avail-
able builds, divided per exception type, and the corresponding number and percent-
age of patches produced by jKali.

The first column (Exception Type) indicates the name of the exception, the sec-
ond column (Occurrences) reports the number of builds having a crashing test case
with the specific type of exception, the third column (# Builds with Patch) indicates
the number of builds that have a code-removal patch generated by jKali, while the
fourth column (% Builds) reports the percentage of code-removal patches for every
type of exceptions and over all 968 builds. The data are reported in descending order
by the number of patched builds including only the exceptions for which there is at
least one code-removal patch. In total, jKali is able to create a patch for 21 out of 968
builds with a crashing test case, with a success rate of 2.17%.

Comparison of the Results between Builds with Failing and Crashing Test Cases

The success rate reported for crashing failures is in line with the success rate re-
ported for builds with failing test cases (2.84%). To study if the nature of the failure,
produced by either a crashing or a failing test case, has an impact on the capability

44 Chapter 3. Effectiveness of Code-removal Patches

TABLE 3.5: Relation between the types of crashing exceptions and
code-removal patches.

Exception Type Occurrences # Builds with Patch % Builds

NullPointerException 124 7 5.65%
Exception 66 3 4.55%
OutOfMemoryError 5 2 40.00%
ClassCastException 7 2 28.57%
FileNotFoundException 27 1 3.70%
IllegalArgumentException 54 1 1.85%
IllegalStateException 241 1 0.41%
javax..PersistenceException 2 1 50.00%
rocketmq..MQClientException 1 1 100.00%
RuntimeException 62 1 1.61%
ConnectorStartFailedException 1 1 100.00%

Other exceptions 378 - -
Total 968 21 2.17%

to produce a code-removal patch, the Fisher’s exact test was applied considering the
following null hypothesis: the number of patched builds is independent from the type of
test case that reveals the failure (either a failing or a crashing test case). The p-value is
equal to 0.3833, that is higher than the significance level α set to 0.05. The null hy-
pothesis is thus rejected, indicating that the generation of code-removal patches is
independent from the type of test case that reveals the failure.

Analysis of the Results

The most frequent type of exception is IllegalStateException8 with 241 occur-
rences, but only one build has a code-removal patch. This type of exception occurs
when a method has been invoked at an inappropriate time, thus a code-removal
patch has a low likelihood to make pass a crashing test. Indeed, a code-removal
patch can remove the wrong method call, but to avoid that the exception is thrown,
it is usually also necessary to replace the removed call with the right piece of code
(e.g., the invocation of another method), in order to create a legal program state.
However, this is outside the scope of code-removal patches, that can only remove,
but not add code.

A larger number of code-removal patches for NullPointerException (7) and
the generic Exception9 (3) is reported. This result can be explained by the fact that
these exception types are prevailing in the benchmark. Furthermore, they were man-
ually analyzed. It is observed that jKali successfully patches programs producing a

8https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/
IllegalStateException.html

9https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/
Exception.html

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/IllegalStateException.html
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/IllegalStateException.html
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/Exception.html
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/Exception.html

3.3. Experimental Results 45

NullPointerException by removing the usage of the object that is null. Regard-
ing the generic exception java.lang.Exception, the 3 code-removal patches are
related to timeout errors and they remove the piece of code that causes the time-
out. For example, the code-removal patch of the Travis CI build for Apache Twill (id
356030973) removes the call to method java.net.InetAddress.getLoopbackAddress(),
whose execution could generate a deadlock.

Some exceptions only sporadically present in the benchmark have been suc-
cessfully patched, that is the case for MQClientException10, ConnectorStart-
FailedException11, and PersistenceException12. The number of builds with
these types of exceptions is far too low to be able to generalize a finding. Finally, it is
reported that OutOfMemoryError and ClassCastException have been patched
with good frequency. The first one is an error that is thrown when there is insuffi-
cient memory for the program to work properly. The success rate of jKali is 40%.
The second one is an exception that occurs when there is an instruction in the source
code that tries to convert an object from one type to another, but they are incompat-
ible (e.g., converting an Integer to a String). In this case, the success rate of jKali is
28.57%.

To confirm that the presence of code-removal patches does not depend on the
exception type, the Fisher’s exact test is used with the hypothesis: the number of
patched builds is independent of the crash category. The p-value is equal to 0.3831, that is
greater than the significance level α set to 0.05, and thus there is no evidence to reject
the null hypothesis.

What is the relation between crashing tests and the generation of test-suite-
adequate code-removal patches? (RQ2) jKali has been able to create a patch for
21 out of 968 builds having one crashing test case only (2.17%). The most re-
pairable type of common exception is OutOfMemoryError (5 occurences), and
NullPointerException is a prevalent exception with code-removal patches
(7). The experiment shows that the generation of code-removal patches is inde-
pendent on the exception type in a statistically significant manner. This experi-
ment shows that IllegalStateException is a very common kind of excep-
tion, for which specific program repair tools are needed.

10https://rocketmq.apache.org/docs/quick-start/
11https://docs.spring.io/spring-boot/docs/1.5.7.RELEASE/

api/org/springframework/boot/context/embedded/tomcat/
ConnectorStartFailedException.html

12https://docs.oracle.com/javaee/7/api/javax/persistence/
PersistenceException.html

https://rocketmq.apache.org/docs/quick-start/
https://docs.spring.io/spring-boot/docs/1.5.7.RELEASE/api/org/springframework/boot/context/embedded/tomcat/ConnectorStartFailedException.html
https://docs.spring.io/spring-boot/docs/1.5.7.RELEASE/api/org/springframework/boot/context/embedded/tomcat/ConnectorStartFailedException.html
https://docs.spring.io/spring-boot/docs/1.5.7.RELEASE/api/org/springframework/boot/context/embedded/tomcat/ConnectorStartFailedException.html
https://docs.oracle.com/javaee/7/api/javax/persistence/PersistenceException.html
https://docs.oracle.com/javaee/7/api/javax/persistence/PersistenceException.html

46 Chapter 3. Effectiveness of Code-removal Patches

3.3.3 To what extent can code-removal patches, even if incorrect, give
valuable information to developers to find weaknesses in test suites?
(RQ3)

In this research question it is manually analyzed why code-removal patches have
been generated, and it is studied if these patches can provide valuable information
about the cause of the build failure, also revealing weaknesses in test suites.

TABLE 3.6: Relation between the failing builds and code-removal
patches.

Patch reason # Builds - fail. test # Builds - crash. test Total

Correct 1 1 2
Weak Test Suite 11 14 25
Buggy Test Case 5 2 7
Rottening Test 4 2 6
Flaky Test 6 2 8

Total 27 21 48

Table 3.6 shows the different reasons that lead to the generation of a code-removal
patch. The first column (Patch reason) lists the possible reasons, the second column (#
Builds - fail. test) and the third column (# Builds - crash. test) report the correspond-
ing number of builds with a failing and crashing test case, respectively. Finally the
fourth column (Total) shows the total number of the patched builds for every patch
reason.

Correct Patches

Only 2 out of 48 code-removal patches (4.17%) are correct. This confirms previous
research showing that code-removal patches are mostly incorrect [95, 74].

The other 46 patches are all different manifestations of the inadequacy in the test
suite.

Weak Test Suite

For 25 out of 46 patches (54.35%), the problem is a Weak Test Suite that does not suffi-
ciently assert the behavior of the program under test. For example, build 400611810
generates an assertion error when comparing the expected status code with the ac-
tual one. As shown in Listing 4, the code-removal patch removes the instruction that
adds the HTTP header, and in this way the resulting HTTP answer has the expected
status code. The patch works because test13 checks only if the status code is correct,
without checking if the HTTP request contains the right header.

13https://github.com/repairnator/repairnator-experiments-one-failing-test-case/
blob/12171dada351fd2bfe999f8dd10cb0931829b5fb/src/test/java/com/http/
TestRequest.java#L11

https://github.com/repairnator/repairnator-experiments-one-failing-test-case/blob/12171dada351fd2bfe999f8dd10cb0931829b5fb/src/test/java/com/http/TestRequest.java#L11
https://github.com/repairnator/repairnator-experiments-one-failing-test-case/blob/12171dada351fd2bfe999f8dd10cb0931829b5fb/src/test/java/com/http/TestRequest.java#L11
https://github.com/repairnator/repairnator-experiments-one-failing-test-case/blob/12171dada351fd2bfe999f8dd10cb0931829b5fb/src/test/java/com/http/TestRequest.java#L11

3.3. Experimental Results 47

1 --- /src/main/java/com/http/Request.java

2 +++ /src/main/java/com/http/Request.java

3 @@ -235,7 +235,6 @@

4 header.put("Accept-Encoding", "gzip, deflate, br");

5 header.put("Accept", "text/html,application/xhtml+xml,application/xml;

6 q=0.9,image/webp,image/apng,*/*;q=0.8");

7 header.put("Connection", "Keep-Alive");

8 - this.setHeader(header);

9 }

10

11 public java.lang.String getContent() {

LISTING 4: Example of code-removal patch generated by jKali for
build 400611810.

Buggy Test Case

For 7 out of 46 patches (15.22%), the code-removal patch reveals a Buggy Test Case,
that is, a faulty test case that allows the acceptance of an incorrect patch. For exam-
ple, build 35121194 of the dataset of this study fails after the addition of a change
that trims the output associated with the result of a command execution, but the test
case is not updated to support this change. The code-removal patch works because it
removes exactly the new instruction that trims the output (i.e., the patch undoes the
change), and so the test case passes. To our knowledge, this is the first ever report of
this phenomenon in the literature.

Rottening Test

It is observed that the acceptance of incorrect test-suite-adequate patches has been
caused by Rottening Tests in 6 out of 46 cases (13.04%). In such cases, the failing or
crashing test case’s assertion is no longer executed after the application of a code-
removal patch. This result confirms that change in the application code can have an
effect on the test execution [75]. For example, build 38897112 generates a Class-
CastException exception when a test case checks the value associated with a
property of a JSON object under test. Since the check is executed only if the ob-
ject has the property, and since the code-removal patch removes the instruction to
set the property of the JSON object, the patch passes all tests because the assertion is
not executed. To our knowledge, this is the first ever report of this phenomenon in
the literature.

48 Chapter 3. Effectiveness of Code-removal Patches

Flaky Test

Finally, another interesting category is Flaky Test with 8 out of 46 incorrect test-suite-
adequate patches (17.39%). In these cases, the patch is accepted because of a Flaky
Test, i.e. the patch is not related to the test pass. These code-removal patches make
irrelevant changes that do not modify the logic of the program, (e.g., printing of
log information, as observed for build 40344741 on Travis CI), but end up being
accepted as side effect of the intermittent failures generated by flaky tests (e.g., if the
flaky test does not fail after an irrelevant change is introduced in the program, the
change is reported as an acceptable patch). An easy way to mitigate this problem is
to run the failing or crashing tests multiple times before accepting a code-removal
patch.

Overall, this evidence suggests a code-removal patch always tells something in-
teresting to the developers.

To what extent can code-removal patches, even if incorrect, give valuable in-
formation to developers to find weaknesses in test suites? (RQ3) The inves-
tigation reports that only 2 out of 48 code-removal patches (4.16%) are correct,
showing that code-removal patches cannot be trusted. However, in all the cases
where the patch is incorrect, 46 out of 48 cases (99.83%), the patch reveals differ-
ent kinds of problems affecting the test suites that are relevant for the develop-
ers. This result is relevant to researchers, there is a need for research on exploit-
ing code-removal patches as means to automatically improve test suites. This
is also interesting for practitioners: the experiment suggests that code-removal
patches should be shown to practitioners, because they can understand a par-
ticular weakness of their test suites.

3.3.4 How do developers fix the failed builds associated with a test-suite-
adequate code-removal patch? (RQ4)

In this research question, the relation between the patches produced by developers
and the automatically generated code-removal patches is investigated. To this end,
the patches produced by the developers are first retrieved and analyzed, and then
related to the code-removal patches.

Patches Produced by Developers

Table 3.7 shows the details about the relation between the failing builds for which
there is a code-removal patch and the types of human patches. In particular, the first
column (Patch Type) lists the different types of human patches associated with the
builds for which jKali is able to create a patch, the second column (Category) shows
the specific categories of every patch type, the third column (# Builds - fail. test), and
the fourth column (# Builds - crash. test) indicate the number of builds with a failing
or crashing test case respectively fixed according to a specific category of human fix,

3.3. Experimental Results 49

TABLE 3.7: Strategies actually used by developers to fix builds
patched by jKali.

Patch Type Category
Builds
fail. test

Builds
crash. test

Tot per
Category

Tot per
Patch Type

Statement-
Level
Change

Change
Condition

1 0 1

2Add if-else
Statement

0 1 1

Method-Level
Change

Change
Method Im-

plementation
2 3 5

7
Override

Method
0 2 2

Code
Removal

Remove
Variable

Assignment
0 1 1

5

Remove
Variable

Annotation
0 1 1

Revert 2 1 3

Fix in Test
Fix Test Code 8 3 11

17
Fix Test Data 2 4 6

Not Available

No Change 5 2 7

17
Not Found 7 3 10

the fifth column (Tot per Category) reports the total number of builds whose patches
belong to a specific category, and finally the sixth column (Tot per Patch Type) reports
the total number of builds fixed by a specify type of human fix.

Patches fixing a single program statement is quite rare in the benchmark of this
study: it happens in just 2 cases (4.17%).

A more significant number of patches span entire methods (7 cases, 14.58%).
Method level changes do not follow specific patterns because they introduce or
change pieces of logic in the program, they are far more complex than code-removal
patches.

Interestingly, a non-trivial number of programmer patches are actually code-
removal patches (5 cases, 10.42%) that remove specific program elements (e.g., as-
signments and annotations) or revert changes (e.g., by undoing commits or closing
pull requests without merging changes). The action of reverting a change is consid-
ered like a removal of code, because the code associated with the changes is deleted
with that action. This result shows that revert-based repair is relevant, while this has
been little researched in academia [111].

Unexpectedly, the most frequent type of human patches target the test cases and
not the application code (17 cases, 35.42%), human developer either fix the test code

50 Chapter 3. Effectiveness of Code-removal Patches

or the test data used by a test (e.g., a JSON file used by a test). This result reinforces
the finding of RQ3 that incorrect code-removal patches can be exploited to improve
test suites, including fixing wrong test cases. Moreover, it calls for more repair tech-
niques able to generate patches for test cases and not only programs [19].

Finally, per the methodology used, the human patches are sometimes not avail-
able. In a significant number of cases, 7 (14.58%), this is because the build failure is
due to flaky tests. Indeed, it is possible to notice that in 4 out of 7 cases (57.14%), the
status of the build on Travis CI became passed after the original failure detected by
Repairnator. This is a piece of evidence that techniques are needed to make sure that
the build failures to be repaired are indeed not due to flakiness.

Relation between Code-removal Patches and Developers Patches

Table 3.8 relates all code-removal patches to developer patches. The first column
(Build ID) contains the Travis CI IDs of the builds, the second column (Build Type)
indicates if a build has a failing or crashing test case, the third column (Code-Removal
Patch Reason) shows why a code-removal patch has been generated for a specific
build, the fourth column (Human Patch Category) shows which is the category of
patch that developers implemented to fix a bug in a particular build, and the fifth col-
umn (Correlation Type) indicates which type of correlation exists between the changes
performed by developers patches and code-removal patches. Three different types
of correlations are defined: Same-location, when code-removal patch and human
patch change exactly the same statements of source code, 2) Partial, when code-
removal patch and human patch have in commons at least one line of code that
is changed, and 3) Disjoint, when code-removal patch and human patch change dif-
ferent points of the source code and they do not have anything in common.

Correct Patches Notably, there are two cases in which the code-removal patch is
correct, build 322406277 that fails due to a failing test case, and build 384713759,
that fails due to a crashing test case. To fix the bug in build 322406277, the de-
veloper closed the pull request refusing the change that overrides a method. The
corresponding code-removal patch changes this method, forcing the execution of a
specific branch, whose behavior is the same of the original method without the over-
riding. Thus, in this case there is a partial relation between the human patch and the
code-removal patch. For build 384713759, the developer removed an assignment
to a variable, and the code-removal patch does exactly the same change. This is the
only case in which the developer and the code-removal patch change exactly the
same location of the source code.

Weak or Incorrect Test Cases Considering the 25 builds for which jKali is able
to generate a code-removal patch because of a weak test suite, there are 4 cases in
which the code-removal patches and the human patches are partially related. For
build 380634197, there is a partial relation between the changes applied by the

3.3. Experimental Results 51

TABLE 3.8: Comprehensive Data of the 48 Builds with Code-removal
Patches.

Build ID Build Type Code-Removal
Patch Reason

Human Patch
Category

Correlation
Type

322406277 Failing test Correct Revert Partial
365170225 Failing test Weak Test Suite Not found None
397786068 Failing test Weak Test Suite Fix Test Data None
353457987 Failing test Weak Test Suite Fix Test Code None
214962527 Failing test Weak Test Suite Not found None
368867994 Failing test Weak Test Suite Fix Test Code None
400611810 Failing test Weak Test Suite Fix Test Code None

249918159 Failing test Weak Test Suite Change Method
Implementation Disjoint

380634197 Failing test Weak Test Suite Change Method
Implementation Partial

372495757 Failing test Weak Test Suite Change Condition Partial
361036711 Failing test Weak Test Suite Not found None
413754623 Failing test Weak Test Suite Not found None
354875355 Failing test Rottening Test Not found None
403087258 Failing test Rottening Test Not found None
351075282 Failing test Rottening Test Fix Test Data None
378592651 Failing test Rottening Test Not found None
351211949 Failing test Buggy Test Case Fix Test Code None
408694507 Failing test Buggy Test Case Fix Test Code None
390335750 Failing test Buggy Test Case Fix Test Code None
349620528 Failing test Buggy Test Case Fix Test Code None
363986485 Failing test Buggy Test Case Fix Test Code None
403447416 Failing test Flaky Test No Change None
415750114 Failing test Flaky Test Revert Disjoint
374587117 Failing test Flaky Test No Change None
402096641 Failing test Flaky Test No Change None
387846982 Failing test Flaky Test No Change None
415477949 Failing test Flaky Test No Change None

384713759 Crashing test Correct Remove
Assignment Same-location

356030973 Crashing test Weak Test Suite Change Method
Implementation Partial

348327780 Crashing test Weak Test Suite Fix Test Data None
348335601 Crashing test Weak Test Suite Fix Test Data None
348337755 Crashing test Weak Test Suite Fix Test Data None
356031025 Crashing test Weak Test Suite Not found None
372415239 Crashing test Weak Test Suite Fix Test Data None
389668297 Crashing test Weak Test Suite Revert Partial
386721415 Crashing test Weak Test Suite Fix Test Code None

384760371 Crashing test Weak Test Suite Remove
Annotation Disjoint

354919174 Crashing test Weak Test Suite Add if-else
Statement Disjoint

422238225 Crashing test Weak Test Suite Not found None
346537408 Crashing test Weak Test Suite Not found None

373018834 Crashing test Weak Test Suite Change Method
Implementation Disjoint

373043004 Crashing test Weak Test Suite Change Method
Implementation Disjoint

388971125 Crashing test Rottening Test Override Method Disjoint
388971144 Crashing test Rottening Test Override Method Disjoint
385681821 Crashing test Buggy Test Case Fix Test Code None
363526725 Crashing test Buggy Test Case Fix Test Code None
421420531 Crashing test Flaky Test No Change None
415654258 Crashing test Flaky Test No Change None

52 Chapter 3. Effectiveness of Code-removal Patches

developer and the corresponding code-removal patch, because the code-removal
patch deletes an else branch of the same method fixed by developers. For the
build 372495757, the human patch and the code-removal patch are partially re-
lated, because they change the same method, but in different parts. For the build
356030973, the human patch and the code-removal patch are partially related,
in this case, the code-removal patch avoids the execution of the if branch that is
changed by developers. In the case of build 389668297, the changes that introduce
the bug have been reverted, while the corresponding code-removal patch avoids the
execution of one of the paths of the new faulty method introduced by developers,
indicating a partial relation between human and automated fix.

Finally, there are five cases (249918159, 384760371, 354919174, 373018834,
and 373043004) where the code-removal patches and human patches are disjoint
because they change different points of the source code. In particular, for the build
384760371, the human patch and the code-removal patch are disjoint because they
change different points of the source code, but they are semantically related because
both changes influence the same value used by the program to save records in a
database.

Interestingly, considering both the 25 code-removals patches that work due to
weak test suites and the 7 ones that work due to buggy test cases (32 builds in total),
in 16 out of 32 cases (50.0%) the human patch precisely consists in fixing the test
code (11 cases) or the test data (5 cases). This confirms the deep relation between the
thoroughness of the test suites and the code-removal patches that are generated.

Flaky Test When a code-removal patch works because of a flaky test, in 7 out of 8
cases (87.5%) there are no changes applied by developers to fix the failure, which is
consistent.

The generation of patches that trivially alter, or do not alter at all, the seman-
tics of the program are good indicators of failures caused by flaky tests. In fact, for
the builds 403447416 and 421420531, the code-removal patches simply force log-
ging, without introducing any other change to the logic of the programs. For the
builds 374587117 and 415654258, the flakiness is related to timeouts. For the
build 374587117, the code-removal patch removes a piece of code not executed
by the failing test case, while for the build 415654258, the code-removal patch re-
moves the instruction that closes a Dispatcher object. For the builds 402096641
and 387846982, the code-removal patches remove an assignment instruction, while
for the build 41547794, the code-removal patch removes a method call, but appar-
ently these actions do not influence the behavior of the program. For the remaining
build 415750114, the flakiness is related to a rare race condition that causes the fail-
ure of the test case. The corresponding code-removal patch forces the execution of a
specific if statement, without skipping the execution of other parts of code because
it is not associated with an alternative (else) branch.

3.3. Experimental Results 53

Rottening Test The generation of code-removal patches accepted because of rot-
tening tests can provide useful information to improve the tests, for instance by
tracking the tests and the assertions that are not anymore executed after the patch.
Indeed, in 2 cases (builds 354875355 and 403087258) the code-removal patches
remove the code that enables the execution of the failing test. Indeed, the test case
fails only when a certain value is higher than a specified threshold. Since the code-
removal patch avoids the increase of that value, the test case doesn’t fail anymore. In
other 2 cases, builds 388971125 and 388971144, the developers fixed the source
code overriding the method tested in the crashing test case. In these cases, the
changes performed by developers and code-removal patches are disjoint.

For the build 378592651, the code-removal patch forces the execution of a spe-
cific branch, changing a value that is used in a condition of a test case to execute
certain assertions. Since the condition checks if the value is different from a given
threshold before a certain time, and the code-removal patch changes that value also
when it should not happen, the value satisfies the condition, and the failing assertion
is not executed anymore.

Finally, in the remaining case associated with the build 351075282, while the
developer fixed the test data, the code-removal patch drops an entire block of code
that influences the execution of the failing assertion in the test.

Problem of Fault Localization Overall, there are 14 builds for which the human
patch changes the source code. It is observed that in 8 out of 14 cases (57.14%), the
code-removal patch is at a totally different location compared to the human patch. In
other terms, the fault localization technique used14 has a poor effectiveness in those
8 cases. This is another piece of evidence that the state of the art of fault localization
is under-optimal for program repair [66].

How do developers fix the failed builds associated with a test-suite-adequate
code-removal patch? (RQ4) In 17 out of 48 cases (35.42%), the builds for which
code-removal patches exist are caused by problems in the test suite rather than
problems in the program. In particular, there are 11 out of 48 builds (22.92%)
for which the developers fixed the test code, and 6 out of 48 builds (12.5%) for
which the developers fixed the data used by the test cases. This is a novel ob-
servation in the literature and important for the research field: it shows that the
presence of code-removal patches is a good signal about problems in tests, fur-
ther confirming the results from RQ3. Also, the experiment clearly shows that
fault localization often does not point to the right location to change (8 out of
14 cases, 57.14%). These results are significant for the program repair research
community: this is a need to research on using the presence of code-removal
patches as test adequacy criterion, and there is also a need for more research on
fault localization.
14Ochiai in Astor/JKali, as presented in Subsection 2.1.2

54 Chapter 3. Effectiveness of Code-removal Patches

3.4 Threats to validity

A threat to the validity of the results is about their generalization. Indeed, given
the width of possible code-removal patches, the study considers faults revealed by
either one failing or one crashing test case only, since it is a situation commonly
encountered in practice. For instance, the Bears benchmark [73], which is a bench-
mark of 251 reproducible bugs from 72 different projects, has 71.32% of builds with
a single failing (38.65% of the total) or crashing (32.67% of the total) test case. Thus,
it is necessary to conduct further studies to understand if the results obtained are
generalizable also to builds that have more than one failing or crashing test case.

Another threat to validity is related to the execution time chosen for the repair
process, that was set to 100 minutes. To mitigate this threat, the setup of the experi-
ment was based on previous research [25].

Another concern is about the correctness of the implementations used in the ex-
periments. jKali, the Java implementation of Kali [95], was used to generate the
code-removal patches. To mitigate this threat, both the tool and the results were
made publicly available. Moreover, jKali was already used in other previous stud-
ies [76, 25, 132]

3.5 Discussion

Results show that code-removal patches are often insufficient to fix bugs, contrarily
to previous studies [69, 95, 74] where the effectiveness of code-removal patches is
higher. Moreover, while other approaches generically explain the presence of code-
removal (or plausible) patches with the presence of a weak test suite, the presented
study provides detailed evidence about issues that may affect test suites, such as
rottening tests, buggy test cases, and flaky tests. The relation between code-removal
patches and human patches provides additional insights about the meaning of code-
removal patches. Finally, the study provides evidence that code-removal patches
could be exploited to automatically improve test suites, opening new opportunities
for studies in the field of program repair.

55

Chapter 4

Exception-Driven Fault
Localization for APR

This chapter presents EXCEPT, an exception-driven fault localization technique that
considers the semantics of exceptions to accurately localize faults for APR, enriching
the localization with useful information about the expressions likely responsible for
the failures and the guessed faults.

4.1 Fault Localization in APR

As discussed in Chapter 2, APR techniques offer a range of strategies to repair code,
and all of them share the challenge of identifying the fix locus, that is, the program
location(s) that should be modified in order to produce a fix. Indeed, it is hard or even
impossible to repair a fault without selecting a good location for the fix [66].

The larger the program size, the more difficult it is to identify the correct lo-
cation(s) in which to apply the fix: a program may consist of thousands or even
millions of possible program locations, many of which executed during program
failures, that can be selected for the generation of a fix. Focusing on the wrong lo-
cations may waste significant computational resources, since each location can be
modified in many different ways in the attempt of obtaining a fix [71]. Even worse,
choosing the wrong location multiple times can dramatically impact performance
and even the feasibility of a repair attempt.

As described in Section 2.3, one of the strategies used by APR techniques to ad-
dress the problem of identifying the fix locus is Spectrum Based Fault Localization
(SBFL) [124]. For example, jGenProg [77], uses the ranking generated by the Ochiai
SBFL technique [1] to select statements as modification points with a probability that
depends on their suspiciousness, while NOPOL [131] follows the ranking generated
by Ochiai to analyze each statement in the stack trace one after the other. Experimen-
tal evidence shows that SBFL techniques are often unable to rank faulty statements
at top positions [66, 6, 91]

This Ph.D. thesis addresses the localization problem by primarily exploiting the
semantics of the failures rather than the correlation between the executed statements
and the crashed tests, that has been proven to produce inaccurate results. To this

56 Chapter 4. Exception-Driven Fault Localization for APR

end, the work presented in this chapter focuses on failures caused by exceptions, which
represent a large portion of the failures that can be observed. For instance, a study
by Sawadpong et al. shows that the density of defects that are closely related to
exception handling is three times higher than the overall defect density, based on six
major Eclipse releases [101]. The study by Ginelli et al. considers 1,918 failing Travis
CI builds discovering that 50.47% of these builds have at least one test that fails
throwing an exception [31]. Finally, based on the data collected with the experiment
on Repairnator [115], among the top 10 common failure reasons, 7 reasons are related
to exceptions.

Exceptions carry extensive information about the occurred failures, such as the loca-
tion that raised the exception, which can represent a good starting point for the fault
localization, and the type of the exception, which provides useful semantic informa-
tion about the possible nature of the problem. For instance, a failure caused by a Java
ArrayIndexOutOfBoundsException suggests the location that raised the exception
as a possible location for the fix, but also the statement where the array has been
initialized and the statements where the variables used to access a location of the
array have been assigned with a value are good locations. The type of the exception
can thus be used to guide the analysis selecting suspicious locations according to the
semantics of the failure.

Since locations are identified based on a guessed cause of the failure (e.g., the
value of an index might be wrong), a suspicious localization can be enriched with
information about the program elements that are likely responsible for the failure
(e.g., a variable in an index expression) and the likely fault (e.g., wrong variable
used), which can in turn be exploited to identify the change that should be operated
to correct the program (e.g., replace the variable).

So far, some approaches have addressed the localization and repair of failures
caused by NullPointerExceptions [23, 106], but none of them studied how to deal
with multiple types of exceptions and how to enrich the localization with informa-
tion that can be useful to APR techniques and developers. The localization used in
ssFix [127] can exploit stack traces to improve rankings, but this is not sufficient to
correctly localize several faults, as reported in the evaluation.

Although some approaches addressed the localization and repair of failures caused
by exceptions, NullPointerExceptions in particular [23, 106], they cannot gener-
ate ranked lists of statements that can be used by APR techniques, neither they con-
sidered enriching the localization with debugging information that can be useful to
developers. The localization used in ssFix [127] can exploit stack traces to improve
rankings, but this is not sufficient to correctly localize several faults, as reported in
the evaluation of this Ph.D. thesis.

In this context, a new fault localization technique, EXCEPT, has been developed
during this Ph.D work.

4.2. Except 57

4.2 Except

EXCEPT is an exception-driven fault localization technique that can be used to sup-
port APR techniques. In addition to producing an ordered list of statements that are re-
ported as high-priority elements on top of ranked lists returned by SBFL techniques,
EXCEPT enriches the identified items with information about the individual expres-
sions that are likely faulty (e.g., a specific variable in an expression) and the guessed
faults (e.g., wrong variable used), which can be used by both APR techniques and
developers to identify the action to perform to patch the program (e.g., replacing the
variable).

Relevant
statements

Stack Trace
Analysis

Relevant

expression

Ranking Generation

Suspicious locations (expression level)

out[row] = sum

java.lang.ArrayIndexOutOfBoundsException:
Index 2 out of bounds for length 2

 at org.apache.commons.math.linear.BigMatrixImpl.
operate(BigMatrixImpl.java:997)

 at org.apache.commons.math.linear.BigMatrixImplTest.
testMath209(BigMatrixImplTest.java:446)

 at java.base/
jdk.internal.reflect.NativeMethodAccessorImpl.

invoke0(Native Method)
 at
java.basejdk.internal.reflect.NativeMethodAccessorImpl.

invoke(NativeMethodAccessorImpl.java:62)
 ...
 at java.base/java.lang.reflect.Method.

invoke(Method.java:566)
 at
junit.framework.TestCase.runTest(TestCase.java:176)

Stack trace

Repair
targets

public BigDecimal[] operate(BigDecimal[] v) {
 ...
 final BigDecimal[] out = new BigDecimal[v.length];
 for (int row = 0; row < nRows; row++) {
 BigDecimal sum = ZERO;
 for (int i = 0; i < nCols; i++) {
 sum = sum.add(data[row][i].multiply(v[i]));
 }
 out[row] = sum;
 }
 ...
} Program

991
992
993
994
995
996
997

Test

Selection of suspicious locations Generation of repair targets Merging of the ranks

row

out[row] = sum @line997

row @line997

row = 0 @line992

out[row] = sum
@line997
out
missing condition
2.00
row @line997
row
wrong array index
1.95

Repair
targets list

out[row] = sum @line997
out
missing condition
2.00

SBFL
rank

out

v.lenght @line991

row @line997

row = 0 @line992

Suspicious locations
(expression level)Relevant

expression

…
…
…

…
…

FIGURE 4.1: Except applied to the program in Listing 5.

As exemplified in Figure 4.1, EXCEPT returns a ranked list of repair targets starting
from three inputs: a faulty program p, a test t that fails with an uncaught exception,
and a list of suspicious statements rankSBFL identified with an SBFL technique. A
repair target reports the following information:

• a program location, which is a likely faulty program statement,

• an expression in the location, which represents a specific program element likely
responsible of the fault,

• guessed faults, which associate the expression with specific guessed faults that may
affect the expression,

• a suspiciousness value, which is a positive number that can be used to rank repair
targets from the most likely to the least likely to be relevant for fixing the fault.

For example, a repair target may refer to an array variable (expression) in a statement
with an array access (program location) as likely faulty element, while suggesting
that the array name is wrong (guessed fault), with a given suspiciousness value.

58 Chapter 4. Exception-Driven Fault Localization for APR

Or, it may identify the variable used as index of the array (expression) as the faulty
element, suggesting that the value of the variable is wrong (guessed fault), with a
given suspiciousness value.

EXCEPT adds the repair targets that derive from the knowledge of the exception
raised by the crashing test as high priority items of the initial ranked list produced
by a SBFL technique. Repair targets and SBFL locations are merged together to ob-
tain a comprehensive ranked list that can benefit from the joint contributions of two
complementary approaches. Since the information about the faulty expression and
the guessed fault derives from the knowledge of the exceptions, they are available
only for the high priority targets added by EXCEPT, and are not available for the
elements in the initial ranked list produced by SBFL.

As depicted in Figure 4.2 EXCEPT works in two main steps:

• Stack Trace Analysis, which analyzes the stack trace of the exception to identify the
type of the exception and the relevant statements that occur in the stack trace;

• Ranking Generation, which identifies the relevant expressions that may have caused
the exception, traces them back to the suspicious locations that might have influ-
enced the values of the relevant expressions, and creates a ranked list of repair tar-
gets from the suspicious locations and the input SBFL statements.

During the Ranking Generation step, a data-flow analysis is performed in order to find
the locations that change the values of the relevant expressions and the locations in
which the relevant expressions are used. Every relevant expression is associated
with one or more suspicious locations, so as to generate different Repair Target(s)
based on the type of location and the type of exception.

Figure 4.1 shows the elements that are incrementally identified by EXCEPT to fi-
nally generate the ranking, when applied to the faulty program in Listing 5, which
throws an ArrayIndexOutOfBoundsException. Algorithm 1 and Algorithm 2 de-
tail how EXCEPT works with pseudocode. The blue constant and the blue functions
depend on the type of the exception and are described in details in Section 4.3 for
the supported exceptions.

4.2. Except 59

Faulty
program

Exception stack
trace

Stack Trace
Analyzer

Exception type

Relevant
Expressions

 Identifier

Suspicious
location

Repair Target
Generator

Relevant statements

+

Repair
Target

...

...

Repair Targets &
SBFL statements

 Merger

Repair
Target

SBFL
statement

...

SBFL
statement

Stack Trace Analysis

Ranking Generation

RExp_1 RExp_n...

Suspicious
Locations

Finder

FIGURE 4.2: Functioning of EXCEPT.

4.2.1 Stack Trace Analysis

Stack trace analysis (lines 9-11 of Algorithm 1) extracts two key data from the stack
trace associated with an exception: the exception type and the relevant statements for
the localization of the fault. The exception type is trivial to extract. In fact, EXCEPT

intercepts the output generated by the crashing test, retrieves the information about
the stack trace of the exception, and extracts the line that reports the exception type.

60 Chapter 4. Exception-Driven Fault Localization for APR

Algorithm 1 Description of EXCEPT.

1: procedure EXCEPT (p, t, rankSBFL)
2: Input
3: p The faulty program
4: t A test case that fails raising an exception
5: rankSBFL The list of suspicious statements identified with a SBFL

technique
6: Output
7: repairTargestList: a list of repair target or null

8: // Step 1: Stack Trace Analysis
9: stackTrace = getExceptionStackTrace(p, t);

10: exceptionType = getExceptionType(stackTrace);
11: relevantStatementsList = getRelevantStatementsList(stackTrace);

12: // Step 2: Ranking Generation
13: repairTargetsList = ∅;
14: relevantStatementsAnalyzed = 0;

15: // Sub-step 2.1: Selection of suspicious locations
16: for each relevantStatement ∈ relevantStatementsList do
17: if relevantStatementsAnalyzed < exceptionType.maxRelevantStatementsToConsider then
18: relevantStatementsAnalyzed = relevantStatementsAnalyzed + 1;
19: suspiciousLocations = selectSuspiciousLocations(p, relevantStatement,

exceptionType);
20: // Sub-step 2.2: Generation of repair targets
21: for each suspLoc ∈ suspiciousLocations do
22: susp = computeSuspValue();
23: repairTarget = generateRepairTarget (suspLoc, exceptionType, susp);
24: repairTargetsList.add(repairTarget);
25: end for
26: end if
27: end for

28: // Sub-step 2.3: Merging of the rankings
29: repairTargestList.addTargetsFrom(rankSBFL);

30: return repairTargetsList;
31: end procedure

EXCEPT also identifies the relevant statements that might have contributed to the ex-
ception and that should be taken under consideration to determine the possible fault
locations. These statements include every program statement explicitly reported in
the exception stack trace, that is, every program location that is in the context of the
statement that raised the exception.

Since the fault is assumed to be in the program, EXCEPT discards from the anal-
ysis the statements that do not refer to the program under analysis, but rather refer
to external libraries, JDK classes, test frameworks (e.g., JUnit [113] or Mockito [110]),
and test cases. For example, considering the stack trace in Figure 4.1, EXCEPT dis-
cards the invocation to testMath209 since the method belongs to a test case class,
the invocation to invoke0 since the method is part of the JDK library, and finally
the invocation to runTest since the method is part of the JUnit framework.

4.2. Except 61

Algorithm 2 Description of selectSuspiciousLocations.

1: procedure selectSuspiciousLocations(p, stp, et)
2: Input
3: p The bugged program
4: stp A Stack Trace Poi
5: et The type of the exception

6: Output
7: suspiciousLocations: a set of suspicious locations

8: relevantExpressions = selectRelevantExpressions(p, stp, et);

9: suspiciousLocations = ∅;
10: for each re ∈ relevantExpressions do
11: suspiciousLocationsForRe = findSuspiciousLocations(p, re, et);
12: suspiciousLocations.add(suspiciousLocationsForRe);
13: end for

14: return suspiciousLocations;
15: end procedure

For each unfiltered statement, EXCEPT creates a relevant statement which includes
the line number of the statement, the Java class to which it belongs to, the method that
executes it, and the file name containing the statement. This filtering is performed by
function getRelevantStatementsList invoked at line 11 of Algorithm 1.

The list of relevant statements is ordered according to their position in the stack
trace, starting from the one closest to the statement that generates the exception un-
der analysis.

4.2.2 Ranking Generation

The generation of the ranking (lines 13-29 in Algorithm 1) implies 1) the analysis of
the relevant statements to identify the suspicious program locations that might have
caused the exception, 2) the generation of the repair targets, and 3) the merging of
the identified repair targets with the initial SBFL rank.

Selection of Suspicious Locations (lines 16-19 in Algorithm 1 and Algorithm 2).
The number of analyzed relevant statements is bound to prevent that too many re-
pair targets are generated (line 17 in Algorithm 1). In fact, adding many targets to the
initial ranking generated by SBFL may hinder the effectiveness of APR techniques,
since they would have to consider too many highly suspicious program locations.
On the contrary, EXCEPT aims to add a small and focused set of high priority repair
targets that may help directing the repair algorithms on the right statements for the
right reason.

In practice, the number of relevant statements to be considered might be different
based on the exception type. The bound could be small (e.g., 1) for some exceptions.
For instance, in the case of ArrayIndexOfOutBoundsException, the statement that
raises the exception includes the array variable and the index value that cause the

62 Chapter 4. Exception-Driven Fault Localization for APR

exception and the analysis can be effectively driven by their values. The bound could
be higher for other exceptions, such as the IllegalArgumentException, since the
raised exception may strongly depend on the execution context, and considering
multiple points derived from the stack trace of the exception might be beneficial
(e.g., also considering the calling method).

The selection of the suspicious locations from a relevant statement is described in
the selectSuspiciousLocations function presented in Algorithm 2. The selection
is driven by two key logical steps: the selection of the relevant expressions (line 8 in
Algorithm 2) and the identification of the suspicious locations (line 11 in Algorithm 2).

When a relevant statement is analyzed, EXCEPT first narrows down the analy-
sis to specific expressions included in the statement. The idea is that the analysis
should focus on the relevant expressions that might be responsible for the excep-
tion, ignoring the rest of the statement. For example, if the statement that generates
a NullPointerException is

p.getItem(i)

the analysis selects variable p as the expression to focus the analysis on, excluding
i and getItem() from the scope of the analysis. Similarly, if a statement raises an
ArrayOutOfBoundsException, EXCEPT would select the expression used to access
the array and the expression that identifies the array as relevant expressions for the
analysis, as shown in Figure 4.1. Since this step of the analysis depends on the se-
mantics of the exception, it is described in details for each supported exception in
Section 4.3.

Each expression relevant to the exception is used to identify the statements that
might have caused the exceptional situation that finally resulted in the failure.

Starting from the point in which the exception occurs, the data-flow analysis
searches for all the points in which the suspicious expressions are used before the
statement in which the exception occurs and the points in which they are defined.
All these points are then considered to generate the repair targets.

For instance, if the relevant expression is a null variable, the code responsible
for this value would be considered suspicious at this stage. Similarly, if the relevant
expressions are the array name and the array index, EXCEPT would select the code
that defines the array and the code that defines the index as suspicious locations.
This is done with a local data-flow analysis that depends on the relevant expres-
sion and the type of exception. The specific analysis performed for the supported
exceptions is described in Section 4.3.

Generation of Repair Targets (lines 21-24 of Algorithm 1). Every suspicious
location is turned into a repair target by adding the guessed faults and a suspicious-
ness value. The guessed faults are annotations that specify why the expression could
be faulty. For example, if the exception is ArrayIndexOutOfBoundsException and
the selected expression defines the value of the size used to initialize the array, a
guessed fault may assume the initial size of the array is wrong. Developers and APR
techniques can exploit this annotation to change the program accordingly. Since the

4.3. Supported Exceptions 63

annotation depends on the type of the exception, Section 4.3 describes how faults
are guessed for each exception type.

The suspiciousness value assigned to the repair targets considers the fact that
these targets must have higher priority compared to the top ranked elements in the
input SBFL rank. Since the maximum suspiciousness in the input SBFL rank is 1,
EXCEPT assigns suspicious values that start from 2 to the identified repair targets.
Since repair targets are generated by following the order of occurrence of the rele-
vant statements, which are ordered based on their distance from the statement that
raises the exception, EXCEPT prioritizes the repair targets accordingly, decreasing
the suspiciousness value by 0.05 every time a target is added to the rank. In prac-
tice, this guarantees that a good number of repair targets can be ranked at a higher
position than the top element in the input rank.

Merging of the rankings (line 29 of Algorithm 1). The last step requires merging
the identified repair targets with the input ranked list. This is performed with two
simple steps. First, the locations that are present both in the SBFL rank and in the
repair targets are removed, keeping only the location with the highest suspicious-
ness score. The additional information produced by EXCEPT (the expression and
the guessed fault) are also preserved. Second, all the items are ordered according to
their suspiciousness.

4.3 Supported Exceptions

To demonstrate EXCEPT, the analysis for four types of exceptions is provided: Ar-
rayIndexOfOutBoundsException, StringIndexOutOfBoundsException,
NullPointerException, and IllegalArgumentException. The focus is on
some of the most popular types of exceptions based on faults contained in public
benchmarks, such as Defects4J [45], Bears [73], and Repairnator [115]. Similar anal-
yses can be added to support additional exceptions following their semantics.

EXCEPT is equipped with simple and fast data-flow-based analyses bounded in
scope to identify the likely fault locations. In particular, the analysis to determine the
suspicious locations is bounded to the method that includes the relevant expression.
Note that the selection of the relevant expressions may select statements in multiple
methods, thus the analysis is not generally limited to the method that raises the
exception. Moreover, the scope of the analysis always includes the definition of class
variables, which may initialize variables with wrong values. Bounding the analysis
is useful to generate a limited number of repair targets and complete the analysis
quickly (in the experiments every case could be processed in few seconds).

In the following, the elements that depend on the exceptions for the four sup-
ported exception types are discussed and exemplified: maxRelevantStatementsToConsider
specifies the number of relevant statements to consider, selectRelevantExpressions
describes how the relevant expressions are determined, findSuspiciousLocations
describes the analysis performed to select the suspicious code locations, and finally

64 Chapter 4. Exception-Driven Fault Localization for APR

TABLE 4.1: Analysis of ArrayIndexOfOutBoundsException.
Suspicious locations Guessed faults

statement with refArray array variable is wrong
missing conditional
statement

allocation of refArray wrong array initializa-
tion

definitions of the variables that de-
termine the size of refArray wrong variables values

statement with exprIndex exprIndex is wrong

definitions of variables used in
exprIndex

wrong variables values

generateRepairTarget indicates the guessed faults that are associated with the
suspicious locations. The guessed fault consists of a label with known semantics
(e.g., “wrong variable name”) that is included in the repair target and that can be
exploited by developers or APR techniques to define the repair strategy.

4.3.1 ArrayIndexOfOutBoundsException

maxRelevantStatementsToConsider. The analysis considers the statement that
raises the exception as the only relevant statement.

selectRelevantExpressions. EXCEPT looks for one or more instances of the
following expression in the relevant statement

refArray[exprIndex]

to select the occurrences of refArray and exprIndex as relevant expressions that
might be wrong and thus cause the exception. In fact, the access to the array might
fail because the wrong array is used or the wrong array location is selected.

findSuspiciousLocations and generateRepairTarget. When refArray

is considered, EXCEPT runs a recursive backward bounded data-flow analysis to
identify the locations in which refArray is allocated. If the array initialization
statement uses other variables, the analysis process is iterated to determine the loca-
tions that assign a value to these variables. Also the location itself where refArray
is used is returned as a suspicious location.

When exprIndex is considered, EXCEPT runs a backward bounded data-flow
analysis to identify the locations that define the variables that occur in exprIndex.
Also the location itself where exprIndex is used is returned as a suspicious loca-
tion. Table 4.1 lists the identified locations and the corresponding guessed faults.

Example. Listing 5 shows an excerpt of the Math 98 fault in Defects4J. The statement
at line 9 is the relevant statement, since it generates the ArrayIndexOutOfBound-
sException. The variables out and row are selected as relevant expressions, which in
turn generate 6 suspicious locations with the corresponding guessed fault: out might
be the wrong array variable used at line 9; row might be the wrong index used at line
9; there might be a missing condition (e.g., it is necessary to add an if-statement

4.3. Supported Exceptions 65

1 public BigDecimal[] operate(BigDecimal[] v) {

2 ...

3 final BigDecimal[] out = new BigDecimal[v.length];

4 for (int row = 0; row < nRows; row++) {

5 BigDecimal sum = ZERO;

6 for (int i = 0; i < nCols; i++) {

7 sum = sum.add(data[row][i].multiply(v[i]));

8 }

9 out[row] = sum;

10 }

11 ...

12 } /*** Source: Math 98 - Defects4J ***/

LISTING 5: Example of ArrayIndexOutOfBoundsException.

that influences the access to array out); row might be assigned with the wrong value
at line 4; the initialization of out at line 3 might be wrong; the expression v.length

used at line 3 might be wrong. In this case, the correct patch corresponds to mod-
ifying the initialization of the array at line 3 by replacing the expression v.length

with nRows, which is one of the guessed faults.

4.3.2 StringIndexOutOfBoundsException

maxRelevantStatementsToConsider. The analysis considers the statement that
raises the exception as the only relevant statement.

selectRelevantExpressions. EXCEPT looks for one or more instances of the
following expression in the relevant statement

stringVar.op(...exprIndex...)

where stringVar is a String variable, op is a method that can return a StringIn-
dexOutOfBoundsException, such as charAt(int index), and ...exprIndex...
is an Integer expression that is used to access the string at a specific position.

EXCEPT selects the occurrences of stringVar, in case the wrong string is used,
and exprIndex, in case the wrong index is used, as relevant expressions.

findSuspiciousLocations and generateRepairTarget. When either string-
Var or exprIndex are considered, EXCEPT runs a backward data-flow analysis to
identify the locations in which the variables included in these expressions are de-
fined. Also the location itself where these variables are used is returned as a suspi-
cious location. Table 4.2 lists the identified locations and the corresponding guessed
faults.

Example. Listing 6 shows an excerpt of the Lang 45 fault in Defects4J. The statement
at line 11 is the relevant statement, since it generates the StringIndexOutOfBoundsException.

66 Chapter 4. Exception-Driven Fault Localization for APR

TABLE 4.2: Analysis of StringIndexOutOfBoundsException.
Suspicious locations Guessed faults

statement with stringVar String variable is
wrong
missing conditional
statement

definition of stringVar wrong value
missing conditional
statement

statement with exprIndex exprIndex is wrong

definitions of vars used in exprIndex wrong variables values
missing conditional
statement

The analysis selects the expressions str, 0 and upper as relevant expressions, which
in turn generate 8 suspicious locations with the corresponding guessed fault.

str might be the wrong variable used at line 11, 0 might be the wrong starting in-
dex at line 11, upper might be the wrong end index at line 11, the entire statement at
line 11 might have to be accessed only within a conditional statement, lower might
be the wrong variable assigned as value to the variable upper at line 7, the entire
statement at line 7 might have to be accessed only within a conditional statement,
str.length() might be the wrong value assigned to the variable upper at line 4,
and the entire statement at line 4 might have to be accessed only within a conditional
statement.

4.3.3 NullPointerException

maxRelevantStatementsToConsider. The analysis considers both the state-
ment that raises the exception and the calling method to address the case of null
values erroneously passed as parameters.

selectRelevantExpressions. EXCEPT looks for one or more instances of the
following expression in the first relevant statement

obj.op()

where obj is a non-primitive variable. EXCEPT selects the occurrences of obj as
relevant expressions that might be wrong and thus cause the exception. Finally,
EXCEPT selects the non-primitive parameters used in the method call in the second
relevant statement to account for null values generated by the caller.

findSuspiciousLocations and generateRepairTarget. When obj is con-
sidered, EXCEPT runs a backward bounded data-flow analysis to identify the loca-
tions where obj is defined. When the caller is analyzed, if the null variable is
defined through the method call, the calling site is also identified as a suspicious
location. Also the location itself where this variable is used is returned as a suspi-
cious location. Table 4.3 lists the identified locations and the corresponding guessed
faults.

4.3. Supported Exceptions 67

1 public static String abbreviate(String str, int lower, int upper, ...) {

2 ...

3 if (upper == -1 || upper > str.length()) {

4 upper = str.length();

5 }

6 if (upper < lower) {

7 upper = lower;

8 }

9 ...

10 if (index == -1) {

11 result.append(str.substring(0, upper));

12 ...

13 }

14 ...

15 } /*** Source: Lang 45 - Defects4J ***/

LISTING 6: Example of StringIndexOutOfBoundsException.

TABLE 4.3: Analysis of NullPointerException.
Suspicious locations Guessed faults

statement with obj variable is wrong
missing conditional
statement

definition of obj wrong value
missing conditional
statement

calling site wrong variables

Example. Listing 7 shows an excerpt of the Chart 4 fault included in Defects4J. The
statement at line 7, since it generates the NullPointerException, is a relevant
statement. The analysis selects the expressions r as relevant expression, which in turn
generates 3 suspicious locations with the corresponding guessed fault: the variable r

at line 7 might be wrong; the entire statement at line 7 might have to be accessed
only within a conditional statement; and the method getRendererForDataset()

used to assign a value to the variable r at line 5 might be wrong. The actual patch
consists of adding the conditional statement.

4.3.4 IllegalArgumentException

maxRelevantStatementsToConsider. EXCEPT considers both the statement
that raises the exception and the caller statement of the method that raises the ex-
ception as relevant statements for the analysis.

68 Chapter 4. Exception-Driven Fault Localization for APR

1 public class XYPlot {

2 ...

3 public Range getDataRange(ValueAxis axis) {

4 ...

5 XYItemRenderer r = getRendererForDataset(d);

6 ...

7 Collection c = r.getAnnotations();

8 ...

9 }

10 ...

11 } /*** Source: Chart 4 - Defects4J ***/

LISTING 7: Example of NullPointerException.

TABLE 4.4: Analysis of IllegalArgumentException.
Suspicious locations Guessed faults

exprPar used as parameter wrong parameter
wrong method invoked

definition of variables in exprPar wrong value

selectRelevantExpressions. EXCEPT looks for one or more instances of the
following expression in the relevant statements

op(...exprPar...)

which represents any method call with at least one parameter. If the invocation is
found in the first relevant statement, no relevant expression is returned for the sec-
ond relevant statement (i.e., the second relevant statement is skipped). Otherwise,
(e.g., the first relevant statement throws the exception instead of invoking a method),
the second relevant statement is also searched for the same pattern.

EXCEPT selects the occurrences of exprPar as relevant expressions that might
be wrong, thus causing the exception.

findSuspiciousLocations and generateRepairTarget. When exprPar is
considered, EXCEPT runs a backward bounded data-flow analysis to identify the
locations where the variables used in exprPar are defined. Table 4.4 lists the iden-
tified locations and the corresponding guessed faults.

Example. Listing 8 shows an excerpt of the Chart 17 fault in Defect4J. The statement
at line 13 raises an IllegalArgumentException if the value of the second parameter
of method createCopy is less than the first one. The corresponding relevant loca-
tions are the statements at lines 13 and 4. The former statement does not contribute
to the analysis since it does not include the actual invocation, while the latter does.
The suspicious locations derived from the latter statement are four: the invocation
of method createCopy(int, int); the integer 0; the expression getItemCount()

4.4. Empirical Evaluation 69

- 1; and the call to getItemCount(). The patch requires changing the expression
getItemCount() - 1 at line 4.

1 public class TimeSeries {

2 ...

3 public Object clone() {

4 Object clone = createCopy(0, getItemCount() - 1);

5 return clone;

6 }

7

8 public TimeSeries createCopy(int start, int end) throws ... {

9 if (start < 0) {

10 throw new IllegalArgumentException("");

11 }

12 if (end < start) {

13 throw new IllegalArgumentException("");

14 }

15 ...

16 }

17 ...

18 } /*** Source: Chart 17 - Defects4J ***/

LISTING 8: Example of IllegalArgumentException.

4.4 Empirical Evaluation

The empirical evaluation aims to answer three research questions.

RQ1 What is the fault localization effectiveness of Except?

This research question investigates the fault-localization effectiveness of EX-
CEPT for different types of exceptions in comparison to state of the art solu-
tions.

RQ2 How does Except affect the capability of modifying the faulty statements of
APR techniques that use SBFL?

This research question investigates how using the ranking produced by EX-
CEPT affects the capability of program repair techniques to modify the right
statement every time the generation of a patched program is attempted.

RQ3 What is the accuracy of the guessed fault?

This research question investigates how accurately EXCEPT can guess the
fault that generated an exception.

70 Chapter 4. Exception-Driven Fault Localization for APR

4.4.1 Empirical Setup

In the evaluation, the faults of Defects4J benchmark v1.5 [45] were used. Defects4J is
a dataset of real-world bugs and patches from 5 open-source Java projects (JFreeChart,
Closure Compiler, Commons Math, Joda-Time, and Commons Lang) commonly
used in program repair studies [127, 74, 67].

Initially, every bug that fails with a test that raises an uncaught exception was
selected. The four most frequent exception types raised by these bugs match with
the classes of exceptions supported by EXCEPT: NullPointerException (17 faults),
IllegalArgumentException (15 faults), ArrayIndexOutOfBoundsException (10
faults), StringIndexOutOfBoundsException (7 faults). Out of these 49 faults, the
faults that require changing multiple non-contiguous code locations without having
a same number of crashing tests were discarded because they could not be properly
addressed by localization techniques. For instance, faults that require changing 2 lo-
cations are kept if there are 2 crashing tests that can be used to localize these changes,
but the same fault is discarded if only one crashing test case is available. In total, 33
faults and 43 fault locations to be localized are considered.

Table 4.5 column Bug ID reports the id of the selected faults, organized by ex-
ception type. In case a fault requires changing multiple locations, the table reports
multiple rows for the same Bug ID.

To answer RQ1 and RQ2, two competing approaches were considered: the Ochiai
SBFL technique [1], which is the most used fault localization technique in program
repair [66], and the localization strategy used in ssFix [127] (hereafter referred as ss-
Fix), which exploits the entries in the stack trace as top items of the ranking. Differ-
ently from EXCEPT, ssFix does not analyze the target program to extract the relevant
expressions, thus missing to select the suspicious program locations that are not in
the stack trace.

To precisely measure the improvement that EXCEPT and ssFix can introduce over
an existing ranking, the ranking generated by Ochiai was used as input ranking for
both EXCEPT and ssFix. The test cases available with the programs were used to
compute the ranking with Ochiai.

The tool implementation, which uses Spoon [90] for static program analysis, and
experimental material are available at https://gitlab.com/issta21/except.

4.4.2 What is the fault localization effectiveness of Except? (RQ1)

In this research question, the fault localization effectiveness of Ochiai, ssFix, and
EXCEPT is compared. The location modified by developers was considered as the
correct fault location to be identified. If new code is added, the location next to the
added code is considered as the correct one.

The metric used to compare the approaches is the position of the faulty statement
in the rank. In the case the faulty statement has the same suspiciousness of other
statements, its average position is considered, as done in other studies. That is, if

https://gitlab.com/issta21/except

4.4. Empirical Evaluation 71

TABLE 4.5: Effectiveness results.

Bug ID
Position Probability (%) Additional

Ochiai ssFix EXCEPT Ochiai EXCEPT Info

ArrayIndexOutOfBoundException (AIOOBE)

Lang 12 6.50 7.50 6.50 6.61 5.57 None
6.50 7.50 6.50 6.61 5.57 None

Lang 61 20.00 21.00 21.00 2.57 2.31 None

Math 3 9.50 10.00 2.00 5.58 17.65 Only Target

Math 98 10.00 10.50 2.00 3.19 10.43 Both
10.00 10.50 2.00 3.19 10.43 Both

Mockito 34 52.00 52.00 53.00 0.30 0.26 Both

StringIndexOutOfBoundsException (SIOOBE)

Lang 6 118.50 2.00 1.00 0.54 7.15 Both

Lang 44 90.50 90.50 94.00 0.81 0.65 None

Lang 45 11.50 11.50 13.00 1.22 1.04 Only Guess

Lang 51 - - - 0.00 0.00 -

Lang 59 3.50 1.00 1.00 14.61 14.85 Both

Math 101 9.00 1.00 1.00 1.89 8.68 Both

NullPointerException (NPE)

Chart 4 53.00 2.50 1.00 0.12 0.45 Both

Chart 14

17.50 19.50 1.00 0.66 2.18 Both
17.50 19.50 1.00 0.66 2.18 Both
17.50 19.50 1.00 0.66 2.18 Both
17.50 19.50 1.00 0.66 2.18 Both

Closure 2 6.00 5.00 1.00 0.33 2.63 Both

Lang 20 23.50 23.50 1.00 2.43 9.86 Both
8.00 11.00 1.00 3.47 12.17 Both

Lang 33 4.50 1.00 1.00 7.96 13.74 Both

Lang 39 27.50 1.50 1.00 1.92 5.14 Both

Lang 47 82.50 1.00 1.00 0.86 6.78 Both
86.50 1.00 1.00 0.74 6.78 Both

Lang 57 3.50 1.00 1.00 13.46 18.05 Both

Math 4 4.50 2.00 3.00 0.82 32.48 Only Target
4.50 1.50 8.50 0.82 3.51 None

Mockito 18 644.00 644.00 644.00 0.11 0.11 None

Mockito 35
1.00 1.00 1.00 0.83 0.83 None

33.00 33.00 33.00 0.31 0.31 None
5.00 5.00 5.00 0.69 0.69 None

Mockito 36 4.00 1.00 1.00 0.93 5.79 Both

Mockito 38 1.50 1.50 1.00 0.86 5.87 Both

Math 70 1.00 2.00 3.00 14.04 9.03 None

IllegalArgumentException (IAE)

Chart 9 13.50 14.50 16.50 1.50 1.21 None

Chart 13 52.50 3.50 1.00 0.74 1.46 Both

Chart 17 5.00 1.50 1.00 2.38 7.59 Only Target

Chart 24 5.50 6.00 5.50 7.36 7.36 None

Closure 19 - - - 0.00 0.00 -

Lang 5 38.00 38.00 38.00 1.22 1.22 None

Lang 54 82.50 82.50 82.50 0.86 0.86 None

Time 27 2,636.00 2,638.00 2,636.00 0.0037 0.0036 None

72 Chapter 4. Exception-Driven Fault Localization for APR

three statements that are at the top three positions of the rank include the faulty
statement, the resulting position is 1+2+3

3 = 2.
Table 4.5 column Position reports the ranking of the faulty statement for Ochiai,

ssFix, and EXCEPT. When a technique performs better than the others, the cell is
highlighted with light grey.

In the case of ArrayIndexOutOfBoundsException, EXCEPT ranked the faulty
statement better than competing approaches three times. Ochiai performed better
than others once (Lang 61), while ssFix was never the best approach. Interestingly,
while Ochiai introduces a marginal improvement for Lang 61, EXCEPT significantly
improves the ranking, moving to the second position faulty statements that were
below the ninth position in the initial ranking.

In the case of StringIndexOutOfBoundsException, EXCEPT ranked the faulty
statement better than competing approaches once, while there was never a single
winning approach in the rest of the cases. In two cases, Ochiai and ssFix performed
better than EXCEPT, although with a marginal improvement on the raking. On the
contrary, EXCEPT significantly improved the Ochiai ranking in two cases. For this
class of exceptions, ssFix and EXCEPT performed similarly. In one case about missing
code (Lang 51), none of the approaches could locate the correct statement.

In the case of NullPointerException, EXCEPT performs significantly better
than both Ochiai and ssFix both in the number of cases (10 cases) and the magni-
tude of the improvement. Vice versa, Ochiai and ssFix performed better than the
other approaches in 1 and 2 cases, respectively, with marginal improvement in the
ranking compared to EXCEPT.

Finally, in the case of IllegalArgumentException, EXCEPT obtained the best
result in 2 cases, while Ochiai obtained the best result in 1 case, and ssFix never
obtained the best result. Again, EXCEPT obtained a significative relative improve-
ment compared to Ochiai, while the improvement of Ochiai compared to EXCEPT

is marginal. Also in this case, one fault related to the addition of new code was
impossible to localize.

Overall, it is noticeable how EXCEPT managed to rank well a number of faults
compared to Ochiai and ssFix, with ssFix performing better than Ochiai but worse
than EXCEPT. For instance, EXCEPT ranked 21 faulty statements at the first position,
26 faulty statements within the third position, and 31 faulty statements within the
first 10 positions. ssfix ranked 8 faulty statements at the first position, 16 faulty
statements within the third position, and 23 faulty statements within the first 10
positions. Finally, Ochiai only ranked 2 faulty statements at the first position, 3
faulty statements within the third position, and 20 faulty statements within the first
10 positions.

4.4. Empirical Evaluation 73

4.4.3 How does Except affect the capability of modifying the faulty state-
ments of APR techniques that use SBFL? (RQ2)

To answer RQ2, it is considered how APR techniques use the rankings returned by
SBFL techniques. There are two main possible models: probabilistic and one-by-one.

In the probabilistic model, APR techniques assign to each statement a probability
to be selected for mutation that is proportional to its suspiciousness and the suspi-
ciousness of the rest of the statements in the ranking:

prob(s) =
susp(s)

∑
si∈ranking

susp(si)
(4.1)

where s is a statement in the rank and ranking is the considered ranking. The higher
the probability of selecting the faulty statement is, the more likely the APR technique
will modify the right code location to fix the fault. Examples of APR techniques that
use this probabilistic schema to iteratively identify the statement to be modified are
jGenProg [77], jMutRepair [76], DeepRepair [122], and Cardumen [78].

In the one-by-one model, APR techniques consider the statements in the same
order they occur in the ranking from the most suspicious to the least suspicious.
The lower the position value of the faulty statement in the raking is, the sooner the
APR technique will modify the right code location to fix the fault. Example of APR
techniques that use this systematic schema to iteratively identify the statement to be
modified are NOPOL [131], AE [119], and jKali [76].

0

10

20

30

All AIOOBE SIOOBE NPE IAE

Type of Exception

P
ro

ba
bi

lit
y

(%
)

Approach

Except
Ochiai

Statements selection: Probabilistic (Except vs Ochiai)

FIGURE 4.3: Comparison between Except and Ochiai according to the
probabilistic usage of the rank.

74 Chapter 4. Exception-Driven Fault Localization for APR

0

25

50

75

100

All AIOOBE SIOOBE NPE IAE

Type of Exception

P
os

iti
on

Approach

Ochiai
ssFix
Except

Statements selection: One−by−one (Except vs ssFix vs Ochiai)

FIGURE 4.4: Comparison between Except, ssFix, and Ochiai accord-
ing to the one-by-one usage of the rank.

To assess the impact of the rankings generated by EXCEPT, ssFix, and Ochiai in the
context of APR, the metrics prob(s) and position(s) for all the faulty statements s
considered in this study are computed. Since ssFix does not assign a probability to
the statements moved at the top of the ranking, it was only possible to assess the
rankings produced by ssFix with the position metric. The analytical values of these
metrics are reported in the columns Position and Probability of Table 4.5.

Figure 4.3 visually shows the results obtained by considering the probabilistic
selection schema, distinguishing per exception type and overall across all the excep-
tions. Probability values increase significantly with EXCEPT. In fact, the median,
third quartile, and maximum obtained with EXCEPT are 3.51%, 8.14%, and 32.48%
respectively, while the median, third quartile, and maximum obtained with Ochiai
are 0.86%, 2.88%, and 14.61% respectively. The significant difference (α = 0.05) be-
tween EXCEPT and Ochiai with all exceptions has been confirmed with a Wilcoxon
rank sum test. The null hypothesis is that the probability to select the correct location to
fix a bug does not improve using EXCEPT. The p-value is 0.005019, that is less than the
significance level α. This means that the null hypothesis must be rejected, and thus
the probability to choose the correct location can be improved using EXCEPT.

The better performance of EXCEPT is also observable at the level of the individual
exception types, although with variable strength. In particular, while differences are
remarkable for ArrayIndexOutOfBoundsException, StringIndexOutOfBounds-
Exception and NullPointerException, the difference is smaller for IllegalArgument-
Exception.

4.4. Empirical Evaluation 75

Figure 4.4 visually shows the results obtained considering the one-by-one selec-
tion schema, distinguishing per exception type and overall across all the exceptions.
The relative performance of the three approaches is confirmed, with EXCEPT per-
forming better than ssFix which performs better than Ochiai. The significant dif-
ference (α = 0.05) between EXCEPT and both Ochiai and ssFix with all exceptions
has been again confirmed with a Wilcoxon rank sum test corrected with Bonferroni
correction factor. The null hypotheses is that the correct location to fix a bug is not bet-
ter ranked by EXCEPT compared to Ochiai and ssFix. Comparing EXCEPT to Ochiai, the
p-value is 0.00003772, while comparing EXCEPT with ssFix, the p-value is 0.01319,
that are both lower than the significance level α. This means that the null hypothesis
must be rejected, and EXCEPT is able to rank the correct location to fix a bug in a
better way compared to Ochiai and ssFix.

At the level of the individual exceptions, it is possible to observe that EXCEPT

performs better than ssFix and Ochiai for both ArrayIndexOutOfBoundsException

and NullPointerException, while it performs comparably to ssFix for String-

IndexOutOfBoundsException and IllegalArgumentException.
In a nutshell, the outcome of this research question suggests that faults revealed

by tests that generate uncaught exceptions should be addressed by APR techniques
using the ranking produced by EXCEPT, regardless of the strategy used (probabilistic
or one-by-one). In fact, EXCEPT allows either to select the faulty statement with
higher probability (probabilistic model) or to reach the faulty statement earlier (one-
by-one model).

4.4.4 What is the accuracy of the guessed fault? (RQ3)

This research question evaluates the capability of EXCEPT to guess the fault that
should be repaired. To this end, it is possible to assess the accuracy of the repair
target distinguishing four main cases: both the selected expression and the guessed
faults associated with the faulty statement are correct (label Both), the faulty expres-
sion is correctly selected but the guessed fault is wrong (label Only Target), the
fault is correctly guessed but the wrong expression is selected (label Only Guess),
and both the selected expression and the guessed fault are wrong (label None). Ta-
ble 4.5 column Additional Info shows the results.

EXCEPT both identified the expression to be changed and the fault to be fixed in
22 out of the 37 cases with a localization (59%). In three cases the faulty expression
was identified but without correctly guessing the fault. In one case, EXCEPT guesses
the right fault, but associates it with the wrong statement (EXCEPT guesses a missing
condition, although not in the right place). In total, EXCEPT correctly enriched the
localization with additional information in 24 out of 37 cases (65%).

This result indicates that the additional information generated by EXCEPT fre-
quently represents a meaningful suggestion about the fault.

76 Chapter 4. Exception-Driven Fault Localization for APR

4.4.5 Threats to validity

A threat to validity is about the limited set of exceptions supported by EXCEPT and
used in the empirical evaluation. To mitigate this threat, the exceptions were se-
lected by considering common types of problems reported in popular Java bench-
marks, such as Defect4J [45], Bears [73], and Repairnator [115]. Moreover, the goal
of the study is not to systematically investigate how every possible exception can be
supported, but to study if fault localization can be improved by adding exception-
specific support. Indeed, the study provides evidence that faulty statements can be
better ranked and annotated when this kind of support is available.

Another concern is about the correctness of the implementations used in the ex-
periments. GZoltar [14], a widely used tool, was exploited for the implementation
of Ochiai. An implementation of ssFix [127] created ad-hoc for this study was used,
since it was not available. Since the proposed localization schema is quite simple,
both the risk of misunderstanding the technique and the risk of implementing the
technique wrongly are considered small. Finally, the implementation of EXCEPT has
been tested with several cases and the manual inspection of the results confirmed
its correctness. To further mitigate any threats, the artefacts were made publicly
available.

Finally, the main threat to external validity concerns with the generalizability of
the results. To alleviate the risk of over-generalization, the study considered a num-
ber of real-world faults from different projects raising different types of exceptions.
Indeed, additional experiments on other benchmarks are needed to fully address
this threat.

4.5 Discussion

Results show that the ranking generated by EXCEPT for multiple classes of excep-
tions is more effective than the rankings generated by Ochiai and ssFix. Further,
the generated ranking results in higher probability to select the faulty statements,
for APR techniques that select the statements to be patched probabilistically, and in
the capability to reach the faulty statement earlier, for APR techniques that select the
statements to be patched one by one. EXCEPT also annotates the high priority entries
of the ranking with information about the possible faults present in the code, which
might be useful to developers and APR techniques.

77

Chapter 5

Conclusion

Software testing and debugging are difficult and expensive development activities
that may take a significant portion of developers’ effort, despite continuous integra-
tion and delivery practices. In this context, APR techniques may help developers
in the generation of patches that can be automatically applied to programs or sug-
gested to developers, alleviating the debugging and fixing effort.

However, APR techniques are still limited. Most of the APR techniques rely on
test cases to evaluate the correctness of patches, but this is a weak validation method
that admits the generation of test-suite-adequate patches that are not correct. In par-
ticular, recent empirical studies show that APR techniques, such as Kali, frequently
generate code-removal patches [95, 69]. In this context, the first contribution of this
Ph.D. consists of an investigation of the factors that influence the generation of code-removal
patches and the analysis of the useful information that can be extracted from code-removal
patches.

In particular, the study conducted on code-removal patches considered 1,918
failed builds with only one failing test case (950 builds) or only one crashing test
case (968 builds) to determine the information that can be extracted from the code-
removal patches and their relation with human patches. Thanks to the manual anal-
ysis of the patches, it has been possible to propose a comprehensive taxonomy of
code-removal patches that can be exploited to better understand the current limita-
tions of program repair techniques.

The results obtained show that code-removal patches are often insufficient to
fix bugs, contrarily to previous studies [69, 95, 74] where the effectiveness of code-
removal patches is higher. Moreover, while other approaches generically explain
the presence of code-removal (or plausible) patches with the presence of a weak test
suite, the study provides detailed evidence about issues that may affect test suites,
such as rottening tests, buggy test cases, and flaky tests. The relation between code-
removal patches and human patches provides additional insights about the mean-
ing of code-removal patches. Finally, the study provides evidence that code-removal
patches could be exploited to automatically improve test suites, opening new oppor-
tunities for the studies in the field of program repair.

Another key point in program repair is that if the correct location to create the
patch is not identified, the generation of patches is harder or even impossible [66].

78 Chapter 5. Conclusion

The majority of APR techniques exploit SBFL to rank the suspicious statements, al-
though experimental evidence shows that these techniques are often unable to rank
faulty statements at top positions, making the the generation of patches extremely
hard. In this context, the second contribution of this Ph.D. thesis consists of a fault localiza-
tion schema that exploits the semantics of the failures to identify not only the statements, but
also the expressions (e.g., variables) that are related to the failure, improving the accuracy
and the amount of information returned by fault localization.

In particular, the proposed approach focuses on the faults that are revealed by
tests that fail with uncaught exceptions, which are reported as predominant in mul-
tiple benchmarks [101, 31, 115]. To effectively localize these faults, this Ph.D. thesis
presents EXCEPT, a technique that exploits the semantics of the exception and the
stack trace generated at the time the exception is raised, to identify a small set of
highly suspicious statements that are considered with high priority by APR tech-
niques.

Results show that the ranking generated by EXCEPT for multiple classes of ex-
ceptions is more effective than the rankings generated by competing fault localiza-
tion approaches, such as Ochiai and ssFix. Further, the generated ranking results in
higher probability to select the faulty statements for APR techniques that select the
statements to be patched probabilistically, and in the capability to reach the faulty
statement earlier for APR techniques that select the statements to be patched one by
one. EXCEPT also annotates the high priority entries of the ranking with information
about the possible faults present in the code, which might be useful to developers
and APR techniques.

Open Challenges Based on the results obtained during this Ph.D. and presented
in this thesis, it has been possible to identify new research challenges for the com-
munity. The first one is related to the fact that the presence of code-removal patches
reveals different kinds of problems afflicting the test suites (not only weak test cases),
and it is necessary to find a way to exploit those patches as means to automatically
improve the test suites. In this way, it would be possible to potentially decrease the
number of overfitting patches. The second one is that it is necessary to design a
fault localization approach that exploits the semantic of failures related to the fail-
ing test cases, that do not throw an exception. Considering the promising results
obtained with EXCEPT using the crashing test cases, finding a way to extract the use-
ful information also from the failing test cases, could increase the likelihood of APR
techniques using the correct locations for the generation of more correct patches.

79

Bibliography

[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. “On the Accuracy of Spectrum-
based Fault Localization”. In: Proceedings of the Testing: Academic and Industrial
Conference Practice and Research Techniques - MUTATION (TAICPART-MUTATION).
2007.

[2] R. Abreu, P. Zoeteweij, and A. J. c. Van Gemund. “An Evaluation of Similarity
Coefficients for Software Fault Localization”. In: 2006 12th Pacific Rim Inter-
national Symposium on Dependable Computing (PRDC’06). 2006, pp. 39–46. DOI:
10.1109/PRDC.2006.18.

[3] T. Ackling, B. Alexander, and I. Grunert. “Evolving Patches for Software Re-
pair”. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation. GECCO ’11. Dublin, Ireland: Association for Computing Ma-
chinery, 2011, 1427–1434. ISBN: 9781450305570. DOI: 10.1145/2001576.
2001768. URL: https://doi.org/10.1145/2001576.2001768.

[4] Amazon.com. Summary of the Amazon S3 Service Disruption in the Northern
Virginia (US-EAST-1) Region. Tech. rep. 2017. URL: https://aws.amazon.
com/message/41926/.

[5] A. Arcuri. “Evolutionary repair of faulty software”. In: Applied Soft Computing
11.4 (2011), pp. 3494–3514. ISSN: 1568-4946. DOI: https://doi.org/10.
1016/j.asoc.2011.01.023. URL: https://www.sciencedirect.
com/science/article/pii/S1568494611000330.

[6] F. Y. Assiri and J. M. Bieman. “Fault localization for automated program re-
pair: effectiveness, performance, repair correctness”. In: Software Quality Jour-
nal (SQJ) 25 (2016), pp. 171–199.

[7] F. Y. Assiri and J. M. Bieman. “MUT-APR: MUTation-Based Automated Pro-
gram Repair Research Tool”. In: Advances in Information and Communication
Networks. Ed. by Kohei Arai, Supriya Kapoor, and Rahul Bhatia. Cham: Springer
International Publishing, 2019, pp. 256–270. ISBN: 978-3-030-03405-4.

[8] Amazon AWS. What is Continuous Delivery? Tech. rep. URL: https://aws.
amazon.com/devops/continuous-delivery/.

[9] Amazon AWS. What is Continuous Integration? Tech. rep. URL: https://
aws.amazon.com/devops/continuous-integration/.

https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1145/2001576.2001768
https://doi.org/10.1145/2001576.2001768
https://doi.org/10.1145/2001576.2001768
https://aws.amazon.com/message/41926/
https://aws.amazon.com/message/41926/
https://doi.org/https://doi.org/10.1016/j.asoc.2011.01.023
https://doi.org/https://doi.org/10.1016/j.asoc.2011.01.023
https://www.sciencedirect.com/science/article/pii/S1568494611000330
https://www.sciencedirect.com/science/article/pii/S1568494611000330
https://aws.amazon.com/devops/continuous-delivery/
https://aws.amazon.com/devops/continuous-delivery/
https://aws.amazon.com/devops/continuous-integration/
https://aws.amazon.com/devops/continuous-integration/

80 Bibliography

[10] B. Baudry, Z. Chen, K. Etemadi, H. Fu, D. Ginelli, S. Kommrusch, M. Mar-
tinez, M. Monperrus, J. Ron, H. Ye, and Z. Yu. R-Hero: A Software Repair Bot
based on Continual Learning. 2020. arXiv: 2012.06824 [cs.SE].

[11] T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen. Reversible
Debugging Software: Quantify the time and cost saved using reversible debuggers.
Tech. rep. 2013. URL: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.444.9094&rep=rep1&type=pdf.

[12] I. Burnstein. Practical Software Testing: A Process-Oriented Approach. Springer
Professional Computing. Springer New York, 2003. ISBN: 9780387951317.

[13] J. P. Cambronero, J. Shen, J. Cito, E. Glassman, and M. Rinard. “Character-
izing Developer Use of Automatically Generated Patches”. In: 2019 IEEE
Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2019,
Memphis, Tennessee, USA, October 14-18, 2019. Ed. by Justin Smith, Christo-
pher Bogart, Judith Good, and Scott D. Fleming. IEEE Computer Society,
2019, pp. 181–185. DOI: 10.1109/VLHCC.2019.8818884. URL: https:
//doi.org/10.1109/VLHCC.2019.8818884.

[14] J. Campos, A. Riboira, A. Perez, and R. Abreu. “GZoltar: an eclipse plug-in
for testing and debugging”. In: 2012 Proceedings of the 27th IEEE/ACM Inter-
national Conference on Automated Software Engineering. 2012, pp. 378–381. DOI:
10.1145/2351676.2351752.

[15] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. “Pinpoint: problem
determination in large, dynamic Internet services”. In: Proceedings Interna-
tional Conference on Dependable Systems and Networks. 2002, pp. 595–604. DOI:
10.1109/DSN.2002.1029005.

[16] Coralogix. This is what your developers are doing 75% of the time, and this is
the cost you pay. Tech. rep. 2015. URL: https://coralogix.com/log-
analytics-blog/this-is-what-your-developers-are-doing-

75-of-the-time-and-this-is-the-cost-you-pay/.

[17] V. Csuvik, D. Horváth, F. Horváth, and L. Vidács. “Utilizing Source Code Em-
beddings to Identify Correct Patches”. In: 2020 IEEE 2nd International Work-
shop on Intelligent Bug Fixing (IBF). 2020, pp. 18–25. DOI: 10.1109/IBF50092.
2020.9034714.

[18] V. Dallmeier, A. Zeller, and B. Meyer. “Generating Fixes from Object Behav-
ior Anomalies”. In: 2009 IEEE/ACM International Conference on Automated Soft-
ware Engineering. 2009, pp. 550–554. DOI: 10.1109/ASE.2009.15.

[19] B. Daniel, V. Jagannath, D. Dig, and D. Marinov. “ReAssert: Suggesting Re-
pairs for Broken Unit Tests”. In: Proceedings of the 24th IEEE/ACM International
Conference on Automated Software Engineering. 2009.

https://arxiv.org/abs/2012.06824
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.444.9094&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.444.9094&rep=rep1&type=pdf
https://doi.org/10.1109/VLHCC.2019.8818884
https://doi.org/10.1109/VLHCC.2019.8818884
https://doi.org/10.1109/VLHCC.2019.8818884
https://doi.org/10.1145/2351676.2351752
https://doi.org/10.1109/DSN.2002.1029005
https://coralogix.com/log-analytics-blog/this-is-what-your-developers-are-doing-75-of-the-time-and-this-is-the-cost-you-pay/
https://coralogix.com/log-analytics-blog/this-is-what-your-developers-are-doing-75-of-the-time-and-this-is-the-cost-you-pay/
https://coralogix.com/log-analytics-blog/this-is-what-your-developers-are-doing-75-of-the-time-and-this-is-the-cost-you-pay/
https://doi.org/10.1109/IBF50092.2020.9034714
https://doi.org/10.1109/IBF50092.2020.9034714
https://doi.org/10.1109/ASE.2009.15

Bibliography 81

[20] H. A. de Souza, M. L. Chaim, and F. Kon. Spectrum-based Software Fault Lo-
calization: A Survey of Techniques, Advances, and Challenges. 2017. arXiv: 1607.
04347 [cs.SE].

[21] J. Delplanque, S. Ducasse, G. Polito, A. P. Black, and A. Etien. “Rotten Green
Tests”. In: 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). 2019, pp. 500–511.

[22] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. 2019. arXiv: 1810.04805
[cs.CL].

[23] T. Durieux, B. Cornu, L. Seinturier, and M. Monperrus. “Dynamic patch gen-
eration for null pointer exceptions using metaprogramming”. In: Proceedings
of the International Conference on Software Analysis, Evolution and Reengineering
(SANER). 2017.

[24] T. Durieux, C. Le Goues, M. Hilton, and R. Abreu. Empirical Study of Restarted
and Flaky Builds on Travis CI. 2020. arXiv: 2003.11772 [cs.SE].

[25] T. Durieux, F. Madeiral, M. Martinez, and R. Abreu. “Empirical Review of
Java Program Repair Tools: A Large-Scale Experiment on 2,141 Bugs and
23,551 Repair Attempts”. In: Proceedings of the 2019 27th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering. ESEC/FSE 2019. Tallinn, Estonia: Association for
Computing Machinery, 2019, 302–313. ISBN: 9781450355728. DOI: 10.1145/
3338906.3338911. URL: https://doi.org/10.1145/3338906.
3338911.

[26] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano. “DevOps”. In: IEEE Softw.
33.3 (May 2016), 94–100. ISSN: 0740-7459. DOI: 10.1109/MS.2016.68. URL:
https://doi.org/10.1109/MS.2016.68.

[27] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,
and C. Xiao. “The Daikon system for dynamic detection of likely invariants”.
In: Science of computer programming 69.1-3 (2007), pp. 35–45.

[28] Forbes.com. Continuous Integration, Delivery, and Deployment with GitLab. Tech.
rep. 2015. URL: https://www.forbes.com/sites/amitchowdhry/
2015/05/27/new-apple-ios-bug-causes-reboots-and-messages-

app-crashes/?sh=a4701123f35b.

[29] G. Fraser and A. Arcuri. “EvoSuite: Automatic Test Suite Generation for Object-
Oriented Software”. In: Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering. ESEC/FSE
’11. Szeged, Hungary: Association for Computing Machinery, 2011, 416–419.
ISBN: 9781450304436. DOI: 10.1145/2025113.2025179. URL: https:
//doi.org/10.1145/2025113.2025179.

https://arxiv.org/abs/1607.04347
https://arxiv.org/abs/1607.04347
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2003.11772
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1109/MS.2016.68
https://doi.org/10.1109/MS.2016.68
https://www.forbes.com/sites/amitchowdhry/2015/05/27/new-apple-ios-bug-causes-reboots-and-messages-app-crashes/?sh=a4701123f35b
https://www.forbes.com/sites/amitchowdhry/2015/05/27/new-apple-ios-bug-causes-reboots-and-messages-app-crashes/?sh=a4701123f35b
https://www.forbes.com/sites/amitchowdhry/2015/05/27/new-apple-ios-bug-causes-reboots-and-messages-app-crashes/?sh=a4701123f35b
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179

82 Bibliography

[30] L. Gazzola, D. Micucci, and L. Mariani. “Automatic Software Repair: A Sur-
vey”. In: IEEE Transactions on Software Engineering 45.1 (2019), pp. 34–67.

[31] D. Ginelli, M. Martinez, L. Mariani, and M. Monperrus. A Comprehensive Study
of Code-removal Patches in Automated Program Repair. 2020. arXiv: 2012.06264
[cs.SE].

[32] GitLab. Continuous Integration, Delivery, and Deployment with GitLab. Tech. rep.
2016. URL: https://about.gitlab.com/blog/2016/08/05/continuous-
integration-delivery-and-deployment-with-gitlab/.

[33] A. Guo, X. Mao, D. Yang, and S. Wang. “An Empirical Study on the Effect
of Dynamic Slicing on Automated Program Repair Efficiency”. In: 2018 IEEE
International Conference on Software Maintenance and Evolution, ICSME 2018,
Madrid, Spain, September 23-29, 2018. IEEE Computer Society, 2018, pp. 554–
558. DOI: 10.1109/ICSME.2018.00066. URL: https://doi.org/10.
1109/ICSME.2018.00066.

[34] Hamcrest Team. Hamcrest. https://site.mockito.org. 2021.

[35] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi. “An Empirical Investigation of
Program Spectra”. In: SIGPLAN Not. 33.7 (July 1998), 83–90. ISSN: 0362-1340.
DOI: 10.1145/277633.277647. URL: https://doi.org/10.1145/
277633.277647.

[36] B. Hetzel. The Complete Guide to Software Testing. 2nd. USA: QED Information
Sciences, Inc., 1988. ISBN: 0894352423.

[37] J. Hua, M. Zhang, K. Wang, and S. Khurshid. “SketchFix: A Tool for Au-
tomated Program Repair Approach Using Lazy Candidate Generation”. In:
ESEC/FSE 2018. Lake Buena Vista, FL, USA: Association for Computing Ma-
chinery, 2018, 888–891. ISBN: 9781450355735. DOI: 10 . 1145 / 3236024 .
3264600. URL: https://doi.org/10.1145/3236024.3264600.

[38] J. Humble. Continuous Delivery. Tech. rep. URL: https://continuousdelivery.
com.

[39] IBM. What is DevOps? Tech. rep. URL: https://www.ibm.com/se-en/
cloud/devops.

[40] T. Ji, L. Chen, X. Mao, and X. Yi. “Automated Program Repair by Using Sim-
ilar Code Containing Fix Ingredients”. In: 2016 IEEE 40th Annual Computer
Software and Applications Conference (COMPSAC). Vol. 1. 2016, pp. 197–202.
DOI: 10.1109/COMPSAC.2016.69.

[41] J. Jiang, Y. Xiong, and X. Xia. “A manual inspection of Defects4J bugs and its
implications for automatic program repair”. English. In: Science China Infor-
mation Sciences 62.10 (Oct. 2019). ISSN: 1674-733X. DOI: 10.1007/s11432-
018-1465-6.

https://arxiv.org/abs/2012.06264
https://arxiv.org/abs/2012.06264
https://about.gitlab.com/blog/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/
https://about.gitlab.com/blog/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/
https://doi.org/10.1109/ICSME.2018.00066
https://doi.org/10.1109/ICSME.2018.00066
https://doi.org/10.1109/ICSME.2018.00066
https://site.mockito.org
https://doi.org/10.1145/277633.277647
https://doi.org/10.1145/277633.277647
https://doi.org/10.1145/277633.277647
https://doi.org/10.1145/3236024.3264600
https://doi.org/10.1145/3236024.3264600
https://doi.org/10.1145/3236024.3264600
https://continuousdelivery.com
https://continuousdelivery.com
https://www.ibm.com/se-en/cloud/devops
https://www.ibm.com/se-en/cloud/devops
https://doi.org/10.1109/COMPSAC.2016.69
https://doi.org/10.1007/s11432-018-1465-6
https://doi.org/10.1007/s11432-018-1465-6

Bibliography 83

[42] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen. “Shaping Program Re-
pair Space with Existing Patches and Similar Code”. In: Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis. IS-
STA 2018. Amsterdam, Netherlands: Association for Computing Machinery,
2018, 298–309. ISBN: 9781450356992. DOI: 10.1145/3213846.3213871.
URL: https://doi.org/10.1145/3213846.3213871.

[43] J. A. Jones and M. J. Harrold. “Empirical Evaluation of the Tarantula Auto-
matic Fault-Localization Technique”. In: Proceedings of the 20th IEEE/ACM In-
ternational Conference on Automated Software Engineering. ASE ’05. Long Beach,
CA, USA: Association for Computing Machinery, 2005, 273–282. ISBN: 1581139934.
DOI: 10.1145/1101908.1101949. URL: https://doi.org/10.1145/
1101908.1101949.

[44] R. Just, D. Jalali, and M. D. Ernst. “Defects4J: A Database of Existing Faults
to Enable Controlled Testing Studies for Java Programs”. In: Proceedings of
the 2014 International Symposium on Software Testing and Analysis. ISSTA 2014.
San Jose, CA, USA: Association for Computing Machinery, 2014, 437–440.
ISBN: 9781450326452. DOI: 10.1145/2610384.2628055. URL: https:
//doi.org/10.1145/2610384.2628055.

[45] R. Just, D. Jalali, and M. D. Ernst. “Defects4J: A Database of Existing Faults
to Enable Controlled Testing Studies for Java Programs”. In: Proceedings of
the 2014 International Symposium on Software Testing and Analysis. ISSTA 2014.
San Jose, CA, USA: ACM, 2014, pp. 437–440. ISBN: 978-1-4503-2645-2. DOI:
10.1145/2610384.2628055. URL: http://doi.acm.org/10.1145/
2610384.2628055.

[46] Y. Ke, K. Stolee, C. Le Goues, and Y. Brun. “Repairing Programs with Seman-
tic Code Search”. In: Proceedings of the International Conference on Automated
Software Engineering (ASE). 2015.

[47] D. Kelk, K. Jalbert, and J. S. Bradbury. “Automatically Repairing Concurrency
Bugs with ARC”. In: Multicore Software Engineering, Performance, and Tools. Ed.
by João M. Lourenço and Eitan Farchi. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 73–84. ISBN: 978-3-642-39955-8.

[48] D. Kim, J. Nam, J. Song, and S. Kim. “Automatic patch generation learned
from human-written patches”. In: 2013 35th International Conference on Soft-
ware Engineering (ICSE). 2013, pp. 802–811. DOI: 10.1109/ICSE.2013.
6606626.

[49] A. J. Ko and B. A. Myers. “Debugging reinvented: asking and answering why
and why not questions about program behavior”. In: 30th International Con-
ference on Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008.
Ed. by Wilhelm Schäfer, Matthew B. Dwyer, and Volker Gruhn. ACM, 2008,
pp. 301–310. DOI: 10.1145/1368088.1368130. URL: https://doi.
org/10.1145/1368088.1368130.

https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
http://doi.acm.org/10.1145/2610384.2628055
http://doi.acm.org/10.1145/2610384.2628055
https://doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1145/1368088.1368130

84 Bibliography

[50] R. Kou, Y. Higo, and S. Kusumoto. “A Capable Crossover Technique on Au-
tomatic Program Repair”. In: 2016 7th International Workshop on Empirical Soft-
ware Engineering in Practice (IWESEP). 2016, pp. 45–50. DOI: 10.1109/IWESEP.
2016.15.

[51] A. Koyuncu, T. F. Bissyandé, D. Kim, K. Liu, J. Klein, M. Monperrus, and Y. Le
Traon. D&C: A Divide-and-Conquer Approach to IR-based Bug Localization. 2019.
arXiv: 1902.02703 [cs.SE].

[52] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, M. Monperrus, J. Klein, and
Y. Le Traon. “IFixR: Bug Report Driven Program Repair”. In: Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ESEC/FSE 2019.
Tallinn, Estonia: Association for Computing Machinery, 2019, 314–325. ISBN:
9781450355728. DOI: 10.1145/3338906.3338935. URL: https://doi.
org/10.1145/3338906.3338935.

[53] H. Krasner. The Cost of Poor Quality Software in the US: A 2018 Report. Tech.
rep. 2018. URL: https://www.it-cisq.org/the-cost-of-poor-
quality-software-in-the-us-a-2018-report/The-Cost-of-

Poor-Quality-Software-in-the-US-2018-Report.pdf.

[54] S. S. S. Kruthiventi, K. Ayush, and R. V. Babu. “DeepFix: A Fully Convolu-
tional Neural Network for Predicting Human Eye Fixations”. In: IEEE Trans.
Image Process. 26.9 (2017), pp. 4446–4456. DOI: 10.1109/TIP.2017.2710620.
URL: https://doi.org/10.1109/TIP.2017.2710620.

[55] S. R. Lamelas Marcote and M. Monperrus. “Automatic Repair of Infinite Loops”.
In: CoRR abs/1504.05078 (2015). arXiv: 1504.05078. URL: http://arxiv.
org/abs/1504.05078.

[56] J. Langr, A. Hunt, and D. Thomas. Pragmatic Unit Testing in Java 8 with JUnit.
1st. Pragmatic Bookshelf, 2015. ISBN: 1941222595.

[57] Q. Le and T. Mikolov. “Distributed Representations of Sentences and Docu-
ments”. In: Proceedings of the 31st International Conference on International Con-
ference on Machine Learning - Volume 32. ICML’14. Beijing, China: JMLR.org,
2014, II–1188–II–1196.

[58] X. B. D. Le, D. H. Chu, D. Lo, C. Le Goues, and W. Visser. “S3: Syntax-
and Semantic-Guided Repair Synthesis via Programming by Examples”. In:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineer-
ing. ESEC/FSE 2017. Paderborn, Germany: Association for Computing Ma-
chinery, 2017, 593–604. ISBN: 9781450351058. DOI: 10 . 1145 / 3106237 .
3106309. URL: https://doi.org/10.1145/3106237.3106309.

https://doi.org/10.1109/IWESEP.2016.15
https://doi.org/10.1109/IWESEP.2016.15
https://arxiv.org/abs/1902.02703
https://doi.org/10.1145/3338906.3338935
https://doi.org/10.1145/3338906.3338935
https://doi.org/10.1145/3338906.3338935
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/The-Cost-of-Poor-Quality-Software-in-the-US-2018-Report.pdf
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/The-Cost-of-Poor-Quality-Software-in-the-US-2018-Report.pdf
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/The-Cost-of-Poor-Quality-Software-in-the-US-2018-Report.pdf
https://doi.org/10.1109/TIP.2017.2710620
https://doi.org/10.1109/TIP.2017.2710620
https://arxiv.org/abs/1504.05078
http://arxiv.org/abs/1504.05078
http://arxiv.org/abs/1504.05078
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1145/3106237.3106309

Bibliography 85

[59] X. B. D. Le, D. Lo, and C. Le Goues. “History Driven Program Repair”. In:
2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). Vol. 1. 2016, pp. 213–224. DOI: 10.1109/SANER.
2016.76.

[60] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu, S. Forrest,
and W. Weimer. “The ManyBugs and IntroClass Benchmarks for Automated
Repair of C Programs”. In: IEEE Transactions on Software Engineering 41.12
(2015), pp. 1236–1256.

[61] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. “GenProg: A Generic
Method for Automatic Software Repair”. In: IEEE Transactions on Software En-
gineering 38.1 (2012), pp. 54–72.

[62] C. Le Goues, M. Pradel, and A. Roychoudhury. “Automated Program Re-
pair”. In: Commun. ACM 62.12 (Nov. 2019), 56–65. ISSN: 0001-0782. DOI: 10.
1145/3318162. URL: https://doi.org/10.1145/3318162.

[63] Y. B. Leau, W. K. Loo, W. Y. Tham, and S. F. Tan. “Software development life
cycle AGILE vs traditional approaches”. In: International Conference on Infor-
mation and Network Technology. Vol. 37. 1. 2012, pp. 162–167.

[64] C. Liu, J. Yang, L. Tan, and M. Hafiz. “R2Fix: Automatically Generating Bug
Fixes from Bug Reports”. In: 2013 IEEE Sixth International Conference on Soft-
ware Testing, Verification and Validation. 2013, pp. 282–291. DOI: 10.1109/
ICST.2013.24.

[65] K. Liu, D. Kim, A. Koyuncu, L. Li, T. F. Bissyandé, and Y. Le Traon. “A Closer
Look at Real-World Patches”. In: 2018 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME). 2018, pp. 275–286. DOI: 10.1109/
ICSME.2018.00037.

[66] K. Liu, A. Koyuncu, T. F. Bissyandé, D. Kim, J. Klein, and Y. Le Traon. “You
Cannot Fix What You Cannot Find! An Investigation of Fault Localization
Bias in Benchmarking Automated Program Repair Systems”. In: 2019 12th
IEEE Conference on Software Testing, Validation and Verification (ICST). 2019,
pp. 102–113. DOI: 10.1109/ICST.2019.00020.

[67] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé. “TBar: Revisiting Template-
Based Automated Program Repair”. In: Proceedings of the ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis (ISSTA). 2019.

[68] F. Long, P. Amidon, and M. Rinard. “Automatic Inference of Code Transforms
for Patch Generation”. In: Proceedings of the 2017 11th Joint Meeting on Foun-
dations of Software Engineering. ESEC/FSE 2017. Paderborn, Germany: Asso-
ciation for Computing Machinery, 2017, 727–739. ISBN: 9781450351058. DOI:
10.1145/3106237.3106253. URL: https://doi.org/10.1145/
3106237.3106253.

https://doi.org/10.1109/SANER.2016.76
https://doi.org/10.1109/SANER.2016.76
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://doi.org/10.1109/ICST.2013.24
https://doi.org/10.1109/ICST.2013.24
https://doi.org/10.1109/ICSME.2018.00037
https://doi.org/10.1109/ICSME.2018.00037
https://doi.org/10.1109/ICST.2019.00020
https://doi.org/10.1145/3106237.3106253
https://doi.org/10.1145/3106237.3106253
https://doi.org/10.1145/3106237.3106253

86 Bibliography

[69] F. Long and M. Rinard. “Automatic Patch Generation by Learning Correct
Code”. In: SIGPLAN Not. 51.1 (Jan. 2016), 298–312. ISSN: 0362-1340. DOI: 10.
1145/2914770.2837617. URL: https://doi.org/10.1145/2914770.
2837617.

[70] F. Long and M. Rinard. “Staged Program Repair with Condition Synthesis”.
In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineer-
ing. ESEC/FSE 2015. Bergamo, Italy: Association for Computing Machinery,
2015, 166–178. ISBN: 9781450336758. DOI: 10.1145/2786805.2786811.
URL: https://doi.org/10.1145/2786805.2786811.

[71] F. Long and M. C. Rinard. “An analysis of the search spaces for generate and
validate patch generation systems”. In: Proceedings of the International Confer-
ence on Software Engineering (ICSE). 2016, pp. 702–713.

[72] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. “An Empirical Analysis of Flaky
Tests”. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. FSE 2014. Hong Kong, China: Associ-
ation for Computing Machinery, 2014, 643–653. ISBN: 9781450330565. DOI:
10.1145/2635868.2635920. URL: https://doi.org/10.1145/
2635868.2635920.

[73] F. Madeiral, S. Urli, M. Maia, and M. Monperrus. “Bears: An Extensible Java
Bug Benchmark for Automatic Program Repair Studies”. In: Proceedings of the
26th IEEE International Conference on Software Analysis, Evolution and Reengi-
neering (SANER ’19). 2019. URL: https://arxiv.org/abs/1901.06024.

[74] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus. “Auto-
matic Repair of Real Bugs in Java: A Large-Scale Experiment on the Defects4J
Dataset”. In: Springer Empirical Software Engineering (2016). DOI: 10.1007/
s10664-016-9470-4. URL: https://hal.archives-ouvertes.fr/
hal-01387556/document.

[75] M. Martinez, A. Etien, S. Ducasse, and C. Fuhrman. “RTj: A Java Frame-
work for Detecting and Refactoring Rotten Green Test Cases”. In: Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering: Com-
panion Proceedings. ICSE ’20. Seoul, South Korea: Association for Computing
Machinery, 2020, 69–72. ISBN: 9781450371223. DOI: 10.1145/3377812.
3382151. URL: https://doi.org/10.1145/3377812.3382151.

[76] M. Martinez and M. Monperrus. “ASTOR: A Program Repair Library for
Java”. In: Proceedings of ISSTA. 2016. DOI: 10.1145/2931037.2948705.

[77] M. Martinez and M. Monperrus. “Astor: Exploring the design space of generate-
and-validate program repair beyond GenProg”. In: Journal of Systems and Soft-
ware 151 (2019), pp. 65 –80.

https://doi.org/10.1145/2914770.2837617
https://doi.org/10.1145/2914770.2837617
https://doi.org/10.1145/2914770.2837617
https://doi.org/10.1145/2914770.2837617
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2635868.2635920
https://doi.org/10.1145/2635868.2635920
https://doi.org/10.1145/2635868.2635920
https://arxiv.org/abs/1901.06024
https://doi.org/10.1007/s10664-016-9470-4
https://doi.org/10.1007/s10664-016-9470-4
https://hal.archives-ouvertes.fr/hal-01387556/document
https://hal.archives-ouvertes.fr/hal-01387556/document
https://doi.org/10.1145/3377812.3382151
https://doi.org/10.1145/3377812.3382151
https://doi.org/10.1145/3377812.3382151
https://doi.org/10.1145/2931037.2948705

Bibliography 87

[78] M. Martinez and M. Monperrus. “Ultra-Large Repair Search Space with Au-
tomatically Mined Templates: The Cardumen Mode of Astor”. In: Search-
Based Software Engineering. Ed. by Thelma Elita Colanzi and Phil McMinn.
Springer International Publishing, 2018.

[79] S. Mechtaev, J. Yi, and A. Roychoudhury. “Angelix: Scalable Multiline Pro-
gram Patch Synthesis via Symbolic Analysis”. In: 2016 IEEE/ACM 38th In-
ternational Conference on Software Engineering (ICSE). 2016, pp. 691–701. DOI:
10.1145/2884781.2884807.

[80] S. Mechtaev, J. Yi, and A. Roychoudhury. “DirectFix: Looking for Simple Pro-
gram Repairs”. In: 2015 IEEE/ACM 37th IEEE International Conference on Soft-
ware Engineering. Vol. 1. 2015, pp. 448–458. DOI: 10.1109/ICSE.2015.63.

[81] M. Monperrus. “Automatic Software Repair: A Bibliography”. In: ACM Com-
put. Surv. 51.1 (Jan. 2018). ISSN: 0360-0300. DOI: 10.1145/3105906. URL:
https://doi.org/10.1145/3105906.

[82] M. Monperrus. The Living Review on Automated Program Repair. Tech. rep. hal-
01956501. HAL/archives-ouvertes.fr, 2018.

[83] M. Monperrus, S. Urli, T. Durieux, M. Martinez, B. Baudry, and L. Seinturier.
“Repairnator Patches Programs Automatically”. In: Ubiquity 2019.July (July
2019). DOI: 10.1145/3349589. URL: https://doi.org/10.1145/
3349589.

[84] M. Motwani and Y. Brun. Automatically Repairing Programs Using Both Tests
and Bug Reports. 2020. arXiv: 2011.08340 [cs.SE].

[85] G. J. Myers. Art of Software Testing. USA: John Wiley & Sons, Inc., 1979. ISBN:
0471043281.

[86] H. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. “SemFix: Program re-
pair via semantic analysis”. In: Proceedings of the International Conference on
Software Engineering (ICSE). 2013.

[87] A. Ochiai. “Zoogeographical Studies on the Soleoid Fishes Found in Japan
and its Neighbouring Regions-III”. In: Nippon Suisan Gakkaishi 22 (1957), pp. 522–
525.

[88] C. Pacheco and M. D Ernst. “Randoop: feedback-directed random testing for
Java”. In: Companion to the 22nd ACM SIGPLAN conference on Object-oriented
programming systems and applications companion. 2007, pp. 815–816.

[89] J. Pan. “Software testing”. In: Dependable Embedded Systems 5 (1999), p. 2006.

[90] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier. “Spoon:
A Library for Implementing Analyses and Transformations of Java Source
Code”. In: Software: Practice and Experience 46 (2015), pp. 1155–1179. DOI: 10.
1002/spe.2346. URL: https://hal.archives-ouvertes.fr/hal-
01078532/document.

https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1109/ICSE.2015.63
https://doi.org/10.1145/3105906
https://doi.org/10.1145/3105906
https://doi.org/10.1145/3349589
https://doi.org/10.1145/3349589
https://doi.org/10.1145/3349589
https://arxiv.org/abs/2011.08340
https://doi.org/10.1002/spe.2346
https://doi.org/10.1002/spe.2346
https://hal.archives-ouvertes.fr/hal-01078532/document
https://hal.archives-ouvertes.fr/hal-01078532/document

88 Bibliography

[91] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst, D. Pang, and
B. Keller. “Evaluating and improving fault localization”. In: Proceedings of the
International Conference on Software Engineering (ICSE). 2017.

[92] Y. Pei, Y. Wei, C. A. Furia, M. Nordio, and B. Meyer. “Code-based automated
program fixing”. In: 2011 26th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2011). 2011, pp. 392–395. DOI: 10.1109/
ASE.2011.6100080.

[93] H. Pham. “Software Reliability”. In: Wiley Encyclopedia of Electrical and Elec-
tronics Engineering. American Cancer Society, 1999. ISBN: 9780471346081. DOI:
https://doi.org/10.1002/047134608X.W6952. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/047134608X.

W6952. URL: https://onlinelibrary.wiley.com/doi/abs/10.
1002/047134608X.W6952.

[94] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. “The Strength of Random Search
on Automated Program Repair”. In: Proceedings of the 36th International Con-
ference on Software Engineering. ICSE 2014. Hyderabad, India: Association for
Computing Machinery, 2014, 254–265. ISBN: 9781450327565. DOI: 10.1145/
2568225.2568254. URL: https://doi.org/10.1145/2568225.
2568254.

[95] Z. Qi, F. Long, S. Achour, and M. Rinard. “An Analysis of Patch Plausibility
and Correctness for Generate-and-Validate Patch Generation Systems”. In:
Proceedings of the 2015 International Symposium on Software Testing and Analy-
sis. ISSTA 2015. Baltimore, MD, USA: Association for Computing Machinery,
2015, 24–36. ISBN: 9781450336208. DOI: 10.1145/2771783.2771791. URL:
https://doi.org/10.1145/2771783.2771791.

[96] M. Renieres and S. P. Reiss. “Fault localization with nearest neighbor queries”.
In: 18th IEEE International Conference on Automated Software Engineering, 2003.
Proceedings. 2003, pp. 30–39. DOI: 10.1109/ASE.2003.1240292.

[97] T. Reps, T. Ball, M. Das, and J. Larus. “The use of program profiling for soft-
ware maintenance with applications to the year 2000 problem”. In: Software
Engineering — ESEC/FSE’97. Ed. by Mehdi Jazayeri and Helmut Schauer.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 432–449. ISBN: 978-
3-540-69592-9.

[98] Henrique L. Ribeiro, Roberto P. A. de Araujo, Marcos L. Chaim, Higor A. de
Souza, and Fabio Kon. “Jaguar: A Spectrum-Based Fault Localization Tool for
Real-World Software”. In: 2018 IEEE 11th International Conference on Software
Testing, Verification and Validation (ICST). 2018, pp. 404–409. DOI: 10.1109/
ICST.2018.00048.

https://doi.org/10.1109/ASE.2011.6100080
https://doi.org/10.1109/ASE.2011.6100080
https://doi.org/https://doi.org/10.1002/047134608X.W6952
https://onlinelibrary.wiley.com/doi/pdf/10.1002/047134608X.W6952
https://onlinelibrary.wiley.com/doi/pdf/10.1002/047134608X.W6952
https://onlinelibrary.wiley.com/doi/pdf/10.1002/047134608X.W6952
https://onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.W6952
https://onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.W6952
https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1145/2771783.2771791
https://doi.org/10.1145/2771783.2771791
https://doi.org/10.1109/ASE.2003.1240292
https://doi.org/10.1109/ICST.2018.00048
https://doi.org/10.1109/ICST.2018.00048

Bibliography 89

[99] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad. “Elixir: Effective object-
oriented program repair”. In: 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE). 2017, pp. 648–659. DOI: 10.1109/
ASE.2017.8115675.

[100] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold. “Lightweight fault-localization
using multiple coverage types”. In: 2009 IEEE 31st International Conference on
Software Engineering. 2009, pp. 56–66. DOI: 10.1109/ICSE.2009.5070508.

[101] P. Sawadpong, E. B. Allen, and B. J. Williams. “Exception Handling Defects:
An Empirical Study”. In: 2012 IEEE 14th International Symposium on High-
Assurance Systems Engineering. 2012, pp. 90–97. DOI: 10.1109/HASE.2012.
24.

[102] Selenium Team. Selenium. https://www.selenium.dev. 2021.

[103] K. Shrestha and M. J. Rutherford. “An Empirical Evaluation of Assertions
as Oracles”. In: 2011 Fourth IEEE International Conference on Software Testing,
Verification and Validation. 2011, pp. 110–119. DOI: 10.1109/ICST.2011.50.

[104] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard. “Automatic Er-
ror Elimination by Horizontal Code Transfer across Multiple Applications”.
In: SIGPLAN Not. 50.6 (June 2015), 43–54. ISSN: 0362-1340. DOI: 10.1145/
2813885.2737988. URL: https://doi.org/10.1145/2813885.
2737988.

[105] Deuslirio Silva-Junior, Plinio S. Leitao-Junior, Altino Dantas, Celso G. Camilo-
Junior, and Rachel Harrison. “Data-Flow-Based Evolutionary Fault Localiza-
tion”. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing.
SAC ’20. Brno, Czech Republic: Association for Computing Machinery, 2020,
1963–1970. ISBN: 9781450368667. DOI: 10.1145/3341105.3373946. URL:
https://doi.org/10.1145/3341105.3373946.

[106] S. Sinha, H. Shah, C. Görg, S. Jiang, M. Kim, and M. J. Harrold. “Fault Local-
ization and Repair for Java Runtime Exceptions”. In: Proceedings of the Eigh-
teenth International Symposium on Software Testing and Analysis (ISSTA). 2009.

[107] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun. “Is the Cure Worse than
the Disease? Overfitting in Automated Program Repair”. In: Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering. ESEC/FSE
2015. Bergamo, Italy: Association for Computing Machinery, 2015, 532–543.
ISBN: 9781450336758. DOI: 10.1145/2786805.2786825. URL: https:
//doi.org/10.1145/2786805.2786825.

[108] Undo Software. Increasing software development productivity with reversible de-
bugging. white paper. 2014. URL: https://undo.io/media/uploads/
files/Undo_ReversibleDebugging_Whitepaper.pdf.

https://doi.org/10.1109/ASE.2017.8115675
https://doi.org/10.1109/ASE.2017.8115675
https://doi.org/10.1109/ICSE.2009.5070508
https://doi.org/10.1109/HASE.2012.24
https://doi.org/10.1109/HASE.2012.24
https://www.selenium.dev
https://doi.org/10.1109/ICST.2011.50
https://doi.org/10.1145/2813885.2737988
https://doi.org/10.1145/2813885.2737988
https://doi.org/10.1145/2813885.2737988
https://doi.org/10.1145/2813885.2737988
https://doi.org/10.1145/3341105.3373946
https://doi.org/10.1145/3341105.3373946
https://doi.org/10.1145/2786805.2786825
https://doi.org/10.1145/2786805.2786825
https://doi.org/10.1145/2786805.2786825
https://undo.io/media/uploads/files/Undo_ReversibleDebugging_Whitepaper.pdf
https://undo.io/media/uploads/files/Undo_ReversibleDebugging_Whitepaper.pdf

90 Bibliography

[109] F. Steimann, M. Frenkel, and R. Abreu. “Threats to the Validity and Value
of Empirical Assessments of the Accuracy of Coverage-Based Fault Loca-
tors”. In: Proceedings of the 2013 International Symposium on Software Testing
and Analysis. ISSTA 2013. Lugano, Switzerland: Association for Computing
Machinery, 2013, 314–324. ISBN: 9781450321594. DOI: 10.1145/2483760.
2483767. URL: https://doi.org/10.1145/2483760.2483767.

[110] Szczepan Faber. Mockito. https://site.mockito.org. 2021.

[111] S. H. Tan and A. Roychoudhury. “relifix: Automated Repair of Software Re-
gressions”. In: 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering. Vol. 1. 2015, pp. 471–482. DOI: 10.1109/ICSE.2015.65.

[112] S. H. Tan, H. Yoshida, M. R. Prasad, and A. Roychoudhury. “Anti-Patterns in
Search-Based Program Repair”. In: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. FSE 2016. Seat-
tle, WA, USA: Association for Computing Machinery, 2016, 727–738. ISBN:
9781450342186. DOI: 10.1145/2950290.2950295. URL: https://doi.
org/10.1145/2950290.2950295.

[113] jUnit Team. jUnit. https://junit.org/junit5/. 2021.

[114] J. Troya, S. Segura, J. A. Parejo, and A. Ruiz-Cortés. “Spectrum-Based Fault
Localization in Model Transformations”. In: ACM Trans. Softw. Eng. Methodol.
27.3 (Sept. 2018). ISSN: 1049-331X. DOI: 10.1145/3241744. URL: https:
//doi.org/10.1145/3241744.

[115] S. Urli, Z. Yu, L. Seinturier, and M. Monperrus. “How to Design a Program
Repair Bot? Insights from the Repairnator Project”. In: Proceedings of the 40th
International Conference on Software Engineering. 2018.

[116] J. M. Voas. “A dynamic failure model for performing propagation and infec-
tion analysis on computer programs”. In: (1990).

[117] S. Wang, M. Wen, B. Lin, H. Wu, Y. Qin, D. Zou, X. Mao, and H. Jin. “Auto-
mated Patch Correctness Assessment: How Far are We?” In: 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 2020, pp. 968–
980.

[118] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and A. Zeller.
“Automated Fixing of Programs with Contracts”. In: Proceedings of the 19th In-
ternational Symposium on Software Testing and Analysis. ISSTA ’10. Trento, Italy:
Association for Computing Machinery, 2010, 61–72. ISBN: 9781605588230. DOI:
10.1145/1831708.1831716. URL: https://doi.org/10.1145/
1831708.1831716.

[119] W. Weimer, Z. P. Fry, and S. Forrest. “Leveraging Program Equivalence for
Adaptive Program Repair: Models and First Results”. In: Proceedings of the
28th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE Press, 2013.

https://doi.org/10.1145/2483760.2483767
https://doi.org/10.1145/2483760.2483767
https://doi.org/10.1145/2483760.2483767
https://site.mockito.org
https://doi.org/10.1109/ICSE.2015.65
https://doi.org/10.1145/2950290.2950295
https://doi.org/10.1145/2950290.2950295
https://doi.org/10.1145/2950290.2950295
https://junit.org/junit5/
https://doi.org/10.1145/3241744
https://doi.org/10.1145/3241744
https://doi.org/10.1145/3241744
https://doi.org/10.1145/1831708.1831716
https://doi.org/10.1145/1831708.1831716
https://doi.org/10.1145/1831708.1831716

Bibliography 91

[120] M. Wen, J. Chen, R. Wu, D. Hao, and S. C. Cheung. An Empirical Analysis of the
Influence of Fault Space on Search-Based Automated Program Repair. 2017. arXiv:
1707.05172 [cs.SE].

[121] M. Wen, J. Chen, R. Wu, D. Hao, and S. C. Cheung. “Context-Aware Patch
Generation for Better Automated Program Repair”. In: Proceedings of the 40th
International Conference on Software Engineering. ICSE ’18. Gothenburg, Swe-
den: Association for Computing Machinery, 2018, 1–11. ISBN: 9781450356381.
DOI: 10.1145/3180155.3180233. URL: https://doi.org/10.1145/
3180155.3180233.

[122] M. White, M. Tufano, M. Martínez, M. Monperrus, and D. Poshyvanyk. “Sort-
ing and Transforming Program Repair Ingredients via Deep Learning Code
Similarities”. In: Proceedings of the IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). 2019.

[123] J. L. Wilkerson and D. Tauritz. “Coevolutionary Automated Software Correc-
tion”. In: Proceedings of the 12th Annual Conference on Genetic and Evolution-
ary Computation. GECCO ’10. Portland, Oregon, USA: Association for Com-
puting Machinery, 2010, 1391–1392. ISBN: 9781450300728. DOI: 10.1145/
1830483.1830739. URL: https://doi.org/10.1145/1830483.
1830739.

[124] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. “A Survey on Software
Fault Localization”. In: IEEE Transactions on Software Engineering 42.8 (2016),
pp. 707–740. DOI: 10.1109/TSE.2016.2521368.

[125] X. Xie, T. Yueh Chen, F. C. Kuo, and B. Xu. “A Theoretical Analysis of the
Risk Evaluation Formulas for Spectrum-Based Fault Localization”. In: ACM
Trans. Softw. Eng. Methodol. 22.4 (Oct. 2013). ISSN: 1049-331X. DOI: 10.1145/
2522920.2522924. URL: https://doi.org/10.1145/2522920.
2522924.

[126] Q. Xin and S. P. Reiss. “Identifying Test-Suite-Overfitted Patches through Test
Case Generation”. In: Proceedings of the 26th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis. ISSTA 2017. Santa Barbara, CA, USA:
Association for Computing Machinery, 2017, 226–236. ISBN: 9781450350761.
DOI: 10.1145/3092703.3092718. URL: https://doi.org/10.1145/
3092703.3092718.

[127] Q. Xin and S. P. Reiss. “Leveraging syntax-related code for automated pro-
gram repair”. In: Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE. 2017, pp. 660–670.

[128] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang. “Identifying Patch Cor-
rectness in Test-Based Program Repair”. In: Proceedings of the 40th International
Conference on Software Engineering. ICSE ’18. Gothenburg, Sweden: Associ-
ation for Computing Machinery, 2018, 789–799. ISBN: 9781450356381. DOI:

https://arxiv.org/abs/1707.05172
https://doi.org/10.1145/3180155.3180233
https://doi.org/10.1145/3180155.3180233
https://doi.org/10.1145/3180155.3180233
https://doi.org/10.1145/1830483.1830739
https://doi.org/10.1145/1830483.1830739
https://doi.org/10.1145/1830483.1830739
https://doi.org/10.1145/1830483.1830739
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1145/2522920.2522924
https://doi.org/10.1145/2522920.2522924
https://doi.org/10.1145/2522920.2522924
https://doi.org/10.1145/2522920.2522924
https://doi.org/10.1145/3092703.3092718
https://doi.org/10.1145/3092703.3092718
https://doi.org/10.1145/3092703.3092718

92 Bibliography

10.1145/3180155.3180182. URL: https://doi.org/10.1145/
3180155.3180182.

[129] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang. “Precise
Condition Synthesis for Program Repair”. In: Proceedings of the 39th Interna-
tional Conference on Software Engineering. ICSE ’17. Buenos Aires, Argentina:
IEEE Press, 2017, 416–426. ISBN: 9781538638682. DOI: 10.1109/ICSE.2017.
45. URL: https://doi.org/10.1109/ICSE.2017.45.

[130] T. Xu, L. Chen, Y. Pei, T. Zhang, M. Pan, and C. Furia. “Restore: Retrospective
Fault Localization Enhancing Automated Program Repair”. In: IEEE Trans-
actions on Software Engineering 01 (5555), pp. 1–1. ISSN: 1939-3520. DOI: 10.
1109/TSE.2020.2987862.

[131] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. L. Marcote, T. Durieux,
D. Le Berre, and M. Monperrus. “Nopol: Automatic Repair of Conditional
Statement Bugs in Java Programs”. In: IEEE Trans. Softw. Eng. 43.1 (Jan. 2017),
34–55. ISSN: 0098-5589. DOI: 10.1109/TSE.2016.2560811. URL: https:
//doi.org/10.1109/TSE.2016.2560811.

[132] He Y., M. Martinez, T. Durieux, and M. Monperrus. “A comprehensive study
of automatic program repair on the QuixBugs benchmark”. In: Journal of Sys-
tems and Software 171 (2021), p. 110825. ISSN: 0164-1212. DOI: https://doi.
org/10.1016/j.jss.2020.110825. URL: http://www.sciencedirect.
com/science/article/pii/S0164121220302193.

[133] D. Yang, Y. Qi, and X. Mao. “An Empirical Study on the Usage of Fault Lo-
calization in Automated Program Repair”. In: 2017 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME). 2017, pp. 504–508. DOI:
10.1109/ICSME.2017.37.

[134] J. Yang, A. Zhikhartsev, Y. Liu, and L. Tan. “Better Test Cases for Better Auto-
mated Program Repair”. In: Proceedings of the 2017 11th Joint Meeting on Foun-
dations of Software Engineering. ESEC/FSE 2017. Paderborn, Germany: Asso-
ciation for Computing Machinery, 2017, 831–841. ISBN: 9781450351058. DOI:
10.1145/3106237.3106274. URL: https://doi.org/10.1145/
3106237.3106274.

[135] Z. Yu, M. Martinez, B. Danglot, T. Durieux, and M. Monperrus. “Alleviating
Patch Overfitting with Automatic Test Generation: A Study of Feasibility and
Effectiveness for the Nopol Repair System”. In: Empirical Softw. Engg. 24.1
(Feb. 2019), 33–67. ISSN: 1382-3256. DOI: 10.1007/s10664-018-9619-4.
URL: https://doi.org/10.1007/s10664-018-9619-4.

[136] Z. Yu, M. Martinez, B. Danglot, T. Durieux, and M. Monperrus. “Test Case
Generation for Program Repair: A Study of Feasibility and Effectiveness”. In:
ArXiv abs/1703.00198 (2017).

https://doi.org/10.1145/3180155.3180182
https://doi.org/10.1145/3180155.3180182
https://doi.org/10.1145/3180155.3180182
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1109/TSE.2020.2987862
https://doi.org/10.1109/TSE.2020.2987862
https://doi.org/10.1109/TSE.2016.2560811
https://doi.org/10.1109/TSE.2016.2560811
https://doi.org/10.1109/TSE.2016.2560811
https://doi.org/https://doi.org/10.1016/j.jss.2020.110825
https://doi.org/https://doi.org/10.1016/j.jss.2020.110825
http://www.sciencedirect.com/science/article/pii/S0164121220302193
http://www.sciencedirect.com/science/article/pii/S0164121220302193
https://doi.org/10.1109/ICSME.2017.37
https://doi.org/10.1145/3106237.3106274
https://doi.org/10.1145/3106237.3106274
https://doi.org/10.1145/3106237.3106274
https://doi.org/10.1007/s10664-018-9619-4
https://doi.org/10.1007/s10664-018-9619-4

Bibliography 93

[137] A. Zeller and R. Hildebrandt. “Simplifying and isolating failure-inducing in-
put”. In: IEEE Transactions on Software Engineering 28.2 (2002), pp. 183–200.
DOI: 10.1109/32.988498.

[138] Z. Zhang, W.K. Chan, T.H. Tse, Y.T. Yu, and P. Hu. “Non-parametric statistical
fault localization”. In: Journal of Systems and Software 84.6 (2011), pp. 885 –905.
ISSN: 0164-1212. DOI: https://doi.org/10.1016/j.jss.2010.12.
048. URL: http://www.sciencedirect.com/science/article/
pii/S0164121211000045.

https://doi.org/10.1109/32.988498
https://doi.org/https://doi.org/10.1016/j.jss.2010.12.048
https://doi.org/https://doi.org/10.1016/j.jss.2010.12.048
http://www.sciencedirect.com/science/article/pii/S0164121211000045
http://www.sciencedirect.com/science/article/pii/S0164121211000045

	Abstract
	Acknowledgements
	Introduction
	Software Testing, Debugging and APR in the Development Pipeline
	Software Testing
	Verification and Validation
	Levels of Testing
	Test Automation
	Possible Results of Test Cases

	Software Debugging
	Delta Debugging

	Bug Fixing and Modern Development Models
	DevOps
	Continuous Integration
	Continuous Delivery

	APR in the Software Development Pipeline

	Automatic Program Repair
	Overview of Automatic Program Repair Techniques
	Program Repair Process
	Generate-and-validate Techniques
	Techniques that use Atomic Change Operators
	Techniques that use Template-based Change Operators
	Techniques that use Example-based Template Operators

	Semantics-driven Techniques
	Learning-based Repair Techniques

	The Problem of Overfitting Patches
	Studies about Overfitting Patches
	Approaches to Mitigate the Overfitting Patches Problem

	Challenge of Overfitting Patches in Automatic Program Repair

	Fault Localization
	Spectrum-based Fault Localization
	Tarantula
	Ochiai
	Jaccard
	GenProg Fault Localization Strategy

	Augmented Spectrum-based Fault Localization
	Information Retrieval-based Fault Localization
	Challenges of Fault Localization in Automatic Program Repair

	Effectiveness of Code-removal Patches
	Code-removal Patches
	Experimental Methodology
	Goals & Research Questions
	Data Collection
	Analysis of Failed Continuous Integration Builds
	Analysis of Human Patches and Automated Code-removal Patches
	Summary

	Experimental Results
	What is the relation between assertion failures and the generation of test-suite-adequate code-removal patches? (RQ1)
	Analysis of the Results
	Comparison of the Results with Previous Studies

	What is the relation between crashing tests and the generation of test-suite-adequate code-removal patches? (RQ2)
	Comparison of the Results between Builds with Failing and Crashing Test Cases
	Analysis of the Results

	To what extent can code-removal patches, even if incorrect, give valuable information to developers to find weaknesses in test suites? (RQ3)
	Correct Patches
	Weak Test Suite
	Buggy Test Case
	Rottening Test
	Flaky Test

	How do developers fix the failed builds associated with a test-suite-adequate code-removal patch? (RQ4)
	Patches Produced by Developers
	Relation between Code-removal Patches and Developers Patches

	Threats to validity
	Discussion

	Exception-Driven Fault Localization for APR
	Fault Localization in APR
	Except
	Stack Trace Analysis
	Ranking Generation

	Supported Exceptions
	ArrayIndexOfOutBoundsException
	StringIndexOutOfBoundsException
	NullPointerException
	IllegalArgumentException

	Empirical Evaluation
	Empirical Setup
	What is the fault localization effectiveness of Except? (RQ1)
	How does Except affect the capability of modifying the faulty statements of APR techniques that use SBFL? (RQ2)
	What is the accuracy of the guessed fault? (RQ3)
	Threats to validity

	Discussion

	Conclusion
	Bibliography

