Undefined 1 (2014) 1-5
10S Press

When Reactive Agents Are Not Enough:
Tactical Level Decisions in Pedestrian

Simulation

uca Crociani, Andrea Piazzoni, Giuseppe Vizzari * and Stefania Bandini
Luca C Andrea P G Vi * and Stef: Band

CSAI - Complex Systems & Artificial Intelligence Research Center,

University of Milano-Bicocca, Milano, Italy
E-mail: {name.surname} @unimib.it

Abstract. Pedestrian and crowd simulation is generally focused on operational level decisions, providing the choice of exact
steps of pedestrians in a representation of the environment, with the aim of replicating observed patterns of space utilization,
trajectories and timings. When relatively large environments are considered, though, tactical level decisions become equally
important: in general, multiple paths can be followed to reach a target from an entrance or starting point, and path length might
not be the only reasonable criterion. This paper presents a hybrid agent architecture for modeling different types of decisions in
a pedestrian simulation system, encompassing a floor-field based operational level (based on a “least effort” principle) and an
adaptive tactical level component, provided with a graph-like representation of the envornment, considering both perceived con-
gestion and characteristics of potential paths in the related decision. The model is experimented and evaluated both qualitatively
and quantitatively in benchmark scenarios to show its adequacy and expressiveness.
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1. Introduction

James A. Hendler, in a provocative letter from
the editor in an IEEE Intelligent Systems issue in
2007 [22], expressed his perception that results pro-
vided by this line of research were not up to the
initially raised expectations. Among the different re-
sponses this letter triggered, Peter Mc Burney and
Micheal Luck [28] indicated several successful cases
of application of agent technologies and, as already
pointed out in [27], they also noted that optimization
and simulation represent the primary application do-
mains of these approaches.

In most disciplines studying complex systems by
means of simulation, agent based approaches have in-
deed become a widespread choice, even though specif-
ically adopted models, mechanisms and technologies
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are not necessarily up-to-date or in line with the most
current results in the computer science and engineering
area about agent technologies [3].

The simulation of pedestrians and crowds is an ex-
ample of a consolidated but still lively research con-
text: both the automated analysis and the synthesis of
pedestrian and crowd behaviour, as well as attempts
to integrate these complementary and activities [35],
present open challenges and potential developments
in a smart environment perspective [30]. These chal-
lenges are not only related to technical or technologi-
cal issues, but they often lead to interdisciplinary ques-
tions on how to model human behaviour.

Even if we only consider choices and actions related
to walking, modelling human decision making activi-
ties and actions is a complicated task: different types
of decisions are taken at different levels of abstraction,
from path planning to the regulation of distance from
other pedestrians and obstacles present in the environ-
ment. Moreover, the measure of success and validity of
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a model is definitely not the optimality with respect to
some cost function, as in robotics, but the plausibility,
the adherence to data that can be acquired by means
of observations or experiments. Putting together facti-
cal and operational level decisions, often adopting dif-
ferent approaches (typically behaviour-based for op-
erational decisions, and at knowledge level for tacti-
cal ones) in a comprehensive framework preserving
and extending the validity that, thanks to recent exten-
sive observations and analyses (see, e.g., [9]), can be
achieved at the operational level represents an urgent
and significant open challenge.

This paper presents a hybrid agent architecture for
modeling different types of decisions in a pedestrian
simulation system. In particular, the present work fo-
cuses on factical level decisions that are essentially
related to the choice of a route to follow in an envi-
ronment comprising several rooms connected by open-
ings. These decisions are then enacted at the opera-
tional level by means of a floor-field based model, in
a discrete simulation approach. The described model
that integrates within an organised and comprehensive
framework different spatial representations, types of
knowledge and decision making mechanisms, allows
the agent taking decisions based on a static a-priori
knowledge of the environment and dynamic perceiv-
able information on the current level of crowdedness
of visible path alternatives.

The paper presents the relevant state of the art in the
following Section. The tactical level part of the model
is formally presented in Section 3 whereas its exper-
imental application in benchmark scenarios showing
the adequacy in providing adaptiveness to the contex-
tual situation is given in Section 4.

2. Related Works

The research on pedestrian dynamics is basically
growing on two lines. On the analysis side, literature
is producing methods for an automatic extraction of
pedestrian trajectories (e.g. [9,10]), charactertization
of pedestrian flows (e.g. [24]) automatic recognition
of pedestrian groups [33], recently gaining importance
due to differences in trajectories, walking speeds and
space utilization [5]. The synthesis side — where the
contributions of this work are concentrated — has been
even more prolific, starting from preliminary studies
and assumptions provided by [21] or [19] and lead-
ing to quite complex, yet not usually validated, mod-
els exploring components like panic [11] or other emo-

tional variables. To better understand the model pre-
sented in the next section, the following will provide
a brief description of related works on pedestrian dy-
namics modeling and simulation.

[32]' provides a well-known scheme to model the
pedestrian dynamics, describing 3 levels of behavior:

— Strategic level: the person formulates his/her ab-
stract plan and final objective motivating the over-
all decision to move (e.g. “I am going to the Uni-
versity today to follow my courses and meet my
friend Paul”);

— Tactical level: the set of activities to complete the
plan is computed and scheduled (e.g. “T am go-
ing to take the 8:00 AM train from station XYZ
then walk to the Department, then meet Paul at
the cafeteria after courses, then ...”);

— Operational level: each activity is physically ex-
ecuted, i.e., the person performs the movement
from his/her position to the current destination
(e.g. precise walking trajectory and timing, such
as a sequence of occupied cells and related turn in
a discrete spatial representation and simulation).

Most of the literature has been focussed on the re-
production of the physics of the system, so on the low-
est level, where a significant knowledge on the fun-
damental diagram achieved with different set of ex-
periments and in different environment settings (see,
e.g, [39,40]) allows a robust validation of the models.

Literature of this level can be classified regard-
ing the scope of the modeling approach. Macroscopic
models describe the earliest approach to pedestrian
modeling, based on analogies between behavior of
dense crowds and kinetic gas [21] or fluids [19], but
essentially abstracting the concept of individual. A mi-
croscopic approach is instead focused on modeling the
individual behavior, effectively improving the simula-
tions precision also in low density situations.

The microscopic approach is as well categorized in
two classes describing the representation of space and
movement: continuous models simulate the dynamics
by means of a force-based approach, which finds its
basis on the well-known social force model by [20].
These models design pedestrians as particles moved by
virtual forces, that drive them towards their destination
and let them avoid obstacles or other pedestrians. Lat-
est models in this class are the centrifugal force model
by [14] and the stride length adaptation model by [37].

A similar classification can be found in vehicular traffic model-
ing from [29].
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Other examples consider also groups of pedestrians by
means of attractive forces among persons inside the
group [31].

The usage of a discrete environment is mostly em-
ployed by the cellular automata (CA) based models,
and describes a less precise approach in the reproduc-
tion of individuals trajectories that, on the other side, is
significantly more efficient and still able to reproduce
realistic aggregated data. This class derives from ve-
hicular modeling and some models are direct adapta-
tions of traffic ones, describing the dynamics with ad
hoc rules (e.g. [7,8]). Other models employs the well-
know floor field approach from [12], where a static
floor field drives pedestrians towards a destination and
a dynamic floor field is used to generate a lane forma-
tion effect in bi-directional flow. [34] is an extension
of the floor field model, introducing the anticipation
floor field used to manage crossing trajectories and en-
courage the lane formation. [25] discussed methods to
deal with different speeds, in addition to the usage of a
finer grid discretization that decreases the error in the
reproduction of the environment, but significantly im-
pacts on the efficiency of the model. An alternative ap-
proach to represent different speeds in a discrete space
is given by [6]. [36] is another extension of the floor-
field model, where groups of pedestrians are also con-
sidered.

The tactical level has gained interest only recently
in the literature of pedestrian dynamics modeling and
simulation, despite its relevance for the simulation of
a realistic behavior (especially by thinking to evacu-
ation situations). Path planning algorithms have been
widely investigated and proposed in the field of com-
puter graphics and gaming by means of graph-based
methods (e.g. [16,17]), but with aims not necessarily
matching the requirements of pedestrian simulation,
since the point is mainly to reach a visual realism.

Relevant recent works, such as [18] and [38], start
exploring the implications of tactical level decisions
during evacuation. In particular, [18] modifies the
floor-field Cellular Automata approach for consider-
ing pedestrian choices not based on the shortest dis-
tance criterion but considering the impact of conges-
tion on travel time. [38] explores the implications of
four strategies for the route choice management, given
by the combination of applying the shortest or quick-
est path, with a local (i.e., minimize time to vacate
the room) or global (i.e., minimize overall travel time)
strategy. The global shortest path is calculated with the
well-known Floyd-Warshall algorithm, implying com-
putational times that can become an issue when a large

number of nodes is present or when special features
in the simulated population are considered (i.e. por-
tion of the path where the cost differs from an agent to
another). This paper proposes an alternative and effi-
cient approach to find a global path, where each agent
will be able to consider additional costs in sub-paths
without adding particular weight to the computation.

3. A Model for Tactical Level of Pedestrians

The model described in this work provides a method-
ology to deal with tactical choices of agents in pedes-
trian simulation systems. Due to constraints on the
length of the paper, the description of the part of the
model dedicated to the operational level, thoroughly
described in [4], will not be provided.

3.1. A Cognitive Representation of the Environment
for Static Tactical Choices

The framework that enables agents to perform
choices on their plan implies a graph-like, topologi-
cal, representation of the walkable space, whose cal-
culation is defined in [15] and briefly reported in this
section. This model allows agents to perform a static
path planning, since dynamical information such as
congestion is not considered in the graph. These ad-
ditional elements will be considered in the extension
that is presented in the next section which represents
the innovative part of this paper.

The environment abstraction identifies regions (e.g.
a room) as nodes of the labeled graph and openings
(e.g. a door) as edges. This so-called cognitive map is
computed starting from the information of the simu-
lation scenario, provided by the user and necessarily
containing: (i) the description of the walkable space,
that is, the size of the simulated environment and the
positions of obstacles and walls; (ii) the position of
final destinations (i.e. exits) and intermediate targets
(e.g. aticket machine); borders of the logical regions of
the environment that, together with the obstacles, will
define them. Approaches to automatically configure a
graph representation of the space, without any addi-
tional information by the user, have been already pro-
posed in the literature (e.g. [26]), but they are not lead-
ing to a cognitively logical description, i.e., a topolog-
ical map. A cognitive definition of the space allows, in
fact, a proper definition of portions of the environment
where, for example, the behavior of a person is system-
atically different (e.g. the change of speed profile in
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Fig. 1. An example environment (a) with the resulting cognitive map
(b), by applying the procedure from [15].

stairs or ramps), or that contain relevant intermediate
targets for the agent plan (e.g. a ticket machine).

The cognitive map is defined as a graph CM =
(V, &) generated with a procedure included in the floor
field diffusion, starting from the statements that each
user-defined opening generates a floor field from its
cells and spread only in the regions that it connects,
and that each region has a flag indicating its properties
among its cells. The floor fields diffusion procedure
iteratively adds to CM the couple of nodes found in
the diffusion (duplicates are avoided) and labeled with
the region id and the edge labeled with the id of the
opening. Each final destination, different from the nor-
mal openings since it resides in only one region, will
compose an edge linking the region to a special node
describing the external universe. Intermediate targets
will be mapped as attributes of its region node. An ex-
ample of environment together with the resulting cog-
nitive map is presented in Fig. 1.

To allow the calculation of the paths tree, that will
be described in the following section, functions Op(p)
and Dist(wy,ws) are introduced describing respec-
tively: the set of openings accessible from the region
p* and the distance between two openings linking the
same arbitrary region. While the first one is trivial and
outputs the edges linking p, the function Dist(wq,ws)

2Its Id, described in the label of the edge mapped to it.

describes the distance that will be perceived by agents
for their path planning calculation. To obtain a scalar
from the sets of cells associated to wy and ws, the value
of the floor field in their center cell is used, defined as:

Center) = (| =53] |22 ) @y e

jwl |l

The distance between w; and ws is then calculated
as the average between the floor field values in the two
center cells, i.e., the value of the floor field of w; in
Center(ws) and vice-versa.

3.2. Region classes

This model allows to assign a class to each region,
identifying different environments. This is particularly
important since a typical environment is composed of
different elements, such as stairs, halls, ramps and so
on. The behavior inside each of these classes is dif-
ferent: the speed is different and different agents may
have different preferences. Moreover, some regions
may also be one way, such as an escalator or a mo-
bile ramp, or imply different behaviors in regard to the
direction.

As an example, we have defined these classes:

— normal

— stair

— ramp

— escalator

— mobile ramp

These example are a combination of the different
aspects we have identified. Stairs and escalators may
be precluded to some agents, while ramps and mo-
bile ramps are accessible to everyone. Escalators and
mobile ramps are one way and have a constant speed,
while stairs and ramp can be undertaken in both direc-
tion, but maybe with different behavior. To identify the
direction of the classes, we can simply mark one (or
more) opening. For ramps and stairs the marked open-
ing will mean that the opening is at the top of the re-
gion. For escalators or mobile ramps it will describe
the direction.

3.3. Modeling Adaptive Tactical Decisions with A
Paths Tree

To enhance the route choice and enable dynamical,
adaptive decisions of the agents in an efficient way, a
new data structure has been introduced, containing in-
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formation about the cost of plausible paths towards the
exit from each region of the scenario.

Using the well-known Floyd-Warshall algorithm, in
fact, can solve the problem but introduces issues in
computational time: the introduction of dynamical el-
ements in the paths cost computation (i.e. congested
paths) implies a re-computation of the cost matrix un-
derlying the algorithm every step. More in details, the
penalty of a congested path is a subjective element for
the agents, since they are walking with different de-
sired velocities, thus the calculation cost increases also
with the number of agents.

The approach here proposed implies an off-line cal-
culation of the data-structure that we called paths tree,
but is computationally efficient during the simulation
and provides to the agents direct information about the
travel times describing each path. The method is de-
scribed in the following paragraphs.

3.3.1. The Paths Tree

We define the Paths Tree as a tree data-structure con-
taining the set of plausible paths towards a destination,
that will be its root. Before describing what we mean
with the attribute plausible, that can be seen as a fuzzy
concept, a general definition of path must be provided.

A path is defined as a finite sequence of openings
X —Y — ... — Z where the last element repre-
sents the final destination. It is easy to understand that
not every sequence of openings represents a path that
is walkable by an agent. Firstly, a path must be a se-
quence of consecutive oriented openings regarding the
physical space.

Definition 3.1 (Oriented opening). Let £ = Ry, R

be an opening linking the regions R; and Ry, (R1, E, Rs)

and (R, E, Ry) define the oriented representations of
b

An oriented opening will therefore describe a path
from an arbitrary position of the first region towards
the second one.

Definition 3.2 (Valid path). let C a sequence of ori-
ented openings X — ... — Z. Cis a valid path if and
only if:

- [Cl=1

- |C] = 2: by assuming C = X— > Y/, the third
element of the triple X must be equal to the first
element of Y

- |C| > 2: each sub-sequence S of consecutive
openings in C where | S| = 2 must be a valid path.

The last oriented opening in the path leads to the uni-
verse region.

Given a set of paths, the agent will consider only
complete paths towards its goal, starting from the re-
gion where the agent is located.

Definition 3.3 (Start and Destination of a path). Given
p apath (R1, E,R;) — ... = (R, O, universe), the
function RS(p) = Ry will return the region Ry where
an agent can start the path p. S(p) = E and D(p) = O
will respectively return the first opening (£) and the
destination (QO) of the path.

Definition 3.4. Let p a path, T(p) is the function which
return the expected travel time from the first opening
to the destination.

Tp)= Y

i€[l,|p|—1]

Dist(opening;, opening;1+1)

1
speed M

Another basic rule is that a path must be loop-free:
by assuming the aim to minimize the time to reach the
destination, a plan passing through a certain opening
more than once would be not plausible.

Definition 3.5 (opening loop constraint). A path X —
... — Z must not contain duplicated openings.

This will not imply that an agent cannot go through a
certain opening more than once during the simulation,
but this will happen only with a change of the agent
plan.

By assuming to have only convex regions in the sim-
ulated space, we could easily achieve the set of plau-
sible paths by extending 3.5 as to let a path not con-
taining duplicated regions. However, since the defini-
tion of region describes also rooms, concave regions
must be considered. Some paths may, thus, imply to
pass through another region and then return to the first
one to reduce the length of the path.

As we can see in Figure 2, both paths starts from
r1, go through 75, and then return to r;. However, only
the path represented by the continuous line is plausi-
ble, even if the constraint 3.5 is respected by both of
them. Before the definition of the constraint that iden-
tifies the correct paths, the concept of sub-path has to
be defined.

Definition 3.6 (Sub-path). Let p be a path, a sub-path
p’ of p is a sub-sequence of oriented openings denoted
as p’ C P which respects the order of appearance for
the openings in p, but the orientation of openings in p’
can differ from the orientation in p. p’ must be a valid
path.
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Fig. 2. A concave region can imply the plausibility of a path crossing
it twice, but its identification is not elementary.
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Fig. 3. The correct paths for this environment. Inside 72 the choice
between the two openings is also determined by the congestion.

The reason of the orientation change can be ex-
plained with the example in Fig. 3: given the path
p = (r1,02,72) — (rq,01,71) — universe, the
path p’ = (rg,09,71) — wuniverse is a valid path
and is considered as a sub-path of p, with a differ-
ent orientation of o,. In addition, given the path p; =
(ra,02,71) — universe, the path py = (r1,02,72) —
(ro,01,71) — universe is as well a minimal path if
and only if the travel time of py is less than p;. It is
easy to understand that this situation can emerge only
if r1 is concave. As we can see, the starting region of
the two paths is different, but the key element of the
rule is the position of the opening os. If this rule is ver-
ified in the center position of the opening os, this path
will be a considerable path by the agents surrounding
o2 inrl.

In Figure 3 the correct paths for this example envi-
ronment are shown. An agent located in 72 can reach
r1 and then the destination D using both openings con-
sidering the congestions. An agent located in r1 can go
directly to the exit or chose the path 02 — o1l — D.

Definition 3.7 (Minimal path). p is a minimal path if
and only if it is a valid path and Vp' C p : S(p') =
Se)AND@P') =D(p) = T{')>T(p)

The verification of this rule is a sufficient condition
for the opening loop constraint 3.5 and it solves the
problem on the region loop constraint independently
from the configuration of the environment (i.e. convex
or concave regions).

At this point the constraint that defines a minimal
path has been provided. This can be used to build the
complete set of minimal paths towards a destination
before running the simulation. It must be noted that
an arbitrary path represents a set of paths itself, since
it can be undertaken at any region it crosses. Indeed
every path p provides also information about the sub-
paths achieved by cutting the head of p with an arbi-
trary number of elements. So a minimal representation
of the set is a tree-like structure defined as:

Definition 3.8 (Paths tree). Given a set of minimal
paths towards a destination, the Paths-Tree is a tree
where the root represents the final destination and a
branch from every node to the root describes a mini-
mal path, crossing a set of openings (other nodes) and
regions (edges). Each node has an attribute describing
the expected travel time to the destination.

3.3.2. An Algorithm to Compute the Paths Tree

The algorithm we propose builds the the Paths Tree
in a recursive way, starting from a path containing only
the destination and adding nodes if and only if the gen-
erated path respects the definition of minimality.

Formally the Paths Tree is defined as PT = (N, E)
where N is the set of nodes and E the set of edges.
Each node n is defined as a triple (id, o, 7) where:

— td € N is the id of the node

— o0 € O is the name of the opening

- 7 € R* is the expected travel time for the path
described by the branch.

Each edge e is defined as a triple (p, ¢, ) where:

— p € O is the id of the parent

— ¢ € O is the id of the child

— r € R is the region connecting the child node to
its parent.

To allow a fast access to the nodes describing a path
that can be undertaken from a certain region, we added
a structure called M that maps each 7 in the list of
p: (p,e,r) € E (for every c).
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Given a destination D = (1., universe), the paths
tree computation is defined with the following proce-
dures.

Algorithm 1 Paths tree computation
1: add (0, D,0)to N
2: add 0 to M[ry]
3: Vs € O ShortestPath[s] < oo
4: expand region(0, D, 0, R, Shortest Path)

With the first line, the set N of nodes is initial-
ized with the destination of all paths in the tree, mark-
ing it with the id 0 and expected travel time 0. In the
third row the set of ShortestPath is initialized. This
will be used to track, for each branch, the expected
travel time for the shortest sub-path, given a start open-
ing s. ExpandRegion is the core element of the al-
gorithm, describing the recursive function which adds
new nodes and verifies the condition of minimality.
The procedure is described by Alg. 2.

Algorithm 2 ExpandRegion
Require: input
(parentld, parentName,
parentTime, RegionToExpand, Shortest Path)
1: expandList < )
2: opList =
parentName
3: for o € opList do
4: 1 = parentTime + —D(O’pa;;:eZName)
5. if CheckMin(ShortestPath,o,7) == True

parameters

Op(RegionToExpand) \

then
6: add (id,o,7) to N
7: add (parentld,id,r)to E
8: ShortestPath[o] « T
9: nextRegion = o\ r
10: add id to M [nextRegion]
11: add (id, o, 7, nextRegion) to expandList
122 end if
13: end for

14: for el € expandList do
15 ExpandRegion(el, Shortest Path)
16: end for

In line 2 a list of openings candidates is computed,
containing possible extensions of the path represented
by parentld. Selecting all the openings present in this
region (except for the one labeled as parentName)
will ensure that all paths eventually created respect the
validity constraint 3.2.

At this point, the minimality constraint 3.7 has to
be verified for each candidate, by means of the func-
tion C'heckMin explained by Alg. 3. Since this test
requires the expected travel time of the new path, this
has to be computed before. A failure in this test means
that the examined path — created by adding a child to
the node parentlId — will not be minimal. Otherwise,
the opening can be added and the extension procedure
can recursively continue.

In line 6, id is a new and unique value to identify the
node, which represents a path starting from the open-
ing o and with expected travel time 7; line 7 is the cre-
ation of the edge from the parent to the new node. In
line 8, ShortestPath|o] is updated with the new dis-
covered value 7. in line 9 the opening is examined as
a couple of region, selecting the one not considered
now. In fact, the element nextRegion represents the
region where is possible to undertake the new path.
In line 10 the ¢d of the starting opening is added to
M [nextRegion], i.e., the list of the paths which can
be undertaken from nextRegion. In line 11 the node
with his parameter is added to the list of the next ex-
pansions, which take place in line 13-14. This pas-
sage has to be done to ensure the correct update of
ShortestPath.

Algorithm 3 CheckMin
Require: input parameter (Shortest Path, o, T)
1. if ShortestPath[o] > T then
2 return True
3: else
4:  return False
5. end if

To understand how the constraint of minimality is
verified, two basical concepts of the procedure need
to be clarified. Firstly, the tree describes a set of paths
towards a unique destination, therefore given an arbi-
trary node n, the path described by the parent of n is
a subpath with a different starting node and leading to
the same destination. Furthermore, the expansion pro-
cedure implies that once reached a node of depth [, all
the nodes of its path having depth [ — &k, & > 0 have
been already expanded with all child nodes generating
other minimal paths.

Note that the variable Shortest Path is particularly
important since, given p the current path in evalua-
tion, it describes the minimum expected travel time to
reach the destination (i.e. the root of the tree) from
each opening already evaluated in previous expansions
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Fig. 4. Examples of surroundings of different sizes, for two configu-
rations of the environment.

of the branch. Thus, if 7 is less than Shortest Path|o],
the minimality constraint 3.7 is respected.

3.3.3. Congestion Evaluation

The explained approach of the paths tree provides
information on travel times implied by each path to-
wards a destination. By only using this information,
the choice of the agents will be still static, essentially
describing the shortest path. This may also lead to an
increase of the experienced travel times, since conges-
tion may emerge without being considered.

For the evaluation of congestion, we provide an ap-
proach that estimates, for each agent, the additional
time deriving by passing through a jam. The calcula-
tion considers two main aspects: the size of the eventu-
ally arisen congestion around an opening; the average
speed of the agents inside the congested area. Since the
measurement of the average speed depends on the un-
derlying model that describes the physical space and
movement of the agents, we avoid to explain this com-
ponent with full details, by only saying that the speed
is estimated with an additional grid counting the blocks
(i.e. when agents maintain positions at the end of the
step) in the surrounding area of each opening. The av-
erage number of blocks defines the probability to move
into the area per step, thus the speed of the agents in-
side. For the size of the area, our approach is to define a
minimum radius of the area and (i) to increase it when
the average speed becomes too low or (ii) to reduce it
when it returns normal.

As we can see in Figure 4, the presence of an ob-
stacle in the room is well managed by using floor field
while defining the area for a given radius. If a lot
of agents try to go through the same opening at the
same time, a congestion will arise, reducing the aver-
age speed and letting the area to increase its size. When
this one becomes too big and the farthest agents inside
are not slowed by the congestion, the average speed
will start increasing until the area re-sizing will stop.

During this measurement the average speed value
for each radius is stored. Values for sizes smaller than

the size of the area will be used by the agents inside it,
as it will be explained in the next section. Two func-
tions are introduced for the calculation:

— size(o): return the size of the congestion around
the opening

- averageSpeed(o, s): return the average speed es-
timated in the area of size s around the opening
0.

3.3.4. Agents Dynamical Path Choice
At this point we have defined which information an
agent will use to make its decision:

— the Paths Tree, computed before the simulation,
will be used as a list of possible path choice;

— the position of the agent, will be used to adjust
the expected travel time considering the distance
between the agent and the first opening of a path
(d(a,0));

— the information about congestion around each
opening, computed during the simulation, will be
used to estimate the delay introduced by each
opening in the path.

The agent, who knows in which region R, he is lo-
cated, can access the Paths Tree using the structure
MIR,]. The structure returns a list of nodes, each rep-
resenting the starting opening for each path. At this
point the agent can compute the expected travel time
to reach each starting opening and add it to the travel
time 7 of the path.

To consider congestion, the agent has to estimate the
delay introduced by each opening in a path, by firstly
obtaining the size of the jammed area.

size(o) ifd(a,0) > r(o)

sizeq(0) = d(a0)

@

otherwise

where size, (0) represents the estimate of the size of
the area o by agent a, which is related to the actual size
(size(0)) and the current position of the agent; more
precisely, if its distance from the opening is smaller
than the radius of the area (i.e. it is actually inside the
area) it will not consider the whole size of the conges-
tion but rather the remaining steps to the opening.

At this point, the agent can suppose that for the
length of the area it will travel at the average speed
around the opening.

sizeq(0) sizeq(0)
del = - 3
elay (o) averageSpeed(o)  speed, )
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where averageSpeed(o) is the average speed of
agents in the area around the opening and speed,, is
the desired walking speed of agent a.

If the agent is slower than the average speed around
an opening, the delay will be lower than 0. In this case
it is assumed that the delay is 0, implying that the con-
gestion will not increase his speed.

At this point the agent can estimate the delay intro-
duced by all openings.

pathDelay(p) = Z delay(o) 4)

oEp

This is an example of omniscient agents, since they
can always know the status of each opening. Another
option is to suppose that the agent can only see the state
of the opening located in the same region of the agent.
In this situation the agent must be able to remember
the state of the opening when it left a region, otherwise
the information used to estimate the travel time at each
time will not be consistent during the execution of the
plan.

d(a, S(p))

K =
ime(p) = T, + speed,

+pathDelay,(p) (5)

Where:

— 7, : the expected travel time of the path p
- W: the expected time to reach S(p) from the
peedq
position of the agent
- pathDelay,(p) : the estimation of the delay in-
troduced by each opening in the path, based on
the memory of the agent (which may or may not

be updated for each opening).
3.4. Agents classes

The previous model is general for each class of
agents defined by the speed parameter. To repre-
sent different classes of agents, we define a function
Speed(agentClass, regionClass, direction) which
will return the speed of the agent class inside the re-
gion of type regionClass, given the direction. It is es-
sentially a generalization of the value speed, used in
Equation 3.3.4.

For the experiments presented in this paper, three
classes of agents have been identified:

— normal: it is a normal agent, with no particular
preferences

— special: it is a special agent, with a low base
speed and which is slowed even more on stairs
and ramps

— selective: it is a selective agent, which deliber-
ately avoid stairs and escalator

Given the function Speed, a paths tree for each class
of agent is generated, by adapting the speed parameter
in the Function 1, given the room and the direction if
needed. In order to represent the selective agent, it is
sufficient to let the function Speed return 0 for the re-
gion the agent wants to avoid. In this way, the expected
travel time of the path will be infinite and this will not
be added to the tree, leading the agents to never choose
it. This approach can also be used to block the creation
of paths that do not respect the eventual direction con-
straint of certain regions: more in details, the function
Speed will return 0 also for the region of type escala-
tor if the direction of the expansion does not match its
direction.

4. Experiments and Analysis of the Model

In this section, first of all we will show the behav-
ior of various classes of simulated pedestrians, as ex-
plained in the previous section, in a simple environ-
ment that could represent an entrance to a building,
comprising a stair and a ramp that can be used by peo-
ple with mobility impairment. This structure is illus-
trated in Fig. 5(a). A flow of about 1000 persons pop-
ulates the scenario, with an arrival rate of about 1.5
persons/second and divided into the three classes with
a distribution of 60% normal, 20% special and 20%
region selective. Fig. 5 (c) and (d) show two frames
of the simulation where the agents of the three classes
have been visualized with different colors, respectively
red, green and blue. This approach automatically lets
the region selective agents (blue colored) choose the
ramp instead of the stairs.

By looking at the two pictures, the different behav-
ior of agents belonging to the diverse classes is clearly
understandable: while the stairs are component of the
tactical plan of the largest part of the normal and spe-
cial agents, none of the region selective pedestrians
employed them. This choice has been a-priori con-
strained with the paths tree computed for this agent
class, shown in Fig. 5(b), where the branch describing
the stairs path (the dashed one in the figure) has not
been added due to the “infinite” time that it would im-
ply (unless helped, a pedestrian with specific mobility
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Fig. 5. The qualitative test scenario (a), representing an entrance to a building with a small stair and a ramp for people with mobility impairments.
In (b) a “merge” between the paths tree dedicated to normal agents and for the region selective agents is shown. The dashed branch, passing
through the stairs region, appears only in the normal agents tree. Two screenshots of the simulation are shown in (c) and (d).

impairments would simply be unable to climb a stair).
On the other hand, the longer distance implied by the
usage of the ramp causes agents belonging to the other
classes to generally avoid it in favor of the stairs.

Due to the low densities arisen in the scene, the first
scenario does not show any sign of the adaptive agent
behavior at tactical level. The second scenario, instead,
focuses on this point to show the potential of the pro-
posed approach and the possibility to tune its mech-
anisms to vary the sensitivity of the agent dynamical
path re-calculation. This parameter influences the fre-
quency of recomputation of the path to be followed

due to changes in the perceived level of congestion in
the next opening: a high level of sensitivity will lead
to more frequent recomputation, potentially detecting
more quickly the opportunity to change a sub-optimal
plan but also potentially leading to higher computa-
tional costs and even excessive oscillations in agents’
decisions.

The second experiment proposes an evacuation in a
hypothetical scenario, simulated with a consistent in-
coming flow of people. A graphical representation of
the environment and flow configuration is depicted in
Fig. 6(a): it is a sample situation in which two flows
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Fig. 6. The environment (a) and respective paths tree (b) used for the second experiment. The traveling times written in the paths tree nodes refer

only to the normal agent class.

of pedestrians enter an area with six exits, distributed
among 3 equal rooms, at a rate of 10 pedestrians per
second. Only agents of the normal class will be used.
An important peculiarity is the slightly asymmetrical
configuration of the environment, that causes shorter
distances towards the three southern exits. This is re-
flected by the illustrated paths tree in Fig. 6(b) where,
to give an example, the paths starting from o4 and 05
and leading out through o2 take a little more time than
the ones going out by using 07. As we will see, this
slight asymmetry would significantly affect the results
of the simulations but we will start by analysing and
characterising the effect of the adaptive mechanism for
path selection at tactical level, compared to a baseline
shorter distance choice strategy. In particular, the re-
sults of this comparison concern the evolution of the
number of pedestrians still in the scenario at a give
time, shown in Figure 7(a), and the evolution of travel
time for pedestrians entering the simulation environ-
ment at a given time, shown in Figure 7(b). The first di-
agram, highlights the fact that when pedestrian agents
only choose their paths according to the covered dis-
tance, the so-called “least effort” principle, in this sit-
uation they actually employ much more time to va-
cate the area, since they do not exploit some trajec-
tories that are sub-optimal from the point of view of
the distance to be covered, but much more appealing
since they represent “the road not taken”, with very lit-
tle congestion. Analogously, the evolution of the av-
erage travel time during the simulation shows that, in
this situation, congestion has a much lower impact on
adaptive agents with an awareness of the spatial rep-
resentation of the environment, as long as the environ-

ment offers alternatives that are not subject to conges-
tion.

The above mentioned diagrams are surely impor-
tant in quantitatively estimating the overall impact of
this adaptive choice strategy, and they can represent a
first way of validating it should actual data about the
evacuation of a building presenting suitable character-
istics were available. However, these metrics are too
aggregated to actually illustrate the actual spatial util-
isation of the environment by the pedestrians. Cumu-
lative mean density maps [13]® were also acquired to
describe in a quali-quantitative way the behaviour of
adaptive agents and they are shown in Fig. 8.

In particular, the diagrams show results of two sim-
ulations in which two different adaptive tactical level
choice strategies have been adopted. First of all, it must
be noted that all exits are used, although with a dif-
ferent frequency, whereas the static shortest path route
choice would have selected just four exits. Moreover,
northern and southern exits are generally chosen al-
most equally by the agents, despite the slight differ-
ence in the actual distance, due to the above introduce
asymmetry. This is due to the fact that a random er-
ror of £10% has been added to the overall calculation
of the traveling time Time(p) in order to consider the
fact that pedestrians do not have an exact estimation
of distances and delays caused by perceived conges-
tion, in a more commonsense spatial reasoning frame-
work [2]. The different adopted strategies consider a
different triggering condition for the re-computation of

3These heat maps describe the mean local density value in each
cell. It is calculated in a time window of 50 steps where, at each step,
only values of occupied cells are collected.
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Fig. 7. A diagram showing the evolution in time (step number) of the number of pedestrians still in the scenario (a) and a graph showing the
evolution of travel time for pedestrians entering the simulation environment at a given time (b).

the travel times: agents, in fact, must reconsider their
choices in the light of the perceived contextual con-
ditions. For instance, an agent chooses an exit in the
middle room because the closest one is congested only
to realise, later on, that also the chose one is crowded.
We decided to set a congestion threshold for not recon-
sidering an agent’s choice: if the perceived congestion
on the next step of plan does not overcome this thresh-
old, the agent will continue with the planned course
of actions. The first row of Figure 8 shows the evo-
lution of the system with a relatively low threshold,
and therefore a high sensitivity to congestion, and a
lower sensitivity to congestion respectively in the top

and bottom rows. The differences are relatively small,
and they do not lead to significant changes in the aver-
age travel time, but we can see here that route adapta-
tion is enacted a little later in case of low sensitivity to
congestion, leading to a slightly higher congestion in
the adopted exits.

As a concluding test, we investigated the increase in
the computational times of the proposed approach, by
simulating the 3-rooms environment above described
with a population of 400 agents. In order to achieve
comparable results, we configured two simulation sce-
narios: (i) a baseline scenario where the agents are not
dynamically re-computing their plan, preserving the
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one that they computed at their generation; (ii) a sce-
nario where the agents are re-computing their plan at
every step, in order to find a possible upper bound for
the computational times derived by our approach. The
simulations have been run in a desktop computer with
a Intel Xeon processor at 2.53 GHz and 6 GB of RAM.
The results are shown in Fig. 9. It is possible to see that
the two series have a similar trend, meaning that the
given approach is increasing the computational times
in a linear way. At 400 agents, in the worst case sce-
nario the computational times are increased of 20%
from the baseline. Naturally, during a normal simu-
lation the agent plan re-computation is not executed
at every step (and the frequency of the operation is
related to the sensitivity parameter discussed above),
therefore in a standard simulation the overall execution
times are expected to be quite closer to the baseline. In
addition, it must be noted that no parallel implementa-
tions have been explored at the moment, and that they
will be considered in the context of future works.

5. Conclusions
The paper has presented a hybrid agent architec-

ture for modeling tactical level decisions, related to the
choice of a route to follow in an environment compris-

3
W o [Wela]

(a) steps 150-200, (b) steps 300-350, (c) steps 450-500,
high high high

(d) steps 150-200, (e) steps 300-350, (f) steps 450-500,
low low low

Fig. 8. The test scenario respectively with a high and low sensitivity
of the agents for the plan re-computation.

ing several rooms connected by openings, integrated
with a validated operational level model, employing
a floor-field based approach. The described model al-
lows the agent taking decisions based on a static a-
priori knowledge of the environment and dynamic per-
ceivable information on the current level of crowded-
ness of visible path alternatives. The model was ex-
perimented in benchmark scenarios showing the ade-
quacy in providing adaptiveness to the contextual situ-
ation. The future works, on one hand, are mainly aimed
at defining requirements and an approach for the val-
idation of the results achieved through the model: al-
though we have an intuition that human agents adapt
their behaviour to avoid heavily congested trajecto-
ries when obvious better alternatives are present (a
phenomenology supported by the presented model),
to which extent human choices are actually closer to
optimality is object of ongoing interdisciplinary re-
searches. This goal represents therefore an open chal-
lenge, since there are no comprehensive data sets on
human tactical level decisions and automatic acquisi-
tion of this kind of data from video cameras is still a
challenging task [23]. Even the mentioned [38], like
most works on this topic, just explores the different al-
ternatives that can be generated with distinct model-
ing choices, whereas a constrained form of validation
was described in [1], although reported data are not
sufficient for a quantitative cross validation of our ap-
proach. On the other hand, the addition of specific area
actions (e.g. wait after reaching a certain point of inter-
est indicated by a marker) and events (e.g. the arrival of
a train) triggering agents’ actions and, more generally,
allowing the elaboration of more complicated agents’
plans is also a planned extension on the side of model
expressiveness.
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