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Abstract

In this thesis we consider the application of Sequential Monte Carlo (SMC) methods to

continuous-time asset pricing models. The first chapter of the thesis gives a self-contained

overview on SMC methods. In particular, starting from basic Monte Carlo techniques we

move to recent state of the art SMC algorithms.

In the second chapter we review existing methods for the exact simulation of Hawkes

processes. From our analysis we infer that the simulation scheme of Dassios and Zhao

(2013) outperforms the other algorithms, including the most popular thinning method

proposed by Ogata (1981). This chapter serves also as introduction to self-exciting jump

processes, which are the subject of Chapter 3.

Hence, in the third chapter we propose a new self-exciting jump diffusion model in order

to describe oil price dynamics. We estimate the model by applying a state of the art SMC

sampler on both spot and futures data. From the estimation results we find evidence of

self-excitation in the oil market, which leads to an improved fit and a better out of sam-

ple futures forecasting performance with respect to jump-diffusion models with constant

intensity. Furthermore, we compute and discuss two optimal hedging strategies based on

futures trading. The optimality of the first hedging strategy proposed is based on the

variance minimization, while the second strategy takes into account also the third-order

moment contribution in considering the investors attitudes. A comparison between the

two strategies in terms of hedging effectiveness is provided.

Finally, in the fourth chapter we consider the estimation of continuous-time Wishart

stochastic volatility models by observing portfolios of weighted options as in Orlowski

(2019). In this framework we don’t know the likelihood in closed-form; then we aim to

estimate it using SMC techniques. To this end, we marginalize latent states and per-

form marginal likelihood estimation by adapting the recently proposed controlled SMC

algorithm (Heng et al., 2019). From the numerical experiments we show that the pro-

posed methodology gives much better results with respect to standard filtering techniques.

Therefore, the great stability of our SMC method opens the door for effective joint es-

timation of latent states and unknown parameters in a Bayesian fashion. This last step

amounts to design an SMC sampler based on a pseudo-marginal argument and is currently

under preparation.
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Introduction

Continuous-time models have established themselves as one of the main mathematical

tools to describe financial markets. Starting with the celebrated work by Black and Sc-

holes (1973), a huge literature on financial derivatives pricing and hedging was born. For

some recent developments in this area see for instance Andersen et al. (2015), Fulop and

Li (2019) and Bardgett et al. (2019). Another important application of continuous-time

models is term structure modelling (see among the others Duffie and Kan (1996), Duffee

(2002)). Finally, continuous-time macro-finance models addressing the link between as-

set prices and economic fluctuations also form an important part of financial economists’

toolkit (Wachter, 2013, Brunnermeier and Sannikov, 2016).

The estimation of such models on real data is difficult because latent factors are not

observable, precluding closed-form expressions for the likelihood function. Moreover, the

observation of financial derivatives introduces a tight link between latent states and pa-

rameters, leading to poor performances of standard econometric techniques. Further,

the increasing complexity of state of the art stochastic volatility models makes empirical

applications even more complicated. Then, in order to answer important questions in

risk management and derivatives pricing, we consider in this thesis the application of

Sequential Monte Carlo (SMC) methods, which are simulation based algorithms that can

handle non-linear and/or non Gaussian models.

An overview of SMC methods, from their basic formulation to current state of the art,

is given in Chapter 1. Then, in Chapter 2 we introduce Hawkes processes and compare

existing methods for their exact simulation. Despite the much greater popularity of the

thinning algorithm proposed by Ogata (1981), we find that the simulation scheme of

Dassios and Zhao (2013) is the most efficient for the same level of accuracy.

In Chapter 3 we propose a new self-exciting jump diffusion model for oil price dynamics.

Our model specification features stochastic volatility, which can jump simultaneously

1
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with prices in a self-exciting fashion, and stochastic convenience yield, described by a

Ornstein-Uhlenbeck process. By shutting down different channels we retrieve the most

relevant dynamic models proposed in the literature related to oil price dynamics. In

the empirical application we consider both spot and futures data; then we adapt the

two-stage SMC sampler proposed by Fulop and Li (2019) to get parameters and filtered

states. The calibrated model is used to dynamically hedge a position in the spot market

by shorting futures contracts. In order to compute the so called optimal hedge ratio we

consider two approaches: the first based on variance minimization; the second considering

also skewness. The latter hedging strategy exhibits some interesting features and gives to

the hedger better results with respect to the most popular minimum variance approach.

From the empirical application we infer that our model equipped with the self-exciting

component, outperforms the one with constant intensity in terms of hedging effectiveness

and realized utility.

Chapter 4 deals with the estimation of continuous-time Wishart option pricing mod-

els. Indeed, it is well known that estimating such multidimensional stochastic volatility

models is very difficult due to complex option pricing formulas, interconnected latent

states and positive definiteness constraints. In particular, a simple Euler approximation

between two observations does not guarantee positive definiteness making discretization

bias a particularly severe issue (see Kang et al., 2017). Then, We follow the prevailing

data augmentation approach (see e.g. the survey in Sørensen (2009), or Durham and

Gallant (2002)) filling in latent states at artificial time points between the observations,

allowing us to control discretization bias. While most existing work is based on Monte

Carlo Markov Chain methods, we propose to employ SMC methods. Here the main dif-

ficulty to overcome is to provide an efficient proposal distribution over the path of the

unobserved latent states between two observations. Standard filtering techniques, such

as the bootstrap particle filter (Gordon et al., 1993) or the locally optimal particle filter

(Doucet et al., 2000) do not suffice as they only condition on the past, while here the

future observation is also informative on the latent path. Then, we propose to adapt the

recent controlled SMC method of Heng et al. (2019) to tackle this problem, which allows

us a generic approach to propagate information from the future. Numerical experiments

on simulated data show that our approach is much more stable than standard filtering

techniques. In particular, the noise in the estimated marginal likelihood is much lower;
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this is crucial in order to implement effective SMC sampler routines for unknown param-

eters estimation.

Chapter 2 is a joint work with Riccardo Brignone, Chapter 3 is a joint work with Carlo

Sgarra, whereas Chapter 4 is a joint work with Andras Fulop, Jeremy Heng and Fabio

Trojani.



Part I

Background

4



Chapter 1

From Monte Carlo to Sequential

Monte Carlo

1.1 Monte Carlo Integration

The use of Monte Carlo (MC) methods is widespread across different disciplines, includ-

ing for example finance, statistics and engineering. This class of methods allows to tackle

challenging integration problems by mean of numerical simulation. At the core of MC

methods is the concept of pseudo-random numbers, which are used by modern mathemat-

ical and statistical software to generate sequence of numbers which are, in some sense,

random.

In mathematical finance and financial econometrics it is common to face integration prob-

lems where a closed-form solution is not available, or where the dimension of the integral

makes classical numerical integrations techniques unfeasible.

For what concerns the field of mathematical finance, MC methods have found a lot

of applications in option pricing, where the development of complex models prevents to

obtain closed-form solutions for the price of options contracts (see e.g. Glasserman, 2003).

From the econometric point of view, MC methods are well suited for Bayesian inference,

where we need to estimate complex distributions which are not know explicitly. As the

name suggests, Bayesian inference is based on Bayes’ theorem, which states that, given

5



CHAPTER 1. FROM MONTE CARLO TO SEQUENTIAL MONTE CARLO 6

two events A,B belonging to a probability space Ω, then

P (A | B) =
P (B | A)P (A)

P (B)
, P (B) > 0.

In Bayesian econometrics the unknown parameters θ ∈ Θ are not constants as in the

frequentist approach, but instead they are random variables, with a prior distribution

p(θ), defined on a parameter space Θ. Now, if we denote the data distribution (which

lives on the space Y) as p(y | θ), we obtain from Bayes’ theorem the posterior distribution

of the parameters:

p(θ | y) =
p(y | θ)p(θ)∫
Y p(y | θ)p(θ)dθ

=
p(y | θ)p(θ)

p(y)
. (1.1)

To gain intuition about the usefulness of stochastic simulation, assume we are con-

cerned with the following integration problem:

I(X) = Ef [g(X)] =

∫
X
g(x)f(x)dx,

where, X denotes the support of the random variable X. The purpose of MC meth-

ods is to approximate the above integral by generating N values {X1, . . . , XN} from a

distribution f and then taking the average:

Î(X) =
1

N

N∑
i=1

g(xi).

The empirical mean will converge almost surely to I(X) by the strong law of large

numbers as N →∞. Associated to this estimate there is also an asymptotic variance:

ˆVar[I(X)] =
1

N2

N∑
i=1

(
g(xi)− Î(X)

)2

.

In addition, we can apply the central limit theorem to define the distribution of the

standardized estimate:
Î(X)− I(X)√

ˆVar[I(X)]

∼ N (0, 1).

Generally speaking, we can say that MC methods are all based on generation of

uniform random numbers, from which it is possible to generate all the other distributions.
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In particular, one of the most popular approach is given by the inverse transform method,

which assumes that we know the inverse cumulative distribution function (CDF) of a

random variable. More precisely, this method works as follows:

i) Generate a sequence U1, . . . UN ∼ U(0, 1),

ii) if we plug the Ui into the inverse CDF, f−1(·), we obtain a sample of N values

distributed according to f .

This approach works if the random variable of interest admits the inverse CDF, oth-

erwise we need to consider other methods, e.g. the accept-reject or the importance sam-

pling. The next subsection deals with the latter as it constitutes a fundamental building

block of Sequential Monte Carlo (SMC) methods. After that, we describe Markov Chain

Monte Carlo (MCMC) methods and finally we deal with SMC.

1.1.1 Importance Sampling

Importance sampling is based on the so called importance density, which is an auxiliary

distribution denoted by h(x). In this case, we don’t know how to sample from the target

distribution f(x), so we choose to generate from h(x). Then, in order to correct the

gap between the target and the importance density we compute the so called importance

weights, which are defined by the ratio between the two distributions.

Coming back to our original integral, we can rewrite the integrand as follows:

Ef [g(X)] =

∫
X
g(x)f(x)dx =

∫
X
g(x)

f(x)

h(x)
h(x)dx = Eh

[
g(X)

f(X)

h(X)

]
.

Now, we have an expected value with respect to the importance distribution, i.e.

we made a change of probability measure. We can define the importance weights as

w(X) = f(X)/h(X), such that,

Ef [g(X)] = Ef [g(X)w(X)] .

At this point we proceed by generating random numbers X1, . . . , XN ∼ h and then
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we can approximate the expectation with the empirical mean:

Ef [g(X)] ≈ 1

N

N∑
i=1

g(xi)w(xi).

The choice of h is almost arbitrary, as long as supp(h) ⊃ supp(f).

This technique can also be used to simulate from complex distributions (Robert and

Casella, 2009) and in this case it is called sampling importance resampling. Indeed, with

importance sampling we obtain a sample X1, . . . , XN from h together with its importance

weights f(Xi)/h(Xi). Then, by using multinomial resampling (with replacement) we get

a sample almost distributed from f . To be more precise, assume that we can sample

with replacement from the weighted set {X1, . . . , XN}, where each Xi is selected with

probability w(Xi)/N ; then the resulting sample denoted by X? would be distributed as

P (X? ∈ A) =
N∑
i=1

P (X? ∈ A andX? = Xi) =

∫
A

f(x)

h(x)
h(x)dx =

∫
A

f(x)dx.

However, the probabilities w(Xi)/N do not sum up to 1; thus we need to normalize

the importance weights

w̃(Xi) =
w(Xi)/N

1
N

∑N
k=1w(Xk)

.

Note that the above normalization introduces a bias, which for large sample sizes is

negligible (see Robert and Casella, 2009).

1.1.2 Markov Chain Monte Carlo

Up to now we have seen how it is possible to generate i.i.d. samples from a distribution

through, for example, importance sampling. On the other hand, we may consider to

implement MCMC methods, which instead produces correlated samples. This class of

algorithms is based on stochastic processes called Markov chains and allows for more flex-

ible proposal distributions in cases where the importance sampling is difficult to apply.

Moreover, as we shall see later, they can be combined with SMC methods to produce more

efficient and stable algorithms for statistical inference in complex settings. To present

this topic we follow closely Robert and Casella (2004) and Casarin (2004).
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Thus, we start from basic definitions and properties of Markov chains, which are useful

in order to understand the methodologies we are going to present. A Markov chain is a

sequence of random variables indexed by time, where the probability of moving from one

state to another is dictated by a so called transition kernel.

Definition 1. A transition kernel is a function K defined on the space X × B(X ) such

that

(i) ∀x ∈ X , K(x, ·) is a probability measure;

(ii) ∀A ∈ B(X ), K(·, A) is measurable.

The transition kernel gives the conditional probability of transition, which is the

probability of the next state being in A given that the current state is x. If the Markov

chain is defined on a continuous state space we have that P (X ∈ A | x) =
∫
A
K(x, x′)dx′,

while in discrete time the transition kernel is a matrix with elements Px,x′ = P (Xt+1 =

x′ | Xt = x). In order to completely describe the law of this stochastic process it is

important to specify not only the transition kernel, but also the initial distribution µ(X0)

for the initial state X0 at time t = 0. A remarkable property of Markov chains is given

by the following

Definition 2. Given a transition kernel K(·, ·), a sequence X0, . . . , Xn, . . . of random

variables is a Markov Chain if, for any t, the conditional distribution of Xt given the past

values of the chain is the same as the distribution of Xt given xt−1, i.e.

P (Xt ∈ A | x0, . . . , xk) = P (Xt ∈ A | xk) =

∫
A

K(xk, dx).

In order to implement a valid MCMC algorithm, the transition kernel associated

to our Markov chain must satisfy some properties. First of all, we need to ensure the

existence of an invariant distribution for the Markov chain.

Definition 3. We say that a Markov chain has σ-finite invariant measure π for the

transition kernel K, if

π(B) =

∫
X
K(x,B)π(dx), ∀B ∈ B(X ).
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The invariant distribution is also stationary if π is a probability measure. To guarantee

the convergence of an MCMC algorithm we need the underlying Markov chain to be

irreducible and recurrent.

Definition 4. A Markov chain is irreducible with respect a measure φ, if ∀A ∈ B(X )

with φ(A) > 0, there exists n such that Kn(x,A) > 0, ∀x ∈ X .

This property essentially means that the kernel K1 allows for free moves all over the

state-space and that for any X0, the sequence (Xt) has a positive probability of eventually

reaching any region of the state-space.

Definition 5. A Markov chain (Xt) is recurrent if there exists a measure ϕ such that

(Xt) is irreducible and ∀A ∈ B(X ) such that ϕ(A) > 0, Ex[ηA] =∞ for every x ∈ A.

In the above definition ηA represents the number of passages of Xt in A ∈ B(X ).

Then, this property ensures that the chain is revisiting any subset of A infinitely often.

Definition 6. An irreducible Markov chain is aperiodic if ∀x ∈ X , g.c.d. {t > 0, Kn(x, x) >

0} = 1.

In other words, an aperiodic chain is prevented from getting stuck in a cycle of states.

In addition, an irreducible and recurrent chain is positive recurrent if it has an invariant

probability measure. Now, we can state the ergodic theorem, which ensures the unique-

ness of the invariant distribution and the ergodicity of the chain, i.e. the independence

on the starting point of the chain.

Theorem 7. If the Markov chain, (Xt) is aperiodic and positive recurrent, then its invari-

ant distribution π(·) is the unique probability distribution satisfying π(x′) =
∫
X π(x)Kn(x, x′)dx,

∀x′i ∈ X and ∀n ≥ 0 and the chain is said to be ergodic.

The ergodicity of a Markov chain is very important from the simulation point of

view. Indeed, if a given kernel K produces an ergodic Markov chain with stationary

distribution π, generating a chain from this kernel K will eventually produce samples

from π. In particular, we can apply the law of large numbers in MCMC setting, i.e. for

an integrable function h we can compute

1

n

n∑
i=1

h(Xt) −→ Eπ[h(X)]. (1.2)

1Kn(x,A) denotes the n-times composition of the transition kernel, that is Kn(x,A) =∫
X K

n−1(x′, A)K(x, dx′).
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Finally, it is possible to ensure that π is invariant also trough the time-reversibility of

a transition kernel.

Definition 8. A transition kernel is reversible if

π(x)K(x, y) = π(y)K(y, x).

This condition is known as detailed balance condition.

Metropolis-Hastings

Metropolis-Hastings (MH) is one example of a MCMC algorithm and it will be heavily

used in this thesis. This method allows to get samples from the target distribution

f(x) using an ergodic Markov chain (X)t with stationary distribution f(x). In order to

implement a valid MH algorithm we need to specify a proposal distribution q(y | x), which

could feature some property like being symmetric, q(y | x) = q(x | y), or independent of

x. Moreover, the ratio
f(y)

q(y | x)
,

should be known up to a constant. Then, the algorithmic steps of a MH are given in

Algorithm 1.

Algorithm 1 Metropolis-Hastings

Given x(t),

1) Generate Yt ∼ q(y | x(t)),

2) Take

X(t+1) =

{
Yt, with probability ρ(x(t), yt),

x(t), with probability ρ(x(t), yt),

where,

ρ(x, y) = min

{
f(y)q(x | y)

f(x)q(y | x)
, 1

}
.

To ensure correct sampling from f we impose some minimal regularity conditions on

both f and q. In particular, we require that the support of f is connected and that

supp f(x)⊆
⋃

x∈ supp f(x)

supp q(· | x).



CHAPTER 1. FROM MONTE CARLO TO SEQUENTIAL MONTE CARLO 12

If the support is not connected, there would be some subsets of the support that could

never be visited. Now, we can check that f is really the stationary distribution of our

MH chain by verifying the detailed balance condition. The transition kernel associated

with Algorithm 1 is

K(x, y) = ρ(x, y)q(y | x) + (1− r(x))δx(y), (1.3)

where, r(x) =
∫
ρ(x, y)q(y | x)dy and δx denotes the Dirac mass in x. Then, the first

term satisfies

ρ(x, y)q(y | x)f(x) = ρ(y, x)q(x | y)f(y).

Indeed,

ρ(x, y)q(y | x)f(x) = min

{
f(y)q(x | y)

f(x)q(y | x)
, 1

}
q(y | x)f(x)

= min {f(y)q(x | y), q(y | x)f(x)}

= min

{
1,
q(y | x)f(x)

f(y)q(x | y)

}
f(y)q(x | y)

= ρ(y, x)f(y)q(x | y).

The second term of the transition kernel satisfies

(1− r(x))δx(y)f(x) = (1− r(y))δy(x)f(y),

which is true because both sides of the equation are different from zero only when x = y.

The choice of proposal distribution q is almost arbitrarily and here we recall the two most

popular choices:

• independent MH : q(y | x) = q(y), which is similar to the accept-reject algorithm,

but still producing correlated samples.

• Random walk MH : q(y | x) = g(y − x), which is equivalent to write

Yt = Xt + ε,
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where, for example, ε ∼ N (0, σ2
ε).

In particular the random walk MH allows to control the acceptance probability by tuning

the variance of the proposal distribution. This feature of the algorithm is crucial when

we combine SMC techniques with the MH sampler.

Gibbs Sampling

Another important MCMC method is given by the Gibbs sampler, which is useful when

the target distribution is defined on high dimension space. In this case, we aim to

construct a Markov chain (X)t with multivariate stationary distribution f(X), where

X = (X1, . . . , Xr) ∈ X is a random vector. The Gibbs sampling applies if we can

simulate from the full conditional densities and it is described in Algorithm 2. Under

Algorithm 2 Gibbs sampler

Given X(t), generate X(t+1) as follows:

1) X
(t+1)
1 ∼ f(x

(t)
1 | x

(t)
2 , . . . , x

(t)
r ),

2) X
(t+1)
2 ∼ f(x

(t)
2 | x

(t+1)
1 , x

(t)
3 , . . . , x

(t)
r ),

3) . . .

4) X
(t+1)
r ∼ f(x

(t)
r | x(t+1)

1 , x
(t+1)
2 , . . . , x

(t)
r−1),

some regularity conditions the Markov chain produced by the algorithm converges to

the desired stationary distribution (Robert and Casella, 2004). Furthermore, if it is not

possible to sample from some of the conditionals, we can use an MH step, constructing

a so called hybrid sampler. However, in this thesis, from the MCMC family we are going

to consider only the MH algorithm; therefore we refer to Robert and Casella (2004) for

additional details on the Gibbs sampler.
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1.2 Sequential Monte Carlo

SMC methods have been recently proposed as powerful tools for the estimation of non-

linear and non Gaussian models (Doucet et al., 2001). In particular, we are going to

present this class of methods in the framework of state-space models2 (SSM). A SSM is

defined by a couple of stochastic processes (Xt, Yt), with Xt ∈ X being an hidden Markov

state process and Yt ∈ Y the observed time series. More precisely, Xt is defined by an

initial distribution µθ and a transition kernel fθ

X0 ∼ µθ(·) and Xt | (Xt−1 = x) ∼ fθ(· | x). (1.4)

The observations are conditionally independent given Xt, and the density of Yt at time t

depends on the latent state at time t:

Yt | (Xt = x) ∼ gθ(· | x). (1.5)

We denote by θ ∈ Θ the parameters of the model and we assume that µθ, fθ and gθ are

densities with respect to suitable dominating measures, denoted by dx and dy. Then,

the couple (1.4)-(1.5) defines a SSM. Now, if we define x1:T := (x1, . . . , xT ), y1:T :=

(y1, . . . , yT ) and θ is known, the object of Bayesian inference is the posterior density:

pθ(x1:T | y1:T ) ∝ pθ(x1:T , y1:T ), (1.6)

where,

pθ(x1:T , y1:T ) = µθ(x0)
T∏
t=1

fθ(xt | xt−1)
T∏
t=0

gθ(yt | xt). (1.7)

Instead, if θ is unknown we consider the following posterior density:

p(x1:T , θ | y1:T ) ∝ pθ(x1:T , y1:T )p(θ), (1.8)

where, p(θ) is the prior density assigned to θ. Both (1.6) and (1.8) are intractable for

non-linear non Gaussian models, thus one option is to exploit simulation based inference

outlined in the following sections.

2Although in this thesis we are going to consider only applications to SSM, we point out that SMC
techniques are not limited to this class of models.
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Before going into technical details, it is important to highlight that SSM are ubiquitous

across many fields of science like biology, robotics, navigation, economics and finance. For

instance, in financial applications, stochastic volatility models are the most prominent

examples of SSM, since volatility is not directly observable.

1.2.1 Particle Filtering

As stated in the previous section the scope of SMC is to estimate both latent states

and static parameters. In this section we describe the problem of state filtering, given

known parameters, following among the others Doucet and Johansen (2008) and Fulop

(2011) (to lighten the notation we omit the dependence on θ). In particular, the filtering

problem amounts to the computation of (1.6), which for non-linear and non Gaussian

SSMs is not feasible, unless in very specific cases like the linear Gaussian SSM, where the

Kalman filter gives the closed-form optimal solution.

State estimation via SMC is also known as Particle Filtering (PF), since the general idea

is to approximate continuous time distributions with discrete points, called particles. In

particular, consider the joint filtering distribution p(x0:t | y1:t) which, can be written as

follows:

p(x0:t | y1:t) =
p(x0:t, y1:t)

p(y1:t)
, (1.9)

where, p(y1:t) =
∫
p(x0:t, y1:t)dx0:t is the likelihood of observed data up to t. For the gen-

eral dynamic model (1.4)-(1.5), if a new observation is available, we update the filtering

distribution (1.9) as follows

p(x0:t+1 | y1:t+1) =
p(x0:t+1, y1:t+1)

p(y1:t+1)
,

=
g(yt+1 | xt+1)f(xt+1 | xt)p(x0:t | y1:t)

p(y1:t)

p(y1:t)

p(y1:t+1)
,

=
g(yt+1 | xt+1)f(xt+1 | xt)

p(yt+1 | y1:t)
p(x0:t | y1:t).

Now, we can integrate over x0:t−1 to get the joint distribution of xt and xt+1 given y1:t+1,

p(xt:t+1 | y1:t+1) =
g(yt+1 | xt+1)f(xt+1 | xt)

p(yt+1 | y1:t)
p(xt | y1:t),

∝ g(yt+1 | xt+1)f(xt+1 | xt)p(xt | y1:t).
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The (marginal) filtering distribution of xt+1 is obtained by integrating out xt

p(xt+1 | y1:t+1) =

∫
g(yt+1 | xt+1)f(xt+1 | xt)p(dxt | y1:t). (1.10)

However, this recursion is not tractable, then we will consider simulation based schemes

to deal with this task. The first attempt to solve the filtering problem is given by the

Sequential Importance Sampling (SIS) algorithm. As outlined in Section 1.1.1 we choose

an importance distribution q(x0:t) of the following form

q(x0:t) ∝
t∏

k=1

q(xk | yt, xk−1)q0(x0), (1.11)

then, the target can be written as

p(xt | y1:t) ∝
t∏

k=1

g(yt | xt)f(xk | xk−1)µ(x0),

in such a way that the importance weights are given by the ratio

w(x0:t) =
t∏

k=1

g(yt | xt)f(xk | xk−1)µ(x0)

q(xk | yt, xk−1)q0(x0)
. (1.12)

The SIS procedure is presented in Algorithm 3.

Algorithm 3 Sequential Importance Sampling

For i = 1, . . . ,M particles:

1) at time t = 0,

– sample x
(i)
0 ∼ q0(x0),

– compute w
(i)
0 =

µ(x
(i)
0 )

q0(x
(i)
0 )

.

2) For t > 0,

– sample x
(i)
t ∼ q(xt | yt, x(i)

t−1),

– compute w
(i)
t = w

(i)
t−1

g(yt|x(i)t )ft(x
(i)
t |x

(i)
t−1)

qt(x
(i)
t |yt,x

(i)
t−1)

.

end

Unfortunately, after few time steps most of normalized weights will be equal to zero,

giving birth to the so called weight degeneracy. This happens because the variance of



CHAPTER 1. FROM MONTE CARLO TO SEQUENTIAL MONTE CARLO 17

the weights grows with time. In order to fight weight degeneracy Gordon et al. (1993)

proposed to resample particles using the normalized weights as probabilities. The intu-

ition behind this approach is that unlikely trajectories are eliminated and likely ones are

multiplied. This algorithm is called Sequential Importance Resampling (SIR) and it is

outlined in Algorithm 4, where R(M ;w) means that resampling is performed by drawing

M points with replacement from a resampling distribution (e.g. the simplest option is a

Multinomial) with (normalized) probabilities w.

Algorithm 4 Sequential Importance Resampling

For i = 1, . . . ,M particles:

1) at time t = 0,

– sample x
(i)
0 ∼ q0(x0),

– compute w
(i)
0 =

µ(x
(i)
0 )

q0(x
(i)
0 )

.

2) For t > 0,

– sample x
(i)
t ∼ qt(xt | yt, x(i)

t−1),

– compute w
(i)
t = w

(i)
t−1

g(yt|x(i)t )ft(x
(i)
t |x

(i)
t−1)

qt(x
(i)
t |yt,x

(i)
t−1)

,

– resample z(i) ∼ R
(
M ;w

(i)
t /
∑M

k=1 w
(k)
t

)
,

– reset the importance weights w
(i)
t to 1,

– update particles x
(i)
t = x

zt(i)
t

end

In addition, Gordon et al. (1993) suggest a simple choice for the proposal distribution

q, which is given by the transition density, i.e.

q(xt | yt, xt−1) = f(xt | xt−1). (1.13)

In this case the importance weights are equal to the observation density

w
(i)
t = g(yt | x(i)

t ). (1.14)

With this choice we get the so called Bootstrap Filter (BF). Although it is easy to imple-

ment, in most applications the BF will give poor performances, since we are not taking

into account the current observation in the sampling step. Hence, if the new observation
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is very informative, the likelihood will be very peaked, causing the elimination of most

particles after the resampling step (this is also known as sample impoverishment). In

particular, the optimal choice would be the following (Fulop, 2011)

q(xt | yt, xt−1) ∝ g(yt | xt)f(xt | xt−1), (1.15)

which, in most cases, is not available. An optimal SIR particle filter is defined exactly as

Algorithm 4, where the importance distribution is (1.15).

Nevertheless, to alleviate the issue intrinsic of SIR we may consider the Auxiliary

Particle Filter (APF) proposed by Pitt and Shepard (1999). In the original algorithm,

we start by sampling an auxiliary variable for each particle, according to a distribution

which weights each point in terms of its compatibility with the new observation. In other

words, we first resample past particles according to the auxiliary weights and then we

perform the same steps of Algorithm 4. More precisely, with APF we sample jointly the

state and an auxiliary index k from

p(xt+1, k | y1:t+1) ∝ g(yt+1 | xt+1)f(xt+1 | x(k)
t )w

(k)
t . (1.16)

Indeed, if we could draw from this joint density and then discard the index we would

have produced a sample from the empirical filtering density

p̂(xt+1 | y1:t+1) ∝ g(yt+1 | xt+1)
M∑
i=1

f(xt+1 | x(i)
t )w

(i)
t . (1.17)

Therefore, the idea is to construct a proposal, (x
(i)
t+1, k

(i)) ∼ q(xt+1, k | y1:t+1), and then

assign new weights

w
(i)
t+1 =

g(yt+1 | x(i)
t+1)f(xt+1 | xk

(i)

t )

q(x
(i)
t+1, k

(i) | y1:t+1)
. (1.18)

As an example, consider the simple approximation to (1.16) suggested by Pitt and Shep-

ard (1999). In particular, let us define

q(xt+1, k | y1:t+1) ∝ g(yt+1 | µ(k)
t+1)f(xt+1 | x(k)

t ), (1.19)

where, µ
(k)
t+1 represents a point estimate (for example the mean) associated with the
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density of xt+1 | x(k)
t . Thus, we can sample from q(xt+1, k | y1:t+1) by simulating the

index from a multinomial distribution with probability λk ∝ g(yt+1 | µ(k)
t+1), which are

called first-stage weights. Then, sample from the transition f(xt+1 | x(k)
t ) and re-weight

according to the second-stage weights

w
(i)
t+1 ∝

g(yt+1 | x(i)
t+1)

g(yt+1 | µ(k)
t+1)

=
g(yt+1 | x(i)

t+1)

λk
. (1.20)

The main idea of APF is that the second-stage weights should be much less variable

than the corresponding weights from SIR. Although it is not needed (see Doucet and

Johansen, 2008), we might further resample from this discrete distribution. In Algorithm

5 we present the pseudo-code related to APF. From Algorithm 5 it is evident that APF

can be thought as a standard PF which targets a slightly different distribution using

modified weights.

Algorithm 5 Auxiliary Particle Filter

For i = 1, . . . ,M particles:

1) at time t = 0,

– sample x
(i)
0 ∼ q0(x0),

– compute w
(i)
0 =

µ(x
(i)
0 )

q0(x
(i)
0 )

.

2) For t > 0,

– compute a point estimate of x
(i)
t , e.g. µ

(i)
t = E

[
xt | x(i)

t−1

]
– compute first-stage weights λ

(i)
t ∝ g(yt+1 | µ(i)

t ),

– sample indices ki with probability λ
(i)
t

– propagate particles x
(i)
t ∼ f(xt | xkit−1),

– compute second-stage weights w
(i)
t ∝

g(yt|x(i)t )

g(yt|µ
(ki)
t )

.

end
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1.2.2 Particle MCMC

At this stage we have seen how it is possible to perform latent states estimation in the

context of SSMs. Throughout our discussion we made a crucial assumption, i.e. that

static parameters of the model are known. Indeed, a huge amount of literature has been

devoted to solve this task. For instance, online Bayesian static parameter estimation

has been proposed in SSMs using SMC and MCMC moves. Unfortunately, all these

methods suffer from the path degeneracy problems (see e.g. Liu and West (2001) and

Lopes and Tsay (2011)). From the frequentist point of view it is possible to perform

online Maximum Likelihood (ML) static parameter estimation by exploiting smoothing

algorithms (see Del Moral et al., 2010) or by the so called continuous resampling proposed

by Malik and Pitt (2011), which works only for one dimensional state3. On the other

hand, a full Bayesian approach is possible for batch estimation. Here, standard MCMC

methods could fail if the likelihood is not know or if one can only simulate the latent

process but does not have access to the transition prior. Indeed, this is the case for most

non-linear non Gaussian SSMs. Moreover, it is difficult in some situation to design a

good proposal distribution and the efficiency of standard MCMC methods is poor. Then,

SMC methods can be combined with MCMC to overcome these limitations. The first

step in this direction has been proposed by Andrieu et al. (2010). In their seminal paper

a PF is nested into an MCMC algorithm giving birth to the so called Particle Markov

Chain Monte Carlo (PMCMC). The approach of Andrieu et al. (2010) is usually referred

as pseudo-marginalization. The basic idea is that, for a fixed θ, a PF provides a pointwise

estimate of the marginal likelihood pθ(y1:T ) and of the conditional density pθ(x1:T | y1:T ).

Then, the decomposition (1.8),

p(x1:T , θ | y1:T ) ∝ pθ(x1:T , y1:T )p(θ | y1:T ),

suggests to sample from the marginal distribution of θ using p̂θ(y1:T ) and then draw from

the states using p̂θ(x1:T | y1:T ). A particularly interesting case for next developments is

the Particle Marginal Metropolis-Hastings (PMMH) algorithm, which can be seen as an

exact approximation of a marginal MH update targeting directly the marginal density

3The simulated likelihood function obtained with a PF is discontinuous because of the resampling
step, then its maximization is not feasible. Malik and Pitt (2011) proposed to reorder the particles
and perform a piecewise linear approximation of the resulting empirical CDF. By this way we get a
continuous simulated likelihood function
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p(θ | y1:T ) of p(x1:T , θ | y1:T ). We define this algorithm as an ”exact approximation” in

the sense that, for any fixed number M ≥ 1 of particles, their transition kernels leave

the target density of interest invariant (see Andrieu et al., 2010). If we want to sample

from the posterior of fixed parameters, then the validity of PMCMC follows from the

unbiasedness of the likelihood. For what concern the joint posterior p(x1:T , θ | y1:T ),

Andrieu et al. (2010) prove the result by extending the state-space to all the random

quantities produced by PF plus a particle index. For the MH update the proposal density

is of the form

q(θ′, x′1:T | θ, x1:T ) = q(θ′ | θ)pθ′(x′1:T | y1:T ), (1.21)

then, the MH acceptance ratio is given by

p(θ′, x′1:T | y1:T )q(θ, x1:T | θ′, x′1:T )

p(θ, x1:T | y1:T )q(θ′, x′1:T | θ, x1:T )
=
pθ′(y1:T )p(θ′)

pθ(y1:T )p(θ)

q(θ | θ′)
q(θ′ | θ)

. (1.22)

The particle approximation to this MH update is given just by plugging the correspondent

approximations from the SMC. The resulting PMMH procedure is presented in Algorithm

6.

In practice, the performances of PMMH depend heavily on the MC noise of p̂θ(y1:T ).

Another critical aspect is intrinsic of MCMC methods, i.e. it is not possible to fully

adapt the proposal. To overcome these limitations we are going to present in the next

sections more stable algorithms based on the so called SMC sampler, which make use of

PMCMC.
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Algorithm 6 Particle Marginal Metropolis-Hastings Algorithm

1. For k = 0

– Set θ(0) arbitrarily

– Run a PF at θ(0) to estimate p̂θ(0)(y1:T ) and p̂θ(0)(x1:T | y1:T )

– Extract a sample from

X1:T (0) ∼ p̂θ(0)(x1:T | y1:T )

2. For k = 1, . . . , n

– Sample θ′ ∼ q(θ′ | θ(k − 1))

– Run a PF at θ′ to estimate p̂θ′(y1:T ) and p̂θ′(x1:T | y1:T )

– Extract a sample from

X ′1:T ∼ p̂θ′(x1:T | y1:T )

– Compute the acceptance probability

ρ̂(θ, θ′) = min

{
p̂θ′(y1:T )p(θ′)

p̂θ(k−1)(y1:T )p(θ(k − 1))

q(θ(k − 1) | θ′)
q(θ′ | θ(k − 1))

, 1

}
.

– With probability ρ̂(θ, θ′) set

θ(k) = θ′,

X1:T (k) = X ′1:T ,

p̂θ(k)(y1:T ) = p̂θ′(y1:T ).

end
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1.3 Sequential Monte Carlo Sampler

In this section we present a recently proposed technology to efficiently handle the estima-

tion of general SSMs. These methods make use of PMCMC, which becomes just a part

of the whole mechanism. In particular, we are going to present the data tempered SMC2

algorithm proposed independently by Chopin et al. (2013) and Fulop and Li (2013) and

the Two-Stage Density Tempered SMC Sampler developed by Fulop and Li (2019).

To fully understand these algorithms it is necessary to introduce the so called SMC

Sampler (SMCS), proposed by Del Moral et al. (2006). Assume we want to sample from

a sequence of target distributions γp(θ), for p = 1, . . . , P and that (for now) the marginal

likelihood pθ(y1:T ) is available in closed-form. In this case, Chopin (2002) proposed a

data tempered approach exploiting the following decomposition

γp(θ) ∝ pθ(y1:p)p(θ). (1.23)

In this framework it is possible to conduct sequential Bayesian inference and each pos-

terior of the sequence is of interest. Another alternative is given by a density tempered

approach (Del Moral et al., 2006), where the sequence of posteriors is defined as follows

γp(θ) ∝ pθ(y1:T )ξpp(θ), (1.24)

where, ξ0 = 0 and ξP = 1. In this scenario, we start from the prior at ξ0 and evolve

gradually to the posterior at ξP . We just need a way to sample sequentially from γp(θ).

To this aim we can exploit SMCS (Del Moral et al. (2006)). Hence, if we have a particle

system (θ(i), s
(i)
p−1, i = 1, . . . ,M) representing γp−1(θ), we move to the next posterior γp(θ)

by attaching some weights

s(i)
p = s

(i)
p−1

γp(θ
(i))

γp−1(θ(i))
,

in such a way that, the particle set (θ(i), s
(i)
p , i = 1, . . . ,M) will represents γp(θ). At this

stage it is essential to avoid particle degeneracy (as in the SIS algorithm), so we trigger

the so called Resample-Move step whenever the Effective Sample Size4 (ESS) is lower

than a fixed constant B. More precisely, we first resample particles proportional to their

weights s
(i)
p to produce an equally weighted set, then using a Markov kernel Kp(· | θ) we

4This quantity is defined by ESS = (
∑M

i=1 s
(i)
p )2/

∑M
i=1(s

(i)
p )2.
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move particles in order to enrich the support without changing the distribution of the

particles (we are going to use always MH kernels). Another relevant aspect of SMCS is

that normalizing constants can be obtained as a by-product of the algorithm. Indeed, if

we denote the normalizing constant by Zp(θ) =
∫
θ
γp(θ)dθ, the identity

Zp
Zp−1

=

∫
θ

γp(θ)

γp−1(θ)

γp−1(θ)

Zp−1

dθ, (1.25)

suggests the following particle estimation

Ẑp
Zp−1

=
M∑
i=1

γp(θ
(i))

γp−1(θ(i))
π

(i)
p−1, (1.26)

where, π
(i)
p−1 are normalized weights.

Therefore, SMCS has several advantages with respect to standard MCMC methods. First,

during the Resample-Move step we don’t care about samples being correlated, then it is

possible to fully adapt the MH proposal on the cloud of particles to better approximate

the target (difficult in standard MCMC setting). Second, with SMCS is like running in

parallel M interacting MCMC chains, producing consistent estimates of the target dis-

tribution as M →∞. Third, as a by-prodcut we get estimates of normalizing constants.

Fourth, with data tempering (1.23) we can perform sequential inference over θ, while by

adopting the density tempering approach (1.24), it is less likely to get trapped in local

modes.

Up to now, we have assumed that pθ(y1:p) is available in closed-form, which is not true for

most of SSMs. Hence, it is possible to extend the previous methodology to this case by

estimating the likelihood using a PF. Then, the Resample-Move step will not be anymore

of MCMC-type, but instead a PMCMC one. We outline in the next subsections two

prominent examples of this strategy.

1.3.1 Data Tempered SMC2

In order to present the SMC2 we follow closely Fulop and Li (2013), while for theoretical

results we refer to Chopin et al. (2013). The starting point is given by the following

decomposition

p(x1:T , θ | y1:T ) ∝ pθ(x1:T , y1:T )pθ(y1:T )p(θ), (1.27)
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which suggests first to sample sequentially over θ by exploiting the marginal likelihood

estimates p̂θ(y1:t) =
∏t

l=1 p̂θ(yl | y1:l−1). Second, to sample from the hidden states we use

a PF. Despite the estimation error in the likelihood we have the right target for finite

M . To obtain this result, we employ a pseudo-marginalization argument as in Andrieu

et al. (2010). As with PMCMC we extend the state-space by including all the random

quantities produced by the PF algorithm. Now, if we denote by ut the random quantities

produce by a PF at step t, then we can write their density at time t as follows

ψθ(u1:t | y1:t) = ψθ(u1 | y1)
t∏
l=2

ψθ(ul | ul−1, yl), (1.28)

and the likelihood of the new observation is

p̂θ(yt | yt−1) = p̂θ(yt | ut, ut−1). (1.29)

Then, we have the following auxiliary density

p̂(θ, u1:t | y1:t) ∝ p(θ)
t∏
l=1

p̂θ(yl | ul, ul−1)ψθ(ul | ul−1, yl). (1.30)

From the unbiasedness property of the likelihood, it follows that pθ(y1:t) is the marginal

distribution of (1.30).

Assume we have a weighted set of particles representing the target distribution (1.30) at

time t − 1: {θ(n), u
(n)
t−1, p̂θ(y1:t−1)(n), s

(n)
t−1}Nn=1, where s

(n)
t−1 denote the weights. Further we

have the following recursive relationship between our target distributions at t− 1 and t:

p̃(θ, u1:t | y1:t) ∝ p̂θ(yt | ut, ut−1)ψθ(ut | ut−1, yt)p̃(θ, u1:t−1 | y1:t−1). (1.31)

In order to implement the recursion (1.31) we perform the following three steps:

1) Augmentation step. For each θ(n), run the PF with M particles on the new obser-

vation yt. This is equivalent to sampling from ψθ(n)(ut | u
(n)
t−1, yt).

2) Reweighting. The incremental weights are equal to p̂θ(n)(yt | u
(n)
t , u

(n)
t−1), leading to

new weights

s
(n)
t = s

(n)
t−1p̂θ(n)(yt | u

(n)
t , u

(n)
t−1). (1.32)
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In addition, we get an estimates of the likelihood of the fixed parameters

p̂θ(y1:t)
(n) = p̂θ(y1:t−1)(n)p̂θ(n)(yt | u

(n)
t , u

(n)
t−1). (1.33)

Therefore, the weighted sample {θ(n), u
(n)
t , p̂θ(y1:t)

(n), s
(n)
t }Nn=1 is distributed accord-

ing to p̃(θ, u1:t | y1:t). The normalized weights are π
(n)
t =

s
(n)
t∑N

k=1 s
(k)
t

, such that

ESSt = 1∑N
k=1(π

(k)
t )2

. The marginal likelihood of the new observation can be com-

puted as

p(yt | y1:t−1) =
N∑
n=1

π
(n)
t−1s

(n)
t . (1.34)

3) Resample-Move. To deal with sample degeneracy we trigger a Resample-Move step

whenever the ESS is below some threshold B1. Then, particles are resampled pro-

portional to π
(n)
t to produce an equally weighted sample {θ(n), u

(n)
t , p̂θ(y1:t)

(n), s
(n)
t }Nn=1.

Next, move particles using a PMMH kernel with stationary distribution p̃(θ, u1:t |

y1:t). In particular, the proposal distribution is of the form

q(θ, u1:t | θ′) = qt(θ | θ′)ψθ(u1:t), (1.35)

For instance, we could assume a multivariate normal for qt(θ | θ′) with its mean

and covariance matrix fitted to the sample posterior of θ. Instead, proposing from

ψθ(u1:t) imply to run a PF through the entire dataset at θ. If we denote a new

proposed particle by {θ′ , u′t, p̂θ(y1:t)
′}, we have the following acceptance rate

min

{
p(θ′)pθ′(y1:t)

p(θ(n))pθ(y1:t)(n)

qt(θ
(n) | θ′)

qt(θ′ | θ(n))
, 1

}
(1.36)

From the previous discussion about SMCS we already know that the Resample-Move

step is intended to enrich the particles’ population. In the SMC2 algorithm this is the

most computationally expensive part. Fortunately, as t increases we need to do it less and

less often. In the original paper, the authors suggest to keep moving while the number

of unique particles is below some threshold B2. In practice, they set B1 = B2 = N/2.

Now, we have a tool to perform sequential Bayesian inferece in general SSMs. It is also

possible to obtain samples over the smoothed path of hidden states by sampling a particle
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index (as in PMCMC), or in alternative by approximating the following expectation

E [f(θ, xt | y1:t)] ≈
N∑
n=1

M∑
i=1

π
(n)
t f(θ(n), x

(i,n)
t ). (1.37)

The computational cost of this algorithm is quite big, since we run N PFs, each with

M particles. Nevertheless these operations are independent between each other, thus a

parallel implementation on GPU or CPU is possible.

1.3.2 Two-Stage Density Tempered SMCS

The last algorithm we are going to present has been recently proposed by Fulop and Li

(2019). Their method is intended to provide efficient inference when observations are very

informative. In financial applications this happens when we consider financial derivatives

which are non-linear functions of the underlying variable. In particular, derivatives are

very informative on the hidden states given the parameters and vice-versa, hence intro-

ducing strong correlation in standard MCMC settings. Further, general pseudo-marginal

routines necessitate low variance estimates of the likelihood to be effective. However,

with derivatives this is difficult to achieve, making standard algorithms useless (Fulop

and Li, 2019).

To overcome such difficulties, the authors suggest to use common random numbers

(CRN) and propose a smooth PF to deal with likelihood estimation. First, CRN in-

troduce positive correlations between two successive likelihood estimators, p(y | θ) and

p(y | θ′), in order to drastically reduce the variance of the estimator of the likelihood ratio

p(y | θ)/p(y | θ′). Second, given that observations are informative on latent states, the

filtering/smoothing distribution tends to be localized around its posterior mean. Then,

a normal approximation to this distribution ensures that the likelihood estimate should

be a relatively smooth function of θ. In this way, we bypass the resampling step, which

could produce samples completely different from each other, exacerbating the error in the

likelihood estimation.

Once we have a sufficiently stable PF for likelihood estimation, the objective is to de-

sign an efficient proposal targeting the marginal distribution of parameters. To this end

Fulop and Li (2019) propose a two-stage density tempered SMCS, building on the pseudo-

marginalized routine of Duan and Fulop (2015). The resulting algorithm is not sequential
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as the SMC2, but it provides a direct route from the prior to the posterior using all data

in a row. In this framework we proceed in two steps: in the first stage we use a small

number of state particles M1 in order to provide a coarse exploration of the posterior and

then in the second stage we increase the number of particles M2 to correct the error in the

likelihood estimation. Usually, the second stage is much faster then the first one leading

to an overall advantage with respect to an SMCS which runs throughout with a fixed M2.

To present the algorithm we start from the following decomposition of the posterior

distribution

p(θ | y1:T ) ∝ p(y1:T | θ)p(θ). (1.38)

According to the pseudo-marginal approach of Andrieu et al. (2010), we focus on the

extended posterior p̃(θ, u1:T | y1:T ), which includes all the random quantities ut produced

by a PF at time t. To understand the new algorithm proposed by Fulop and Li (2019),

we briefly recall the tempering scheme of Duan and Fulop (2015), which extends the

algorithm of Del Moral et al. (2006) in order to target p̃(θ, u1:T | y1:T ).

The main idea is to begin with a simple posterior distribution and gradually move through

a sequence of densities to the ultimate target. This can be achieved by setting a tempering

schedule ξi, with i = 1, . . . , I, for ξ1 = 0 and ξI = 1, which allows to move from the

extended prior π1(θ, u1:T ) to the extended posterior πI = p̃(θ, u1:T | y1:T ). In general, we

have that

πi(θ, u1:T ) =
γi(θ, y1:T )

Zi
, (1.39)

γi(θ, y1:T ) = p̂i(y1:T | θ)ξi p̃i(u1:T | θ, y1:T )p(θ), (1.40)

where, Zi =
∫
γi(θ, y1:T )d(θ, u1:T ) is a normalizing constant, p̂i(y1:T | θ)ξi is the (tempered)

likelihood estimated by a PF and p̃i(u1:T | θ, y1:T ) is the empirical distribution of the

auxiliary variables. In order to pass from πi(θ, u1:T ) to πi+1(θ, u1:T ) we reweight each

particle by p̂i(y1:T | θ(n))ξi+1−ξi , for n = 1, . . . , N . The tempering coefficients are chosen

in such a way to ensure enough particle diversity5. Finally, to avoid the usual sample

impoverishment a Resample-Move step is performed.

5According to Fulop and Li (2019), this can be done by a grid search, where ESS is evaluated at the
grid points of ξ and the one with the ESS closest to a fixed constant is chosen
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In contrast with this procedure, Fulop and Li (2019) start by fixing two sets of CRN uMk
1:T ,

where k = 1, 2 refers to the first and second stage. These random numbers are going to

be used in the filter and denote by p̂(y1:T | θ, uMk
1:T ) the correspondent estimated likelihood

given Mk state particles. First, construct a sequence of I1 densities between the prior

π1,1 and the posterior π1,I1 using a tempering sequence ξ1,i, i = 1, . . . , I1, for ξ1,1 = 0 and

ξ1,I1 = 1, and

π1,i(θ) =
γ1,i(θ)

Z1,i

, (1.41)

γ1,i(θ) = p̂1,i(y1:T | θ, uM1
1:T )ξ1,ip(θ), (1.42)

where, Z1,i =
∫
γ1,i(θ)d(θ). Second, construct a sequence of I2 densities between the final

posterior using M1 state particles, π2,1 = p̂(y1:T | θ, uM1
1:T )p(θ) and the posterior using M2

state particles, π2,I2 = p̂(y1:T | θ, uM2
1:T )p(θ), using a tempering schedule ξ2,i, i = 1, . . . , I2,

for ξ2,1 = 0 and ξ2,I2 = 1, and

π2,i(θ) =
γ2,i(θ)

Z2,i

, (1.43)

γ2,i(θ) = p̂2,i(y1:T | θ, uM2
1:T )ξ2,i p̂2,i(y1:T | θ, uM1

1:T )1−ξ2,ip(θ), (1.44)

where, Z2,i =
∫
γ2,i(θ)d(θ). Finally, in order to rejuvenate the support of parameter parti-

cles, Fulop and Li (2019) suggest to keep moving until the cumulative average acceptance

rate across the algorithm achieves a pre-specified constant.

It is important to specify that the use of CRN precludes the identification of this method

as a pseudo-marginal one. However, the crucial advantage of using CRN with a smooth

likelihood estimator is that the estimation noise in the likelihood does not affect the

acceptance rates of the algorithm (Fulop and Li, 2019). Furthermore, by performing an

extensive simulation study the authors confirm that the bias coming from this approach is

negligible. The detailed description of the algorithmic steps can be found in the Appendix

of Fulop and Li (2019).
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Chapter 2

Exact Simulation of Hawkes

Processes: a guided tour

In this chapter we review all existing methods for exact simulation of Hawkes processes,

which are ubiquitous across many fields of science. We conduct a comprehensive numer-

ical experiment where we compare the performances in terms of accuracy and computa-

tional efficiency of various schemes. We find that the algorithms of Ogata and Dassios and

Zhao are the overall best performing. Despite the much greater popularity of the former,

our numerical and algorithmic analysis show that it is not the most efficient. The exact

simulation method proposed by Dassios and Zhao (2013) results the best performing for

the same accuracy level.

2.1 Introduction

The introduction of Hawkes processes is due to Hawkes (1971a) and Hawkes (1971b).

The main property of these kind of processes is that the occurrence of any event in-

creases the probability of futures events. This is why they are also known as self-exciting

point processes. Hawkes processes are ubiquitous accross many fields of science. As first

application they have been considered in earthquake modeling, where the aftershocks

following a main event are described with an Hawkes process; a notable example is given

by Ogata (1998). Moreover, self-exciting features proved to be useful to forecast infec-

tion diseases (Meyer and Held, 2014), crimes (Mohler et al., 2011) and terrorist attacks

(Porter and White, 2012). The popularity of Hawkes processes have also established in

31
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other fields: Xu et al. (2014) propose applications in e-marketing, Fox et al. (2016) for

modeling events and social networks behaviour, Vinogradov et al. (2019) in mechanical

twinning, Johnson (1996) find applications in neuron activity, Nakagawa et al. (2019) for

modeling population dynamics.

Nevertheless, an impressive spread of applications of Hawkes processes has recently

taken place in economics and finance. Indeed, several econometric studies find evidence of

self-exciting effects in financial markets. For example, Filimonov et al. (2014) fit a Hawkes

process to high frequency data related to many different asset classes. They conclude that

the vast majority of price changes are due to self-generated activities rather than novel

information.

A first strand of financial applications of Hawkes processes is related to high-frequency

trading and limit order book. Some notable examples are given by Chavez-Demoulin and

McGill (2012), Bacry et al. (2013) and Cartea et al. (2014).

For insurance markets, Hainaut (2016, 2017) proposes Hawkes processes to analyse

the impact of volatility clustering on the evaluation of equity indexed annuities and the

contagion between insurance and financial markets. Further applications in insurance are

given by Stabile and Torrisi (2010), Dassios and Zhao (2012), Zhu (2013) and Jang and

Dassios (2013). From the point of view of credit risk we mention the paper by Errais

et al. (2010), where the authors proposed to model credit default events in a portfolio

of securities as correlated point processes, where the events dynamics is described by a

mutually exciting Hawkes process.

Option pricing models have been proposed in the literature involving Hawkes processes

in order to take into account the so-called jump clustering phenomenon, widely observed

in financial (and other) markets. Hainaut and Moraux (2018) propose a self-exciting

jump diffusion model with constant volatility, while Boswijk et al. (2016) introduce a

stochastic volatility model with self-exciting jumps. Bernis et al. (2020) propose a model

where both jumps and volatility evolve according to a Hawkes process. For what concerns

the pricing of options with exotic payoff structure, Bernis et al. (2018) develop pricing

formulas for CLO, Brignone and Sgarra (2020) for Asian options, while Kokholm (2016)

consider a multivariate setting and propose formulas for multi-asset options pricing.

Regarding asset pricing, some authors provide outstanding applications of Hawkes-

type models in the equity market (e.g. Ait-Sahalia et al., 2015, Maneesoonthorn et al.,
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2016 and Fulop and Li, 2019) and in the energy markets. In this context, we mention Jiao

et al. (2019), which propose a model based on branching processes for the power market,

Gonzato and Sgarra (2020) that estimate a multi-factor stochastic volatility model on oil

data and Eyjolfsson and Tjøshteim (2018) that focus on risk-management applications

in electricity market.

The list is certainly non exhaustive, for other applications in economics and other fields

we refer to Hawkes (2018).

In this chapter we focus on the simulation of a Hawkes process. This is a very

important aspect as simulation plays a fundamental role in many practical applications,

like filtering unobserved jumps with self-exciting intensity (e.g. Sequential Monte Carlo

methods), bootstrapping methods, scenario simulation for risk-management and option

pricing by Monte Carlo. Furthermore, we are going to consider Hawkes processes with

exponential kernel, which are by far the most popular and allow to calculate analytically

expectations of arbitrary functions of the jump times and to compute efficiently the

likelihood function (see Bacry et al., 2015).

Hawkes processes can be simulated exactly, in the sense that no approximations are

required at any step of the simulation procedure. The first methodology for exact simu-

lation has been proposed by Ozaki (1979), the author applies inverse transform method

by exploiting knowledge of the conditional survival function. Due to the impossibility of

inverting analytically the survival function, numerical methods (e.g. root finding algo-

rithms) must be applied for any simulation and any jump time, with the result that the

whole simulation procedure is slow. An alternative procedure, named ”perfect simula-

tion”, still relying on numerical techniques have been proposed by Møller and Rasmussen

(2005). Ogata (1981) is the first author proposing a simulation scheme which is both

fast, in the sense that it does not require any numerical method at any step, and exact.

The proposed ”thinning” scheme is widely adopted in the literature, for example it is

implemented in the hawkes and YUIMA packages of the R programming language (see Za-

atour, 2014 and Iacus and Yoshida, 2018). Alternative methods have been also proposed

in the literature which do not require any time consuming numerical technique. Daley

and Vere-Jones (2008) propose a modification of the original modified thinning of Ogata

(1981), while Dassios and Zhao (2013) propose an ”exact simulation” scheme based on

a different definition of the Hawkes process (which we outline later). Another relevant
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Method Author Fast Literature
Inverse CDF Ozaki 7 J96
Thinning Ogata 3 DFZ14, BDM12, BCTCML15, CHST18
Perfect Møller and Rasmussen 7 FS15, HB14
Exact Dassios and Zhao 3 LLO16, BKN19

Table 2.1: Summary of the exact simulation methods considered in the chapter. The
scheme proposed by Daley and Vere-Jones (2008) is not included as we didn’t find any
work where it has been used. The third column indicates the computational performance
of a specific method, where by ”fast” we mean that it does not require implementation
of numerical methods at any step. The fourth column gives a (non exhaustive) list of
papers where a specific simulation scheme is applied. The literature references have been
synthesized in order to save space. In the following we give all the correspondences. J96:
Johnson (1996), DFZ14: Da Fonseca and Zaatour (2014), BDM12: Bacry et al. (2012),
BCTCML15: Bormetti et al. (2015), CHST18: Chen et al. (2018), FS15: Filimonov
and Sornette (2015), HB14: Hardiman and Bouchaud (2014), LLO16: Lee et al. (2016),
BKN19: Buccioli et al. (2019).

methodology for simulating exactly point processes has been proposed by Giesecke et al.

(2011), but in the case of Hawkes processes their scheme is equivalent to Ogata (1981)

modified thinning (see Dassios and Zhao, 2017). In Table 2.1 we give a brief overview

of the exact simulation schemes and provide a (non-exhaustive) list of authors using

such methods to carry out their numerical experiments. The thinning method of Ogata

(1981) is by far the most popular among authors but both Daley and Vere-Jones (2008)

modification and ”exact simulation” seem to constitute valid alternatives since still exact

and expectantly fast (as not requiring any numerical method for their implementation).

Furthermore, despite not exact, Euler scheme can also be used for simulating Hawkes

processes, this approach is widely used in practice due to its simplicity (see e.g. Fulop

and Li, 2019, Hainaut and Moraux, 2019 or Brignone and Sgarra, 2020).

To the best of our knowledge, no comprehensive studies which compare the different

simulation schemes have been proposed in the literature. In this study we aim to fill

this gap and give a review of efficient (i.e. non dependent on time consuming numerical

methods) simulation schemes and investigate which is the best performing in terms of

accuracy and computational speed. Our results show that the Exact simulation scheme

proposed by Dassios and Zhao (2013) is faster than the competitors for the same level of

accuracy.

The rest of the chapter is organized as follows. In Section 2.2 we define the Hawkes process

and its basic properties. In Section 2.3 we give an overview of the simulation methods.
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In Section 2.4 we show and discuss numerical performances and finally in Section 2.5 we

give some final remarks.

2.2 Definitions and basic properties

2.2.1 Definition based on the conditional intensity

A Hawkes process is a special kind of point process whose conditional intensity depends

on the history of the events. First of all, let us define the conditional intensity function:

Definition 9. Let Nt be a point process and let FNt be the natural filtration generated by

N itself. Then, the left continuous process defined by:

λt := λ(t | FNt−) = lim
h→0+

P
[
Nt+h −Nt > 0 | FNt−

]
h

(2.1)

is called the conditional intensity function of the point process.

Therefore, we have the following

Definition 10. The univariate Hawkes process N with conditional intensity λt, can be

defined for all t > 0 and h→ 0+ as:
P
[
Nt+h −Nt = 1 | FNt−

]
= λth+ o(h)

P
[
Nt+h −Nt > 1 | FNt−

]
= o(h)

P
[
Nt+h −Nt = 0 | FNt−

]
= 1− λth+ o(h)

(2.2)

Furthermore, the dynamics of conditional intensity of a Hawkes process with expo-

nentially decaying function can be represented by the following stochastic differential

equation (SDE):

dλt = β(a− λt)dt+ adNt, (2.3)

where, β is the constant rate of decay, a is the background intensity, α is the magnitude

of self-excited jump and Nt is a univariate Hawkes process.

In order to find the solution of (2.3) is possible to apply Itô formula to f(t, λt) = eβtλt
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obtaining

λt = a+ (λ0 − a)e−βt +
Nt∑
k=1

αe−β(Tk−t), t ≥ 0. (2.4)

2.2.2 Definition based on the clusters representation

Nevertheless, there is also a cluster-based definition of Hawkes processes. In particular

the events of a Hawkes process can be separated into two types: immigrants without

extant parents and offspring that are produced by existing point events. The following

cluster-based definition is adapted from Dassios and Zhao (2013):

Definition 11. Hawkes process with exponentially decaying intensity is a Poisson cluster

process {C(Ti, α)}i=1,2,... with times Ti ∈ R+ and constant self-exciting contribution α.

The number of points in (0, t] is defined by Nt = NC(0,t]; the cluster centers of C are the

particular points called immigrants, the rest of the points are called offspring, and they

have the following structure:

a) The immigrants I = {Ti}i=1,2,... on R+ are distributed as an inhomogeneous Poisson

process of rate a+ (λ0 − a)e−βt, t ≥ 0.

b) Each immigrant Ti generates one cluster Ci, and these clusters are independent.

c) Each cluster Ci is a random set formed by points of generations or order n = 0, 1, . . .

with the following branching structure:

– The immigrant and its jump contribution (Ti, α) is said to be of generation 0.

– Recursively, given generations 0, 1, . . . , n in Ci, each (Ti, α) ∈ Ci of generation

n generates a Poisson process of offspring of generation n+ 1 on (Tj,∞) with

intensity αe−β(t−Tj), t > Tj.

d) C consists of the union of all clusters, i.e. C = ∪i=1,2,...Ci.
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2.2.3 Moments of λT and NT

We give, next, the expressions for the conditional expectation and variance of λt and for

the conditional expected number of jumps:

E0[λT ] =
aβ

k

(
λ0 −

aβ

k

)
e−kT , (2.5)

V0[λT ] =
α2

k

[(
aβ

2k
− λ0

)
e−2kT +

(
λ0 −

aβ

k

)
e−kT +

aβ

2k

]
, (2.6)

E0[NT ] =
aβ

k
T +

1

k

(
λ0 −

aβ

k

)
(1− e−kT ), (2.7)

where, k = β − α > 0. These analytical expressions will be used, following Dassios and

Zhao (2013), to evaluate the correctness and accuracy of the simulations in Section 2.4.

2.3 Simulation schemes

In this section we discuss several approaches that have been proposed in the literature in

order to simulate an Hawkes process. First, we describe two procedures which give poor

performances in terms of speed and for this they will be excluded from our analysis.

In particular, Ozaki (1979) suggested a methodology based on inverse transform method.

To apply this algorithm one must solve numerically a transcendental equation, which

makes the simulation procedure inefficient. Another exact scheme (named ”perfect” sim-

ulation) has been developed by Møller and Rasmussen (2005). Nevertheless, the proposed

algorithm is very slow due to the necessity of solving numerically at each iteration an

integral equation. Therefore, we exclude from our review these algorithms since it is

reasonable to assume that they will be outclassed by alternative exact methods which

does not employ numerical methods.

Next, we present some exact simulation methods which do not require any numerical

method for their implementation. Furthermore, we also include in our discussion the

Euler scheme. Despite affected by time discretization bias, this method is widely used in

practice due to its simplicity. Moreover, it is expected to be fast in general, with a lower

dependence to the expected number of jumps than the other methods. Together with the

description of the algorithms we also provide pseudo codes. These are presented in the

easiest possible form in order to allow a straightforward implementation.
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2.3.1 Euler scheme

The Euler scheme is ubiquitous in stochastic simulation applications due to its simplicity.

Consider a general 1-dimensional Itô process

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t),

where, Wt is a standard Brownian motion. Then, the Euler scheme is used to simulate

the exact solution of a discrete time process approximating the system dynamics,

Xti = Xti−1
+ µ(ti−1, Xti−1

)∆t+ σ(ti−1, Xti−1
)
√

∆t zi,

where, ∆t is a small enough step size and zi are iid standard normal random variables.

In our framework we can discretize the SDE (2.3) by approximating the jump times Nt

with a Bernoulli random variable, as in Fulop and Li (2019). Therefore,

λti = λti−1
+ β(a− λti−1

)∆t+ α∆Nti , (2.8)

where, ∆Nti = Nti −Nti−1
∼ Ber(λti−1

∆t).

Algorithm 7 Euler scheme

Input: λ0, a, β, α, T , n
Output: {λtj}nj=1, {Ntj}nj=1

1: Set ∆t = T
n

and N0 = 0

2: for j = 1 : n do

3: Draw u ∼ U(0, 1) % draw from uniform

4: if u < λtj−1
∆t then

5: ∆Ntj = 1

6: Ntj = Ntj−1
+ 1

7: else

8: ∆Ntj = 0
end

9: Set λtj = λtj−1
+ β(a− λtj−1

)∆t+ α∆N(tj)

10: end
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2.3.2 Ogata (1981) thinning algorithm

The simulation algorithm for Hawkes processes proposed by Ogata (1981) is probably

the most used in the literature. It is based on the Lewis and Shedler (1969) thinning

simulation method for non-homogeneous Poisson processes. The idea is to simulate a ho-

mogeneous Poisson process and then remove excess points, such that the remaining points

satisfy the conditional intensity λt. This algorithm requires the conditional intensity to

be upper bounded, i.e. there should exists a finite λ̄ such that λt ≤ λ̄, ∀t.

A generalization of the above algorithm, introduced by Ogata (1981), it is usually

called Ogata’s modified thinning and is outlined in Algorithm 8. This generalization

requires only the local boundedness of conditional intensity. Indeed, if λt is a non-

increasing function (i.e. β > 0 in (2.3)) in the interval between two adjacent occurrences,

we have that λt ≤ λt+i for t ∈ (ti, ti+1), where t+i is the time just after ti. Therefore, a

local bound λ̄t could be set equal to λt+i in the interval (ti, ti+1) and it has to be updated

after each occurrence.

Afterwards, Daley and Vere-Jones (2008) modified Ogata’s algorithm by setting λ̄t = λt.

In this way we are not interested if t is a point of the process or not; whereas we add a

function of time interval of length Lt = kλt+ , for arbitrary k (the authors suggest to set

k = 0.5). Then, λ̄t is updated if a new point of the process occurs or if the time frame Lt

has elapsed. In Algorithm 9 we describe how to implement Ogata’s thinning algorithm

as in Daley and Vere-Jones (2008).

2.3.3 Dassios and Zhao (2013) exact simulation

Dassios and Zhao (2013) proposed an efficient sampling algorithm for Hawkes process

that does not rely on the accept-reject method. Moreover, this algorithm can generate

jump times with either stationary or non-stationary intensity. The starting point is the

cluster-based representation of a Hawkes process as given in Definition 11. To understand

how the algorithm works consider the following relation for t2 > t1

λt2 = e−β(t2−t1)λt1 .

So, given the current intensity λt1 , the future intensity depends only on the time elapsed

since time t1. Therefore, we can use this property in order to decompose the interarrival
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Algorithm 8 Ogata (1981) modified thinning algorithm

Input: λ0, a, β, α, T
Output: NT , {Tj}NTj=1, {λTj}

NT
j=1

1: Set N0 = 0, ε = 10−6, j = 0, t = 0, T0 = 0

2: while t < T do

3: Compute M = λt+ε according to (2.4)

4: u1 ∼ U(0, 1), u2 ∼ U(0, 1) % draw from two independent uniforms

5: R = − ln(u1)
M

% transform in an exponential with mean 1/M

6: Compute H = λt+R/M according to (2.4)

7: if u2 > H then

8: t = t+R

9: else

10: j = j + 1, t = t+R , Tj = t, Ntj = Ntj−1
+ 1

end
end

11: Compute {λTj}
NT
j=1 using formula (2.4)

Algorithm 9 Ogata (1981) modified thinning algorithm as in Daley and Vere-Jones
(2008)

Input: λ0, a, β, α, T
Output: NT , {Tj}NTj=1, {λTj}

NT
j=1

1: Set k = 0.5, N0 = 0, ε = 10−6, j = 0, t = 0, T0 = 0

2: while t < T do

3: Compute M = λt according to (2.4)

4: L = kλt+ε

5: u1 ∼ U(0, 1) % draw from uniform

6: R = − ln(u1)
M

% transform in an exponential with mean 1/M

7: if R > L then

8: t = t+ L
9: else

10: u2 ∼ U(0, 1) % draw from uniform

11: Compute H = λt+R/M according to (2.4)

12: if u2 > H then

13: t = t+R

14: else

15: j = j + 1, t = t+R , Tj = t, Ntj = Ntj−1
+ 1

end
end

end

16: Compute {λTj}
NT
j=1 using formula (2.4)
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times into two independent random variables in the following way: the first random

variable S1 represents the interarrival time of the next event, if it is coming from the

background intensity a. The second random variable S2 represents the interarrival time

of the next event if it comes from either the exponential immigrant kernel (λ0 − a)e−β t

or the Hawkes self-exciting kernel from each of the past events
∑

j:tj<t
e−β(t−tj). Then,

the sampled interarrival time is the minimum of these two cases. Moreover, if the second

arrival time is not finite, the next event will be taken from the constant rate. The

simulation scheme is outlined in Algorithm 10.

Algorithm 10 Dassios and Zhao (2013) exact simulation

Input: λ0, a, β, α, T
Output: NT , {Tj}NTj=1, {λTj}

NT
j=1

1: Set N0 = 0, j = 0, t = 0, T0 = 0

2: while t < T do

3: u1 ∼ U(0, 1) and u2 ∼ U(0, 1) % draw from two independent uniforms

4: D = 1 + β lnu1
λTj−a

5: S1 = − lnD
β

and S2 = − lnu2
a

6: if D > 0 then

7: S = min(S1, S2)
8: else

9: S = S2

end

10: Tj+1 = Tj + S and t = Tj+1

11: λj+1 = (λj − a)e−β(Tj+1−Tj) + a+ α

12: Ntj+1
= Ntj + 1

13: j = j + 1
end

2.4 Numerical results

In this section we evaluate the accuracy and efficiency of exact simulation schemes for

Hawkes processes. Computations are done using Matlab®(Version R2019b) in Microsoft

Windows 10®running on a machine equipped with Intel(R) Core(TM) i7-9750HQ CPU

@2.60GHz and 16 GB of RAM.

For the numerical experiment we draw Nθ = 103 random model parameters from a

uniform distribution in such a way that:
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• λ0 − a ∈ (0, 2] and a ∈ [0.1, 6]

• β − α ∈ (0, 4] and α ∈ [0.1, 15]

• T ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}

• V0[λt] < 10

With these choices we aim to incorporate standard parameter settings used in the lit-

erature, in particular we consider Ait-Sahalia et al. (2015) and Boswijk et al. (2016)

which calibrated the Hawkes model on real financial data. Then, for each parameters

combination we simulate the Hawkes process M̃ = 106 times using the methodologies

outlined in Section 2.3 and compute expected value, variance and number of jumps for

each parameters combination. Accuracy is then evaluated through a comparison with the

analytical formulas in (2.5), (2.6) and (2.7). In other words, for any simulation we record

{λ̃iT}M̃i=1 and the number of jumps {Ñ i
T}M̃i=1, compute sample mean, sample variance and

average number of jumps and compare with formulas (2.5), (2.6) and (2.7). Bias is then

computed according to

biasz,EV =
1

M̃

M̃∑
i=1

λ̃iT − E0[λT ], (2.9)

biasz,Var =
1

M̃

M̃∑
i=1

λ̃iT − 1

M̃

M̃∑
i=1

λ̃iT

2

− V0[λT ], (2.10)

biasz,N =
1

M̃

M̃∑
i=1

Ñ i
T − E0[NT ], (2.11)

where, z = 1, . . . , Nθ. These quantities are used to evaluate the accuracy of the various

simulation methodologies by taking the sample mean (which gives us the average error)

and standard deviation of the biases in (2.9), (2.10) and (2.11). We also split the dataset

according to quartiles of E0[NT ] to see how average error and standard deviation change

according to the expected number of jumps.

For the implementation of the Euler scheme one must also specify the number of time

discretization steps (denoted with n in Algorithm 7). As in Broadie and Kaya (2006), we

follow the suggestion of Duffie and Glynn (1995) to select n =
√
M̃ = 103.

The numerical results are reported in Table 2.2. Few comments are in order. The

full sample results show that the exact methods perform equally well on each metric.
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Full Sample
Expected Value (2.9) Variance (2.10) No. jumps (2.11)

Method avg. error st. deviation avg. error st. deviation avg. error st. deviation
Euler -0.0001 0.0018 -0.0168 0.0284 -0.0042 0.0061

Thinning -1.45e-05 0.0017 0.0003 0.0170 -0.0002 0.0052
D-VJ 7.67e-06 0.0017 -0.0003 0.0181 -2.80e-05 0.0055
Exact 7.92e-05 0.0017 0.0005 0.0170 3.44e-05 0.0053

I quartile, E[NT ] ≤ 3.0325
Expected Value (2.9) Variance (2.10) No. jumps (2.11)

Method avg. error st. deviation avg. error st. deviation avg. error st. deviation
Euler -9.94e-05 0.0015 -0.0117 0.0361 -0.0019 0.0030
Ogata -6.35e-05 0.0014 0.0009 0.0235 0.0001 0.0023
D-VJ 8.11e-05 0.0017 0.0008 0.0253 0.0001 0.0027
Exact 2.97e-05 0.0014 -0.0007 0.0252 0.0001 0.0024

II quartile, 3.0325 < E[NT ] ≤ 7.0290
Expected Value (2.9) Variance (2.10) No. jumps (2.11)

Method avg. error st. deviation avg. error st. deviation avg. error st. deviation
Euler -0.0002 0.0018 -0.0144 0.0244 -0.0032 0.0043
Ogata 8.43e-06 0.0018 0.0012 0.0177 9.63e-05 0.0039
D-VJ -6.91e-05 0.0015 -0.0004 0.0175 -1.78e-05 0.0041
Exact 0.0001 0.0017 0.0013 0.0165 0.0003 0.0036

III quartile, 7.0290 < E[NT ] ≤ 14.3775
Expected Value (2.9) Variance (2.10) No. jumps (2.11)

Method avg. error st. deviation avg. error st. deviation avg. error st. deviation
Euler -9.56e-05 0.0017 -0.0148 0.0211 -0.0050 0.0054
Ogata -6.22e-05 0.0016 -0.0008 0.0134 9.36e-06 0.0054
D-VJ -0.0001 0.0018 -0.0018 0.0156 -9.73e-05 0.0054
Exact 2.29e-05 0.0017 0.0006 0.0115 0.0002 0.0052

IV quartile, E[NT ] > 14.3775
Expected Value (2.9) Variance (2.10) No. jumps (2.11)

Method avg. error st. deviation avg. error st. deviation avg. error st. deviation
Euler -6.90e-06 0.0021 -0.0261 0.0276 -0.0066 0.0089
Ogata 5.89e-05 0.0020 8.54e-05 0.0109 -0.0011 0.0076
DV-J 0.0001 0.0019 -0.0001 0.0112 -0.0001 0.0082
Exact 0.0001 0.0020 0.0011 0.0105 -0.0005 0.0081

Table 2.2: Numerical results from the simulations. For the biases of expected value,
variance and expected number of jumps we compute mean (average error) and standard
deviation.
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Figure 2.1: Empricial CDF of the 3 statistics: biasEV , biasV ar and biasN

The Euler scheme is, as expected, less accurate with a non-negligible average error in

computing variance and expected number of jumps. Moreover, the standard deviation of

the biases is similar among all the methods, except for the sample standard deviation of

the bias of variance of the Euler scheme, which is higher than other methods. Further, we

investigate the distribution of the three statistics under consideration by showing their

Empirical Cumulative Distribution Function (ECDF) in Figure 2.1. The visual inspection

of Figure 2.1 confirm the quantitative results of Table 2.2; i.e. the exact methods seem to

be equally unbiased across all dimensions, while the Euler scheme clearly under performs

(especially along the variance and expected number of jumps dimensions). An additional

statistical evaluation on biasEV , biasV ar and biasN has been carried out by performing

a pair-wise Kolomogorov-smirnoff test between the algorithms of Ogata and Dassios &

Zaho. In particular, we cannot reject the null hypothesis that biases come from the same

distributions (p-values are respectively 0.753, 0.7888 and 0.0666).

To evaluate efficiency, we compute the CPU time for running 5 · 106 simulations.

We choose such a high number of simulations in order to minimize the risk that the

comparison between the different methodologies is influenced by the effective number of

jumps over all the simulations. Indeed, with only few simulations, we could observe that
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a method is faster than another one only because the (random) number of jumps is much

smaller and not because the method is effectively faster.

Numerical results are reported in Figure 2.2 (left panel) for different levels of the

expected number of jumps (formula 2.7). In the same figure (right panel) we also show

the CPU time of the Euler scheme with respect to the final date T . Of course, regarding

the exact schemes, we have a positive relationship, i.e. the higher the expected number of

jumps, the higher the CPU time. Efficiency of the Euler scheme is not really influenced

by the expected number of jumps, while it is sensitive to the length of the time interval

considered (or, better, the number of time discretization steps n). For this reason we

also report the total average CPU time for each method: the Euler scheme takes 420.47

seconds, Daley and Vere-Jones (2008) takes 28.9281 seconds, Ogata (1981) takes 25.7873

seconds and Dassios and Zhao (2013) takes only 23.0929 seconds, resulting the fastest

method. In what follows, we discuss and explain this finding.

The most time consuming steps are: i) random sampling from the uniform distribu-

tion, ii) updating the vectors of jump times and intensity. Indeed, the total number of

jumps is unknown at the beginning of each simulation. This fact precludes more efficient

vectorizations and pre-allocations. In other words, it is not possible to sample all the

needed random quantities in one time at the beginning of the simulation. Contrarily, the

Euler scheme does not suffer of this problem as the number of uniforms to be sampled is

n · T and does not depend on the effective number of jumps. Despite that, in practical

applications n is not a small number since the accuracy of this simulation scheme depends

on the number of time discretization points. Then, the greater n, the higher the expected

accuracy. For this reason the Euler scheme is slower than the other methods. Therefore,

a good environment for its implementation is when the expected number of jumps is very

high, but the simulation horizon is small (e.g. T < 1).

We compare now the thinning algorithm of Ogata with the adjustment proposed in

Daley and Vere-Jones. Let’s start by an inspection of Figure 2.2. We note the strange

results for the CPU time of the method of Daley and Vere-Jones (2008) for small values

of the expected number of jumps. The issue comes exactly from the adjustment they

propose. Indeed, a small value for (2.7) is usually due to small values of the intensity

parameters. Therefore, in Algorithm 9, we get stuck at the first if statement, since

the variable L will be always smaller than R, causing a very small update of t = t +
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L.1 To the best of our knowledge this unsatisfactory behavior of the algorithm was not

previously noted in the literature. However, the proposed modification is expected to

give a reasonable compromise between setting the bound M too high, and so generating

excessive trial points, and setting it too low, thus requiring too many iterations of steps 5

and 6 in Algorithm 9. In other words, the idea is to avoid running the accept-reject step

whenever the possibility of observing a jump is very low, saving the CPU time needed for

random sampling. This allows in practice to reduce the number of discarded points, but

our numerical results show that this benefit is not commensurate with the extra labour

involved. Indeed with respect to Algorithm 8 some extra operations are necessary, i.e.

an if statement and the computation of L. As a result, Algorithm 9 results slower than

Algorithm 8.

Finally, we proceed with a comparison between the exact simulation schemes proposed

by Ogata and Dassios and Zhao (2013). Numerical results show that the latter outper-

forms the former (and, consequently, all the other competitors) in terms of CPU time

throughout all the parameter settings considered. This is due to the fact that random

sampling is necessary only when the jump effectively occurs, while in thinning algorithms

those steps run also when the jump is discarded, resulting in a higher CPU time. More-

over, in Algorithm 8, formula (2.4) must be implemented to compute the upper bound for

the intensity M , the acceptance probability H and to update the jump intensity, while,

in Algorithm 10, this is evaluated only to update the jump intensity (i.e. only when the

jump effectively occurs).

2.5 Concluding Remarks

In this chapter we review the literature related to the simulation of exponentially decaying

Hawkes processes, which prove to be very useful across different disciplines. Among

the various simulation schemes, we find that, despite rarely used in practise, the exact

simulation method proposed by Dassios and Zhao (2013) is the most efficient. This

evidence comes from a detailed algorithmic analysis and not only from an observation of

the numerical results and is mainly due to the fact that it requires always a smaller or

equal amount of random numbers generation than the competitors. This finding raises a

1A partial solution to this problem is given by increasing the value of the parameter k in Algorithm
9, which controls the function L.
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Figure 2.2: CPU time of each simulation scheme with respect to the expected number of
jumps (left panel) and the CPU time for Euler scheme with respect to the final date T
(right panel).

question about the undisputed greater popularity of Ogata’s thinning method. Indeed, for

the simulation of exponential Hawkes processes, most authors adopt the latter simulation

scheme, which is the standard algorithm in the most popular packages of the computer

programming language R.

Moreover, a detailed algorithmic analysis highlights the differences between the two

thinning methods considered. Indeed, the modification proposed by Daley and Vere-Jones

(2008) should be, theoretically, more efficient with respect to the original algorithm of

Ogata (1981). Nevertheless, from our numerical study we observe that this is generally

not true. This fact could also explain why the method of Daley and Vere-Jones is scarcely

used in practise.

These findings can be useful whenever a high number of Monte Carlo simulations is

required in order to compute desired quantities. For instance, we mention the application

of Sequential Monte Carlo methods when the jump intensity is not observable. In this

framework one needs to sample a high number of particles from the transition density of

λt at each time step. Another example is certainly the pricing of derivative instruments,

where Monte Carlo simulation is often the only possible option due to the mathematical

complexity of pricing functions. In both cases, efficiency of the simulation is crucial.



Chapter 3

Self-Exciting Jumps in the Oil

Market: Bayesian Estimation and

Dynamic Hedging

In this chapter we propose a new self-exciting jump-diffusion model for oil price dynam-

ics based on a Hawkes-type process. In particular, the jump intensity is stochastic and

path dependent, implying that the occurrence of a jump will increase the probability of

observing a new jump and this feature of the model aims at explaining the jumps clus-

tering effect. Moreover, volatility is described by a stochastic process, which can jump

simultaneously with prices. The model specification is completed by a stochastic conve-

nience yield. In order to estimate the model we apply the two-stage Sequential Monte

Carlo (SMC) sampler (Fulop and Li, 2019) to both spot and futures quotations. From

the estimation results we find evidence of self-excitation in the oil market, which leads to

an improved fit and a better out of sample futures forecasting performance with respect

to jump-diffusion models with constant intensity. Furthermore, we compute and discuss

two optimal hedging strategies based on futures trading. The optimality of the first hedg-

ing strategy proposed is based on the variance minimization, while the second strategy

takes into account also the third-order moment contribution in considering the investors

attitudes. A comparison between the two strategies in terms of hedging effectiveness is

provided.

48
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3.1 Introduction

An accurate description of oil price dynamics is crucial for financial applications like risk

management, portfolio allocation and derivatives pricing. In addition, the oil market

has a strong impact on most aspects of economics in a wider sense; for example, from

a macroeconomic perspective oil prices can affect the world GDP growth (Kilian and

Figfusson, 2013), the efficiency of oil usage and energy consumption (Wang, 2013) and

the term structure of interest rates (Ioannidis and Ka, 2018). This explains the huge

amount of literature devoted to provide reliable and accurate methods for oil price dy-

namics calibration and forecast (Baumeister and Kilian, 2015).

One of the most popular approaches for modeling commodities is represented by factor

models, in which continuous-time stochastic differential equations describe the factors

moving the price dynamics. In particular, among the others we recall the two factor

model proposed by Gibson and Schwartz (1990), where the spot price is described by a

Geometric Brownian Motion and the convenience yield by an Ornstein-Uhlenbeck process.

Later, Ribeiro and Hodges (2004) proposed a multi-factor model, in which the convenience

yield is driven by a Cox-Ingersoll-Ross process. This ensures that the convenience yield

cannot take negative values and by this way it can avoid arbitrage opportunities. These

models account neither for stochastic volatility nor for jumps.

In order to provide a better description of oil prices dynamics, Larsson and Nossman

(2011) introduced jumps in both stochastic volatility and returns. They analysed daily

spot prices of WTI (West Texas Index) crude oil from 1989 to 2009, and exploited a

Markov Chain Monte Carlo method for the model estimation. In contrast with the lit-

erature mentioned before, they did not consider mean reversion in the spot price and

they only considered a constant convenience yield in the risk-neutral specification of the

model. A similar framework was adopted also by Brooks and Prokopczuk (2013).

Another stochastic volatility model with jumps for oil prices was introduced in two recent

papers by Fileccia and Sgarra (2015, 2018), where the authors included also a stochastic

convenience yield. In their paper the information arising from futures prices is included

and the model is estimated under both the historical and the risk-neutral measure via a

Particle Markov Chain Monte Carlo method.

In our work we address the problem of describing oil prices dynamics by implement-

ing a different modeling strategy. In particular, we want to investigate if the inclusion
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of self-exciting effects provides a better understanding of price movements. Self-exciting

features have been already systematically investigated in several asset classes. Fulop et al.

(2015) estimate a model that considers co-jumps in prices and volatility and accounts for

jump clustering, on the S&P 500 index data from 1980 to 2012; Ait-Sahalia et al. (2015)

model financial contagion with mutually exciting jump processes and Maneesoonthorn

et al. (2016) extend the latter model by introducing self-exciting jumps in volatility in

a univariate framework, i.e. no mutual excitation between different assets is considered.

Finally, we mention the paper by Fulop and Li (2019), in which the authors propose a

non-affine self-exciting jump diffusion model with stochastic volatility together with a

new estimation method, the two-stage Sequential Monte Carlo (SMC) sampler. Their

methodology is applied on the S&P500 and on the variance swaps observations.

In order to detect self-exciting features in the oil price dynamics we estimate the param-

eters of a Hawkes-type jump-diffusion model by a particle filtering method. The data

set consists of both spot and future quotations of WTI Cushing (Oklahoma) crude oil

ranging from January 8, 2008 to December 31, 2018. The particle filtering methodology

we apply is based on a hybrid particle filter with a two-stage density tempered SMC

method of the same kind of that proposed by Fulop and Li (2019). The model we pro-

pose in the present chapter exhibits some similarities with some of the models mentioned

above. In particular, it is similar to the affine version of the model considered by Fulop

and Li (2019), where in addition we introduce another stochastic differential equation,

which describes the evolution of the convenience yield as an OU process. However, an

interesting feature of the present work is that we apply this kind of jump diffusion model

to WTI crude oil spot and futures quotations. Indeed, there is in the literature some

intuition behind the existence of this feature also in commodity markets. For example,

Filimonov et al. (2014) fit a simple Hawkes process to high frequency data related to

many different asset classes, including oil market. Ma et al. (2018) consider a plethora

of realized range-based volatility models and document an increasing accuracy in futures

price volatility forecasting when a Hawkes process is included in the model.

In the present modelling framework jumps with self-exciting features are included in the

crude oil spot price dynamics. A remarkable property of the resulting jump-diffusion

model is that it is affine, and it allows an explicit computation of the prices of futures

contracts as functions of the model parameters, thus providing accurate estimation re-
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sults. In this chapter we address also the issue of hedging against oil price variations. We

provide the computation of an optimal dynamic hedging strategy, where optimality refers

to an objective function taking into account not only second order effects (variance), but

also skewness. The hedging results highlight the importance of high order effects with

respect to the standard approach based only on variance minimization.

The chapter is organized as follows. In Section 3.2 we introduce the Hawkes-type pro-

cesses and present our self-exciting jump diffusion model. In Section 3.3 we present our

estimation method, while in Section 3.4 we describe the data set and the results obtained.

In section 3.5 we discuss the optimal hedging strategy based on minimization of variance

and skewness. In section 3.6 we provide some concluding remarks.

3.2 The Model

In this section we introduce the most relevant features of Hawkes processes with expo-

nentially decaying intensity. As in Chapter 2, Section 2.2, we can represent the intensity

of a Hawkes process by the following stochastic differential equation:

dλt = β(λ∞ − λt)dt+ αdNt, (3.1)

where, α ∈ R+ is the magnitude of self-excited jump, β ∈ R+ is the constant rate of

decay and λ∞ ∈ R+ is the so called background intensity. Then, by applying Itô formula

to f(t, λt) = eβtλt, we obtain the solution to the stochastic differential equation above:

λt = λ∞ + (λ0 − λ∞)e−βt +

∫ t

0

αe−β(t−s)dNs,

= λ∞ + (λ0 − λ∞)e−βt +
∑
j:tj<t

αe−β(t−tj). (3.2)

The solution given by (3.2) allows to simulate the intensity process. Indeed, different

simulation methods are proposed in the literature and have been presented in Chapter

2. We can see an example of a simulated path of λt in Figure 3.1, where the simulation

is performed by applying the algorithm proposed by Dassios and Zhao.



CHAPTER 3. SELF-EXCITING JUMPS IN THE OIL MARKET 52

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

Figure 3.1: Simulated conditional intensity of a Hawkes process on [0, T ] with parameters:
T = 250, λ0 = λ∞ = 0.1, α = 0.2 and β = 0.3.

From figure 3.1 we can clearly see the clustering of jumps described by the Hawkes

process; for example, in the interval [200, 240] the self-excitation effect looks quite rele-

vant.

An important property of the Hawkes process under consideration is that, although λt

is clearly non-Markovian, it can be proved that the two-dimensional process (Nt, λt)

is jointly a Markov and an affine process, and this property improves significantly the

analytical tractability of the model. In particular, in Da Fonseca and Zaatour (2014)

the infinitesimal generator and the Dynkin’s formula can be used in order to find some

moments of the process as solutions of ordinary differential equations.

3.2.1 Model Dynamics Under The Historical Measure

Now, we can introduce our dynamic model, which takes into account co-jumps between

stock price and volatility, a stochastic convenience yield and self-exciting features. Let

(Ω,F ,P) be a probability space with a complete filtration (Ft)t≥0, then our model for
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xt = ln(St/S0) is described by the following system of stochastic differential equations:

dxt =

(
µ− 1

2
Vt − λtE

[
eJx − 1

]
− δt

)
dt+

√
VtdWt + dJx,t, (3.3)

dVt = k(V̄ − Vt)dt+ σv
√
VtdWv,t + dJv,t, (3.4)

dδt = γ(δ̄ − δt)dt+ σδ dWδ,t, (3.5)

dλt = β(λ∞ − λt)dt+ αdNt, (3.6)

From equation (3.3) we see that changes in the log-returns of the underlying are

driven by a standard Brownian motion Wt and a compound Poisson process Jx,t. the

number of jumps Nt is an Hawkes process with stochastic intensity λt. Furthermore, the

amplitude of jumps is described by i.i.d Gaussian random variables with mean µJ and

variance σ2
J . Equation (3.4) describes the evolution of the volatility by a mean-reverting

jump-diffusion process, where Wv,t is a standard Brownian motion, possibly correlated

with Wt, i.e. Corr(dW, dWv) = ρvdt. This feature of the model is important in order to

capture the so called leverage effect. Furthermore, recent studies find the presence of co-

jumps in prices and volatility, not only on the equity market (Eraker, 2004, Eraker et al.,

2003, Fulop and Li, 2019), but also on the commodity market (Larsson and Nossman,

2011, Brooks and Prokopczuk, 2013). Moreover, there is evidence of jump clustering (Ait-

Sahalia et al., 2015, Fulop et al., 2015), i.e. an extreme movement tends to be followed

by another extreme movement. As a consequence, we introduce jumps in volatility by

Jv,t, which is a compound Poisson process with counting process Nt. To be more precise,

returns and volatility jump together with the same self-exciting intensity λt and the jump

size of volatility follows an exponential distribution with mean µv. Finally, there is an

additional SDE, which describes the evolution of the convenience yield by a standard

Ornstein-Uhlenbeck process as in Gibson and Schwartz (1990); Schwartz (1997); Lai and

Mellios (2016); Yan (2002). The convenience yield takes into account both the reduction

in cost of acquiring inventory and the value of being able to profit from temporary local

shortage of the commodity (Yan, 2002), so it is natural to adopt a stochastic process,

which could assume both positive and negative values.

In our empirical application we consider two nested models:

• Model I defined by Equations (3.3)-(3.6),
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• Model II with constant jump intensity, i.e. β = α = 0.

3.2.2 Risk-Neutral Dynamics and Futures Pricing

In order to perform a joint estimation based on both spot and futures data, we need to

derive a pricing formula for futures contracts. As usual, we employ a suitable change of

measure form the real world probability measure P to the risk-neutral probability measure

Q. To this end we consider the following Radon-Nikodym derivative:

dP
dQ

∣∣∣
Ft

= exp

{
−
∫ t

0

rsds−
1

2

∫ t

0

ϕ2
x(u)du−

∫ t

0

ϕx(u)dWu−
1

2

∫ t

0

ϕ2
δ(u)du−

∫ t

0

ϕδ(u)dWu

}
,

(3.7)

where rt denotes the risk-free interest rate. Actually we are pricing only the convenience

yield risk, neither volatility nor jump risk. This choice is motivated by the fact the futures

price is not a function of spot volatility, jumps or their associated parameters1 (see Yan,

2002). However, volatility and jumps are important in order to describe appropriately

spot prices and for hedging purpose, as we shall see later. Thus, by following the literature

(e.g. Pan, 2002, Yu et al., 2011, Fulop and Li, 2019), we leave ϕx(t) unspecified and we

choose the convenience yield risk premium with the following form:

ϕδ(t) =
ϕδ
σδ

⇒ dWQ
δ,t = dW P

δ,t +
ϕδ
σδ
dt. (3.8)

Thus, under the risk-neutral measure the structure of the model is preserved:

dxt =

(
r − 1

2
Vt − λtE

[
eJx − 1

]
− δt

)
dt+

√
VtdWt + dJx,t, (3.9)

dVt = k(V̄ − Vt)dt+ σv
√
Vt dWv,t + dJv,t, (3.10)

dδt = γ(δ̄Q − δt)dt+ σδdW
Q
δ,t, (3.11)

dλt = β(λ∞ − λt)dt+ αdNt, (3.12)

where, δ̄Q = δ̄ − ϕδ/γ.

The model we are proposing belongs to the class of affine models, which means that

1The economic justification of this result relies in the linearity of the futures payoff. Indeed, volatility
and jumps affect higher order moments, but not the first one. From the mathematical point of view,
the payoff of the contract is just the expected spot price under Q; thus in the spot price dynamics we
compensate the drift with the jump compensator λtµ

? and the Itô term 1/2Vt. As a consequence, the
solution of the respective ODEs is equal to zero.
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the characteristic function can be computed in closed-form. This feature of affine models

is very important in order to price financial derivatives as we shall see below. The payoff

of a futures contract F (t, τ), with time to maturity τ = T − t, is given by the usual

relation:

F (t, τ) = EQ[ST | Ft] = EQ[exT | Ft], (3.13)

where xT = ln(ST ). We start by considering the moment generating function of xT :

G(w, xt, Vt, δt, λt, t, τ) = E [ewxT | Ft]

Now, since under the risk-neutral measure the model structure is the same, we drop the Q

superscript in order to lighten the notation, and by the Feynman-Kac theorem we obtain

the following partial differential equation:

−Gτ +

(
r − 1

2
Vt − λtE

[
eJx − 1

]
− δt

)
Gx +

1

2
VtGxx + k(V̄ − Vt)Gv+

+
1

2
σ2
vVtGvv + ρvσvVtGxv + β(λ∞ − λt)Gλ + γ(δ̄ − δt)Gδ +

1

2
σ2
δGδδ

+ λt

∫
[G(w, xt + Jx, Vt + Jv, δt, λt + α, t, T )−G(w, xt, Vt, δt, λt, t, T )] ν(dJx, dJv) = 0

(3.14)

with the terminal condition GT = exp(wXT ). Now, we guess a solution of the form:

G(w, xt, Vt, δt, λt, t, τ) = exp {wxt + A(w, τ) +B(w, τ)Vt + C(w, τ)δt +D(w, τ)λt}

(3.15)

subject to A(0) = 0, B(0) = 0, C(0) = 0 and D(0) = 0. From the PDE (3.14) we obtain

the following system of ODEs:



∂A(w,τ)
∂τ

= rw + βλ∞D(w, τ) + kV̄ B(w, τ) + γδ̄C(w, τ) + 1
2
σ2C2(w, τ),

∂B(w,τ)
∂τ

= −1
2
(w − w2)− (k − ρσvw)B(w, τ) + 1

2
σ2
vB

2(w, τ),

∂C(w,τ)
∂τ

= −w − γC(w, τ),

∂D(w,τ)
∂τ

= −βD(w, τ) +
∫ [
ewJx+B(w,τ)Jv+D(w,τ)α − 1

]
ν(dJx, dJv)− E

[
eJx − 1

]
w.

(3.16)

Now, the futures price is given simply by the moment generating function computed

in w = 1; then the solution of the second ODE, which is a Riccati equation without the
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constant term, is B(τ) = 0. Due to this result we also have D(τ) = 0. Hence, as we

anticipated before, future prices are not affected by volatility and jumps. Therefore, the

solution of the equation for the log-futures is of the form:

lnF (t, τ) = lnSt + AQ(τ) + CQ(τ)δt, (3.17)

where,

AQ(τ) = rτ +
δQ (−γτ − e−γτ + 1)

γ
+
σδ (0.5γτ − 0.25e−2γτ + e−γτ − 0.75)

γ3
, (3.18)

CQ(τ) =
e−γτ − 1

γ
. (3.19)

3.3 Parameters Estimation Method

In order to estimate the parameters by using real data, we cast our model in a state-

space form and apply a simple Euler scheme. Denoting by ∆t a small time interval, the

observation equation for stock prices is given by:

lnSt = lnSt−1 +

(
µ− 1

2
Vt−1 − λt−1E

[
eJx − 1

]
− δt−1

)
∆t+

√
Vt−1∆tWt + Jx∆Nt,

(3.20)

where, Jx ∼ N (µJ , σ
2
J), Wt ∼ N (0, 1) and ∆Nt = Nt −Nt−1 ∼ Bernoulli(λt−1∆t).

In this work we also consider futures prices with n maturities. In agreement with

the literature, since we observe derivatives data with measurement errors (Eraker, 2004,

Fulop and Li, 2019, etc.), we have an additional observation equation:

lnF (t, T )O = lnF (t, T )M + εt,

where, lnF (t, T )O is a vector of observed futures prices at time t with maturity T , and

lnF (t, T )M are the corresponding prices obtained from Equation (3.17). The measure-

ment errors are assumed to follow a multivariate normal distribution, i.e. εt ∼ N (0,Ω),

with Ω = ΣΣT and Σ = σeIn.

Our model features latent states, which cannot be observed. The discretized version
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of Equations (3.4)-(3.5)-(3.6) is the following:

Vt = Vt−1 + k(V̄ − Vt−1)∆t+ σv
√

∆tVt−1Zt + Jv∆Nt (3.21)

δt = δt−1 + γ(δ̄ − δt−1)∆t+ σδ
√

∆tWδ,t (3.22)

λt = λt−1 + β(λ∞ − λt−1)∆t+ α∆Nt (3.23)

where, for fixed t, Zt is a standard normal variable correlated with Wt appearing in

Equation (3.20), Jv ∼ Exp(µv) and Wδ,t is an independent standard normal variable.

In order to address the estimation of the model, we rely on SMC methods. In particular,

we shall consider the two-stage density tempered SMC of Fulop and Li (2019) presented

in Chapter 1, Section 1.3. Our estimation approach delivers an approximation of the

marginal likelihood,

p(y1:T ) =

∫
p(y1:T | Θ)p(Θ)dΘ,

which can be used to construct Bayes factors for model comparison. More precisely, for

two models M1 and M2 the Bayes factor is given by the ratio of their marginal likelihoods,

BF1,2 =
p(y1:T |M1)

p(y1:T |M2)
.

The Bayes factor does not rely on asymptotic distribution theory and provides a simple

way to evaluate different models. Besides, it contains a penalty for the introduction of

more parameters.

3.4 Empirical Application

3.4.1 Data Description

In this section we present the data we are going to examine in our empirical analysis. In

particular, we consider WTI Cushing (Oklahoma) crude oil spot and futures quotations

obtained from Bloomberg2. In Figure 3.2 we plot a time series of daily log-returns:

Yt = log(St/St−1), ranging from 08/01/2008 to 31/12/2018, thus 2767 spot data are

considered. The data cover some crucial historical periods as the global financial crisis,

2spot data ticker: USCRWTIC, futures data ticker: CLm, for m = {3, 6, 9, 12, 18, 21, 24}.
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when oil prices experienced huge fluctuations between 2008 and 2010. Moreover, in the

middle of 2014, price started declining due to a significant increase of oil production in

USA and to a decrease of demand in the emerging countries. Besides, from 2016 to 2018,

complex negotiations with OPEC led to higher variability in oil prices.
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Figure 3.2: WTI crude oil log-returns from 08/01/2008 to 31/12/2018.

First, a preliminary statistical analysis is performed on log-returns. To this end

in Table 3.1 we show some descriptive statistics and the result of a Jarque-Bera (JB)

normality test. In addition a QQ-plot is provided in Figure 3.3. This simple analysis

suggests that observations do not come from a Gaussian distribution.
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Statistics Log-return

Observations 2767

Mean -2.7179e-04

Standard Deviation 0.0245

Skewness 0.1181

Kurtosis 7.3057

Min value -0.1307

Max value 0.1533

JB test Rejected

Table 3.1: Descriptive statistics and JB test on WTI crude oil log returns observed with
daily frequency over the period 08/01/2008 to 31/12/2018.

-4 -3 -2 -1 0 1 2 3 4

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 3.3: Q-Q Plot for daily frequency returns on WTI crude oil.

Moreover we consider futures contracts written on WTI crude oil. In Figure 3.4

we show log-futures prices from 08/01/2008 to 31/12/2018, for maturities τ equal to

3, 12 and 24 months. For estimation purpose, we retain 8 futures contracts with fixed

maturities ranging from 3 to 24 months. Contracts with more than 2 years of maturity

are less liquid (Lai and Mellios, 2016), therefore they are not considered in our estimation

procedure. As we did for spot observations, we conduct a preliminary statistical analysis

on the whole futures data in Table 3.2.
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Figure 3.4: WTI futures contracts from 08/01/2008 to 31/12/2018.

Statistics CL3 CL6 CL9 CL12 CL15 CL18 CL21 CL24

Mean 4.2842 4.2968 4.3019 4.3041 4.3047 4.3046 4.3043 4.3039

Standard Dev 0.3217 0.3058 0.2956 0.2879 0.2814 0.2760 0.2713 0.2673

Skewness -0.3142 -0.2751 -0.2547 -0.2422 -0.2337 -0.2277 -0.2224 -0.2201

Kurtosis 2.0059 1.9591 1.9465 1.9358 1.9328 1.9388 1.9475 1.9598

Min value 3.3908 3.4825 3.5293 3.5656 3.5943 3.6168 3.6368 3.6548

Max value 4.9845 4.9894 4.9895 4.9858 4.9822 4.9782 4.9747 4.9716

Table 3.2: Descriptive statistics on WTI crude oil log futures prices observed with daily
frequency over the period between 08/01/2008 and 31/12/2018.

3.4.2 Estimation Results

In this subsection we present the results obtained from our estimation procedure. In our

empirical application, for the two-stage SMC sampler, we set the number of parameter

particles N equal to 1000, the number of state particles at the first stage M1 equal to 30,

and the number of state particles M2 at the second stage equal to 500. The algorithm

is initialized by using the priors in Table 3.3 with Σ = σeIn, where In is the unit matrix

in n dimensions. The choice of the hyper-parameters of the prior distributions is based

on calibration using the training sample approach, which is widely used to calibrate
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the objective priors (Fulop and Li, 2013; Fulop et al., 2015; Fulop and Li, 2019). It

is worth remarking that we find most parameters not sensitive to the selection of the

priors. Moreover, we take the random walk proposal, we trigger the resample-move step

when the Effective Sample Size reaches N/2, and then keep moving until the cumulative

average acceptance rate across the population reaches the value 2.

Θ Dist Support (µ0, σ0) Θ Dist Support (µ0, σ0)

µ Normal (−∞,∞) (0.02, 0.15) ϕδ Tr. Normal (−∞,∞) (0.5, 0.1)

µJ Tr. Normal (0,∞) (-0.02, 0.08) γ Normal (0,∞) (0.9, 0.5)

σJ Tr. Normal (0,∞) (0.05, 0.1) δ̄ Tr. Normal (0,∞) (0.15, 0.05)

k Tr. Normal (0,∞) (3.0, 4.0) σδ Tr. Normal (0,∞) (0.25, 0.1)

V̄ Tr. Normal (0,∞) (0.05, 0.06) α Tr. Normal (0,∞) (2.5, 1.5)

σv Tr. Normal (0,∞) (0.25, 0.25) β Tr. Normal (0,∞) (4.0, 3.0)

ρv Tr. Normal [−1, 1] (-0.7, 0.5) λ∞ Tr. Normal (0,∞) (2, 0.8)

µv Tr. Normal (0,∞) (0.02, 0.1)

Table 3.3: Priors specification.

In order to appreciate the efficiency of our estimation method, we can have a look at

the acceptance rates related to the moving step in Figure 3.5. The star-line indicates the

acceptance rates from the first stage and the circle line those from the second stage. We

clearly see that the acceptance rates remain high during both the first and second stage.

Furthermore, as proved in Fulop and Li (2019), the number of density-bridging iterations

is much smaller in the second stage with respect to the first stage.
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Figure 3.5: The figure plots the last acceptance rate in moving steps at each density-
bridging iteration with respect to ξi for model I (upper) and model II (bottom). In the
algorithm, ξ is automatically selected using a grid search approach. The blue line refers
to the first stage, while the orange line refers to the second stage.

Figures 3.6 and 3.7 plot the filtered volatility, convenience yield and jump intensity

obtained by running our smooth particle filter (see Appendix A) at the posterior mean.

In particular, volatility is quite persistent and in periods when prices fall down we observe

a rise in volatility according to the well known leverage effect. The convenience yield is

moving in the same direction of oil prices, which is consistent with its definition and

provides a clear economic intuition. A large amount of literature devoted to commodities

provides a confirmation and an explanation of this behavior, we just mention Alquist et al.

(2014) and Lautier (2009) among many other contributions on this topics, some based

on the Normal Backwardation Theory (Litzenberger and Rabinowitz, 1995), some on the

Theory of Storage (Casassus et al., 2005). The intensity process presents a self-exciting

behaviour; this will be confirmed later when focusing on the parameters estimates.
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Figure 3.6: The figure presents the filtered volatility and convenience yield from model
I (left) and II (right). The posterior mean and (5, 95)% percentiles are reported at each
time point.
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Figure 3.7: The figure presents the filtered jump intensity from model I. The posterior
mean and (5, 95)% percentiles are reported at each time point.

Table 3.4 presents the parameter estimates for the two models obtained with the two-

stage SMC sampler. As a first remark, when self-excitation is considered, volatility is less

persistent. Indeed, k is equal to 9.2692 (2.1103) in Model I and 2.9157 (0.4418) in Model

II. One possible explanation for this phenomenon is that much of the variation is due to
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the self-exciting jump intensity, which reduces the contribution of volatility. However,

the vol-of-vol parameter σv is equal to 0.3566 (0.0960) in Model I and 0.8498 (0.0656) in

Model II, confirming that volatility dynamics in oil market is clearly stochastic. Second,

in line with the previous literature (Larsson and Nossman, 2011; Brooks and Prokopczuk,

2013), we find evidence of volatility jumps. In particular, the estimate for µv is 0.0223

(0.0063) in Model I and 0.0311 (0.0089) in Model II. Third, the posterior mean of the

parameter controlling the self-exciting effect, α, is equal to 23.4601 (4.1515); then α is

well identified and constitutes a key feature of the jump dynamics in the oil market.

Fourth, the convenience yield dynamics is pretty much the same within the two models.

The parameters are well identified and the convenience yield risk premium is statistically

significant, which confirms previous studies in the literature.

Furthermore, it is possible to compare the models by looking at the marginal likelihood

and the log-Bayes factor. In both cases we can say that Model I performs better than

Model II. For instance, the log-Bayes factor3 of Model I with respect to Model II is 9.1271,

which means that Model I is definitely better than Model II in fitting the data.

3For any two given models, M1 and M2, if the value of the log-Bayes factor is between 0 and 1.1,
M1 is barely worth mentioning; if it is between 1.1 and 2.3, M1 is substantially better than M2; if it is
between 2.3 and 3.4, M1 is strongly better than M2; if it is between 3.4 and 4.6, M1 is much strongly
better than M2; and if it is larger than 4.6, M1 is definitely better than M2.
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Model I Model II

Θ Mean Std Mean Std

µ 0.1451 0.0944 0.0109 0.0691

µJ 0.0022 0.0047 0.0118 0.0827

σJ 0.0408 0.0038 0.1104 0.0537

k 9.2692 2.1103 2.9157 0.4418

V̄ 0.0131 0.0067 0.1309 0.0134

σv 0.3566 0.0960 0.8498 0.0656

ρv -0.7628 0.1645 -0.4621 0.0414

γ 0.6708 0.0041 0.6721 0.6721

δ̄ 0.2304 0.0086 0.2639 0.0079

σδ 1.7690 0.0183 1.7646 0.0197

β 30.0566 3.7743 ( — ) ( — )

α 23.4601 4.1515 ( — ) ( — )

λ∞ 1.3921 0.0079 8.0900 0.0518

ϕδ 0.1272 0.0052 0.1500 0.0048

µv 0.0223 0.0063 0.0311 0.0089

MLLH 4.1901e+4 4.1550e+4

Table 3.4: Parameter estimates for model I and II. For each parameter, the posterior mean
and standard deviation are reported. The last row reports the marginal log-likelihood
estimated with the smooth particle filter.

Now, we can provide some additional insights regarding the convenience yield dynam-

ics and the forecasting ability of the models in terms of futures pricing. In particular,

with this kind of models it is common to observe a lack of fit in the filtered convenience

yield process (Carmona and Ludkovski, 2004). To check if our approach could give a

reliable estimate of this variable, we follow Carmona and Ludkovski (2004) and compute

the implied convenience yield by using the estimated parameters together with the price

of traded futures contracts F (t, Ti). Then, we compare the filtered convenience yield from

our smooth particle filter with the implied convenience yield computed. The result of

this simple computation is shown in Figure 3.8 and confirms that our filtering method is

able to well reproduce the convenience yield dynamics implied from data (in particular

for longer maturities).
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Figure 3.8: The figure compares the filtered convenience yield (orange) against the implied
convenience yield (blue) computed using futures contracts with τ = {3, 6, 9, 12} and the
posterior mean parameter estimates from Model I.

Second, we check the pricing errors of futures contracts when Model I and Model II

are considered. For example, in Figure 3.9, we can see how the models behave in terms of

futures pricing out of the sample, i.e. from 02/01/2019 to 17/01/2020 (263 observations).

To this end we run our smooth particle filter on the new data by using the parameters

obtained during the previous estimation and then we filter out the convenience yield. As

we can see the results are good with both models, with better performances for Model I.



CHAPTER 3. SELF-EXCITING JUMPS IN THE OIL MARKET 67

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Model I

Model II

Figure 3.9: The figure presents the out of sample Mean Absolute Error (MAE) in terms
of pricing futures contracts with Model I and Model II.

3.5 An Optimal Dynamic Hedging Strategy

Hedging in crude oil market is an important issue not only for producers, but also for

energy traders and investors (Billio et al., 2018). Indeed, price fluctuations lead to an

increase in volatility, and so the risk coming from investing in the spot market needs

to be mitigated. In particular, the natural way to hedge a long (short) position in the

spot market is to sell (buy) a certain number of futures contracts. The quantity of

futures needed to cover a spot position is called the hedge ratio. The determination of

the optimal hedge ratio depends on the chosen objective function. In the literature, the

hedge ratio is modeled as a time-varying variable (see Kroner and Sultan, 1993; Alizadeh

et al., 2008; Chang et al., 2011; Liu et al., 2014; Billio et al., 2018; Batten et al., 2019),

which minimizes the variance of the portfolio Π = S − hF , where h denotes the number

of futures. The optimal solution for h according to this criterion is then given by:

h?t−1 =
Covt(S, F )

Vart(F )
. (3.24)

At this point, it is important to remark that our approach is different from the ap-

proach usually considered in the literature. In particular, the most popular choice is
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given by discrete time models like multivariate GARCH models (Chang et al., 2011; Bat-

ten et al., 2019) and Markov switching models (Alizadeh et al., 2008; Billio et al., 2018).

On the other hand, continuous-time models have received much less attention and one

example of such an approach is given by Liu et al. (2014). In their paper, related to

industrial metals’ market, they specify one dynamics for the spot price and one for the

futures and then the estimation is carried out separately. However, our model provides a

direct link between spot and futures, meaning that in our estimation framework we can-

not avoid no arbitrage issues and we need to resort to a risk-neutral argument. In view

of possible extensions of the present estimation method including different derivatives

contracts, European options for example, the risk-neutral approach represents the most

convenient and natural modelling framework. In the present setting, the risk-neutral

approach provides the necessary consistency relations between spot and futures prices.

Now, let us properly specify the hedging portfolio. In particular, the log-spot price is

given by:

dxt =

(
r − 1

2
Vt − λtE

[
eJx − 1

]
− δt

)
dt+

√
VtdWx,t + dJx,t.

Moreover the latent states are described by the following equations:

dVt = k(V̄ − Vt)dt+ σv
√
Vt

(
ρvdWx,t +

√
1− ρ2

vdWv,t

)
+ dJv,t,

dδt = γ(δ̄ − δt)dt+ σδdWδ,t,

dλt = β(λ∞ − λt)dt+ αdNt.

Then, By applying Itô’s lemma on the log-futures pricing function f(X, V, λ, δ, t, T ) =

xt + A(τ) + C(τ)δt we get the dynamics of Yt:

dYt =
[
r − 1

2
Vt − λtE

[
eJx − 1

]
− δt − A′(τ)− C ′(τ)δt + C(τ)γ(δ̄ − δt)

]
dt

+
√
VtdWx,t + C(τ)σδdWδ,t + dJx,t

Then, the Minimum Variance (MV) hedging ratio is given by:

h? =
Vt + (µ2

J + σ2
J)λt

Vt + C2(τ)σ2
δ + (µ2

J + σ2
J)λt

. (3.25)

Additional details are given in subsection 3.5.2 and in Appendix B, where we also
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introduce a skewness-type objective function.

3.5.1 Empirical Application

In our application we follow previous studies (e.g. Liu et al., 2014; Billio et al., 2018) and

consider as hedging instrument the most liquid futures, i.e. the futures with the shortest

maturity, which in our data set are the CL3 contracts. Thus, we compute a daily hedge

ratio according to the MV approach. In Figure 3.10 the optimal time varying hedge

ratio h?t computed with Model I and Model II is shown. The time varying hedge ratio

indicates that the portfolio should be frequently re-balanced as the market conditions

change. In particular, during the global financial crisis (2008-2010) we observe a positive

jump in the hedge ratio, which means that investors are more cautious and they prefer to

hedge more. Then, from 2011 to 2014 the market is less volatile and the hedge ratios are

smaller providing to the hedgers a lower exposition on futures. Finally, from 2015-2017

we observe again an increase in the optimal hedging strategy due to another period of

market turmoil. Then, we provide some descriptive statistics about the hedge ratios in

Table 3.5.
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Figure 3.10: The figure presents the optimal MV hedge ratio time series for Model I
(blue) and Model II (orange).
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Mean Std Dev Skewness Kurtosis Min Max

MV Hedge I 0.4326 0.1250 0.4134 2.7714 0.0851 0.7571

MV Hedge II 0.5552 0.0801 0.9150 3.6083 0.4199 0.8149

Table 3.5: MV Hedge ratio statistics.

In the literature it is common to evaluate a particular hedging strategy in terms

of variance reduction and utility improvements with respect to the un-hedged position

(Kroner and Sultan, 1993; Alizadeh et al., 2008; Batten et al., 2019). Therefore, we

consider the following measure of hedging effectiveness:

HE1 = 1−
[

Var(Πh)

Var(Πun)

]
, (3.26)

where the hedging portfolios Πh are computed by using percentage log-returns of spot

and futures and the corresponding optimal hedge ratios. Hence, we are evaluating the

variance reduction with respect to the un-hedged portfolio Πun, which is composed only

by the spot position. If HE1 = 0 we do not reduce risk at all, whereas HE1 = 1 imply

a 100% reduction in the variance. According to our previous findings about the hedge

ratio variability, we consider the whole sample and two different sub-periods: 2008-2010

and 2015-2017. In this way we are able to assess the hedging performances related to

specific turbulent periods. The results are shown in Table 3.6.

Interval Model I Model II

2008-2018 0.6030 0.5554

2008-2010 0.6394 0.6117

2015-2017 0.6568 0.6040

Table 3.6: The table presents the variance reduction with respect to the un-hedged
portfolio.

Overall, we obtain clear improvements with respect to the un-hedged position. For

instance, during the whole sample, we reduce the portfolio variance by 60.30% with Model

I and by 55.54% with model II. Moreover, even during periods of financial turmoil we are

able to reduce significantly the variance of the portfolio. This confirms the importance

of hedging for producers and investors.

According to Alizadeh et al. (2008), hedging effectiveness is more appropriately assessed
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by considering the economic benefits from hedging using the hedger’s utility function.

Then, if ξ represents the risk aversion of an investor and Rh is the return on the hedged

portfolio, the expected utility function is given by

E[U(Rh)] = E[Rh]− ξVar[Rh]. (3.27)

By assuming that expected returns from the hedged portfolio are equal to zero and

the degree of risk aversion is 44, we compute the realized utility for Model I, Model II

and the un-hedged portfolio in Table 3.7.

Interval Model I Model II Un-hedged

2008-2018 -9.5137 -10.6541 -23.9646

2008-2010 -19.3052 -20.7915 -53.5398

2015-2017 -9.3984 -10.8453 -27.3873

Table 3.7: The table presents the realized MV utility for Model I, Model II and the
un-hedged portfolio.

Now, some comments are needed. First, by adopting the optimal hedging strategy

we obtain substantial utility improvements with respect to the un-hedged position, no

matter which sub-period is considered. Second, during the global financial crisis we get

the worst results and this is due to the increased portfolio variance. Third, Model I is

performing better than Model II, both regarding variance reduction and utility improve-

ment, by confirming the importance of a more elaborate jump structure with respect to

the standard Poisson framework with constant intensity.

In the next subsection we are going to explore if the inclusion of high order effects in the

objective function could provide some improvements in the present hedging application.

3.5.2 Higher Order Hedging

The evidence of jumps and stochastic volatility in the oil market raises a question about

the adequacy of a minimum variance objective function. Indeed, by adopting the MV

approach we are not fully exploiting the distributional properties of these models, i.e. we

are neglecting higher order effects, which could influence the hedging ratio. For instance,

4These assumptions are in line with most empirical studies as Kroner and Sultan (1993); Alizadeh
et al. (2008).
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the relevance of skewness in characterizing risk preferences has been pointed out in a

rich amount of literature: we mention the papers by Post et al. (2008), Chiu (2010),

Dahlquist et al. (2017) and Kraus and Litzenberger (1976). Therefore, we consider the

minimization of the following objective function:

min
h

[Vart(Πt)− ηAsyt(Πt)], (3.28)

where, Πt = Xt − hYt is the portfolio formed by Xt = log(St) and Yt = log(Ft,τ ); η is a

constant risk-aversion parameter and Asy[x] = E[(x− E[x])3].

In order to compute the optimal hedging ratio we need Vart[Πt] and Asyt[Πt]. Hence, in

analogy with Liu et al. (2014) we can proceed by computing the instantaneous conditional

moments. The detailed derivation of the hedging ratio is given in Appendix B. Once we

have obtained the expression for the hedging portfolio we take the first derivative with

respect to h and set it equal to zero. In the end we get two solutions for h?:

h? = ± 1

2 (3ηλtµ3
J + 9ηλtµJσ2

J)

( (
2C2σ2

δ − 6ηλtµ
3
J − 18ηλµJσ

2
J + 2λtµ

2
J + 2λtσ

2
J + 2V

)2

− 4
(
3ηλtµ

3
J + 9ηλtµJσ

2
J

) (
3ηλtµ

3
J + 9ηλtµJσ

2 − 2λtµ
2
J − 2λtσ

2
J − 2Vt

)
− 2C2σ2

δ + 6ηλtµ
3
J

+ 18ηλtµJσ
2
J − 2λtµ

2
J − 2λtσ

2
J − 2Vt

)1/2

.

(3.29)

Since crude oil spot and futures are positively correlated, from now on, we shall consider

only the positive solution of (3.29). As in the previous section, we compute daily hedge

ratios according to our optimal strategy. Nevertheless, in Figure 3.11 we observe a sur-

prising result: the MV and the Asy-Variance hedging strategies give substantially the

same hedge ratio. This mean that the contribution given by the third-order moment is

negligible in computing the optimal hedging strategy.
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Figure 3.11: The figure presents the optimal MV and Asy-Variance hedge ratios time
series for Model I (top) and Model II (bottom).

Given this result, we include the skewness instead of the third order central moment;

then the optimization problem reads as follows

min
h

[Vart(Πt)− ηSkewt(Πt)], (3.30)

where,

Skew(x) =
E[(x− E[x])3]

Var(x)3/2
.

In this way we are not able to get a closed-form solution, so a numerical minimization

method is adopted. Hence, the hedge ratio obtained numerically is compared to the MV

hedging ratio in Figure 3.12, from which it is clear that the contribution of skewness is

not negligible. This intuition will be formally tested empirically in what follows, where

we denote the Variance-Skewness hedging by VS.
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Figure 3.12: The figure presents the optimal MV and VS hedge ratios time series for
Model I in the top panel and Model II in the middle panel. The bottom panel plots the
VS hedge ratios for Model I (blue) and Model II (orange).

Now, in order to investigate the performance of this new strategy we need to consider

a metric which is coherent within the optimizations goals. Then, we resort again to the

realized utility:

E[U(Rh)] = −Var[Rh] + ηSkew[Rh], (3.31)

where, η is the risk aversion parameter related to skewness and it is set equal to 4. The

result of this computation is given in Table 3.8.

Interval Model I Model II Un-hedged

2008-2018 -1.0730 -1.5485 -5.5189

2008-2010 -1.9980 -2.5387 -12.6846

2015-2017 -1.9193 -2.2930 -5.7923

Table 3.8: The table presents the realized VS utility for Model I, Model II and the
un-hedged portfolio.

From the results we infer that the realized utility is giving good performances. In

particular, Model I is performing better than Model II in every scenario. Moreover, both
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models implied utilities achieve better results with respect to the un-hedged position.

The explanation stems from the fact that positive skewness is increasing the utility of

the investor.

In order to further investigate this phenomenon we test the MV and VS hedging strate-

gies out of sample, i.e. we consider 263 observations from 02/01/2019 to 17/01/2020.

Hence, we filter out the state variables by running our smooth particle filter by using the

parameters estimated in the sample. Then, we compute the realized utility for each strat-

egy. The results are shown in Table 3.9. By this way we can appreciate the performance

of each strategy with respect to the un-hedged position, by matching their respective

optimization goals.

Utility Model I Model II Un-hedhged

MV -6.0292 -4.0241 -17.9647

VS -0.9270 -1.1730 -3.9147

Table 3.9: The table presents the out of sample MV and VS realized utility for Model I
and Model II. The realized utility of the un-hedged portfolio is also reported.

The results indicate that both strategies give better results with respect to the un-

hedged portfolio. In particular, we observe that Model I performs better than Model II

when the VS utility is considered.

Finally, as a robustness check we estimate again the models on a small sub-period

and test the out-of-sample realized utility as before. To perform this task we estimate

Model I and Model II using 200 days from 2008-2009; then we form the hedging portfolios

by considering the MV and the VS strategies and we calculate their associated realized

utility out-of-sample on additional 100 days. From the results in Table 3.10 we infer that

Model I performs better with respect to Model II, no matter which utility is considered.

As a general remark we confirm the well-known intuition that hedging during turbulent

period is very important, as we can see from the performance of the un-hedged portfolios.
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Utility Model I Model II Un-hedhged

MV -49.3415 -52.9350 -142.1638

VS -10.2988 -10.6385 -33.9919

Table 3.10: The table presents the out of sample MV and VS realized utility for Model
I and Model II during the global financial crisis. The realized utility of the un-hedged
portfolio is also reported.

By resuming the previous results, it seems that the inclusion of high order effects lead

to substantial improvements in the present hedging application with respect to the usual

MV approach. Moreover, the model with self-exciting jump intensity outperforms the

model with constant jump intensity.

3.6 Concluding Remarks

In this chapter we propose a jump-diffusion model for oil price dynamics including self-

exciting effects. Our model includes a stochastic dynamics for both the volatility and the

yield coefficient. We provide an estimation method of Bayesian type based on a suitable

adaptation of a SMC method proposed by Fulop and Li (2019). Our results show that the

introduction of a jump intensity of Hawkes type improves the forecasting ability of this

model with respect to a model without self-exciting effects. Moreover its affine feature

allows to compute explicitly futures contracts prices by providing a setting for accurate

parameters estimation. Finally we compute an optimal hedging strategy based on futures

trading. This optimal hedging strategy is obtained not only by minimizing variance, but

by taking into account higher order moments, i.e. skewness. This optimal hedging

strategy exhibits some interesting features and gives to the hedger better results with

respect to the most popular MV approach. Furthermore, from the empirical application

we infer that Model I, equipped with the self-exciting component, outperforms Model II

in terms of hedging effectiveness and realized utility.



Chapter 4

Bayesian Filtering of Wishart

Option Pricing Models

In this chapter we focus on the estimation of Wishart-type stochastic volatility models

by exploiting state of the art SMC methods.

4.1 Introduction

Good models of time-varying covariance matrices are of central importance in finance for

derivative pricing, portfolio allocation and modelling economic and financial uncertainty

in general. A particularly interesting class of models are continuous-time Wishart models

(see Da Fonseca et al., 2008 and Gruber et al., 2020) allowing for flexible forms of vari-

ance and covariance dynamics while guaranteeing positive semi-definiteness. However,

economic and financial data is typically observed in discrete time, making the economet-

ric analysis of continuous-time models difficult. The common practice in the literature

is to take a simple Euler discretization to the continuous system and directly estimate

the resulting discrete time state-space model (see for instance Eraker et al. (2003) for

MCMC based approaches and Fulop et al. (2015) for SMC based estimation). However

such methods face two issues: first, it is hard to control the discretization bias due to non-

linearity and the time elapsed between observations; second, there is no generic method

that provides efficient likelihood estimators necessary for likelihood based inference.

In the framework of Wishart stochastic volatility models a simple Euler approximation

between two observations does not guarantee positive definiteness making discretization

77
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bias a particularly severe issue (see Kang et al., 2017). Then, We follow the prevailing

data augmentation approach (see e.g. the survey in Sørensen (2009), or Durham and

Gallant (2002)) filling in latent states at artificial time points between the observations,

allowing us to control discretization bias. While most existing work is based on MCMC

methods, we propose to employ SMC methods. Here the main difficulty to overcome is

to provide an efficient proposal distribution over the path of the unobserved latent states

between two observations. Standard filtering techniques, such as the bootstrap particle

filter (Gordon et al., 1993) or the locally optimal particle filter (Doucet et al., 2000) do

not suffice as they only condition on the past, while here the future observation is also

informative on the latent path. Then, we propose to adapt the recent controlled SMC

method of Heng et al. (2019) to tackle this problem, which allows us a generic approach

to propagate information from the future.

The chapter is organized as follows. In Section 4.2 we introduce the Wishart stochas-

tic volatility model and its associated Moment Generating Function (MGF). Then, in

Section 4.3 we cast the model in a State-Space form by exploiting options portfolios as

measurement equation. In Section 4.4 we propose a controlled SMC approach for state fil-

tering and likelihood estimation. Finally, we provide some numerical results on simulated

data in Section 4.5, while Section 4.6 gives some concluding remarks.

4.2 The Model

Assume the price process under the risk-neutral probability is given by:

dSt
St

= rdt+ Tr[
√
VtdZt], (4.1)

where, Vt ∈ S ⊂ Rn×n is a symmetric positive definite matrix process described by the

following SDE,

dVt = (βQTQ+MVt + VtM
T )dt+

√
VtdBtQ+QTdBT

t

√
Vt, (4.2)
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where, β ∈ R, Q,M ∈ Rn×n and Bt is a n× n standard Brownian motion. Moreover,

Zt = BtR +Wt

√
In −RRT , (4.3)

where, Wt is another n × n Brownian motion independent from Bt. Then, the MGF of

Yt = lnSt is given by

Ψ(τ ; γ) = Et[eγYT ] = exp (γYt + Tr[A(γ, τ)Vt] +B(γ, τ)) , (4.4)

where, γ ∈ R, A(γ, τ) ∈ Rn×n and B(γ, τ) ∈ R. The solution is given by the following

system of ODEs:
∂
∂τ
A(γ, τ) = 2A(γ, τ)QTQA(γ, τ) + A(γ, τ)(M + γQTRT ) + (MT + γRQ)A(γ, τ) + γ

2
(γ − 1)In,

∂
∂τ
B(γ, τ) = βTr[A(γ, τ)QTQ] + γr,

(4.5)

with initial conditions A(0) = 0 and B(0) = 0. It is possible to find a closed-form solution

by linearization method (Da Fonseca et al., 2008):

A(γ, τ) = C22(τ)−1C21(τ), (4.6)

where, C11(τ) C12(τ)

C21(τ) C22(τ)

 = expm

τ
M + γQTR −2QTQ

γ(γ−1)
2

In −(MT + γRTQ)

 . (4.7)

The other coefficient is given by

B(γ, τ) = τγr − β

2
Tr [lnC22(τ)− τC22(τ)] , (4.8)

where, the logarithm is computed in the matrix sense.

4.3 State-Space Model

In this section we construct a SSM where latent states are described by a Wishart process.

In particular, we consider as measurement equation portfolios of weighted options as
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detailed in Orlowski (2019). This kind of contracts summarize information contained

in the risk-neutral density and are linked to the state variables by a linear relation.

This means that we can avoid to compute option prices, which are complex non-linear

functions of state variables and parameters. Moreover, in state of the art affine models,

option prices require the the numerical inversion of the characteristic function of log-

returns, making the estimation routine unfeasible. In Appendix A we present this idea

which builds on Bakshi and Madan (2000) and Feunou and Okou (2018). Then, by

exploiting such contracts we define

y(tp) = B′(γ, τ) + Tr [A′(γ, τ)V (tp)] + u(tp), (4.9)

where, p = 1, . . . , P and B′(γ, τ) ∈ R, A′(γ, τ) ∈ Rn×n are computable from the MGF

slope of log-returns. For example, a realistic case considered in Orlowski (2019) is given

by γ = [0, 0.5, 1] and τ = [1/12, 6/12], then we can write

yk(tp) = B′k(γ, τ) + Tr [A′k(γ, τ)V (tp)] + uk(tp),

where, k = 1, . . . , 6 and uk(tp) ∼ N (0, σ2
kInk). Therefore, yk(tp) ∈ Rnk , with nk = nγ×nτ .

The latent state is described by a continuous time Wishart process Vt ∈ S ⊂ Rn×n with

dynamics given by Equation (4.2). We can approximate (4.2) using a discrete time

truncated Euler scheme (see Kang et al., 2017):

Vt =
(
Vt−1 + (βQTQ+MVt−1 + Vt−1M

T )∆t+
√

∆t
√
Vt−1BtQ+QTBT

t

√
Vt−1

√
∆t
)+

.

(4.10)

where, A+ denotes the positive part of a symmetric matrix A: we setA+ = Pdiag(λ+
1 , . . . , λ

+
n )P T ,

where P is the matrix formed by eigenvectors. To make Vt positive semi-definite, we take

the positive part at each time grid using the above decomposition.

4.3.1 Conditional moments

In view of filtering we need expressions for the conditional mean and conditional variance

of Vt given Vt−1. To this end we use the vec operator and consider the formulae from
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Gruber et al. (2020):

µ(V̂t−1) = βµ̄+ ΦVt−1ΦT , (4.11)

Σ(V̂t−1) = (In +Knv)
(
ΦVt−1ΦT ⊗ µ̄+ βµ̄⊗ µ̄+ µ̄⊗ ΦVt−1ΦT

)
(4.12)

with,

µ̄ = −1

2
C12C

T
11, Φ = expm(∆tM),

C = expm

∆t

M −2QTQ

0 −MT

 =

C11 C12

C21 C22


where, C11, C12, C21, C22 are n × n matrices and nv = n2, such that Knv is a nv × nv

commutation matrix. Then, if we define V̂t = vec(Vt) and µ̂(V̂t−1) = vec(µ(V̂t−1)), we get

f(V̂t−1, dV̂t) = N
(
µ̂(V̂t−1),Σ(V̂t−1)

)
dV̂t. (4.13)

Therefore, the vectorized hidden state V̂t is a nv × 1 vector.1

4.3.2 Higher frequency state-space model

In order to better approximate (4.2) we can sample additional L points between each

value. In this case we write the transition kernel (4.13) as follows,

fp,l(V̂ (tp,l−1), dV̂ (tp,l)) = N
(
V̂ (tp,l); µ̂(V̂ (tp,l−1)), Σ(V̂ (tp,l−1))

)
dV̂ (tp,l) (4.14)

for l = 1, . . . , L, p = 1, . . . , P and tp−1 = tp,0 < tp,1 < . . . < tp,L = tp are intermediate

points on the interval [tp−1, tp]. For simplicity consider tp,l = tp−1 + l × ∆p, with ∆p =

(tp − tp−1)/L.

In this case the marginal likelihood is given by

P (yk(t1), . . . , yk(tp)) =

∫
ν(dV̂ (0))

P∏
p=1

L∏
l=1

fp,l(V̂ (tp,l−1), dV̂ (tp,l))
P∏
p=1

L∏
l=1

gp,l(V̂ (tp,l)),

(4.15)

1For the implementation, since Vt is symmetric, we are going to consider only its upper diagonal,
which means that V̂t is a nz × 1 vector, with nz = n(n+ 1)/2.
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where,

gp,l(V̂p,l) =

g(V̂ (tp), yk(tp)), if l = L,

1, if l 6= L,

(4.16)

for p = 1, . . . , P . By this way we ensure that at intermediate filling points the observation

density is one. The latent state is also defined by an initial distribution

ν(dV̂ (0)) = N (µ̂(V̂ (0)),Σ(V̂ (0)))dV̂ (0), (4.17)

where, we initialize V0 to be the steady state V∞, which can be computed by solving the

Lyapunov equation MV∞ + V∞M
T = QTQ.

4.4 Particle Filtering

We pursue the controlled SMC approach for state filtering and likelihood approximation

(Heng et al., 2019). Given a sequence of functions ψ0 : Rnv → R+ and ψp,l : Rnv → R+

for p = 1, . . . , P and l = 1, . . . , L we define the twisted initial distribution and the twisted

Markov transition kernel,

νψ(dV̂ (0)) =
ν(dV̂ (0))ψ0(V̂ (0))

ν(ψ0)
, fψp,l(V̂ (tp,l−1), dV̂ (tp,l)) =

f(V̂ (tp,l−1), dV̂ (tp,l))ψp,l(V̂ (tp,l))

f(ψp,l)(V̂ (tp,l−1))
.

Notice that ν(ψ0) is the expectation of ψ0 with respect to ν, while f(ψp,l)(V̂ (tp,l−1)) is

the conditional expectation of ψp,l with respect to (4.14).

In order to approximate (4.15), we define the twisted potentials,

gψ0 (V̂ (0)) =
ν(ψ0)f(ψ0,1)(V̂ (0))

ψ0(V̂ (0))
,

gψp,l(V̂ (tp,l−1), V̂ (tp,l)) =
g(V̂ (tp,l−1), V̂ (tp,l), yk(tp,l))f(ψp,l+1)(V̂ (tp,l))

ψp,l(V̂ (tp,l−1), V̂ (tp,l))
, p = 1, . . . , P, l = 1, . . . , L− 1

gψP,L(V̂ (tP,L−1), V̂ (tP,L)) =
g(V̂ (tP,L−1), V̂ (tP,L), yk(tP,L))

ψP,L(V̂ (tP,L−1), V̂ (tP,L))
.

Therefore the marginal likelihood can be written as follows

P (yk(t1), . . . , yk(tp)) =

∫
νψ(dV̂ (0))

P∏
p=1

L∏
l=1

fψp,l(V̂ (tp,l−1), dV̂ (tp,l))
P∏
p=1

L∏
l=1

gψp,l(V̂ (tp,l)),
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The optimal policy ψ? is given by the backward recursion

ψ?P,L(V̂ (tP,L−1), V̂ (tP,L)) = g(V̂ (tP,L−1), V̂ (tP,L), yk(tP,L)),

ψ?p,l(V̂ (tp,l−1), V̂ (tp,l)) = g(V̂ (tp,l−1), V̂ (tp,l), yk(tp,l))f(ψp,l+1)(V̂ (tp,l)),

ψ?0(V̂ (0)) = f(ψ0,1)(V̂ (0)).

(4.18)

In our setting the optimal policy cannot be computed analytically. Then, in the following

sub-section we consider a suitable approximation scheme.

4.4.1 Function classes

We consider

ψp,l(V̂ (tp,l−1), V̂ (tp,l)) = exp
{
− V̂ (tp,l)

TAp,lV̂ (tp,l)− V̂ (tp,l)
T bp,l

− V̂ (tp,l)
T cp,l(V̂ (tp,l−1))− dp,l(V̂ (tp,l−1))

} (4.19)

for some Ap,l ∈ Rnv×nv , bp,l ∈ Rnv , cp,l(V̂ (tp,l−1)) = Cp,lV̂ (tp,l−1), with Cp,l ∈ Rnv×nv ,

dp,l(V̂ (tp,l−1)) = V̂ (tp,l−1)TDp,lV̂ (tp,l−1)+V̂ (tp,l−1)T ep,l+fp,l, withDp,l ∈ Rnv×nv , ep,l ∈ Rnv

and fp,l ∈ R.

Under this setting we derive the twisted objects. In the Appendix B we report the

full calculations. For the initial point we consider

ψ0(V̂ (0)) =
{
−V̂ (0)TA0V̂ (0)− V̂ (0)T b0 − f0

}
(4.20)

for some A0 ∈ Rnv×nv , b0 ∈ Rnv and c0 ∈ R. Then,

ν(ψ0) = det(Σ(V̂ (0)))−
1
2 det(K0)

1
2 exp

{
−1

2
µ̂T (V̂ (0))Σ(V̂ (0))−1 − f0

}
× exp

{
1

2

(
Σ(V̂ (0))−1µ̂(V̂ (0))− b0

)T
K0

(
Σ(V̂ (0))−1µ̂(V̂ (0))− b0

)}
,

(4.21)

where, K0 := (Σ(V̂ (0))−1 + 2A0)−1. Given the above solution for the expectation we can

compute the twisted initial kernel

νψ(dV̂ (0)) = N
(
V̂ (0); K0(Σ(V̂ (0))−1µ(V̂ (0))− b0), K0

)
dV̂ (0). (4.22)
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For the twisted Markov transition kernels we consider (4.19) and begin with the following

expectation

fp,l(ψp,l)(V̂ (tp,l−1), dV̂ (tp,l)) = det(Σ(V̂ (tp,l−1)))−
1
2 det(Kp,l)

1
2

× exp

{
−1

2
µ̂T (V̂ (tp,l−1))Σ(V̂ (tp,l−1))−1µ̂(V̂ (tp,l−1))− dp,l(V̂ (tp,l−1))

}
× exp

{1

2

[
Σ(V̂ (tp,l−1))−1µ̂(V̂ (tp,l−1))− (bp,l + cp,l(V̂ (tp,l−1)))

]T
Kp,l

[
Σ(V̂ (tp,l−1))−1µ̂(V̂ (tp,l−1))− (bp,l + cp,l(V̂ (tp,l−1)))

]}
,

(4.23)

where, Kp,l := (Σ(V̂ (tp,l−1))−1 + 2Ap,l)
−1. Given the solution for the expectation we can

compute the twisted Markov transition kernel

fψp,l(V̂ (tp,l−1), dV̂ (tp,l)) =

N
(
V̂ (tp,l); Kp,l(Σ(V̂ (tp,l−1))−1µ̂(V̂ (tp,l−1))− (bp,l + cp,l(V̂ (tp,l−1)))), Kp,l

)
dV̂ (tp,l).

(4.24)

4.4.2 Tempered smoothing distribution

To approximate the optimal policy (4.18) we use regression methods. In order to perform

this task we need good samples, which could be difficult to get in some scenarios. Indeed,

this is due to the discrepancy between the observations and the parameter set. To alleviate

this issue we will consider intermediate smoothing distributions defined by

p(dV̂ (t0:P ) | yk(t1:P ), λ) = p(yk(t1:P ) | λ)−1ν(dV̂ (0))
P∏
p=1

L∏
l=1

fp,l(V̂ (tp,l−1), dV̂ (tp,l))
P∏
p=1

L∏
l=1

gp,l(V̂ (tp,l))
λ,

(4.25)

where, λ ∈ [0, 1] and

p(yk(t1:P ) | λ) =

∫
ν(dV̂ (0))

P∏
p=1

L∏
l=1

fp,l(V̂ (tp,l−1), dV̂ (tp,l))
P∏
p=1

L∏
l=1

gp,l(V̂ (tp,l))
λdV̂ (t0:P ),

gp,l(V̂p,l) =

g(V̂ (tp), yk(tp)), if l = L

1, if l 6= L
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Note that λ = 0 corresponds to the latent dynamics and λ = 1 recovers the smoothing

distribution of interest. To approximate (4.25) for each λ ∈ [0, 1], we construct a proposal

distribution

qψ(dV̂ (t0:P )) = νψ(dV̂ (0))
P∏
p=1

L∏
l=1

fψp,l(V̂ (tp,l−1), dV̂ (tp,l)) (4.26)

defined by a policy ψ which depends on coefficients β = (Ap,l, bp,l, Cp,l, Dp,l, ep,l, fp,l), for

p = 0, . . . , P and l = 1, . . . , L. To construct a SMC method to target (4.25) using (4.26)

we define

gψ0 (V̂ (0)) =
ν(ψ0)f(ψ0,1)(V̂ (0))

ψ0(V̂ (0))
,

gλ,ψp,l (V̂ (tp,l−1), V̂ (tp,l)) =
g(V̂ (tp,l−1), V̂ (tp,l), yk(tp,l))

λf(ψp,l+1)(V̂ (tp,l))

ψp,l(V̂ (tp,l−1), V̂ (tp,l))
, p = 1, . . . , P, l = 1, . . . , L− 1

gλ,ψP,L(V̂ (tP,L−1), V̂ (tP,L)) =
g(V̂ (tP,L−1), V̂ (tP,L), yk(tP,L))λ

ψP,L(V̂ (tP,L−1), V̂ (tP,L))
.

Thus, we represent the intermediate smoothing distribution as

p(dV̂ (t0:P ) | yk(t1:P ), λ) = gψ0 (V̂ (0))
P∏
p=1

L∏
l=1

gλ,ψp,l (V̂ (tp,l−1), V̂ (tp,l))q
ψ(dV̂ (t0:P ))

In Algorithm 11 we present the resulting SMC.

Now, we outline how it is possible to update the tempering parameter λ. Let 0 =

λ0 < λ1 < . . . < λI1 = 1. We initialize our SMC procedure at λ0 = 0 and with ψ(0)

defined by the coefficients β(0) equal to zeros. Assume, for i = 1, . . . , I1, to have a policy

ψ(i− 1) defined by

β(i−1) = (A
(i−1)
p,l , b

(i−1)
p,l , f

(i−1)
p,l )P,Lp,l=1,1

such that the proposal qψ(i−1)(dV̂ (t0:P )) is an approximation of p(dV̂ (t0:P ) | yk(t1:P ), λi).

To construct an approximation qψ(i)(dV̂ (t0:P )) of p(dV̂ (t0:P ) | yk(t1:P ), λi), we modify

ψ(i− 1) using a policy φ(i) defined by

β̃(i) = (Ã
(i)
p,l, b̃

(i)
p,l, f̃

(i)
p,l )

P,L
p,l=1,1,

with the update ψ
(i)
p,l = ψ

(i−1)
p,l · φ(i)

p,l, or equivalently,

β
(i)
p,l = β

(i−1)
p,l + β̃

(i)
p,l .
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Algorithm 11 Sequential Monte Carlo
Input: number of particles N , number of intermediate latent state points L, policy ψ defined by coefficients β and
tempering level λ.

1. For time tp,l = t0 = 0 and for n = 1, . . . , N

(a) set K0 := (Σ(V̂ (0))−1 + 2A0)−1 and K0,1 := (Σ(V̂ (0))−1 + 2A0,1)−1;

(b) sample V̂ (0)n ∼ N
(
K0(Σ(V̂ (0))−1µ(V̂ (0))− b0),K0

)
;

(c) compute expectation

ν(ψ0) = det(Σ(V̂ (0)n))−
1
2 det(K0)

1
2 exp

{
−

1

2
µ̂T (V̂ (0)n)Σ(V̂ (0)n)−1µ̂(V̂ (0)n)− f0

}
× exp

{
1

2

(
Σ(V̂ (0)n)−1µ̂(V̂ (0)n)− b0

)T
K0

(
Σ(V̂ (0)n)−1µ̂(V̂ (0)n)− b0

)}
;

(d) compute conditional expectations

f(ψ0,1)(V̂ (0)n) = det(Σ(V̂ (0)n))−
1
2 det(K0,1)

1
2 exp

{
−

1

2
µ̂T (V̂ (0)n)Σ(V̂ (0)n)−1µ̂(V̂ (0)n)− d0,1(V̂ (0)n)

}
× exp

{1

2

[
Σ(V̂ (0)n)−1µ̂(V̂ (0)n)− (b0,1 + c0,1(V̂ (0)n))

]T
K0,1

[
Σ(V̂ (0)n)−1µ̂(V̂ (0)n)− (b0,1 + c0,1(V̂ (0)n))

]}
;

(e) evaluate policy ψ0(V̂ (0)n) = exp{−(V̂ (0)n)TA0V̂ (0)n − (V̂ (0)n)T b0 − f0};

(f) compute weights gψ0 (V̂ (0)n) = ν(ψ0)f(ψ0,1)(V̂ (0)n)/ψ0(V̂ (0)n);

(g) normalized weights Wn
0 = gψ0 (V̂ (0)n)/

∑N
m=1 g

ψ
0 (V̂ (0)m);

(h) compute effective sample size ESS0 = {
∑N
n=1(Wn

0 )2}−1;

(i) sample ancestors An0 ∼ R(W 1
0 , . . . ,W

N
0 );

2. For time tp,l, with p = 1, . . . , P and l = 1, . . . , L and for n = 1, . . . , N

(a) sample

V̂ (tp,l)
n ∼ N

(
Kp,l(Σ(V̂ (tp,l−1)A

n
p,l−1 )−1µ̂(V̂ (tp,l−1)A

n
p,l−1 )− (bp,l + cp,l(V̂ (tp,l−1)A

n
p,l−1 ))),Kp,l

)
;

(b) if tp,l < P compute Kp+1,l+1 := (Σ(V̂ (tp+1,l))
−1 + 2Ap+1,l+1)−1 and the conditional expectations

f(ψp,l+1)(V̂ (tp,l)
n) using (4.23), else set f(ψP,L+1)(V̂ (tP,L)n) = 1;

(c) evaluate policy ψp,l(V̂ (tp,l−1)n, V̂ (tp,l)
n) using (4.19);

(d) compute weights

gλ,ψp,l (V̂ (tp,l−1)n, V̂ (tp,l)
n) =

g(V̂ (tp,l−1)n, V̂ (tp,l)
n, yk(tp,l))

λf(ψp,l+1)(V̂ (tp,l)
n)

ψp,l(V̂ (tp,l−1)n, V̂ (tp,l)n)
;

(e) normalize weights Wn
p,l = gλ,ψp,l (V̂ (tp,l−1)n, V̂ (tp,l)

n)/
∑N
m=1 g

λ,ψ
p,l (V̂ (tp,l−1)m, V̂ (tp,l)

m);

(f) compute effective sample size ESSp,l = {
∑N
n=1(Wn

p,l)
2}−1;

(g) sample ancestors Anp,l ∼ R(W 1
p,l, . . . ,W

N
p,l);

3. Compute likelihood estimator

p̂(yk(t0:P ) | λ) =

{
N−1

N∑
n=1

gψ0 (V̂ (0)n)

}
P∏
p=1

L∏
l=1

{
N−1

N∑
n=1

gλ,ψp,l (V̂ (tp,l−1)n, V̂ (tp,l)
n)

}

Output: samples V̂ (tp,l)
P
p=0 and likelihood estimator p̂(yk(t0:P ) | λ).
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We now consider several representation of (4.25). Note that

p(dV̂ (t0:P ) | yk(t1:P ), λi) = p(yk(t1:P ) | λi)−1qψ(0)(dV̂ (t0:P )
P∏
p=1

L∏
l=1

g(V̂ (tp,l), yk(tp,l))
λi

= p(yk(t1:P ) | λi)−1qψ(i−1)(dV̂ (t0:P )g
ψ(i−1)
0 (V̂ (0))

P∏
p=1

L∏
l=1

g
λi,ψ(i−1)
p,l (V̂ (tp,l))

= p(yk(t1:P ) | λi)−1qψ(i)(dV̂ (t0:P )g
ψ(i−1)·φ(i)
0 (V̂ (0))

P∏
p=1

L∏
l=1

g
λi,ψ(i−1)·φ(i)
p,l (V̂ (tp,l)),

where,

g
λi,ψ(i−1)·φ(i)
0 (V̂ (0)) =

ν(ψ
(i−1)
0 · φ(i)

0 )f(ψ
(i−1)
0,1 · φ(i)

0,1)(V̂ (0))

ψ
(i−1)
0 (V̂ (0))φ

(i)
0 (V̂ (0))

,

g
λi,ψ(i−1)·φ(i)
p,l (V̂ (tp,l−1), V̂ (tp,l)) =

g(V̂ (tp,l−1), V̂ (tp,l), yk(tp,l))
λif(ψ

(i−1)
p,l+1φ

(i)
p,l+1)(V̂ (tp,l))

ψp,l(V̂ (t
(i−1)
p,l−1), V̂ (tp,l))φp,l(V̂ (t

(i)
p,l−1), V̂ (tp,l))

,

g
λi,ψ(i−1)·φ(i)
P,L (V̂ (tP,L−1), V̂ (tP,L)) =

g(V̂ (tP,L−1), V̂ (tP,L), yk(tP,L))λi

ψ
(i−1)
P,L (V̂ (tP,L−1), V̂ (tP,L))φ

(i)
P,L(V̂ (tP,L−1), V̂ (tP,L))

.

(4.27)

The optimal choice of φ?(i) is defined by the recursion

φ?P,L(V̂ (tP,L−1), V̂ (tP,L)) =
g(V̂ (tP,L−1), V̂ (tP,L), yk(tP,L))λi

ψ
(i−1)
P,L (V̂ (tP,L−1), V̂ (tP,L))

,

φ?p,l(V̂ (tp,l−1), V̂ (tp,l)) =
g(V̂ (tp,l−1), V̂ (tp,l), yk(tp,l))

λif(ψ
(i−1)
p,l+1φ

?
p,l+1)(V̂ (tp,l))

ψ
(i−1)
p,l (V̂ (tp,l−1), V̂ (tp,l))

,

φ?0(V̂ (0)) =
ν(ψ

(i−1)
0 · φ(i)

0 )f(ψ
(i−1)
0,1 · φ?0,1)(V̂ (0))

ψ
(i−1)
0 (V̂ (0))

.

(4.28)

Hence, the optimal policy at λi is given by ψ?(i) = ψ(i − 1) · φ?(i). Nevertheless, since

the backward recursion (4.28) is intractable, we approximate it using regression.



CHAPTER 4. FILTERING OF WISHART OPTION PRICING MODELS 88

4.4.3 Approximate dynamic programming

To better understand how the approximated backward recursion works we simplify the

notation of (4.28) as follows

φ?P,L(V̂ (tP,L−1), V̂ (tP,L)) =
g(V̂ (tP,L−1), V̂ (tP,L), yk(tP,L))λ

ψP,L(V̂ (tP,L−1), V̂ (tP,L))
,

φ?p,l(V̂ (tp,l−1), V̂ (tp,l)) =
g(V̂ (tp,l−1), V̂ (tp,l), yk(tp,l))

λf(ψp,l+1φ
?
p,l+1)(V̂ (tp,l))

ψp,l(V̂ (tp,l−1), V̂ (tp,l))
,

φ?0(V̂ (0)) = f(ψ0,1 · φ?0,1)(V̂ (0))/ψ0(V̂ (0)),

(4.29)

where, ψ is the current policy defined by β and φ? is the optimal refinement to target

p(dV̂ (t0:P ) | yk(t1:P ), λ).

At time P , we have

φ?P,L(V̂ (tP,L−1), V̂ (tP,L)) =
g(V̂ (tP,L−1), V̂ (tP,L), yk(tP,L))λ

ψP,L(V̂ (tP,L−1), V̂ (tP,L))

where,

ψP,L(V̂ (tP,L−1), V̂ (tP,L)) = exp
{
− V̂ (tP,L)TAP,LV̂ (tP,L)− V̂ (tP,L)T bP,L

− V̂ (tP,L)T cP,L(V̂ (tP,L−1))− dP,L(V̂ (tP,L−1))
}

and we are looking for a function

φP,L(V̂ (tP,L−1), V̂ (tP,L)) = exp
{
− V̂ (tP,L)T ÃP,LV̂ (tP,L)− V̂ (tP,L)T b̃P,L

− V̂ (tP,L)T c̃P,L(V̂ (tP,L−1))− d̃P,L(V̂ (tP,L−1))
}

defined by the coefficients β̃P,L to approximate g(V̂ (tP,L−1), V̂ (tP,L), yk(tP,L))λ/ψP,L(V̂ (tP,L−1), V̂ (tP,L)).

Therefore, in logarithmic scale, this amounts to solve the following least squares problem

arg minE[(log φP,L(V̂ (tP,L−1), V̂ (tP,L))− λ log g(V̂ (tP,L−1), V̂ (tP,L), yk(tP,L))

+ logψP,L(V̂ (tP,L−1), V̂ (tP,L)))2].
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Hence, given a set of particles (V̂ (n)(tP,L), V̂ (n)(tP,L−1))Nn=1, we solve

β̃P,L = arg min
N∑
n=1

(log φP,L(V̂ (n)(tP,L−1), V̂ (n)(tP,L))− λ log g(V̂ (n)(tP,L−1), V̂ (n)(tP,L), yk(tP,L))

+ logψP,L(V̂ (n)(tP,L−1), V̂ (n)(tP,L)))2.

Then, we get the refined policy ψP,L · φP,L by performing the update βP,L + β̃P,L. For

time (P,L− 1), we have

φ?P,L−1(V̂ (tP,L−2), V̂ (tP,L−1)) =
g(V̂ (tP,L−2), V̂ (tP,L−1), yk(tP,L−1))λf(ψP,Lφ

?
P,L)(V̂ (tP,L−1))

ψP,L−1(V̂ (tP,L−2), V̂ (tP,L−1))

where,

ψP,L−1(V̂ (tP,L−2), V̂ (tP,L−1)) = exp
{
− V̂ (tP,L−1)TAP,L−1V̂ (tP,L−1)− V̂ (tP,L−1)T bP,L−1

− V̂ (tP,L−1)T cP,L−1(V̂ (tP,L−2))− dP,L−1(V̂ (tP,L−2))
}

and we are looking for a function

φP,L−1(V̂ (tP,L−2), V̂ (tP,L−1)) = exp
{
− V̂ (tP,L−1)T ÃP,L−1V̂ (tP,L−1)− V̂ (tP,L−1)T b̃P,L−1

− V̂ (tP,L−1)T c̃P,L−1(V̂ (tP,L−2))− d̃P,L−1(V̂ (tP,L−2))
}

defined by the coefficients β̃P,L−1 to approximate

g(V̂ (tP,L−2), V̂ (tP,L−1), yk(tP,L−1))λf(ψP,LφP,L)(V̂ (tP,L−1))

ψP,L−1(V̂ (tP,L−2), V̂ (tP,L−1))
,

where we substitute our approximation φP,L ≈ φ?P,L. In logarithmic scale we define the

following least squares problem

arg minE[(log φP,L−1(V̂ (tP,L−2), V̂ (tP,L−1))− λ log g(V̂ (tP,L−2), V̂ (tP,L−1), yk(tP,L−1))

− log f(ψP,LφP,L)(V̂ (tP,L−1)) + logψP,L−1(V̂ (tP,L−2), V̂ (tP,L−1)))2].
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Then, if we have samples (V̂ (n)(tP,L−1), V̂ (n)(tP,L−2))Nn=1, we solve

β̃P,L−1 =

arg min
N∑
n=1

(log φP,L−1(V̂ (n)(tP,L−2), V̂ (n)(tP,L−1))− λ log g(V̂ (n)(tP,L−2), V̂ (n)(tP,L−1), yk(tP,L−1))

− log f(ψP,LφP,L)(V̂ (n)(tP,L−1)) + logψP,L−1(V̂ (n)(tP,L−2), V̂ (n)(tP,L−1)))2.

Then, we get the refined policy ψP,L−1 ·φP,L−1 by performing the update βP,L−1 + β̃P,L−1.

We proceed in this way until time t = 0 when we seek to approximate φ?0(V̂ (0)) =

f(ψ0,1 · φ?0,1)(V̂ (0))/ψ0(V̂ (0)) where

ψ0(V̂ (0)) =
{
−V̂ (0)TA0V̂ (0)− V̂ (0)T b0 − f0

}
.

Then, we seek for a function

φ0(V̂ (0)) =
{
−V̂ (0)T Ã0V̂ (0)− V̂ (0)T b̃0 − f̃0

}
.

defined by coefficients β̃0 to approximate f(ψ0,1 · φ0,1)(V̂ (0))/ψ0(V̂ (0)), where we sub-

stitute our approximation φ0 ≈ φ?0. In logarithmic scale we define the following least

squares problem

arg minE[(log φ0(V̂ (0))− log f(ψ0,1φ0,1)(V̂ (0)) + logψ0(V̂ (0)))2].

Then, if we have samples V̂ (n)(0) we solve

β̃0 = arg min
N∑
i=1

(log φ0(V̂ (n)(0))− log f(ψ0,1φ0,1)(V̂ (n)(0)) + logψ0(V̂ (n)(0)))2.

The procedure we outlined defines an approximate dynamic programming (ADP)

method and it is presented in Algorithm 12. In summary, the resulting controlled SMC

algorithm is presented in Algorithm 13.
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Algorithm 12 Approximate Dynamic Programming

Input: samples V̂ (n)(tp,l), policy ψ defined by coefficients β and tempering level λ.

1. For time p = P, . . . , 1 and intermediate points l = 1, . . . , L

(a) Solve the least squares problem

β̃p,l = arg min
N∑
n=1

(log φp,l(V̂
(n)(tp,l−1), V̂ (n)(tp,l))− λ log g(V̂ (n)(tp,l−1), V̂ (n)(tp,l), yk(tp,l))

+ logψp,l(V̂
(n)(tp,l−1), V̂ (n)(tp,l)))

2.

to obtain coefficients defining φp,l.

(b) update the policy by performing β̃p,l + βp,l to obtain ψp,l · φp,l.

2. For time p = 0

(a) Solve the least squares problem

β̃0 = arg min
N∑
i=1

(log φ0(V̂ (n)(0))− log f(ψ0,1φ0,1)(V̂ (n)(0)) + logψ0(V̂ (n)(0)))2.

to obtain coefficients defining φ0.

(b) update the policy by performing β̃0 + β0 to obtain ψ0 · φ0.

Output: refined policy ψ · φ defined by coefficients β + β̃.

Algorithm 13 Controlled Sequential Monte Carlo (for a given tempering level λ)

Input: number of particles N , number of tempering steps I1 and schedule λi, for
i = 1, . . . , I1, number of policy iterations I2.

Initialize by sampling N trajectories from p(dV̂0:P );

For i = 1, . . . , I1

1. set λ∗ = min(λi, λ);
For j = 1, . . . , I2

2a. run ADP at λ∗ to learn refined policy ψ(λ∗) using previous samples from SMC;

2b. run SMC targeting p(dV̂0:P | y1:P , λ
∗), with proposal qψ(dV̂0:P ) defined by

ψ = ψ(λ∗);

3. terminate if λ∗ = λ.

Output: policy ψ and SMC output.
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4.5 Numerical experiments

In this section we perform a numerical study on the proposed algorithm. To this end

we simulate 1 year of weekly data using the parameters in Table 4.1, which are those

estimated by Gruber et al. (2020). Further, we choose τ = {1M, 6M, 12M, 18M}, γ =

{0, 0.5, 1} and σe = 1%.

β M11 M21 M22 Q11 Q12 Q22 R11 R12 R22

1.0012 -0.0079 1.0265 -2.6808 0.0698 -0.077 0.2924 -0.297 -0.8708 -0.4057

Table 4.1: Model parameters used in the numerical study.

First of all we test the quality of the controlled SMC by inspecting one run of the

algorithm with L = 3 intermediate artificial points. The figures below have been produced

by performing I1 = 5 tempering steps, where for each one we have I2 = 2 controlled SMC

iterations. The number of particles is N = 512.
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Figure 4.1: Effective Sample Size from controlled SMC across iterations (left panel). On
the right panel we compare the ESS from BPF with respect to the last iteration of our
controlled SMC.
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From Figure 4.1 it is evident the benefit from both tempering and ADP. Indeed, the

ESS across time indicates that the particles’ population is not deteriorating at all. A

comparison with the Bootstrap Particle Filter (BPF), see Algorithm 4 in Section 1.2.1,

further support this evidence.
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Figure 4.2: R2 from ADP regression.

The R2 from ADP regression shows very good performance of the algorithm in learning

the policy function ψ, which means that we are including information from the future in

a very efficient way. To have an intuition about the evolution of the policy function, we

can have a look at Figures 4.4-4.5-4.6, where some elements of ψ are plotted. Indeed,

from those graphs we infer that the marginal utility one could get from running more

than one controlled SMC iterations is very small in terms of policy fitting.
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Figure 4.3: Log normalizing constant estimation from controlled SMC across iterations
(left panel). On the right panel we compare the Log normalizing constant from BPF with
respect to the last iteration of our controlled SMC.

The most important issue we are concerned with is the noise in the marginal likeli-

hood estimation. Indeed, it is well known that the efficiency of SMCS-type routines for

parameter estimation depends heavily on how stable is the estimated likelihood from a

PF (see Heng et al., 2019). In Figure 4.3 we observe that the log-normalizing constant is

almost constant across time for increasing tempering levels, which is not true for standard

BPF. As we shall see below this will lead to a huge improvement in terms of likelihood’s

MC variance with respect to a BPF algorithm.



CHAPTER 4. FILTERING OF WISHART OPTION PRICING MODELS 95

0 50 100 150 200 250 300

0

2000

4000

6000

8000

10000

12000

14000

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

Iteration 7

Iteration 8

Iteration 9

Iteration 10

Figure 4.4: Element A(1, 1) of refined policy.
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Figure 4.5: Element b(1) of refined policy.
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Figure 4.6: Element f of refined policy.

Now, we check how the filter behaves in term of likelihood estimation. Hence, we

perform 50 independent runs and we compare the estimated marginal likelihood from a

standard BPF with respect to the controlled SMC, for different levels of measurement

noise, i.e. {5%, 10%, 15%}. From the box-plots we clearly see the great improvement

offered by our SMC algorithm.
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Figure 4.7: Log-marginal likelihood estimates obtained with 50 independent repetitions
of BPF and controlled SMC, when measurement standard deviation is equal to 5%.

BPF CSMC

220.5

221

221.5

222

222.5

Figure 4.8: Log-marginal likelihood estimates obtained with 50 independent repetitions
of BPF and controlled SMC, when measurement standard deviation is equal to 10%.



CHAPTER 4. FILTERING OF WISHART OPTION PRICING MODELS 98

BPF CSMC

53

53.2

53.4

53.6

53.8

54

54.2

Figure 4.9: Log-marginal likelihood estimates obtained with 50 independent repetitions
of BPF and controlled SMC, when measurement standard deviation is equal to 15%.

4.6 Concluding Remarks

In this chapter we propose an efficient SMC algorithm in order to perform marginal like-

lihood estimation in a Wishart-type stochastic volatility model. Our state-space model

considers, as measurement equation, portfolios of weighted options as in Orlowski (2019).

Numerical results show very good performances of the proposed controlled SMC algo-

rithm. In particular, with respect to standard filtering techniques, we observe better

results in terms of ESS and MC noise in marginal likelihood estimation. The latter

property is fundamental in order to perform reliable parameters estimation in a pseudo-

marginal context.
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Appendix Chapter 3

A A Hybrid Particle Filter

Our estimation strategy is based on Bayesian inference. Hence, if we denote the set of

model parameters as Θ and all observations and latent states as y1:T = {lnSt, lnF (t, T )O}Tt=1

and x1:T = {Vt, δt, λt}Tt=1 respectively, we can define the joint posterior distribution as

p(Θ, x1:T | y1:T ) = p(x1:T | Θ, y1:T )p(Θ | y1:T ) (A.1)

The state-space model we are concerned with is clearly non-linear and non Gaussian,

thus standard Kalman filtering techniques cannot be applied. Therefore, we rely on the

application of particle filtering methods, which are simulation based methods able to take

into account the complexity of our model. The general idea is to approximate continuous

time distributions with discrete points, called particles.

Given a set of particles {x(i)
t−1}Mi=1 representing the filtering distribution p(Xt−1 | y1:t−1)

at time t− 1, we can decompose the filtering distribution at time t as follows:

p(xt | y1:t) ∝
∫
p(yt | xt)p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1. (A.2)

Now, by importance sampling we can sample from a proposal density q(xt | xt−1) and

then attach importance weights wt to account for the difference between the target and

the proposal:

99
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w
(i)
t =

p(yt | x(i)
t )p(x

(i)
t | x

(i)
t−1)

q(x
(i)
t | x

(i)
t−1)

, (A.3)

and denote with W
(i)
t = w

(i)
t /
∑M

j=1w
(j)
t the normalized weights. This algorithm is known

as sequential importance sampling and suffers from the so called particle degeneracy. To

solve this problem we resample the particles proportional to W
(i)
t , obtaining an equally

weighted sample that can be used to approximate the filtering distribution:

p̂(xt | y1:t) =
1

M

M∑
i=1

δ
x
(i)
t

(x̃
(i)
t ), (A.4)

where, x̃
(i)
t are the resampled particles. This is known in the literature as sequential

importance resampling (SIR). As a byproduct, the particle filter algorithm delivers an

unbiased estimate of the marginal likelihood:

p̂(y1:t | Θ) =
T∏
l=2

p̂(yl | y1:l−1,Θ)p̂(y1 | Θ), (A.5)

where,

p̂(yl | y1:l−1,Θ) =
1

M

M∑
i=1

w
(i)
l . (A.6)

The most common particle filter is the bootstrap filter presented in Gordon et al.

(1993), where the proposal density is simply the state transition law, i.e. q(xt | xt−1) =

p(xt | xt−1), which does not take into account the new observation yt, leading to poor

performances if the observation is highly informative (e.g. in the case of a jump). In our

setting we are not able to derive the optimal proposal, but we can design a hybrid smooth

SIR, which is a relatively efficient particle filter with respect to outliers. In particular, to

robustify the filter against outliers, we propose jump times ∆Nt from a Bernoulli with

probability 0.5. Furthermore (as in Fulop and Li, 2019) instead of resampling, we fit

a multivariate normal distribution on the smoothing distribution and sample from this

normal using the inverse CDF method. The detailed algorithm is outlined below.

At time t we have from time t− 1 a weighted sample of M particles representing the

filtering distribution: x
(i)
t−1 = {V (i)

t−1, λ
(i)
t−1, δ

(i)
t−1}Mi=1.

Hence, for each particle, the PF works as follows:
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• Step 1 (Sample ∆N
(i)
t from proposal): ∆N

(i)
t ∼ Ber(0.5). Then, sample return

jumps J
(i)
x ∼ N (µJ , σ

2
J), variance jumps J

(i)
v ∼ Exp(µv) and the latent states from

their transitions:

λ
(i)
t = λ

(i)
t−1 + β(λ∞ − λ(i)

t−1)∆t+ α∆N
(i)
t

V
(i)
t = V

(i)
t−1 + k(V̄ − V (i)

t−1)∆t+ σv

√
∆tV

(i)
t−1

(
ρvZ

(i)
t +

√
1− ρ2

vW
(i)
v,t

)
+ J (i)

v ∆N
(i)
t

δ
(i)
t = δ

(i)
t−1 + γ(δ̄ − δ(i)

t−1)∆t+ σδ
√

∆tW
(i)
δ,t

where, W
(i)
v,t and W

(i)
δ,t are independent normals and

Z
(i)
t =

lnSt − lnSt−1 − µx∆t− J (i)
x ∆N

(i)
t

V
(i)
t−1∆t

,

with, µx = µ− 1
2
Vt−1 − λt−1E

[
eJx − 1

]
− δt−1.

• Step 2 (Reweight): Compute log-weights according to

log p(lnSt | lnSt−1, x
(i)
t−1,∆Nt) + log p(lnFt,T | lnSt, δ(i)

t−1) + log πt → logw
(i)
t

where,

if ∆N
(i)
t = 0 ⇒ log πt = −λ(i)

t ∆t− log(0.5)

if ∆N
(i)
t = 1 ⇒ log πt = − log(1− exp(λ

(i)
t ∆t))− log(0.5)

• Step 3 (Smooth approximation): Generate from xt−1|t = {Vt−1|t, δt−1|t, λt−1|t}

fitting a multivariate normal. As suggested by Fulop and Li (2019) we add a

moment-matching step.

B Optimal Hedging Solution

In this appendix we provide detailed calculations of the optimal hedge ratio. Let us start

from the portfolio variance:

1

dt
Vart[dΠt] =

1

dt

(
Vart[dXt] + h2Vart[dYt]− 2hCovt[dXt, dYt]

)
.
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consider the first term:

1

dt
Vart[dXt] =

1

dt
Vart

[(
r − 1

2
Vt − µ?λt − δt

)
dt+

√
VtdWx,t + dJx,t

]
,

=Vt +
1

dt
Vart [JxdNt] ,

where, µ? = E[eJx − 1] and

Vart [JxdNt] =E[J2
xdN

2
t ]− (E[JxdNt])

2 = E[J2
x ]E[dNt]− (E[Jx]E[dNt])

2 ,

= (µ2
J + σ2

J)λtdt− µJλ2
tdt

2 = (µ2
J + σ2

J)λtdt.

Therefore we have
1

dt
Vart[dXt] = Vt + (µ2

J + σ2
J)λt.

The next object is the instantaneous variance of log-futures:

1

dt
Vart[dYt] =

1

dt
Vart

[√
VtdWx,t + C(τ)σδdWδ,t + JxdNt

]
,

= Vt + C2(τ)σ2
δ + (µ2

J + σ2
J)λt.

The covariance between X and Y is given by

1

dt
Covt[dXt, dYt] =

1

dt
Covt

[√
VtdWx,t + JxdNt,

√
VtdWx,t + C(τ)σδdWδ,t + JxdNt

]
,

= Vt + (µ2
J + σ2

J)λt.

Then we obtained the conditional variance of the portfolio:

1

dt
Vart[dΠt] = Vt + (µ2

J + σ2
J)λt + h2

[
Vt + C2(τ)σ2

δ + (µ2
J + σ2

J)λt

]
− 2h

[
Vt + (µ2

J + σ2
J)λt

]
.

Now we consider the (non-standardized) third moment:

1

dt
Et
[
(dΠ− E(dΠ))3] =

1

dt
Et
[
dΠ3 − (E(dΠ))3 − 3dΠ2E(dΠ) + 3dΠ(E(dΠ))2

]
.
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The first element can be computed as follows

1

dt
Et
[
dΠ3

]
=

1

dt
Et
[
dX3 − h3dY 3 − 3hdX2dY + 3h2dXdY 2

]
,

= (µ3
J + 3µJσ

2
J)λt − h3(µ3

J + 3µJσ
2
J)λt − 3h(µ3

J + 3µJσ
2
J)λt + 3h2(µ3

J + 3µJσ
2
J)λt.

Now define,

µX = r − 1

2
Vt − µ?λt − δt,

µY = r − 1

2
Vt − λtµ? − δt − A′(τ)− C ′(τ)δt + C(τ)γ(δ̄ − δt).

Then we compute,

Et [dΠ] = Et [dX]− hEt [dY ] ,

= µXdt+ µJλtdt− h (µY dt+ µJλtdt) .

given this we have that (Et [dΠ])3 = (Et [dΠ])2 = Et [dΠ2Et [dΠ]] = 0. Therefore,

1

dt
Et
[
(dΠ− E(dΠ))3] =

1

dt
Et
[
dΠ3

]
,

= (µ3
J + 3µJσ

2
J)λt − h3(µ3

J + 3µJσ
2
J)λt − 3h(µ3

J + 3µJσ
2
J)λt + 3h2(µ3

J + 3µJσ
2
J)λt.

Now, we take the derivative of the objective function with respect tot h,

Vart(Πt)− ηAsyt(Πt) = Vt + (µ2
J + σ2

J)λt + h2
[
Vt + C2(τ)σ2

δ + (µ2
J + σ2

J)λt
]
− 2h

[
Vt + (µ2

J + σ2
J)λt

]
− η

[
(µ3

J + 3µJσ
2
J)λt − h3(µ3

J + 3µJσ
2
J)λt − 3h(µ3

J + 3µJσ
2
J)λt + 3h2(µ3

J + 3µJσ
2
J)λt

]
.

If we set this quantity equal to zero and solve for h we get (3.29).



Appendix B

Appendix Chapter 4

A Options Portfolios

In this Appendix we briefly recall the idea of options portfolios as in Bakshi and Madan

(2000), Feunou and Okou (2018) and Orlowski (2019).

The starting point is the concept of risk-neutral moments replication using suitable

portfolios of options. Consider any twice-continuously differentiable payoff, which can be

spanned (Bakshi and Madan, 2000) as follows

G(S) = G(S̄)+(S−S̄)GS(S̄)+

∫ ∞
S̄

GSS(X)(S−X)+dX+

∫ S̄

0

GSS(X)(X−S)+dX, (B.1)

where, X is the strike price and GS(·) and GSS(·) denote the first and second derivatives

with respect to S. Equation (B.1) represents a position in the slope and the curvature

of the payoff function. Then, in order to price a contingent claim we take expectation of

(B.1)

EQ
t [e−rτG(S)] = e−rτ (G(S̄)− S̄G(S̄)) + G(S̄)St +

∫ ∞
S̄

GSS(X)C(t, τ ;X)dX

+

∫ S̄

0

GSS(X)P (t, τ ;X)dX,

(B.2)

where, τ = T−t. If we denote log-returns on S = ey between t and t+τ by rt,τ = yt+τ−yt,

we can construct risk-neutral moments with a payoff function G(S) = rnt,τ describing

104
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power contracts1. Hence, cumulants are linked to the expected payoff of power contracts

by χn = EQ
t [rnt,τ ], such that under Q


CUM2

t,τ = χ2 − χ2
1,

CUM3
t,τ = χ3 − 3χ2χ1 + 2χ3

1,

CUM4
t,τ = χ4 − 4χ3χ1 − 3χ2

2 + 12χ2χ
2
1 − 6χ4

1.

(B.3)

Thus, it is possible to construct risk-neutral moments from the data using weighted port-

folios of OTM options given by Equation (B.2). On the other hand, it is possible to derive

model-implied cumulants by taking the n−th derivative of the CGF of log-returns, which

is available in closed-form for affine models.

Indeed, if we denote by Ft the factors on which the distribution of y depends, the condi-

tional characteristic function of log-returns in the affine setting is given as follows

ψ(γ; yt, Ft, T ) = exp (γyt + A(γ, τ) +B(γ, τ)Ft) , (B.4)

where, A(·) and B(·) are solutions to a system of ODEs. Then, in order to retrieve

risk-neutral cumulants we can consider the following result

CUMn
t,τ =

∂n lnψ(γ;T )

(∂γ)n

∣∣∣
γ=0

=
∂nA(γ, τ)

(∂γ)n

∣∣∣
γ=0

+
∂nB(γ, τ)

(∂γ)n

∣∣∣
γ=0

Ft. (B.5)

Given Equation (B.5), Feunou and Okou (2018) apply an approximated Kalman Filter-

ing technique in order to estimate the model proposed by Andersen et al. (2015) using

risk-neutral cumulants.

A slightly different approach is considered by Orlowski (2019), who propose to sum-

marize information from options prices by calculating the CGF slope (so only the first

derivative is needed) at γ = {0, 0.5, 1}. These specific points replicate the variance swap

contract (γ = 0), the Hellinger swap contract (γ = 0.5) and the Gamma swap contract

(γ = 1). In particular, we are going to consider the approach proposed by Orlowski

(2019). Indeed, in some cases (e.g. the Wishart model), we are not able to derive ana-

1According to Feunou and Okou (2018) risk-neutral variance, skewness, and kurtosis summarize most
of the information embedded in option prices. Then, the most interesting cases are given by n = 2, 3, 4.
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lytically the derivatives of the CGF, then a numerical differentiation must be performed.

This step could be problematic for higher order derivatives as considered by Feunou and

Okou (2018), while it is very efficient in the framework proposed by Orlowski (2019).

A.1 Simulation

Now, we check that we get correct results by comparing the closed-form solutions with

MC simulations. To this end we need first to simulate a Wishart process and second

to simulate log-returns in order to compute the MGF slope. For the first task we have

already seen in Section 4.3 how to discretize the Wishart model. For the price process

we proceed as in Kang et al. (2017).

If we define Yt = lnSt and integrate the related SDE we get a useful form of the log-price

discretization

Yti = Yti−1
+ r(ti − ti−1)− 1

2

∫ ti

ti−1

Tr(Vs)ds+ Tr

[∫ ti

ti−1

√
VsdBsR +

∫ ti

ti−1

√
VsdWs

√
In −RRT

]

Indeed, we can use the following first order approximation:

Yti = Yti−1
+

(
r − 1

2
Tr
[
Vti−1

])
∆t+ Tr

[√
Vti−1

(
∆BtiR + ∆Zti

√
In −RRT

)]
.

Now, we are interested in the comparison with the first derivative of the Cumulative

Generating Function (CGF) of log-returns with respect to γ evaluated in {0, 1/2, 1}.

Indeed, if we denote by Kt the CGF, in general affine models it is possible to express the

slope of Kt as follows

K ′t(γ, τ) = A′(γ, τ) +B′(γ, τ)Ft, (B.6)

where, the coefficients A′ and B′ are given as solution to the usual ODEs system arising

in affine models and Ft is a latent factor.

In particular, it is possible to provide a finite difference approximation for the coefficients

A′(γ, τ) and B′(γ, τ) as follows:

A′(γ, τ) ≈ A(γ + ∆γ, τ)− A(γ, τ)

∆γ
, (B.7)

B′(γ, τ) ≈ B(γ + ∆γ, τ)−B(γ, τ)

∆γ
, (B.8)
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where, A(·, τ), B(·, τ) are obtained from the solutions (4.6) and (4.8). Then, for the

Wishart model we have

K ′t(γ, τ) ≈ B′(γ, τ) + Tr[A′(γ, τ)Vt]. (B.9)

To check the correctness of this formula we implement a Monte Carlo evaluation of

the CGF slope. The Monte Carlo counterpart of (B.6) is given by Orlowski (2019). If we

denote the CGF by

Kt(γ, τ) = lnE
[(

Yt+τ
Yt

)γ]
,

we can write the CGF slope as follows

K ′t(γ, τ) =
E
[(

Yt+τ
Yt

)γ
ln Yt+τ

Yt

]
eKt(γ,τ)

,

the latter can be evaluated by simulations and compared to (B.9).

For the numerical experiment we take the parameters from Gruber et al. (2020) as in

Table 4.1. Further, we set the time step ∆t = 1/1000 and the number of simulations

Ns = 105. In Figure B.1 we show the results for τ = 1M and for γ ∈ [0, 1].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

MC Euler

Lower ci

Upper ci

Numerical Derivative

Figure B.1: MC evaluation of CGF slope with τ = 1 months.
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B Twisted kernels

Here we provide detailed calculations of the twisted kernels. To lighten the notation we

omit the intermediate filling points. For example, we use Vt in place of V (tp,l).

Initial twisted kernel

At time t = 0 the initial state is described by (4.17)

ν(dV̂0) = N (µ̂0,Σ0)dV̂0,

and the twisting function is given by (4.20)

ψ0(V̂0) =
{
−V̂ T

0 A0V̂0 − V̂ T
0 b0 − f0

}
.

Then, we want to compute νψ(dV̂0) = ν(dV̂0)ψ0(V̂0)
ν(ψ0)

, which requires the knowledge of

ν(ψ0). Therefore, we have that

ν(ψ0) =

∫
ψ0(V̂0)ν(dV̂0)

=

∫
1

2πnv/2 det(Σ0)1/2
exp

{
−V̂ T

0 A0V̂0 − V̂ T
0 b0 − f0 −

1

2
(V̂0 − µ̂0)TΣ−1

0 (V̂0 − µ̂0)

}
︸ ︷︷ ︸

A

dV̂0

Now, we focus on the term inside the exponent,

A = −V̂ T
0 A0V̂0 − V̂ T

0 b0 − f0 −
1

2

(
V̂0 − µ̂0

)T
Σ−1

0

(
V̂0 − µ̂0

)
= −V̂ T

0 A0V̂0 − V̂ T
0 b0 − f0 −

1

2
V̂ T

0 Σ−1
0 V̂0 +

1

2
V̂ T

0 Σ−1
0 µ̂0 +

1

2
µ̂T0 Σ−1

0 V̂0 −
1

2
µ̂T0 Σ−1

0 µ̂0

= −1

2
V̂ T

0 (Σ−1
0 + 2A0)V̂0 − V̂ T

0 b0 − f0 +
1

2
V̂ T

0 Σ−1
0 µ̂0 +

1

2
µ̂T0 Σ−1

0 V̂0 −
1

2
µ̂T0 Σ−1

0 µ̂0

we can define K0 := (Σ−1
0 +2A0)−1 and move back to the integral in order to bring outside

the terms which do not depend on V̂0,

ν(ψ0) = det(Σ0)−
1
2 exp

{
−1

2
µ̂T0 Σ−1

0 µ̂0 − f0

}
×
∫

(2π)−
nv
2 exp

{
−1

2

(
V̂ T

0 K
−1
0 V̂0 + 2V̂ T

0 b0 − V̂ T
0 Σ−1

0 µ̂0 − µ̂T0 Σ−1
0 V̂0

)}
dV̂0



APPENDIX B. CHAPTER 4 109

We can simplify this expression by completing the quadratic form inside the integral at

the exponent, which we call E. To facilitate the calculations we define Ω = K−1
0 and

Γ = Σ−1
0 . Thus,

E = V̂ T
0 ΩV̂0 + V̂ T

0 b0 + V̂ T
0 b0 − V̂ T

0 Γµ̂0 − µ̂T0 ΓV̂0

= V̂ T
0 ΩV̂0 + bT0 V̂0 + V̂ T

0 b0 − V̂ T
0 Γµ̂0 − µ̂T0 ΓV̂0

= V̂ T
0 ΩV̂0 − (Γµ̂0 − b0)T V̂0 − V̂ T

0 (Γµ̂0 − b0),

we obtain the last equality by putting together V̂ T
0 b0 and V̂ T

0 Γµ̂0, which gives V̂ T
0 (Γµ̂0−b0),

and bT0 V̂0 and µ̂T0 ΓV̂0, which gives (µ̂T0 Γ− bT0 )V̂0. Since ΓT = Γ, the latter is equivalent to

(V̂ T
0 (Γµ̂0 − b0))T .

Now, we define B = (Γµ̂0−b0) and to complete the square add and subtract BTΩ−1B.

Moreover, we multiply by Ω−1Ω = I all terms except the first one. Then,

E = V̂ T
0 ΩV̂0 −BT V̂0 − V̂ T

0 B+BTΩ−1B−BTΩ−1B

= V̂ T
0 ΩV̂0 −BTΩ−1ΩV̂0 −BTΩ−1ΩV̂0 +BTΩ−1ΩΩ−1B −BTΩ−1ΩΩ−1B,

define ω = Ω−1B, then

E =

square︷ ︸︸ ︷
V̂ T

0 ΩV̂0 − ωTΩV̂0 − ωTΩV̂0+ωTΩω−ωTΩω

= (V̂0 − ω)TΩ(V̂0 − ω)− ωTΩω

= (V̂0 − Ω−1B)TΩ(V̂0 − Ω−1B)−BTΩ−1ΩΩ−1B

= (V̂0 −K0(Σ−1
0 µ̂0 − b0))TK−1

0 (V̂0 −K0(Σ−1
0 µ̂0 − b0))− (Σ−1

0 µ̂0 − b0)TK0(Σ−1
0 µ̂0 − b0).
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Moving back to the integral we now have,

ν(ψ0) = det(Σ0)−
1
2 exp

{
−1

2
µ̂T0 Σ−1

0 µ̂0 − f0

}
×
∫

(2π)−
nv
2 exp

{
−1

2
(V̂0 −K0(Σ−1

0 µ̂0 − b0))TK−1
0 (V̂0 −K0(Σ−1

0 µ̂0 − b0))

}
× exp

{
1

2
(Σ−1

0 µ̂0 − b0)TK0(Σ−1
0 µ̂0 − b0)

}
dV̂0

= det(Σ0)−
1
2 det(K0)

1
2 exp

{
−1

2
µ̂T0 Σ−1

0 µ̂0 − f0

}
exp

{
1

2
(Σ−1

0 µ̂0 − b0)TK0(Σ−1
0 µ̂0 − b0)

}
×
∫

(2π)−
nv
2 det(K0)−

1
2 exp

{
−1

2
(V̂0 −K0(Σ−1

0 µ̂0 − b0))TK−1
0 (V̂0 −K0(Σ−1

0 µ̂0 − b0))

}
dV̂0︸ ︷︷ ︸

=1

Therefore, we obtained (4.21),

ν(ψ0) = det(Σ0)−
1
2 det(K0)

1
2 exp

{
1

2

(
Σ−1

0 µ̂0 − b0

)T
K0

(
Σ−1

0 µ̂0 − b0

)}
exp

{
−1

2
µ̂T0 Σ−1

0 − f0

}

Now, we are ready to derive the twisted initial distribution

νψ(dV̂0) =
ν(dV̂0)ψ0(V̂0)

ν(ψ0)

=
(2π)−

nv
2 det(Σ0)−

1
2 exp

{
−1

2
(V̂0 − µ̂0)TΣ−1

0 (V̂0 − µ̂0)
}

exp
{
−V̂ T

0 A0V̂0 − V̂ T
0 b0 − f0

}
det(Σ0)−

1
2 det(K0)

1
2 exp

{
1
2

(
Σ−1

0 µ̂0 − b0

)T
K0

(
Σ−1

0 µ̂0 − b0

)}
exp

{
−1

2
µ̂T0 Σ−1

0 − f0

}
= (2π)−

nv
2 det(K0)−

1
2 exp

{
− 1

2
V̂ T

0 Σ−1
0 V̂0 +

1

2
V̂ T

0 Σ−1
0 µ̂0 +

1

2
µ̂T0 Σ−1

0 V̂0 −
1

2
µ̂T0 Σ−1

0 µ̂0

− V̂ T
0 A0V̂0 − V̂ T

0 b0 − f0 +
1

2
µ̂0Σ−1

0 µ̂0 + f0 −
1

2

(
Σ−1

0 µ̂0 − b0

)T
K0

(
Σ−1

0 µ̂0 − b0

)}
We focus on the term inside the exponent, which we denote by E,

E = −1

2
V̂ T

0 (Σ−1
0 + 2A0)V̂0 − V̂ T

0 b0 +
1

2
V̂ T

0 Σ−1
0 µ̂0 +

1

2
µ̂0Σ−1

0 V̂0 −
1

2

(
Σ−1

0 µ̂0 − b0

)T
K0

(
Σ−1

0 µ̂0 − b0

)
= −1

2

[
V̂ T

0 K
−1
0 V̂0 + 2V̂ T

0 b0 − V̂ T
0 Σ−1

0 µ̂0 − V̂ T
0 Σ−1

0 µ̂0 +
(
Σ−1

0 µ̂0 − b0

)T
K0

(
Σ−1

0 µ̂0 − b0

)]
,

where, K0 := (Σ−1
0 + 2A0)−1. Now, we proceed in a similar way as before. Indeed, we
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can write

E = −1

2

[
V̂ T

0 K
−1
0 V̂0 + V̂ T

0 b0 + bT0 V̂0 − V̂ T
0 Σ−1

0 µ̂0 − µ̂T0 Σ−1
0 V̂0 +

(
Σ−1

0 µ̂0 − b0

)T
K0

(
Σ−1

0 µ̂0 − b0

)]
= −1

2

[
V̂ T

0 K
−1
0 V̂0 − (Σ−1

0 µ̂− b0)T V̂0 − V̂ T
0 (Σ−1

0 µ̂− b0) +
(
Σ−1

0 µ̂0 − b0

)T
K0

(
Σ−1

0 µ̂0 − b0

)]
.

At this point it is useful to define Ω = K−1
0 and B = (Σ−1

0 µ̂− b0). Thus,

E = −1

2

[
V̂ T

0 ΩV̂0 −BT V̂0 − V̂ T
0 B +BTΩ−1B

]
= −1

2

[
V̂ T

0 ΩV̂0 −BTΩ−1ΩV̂0 − V̂ T
0 Ω−1ΩB +BTΩ−1ΩΩ−1B

]
,

if we define ω = Ω−1B it is easy to recognize the square term

E = −1

2

[
V̂ T

0 ΩV̂0 − ωTΩV̂0 − ωTΩV̂0 + ωTΩω
]

= −1

2

[
(V̂0 − ω)TΩ(V̂0 − ω)

]
= −1

2

[
(V̂0 − Ω−1B)TΩ(V̂0 − Ω−1B)

]
= −1

2

[
(V̂0 −K0(Σ−1

0 µ̂− b0))TK−1
0 (V̂0 −K0(Σ−1

0 µ̂− b0))
]
.

Therefore, we derived Equation (4.22)

νψ(dV̂0) = (2π)−
nv
2 det(K0)−

1
2 exp

{
−1

2
(V̂0 −K0(Σ−1

0 µ̂− b0))TK−1
0 (V̂0 −K0(Σ−1

0 µ̂− b0))

}
= N

(
V̂0; K0(Σ−1

0 µ̂− b0), K0

)
dV̂0.
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B.1 Twisted Markov transition kernels

For t > 0 we consider twisting functions (4.19) and Markov kernel (4.14) and begin with

the following expectation

f(ψt)(V̂t−1) =

∫
ψt(V̂t, V̂t−1)ft(Vt−1, dV̂t)

=

∫
(2π)−

nv
2 det(Σt)

− 1
2 exp

{
−V̂ T

t AtV̂t − V̂ T
t bt − V̂ T

t ct(V̂t−1)− dt(V̂t−1)
}

× exp

{
−1

2
(V̂t − µ̂t)TΣ−1

t (V̂t − µ̂t)
}
dV̂t

=

∫
(2π)−

nv
2 det(Σt)

− 1
2 exp

{
− V̂ T

t AtV̂t − V̂ T
t bt − V̂ T

t ct(V̂t−1)− dt(V̂t−1)

− 1

2
(V̂t − µ̂t)TΣ−1

t (V̂t − µ̂t)

}
dV̂t.

For ease of notation we suppress the dependence of ct and dt on V̂t−1 and denote by

A the term inside the exponent. Then,

A = −1

2
V̂ T
t (Σ−1

t + 2At)V̂t − V̂ T
t bt − V̂ T

t ct − dt +
1

2
V̂ T
t Σ−1

t V̂t +
1

2
µ̂Tt Σ−1

t V̂t −
1

2
µ̂Tt Σ−1

t µ̂t

= −1

2

(
V̂ T
t K

−1
t V̂t + 2V̂ t

t (bt + ct)− V̂ T
t Σ−1

t µ̂t − µ̂Tt Σ−1
t V̂t

)
︸ ︷︷ ︸

E

−dt −
1

2
µ̂Tt Σ−1

t µ̂t,

where, Kt := (Σ−1
t + 2At)

−1. Now, let us work on the term denoted by E,

E = V̂ T
t K

−1
t V̂t + V̂ t

t (bt + ct) + (bt + ct)
T V̂t − V̂ T

t Σ−1
t µ̂t − µ̂Tt Σ−1

t V̂t

= V̂ T
t K

−1
t V̂t − V̂ T

t

(
Σ−1
t µ̂t − (bt + ct)

)
−
(
Σ−1
t µ̂t − (bt + ct)

)T
V̂t,

at this stage it is useful to define Ω = K−1
t and B =

(
Σ−1
t µ̂t − (bt + ct)

)
. Then, in order

to complete the square we add and subtract BTΩ−1B and multiply each element, except

the first, by Ω−1Ω or ΩΩ−1,

E = V̂ T
t ΩV̂t − V̂ T

t B −BT V̂t +BTΩ−1B −BTΩ−1B

= V̂ T
t ΩV̂t −BTΩ−1ΩV̂t −BTΩ−1ΩV̂t +BTΩ−1ΩΩ−1B −BTΩ−1ΩΩ−1B
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if we call ω = Ω−1B we easily recognize the square

E = V̂ T
t ΩV̂t − ωTΩV̂t − ωTΩV̂t + ωTΩω − ωTΩω

= (V̂t − ω)TΩ(V̂t − ω)− ωTΩω

= (V̂t − Ω−1B)TΩ(V̂t − Ω−1B)−BTΩ−1ΩΩ−1B

=
(
V̂t −Kt

(
Σ−1
t µ̂t − (bt + ct)

))T
K−1
t

(
V̂t −Kt

(
Σ−1
t µ̂t − (bt + ct)

))
−
(
Σ−1
t µ̂t − (bt + ct)

)T
Kt

(
Σ−1
t µ̂t − (bt + ct)

)
.

Now, we move back to the integral,

f(ψt)(V̂t−1) = det(Σt)
− 1

2 det(Kt)
1
2 exp

{
−dt −

1

2
µ̂Tt Σ−1

t µ̂t

}
× exp

{
1

2

[
Σ−1
t µ̂t − (bt + ct)

]T
Kt

[
Σ−1
t µ̂t − (bt + ct)

]}∫
(2π)−

nv
2 det(Kt)

− 1
2

× exp

{
−1

2

[
V̂t −Kt

(
Σ−1
t µ̂t − (bt + ct)

)]T
K−1
t

[
V̂t −Kt

(
Σ−1
t µ̂t − (bt + ct)

)]}
dV̂t

= det(Σt)
− 1

2 det(Kt)
1
2 exp

{
−dt −

1

2
µ̂Tt Σ−1

t µ̂t

}
× exp

{
1

2

[
Σ−1
t µ̂t − (bt + ct)

]T
Kt

[
Σ−1
t µ̂t − (bt + ct)

]}
,

which is expression (4.23). Now, we are ready to derive the twisted Markov transition

kernel

fψt (V̂t−1, dV̂t) =
f(V̂t−1, dV̂t)ψt(V̂t)

f(ψt)(V̂t−1)

=
(2π)−

nv
2 det(Σt)

− 1
2 exp

{
−1

2
(V̂t − µ̂t)TΣ−1

t (V̂t − µ̂t)− V̂ T
t AtV̂t − V̂ T

t bt − V̂ T
t ct(V̂t−1)− dt(V̂t−1)

}
det(Σt)

− 1
2 det(Kt)

1
2 exp

{
−dt − 1

2
µ̂Tt Σ−1

t µ̂t + 1
2

[
Σ−1
t µ̂t − (bt + ct)

]T
Kt

[
Σ−1
t µ̂t − (bt + ct)

]}
= (2π)−

nv
2 det(Kt)

− 1
2 exp

{
− 1

2
(V̂t − µ̂t)TΣ−1

t (V̂t − µ̂t)− V̂ T
t AtV̂t − V̂ T

t bt

− V̂ T
t ct(V̂t−1)− dt(V̂t−1) + dt +

1

2
µ̂Tt Σ−1

t µ̂t −
1

2

[
Σ−1
t µ̂t − (bt + ct)

]T
Kt

[
Σ−1
t µ̂t − (bt + ct)

] }
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We define with E the term inside the exponent,

E =
1

2
V̂ T
t (Σ−1

t + 2At)V̂t − V̂ T
t (bt + ct) +

1

2
V̂ T
t Σ−1

t µ̂t +
1

2
µ̂Tt Σ−1

t V̂t

− 1

2

[
Σ−1
t µ̂t − (bt + ct)

]T
Kt

[
Σ−1
t µ̂t − (bt + ct)

]
= −1

2

{
V̂ T
t K

−1
t V̂t + 2V̂ T

t (bt + ct)− V̂ T
t Σ−1

t µ̂t − µ̂Tt Σ−1
t V̂t

+
[
Σ−1
t µ̂t − (bt + ct)

]T
Kt

[
Σ−1
t µ̂t − (bt + ct)

] }
= −1

2

{
V̂ T
t K

−1
t V̂t − V̂ T

t (Σ−1
t µ̂t − (bt + ct))− (Σ−1

t µ̂t − (bt + ct))
T V̂t

+
[
Σ−1
t µ̂t − (bt + ct)

]T
Kt

[
Σ−1
t µ̂t − (bt + ct)

] }
Now, define Ω = K−1

t := (Σt + 2At), B = (Σ−1
t µ̂t − (bt + ct)) and ω = Ω−1B. Then,

E = −1

2

[
V̂ T
t ΩV̂t − V̂ T

t B −BT V̂t +BTΩ−1B
]

= −1

2

[
V̂ T
t ΩV̂t −BTΩ−1ΩV̂t −BTΩ−1ΩV̂t +BTΩ−1ΩΩ−1B

]
= −1

2

[
V̂ T
t ΩV̂t − ωTΩV̂t − ωTΩV̂t + ωTΩω

]
= −1

2

[
(V̂t − ω)TΩ(V̂t − ω)

]
= −1

2

[
(V̂t − Ω−1B)TΩ(V̂t − Ω−1B)

]
= −1

2

[
(V̂t −Kt(Σ

−1
t µ̂t − (bt + ct)))

TK−1
t (V̂t −Kt(Σ

−1
t µ̂t − (bt + ct)))

]
Thus, we get the desired kernel (4.24),

fψt (V̂t−1, dV̂t) =(2π)−
nv
2 det(Kt)

− 1
2 exp

{
− 1

2

[
(V̂t −Kt(Σ

−1
t µ̂t − (bt + ct)))

TK−1
t

(V̂t −Kt(Σ
−1
t µ̂t − (bt + ct)))

]}
=N

(
V̂t; Kt(Σ

−1
t µ̂t − (bt + ct)), Kt

)
dV̂t.
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