
Künstliche Intelligenz manuscript No.
(will be inserted by the editor)

SATPin
Axiom Pinpointing for Lightweight Description Logics through Incremental SAT

Norbert Manthey · Rafael Peñaloza · Sebastian Rudolph

Received: date / Accepted: date

Abstract One approach to axiom pinpointing (AP) in

description logics is its reduction to the enumeration of

minimal unsatisfiable subformulas, allowing for the de-

ployment of highly optimized methods from SAT solv-

ing. Exploiting the properties of AP, we further opti-

mize incremental SAT solving, resulting in speedups of

several orders of magnitude: through persistent incre-

mental solving the solver state is updated lazily when

adding clauses or assumptions. This adaptation consis-

tently improves the runtime of the tool by an average

factor of 3.8, and a maximum of 38. SATPin, our sys-

tem, was tested over large biomedical ontologies and

performed competitively.

Keywords Pinpointing · SAT · Description Logics

1 Introduction

Axiom pinpointing (AP) is the task of identifying on-

tology axioms responsible for a logical consequence. It

is used to understand and correct modeling errors in

very large ontologies. For example, the 2007 version of

Snomed incorrectly implied that amputations of finger

were amputations of arm. Automated AP tools helped

identify the 6 axioms (from ∼300, 000) causing this er-

ror (Baader and Suntisrivaraporn, 2008) and change

the modelling strategy followed by the developers of

Snomed, to avoid causing it again (Baader et al, 2009).

AP has numerous applications, e.g. in context-based,

N. Manthey · S. Rudolph
Technische Universität Dresden, Germany
E-mail: nmanthey@conp-solutions.com
E-mail: sebastian.rudolph@tu-dresden.de

R. Peñaloza
University of Milano-Bicocca, Italy
E-mail: rafael.penaloza@unimib.it

error-tolerant reasoning (Baader et al, 2012; Ludwig

and Peñaloza, 2014), and reasoning with probabilities,

preferences, and provenance (Ceylan and Peñaloza, 2014;

Riguzzi et al, 2015; Schenk et al, 2009).

For EL+ (Baader et al, 2005), Sebastiani and Vescovi

reduce AP to propositional minimal unsatisfiable sub-

formula enumeration, exploiting SAT developments (e.g.,

clause learning, two-watched-literal data structure) to

build efficient AP systems. We build on this idea and

identify new enumeration optimizations based on the

specific shape of the propositional formula constructed.

Incremental SAT solving, partial restarts, and an im-

proved search space pruning strategy can considerably

increase the efficiency of AP. While search-space prun-

ing via clause learning is known in SAT, it has never

been used for AP. Partial restarts are also used in SAT,

but not for consecutive calls to a SAT solver in incre-

mental SAT solving. We introduce persistent incremen-

tal solving, a lazy approach preserving relevant infor-

mation between runs, which has applications way be-

yond AP. We also use assumption prefetching, which

modifies the testing order of the assumption literals

aiming detecting conflicts earlier. Our Minisat-based

SATPin system uses these optimizations. Experiments

show that SATPin is efficient for AP over large in-

puts. We compare SATPin and its modified Minisat

to other state-of-the-art SAT solvers via the IPASIR in-

terface observing that IPASIR solvers cannot keep up

with the partial restart modification from SATPin.

2 Enumerating MinAs with SAT Technology

We assume familiarity with description logics (DLs) and

SAT. A DL ontology is a set of axioms in a given syntax,

and a consequence is a statement which can be logically

Norbert Manthey et al.

derived from this ontology. EL+ axioms are C v D or

r v s with C,D EL concepts, and s, t role names. For

the ontology O and consequence c, a MinA is a mini-

mal (w.r.t. set inclusion) subset of O from which c still

follows. Axiom pinpointing is the task of finding all Mi-

nAs. A similar problem exists in SAT. A CNF formula

is a set of clauses. A MUS for an unsatisfiable formula

is a minimal unsatisfiable subformula. Partitioning the

formula into sets of clauses, a group-MUS is a minimal

union of partitions which is unsatisfiable. One is in-

terested in enumerating all group-MUSes (Liffiton and

Malik, 2013; Previti and Marques-Silva, 2013).

AP on EL+ is reducible to all-group-MUS enumera-

tion (Sebastiani and Vescovi, 2009). The approach con-

structs a Horn formula whose variables correspond to

axioms or consequences from an ontology, and whose

clauses represent derivation steps in a reasoning algo-

rithm. This formula together with the negated conse-

quence is used as one partition, while new clauses con-

taining variables for the original axioms are added as

singleton partitions called assumption variables. Hence,

the results from all-group-MUS enumeration correspond

to the MinAs from the ontology. For example, for the

ontology A v B,A v C,B v D,B u C v D,C v E

and the consequence A v D, the approach builds the

formula F and query literal:

¬xAvB ∨ ¬xBvD ∨ xAvD,

¬xAvB ∨ ¬xAvC ∨ ¬xBuCvD ∨ xAvD,

¬xAvC ∨ ¬xCvE ∨ xAvE , ¬xAvD

and assumptions xAvB , xAvC , xBvD, xBuCvD, xCvE .

A group-MUS is F∪{¬xAvD, xAvB , xBvD} correspond-

ing to the MinA {A v B,B v D}.
Henceforth, φ is the negation of φ. SATPin uses a

novel enumerator as a CDCL-based SAT solver. An in-

ner solver finds models (conjunctions of literals) of a for-

mula using the assumption variables, starting from true.
If a model I is found, I is added to the formula, and a

new model is searched. Each model is a MinA candidate

which is sent to an outer solver to verify that F ∪I falsi-

fies the query literal. For compactness, we add only the

decision literals of I; all others are implicit. Repetitions

are avoided through the clause R for each MinA R. The

enumeration incrementally adds the variables of the last

MinA to the solver as a clause. Previous clauses remain

valid: candidates are not enumerated twice and known

MinAs are not repeated. Fig. 1 shows the basic design:

an inner enumerator based on Minisat1 or an IPASIR

solver (Balyo et al, 2016), which implements strategies

for finding new MinA candidates, and an outer solver

for verifying candidates. The details are explained next.

1 https://github.com/niklasso/minisat

Inner Enumerator
or IPASIR

Outer Solver

MinA

next
candidate

HST

clause learning

add inverse solution

add new decision clause

assumption reordering

partial restart

incremental solving

assumption prefetching

Ontology; query MinAs
In Out

Fig. 1: The basic architecture of SATPin.

Combining hitting-set-tree (HST) enumeration with

clause learning is not trivial, as propagation and learned

clauses may fast-forward the HST enumeration, skip-

ping necessary combinations and resulting in unseen

MinAs. An HST-like behaviour is kept via a new deci-

sion heuristic. A stack keeps found solutions and the de-

cision heuristic systematically picks decision literals not

contained in previous MinAs. As this becomes costly

for many and large MinAs, we add a fallback option to

the standard variable state independent decaying sum

(VSIDS) (Moskewicz et al, 2001) decision heuristic from

Minisat for candidate enumeration; triggered after a

given number of MinAs have been found. To ensure that

all future violating sets are different, a clause requires

at least one new decision variable. This also ensures

that a literal is removed from all new candidates.

Candidate Enumeration Minisat enumerates models

of a formula “densely,” requiring the variables in the

formula to be numbered by the first n natural num-

bers. We map the variables appearing at some MinA to

a smaller set. Minisat generates models over this re-

duced set of variables only, which are turned into can-

didates through the reverse mapping.

Incremental Solving The incremental solving process

from Minisat was modified so that restarts do not

jump to decision level 0 of the outer solver as com-

monly done, but only to the level where the last as-

sumption was used as a decision variable. This keeps

many decision levels and limits the propagation needed

to re-generate the trail of the solver at the next call.

Assumption Prefetching An early refined cores strat-

egy (Manthey, 2015) aborts a search if unit propagation

causes a conflict on an assumption-only decision level.

As the only assumption literal which can be falsified is

the query literal q, we test if q is falsified before each

search decision. Our solver always places this literal as

the last assumption. Assumption prefetching is applied

when a decision literal is chosen based on assumptions.

If an assumption is the next decision literal, we check

whether q is falsified. If so, we alter the order of the

assumption literals and move q to become the next as-

sumption literal. Thus, many assumption literals can

be skipped. As a side effect, found conflicts (MinA can-

SATPin

didates) are smaller. As it is hard to predict which as-

sumption literal should be checked before each decision,

this is usually not used by generic SAT solvers.

IPASIR Different solvers can be used for the candidate

validation via the reentrant incremental SAT solver API

(IPASIR): an IPASIR solver is initialized with the for-

mula; next, Minisat calls are replaced by forwarding

assumptions to the solver, calling its search routine,

and copying the model and conflict information back

into the SATPin data structures. The integration of

IPASIR solvers allows for an improved performance, by

the use of state-of-the-art solvers. However, it intro-

duces a communication overhead, as all assumptions

must be sent at each call. When the internal Minisat,

which does not support generic calls, is used, only local

changes to internal data structures are needed, saving

several computation steps.

3 Persistent Incremental SAT Solving

During the entailment check, all literals x ∈ X are ap-

plied. Depending on the ontology, X can be very large

but the relevant literals V may be much fewer; the en-

coding of NCI contains 46,800 literals (Table 1), but

V contains only 0.09% of the literals. For each imply

check, the remaining 99.91% literals could be dismissed

immediately. Instead of initializing a consistent set of

assumptions M as the empty set, we initialize M = T

to the set of (currently) irrelevant literals, as explained

later. This is sound, since (F ∧ T) 6→ q, where F is the

formula. Theoretically, this optimization improves the

algorithm by several orders of magnitude making the
difference between solvability and infeasibility.

Incremental SAT solvers reset the internal interpre-

tation of the solver after each call. We implemented per-

sistent incremental solving (PIS) in Minisat’s solve

method as part of the model search. The closest related

work is partial restarts with matching trails (van der

Tak et al, 2011). SATPin updates the set M . The incre-

mental SAT call finds either a conflict w.r.t. the current

assumptions, or a model. A conflict implies the presence

of a new MinA, which updates the relevant literals V

and adds the conflict clause to the solver to avoid repe-

titions. When keeping the current partial interpretation

in the solver, the new clause is still falsified; it is a con-

flict. An invariant on the solver state is that at least one

literal of each clause added to a watch list is falsified.

To avoid unit propagation triggering from single literal

satisfaction, we jump back to free at least two literals.

This decision takes into account that multiple clauses

may be added during incremental SAT solving, and unit

propagation and adding clauses might take turns.

If a model is found, all assumptions can be set with-

out a conflict after unit propagation, and a new set

of assumptions is given to the solver. To minimize the

change, the new assumptions maximize the common

prefix; that is, as many of the previous assumptions as

possible are preserved in the same order. SATPin keeps

all stable literals in the prefix, preserving their order as

well as possible: we store all relevant literals V that

change at the back.

As the truth value assignment may change with each

call, regardless of the satisfiability of the previous re-

sult, assumptions are stored in two lists. Literals ap-

pearing in some MinA are in the list of mutating literals

V , and the remaining literals form the list T . Literals

can only move from T to V . To quickly extract the lit-

erals of T , for each w ∈ T we store the position pw of w.

When removing the literal w, we erase w from T , and

move the very last literal w′ still appearing in T to the

position pw, updating the position information for w′:

pw′ = pw. For all updates, we save the smallest chang-

ing position. Before the next call to the SAT solver, we

reset this decision.

For Minisat-based solvers this idea works because

each assumption literal creates a new decision level.2

After jumping back, new assumptions replace the cur-

rent ones without extra care; the algorithm ensures that

the prefix of the two lists of literals remains the same.

After a satisfiable call, only the literals in V change,

and the full saving applies. For unsatisfiable calls, our

algorithm might jump back fully, as the first literal in

V might have been part of the current MinA and no

prefix can be preserved.

The idea of persistent incremental calls can be easily

adopted by any incremental solver which: (i) does not

clear the trail after the search ends; (ii) integrates new

clauses after ensuring there are two literals that are not

falsified; and (iii) when being called with a new set of as-

sumptions, reuses the common prefix. In SATPin, the

integration is tightly coupled with model enumeration.

For use cases of incremental SAT solving like hardware

model checking via IC3, this may have a great effect as

well: many, mostly cheap, calls to SAT solvers are per-

formed. Software model checking can also rely on in-

cremental search with many assumption variables. The

same is true for other applications such as Satisfiabil-

ity Modulo Theory (SMT) solving or MUS extraction.

Their final effectiveness depends the number of calls to

the solver (the higher, the better), the size of the com-

mon assumption prefix among calls (the higher, the bet-

ter), and the simplicity of each call to the SAT solver

(the simpler or fewer conflicts per call, the better).

2 Even if the assumption literal is already satisfied.

Norbert Manthey et al.

Table 1: Structure of the translation of ontologies

GO NCI FullGalen NotGalen

Axioms (|X|) 20,466 46,800 36,544 4,379
Variables 237,389 338,380 2,729,734 125,193
Clauses 294,782 342,825 3,844,125 148,103

We implemented these modifications into SATPin

and Riss (Manthey, 2014), to compare the performance

with and without PIS. Our SATPin implementation3

uses Minisat 2.2. The data used for the analysis is at

https://doi.org/10.5281/zenodo.3739095.

4 Experimental Evaluation

We ran SATPin on four well-known EL+ biomedical

ontologies, typically used as benchmarks for DL rea-

soners in the context of AP: the Gene Ontology (GO),

NCI, the EL+ version of FullGalen, and NotGalen.

These benchmarks, originally designed by Sebastiani

and Vescovi, have since been used for testing AP in

EL+. Computations ran with a 3 hour timeout on an In-

tel Xeon CPU at 2.6GHz and a memory limit of 6.5GB.

We compare the performance of SATPin with dif-

ferent back-ends and optimizations, to identify which

components improve efficiency, and test if recent SAT

reasoners outperform Minisat. Cryptominisat is the

default IPASIR solver. The back-ends are either the in-

ternal, fully accessible Minisat, other solvers used in

the incremental track of the most recent SAT Competi-

tion, or the modified Riss. From the optimizations we

enabled and disabled PIS and conflict minimization in

all four possible combinations. We added a switch from

HST-tree based model candidate enumeration to the

usual search based candidate enumeration after a given

amount of violating sets—in our case 30—was found,

to check whether the complexity constraint of the HST-

based implementation is a bottle neck. All other enu-

meration techniques from Section 2 are always enabled.

Ontologies were transformed to a Horn formula by

el2sat all (Sebastiani and Vescovi, 2009). Table 1 shows

the properties of these ontologies and their translations;

the number of axioms in the original ontology is the

number of selection variables used by SATPin. For each

ontology, we computed all MinAs for 100 different con-

sequences as designed by Sebastiani and Vescovi (2015):

50 randomly chosen, and the 50 whose query variable

appears most often in the translated formula, which is

a proxy for having the most MinAs.4

3 https://github.com/conp-solutions/satpin
4 The original design included the much larger Snomed.

We were unable to match the version and the test cases used

Fig. 2: Cactus plot comparing the overall behaviour of

seven different solvers on instances with only one MinA.

1

100

10000

0 50 100 150Instance 	

T
im

e
(s

)

SATPin+IPASIR
SATPin
SATPinMaxClauses30
SATPin−noPIS+IPASIR
SATPin−noPIS
cryptominisat4MaxClauses30−nominimal
cryptominisat4−nomodelClauses

Previous work (Manthey et al, 2016) sets SATPin

as a competitive AP tool with performance differences

noticeable at very large and hard instances. Since then,

BEACON (Arif et al, 2016) and PULi (Kazakov and

Skocovský, 2018) emerged. A comparison between all

tools is beyond the scope of this paper, which focuses

on the optimizations of SATPin. Our experiments are

designed to evaluate the need of these optimisations,

and the overall effect of PIS.

Hypothesis 1 For the class of simple problems with

only one MinA, runtime does not differ significantly.

All solvers need warm-up time for loading the formula

and initialization, specially for large formulas. With

only one MinA, the overall runtime is small, and the

number of calls to the solver, along their savings, are

limited by the size of that MinA; improving a solver by a

constant factor per call does not pay off in these cases.

Only 3 of 13 variants tested solved all the instances

with one MinA, and even within those solved, most

solvers show a few outliers taking over 3,000s. Ignoring

these, all systems behave almost identically, suggesting

that the increased runtime is caused by external factors.

Fig. 2 shows a cactus plot for the results by five variants

of SATPin with different optimizations, and the two

best IPASIR variants; the vertical axis uses a logarith-

mic scale. The behaviour of other variants tested was

similar to the latter two. The three solvers that found

all answers (SATPin, SATPin with maximal model

clauses—SATPinMaxClauses30, and SATPin without

PIS—SATPin-noPIS) behave similarly overall, but the

latter is slightly slower in all instances, suggesting that

PIS is useful even for simple cases.

Considering all instances, the variant with maxi-

mal model clauses shows an improvement, answering

an open question by Manthey et al (2016): after 30

MinAs, the candidate enumeration algorithm switches

from HST based enumeration to plain SAT search. The

by Sebastiani and Vescovi and hence do not consider it in our
tests. Still, our results are robust across ontologies.

SATPin

Fig. 3: Runtime comparison of configurations of

SATPin with Riss

1

100

10000

0 100 200 300 400
Instance

T
im

e
(s

)

RISSnoRefC−noPIS
RISSnoRefC
RISS−noPIS
RISS
SATPin

latter is much quicker (at the cost of a few more SAT

solver calls) saving considerable runtime. Since most

benchmarks have 30 MinAs or less, they are not af-

fected by this option, and both configurations behave

identically. The cases with a few MinAs are relevant; in

fact, 178 of the 400 instances have one MinA. Still, for

larger ontologies, limiting the HST algorithm may have

a more significant impact, and should be considered.

Another question is whether using PIS on a recent

SAT solver via IPASIR improves performance. We linked

Riss to SATPin via IPASIR implementing PIS as a

generic method to test whether our improvement for in-

cremental solving meets the expectations. Fig. 3 shows

the runtimes of SATPin with Riss, and plain SATPin,

where the vertical axis uses a logarithmic scale. Besides

toggling PIS in Riss, we considered the reverse con-

flict refinement (RCR) from Riss, which is applied to

conflict clauses generated by incremental solving.

Runtime differences for PIS are minimal, but RCR

significantly improves it. A huge gap between SATPin

and Riss is seen, which increases with the runtime spent

for a problem. A part of the explanation why PIS is

not effective with IPASIR is that the number of calls

to the solver increases and problems with larger formu-

las tend to be harder. More calls with more assumption

literals introduce communication overhead to IPASIR,

forwarding all assumptions to Riss, while SATPin just

modifies a small subset. With RCR enabled, the number

of violating sets of Riss equals the number of MinAs.

Other violating sets contain redundant variables which

are taken into account during the candidate enumera-

tion phase of SATPin, explaining the improved solver

runtime.

Hypothesis 2 PIS speedup increases with the number

of calls to the solver, the number of assumption literals

per call, the ratio of variables in MinAs to all assump-

tion variables, and the number and size of MinAs.

PIS saves work at each call, as only a small part of

all variable assignments is considered for finding an an-

swer. This avoids different kinds of steps like: generat-

Fig. 4: Runtime of SATPin with and without PIS,

w.r.t. MinA number (dot size) and average size (color)

1

100

10,000

0.1 1 10 100log time with PIS

lo
g

tim
e

w
ith

ou
t P

IS

5

10

15

Mean MinA Size

#MinAs

10
20
30

ing decision literals from assumptions, traversing their

watch lists to check for further propagation, and mov-

ing watched clauses to other watch lists, where a clause

may be checked multiple times. Hence multiple instruc-

tions and memory reads and writes are saved. As more

calls are performed, more steps are saved more often.

When the number of assumptions is small, e.g. in the

order of 100 literals, saving even 99% of the work is

not big enough to make the saving per call significant,

even when multiplied with a high number of calls. How-

ever, when the number of assumption literals grows (e.g.

comparing 100, 000 vs. 1, 000 steps) the effect becomes

noticeable. Similarly, the percentage of steps saved per

call should be high for the effect to be meaningful; if

e.g., only 5% of the steps is saved per call, the ben-

efits could be potentially countered by a better data

structure, but saving 95% of the work makes each call

to the solver significantly faster, resulting in a notice-

able effect overall. The percentage of savings is directly

related to the set of relevant literals V in our algo-

rithm, as PIS keeps the prefix of the assumptions sta-

ble. The number of calls to the solver is proportional to

the number of MinAs. As multiple MinAs lead to more

variables involved in them,5 the relevant set of liter-

als also increases in the presence of new results. This

should decrease the speedup, as it reduces the number

of saved steps in successive calls. Indeed, the possible

combinations of truth assignments to the literals in V

increases exponentially, and so does the number of calls

to the solver. Similarly, if MinAs are larger, the number

of possible combinations to be checked with the solver

grows faster than with fewer variables.

Our experiments show that the differences between

using PIS or not are more pronounced as more restarts

are made, and depend on the number of MinAs and

their average size (Fig. 4). For points closer to the di-

agonal (with moderate speedup) the size of the point

is also small, whereas the data points in the top half of

the diagram become bigger signalling a correlation.

5 New MinAs may contain previously unseen variables.

Norbert Manthey et al.

5 Conclusions

SATPin exploits highly optimized SAT algorithms and

data structures for efficient AP in EL+. Our approach is

based on the construction of a Horn formula encoding

the completion-based procedure for atomic subsump-

tion. The methods proposed generalize to any ontology

language with consequence-based reasoning algorithms

(Peñaloza et al, 2017). Once the propositional formula

is obtained, all optimizations apply.

We present persistent incremental SAT solving (PIS),

which is as lazy as possible during two consecutive SAT

calls. The main goal of PIS is to preserve the state of

an incremental solver by: not resetting all decisions on

each call; integrating added clauses into the watch data

structures by minimal jump backs where two literals

can be watched without propagation; and resetting to

the matching prefix of the previous and current assump-

tion list. As SATPin relies on a special purpose SAT

solver, we added assumption prefetching, to check the

truth value of a dedicated assumption literal before con-

sidering other assumptions.

Empirically, not using PIS significantly degraded

performance, even when exchanging Minisat with re-

cent IPASIR-based solvers. This performance degrada-

tion may be due to SATPin making many simple SAT

calls, with many assumption literals, where most of

the assumptions stay static between calls. We observed

empirically that the performance of SATPin degrades

as the number and size of the MinAs increases. Other

solvers suffer from a harder slowdown under these con-

ditions. To avoid this degradation, we change the enu-

meration strategy after many MinAs have been found.

Acknowledgements We thank ZIH at TU Dresden for the
computational resources for the evaluation. S. Rudolph is sup-
ported by the European Research Council (ERC) Consolida-
tor Grant 771779 A Grand Unified Theory of Decidability in
Logic-Based Knowledge Representation (DeciGUT).

References

Arif MF, Menćıa C, Ignatiev A, Manthey N, Peñaloza

R, Marques-Silva J (2016) BEACON: an efficient sat-

based tool for debugging EL+ ontologies. In: Proc. of

SAT 2016, Springer, LNCS, vol 9710, pp 521–530

Baader F, Suntisrivaraporn B (2008) Debugging

SNOMED CT using axiom pinpointing in the de-

scription logic EL+. In: Proc. of KR-MED’08,

CEUR-WS, vol 410

Baader F, Brandt S, Lutz C (2005) Pushing the EL
envelope. In: Proc. IJCAI-05, Morgan-Kaufmann

Baader F, Schulz S, Spackmann K, Suntisrivaraporn B

(2009) How should parthood relations be expressed

in SNOMED CT? In: Proc. of OBML 2009

Baader F, Knechtel M, Peñaloza R (2012) Context-

dependent views to axioms and consequences of se-

mantic web ontologies. J of Web Sem 12–13:22–40

Balyo T, Biere A, Iser M, Sinz C (2016) {SAT} race

2015. Artificial Intelligence 241:45–65

Ceylan II, Peñaloza R (2014) The Bayesian Description

Logic BEL. In: Proc. of IJCAR’14, Springer, LNCS,

vol 8562, pp 480–494

Kazakov Y, Skocovský P (2018) Enumerating justifi-

cations using resolution. In: Proc. of IJCAR 2018,

Springer, LNCS, vol 10900, pp 609–626

Liffiton MH, Malik A (2013) Enumerating infeasibility:

Finding multiple MUSes quickly. In: Integration of

AI and OR Techniques in Constraint Programming

for Combinatorial Optimization Problems, Springer,

LNCS, vol 7874, pp 160–175

Ludwig M, Peñaloza R (2014) Error-tolerant reason-

ing in the description logic el. In: Proc. of JELIA’14,

Springer, LNAI, vol 8761, pp 107–121

Manthey N (2014) Riss 4.27. In: Proc. of SAT Comp.

2014, University of Helsinki, Department of CS Series

of Publications B, vol B-2014-2, pp 65–67

Manthey N (2015) Refining unsatisfiable cores in incre-

mental SAT solving. Tech. rep., TU Dresden

Manthey N, Peñaloza R, Rudolph S (2016) Efficient

axiom pinpointing in EL using SAT technology. In:

Proc. of DL 2016, CEUR Ws, vol 1577

Moskewicz MW, Madigan CF, Zhao Y, Zhang L, Malik

S (2001) Chaff: Engineering an efficient SAT solver.

In: Proc. DAC 2001, ACM, pp 530–535

Peñaloza R, Menćıa C, Ignatiev A, Marques-Silva J

(2017) Lean kernels in description logics. In: Proc.

ESWC 2017, Springer, LNCS, vol 10249, pp 518–533

Previti A, Marques-Silva J (2013) Partial MUS enumer-

ation. In: Proc. of 27th AAAI, AAAI Press

Riguzzi F, Bellodi E, Lamma E, Zese R (2015) Prob-

abilistic description logics under the distribution se-

mantics. SWJ

Schenk S, Dividino R, Staab S (2009) Reasoning with

provenance, trust and all that other meta knowlege

in OWL. In: SWPM, CEUR-WS.org, CEUR, vol 526

Sebastiani R, Vescovi M (2009) Axiom pinpointing in

lightweight description logics via Horn-SAT encod-

ing and conflict analysis. In: Proc. of 22nd CADE,

Springer, LNCS, vol 5663, pp 84–99

Sebastiani R, Vescovi M (2015) Axiom pinpointing in

large EL+ ontologies via SAT and SMT techniques.

Tech. Rep. DISI-15-010, University of Trento, Italy

van der Tak P, Ramos A, Heule M (2011) Reusing the

assignment trail in CDCL solvers. JSAT 7(4):133–138

