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Abstract
Location-scale Dirichlet process mixtures of Gaussians (DPM-G) have proved
extremely useful in dealing with density estimation and clustering problems in a wide
range of domains. Motivated by an astronomical application, in this work we address
the robustness ofDPM-Gmodels to affine transformations of the data, a natural require-
ment for any sensible statistical method for density estimation and clustering. First,
we devise a coherent prior specification of the model which makes posterior infer-
ence invariant with respect to affine transformations of the data. Second, we formalise
the notion of asymptotic robustness under data transformation and show that mild
assumptions on the true data generating process are sufficient to ensure that DPM-G
models feature such a property. Our investigation is supported by an extensive sim-
ulation study and illustrated by the analysis of an astronomical dataset consisting of
physical measurements of stars in the field of the globular cluster NGC 2419.

Keywords Affine data transformations · Asymptotic robustness · Dirichlet process
mixture models · Clustering · Multivariate density estimation

1 Introduction

A natural requirement for statistical methods for density estimation and clustering is
for them to be robust under affine transformations of the data. Such a desideratum is
exacerbated in multivariate problems where data components are incommensurable,
that is not measured in the same physical unit, and for which, thus, the definition
of a metric on the sample space requires the specification of constants relating units
along different axes. As an illustrative example, consider astronomical data consisting
of position and velocity of stars, thus living in the so-called phase-space: a metric
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on such a space can be defined by setting a dimensional constant to relate positions
and velocities. In this setting, any sensible statistical procedure should be robust with
respect to the specification of such a constant (Ascasibar and Binney 2005; Maciejew-
ski et al. 2009). This is specially important considering that often scarce to no a priori
guidance about dimensional constants might be available, thus making the model cal-
ibration a daunting task. The motivating example of this work comes indeed from
astronomy, the dataset we consider consisting of measurements on a set of 139 stars,
possibly belonging to a globular cluster called NGC 2419 (Ibata et al. 2011). Glob-
ular clusters are sets of stars orbiting some galactic center. The NGC 2419, showed
in Fig. 1, is one of the furthest known globular clusters in the Milky Way. For each
star we observe a four-dimensional vector (Y1,Y2, V , [Fe/H]), where (Y1,Y2) is a
two-dimensional projection on the plane of the sky of the position of the star, V is its
line of sight velocity and [Fe/H] its metallicity, a measure of the abundance of iron
relative to hydrogen. Out of these four components, only Y1 and Y2 are measured in
the same physical unit, while dimensional constants need to be specified in order to
relate position, velocity and metallicity. A key question arising with these data con-
sists in identifying the stars that, among the 139 observed, can be rightfully considered
as belonging to NGC 2419: a correct classification would be pivotal in the study of
the globular cluster dynamics. Astronomers expect the large majority of the observed
stars to belong to the cluster: the remaining ones, called field stars or contaminants, are
Milky Way stars, unrelated to the cluster, that happen to appear projected in the same
region of the plane of the sky. In general the contaminants have different kinematic
and chemical properties with respect to the cluster members. Considering the nature
of the problem, this research question can be formalised as an unsupervised classifica-
tion problem, the goal being the identification of the stars which belong to the largest
cluster, which can be interpreted as the NGC 2419 globular cluster. Admittedly, the
terms of such a classification problem are not limited to the considered dataset but,
on the contrary, are ubiquitous in astronomy and, more in general, might arise in any
field where data components are incommensurable.

Bayesian nonparametric methods for density estimation and clustering have been
successfully applied in a wide range of fields, including genetics (Huelsenbeck and
Andolfatto 2007), bioinformatics (Medvedovic and Sivaganesan 2002), clinical trials
(Xu et al. 2017), econometrics (Otranto and Gallo 2002), to cite but a few. In this work
we focus on the Dirichlet process mixture (DPM) model introduced by Lo (1984),
arguably the most popular Bayesian nonparametric model. Although its properties
have been thoroughly studied (see, e.g., Hjort et al. 2010), little attention has been
dedicated to its robustness under data transformations (see Arbel and Nipoti 2013).
To the best of our knowledge, only Bean et al. (2016) and Shi et al. (2019) study
the effect of data transformation under a DPM model. The goal of Bean et al. (2016)
is to transform the sample so to facilitate the estimation of univariate densities on a
new scale and thus to improve the performance of the methodology; Shi et al. (2019),
instead, study the consistency of DPMmodels under affine data transformation, when
investigating the properties of the so-called low information omnibus prior for DPM
models they introduce.

In this paper we investigate the effect of affine transformations of the data on
location-scale DPM of multivariate Gaussians (DPM-G) (Müller et al. 1996), which
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Fig. 1 An image of the remote Milky Way globular cluster NGC 2419 (about 300,000 light years away
from the solar system). Picture by Bob Franke, with permission (www.bf-astro.com)

will be introduced in Sect. 2. This is a very commonly used class of DPM models
whose asymptotic properties have been studied by Wu and Ghosal (2010) and Canale
and De Blasi (2017), among others. While rescaling the data, often for numerical
convenience, is a common practice, the robustness of multivariate DPM-G models
under such transformations remains essentially unaddressed to date. We fill this gap
by formally studying robustness properties for a flexible specification of DPM-G
models, under affine transformations of the data. Specifically, our contribution is two-
fold: first, we formalise the intuitive idea that a location-scale DPM-G model on a
given dataset induces a location-scale DPM-G model on rescaled data and we provide
the parameters mapping for the transformed DPM-G model; second, we introduce the
notion of asymptotic robustness under affine transformations of the data and show that,
under mild assumptions on the true data generating process, DPM-G models feature
such robustness property. As a by-product, we show that the original assumptions
of Wu and Ghosal (2010) and Canale and De Blasi (2017) for ensuring posterior
consistency of Dirichlet process mixtures can be simplified by removing a redundant
assumption regarding the finite entropy of the model. This result, proven in Lemma 1,
can be of independent interest.

Our theoretical results are supported by an extensive simulation study, focusing
on both density and clustering estimation. These findings make the DPM-G model
a suitable candidate to deal with problems where an informed choice of the relative
scale of different dimensions seems prohibitive. We thus fit a DPM-G model to the
NGC 2419 dataset and show that it provides interesting insight on the classification
problem motivating this work.

The rest of the paper is organised as follows. In Sect. 2 we describe the modelling
framework and introduce the notation used throughout the paper. Section 3 presents
the main results of the work, with two-fold focus on finite sample properties on the
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one hand, and large sample asymptotics on the other. A thorough simulation study
is presented in Sect. 4 while Sect. 5 is dedicated to the analysis of the NGC 2419
dataset. Conclusions are discussed in Sect. 6. Proofs of all results are postponed to
“Appendix A”.

2 Modelling framework

Let X(n) := (X1, . . . ,Xn) be a sample of size n of d-dimensional observations Xi :=
(Xi,1, . . . , Xi,d)

ᵀ defined on some probability space (Ω,A ,P) and taking values in
Rd . Consider an invertible affine transformation g : Rd −→ Rd , that is g(x) = Cx+b
where C is an invertible matrix of dimension d × d and b a d-dimensional column
vector. The nature of the transformation g is such that, if applied to a random vector
X with probability density function f , it gives rise to a new random vector g(X) with
probability density function fg = | det(C)|−1 f ◦ g−1.

Henceforth we denote byF the space of all density functions with support onRd .
The DPM model (Lo 1984) defines a random density taking values inF as

f̃ (x) =
∫

Θ

k(x; θ)d P̃(θ),

where k(x; θ) is a kernel on Rd parameterized by θ ∈ Θ , P̃ is a Dirichlet process
(DP) with parameters α (precision parameter) and P0 := E[P̃] (base measure), a
distribution defined on Θ (Ferguson 1973). The almost sure discreteness of P̃ allows
the random density f̃ to be rewritten as

f̃ (x) =
∞∑
i=1

wi k(x; θ i ),

where the randomatoms θ i are i.i.d. from P0, and the random jumpswi , independent of
the atoms, admit the following stick-breaking representation (Sethuraman1994): given

a set of random weights vi
iid∼ Beta(1, α) (independent of the atoms θ i ), then w1 = v1

and, for j ≥ 2, w j = v j
∏ j−1

i=1 (1 − vi ). While several kernels k(x; θ) have been
considered in the literature, including e.g. skew-normal (Canale and Scarpa 2016),
Weibull (Kottas 2006), Poisson (Krnjajić et al. 2008), here we focus on the convenient
and commonly adopted Gaussian specification of Escobar andWest (1995) andMüller
et al. (1996). In the latter case, k(x; θ) represents a d-dimensional Gaussian kernel
φd(x;μ,�), provided that θ = (μ,�), where the column vector μ and the matrix �

represent, respectively,mean vector and covariancematrix of theGaussian kernel. This
specification defines the model referred to as d-dimensional location-scale Dirichlet
processmixture of Gaussians (DPM-G), which can be represented in hierarchical form
as

Xi | θ i = (μi ,�i )
ind∼ φd(xi ;μi ,�i ),
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θ i | P̃ iid∼ P̃,

P̃ ∼ DP(α, P0). (1)

The almost sure discreteness of P̃ implies that the vector θ (n) := (θ1, . . . , θn)

might show tieswith positive probability, thus leading to a partition of θ (n) into Kn ≤ n
distinct values. This, in turn, leads to a partition of the set of observationsX(n), obtained
by grouping two observations Xi1 and Xi2 together if and only if θ i1 = θ i2 . This
observation implies that the posterior distribution of the random density f̃ carries
useful information on the clustering structure of the data, thus making DPM-Gmodels
convenient tools for density and clustering estimation problems.

Although other specifications for the base measure can be considered (see, e.g.,
Görür and Rasmussen 2010), we choose to work within the framework set forth by
Müller et al. (1996)where P0 is defined as the product of two independent distributions
for the location parameter μ and the scale parameter �, namely a multivariate normal
and an inverse-Wishart distribution, that is

P0(dμ, d�;π) = Nd(dμ;m0,B0) × IW (d�; ν0,S0). (2)

For the sake of compactness, we use the notation π := (m0,B0, ν0,S0) to denote the
vector of hyperparameters characterising the base measure P0. We denote by Π the
prior distribution induced on F by the DPM-G model (1) with base measure (2).

3 Theoretical results

3.1 DPM-Gmodel and affine transformations of the data

Let f̃π be a DPM-G model defined in (1), with base measure (2) and hyperparameters
π . The next result shows that, for any invertible affine transformation g(x) = Cx +
b, there exists a specification π g := (m(g)

0 ,B(g)
0 , ν

(g)
0 ,S(g)

0 ) of the hyperparameters
characterising the base measure in (2), such that the deterministic relation f̃πg =
| det(C)|−1 f̃π ◦ g−1 holds. That is, for every ω ∈ Ω and given a random vector X
distributed according to f̃π (ω), we have that f̃πg (ω) is the density of the transformed
random vector g(X).

Proposition 1 Let f̃π be a location-scale DPM-G model defined as in (1), with base
measure (2) and hyperparameters π = (m0,B0, ν0,S0). For any invertible affine
transformation g(x) = Cx + b, we have the deterministic relation

f̃πg = | det(C)|−1 f̃π ◦ g−1,

where π g := (Cm0 + b,CB0Cᵀ, ν0,CS0Cᵀ).

While Proposition 1 can be derived from general properties of the Dirichlet process
(see Lijoi and Prünster 2009), a direct proof is provided in “Appendix A.1”. This result
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implies that, for any invertible affine transformation g, modelling the set of observa-
tionsX(n) with a DPM-G model (1), with base measure (2) and hyperparameters π , is
equivalent with assuming the same model with transformed hyperparameters π g , for
the transformed observations g(X)(n) := (g(X1), . . . , g(Xn)). As a by-product, the
same posterior inference can be drawn conditionally on both the original and the trans-
formed set of observations, as the conditional distribution of the random density f̃πg ,

given g(X)(n), coincides with the conditional distribution of | det(C)|−1 f̃π ◦ g−1,
given X(n). Proposition 1 thus provides a formal justification for the procedure of
transforming data, e.g. via standardisation or normalisation, often adopted to achieve
numerical efficiency: as long as the prior specification of the hyperparameters of a
DPM-G model respects the condition of Proposition 1, transforming the data does not
affect posterior inference.

3.1.1 Empirical Bayes approach

The elicitation of an honest prior, thus independent of the data, for the hyperparame-
ters π of the base measure (2) of a DPMmodel is in general a difficult task. A popular
practice, therefore, consists in setting the hyperparameters equal to some empirical
estimates π̂(X(n)), by applying the so-called empirical Bayes approach (see, e.g.,
Lehmann and Casella 2006). Recent investigations (Petrone et al. 2014; Donnet et al.
2018) provide a theoretical justification of this hybrid procedure by shedding light on
its asymptotic properties. We show here that this procedure satisfies the assumptions
of Proposition 1 and, thus, guarantees that posterior Bayesian inference, under an
empirical Bayes approach, is not affected by affine transformations to the data.

A commonly used empirical Bayes approach for specifying the hyperparameters π

of a DPM-G model, defined as in (1) and (2), consists in setting

m0 = X, B0 = 1

γ1
S2X, S0 = ν0 − d − 1

γ2
S2X, (3)

where X = ∑n
i=1 Xi/n and S2X = ∑n

i=1(Xi − X)(Xi − X)ᵀ/(n − 1) are the sample
mean vector and the sample covariance matrix, respectively, and γ1, γ2 > 0, ν0 >

d+1. This specification for the hyperparametersπ has a straightforward interpretation.
Namely, the parameterm0, mean of the prior guess distribution ofμ, can be interpreted
as the overall mean value and, in absence of available prior information, set equal to
the observed sample mean. Similarly, the parameter B0, covariance matrix of the prior
guess distribution of μ, is set equal to a penalised version of the sample covariance
matrixS2X, where γ1 takes on the interpretation of the size of the ideal prior sample upon
which the prior guess on the distribution of μ is based. Similarly, the hyperparameter
S0 is set equal to a penalised version of the sample covariance matrix S2X, choice
that corresponds to the prior guess that the covariance matrix of each component
of the mixture coincides with a rescaled version of the sample covariance matrix.
Specifically, S0 = S2X(ν0−d−1)/γ2 follows by settingE[�] = S2X/γ2 and observing
that, by standard properties of the inverse-Wishart distribution,E[�] = S0/(ν0 −d −
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1). Finally the parameter ν0 takes on the interpretation of the size of an ideal prior
sample upon which the prior guess S0 is based. Next we focus on the setting of the
hyperparameters π g , given the transformed observations g(X)(n). The same empirical
Bayes procedure adopted in (3) leads to

m(g)
0 = g(X) = Cm0 + b, B(g)

0 = 1

γ1
S2g(X), S(g)

0 = ν0 − d − 1

γ2
S2g(X).

Observing that S2g(X) = CS2XC
ᵀ and setting ν

(g)
0 = ν0 shows that the described

empirical Bayes procedure corresponds to π g = (Cm0 + b,CB0Cᵀ, ν0,CS0Cᵀ)

and, thus, by Proposition 1, f̃πg = | det(C)|−1 f̃π ◦ g−1.

3.2 Large n asymptotic robustness

We investigate the effect of affine transformations of the data on DPM-G models by
studying the asymptotic behaviour of the resulting posterior distribution in the large
sample size regime. To this end, we fit the same DPM-G model f̃π , defined in (1)
and (2), to two versions of the data, that is X(n) and g(X)(n), by using the exact
same specification for the hyperparameters π . Under this setting, the assumptions of
Proposition 1 are not met and the posterior distributions obtained by conditioning on
the two sets of observations are different random distributions which, thus, might lead
to different statistical conclusions. The main result of this section shows that, under
mild conditions on the true generating distribution of the observations, the posterior
distributions obtained by conditioning f̃π on the two sets of observations X(n) and
g(X)(n), become more and more similar, up to an affine reparametrisation, as the
sample size n grows. More specifically we show that the probability mass of the joint
distribution of these two conditional randomdensities concentrates in a neighbourhood
of {( f1, f2) ∈ F × F s.t. f1 = | det(C)| f2 ◦ g} as n goes to infinity. Henceforth we
will say that the DPM-G model (1) with base measure (2) is asymptotically robust
to affine transformation of the data. The rest of the section formalises and discusses
this result. We consider a metric ρ on F which can be equivalently defined as the
Hellinger distance ρ( f1, f2) = {∫ (

√
f1(x) − √

f2(x))2dx}1/2 or the L1 distance
ρ( f1, f2) = ∫ | f1(x)− f2(x))|dx between densities f1 and f2 inF , and we denote by
‖·‖ theEuclideannormonRd .Moreover,we adopt here the usual frequentist validation
approach in the large n regime, working ‘as if’ the observations X(n) were generated
from a true and fixed data generating process F∗ (see for instance Rousseau 2016).
We introduce the notation F∗

n to denote the n-fold product measure F∗ ×· · ·×F∗, and
we assume that F∗ admits a density function with respect to the Lebesgue measure,
denoted by f ∗. In the setting we consider, the same model f̃π defined in (1) and (2) is
fitted toX(n) and g(X)(n), thus leading to two distinct posterior random densities, with
distributions onF denoted by Π( · | X(n)) and Π( · | g(X)(n)), respectively. We use
the notation Π2(· | X(n)) to refer to their joint posterior distribution on F × F .

Theorem 1 Let f ∗ ∈ F , true generating density of X(n), satisfy the conditions

A1. 0 < f ∗(x) < M, for some constant M and for all x ∈ Rd ,
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A2. for some η > 0,
∫ ‖x‖2(1+η) f ∗(x)dx < ∞,

A3. x �→ f ∗(x) log2(ϕδ(x)) is bounded on Rd , where ϕδ(x) = inf{t : ‖t−x‖<δ} f ∗(t).

Let g : Rd −→ Rd be an invertible affine transformationand f̃π be the randomdensity
induced by a DPM-G as (1) with base measure (2) where ν0 > (d +1)(2d −3). Then,
for any ε > 0,

Π2(( f1, f2) : ρ( f1, | det(C)| f2 ◦ g) < ε | X(n)) −→ 1

in F∗
n -probability, as n → ∞.

It is worth stressing that, while in line with the usual posterior consistency approach
the existence of a true data generating process F∗ is postulated, the focus of Theorem 1
is not on the asymptotic behaviour of the posterior distribution with respect to the true
data generating process, but rather on the relative behaviour of two posterior distri-
butions, obtained by conditioning the same model on two sets of observations which
coincide up to an affine transformation. More specifically, according to Theorem 1,
when the sample size grows, the joint distribution Π2(· | X(n)) concentrates its mass
on a subset of the spaceF ×F where the distance ρ between f1 and | det(C)| f2 ◦ g
is smaller than ε. In other terms, the two posterior distributions get similar, up to the
affine transformation, as n becomes large.

The assumptions of Theorem 1 refer to the true generating distribution f ∗ of X(n).
Assumption A1 requires f ∗ to be bounded and fully supported onRd . Assumption A2
requires the tails of f ∗ to be thin enough for some moment of order strictly larger than
two to exist. Such an assumption is not met, for example, by a Student’s t-distribution
with two degrees of freedom, case which will be considered in the simulation study
of Sect. 4. Finally, assumption A3 is a weak condition ensuring local regularity of the
entropy of f ∗.

The proof of Theorem 1 is based on previous results proved by Wu and Ghosal
(2008) and Canale and De Blasi (2017) in order to derive the so-called Kullback–
Leibler property at f ∗ for some mixtures of Gaussians models. Importantly, in
Lemma 1 (see Appendix 1), we improve upon their results by showing that the set
of assumptions required by Wu and Ghosal (2008) and Canale and De Blasi (2017)
can be reduced to the simpler set of assumptions A1, A2 and A3 of Theorem 1 by
removing a redundant assumption. More specifically, we prove that A1, A2 and A3
imply that f ∗ has finite entropy and regular local entropy, conditions required in the
aforementioned works.

4 Simulation study

We ran an extensive simulation study with a two-fold goal: (1) providing empirical
support to our result on the large n asymptotic robustness of a DPM-G model, under
affine transformations of the data; (2) investigating whether an analogous robustness
property holds when DPM-G models are adopted to make inference on the clustering
structure of the data. To this end, we considered two distinct data-generating distri-
butions, which allowed us to highlight different facets of DPM-G models. In the first
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case, data are generated from a mixture of bivariate Gaussians, distribution which
satisfies the conditions of Theorem 1. This study complements our asymptotic result
with a numerical investigation of the finite n behaviour of DPM-G models, when
data undergo an affine transformation. Moreover, the same data are used to perform a
numerical study on the effect of data transformation and sample size on the number
of clusters on the estimated partition. While not directly related to theoretical results
of Sect. 3, this part of the study is relevant in view of the astronomical application of
Sect. 5 where a DPM-G model will be used for unsupervised clustering. The second
scenario we considered does not satisfy the set of assumptions of Theorem 1, as data
are generated from univariate Student’s t-distribution with two degrees of freedom,
thus breaking assumption A2. Our study, in this case, aims at assessing the robustness
of DPM-G models when the sufficient conditions of Theorem 1 are not met.

4.1 Data frommixture of Gaussians

The first part of the simulation study focuses on the analysis of data generated from a
mixture ofGaussians. Specifically, we considered three sample sizes, namely n = 100,
n = 300 and n = 1000, andwe generated 100 samplesX(n), for each n, from amixture
of two Gaussian components with density function

f (x) = 1

2
φ2 (x;m1,S1) + 1

2
φ2 (x;m2,S2) ,

where φ2(·;m,S) denotes the density function of a two-dimensional Gaussian distri-
bution with mean vector m and covariance matrix S, and the two components of the
mixture are characterized by the parameters

m1 = (−2,−2), S1 =
[

1 0.85
0.85 1

]
, m2 = (2, 2), S2 =

[
1 0
0 1

]
.

In order to test the robustness of the model under affine transformations of the data,
we compressed or stretched the generated datasets by using five different constants,
namely c = 1/5, c = 1/2, c = 1, c = 2 and c = 5. For each constant, we multiplied
the simulated data by c, thus obtaining a transformed dataset X(n)

c := cX(n). We then
fitted aDPM-Gmodel, specified as in (1) and (2), to each one of the 5×3×100 = 1500
resulting datasets. In order to enhance the flexibility of the model, we completed its
specification by setting a normal/inverse-Wishart prior distribution for the hyperpa-
rameters (m0,B0) of the base measure (2). Namely, we set B0 ∼ IW (4, diag(15))
and m0 | B0 ∼ N (0,B0), specification chosen so that E[μ] = 0 and to guarantee
a prior guess on the location component μ flat enough to cover the support of the
non-transformed data. As for the scale component of the base measure (2), we set
(ν0,S0) = (4, diag(1)). Finally, the precision parameter α of the Dirichlet process
was set equal to 1.

Realisations of the mean of the posterior distribution were obtained by means of a
Gibbs sampler relying on a Blackwell–McQueen Pólya urn scheme (see Müller et al.
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Fig. 2 Simulation study, data generated from a mixture of Gaussians. Based on a single replicate of the
samples X(100), X(300) and X(1000), scatter plots of the data (grey dots), contour plots of the estimated
densities based on a DPM-Gmodel (red curves) and contour plots for the expected prior density (blue filled
curves). Left to right: rescaling constant c = 1/5, c = 1/2, c = 1, c = 2, c = 5. Top to bottom: sample
size n = 100, n = 300, n = 1000 (color figure online)

1996), implemented in the AFFINEpack R package.1 For each replicate, posterior
inference was drawn based on 5000 iterations, obtained after discarding the first 2500.
Convergence of the chains was assessed by visually investigating the traceplots of
some randomly selected replicates, which did not provide indication against it.

Figure 2 shows, for every n ∈ {100, 300, 1000} and c ∈ {1/5, 1/2, 1, 2, 5}, a
contour plot of the estimated posterior densities. The difference between estimated
densities, across different values of c, is apparent when n = 100, with the two extreme
cases, namely c = 1/5 and c = 5, displaying very different contour lines and pos-
sibly suggesting a different number of modes in the estimated density. For larger
sample sizes, this difference is less evident and, when n = 1000, the contour plots are
hardly distinguishable. These qualitative observations are in agreement with the large
n asymptotic results of Theorem 1. The plots of Fig. 2 refer to a single realisation of
the samples X(100), X(300) and X(1000) considered in the simulation study, although
qualitatively similar results can be found in almost any replicate.

The findings drawn from a visual inspection of Fig. 2 were confirmed by assessing
the distance between estimated posterior densities. Specifically, for any considered
sample size n and for any pair of values c1 and c2 taken by the constant c, we approx-
imately evaluated the L1 distance between the suitably rescaled estimated posterior
densities obtained conditionally on X(n)

c1 and on X(n)
c2 . The results of such analysis are

shown in Fig. 3 and indicate that, as the sample size grows, the difference in terms of
L1 distance strictly decreases.

1 The package is available at https://github.com/rcorradin/AFFINEpack and can be installed via devtools.
For reproducibility, the code is available at https://github.com/rcorradin/Affine.
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Fig. 3 Simulation study, data generated from amixture ofGaussians. Normalised L1 distances (all distances
are divided by the largest observed distance) between suitably rescaled estimated densities, conditionally
on data rescaled by means of different constants c1 (X axis) and c2 (Y axis), where c1 and c2 denote the
scaling factors used to transform the data, averaged over 100 replications. Left to right: sample size n = 100,
sample size n = 300, sample size n = 1000

The posterior distribution of the random density induced by a DPM-G model pro-
vides interesting insight also on the clustering structure of the data. The second goal
of the simulation study, thus, consisted in investigating the impact of the scaling factor
c on the estimated number of groups in the partition induced on the data. To this end,
for each considered n and c, we estimated K̂ (VI)

n , the number of groups in the optimal
partition estimated using a procedure introduced byWade and Ghahramani (2018) and
based on the variation of information loss function. In light of known inconsistency
results for the posterior distribution of the number of components under a DPM-G
model (see, for instance, Miller and Harrison 2013), the numerical findings of this
part of the simulation study contribute to shed some light on the large n behaviour of
K̂ (VI)
n . The average values for this quantity, over 100 replicates, are reported in Table 1.

There appears to be a clear trend suggesting that a larger scaling constant c leads to
a larger K̂ (VI)

n : this finding is consistent with the fact that, if the data are stretched
while the prior specification is kept unchanged, then we expect the estimated posterior
density to need a larger number of Gaussian components to cover the support of the
sample. For the purpose of this simulation study the main quantity of interest is the
ratio between the estimated number of groups under any two distinct values c1 and c2
for the scaling constant c, that is K̂ (VI)

n,c1 /K̂ (VI)
n,c2 . The results presented in Table 1 clearly

indicate that, as the sample size n becomes large, such ratios tend to approach 1. This
suggests that the large n robustness property of the DPM-G model nicely translates to
an equivalent notion of robustness in terms of the estimated number of groups K̂ (VI)

n
in the data.

4.2 Data from Student’s t-distribution

The second part of the simulation study deals with the same simulation scenarios
(n ∈ {100, 300, 1000} and c = {1/5, 1/2, 1, 2, 5}) considered in Sect. 4.1, with the
difference that data are generated from a Student’s t-distribution with two degrees of
freedom. It is important to stress that such a distribution does not have finite vari-
ance and therefore does not meet assumption A2 of Theorem 1. Also in this case we
considered 100 replicates for each considered simulation scenario.
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Table 1 Simulation study, data
generated from a mixture of
Gaussians

c = 1/5 c = 1/2 c = 1 c = 2 c = 5

n = 100 1.81 2.04 2.84 5.96 10.52

n = 300 2.00 2.03 2.20 2.82 5.18

n = 1000 2.00 2.00 2.04 2.05 2.12

Averages over 100 replicates for K̂ (VI)
n , the number of clusters of

the optimal partition estimated by means of Wade and Ghahramani
(2018)’s variation of information method. Left to right: rescaling con-
stant c = 1/5, c = 1/2, c = 1, c = 2, c = 5. Top to bottom: sample
size n = 100, n = 300, n = 1000

We analysed each dataset with a univariate version of the DPM-G model specified
in (1) and (2). That is, we considered a univariate Gaussian kernel and a base measure
defined as theproduct of two independent distributions, a univariate normal distribution
for the location parameter μ ∼ N (m0, s20 ) and an inverse-gamma distribution for the
scale parameter σ 2 ∼ IG(a0, b0). The model specification is completed by setting
a0 = 2 and b0 = 1, so that E[σ 2] = 1, and by considering a normal/inverse-gamma
distribution for the hyperparameters (m0, s20 ), specifically s20 ∼ IG(2, 1) and m0 |
s20 ∼ N (0, s20 ). Finally, the precision parameterα of theDirichlet processwas set equal
to 1. Realisations of the mean of the posterior distribution were obtained by means
of a Gibbs sampler relying on a Blackwell–McQueen Pólya urn scheme.2 Posterior
inference was drawn based on 5000 iterations, after a burn-in period of 2500 iterations.
We assessed the convergence of the chains by visually investigating traceplots, which
did not provide indication against it.

Also for these data, for any considered sample size n and for any pair of values c1
and c2 taken by the constant c, we approximately evaluated the L1 distance between
the suitably rescaled estimated posterior densities obtained conditionally on X(n)

c1 and

on X(n)
c2 . The results of such analysis are displayed in Fig. 4 and indicate that, as

the sample size grows, the L1 distance decreases. This qualitative findings suggest
that asymptotic robustness might hold also for data generated from a distribution not
meeting the assumptions of Theorem 1.

5 Astronomical data

The large n asymptotic robustness to affine transformation of theDPM-Gmodelmakes
it a suitable candidate also for analysing data whose components are not commensu-
rable and for which an informed choice of the relative scale of different dimensions
seems prohibitive. We fitted the DPM-G model, specified as in (1) and with base
measure (2), to the NGC 2419 dataset described in Sect. 1. The ultimate goal of our
analysis consists in classifying stars as belonging to the NGC 2419 globular cluster
or as being contaminants: an accurate classification is crucial for the astronomers to
study the dynamics of the globular cluster. Since the large majority of the stars in the
dataset is expected to belong to the globular cluster, with only a few of them being

2 See footnote 1.
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Fig. 4 Simulation study, data generated from a Student’s t-distribution. Normalised L1 distances (all
distances are divided by the largest observed distance) between suitably rescaled estimated densities, con-
ditionally on data rescaled by means of different constants c1 (X axis) and c2 (Y axis), where c1 and c2
denote the scaling factors used to transform the data, averaged over 100 replications. Left to right: sample
size n = 100, sample size n = 300, sample size n = 1000

contaminants, we will identify the globular cluster as the largest group in the estimated
partition of the dataset.

Prior to any analysis, data were standardised component by component, the
legitimacy of such procedure following from the robustness results of Theorem 1.
Hyperprior distributions were specified for the location parameter of the base mea-
sure (2) and on the DP precision parameter α. Specifically, B0 ∼ IW (6, diag(15))
and m0 | B0 ∼ N (0,B0), specification chosen to guarantee a prior guess on the
location component μ flat enough to cover the support of the data and centered at 0.
In addition, α was given a gamma prior distribution with unit shape parameter and
rate parameter equal to 5.26, so that, a priori, α0 := E[α]  0.19. This leads to an
expected number of components Kn in a sample of size n = 139 from a DP equal
to

∑n
i=1 α0/(α0 + i − 1)  2, thus reflecting the prior opinion of astronomers who

would expect two distinct groups of stars in the dataset. Finally, as far as the scale
component of the base measure (2) is concerned, we set (ν0,S0) = (26, diag(21)),
where the number of degrees of freedom ν0 = 26 of the inverse-Wishart distribution
was chosen so that to satisfy the conditions of Theorem 1 and, in turn, the scale matrix
S0 = diag(21) so thatE[�] = diag(1). Realisations of themean of the posterior distri-
bution were obtained by means of a Gibbs sampler relying on a Blackwell–McQueen
Pólya urn scheme.3 In turn, posterior inference was drawn based on 20,000 iterations,
after a burn-in period of 5000 iterations. Convergence of the chains was assessed by
visually investigating traceplots, which did not provide indication against it.

Figure 5 displays contour plots for the six two-dimensional projections of the
estimated posterior density, with the scatter plots of the dataset with individual obser-
vations coloured according to their membership in the optimal partition estimated via
the variation of information method of Wade and Ghahramani (2018), and labeled as
main group (grey circles) and other groups (coloured triangles). The estimated partition
is composed of five groups. The largest one, identified as the globular cluster, consists
of 124 stars. The remaining 15 stars are thus considered contaminants and are further
divided into four groups, one composed by eight stars (group A), one containing five
stars (group B) and two singletons (groups C and D). A visual investigation of Fig. 5
suggests that stars in groupA differ from those in the globular cluster in terms ofmetal-

3 See footnote 1.
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Fig. 5 NGC 2419 data. Contour plots of the bivariate log marginal densities estimated via DPM-G model
(log densities are used for better visualization). Partition estimated via DPM-Gmodel combined withWade
and Ghahramani (2018)’s variation of information method. Five groups are detected: the largest group (grey
dots), group A (blue triangles), group B (red triangles), group C (one orange triangle), group D (one green
triangle) (color figure online)

licity and position, with the contaminants characterised by larger values for [Fe/H]
and smaller values for Y1 and Y2. Stars in group B differ from the globular cluster in
terms of velocity and metallicity, with the contaminants showing larger values for V
and [Fe/H]. Finally, groups C and D are singletons, the first one being characterised
by a high metallicity and an extremely small value for the velocity, the second one
showing large values for both metallicity and location Y1. Our unsupervised statistical
clustering can be compared to the clustering of Ibata et al. (2011) (described in their
Fig. 4) obtained by means of ad hoc physical considerations. Specifically, once the
best fitting physical model, in the class of either Newtonian or Modified Newtonian
Dynamics models, is detected, they use it in order to compute the average values of the
physical variables describing the stars. Stars are then assigned to the globular cluster
based on a comparison between their velocity and the average model velocity: those
lying close enough are deemed to belong to the cluster, while the others are consid-
ered as potential contaminants. For the latter, the evidence of being contaminants is
measured by evaluating how distant their metallicity is from the average model one.
Two classifications are then proposed: the first one assigns to the globular cluster only
the 118 stars for which the evidence seems strong, the second and less conservative
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Table 2 NGC 2419 data DPM-G groups

Largest A B C D
Total 124 8 5 1 1

Ibata et al. groups

Globular cluster 118 114 4 0 0 0

Likely globular cluster 12 10 1 0 0 1

Contaminants 9 0 3 5 1 0

Comparison between the groups identified by Ibata et al. (2011) and
the groups estimated via DPM-G model
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Fig. 6 NGC 2419 data. Lower bound (left) and upper bound (right) of the credible ball on the partitions’
space, estimated via DPM-Gmodel combinedwithWade andGhahramani (2018)’s variation of information
method

strategy classifies as belonging to the globular cluster a total of 130 stars. Following
this distinction and for the sake of simplicity, we summarise the results of Ibata et al.
(2011)’s analysis, by devising three groups of stars:

– globular cluster: 118 stars deemed to belong to the globular cluster,
– likely globular cluster: 12 stars assigned to the globular cluster only when the less
conservative procedure is adopted,

– contaminants: 9 stars with strong evidence of being contaminants.

For the purpose of comparison, we report in Table 2 the confusion matrix of the
groups obtained via the DPM-G model against the groups detected by Ibata et al.
All of the 124 stars belonging to the largest group of the partition estimated based
on the DPM-G model belong to the groups identified as globular cluster or likely
globular cluster by Ibata et al. At the same time, out of the nine stars classified as
contaminants by Ibata et al., the approach based on the DPM-G model assigns none
to the globular cluster, three to group A, five stars to group B, which is composed only
by stars considered contaminants in Ibata et al., and the star of group C, which shows
an extremely small value for the velocity variable. Finally, group D contains only one
star, which is not considered a contaminant by Ibata et al.

In order to characterize the uncertainty associated to the estimated optimal partition
displayed in Fig. 5, we considered a 95% posterior credible ball in the space of parti-
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Fig. 7 NGC2419 data. Heatmap representation of the posterior similarity matrix obtained based onDPM-G
model

tions, based on the variation of information metric (see Wade and Ghahramani 2018,
for details). Figure 6 shows the vertical lower bound and the vertical upper bound of
such credible ball: the first one is the partition in the credible ball which, among those
with the largest number of clusters, is the most distant from the optimal partition; the
latter one is the partition in the credible ball which, among those with the smallest
number of clusters, is the most distant from the optimal one. The lower bound displays
a total of 13 groups, with the largest one, object of interest in our analysis, composed
by 119 observations. The upper bound instead is composed of only 3 groups, with the
largest one counting 121 observations. The largest groups in the two vertical bounds
share 116 observations, thus showing a limited variability, as far as the size of the
largest cluster, main object of our analysis, is concerned. This nicely suggests that
the adopted procedure for differentiating stars belonging to the globular cluster and
contaminants can be considered robust. Finally, further insight on the clustering struc-
ture of the data is provided by Fig. 7, which shows the heatmap representation of the
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posterior similarity matrix obtained from the MCMC output. In agreement with the
partition obtained by applying the approach of Wade and Ghahramani (2018), one
main group, identified with the globular cluster, can be clearly detected in Fig. 7. As
for the remaining stars, arguably the contaminants, there seem to be two well defined
groups, A and B, and a few stars whose group membership is less certain.

6 Conclusions

The purpose of this paper was to investigate the behaviour of the multivariate DPM-G
model when affine transformations are applied to the data. To this end we focused
on the DPM-G model with independent normal and inverse-Wishart specification
for the base measure. Our investigation covered both the finite sample size and the
asymptotic framework. Specifically, in Proposition 1, given any affine transformation
g, an explicit model specification, depending on g, was derived so to ensure coherence
between posterior inferences carried out based on a dataset or its transformation via
g. We then considered a different setting where the specification of the model is
assumed independent of the specific transformation g. In this case, we formalised
the notion of asymptotic robustness of a model under transformations of the data
and identified mild conditions on the true data generating distributions which are
sufficient to ensure that the DPM-G model features such a property. Specifically,
Theorem 1 shows that the posterior distributions obtained conditionally on a dataset or
any affine transformation of it, becomemore andmore similar as the sample size grows
to infinity. Inference on densities and, as suggested by the simulation study, on the
clustering structure underlying the data, thus becomes increasingly less dependent on
the affine transformation applied to the data, as the sample size grows.As a special case,
Theorem 1 implies that posterior inference based DPM-G models is asymptotically
robust to data transformations commonly adopted for the sake of numerical efficiency,
such as standardisation or normalisation. This observation is particularly relevantwhen
dealing with the astronomical unsupervised clustering problem motivating this work.
Due to the lack of prior information on the dimensional constants relating different
physical units, we resorted to a standardisation of each component of the data and
chose an arbitrary model specification. Prior information was available in the form of
the experts’ prior opinion on the expected number of groups in the dataset and was
used to elicit the hyperprior distribution for α, the precision parameter of the DP.
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A Proofs

A.1 Proof of Proposition 1

Model f̃π can be written as

f̃π (x) =
∫

(2π)−
d
2 det(�)−

1
2 exp

{
−1

2
(x − μ)ᵀ�−1(x − μ)

}
P̃(dμ, d�;π)

=
∫

(2π)−
d
2 | det(C)| det(C�Cᵀ)−

1
2

× exp

{
−1

2
(Cx + b − Cμ − b)ᵀ(C�Cᵀ)−1(Cx + b − Cμ − b)

}
P̃(dμ, d�;π).

By performing the change of variables S = C�Cᵀ and m = Cμ + b and observing
that, by standard properties of the inverse-Wishart and normal distributions,

1. � ∼ IW (ν0,S0) implies S ∼ IW (ν0,CS0Cᵀ),
2. μ ∼ Nd(m0,B0) implies m ∼ Nd(Cm0 + b,CB0Cᵀ),
3. X ∼ Nd(μ,�) implies CX + b ∼ Nd(m,S),

we obtain

f̃π (x) = | det(C)|
∫

(2π)−
d
2 det(S)−

1
2

× exp

{
−1

2
(Cx + b − m)ᵀS−1(Cx + b − m)

}
P̃(dm, dS;π g)

= | det(C)| f̃πg (g(x)).

A simple reparametrisation leads to f̃πg = | det(C)|−1 f̃π ◦ g−1. All the identities
in this proof are deterministic, that is they hold for every ω ∈ Ω .

A.2 Proof of Theorem 1

The proof of Theorem 1 relies on results proved by Canale and De Blasi (2017). We
start by deriving a set of simpler conditions implying those of Canale and De Blasi
(2017).

Lemma 1 Let f ∗ be a density function onRd that satisfy the conditions of Theorem 1

A1. 0 < f ∗(x) < M, for some constant M and for all x ∈ Rd ,
A2. for some η > 0,

∫ ‖x‖2(1+η) f ∗(x)dx < ∞,
A3. x �→ f ∗(x) log2(ϕδ(x)) is bounded on Rd , where ϕδ(x) = inf{t : ‖t−x‖<δ} f ∗(t).

Then f ∗ also satisfies

123

http://creativecommons.org/licenses/by/4.0/


DPmixtures under affine transformations of the data

A4.
∣∣∫ f ∗(x) log f ∗(x)dx

∣∣ < ∞,
A5. ∃ δ > 0 such that

∫
f ∗(x) log ( f ∗(x)/ϕδ(x)) dx < ∞.

Proof (Lemma 1) We prove that A4 is satisfied by first assuming that f ∗ is univariate.
Since the function u �→ u| log u| is continuous from R+ to R+, the function x �→
f ∗(x)| log f ∗(x)| is bounded by assumption A1. Thus, for any a > 0,

∫ a

−a
f ∗(x)

∣∣log f ∗(x)
∣∣ dx < ∞.

Then, integrating over the remaining part of the support Ra = (−∞,−a) ∪ (a,+∞)

yields

∣∣∣∣
∫
Ra

f ∗(x) log f ∗(x)dx
∣∣∣∣ ≤

∫
Ra

f ∗(x)
∣∣log f ∗(x)

∣∣ dx

=
∫
Ra

x
√

f ∗(x)
√

f ∗(x)
x

∣∣log f ∗(x)
∣∣ dx

≤
(∫

Ra
‖x‖2 f ∗(x)dx

∫
Ra

‖x‖−2 f ∗(x)(log f ∗(x))2dx
)1/2

,

by Jensen’s inequality and Cauchy–Schwarz inequality respectively. The first integral
in the right-hand side above is finite by assumption A2. For the same reason as above,
the function x �→ f ∗(x)(log f ∗(x))2 is bounded. Since x �→ ‖x‖−2 is integrable on
Ra , the second integral in the right-hand side above is also finite. In dimension d, the
same argument holds by applying Cauchy–Schwarz’ inequality several times so as to
obtain an integrable power ‖x‖−p, p > d, in the second integral.

In order to prove A5, we note that

∣∣∣∣
∫

f ∗(x) log
(
f ∗(x)/ϕδ(x)

)
dx

∣∣∣∣ =
∣∣∣∣
∫

f ∗(x) log
(
f ∗(x)

)
dx −

∫
f ∗(x) log (ϕδ(x)) dx

∣∣∣∣
≤

∣∣∣∣
∫

f ∗(x) log
(
f ∗(x)

)
dx

∣∣∣∣ +
∫

f ∗(x) |log (ϕδ(x))| dx.

We proved that the first integral in the right-hand side above is finite. The fact that the
second integral is also bounded is proved exactly in the sameway by using assumption
A3. ��

Letλ(�−1) := (λ1(�
−1), . . . , λd(�

−1))be the vector of eigenvalues, in increasing
order, of�−1, the precisionmatrix of theGaussian kernel.Henceforthwewrite f (x) �
g(x) to indicate that the inequality f (x) ≤ bg(x) holds for some positive constant b
and for any x .

Theorem 2 (Theorem 2 in Canale and De Blasi 2017). Let f ∗ ∈ F , true generating
density of X(n), satisfy the conditions stated as assumptions A1, A2, A4 and A5 in
Lemma 1. Let modelX(n) by means of a DPM-Gmodel defined in (1). Suppose that the
basemeasure P0 has the product form P0(dμ, d�) = P0,1(dμ)P0,2(d�) and that P0,1

123



J. Arbel et al.

and P0,2 satisfy the following conditions: for some positive constants c1, c2, c3, r >

(d − 1)/2 and κ > d(d − 1),

B1. P0,1(‖μ‖ > x) � x−2(r+1),
B2. P0,2(λd(�−1) > x) � exp {−c1xc2},
B3. P0,2

(
λ1(�

−1) < 1
x

)
� x−c3 ,

B4. P0,2
(

λd (�−1)

λ1(�
−1)

> x
)

� x−κ ,

all for any sufficiently large x. Then the posterior distribution Π(·|X(n)) is consistent
at f ∗, that is, for every ε > 0,

Π
(
f : ρ( f , f ∗) < ε | X(n)

)
−→ 1,

in F∗
n -probability, as n → ∞.

Theorem 2 provides general conditions on the base measure P0 which guarantee
consistency of the posterior distribution. The next lemma shows that these conditions
are met by the normal/inverse-Wishart base measure (2).

Lemma 2 Conditions B1–B4 of Theorem 2 are satisfied by the multivariate normal/
inverse-Wishart base measure (2) with ν0 > (d + 1)(2d − 3).

Although the proof of Lemma 2 can be found in Canale and De Blasi (2017) (their
Corollary 1, relying, in turn, on results by Shen et al. (2013)), we provide it in
Appendix A.3 for the sake of completeness and in order to account for the slightly
different prior specification considered in this work. Next lemma shows that if f ∗
satisfies conditions A1–A3 of Theorem 1, so does f ∗

g := | det(C)|−1 f ∗ ◦ g−1, for any
invertible affine transformation g.

Lemma 3 If conditions A1–A3 of Theorem 1 are satisfied by f ∗, then for any invertible
affine transformation g(x) = Cx+b, they are also satisfied by f ∗

g = | det(C)|−1 f ∗ ◦
g−1.

The proof of Lemma 3 is postponed to “Appendix A.3”. An analogous result is proved
by Shi et al. (2019) (see their Lemma 2), although for a different set of assumptions on
the true data generating density. We are now ready to prove Theorem 1 by combining
Theorem 2 with Lemma 1, Lemma 2 and Lemma 3.

Proof (Theorem 1) According to Lemma 1, the set of assumptions A1, A2, A4 and A5
(as appearing in Lemma 1) is implied by assumptions A1, A2 andA3 of Theorem 1. So
under assumptions A1, A2 and A3, Theorem 2 holds. By combining it with Lemma 2
and Lemma 3, we have that for any ε > 0,

Π
(
f : ρ( f , f ∗) < ε/2 | X(n)

)
−→ 1, (4)

Π
(
f : ρ( f , f ∗

g ) < ε/2 | g(X)(n)
)

−→ 1, , (5)

both in F∗
n -probability, as n → ∞. We notice that the distance ρ is invariant with

respect to change of variables and thus ρ(| det(C)| f2 ◦ g, f ∗) = ρ( f2, f ∗
g ). This,

combined with the triangular inequality, leads to
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Π2(( f1, f2) : ρ( f1, | det(C)| f2 ◦ g) < ε | X(n))

≥ Π2

(
( f1, f2) : ρ( f1, f ∗) < ε/2, ρ( f2, f ∗

g ) < ε/2 | X(n)
)

≥ Π2

(
( f1, f2) : ρ( f1, f ∗) < ε/2 | X(n)

)
+ Π2

(
( f1, f2) : ρ( f2, f ∗

g ) < ε/2 | X(n)
)

− 1

= Π
(
f1 : ρ( f1, f ∗) < ε/2 | X(n)

)
+ Π

(
f2 : ρ( f2, f ∗

g ) < ε/2 | g(X)(n)
)

− 1

−→ 1 + 1 − 1 = 1,

in F∗
n -probability, as n → ∞. As a result,

Π2

(
( f1, f2) : ρ( f1, | det(C)| f2 ◦ g) < ε | X(n)

)
−→ 1,

in F∗
n -probability, as n → ∞. ��

A.3 Proof of additional lemmas

Proof (Lemma 2) We check, point-by-point, that the conditions of Theorem 2 are
satisfied.

B1. Since μ ∼ Nd(m0,B0), then ‖μ‖2 ∼ χ2
d (δ) where d is the dimension of μ and

δ = ‖m0‖ is the non-centrality parameter of the chi-squared distribution. Then,
for sufficiently large x ,

P0,1
(
‖μ‖2 > x

)
≤

( x
d

) d
2
exp

{
d − x

2

}
� x−2(r+1),

which holds for r > (d − 1)/2.
B2. We know that� ∼ IW (ν0,S0) and we start by considering the case correspond-

ing to S0 = Id , where Id denotes the d-dimensional identity matrix. It is known
that Tr(�−1) ∼ χ2

ν0d
. Thus, for sufficiently large x ,

P0,2
(
λd(�

−1) > x
)

≤ P0,2
(
Tr(�−1) > x

)

≤
(

x

ν0d

) ν0d
2

exp

{
ν0d − x

2

}

� exp
{−c1x

c2
}
,

for some positive constants c1 and c2. This result can be easily generalised to the
case S0 �= Id since IW (d�; ν0,S0) = S−1

0 IW (d�; ν0, Id).
B3. We know that � ∼ IW (ν0,S0) and we start by supposing that S0 = Id . The

joint distribution of the eigenvalues λ
(
�−1

)
is known to be equal to

fλ(x1, . . . , xd) = cd,ν0 exp

⎧⎨
⎩−

d∑
j=1

x j
2

⎫⎬
⎭

d∏
j=1

x
(ν0−d+1)

2
j

∏
j<k

(xk − x j ),
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for some normalising constant cd,ν0 , if (x1, . . . , xd) ∈ (0,∞)d is such that
x1 ≤ · · · ≤ xd , and equal to 0 otherwise. It is easy to verify that, on the support
of fλ, ∏

j<k

(xk − x j ) ≤
∏
j<k

xk =
d∏

k=2

xk−1
k .

The density function of λ1(�
−1) then becomes

fλ1(x1) =
∫

. . .

∫
fλ(x1, . . . , xd)dx2 · · · dxd

≤ cd,ν0x
ν0−d+1

2
1 e− x1

2

d∏
k=2

∞∫

0

x
ν0−d+1

2 +k−1
k e− xk

2 dxk

= c′
d,ν0

x
ν0−d+1

2
1 exp

{
− x1

2

}
,

for some new normalising constant c′
d,ν0

. Then for any x > 0 we have

P0,2

(
λ1(�

−1) <
1

x

)
≤ c′

d,ν0

∫ 1
x

0
x

ν0−d+1
2

1 dx1 � x−c3x

for some constant c3 and sufficiently large x . Again, this result can be generalised
to the case S0 �= Id since IW (d�; ν0,S0) = S−1

0 IW (d�; ν0, Id).
B4. We know that � ∼ IW (ν0,S0) and we start by considering the case corre-

sponding to S0 = Id . We define Z(�−1) = λd(�
−1)/λ1(�

−1) and the function
q(λ(�−1)) = (λ1(�

−1), . . . , λd−1(�
−1), Z(�−1)). Let Jq−1 denote the Jaco-

bian of the inverse of the function q, and observe that

fλ1,...,λd−1,Z (x1, . . . , xd−1, z) = |Jq−1 | fλ(x1, . . . , xd−1, x1z).

Then, by marginalising with respect to the first d − 1 components, we obtain

fZ (z) =
∫

· · ·
∫

|Jq−1 | fλ(x1, . . . , xd−1, x1z)dx1 · · · dxd−1

=
∫

· · ·
∫

cd,ν0 exp

⎧⎨
⎩−

d−1∑
j=1

x j
2

− x1z

2

⎫⎬
⎭

d−1∏
j=1

x
ν0+1−d

2
j (x1z)

ν0+1−d
2

×
∏

j<k≤d−1

(xk − x j )
d−1∏
j=1

(x1z − x j )x1dx1 · · · dxd−1

≤
∫

· · ·
∫

cd,ν0 exp

⎧⎨
⎩−

d−1∑
j=1

x j
2

− x1z

2

⎫⎬
⎭

d−1∏
j=1

x
ν0+1−d

2
j (x1z)

ν0+1−d
2
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×
d−1∏
k=2

xk−1
k

d−1∏
j=1

(x1z)x1dx1 · · · dxd−1

= c′
d,ν0

z(ν0+d−1)/2
∫

exp

{
−x1

(
z + 1

2

)}
xν0+1
1 dx1

= c′
d,ν0

(ν0 + 1)!
(

2

z + 1

)ν0+2

z(ν0+d−1)/2

= c′′
d,ν0

z(ν0+d−1)/2

(z + 1)ν0+2

≤ c′′
d,ν0

z−(ν0−d+5)/2,

for some constants cd,ν0 , c
′
d,ν0

and c′′
d,ν0

. Thus we have

P0,2 (Z > x) =
∫ ∞

x
fZ (z)dz ≤ c′′

d,ν0

∫ ∞

x
z−(ν0−d+5)/2dz � x−κ ,

for sufficiently large x , where κ = (ν0 −d+3)/2 > d(d+1) by the assumption
that ν0 > (d + 1)(2d − 3). ��

Proof (Lemma 3) We assume that f ∗ satisfies conditions A1–A3 of Theorem 1 and
check that the same holds for f ∗

g .

A1. Assume that 0 < f ∗(x) < M for every x ∈ Rd and some M > 0. Then, for
every x ∈ Rd , we have f ∗

g (x) = | det(C)|−1 f ∗(g−1(x)) which implies

0 < f ∗
g (x) < M ′ = | det(C)|−1M .

A2. Observe that
∫

‖x‖2(1+η) f ∗
g (x)dx =

∫
‖g(y)‖2(1+η) f ∗

g (g(y))| det(C)|dy

=
∫

‖g(y)‖2(1+η) f ∗(y)dy

≤
∫

22(1+η)−1
(
‖Cy‖2(1+η) + ‖b‖2(1+η)

)
f ∗(y)dy,

where the last inequality follows by combining triangular and Jensen’s inequal-
ities. Thus we can write

∫
‖x‖2(1+η) f ∗

g (x)dx

≤ 22(1+η)−1
(

| det(C)|2(1+η)

∫
‖y‖2(1+η) f ∗(y)dy + ‖b‖2(1+η)

)
< ∞,

where the last inequality follows by assumption A2 on f ∗.
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A3. Since function g is a linear invertible transform, the boundedness of x �→
f ∗(x) log2(ϕδ(x)) carries over to its counterpart defined with the transformed
density f ∗

g . ��
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