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1 Introduction

Conformal field theories in dimensions higher than four are still comparatively mysterious;

there is usually no Lagrangian description. This is the case for example for the (2, 0)-

supersymmetric theory living on the world-sheet of coincident M5-branes. Some indirect

information can be obtained by compactifying the theory. Reducing it on a T 2 gives

N = 4 super-Yang-Mills. Reducing it on a Riemann surface produces a vast “class S” of

four-dimensional theories with very interesting duality properties [1–3]. One can similarly

compactify down to three [4] and to two [5] dimensions.

It is reasonable to expect similar phenomena with different six-dimensional CFT’s.

This might teach us something about the (2, 0) theory, but also about the dynamics of

CFT’s in lower dimensions. Perhaps the simplest generalization of the (2, 0) theory oc-

curs when one introduces orbifold singularities [6–8]; the study of their compactifications

on Riemann surfaces is just starting [9–11]. From the holographic perspective, however,

these theories are not very different from the (2, 0) theory: their dual is simply AdS7×
S4/Zk [12, 13].

Nevertheless, an interesting further generalization can be obtained via NS5-D6-D8-

brane systems [14, 15].1 This class consists of (1, 0) SCFT’s which are non Lagrangian, but

1One can engineer six-dimensional field theories also in F-theory [16–18].
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which can be described by a quiver on a “tensor branch”. Their holographic duals were

found relatively recently: first numerically in [19], then analytically in [20]. Their interpre-

tation as the duals of the SCFT’s described above was given in [21]. Up to orbifolds and

orientifolds, these are the most general AdS7 solutions in perturbative type II supergravity.

Although the compactifications of these theories to lower dimensions are not yet known,

they can already be studied holographically: the corresponding AdS5 and AdS4 solutions

were found respectively in [22] and [23]. These solutions are similar in spirit to the duals of

the compactifications of the (2, 0) theory [24–26]: namely, AdS7 gets replaced by AdS5×Σ2

or AdS4×Σ3, and the internal space gets distorted in a certain way. What is perhaps nicer

than expected is that this distortion is “universal”. Namely, even though there are infinitely

many AdS7 solutions, the map to obtain the AdS5 and AdS4 metric is always the same.

Moreover, the two maps are very similar to each other: they differ only by the value of

certain numerical factors.

In this paper, we greatly extend this universality. We promote the maps to a more

general Ansatz, where AdS7 gets replaced by any seven-dimensional metric gµν , and the

internal space gets distorted in a way that depends on a single scalar parameter X. This

Ansatz in fact becomes nothing but a reduction to a seven-dimensional effective theory.

Its bosonic fields are X and gµν themselves, together with a three-form potential, and an

SU(2) gauge field which is related to the fibration of the internal space over the seven

external dimensions.

This effective theory is the so-called minimal gauged supergravity in seven dimen-

sions [27, 28], which describes the dynamics of (a gauged version of) the gravity multiplet

with sixteen supercharges. It is a subsector of the bigger “maximal” [29] theory, which

describes the gravity multiplet with thirty-two supercharges and has gauge group SO(5).

Both theories can be obtained [30, 31] as consistent truncations from eleven dimensions.

Here we find that the minimal theory can also be obtained from massive IIA, in in-

finitely many ways. In each of these reductions, the supersymmetric AdS7 vacuum is one

of the solutions in [19, 20]. This is perhaps surprising, but the idea is that, in reducing,

we are only using the ordinary differential equation (ODE) that the internal geometry has

to solve in the vacuum, and not the details of the individual solution. Moreover, since our

reduction procedure consists in comparing equations of motion, we have a direct proof that

these are all consistent truncations of massive IIA.

Thus we can uplift to massive IIA any solution of the seven-dimensional supergravity,

in infinitely many ways. For example, the theory has AdS5 ×Σ2 [24]2 and AdS4 ×Σ3 [25]

solutions. They uplift to those of [22, 23]. In this sense we are explaining and extending

the universality noticed in those papers. Minimal gauged supergravity also has “Renor-

malization Group (RG) flow” solutions that connect the above backgrounds to the AdS7
maximally supersymmetric vacuum. This shows conclusively that the solutions of [22, 23]

are indeed dual to compactifications on Σ2 and Σ3 of the six-dimensional (1, 0) SCFT’s.

Minimal gauged supergravity also admits AdS3 × Σ4 solutions, preserving N = 1

and N = 2 supersymmetry. In the latter case Σ4 is a Kähler-Einstein manifold of negative

2This solution was actually obtained in the maximal theory, with SO(5) gauge group, but it is possible

to show that it survives in the minimal theory.
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constant curvature, while in the former case Σ4 is (a compact quotient of) hyperbolic space

H
4. The corresponding CFT duals are two-dimensional (0, 2) and (0, 1) SCFTs. Uplifting

these solutions yields new AdS3 solutions of massive IIA supergravity. On the field theory

side, this implies that all the six-dimensional SCFT’s of [14, 15, 21] can be compactified

on four-manifolds Σ4 to produce two-dimensional SCFT’s.

Finally, minimal gauged supergravity has a second vacuum, which is not supersym-

metric. This means that there are also non-supersymmetric analytical AdS7 solutions in

massive IIA. Although we will not discuss these solutions in this paper, it would be in-

teresting to analyze them further, for example by comparing them with the numerical

non-supersymmetric solutions of [32].

This paper is organized as follows. In section 2, we will review the seven-dimensional

minimal gauged supergravity. In section 3 we will review the IIA AdS7 solutions found

numerically in [19] and analytically in [22], and their AdS5 and AdS4 compactifications.

In section 4 we will perform the reduction from massive IIA to seven-dimensional minimal

gauged supergravity. Finally, in section 5 we will discuss some supersymmetric solutions to

seven-dimensional minimal gauged supergravity, which thanks to our results can be lifted

to supersymmetric massive IIA solutions.

2 Minimal gauged supergravity in seven dimensions

The bosonic fields of seven-dimensional minimal gauged supergravity [27] are the graviton,

a triplet of one-forms Ai, i = 1, 2, 3, transforming in the adjoint representation of SU(2),

a scalar ϕ and a three-form A3. The corresponding Lagrangian is3

L = R− 1

2
∗ dϕ ∧ dϕ− V (ϕ) ∗ 1− 1

2
e

4√
10
ϕ ∗ F4 ∧ F4 −

1

2
e
− 2√

10
ϕ ∗ F i

2 ∧ F i
2 (2.1)

+
1

2
F i
2 ∧ F i

2 ∧ A3 − hF4 ∧ A3 ,

where V (ϕ) is the scalar potential

V (ϕ) = 2h2e
− 8√

10
ϕ − 4

√
2hge

− 3√
10
ϕ − 2g2e

2√
10
ϕ
. (2.2)

F i
2 = dAi− 1

2gǫ
ijkAj∧Ak and F4 = dA3 are the field strengths of Ai and A3 respectively. g

is the gauge coupling constant whereas the constant h is referred to as the topological mass.

If h/g > 0 the scalar potential has two extrema: a maximum at e
− 5√

10
ϕ
= 1

2
√
2

g
h and a

minimum at e
− 5√

10
ϕ
= 1√

2

g
h ; only the former is supersymmetric [28].

There is a dual formulation of the theory with a two- instead of a three-form. In this

case, the topological mass and the corresponding term in the Lagrangian are absent and

the scalar potential has no critical points. In [33] it was shown that this version can be

embedded in ten-dimensional type I supergravity.

3The scalar and the form fields of the original paper have being rescaled by a factor of 1√
2
and the

constant h by a factor of 1
4
.
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The fermionic fields are the gravitino ψµa, µ = 0, . . . , 6 and the dilatino λa. They are

symplectic-Majorana spinors transforming as SU(2) doublets; a = 1, 2 is the symplectic-

Majorana/SU(2) index. The supersymmetry variations of the fermions read

δξψµa = (∇µ + ig(Aµ)a
b)ξb +

i

10
√
2
e
− 1√

10
ϕ
(γµ

α1α2 − 8δµ
α1γα2) (F2α1α2

)a
bξb

+
1

160
e

2√
10
ϕ
(

γµ
α1α2α3α4 − 8

3
δµ
α1γα2α3α3

)

F4α1α2α3α4
ξa +mγµξa , (2.3a)

δξλa =
1

2
√
2
✓∂ϕξa −

i√
10

e
− 1√

10
ϕ
(✚✚F2)a

bξb +
1

2
√
5
e

2√
10
ϕ
✚✚F4ξa −

√
5

(

m+
h

2
e
− 4√

10
ϕ
)

ξa ,

(2.3b)

where

m = − h

10
e
− 4√

10
ϕ − g

5
√
2
e

1√
10
ϕ
. (2.4)

Furthermore,

(A)a
b = Ai(T i)a

b , (F2)a
b = F i

2(T
i)a

b . (2.5)

T i = 1
2σ

i are the generators of SU(2), σi being the Pauli matrices.

The slash of a p-form Fp is defined as

��Fp ≡
1

p!
Fpα1...αp

γα2...αp . (2.6)

3 AdS7 solutions in massive IIA supergravity

In this section we review the IIA AdS7 solutions of [19]. These, according to our embedding,

are the uplift of the supersymmetric AdS7 vacuum of the seven-dimensional minimal gauged

supergravity. We also discuss compactifications of these solutions to AdS4 and AdS5 [20];

these will be instrumental in coming up with an appropriate reduction Ansatz in section 4.

3.1 The solutions

While there are infinitely many AdS7 solutions in IIA supergravity, they all share a few

fundamental features. The internal space M3 is an S2-fibration over an interval, whose

coordinate we call r. The S2 shrinks at the two endpoints of this interval, so that M3 has

the topology of an S3. Metric and fluxes can be written in terms of three functions: the

dilaton, the warping, and one function x related to the volume of the S2. All three only

depend on r:

φ = φ(r) , A = A(r) , x = x(r) . (3.1)

The metric now reads

ds210 = e2Ads2AdS7 + ds2M3
, ds2M3

= dr2 +
1

16
e2A(1− x2)ds2S2 . (3.2)

ds2AdS7
and ds2S2 are unit radius metrics on AdS7 and S2. The expression of the Neveu-

Schwarz flux is

H = −
(

6e−A + F0 xe
φ
)

volM3 , (3.3)
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where F0 is the Romans mass and φ the dilaton. The expression for the Ramond-Ramond

two-form flux is

F2 =
1

16
eA−φ

√

1− x2
(

F0 e
A+φx− 4

)

volS2 . (3.4)

The functions φ(r), A(r), x(r) obey a system of ODEs:

dφ

dr
=

1

4

e−A√
1− x2

(

12x+ (2x2 − 5)F0e
A+φ

)

, (3.5a)

dx

dr
= −1

2
e−A

√

1− x2
(

4 + xF0e
A+φ

)

, (3.5b)

dA

dr
=

1

4

e−A√
1− x2

(

4x− F0e
A+φ

)

. (3.5c)

Originally, in [19], the AdS7 solutions were found by integrating this system numerically.

However, it was later found in [22] that the solutions are determined by a single function

β(y) satisfying a single ODE:

(q2)′ =
2

9
F0 , q ≡ −4y

√
β

β′ , (3.6)

where the new variable y is defined by dr =
(

3
4

)2 e3A√
β
dy, and a prime denotes differentiation

with respect to y. Now A, φ, and x are determined by

eA =
2

3

(

−β′

y

)1/4

, eφ =
(−β′/y)5/4

12
√
4β − yβ′

,

x2 =
−yβ′

4β − yβ′ .

(3.7)

The ODE (3.6) can be readily solved analytically by writing it as 16y2 β
(β′)2

= 2
9F0(y−

ŷ0), with ŷ0 a constant; this can now be integrated by quadrature. Without D8-branes,

the generic solution [22, section 5.6] has two special points, corresponding to the presence

of two stacks with k1 and k2 D6-branes (or one stack of D6-branes and an O6-plane).

One special case happens where F0 = 0: in this case k1 = −k2 ≡ k, and the solution

is β = 4
k2
(y − y20). (This solution can also be obtained as a reduction from AdS7 × S4

in M-theory [19, section 5.1].) Another special case happens when k2 = 0: here β =
8
F0
(y − y0)(y + 2y0)

2 [22, section 5.5].

More solutions can be obtained by introducing D8-branes. In this case, the Romans

mass flux F0 jumps as one crosses the D8’s, and correspondingly the metric is continuous

but has a discontinuous first derivative, as one expects from a domain wall. The positions

of the D8’s are fixed by various flux quantization conditions. The metric can be obtained

by gluing together pieces of the analytic solutions described earlier; this can be done in

such a way as to avoid D6-branes, or as to include them, as one wishes. All in all, one

has an infinite set of solutions; they are in one-to-one correspondence [21] with NS5-D6-

D8 systems [14, 15]. The corresponding SCFT6’s are non-Lagrangian, but an effective

description is known on their tensor branch.

– 5 –
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In any case, we will not need to know too many details about the classification of the

most general solutions, since the reduction to seven dimensions will work much in the same

way for all of them. This is roughly because we will only need to use (3.5), and not the

actual expressions for the solutions.

3.2 Supersymmetry parameters

All the solutions we just described are N = 1 supersymmetric. The original method to

find them used a formulation of the supersymmetry equations in terms of differential forms,

where the spinors were never explicitly used. However, in order to compare supersymmetry

in ten dimensions to supersymmetry in seven, in section 4.2 we will actually need the

supersymmetry parameters, which were given in [23]:4

ǫ1 = (ξ ⊗ χ1 + ξc ⊗ χc1)⊗ |↑〉 , ǫ2 = (ξ ⊗ χ2 − ξc ⊗ χc2)⊗ |↓〉 . (3.8)

Here ξ is a Killing spinor on AdS7, while |↑〉 and |↓〉 are eigenvectors of the Pauli matrix

σ3, with eigenvalues +1 and −1 respectively. The expressions for χ1 and χ2 are

χ1 = −ie
A
2 e−i

π
2
σ3ei

α
2
σ3
χS2 , χ2 = e

A
2 e−i

α
2
σ3
χS2 , (3.9)

where sinα = x and χS2 is a Killing spinor on S2. The superscript c denotes charge

conjugation. The SU(2) R-symmetry acts on the doublets (ξ, ξc)t, (χ1, χ
c
1)
t and (χ2, −χc2)

t

in the fundamental representation.

3.3 Compactifications to AdS5 and AdS4

It is possible to compactify the AdS7 solution on H
2 or H3 to AdS5 and AdS4 respectively,

by associating the functions that determine the solutions, via the map [20]

eA → X
15
4 eA , r → X

5
4 r , x → x√

w
, (3.10)

where X is a constant parameter, with the value X = 1 for the AdS7 solution and w ≡
X5(1− x2) + x2.5 The corresponding geometries read

ds210 = X
15
2 e2Ads27 +X

5
2ds2M3

, ds2M3
= dr2 +

1− x2

16w
e2ADs2S2 , (3.11)

ds27 =











ds2AdS5 +
1

3
ds2

H2

ds2AdS4 +
4

5
ds2

H3

, X5 =











3

4

5

8

,

where ds2
H2 and ds2

H3 are metrics of unit radius. The S2 is fibered over H2 or H3, with the

U(1) spin connection of H2 twisting a U(1) isometry inside the full SU(2) isometry of S2

in the first case and the SU(2) spin connection of H3 twisting the whole isometry in the

second.

4They were also independently computed by I. Bakhmatov (unpublished notes).
5The dilaton transforms as eφ → X

5

4
eφ√
w
.
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One can then quotient H2 and H
3 by discrete subgroups of PSL(2,R) and PSL(2,C),

so as to obtain respectively a Riemann surface Σ2 of genus g ≥ 2, or a compact hyperbolic

manifold Σ3. The holographic interpretation of these solutions is then similar to the fa-

miliar Maldacena-Núñez case [24]: they represent twisted compactifications of SCFT6’s to

SCFT4’s and SCFT3’s.

The fact that both solutions can be written as (3.11) suggests a reduction Ansatz

for massive IIA supergravity on M3: promote X to scalar field in seven dimensions and

introduce seven-dimensional gauge vector fields gauging the SU(2) isometry of M3.

4 Reduction

In this section we present the Ansatz for the Kaluza-Klein reduction of massive IIA super-

gravity on M3, to the seven-dimensional minimal gauged supergravity. Our approach to

verifying the consistency of the reduction (or truncation) is to substitute the Ansatz into

the ten-dimensional equations of motion and show that these are satisfied provided that the

seven-dimensional equations of motion are satisfied. Vice versa, any solution of the lower-

dimensional theory can be uplifted on M3 to an exact solution of the higher-dimensional

theory. This is described in subsection 4.1.

In subsection 4.2 we take a further step and show that any supersymmetric solution

of the seven-dimensional theory uplifts to a solution that also preserves supersymmetry.

We provide a decomposition Ansatz for the ten-dimensional supersymmetry parameters

and require that the supersymmetry variations of the fermion fields of IIA supergravity

vanish. This condition yields a set of equations for the seven-dimensional part of the

supersymmetry parameters: it is exactly the set of equations one obtains by setting to zero

the supersymmetry variations of the fermion fields of the seven-dimensional minimal gauged

supergravity. Vice versa, any spinor ξa such that the lower-dimensional supersymmetry

transformations (2.3) vanish can be uplifted so that the higher-dimensional supersymmetry

transformations vanish as well.

4.1 Equations of motion

The Ansatz for the ten-dimensional metric is

ℓ−1ds210 =
1

8
g2X− 1

2 e2Ads27 +X
5
2ds2M3

, ds2M3
= dr2 +

1− x2

16w
e2ADs2S2 , (4.1)

where ℓ ≡ 8
√
2

g3
and

w ≡ X5(1− x2) + x2 . (4.2)

The parameter X is promoted in this section to a scalar in seven dimensions; it will turn

out to be related to the scalar ϕ of section 2. It was a constant for the AdS solutions

of (3.11). The covariantized metric Ds2S2 on the two-sphere is

Ds2S2 ≡ DyiDyi , Dyi ≡ dyi + ǫijkyjgAk . (4.3)

yi parametrize S2 ∈ R
3 as the locus yiyi = 1; explicitly

yi = (sin θ cosψ, sin θ sinψ, cos θ) . (4.4)

– 7 –
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In angular coordinates, Ds2S2 reads

Ds2S2 = (dθ +Kθ
i gAi)2 + sin2 θ(dψ +Kψ

i gAi)2 , (4.5)

where K1 = cot θ cosψ∂ψ + sinψ∂θ, K2 = cot θ sinψ∂ψ − cosψ∂θ and K3 = −∂ψ are the

Killing vectors generating the SO(3) isometry of S2.

The Ansatz for the dilaton Φ is

e2Φ = ℓ
X

5
2

w
e2φ . (4.6)

Here and in what follows, φ is the dilaton for the AdS7 solution presented in section 3.1.

The Ansatz for the Neveu-Schwarz potential B is

ℓ−1B =
1

16
e2A

x
√
1− x2

w
vol2 −

1

2
eAdr ∧

(

a− 1

2
yiAi

)

, (4.7)

where vol2 ≡ 1
2ǫ
ijkyiDyjk is the volume of the covariantized S2 and a is defined via da =

−1
2volS2 . H = dB then reads

ℓ−1H =
{

(2− 6X5 + 4X10)x2 − 2X5 − 4X10
}

w−1e−AvolM3
−X5w−1ℓF0 e

φxvolM3

− 1

4
eAdr ∧ yigF i

2
− 1

16
w−1e2Ax

√

1− x2gF i
2
∧Dyi − 5

16
X4w−2e2Ax(1− x2)

3

2 dX ∧ vol2 .

(4.8)

The Ansätze for the Ramond-Ramond fluxes are

F2 = −q
(

vol2 + yigF i
2

)

+
1

16
w−1ℓF0 e

2Ax
√

1− x2vol2 , (4.9a)

ℓ−1F4 = − q

16
w−1e2Ax

√

1− x2yigF i
2 ∧ vol2 −

q

4
eAdr ∧ ǫijkgF i

2 ∧ yjDyk (4.9b)

− q

2
eAdr ∧X4g2 ∗7 F4 − ℓ−1 1

2
e3A−φxF4 ,

where q ≡ 1
4e
A−φ

√
1− x2. F2 and F4 must obey the Bianchi identities

dF2 −HF0 = 0 , dF4 −H ∧ F2 = 0 . (4.10)

A way to see that this is the case for the above expressions is to note that

F2 −BF0 = dC1 , (4.11a)

F4 −
1

2F0
F2 ∧ F2 = dC3 , (4.11b)

where

C1 = 2q

(

a− 1

2
yiAi

)

, (4.12a)

C3 = − q2

2F0
(ǫijkgF i

2y
jDyk + g2ω3)−

1

2
e3A−φxA3 . (4.12b)

– 8 –
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ω3 ≡ Ai ∧ F i
2 +

1
6gǫ

ijkAi ∧Aj ∧Ak, satisfying dω3 = F i
2 ∧ F i

2. In deriving (4.11b) one has

to take into account the “odd-dimensional self-duality” equation [34]

X4 ∗7 F4 = − 1√
2
gA3 +

1

2
ω3 . (4.13)

The next step is to obtain the equations that the seven-dimensional fields satisfy, by

substituting the Ansätze for the ten-dimensional fields into the equations of motion of IIA

supergravity.

We employ the democratic formulation [35] of type II supergravity and work in the

string frame. The equations of motion of the fluxes are

(d+H∧) ∗ F = 0 , d(e−2Φ ∗H)− 1

2

∑

p

∗Fp ∧ Fp−2 = 0 , (4.14)

where F ≡ ∑

p=0,2,4,6,8,10 Fp. The Einstein equations are

RMN + 2∇M∇NΦ− 1

2
HM ·HN − 1

4
e2ΦFM · FN = 0 . (4.15)

where FM ·FN ≡ 1
(p−1)!

∑

p FpM
M1...M(p−1)FpNM1...M(p−1)

and similarly for HM ·HN . Finally

the dilaton equation is

∇2Φ− (∇Φ)2 +
1

4
R− 1

8
H2 = 0 . (4.16)

Substituting the Ansätze into the flux and dilaton equations of motion, we arrive at

the following equations for the seven-dimensional fields:

0 = d(X−1 ∗7 dX) +
1

5
g2(X−8 − 3X−3 + 2X2)vol7 (4.17a)

− 1

5
X4 ∗7 F4 ∧ F4 +

1

10
X−2 ∗7 F i

2 ∧ F i
2 ,

0 = d(X4 ∗7 F4) +
1√
2
gF4 −

1

2
F i
2 ∧ F i

2 , (4.17b)

0 = D(X−2 ∗7 F i
2)−F i

2 ∧ F4 . (4.17c)

In particular, (4.17b) and (4.17c) come from the equations of motion of F4 and F2 respec-

tively, while both equations of motion of H and Φ give rise to (4.17a).

In order to reduce the Einstein equations, we compute the Riemann and subsequently

the Ricci tensor via the curvature two-form RA
B = dωAB+ωAC∧ωCB; the spin connection

ωAB is that of the orthonormal frame introduced in appendix A. After a lengthy calculation

we find that the ten-dimensional Einstein equations, upon using (4.17a), reduce to

Rµν − 5X−2∂µX∂νX − 1

20
g2

(

X−8 − 8X−3 − 8X2
)

gµν

−1

2
X−2

(

F i
2µ · F i

2ν −
1

5
F i
2
2
gµν

)

− 1

2
X4

(

F4µ · F4ν −
3

5
F2
4 gµν

)

= 0 .

(4.18)

Equations (4.17) and (4.18) can be derived from the Lagrangian (2.1) for

X = e
1√
10
ϕ
, h =

g

2
√
2
. (4.19)

– 9 –



J
H
E
P
1
0
(
2
0
1
5
)
1
8
7

4.2 Supersymmetry

The supersymmetry transformations of the gravitini of IIA supergravity are

δΨ1M =

(

∇M− 1

4
HM

)

ǫ1−
1

16
eΦFΓM ǫ2 , δΨ2M =

(

∇M+
1

4
HM

)

ǫ2−
1

16
eΦλ(F )ΓM ǫ1 .

(4.20)

Fermion fields with a subscript 1 have positive chirality, whereas fermion fields with a

subscript 2 have negative chirality. The suppressed indices of the fluxes are contracted with

anti-symmetric products of gamma matrices. λ is an operator acting on a p-form as λ(Fp) =

(−1)[
p
2 ]Fp, where the square brackets denote the integer part of p

2 . The supersymmetry

transformations of the dilatini are

δλ1 =

(

∂Φ− 1

2
H

)

ǫ1−
1

16
eΦΓMFΓM ǫ2 , δλ2 =

(

∂Φ+
1

2
H

)

ǫ2−
1

16
eΦΓMλ(F )ΓM ǫ1 .

(4.21)

The decomposition Ansatz for the ten-dimensional supersymmetry parameters is

ǫ1 = (ξ ⊗ χ1 + ξc ⊗ χc1)⊗ |↑〉 , ǫ2 = (ξ ⊗ χ2 − ξc ⊗ χc2)⊗ |↓〉 . (4.22)

This is analogous to (3.8), but now ξ is a generic seven-dimensional spinor, rather than a

Killing one; the symplectic-Majorana doublet ξa is (ξ, ξc)t. The expressions for χ1 and χ2

are formally identical to (3.9),

χ1 = −ie
A
2 e−i

π
2
σ3ei

α
2
σ3
χS2 , χ2 = e

A
2 e−i

α
2
σ3
χS2 ; (4.23)

however, sinα deviates from its vacuum value, sinα = x, following the map (3.10): i.e.

sinα = w− 1
2x. Accordingly, cosα ≡ w− 1

2X
5
2

√
1− x2.

We can decompose the ten-dimensional supersymmetry transformations by splitting

Cliff(1, 9) as6

Γα = γα ⊗ I⊗ σ2 , Γa+6 = I⊗ σa ⊗ σ1 , (4.24)

and substituting for (4.22). Setting (4.21) to zero amounts to

0 =
5

2
X−1

✓∂Xξa +
1

2
X2

✚✚F4ξa −
i√
2
X−1(✚✚F2

i)a
bξb −

1√
2
g(X−4 −X)ξa , (4.25)

whereas setting (4.20) to zero amounts to the above equation for the internal compo-

nents and

0 = (∇µ + ig(Ai
µ)a

b)ξb +
i

10
√
2
X−1 (γµ

α1α2 − 8δµ
α1γα2) (F i

2α1α2
)abξb

+
1

160
X2

(

γµ
α1α2α3α4− 8

3
δµ
α1γα2α3α4

)

F4α1α2α3α4
ξa−g

(

1

20
√
2
X−4+

1

5
√
2
X

)

γµξa .

(4.26)

for the external ones. These constraints on ξa are no other than those that one obtains by

setting (2.3) to zero, for X = e
1√
10
ϕ
and h = g

2
√
2
.

Thus, preserved supersymmetry in seven dimensions guarantees preserved supersym-

metry in ten.

6α = 0, . . . , 6, a = 1, 2, 3.
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5 Solutions: compactifications and flows

In this section we discuss (supersymmetric) anti-de Sitter solutions of seven-dimensional

minimal gauged supergravity,7 along with holographic renormalization group (RG) flows,

interpolating between the supersymmetric AdS7 vacuum and lower-dimensional anti-de

Sitter vacua. All these uplift to massive IIA in ten dimensions via the formulas presented

in the previous section. In particular, we consider the AdS5 and AdS4 solutions which

uplift to the ten-dimensional ones reviewed in section 3.3, and more notably, AdS3 solutions

which uplift to new AdS3 solutions of massive IIA supergravity with N = 1 and N = 2

supersymmetry.

5.1 AdS5 and AdS4

N = 1 and N = 2 supersymmetric AdS5×H
2 solutions were first found in [24], in a certain

truncation of the maximal gauged supergravity in seven dimensions, keeping two scalars

and two U(1) gauge vector fields. In the case of the N = 1 solution, the two scalars and

the two gauge vector fields are set to be equal and thus, the solution can also be embedded

in the minimal theory of section 2.8

The AdS5 ×H
2 geometry is a subset of warped product geometries

ds27 = e2f1(r)(dr2 + ds2
R3,1) + e2f2(r)ds2

H2 , (5.1)

with a boundary condition for f1 and f2 as r → 0, f1 ∼ f2 ∼ log r. That is, asymptotically

or in the UV the metric approaches AdS7 with an R
3,1×H

2 boundary. In order to preserve

supersymmetry, the U(1) gauge field is identified with the spin connection of H2 while f1
and f2 (as well as the scalar) are subject to a set of ODEs — these can be found in [24,

eq. (27)].

The latter admit an AdS5 ×H
2 solution, which (in our language) reads

ds27 =
8

g2
e

8√
10
ϕ
(

ds2AdS5 +
1

3
ds2

H2

)

, e
5√
10
ϕ
=

3

4
, (5.2)

with the field strength of the U(1) gauge field gF i
2 = −volH2 δi3, while the three-form

potential is equal to zero. In [36], it was shown numerically (within a broader context)

that the AdS5 ×H
2 solution arises as the IR fixed point of an RG flow that connects it to

the AdS7 region.

An N = 1 supersymmetric AdS4 × H
3 solution of seven-dimensional minimal gauged

supergravity was first found in [25]. The metric and the scalar field of the solution read

ds27 =
8

g2
e

8√
10
ϕ
(

ds2AdS4 +
4

5
ds2

H3

)

, e
5√
10
ϕ
=

5

8
. (5.3)

7The parameter h is set equal to g

2
√
2
, in accordance to the result of the reduction presented in the

previous section.
8The translation between the languages of [24, appendix 7.3] and section 2 is: m ≡ g√

2
, λ1 = λ2 =

−φ/2 ≡ ϕ

2
√
10
.
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The SU(2) gauge field is identified with the SU(2) spin connection ωij of H3 via

gAi =
1

2
ǫijkωjk . (5.4)

The field strength is then gF i
2 =

1
2ǫ
ijkRjk, where Rjk is the curvature two-form of the spin

connection, while the three-form potential is zero.

It was later shown numerically [26] — in an analogous analysis to that for the AdS5×H
2

solution — that this solution also arises as the IR fixed point of an “RG flow geometry”,

ds27 = e2f1(r)(dr2 + ds2
R2,1) + e2f2(r)ds2

H3 , (5.5)

with f1 ∼ f2 ∼ log r in the UV and the corresponding values for the AdS4 × H
3 solution

in the IR.

The existence of the above RG flow solutions in the seven-dimensional minimal gauged

supergravity, in conjunction with the consistent truncation of massive IIA supergravity

presented in this paper, shows that the AdS5 and AdS4 solutions of [22, 23] are connected

to the AdS7 ones of [19] by RG flows. This proves that the solutions of [22, 23] are dual

to compactifications of six-dimensional (1, 0) theories on Σ2 and Σ3 manifolds of negative

curvature.

5.2 AdS3

We now turn to the supersymmetric AdS3 solutions. The first one is AdS3×H
4 preserving

two (real) supercharges. The metric and the scalar field of the solution read

ds27 =
2

g2
e
− 2√

10
ϕ
(

ds2AdS3 +
4

7
ds2

H4

)

, e
5√
10
ϕ
=

7

12
. (5.6)

The SU(2) gauge field equals the self-dual part of the SO(4) spin connection of H4.

gAi =
1

2
ǫijkωjk + ωi4 . (5.7)

The field strength is then gF i
2 =

1
2ǫ
ijkRjk+Ri4. Finally, the four-form flux is proportional

to the volume of H4:

F4 =
3
√
2

g3
volH4 . (5.8)

The second one is AdS3 ×M4, where M4 is Kähler-Einstein of constant negative cur-

vature −4 (for example H2×H
2), preserving four supercharges. The metric and the scalar

field of the solution read

ds27 =
2

g2
e
− 2√

10
ϕ
(

ds2AdS3 +
4

3
ds2M4

)

, e
5√
10
ϕ
=

4

3
. (5.9)

Only a U(1) ⊂ SU(2) gauge field is non-zero and is identified with the center U(1)

component of the U(2) spin connection of M4, or equivalently with the Kähler connection

on the canonical bundle of M4. Taking the spin connection of the center U(1) to be the

truncation of the self-dual part of the spin connection we can write

gAi = (ω12 + ω34)δi3 . (5.10)
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The field strength is then identified with the Ricci form of M4. Finally, the four-form flux

is proportional to the volume of M4:

F4 =

√
2

g3
volM4 . (5.11)

The above AdS3 solutions were also found in [37] as the IR fixed points of RG flows

constructed in certain truncations of the maximal seven-dimensional gauged supergravity.

When uplifted to M-theory, the AdS3×M4 solution arises from M5-branes wrapping Kähler

four-cycles in Calabi-Yau four-folds while the AdS3 × H
4 one from M5-branes wrapping

Cayley four-cycles in manifolds of Spin(7) holonomy. The scalar and gauge field sector of

the truncations can be identified with the corresponding ones of the minimal theory, while

the three-form potential sector is formulated in a dual frame, via (4.13). The AdS3 ×M4

solution was also constructed with different methods in [38].

Let us conclude with a few words on the field theory duals of the solutions we described

in this section. In the first case, (5.6), the SU(2) R-symmetry of the original AdS7 solution

is completely broken by the gauge fields (5.7). Since no R-symmetry is left, the dual field

theory should be a two-dimensional (0, 1) SCFT. In the second case, (5.9), only a U(1)

gauge field is switched on; its commutant in SU(2)R is the U(1) itself. This signals that

the IIA uplift still has a U(1) isometry; this is the R-symmetry of the dual theory, which

should then be a (0, 2) SCFT2 this time. It would be interesting to study these theories,

perhaps generalizing [5].

We can also use AdS/CFT to compute the number of degrees of freedom in these

theories, along the lines of [22, section 5.8], [23, section 4.8]. In fact, the formalism in this

paper allows us to write a general formula. Let F0,d be the coefficient in the scaling of the

free energy Fd = F0,dT
dV with temperature T and volume V , for a SCFT in d dimensions.

Then, the coefficient F0,6 for an (1, 0) theory dual to massive IIA and the coefficient for a

theory obtained by compactifying it on a d-dimensional space Σd are related by

F0,6-d

F0,6
=

(

XIR

XUV

)20

Vol(Σd) , (5.12)

where XIR is the value of X for the lower-dimensional AdS solution (recall that X = e
1√
10
ϕ
)

and XUV = 1. For example, for the solution (5.9), we get F0,2 = (4/3)4F0,6Vol(Σ4). As

another example, (5.2) gives us back [22, eq. (5.68)].

6 Concluding remarks

We have constructed a consistent truncation of massive IIA supergravity on M3, to seven-

dimensional minimal gauged supergravity, where M3 is the internal manifold of the AdS7
solutions of [19, 20]. The truncation is universal: it applies to the whole infinite family of

Riemannian metrics on M3. These exhaust the supersymmetric AdS7 backgrounds of IIA

supergravity. The outcome of this truncation is that any solution of the seven-dimensional

theory uplifts to a solution of massive IIA supergravity in ten dimensions. Working at
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the level of the supersymmetry variations, we have also showed that supersymmetry is

preserved in this process.

As an application of our result, we focused on RG flows in seven dimensions, which

in ten dimensions connect the AdS5 and AdS4 solutions of [22] and [23] to the AdS7
ones. Furthermore, AdS3 vacua in seven dimensions produce new N = 1 and N = 2

supersymmetric AdS3 solutions of massive IIA supergravity, dual to (0, 1) and (0, 2) SCFT’s

in two dimensions. This is an addition to the series of compactifications of the AdS7
backgrounds to five and four dimensions.

In [21] it was argued that the AdS7 solutions of massive IIA supergravity are the gravity

duals of six-dimensional (1, 0) SCFT’s, engineered by NS5-D6-D8-brane intersections [14,

15]. The universal character of the present truncation implies that supergravity in seven

dimensions describes a sector common to all these theories — including also the (2, 0)

theory itself, described by the original M-theory reduction of [30].

A similar “common sector” phenomenon is witnessed in five dimensions, where it

was found that for every AdS5 solutions of IIB there is a consistent truncation down to

minimal five-dimensional supergravity [39].9 In the same paper, it was conjectured that this

phenomenon should hold in any dimensions; our results prove their conjecture in dimension

seven. For certain internal manifolds, it is possible to excite more modes and get bigger

theories, e.g. for Sasaki-Einstein reductions [41].

Beyond this common sector, discerning finer differences between the CFT6’s would

require more sophisticated reduction procedures, where one keeps more internal modes.

These might be gravity modes, or they could come from the D6- and D8-branes which

are present in all the IIA vacua of [19, 20]. In both cases, one would end up coupling the

minimal theory to vector multiplets.10

Via the gauge/gravity duality, our work paves the way for a broader study of the afore-

mentioned six-dimensional field theories. Asymptotically locally anti-de Sitter solutions of

seven-dimensional gauged supergravity can probe regions away from the superconformal

fixed point. The Kaluza-Klein spectrum of the AdS7×M3 backgrounds, beyond the mass-

less modes, can be used to analyze the spectrum of the dual operators. Finally, since the

minimal seven-dimensional gauged supergravity can also be embedded in M-theory [30],

lessons learned from the more extensively studied AdS7/CFT6 correspondence stemming

from the dynamics of M5-branes can guide us in the study of its (1, 0) cousin in the massive

IIA theory.
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A Orthonormal frame and spin connection

We introduce the following orthonormal frame for the ten-dimensional metric (4.1):

eα = ℓ
1
2X− 1

4 eAẽα , e3 = ℓ
1
2X

5
4dr , (A.1)

e2 = ℓ
1
2X

5
4 ef sin θ(dψ +Kψ

i gAi) , e1 = ℓ
1
2X

5
4 ef (dθ +Kθ

i gAi) ,

where α = 0, . . . , 6 and ẽα is the orthonormal frame for ds27. Furthermore,

ef ≡ eA
1

4

√

1− x2

w
. (A.2)

The spin connection of the frame is

ωαβ = ω̃αβ −
1

2
e[αX−1∂β]X − 1

2
ℓ
1
2X

5
4 ef

(

sin θKψ
i gF i α

2 β e
2 +Kθ

i gF i α
2 β e

1
)

. (A.3a)

ω1
α = −5

4

X5(1− x2)− x2

w
X−1∂αX e1 +

1

2
ℓ
1
2X

5
4 efKθ

i gF i
2αβ e

β . (A.3b)

ω2
α = −5

4

X5(1− x2)− x2

w
X−1∂αX e2 +

1

2
ℓ
1
2X

5
4 ef sin θKψ

i gF i
2αβ e

β . (A.3c)

ω3
α = −ℓ−

1
2X− 5

4
dA

dr
eα +

5

4
X−1∂αX e3 . (A.3d)

ω1
2 =

1

sin θ

d

dψ

(

Kθ
i gAi

)

− cot θ ℓ−
1
2X− 5

4 e−f e2 . (A.3e)

ω1
3 = ℓ−

1
2X− 5

4
∂f

∂r
e1 . (A.3f)

ω2
3 = ℓ−

1
2X− 5

4
∂f

∂r
e2 . (A.3g)
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