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Abstract 

Photosynthesis is the key process sustaining life on Earth. Accurate prediction of the dynamics of 

CO2 exchange between terrestrial vegetation and atmosphere through photosynthesis is crucial 

for prediction of functioning of Earth’s system. The efficiency of photosynthesis under varying 

environmental conditions is maintained by fast-responding regulatory mechanisms, namely 

chlorophyll a fluorescence emission (F) and non-photochemical quenching (NPQ). These 

processes help to dissipate the excess of energy absorbed by photosynthetic pigments not used 

for photochemistry. F is an electromagnetic radiation emitted at longer wavelengths (640-850 

nm) than for excitation. NPQ is a complex process which includes the de-epoxidation of 

xanthophyll cycle pigments resulting in dissipation of excess energy as heat. This translates into 

changes in leaf absorbance at 531 nm, which can be detected with the photochemical reflectance 

index (PRI). Proximal sensing is a powerful tool for exploitation of subtle signals related to the 

downregulation of photosynthesis by means of high-spectral and high-temporal resolution 

spectral measurements. However, F and PRI are also influenced by canopy structural and 

biochemical properties, illumination conditions and solar-view geometry, and its explicit 

interpretation is still challenging. 

The aim of my Ph.D. project was to exploit the methods of proximal sensing of vegetation to 

elucidate a link between continuous hyperspectral measurements of optical indicators related to 

plant physiology (F and PRI) and vegetation functioning. Despite rapid proliferation of high-

resolution spectroradiometers and increasing interest towards exploitation of time series of F 

and PRI, a lot of work remains to be done before these optical signals can be accurately 

interpreted to unambiguously represent the physiological processes occurring inside a 

photosynthetic machinery. In the thesis, I focused on using multi-angular observations and high 

spectral and temporal resolution times series of F and PRI – both modelled and experimentally 

acquired. 

Multi-angular measurements were used to characterize the anisotropic response of far-red (F760), 

red (F687) fluorescence and PRI and to ultimately evaluate the impact of the viewing geometry on 

these signals under varying solar geometry and structural and biochemical canopy properties. I 

present an extensive experimental dataset of multi-angular measurements of F, PRI and R 

collected during a day at canopy-level with a high-resolution spectrometer (FloX, JB 

Hyperspectral Devices UG, Germany) over four different vegetation targets: Mediterranean 

grassland, alfalfa, chickpea and rice. Based on the characteristic angular distribution of F and PRI 

obtained in the several azimuthal planes (Solar Principle Plane, Cross Principle Plane and the 

intermediate planes) and varying view zenith angles (VZAs), directional responses of F760, F687 and 

PRI in horizontally homogeneous canopies are characterized by increased values in the 

backscatter direction with a maximum in the hotspot and decreased values in the forward scatter 

direction. Radiative transfer theory and observations agree that the shape of F and PRI angular 

response is mostly controlled by leaf inclination distribution function (LIDF), while a magnitude 

and shape of the hotspot peak is sensitive to a combination of factors - leaf area index (LAI) and 

the ratio of leaf width to canopy height. Quantitative evaluation of the impact of anisotropy on 
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fluorescence apparent yields (Fy*760 and Fy*687) showed, that, on average, off-nadir observations 

were overestimated by 20-67% in the backscatter direction and underestimated in other 

directions by 10-45%. The archived results reinforce the importance of maintaining nadir 

observation geometry for continuous measurements of F and PRI. Moreover, full 

characterization of F and PRI anisotropy based on ground-based multi-angular observations can 

be useful for validation of practical approaches aimed at normalization of directional 

observations to standard viewing geometry, which can be potentially applied to data acquired a 

coarser spatial resolution (i.e. airborne, satellite data). 

Additional complexity for the interpretation of time series of optical signal lies in time-scale 

dependant vegetation dynamics. Here I test the applicability of highly-adaptive time series 

decomposition technique Singular Spectrum Analysis (SSA) for disentangling slow and fast 

varying components of vegetation dynamics in time series of F760, Fy*760 and PRI. First, the proof 

of concept was developed based on spectral and flux half-hourly time series realistically 

simulated with the Soil Canopy Observation of Photochemistry and Energy fluxes (SCOPE) model 

parameterized to reproduce the spectral behaviour of a Mediterranean grassland. The 

simulations included two outputs - featuring and excluding the effect of the xanthophyll cycle de-

epoxidation and fluorescence efficiency amplification factor on PRI and F760, respectively. The 

decomposed slow varying SSA-components of total PRI, F760 and Fy*760 showed a good 

correlation with reference constitutive variability simulated excluding the effect of physiological 

modulation (PRI0 , F0,760, Fy*0,760). The accuracy of disentangled fast varying SSA-components was 

validated with the reference physiologically-induced variables (∆PRI, ∆F), and NPQ and light-use 

efficiency (LUE). Then, the application of this methodology on a field dataset of spectral and flux 

time series collected in winter wheat field allowed to significantly improve the correlation of fast 

components of F760 and PRI with the fast component of LUE in comparison with original time 

series. Therefore, SSA-based approach is a promising tool for decoupling physiological 

information from continuous measurements of optical signal which can foster the use of 

automated proximal sensing systems.  

Overall, the findings of this project emphasize the importance of careful consideration of the 

effects of confounding factors on optical signals linked to plant physiological activity. The 

approach of decoupling slow and fast variability in time series of F and PRI developed here can 

be potentially applied to time series of remote sensing data acquired from different platforms.
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1. Introduction 

1.1. Plant Traits and Ecosystem Functional Properties 

Over the last decades, especially under the threat of climate change and increasing pressure 

imposed by human activities, scientific community has been focused on advancing the 

understanding of interactions between climate and biosphere, mediated by human interventions 

(Arneth et al., 2010; Heimann & Reichstein, 2008). Terrestrial ecosystem functioning, and land-

atmosphere interactions are influenced by the increasing pressure of these changes, therefore, it is 

important to improve the predictions of biogeochemical cycles of terrestrial ecosystems and 

ultimately predict the impact on resultant ecosystem service provision. Environmental disturbances 

translate into modifications of ecosystem functioning properties (EFPs) via the change in the 

representation of plant traits (PTs) (Lavorel & Garnier, 2002). PTs are the morphological, anatomical, 

physiological, biochemical and phenological characteristics of an individual plant (Violle et al., 2007). 

EFPs are defined by Reichstein et al., 2014 as ecosystem-scale quantities “derived from flux and 

biometric observations, which allow a better characterization and understanding of the ecosystem”. 

These are often analogous to leaf-level properties, such as water and light-use efficiency (Knauer et 

al., 2018), light-use efficiency, or light-saturated photosynthetic CO2 uptake (Kergoat, Lafont, 

Arneth, Le Dantec, & Saugier, 2008; Musavi et al., 2016), or related to physical and ecohydrological 

characteristics important for land surface – atmosphere interaction (e.g. aerodynamic and surface 

conductance, albedo, evaporative fraction). Using complementary information of PTs and EFPs, one 

can infer variations in key terrestrial ecosystems processes, such as photosynthesis, respiration, and 

evapotranspiration (Musavi et al., 2015). 

1.2. Remote sensing of Plant Traits and Ecosystem Functional Properties 

Hyperspectral remote sensing (RS) offers great potential to retrieve PTs and EFPs at spatial scales 

ranging from leaf and canopy up to ecosystem and global scales, as well as to improve the temporal 

resolution of the retrieval of vegetation properties. The physical principles behind RS of vegetation 

are determined by the three main physical mechanisms: absorption, reflection, and transmission of 

incident radiation (Roelofsen, van Bodegom, Kooistra, & Witte, 2014). Most of the characteristic 

spectral features of green vegetation are located in the optical domain of the solar radiation (i.e. 

between 400 and 2500 nm). Reflectance (R) spectra of a green leaf is generally characterized by: 1) 

strong absorption by photosynthetic pigments in the visible domain (VIS, 400-700 nm), 2) strong R 

in the near infrared domain (NIR, 700-1300 nm), 3) and water absorption in the shortwave infrared 

(SWIR, 1300 – 2500 nm). Top of the canopy (TOC) R is determined by the radiative transfer of leaf-

level reflected radiance within a leaf and then between canopy elements and background. Mainly, 

TOC R is affected by canopy structure (e.g. leaf area index, LAI; leaves orientation), but also by solar-

view geometry (directional effects). In RS community, considerable efforts have been made to 

develop methods for minimizing the confounding effects imposed by solar-view geometry (e.g. 

Knyazikhin et al., 2013), however, it is still a challenging task. Alternatively, an integrating approach 

of spectro-directional RS (Schaepman, 2007) can be exploited for combined use of spectral and 
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directional information for minimizing the directional effects on the one hand, and for maximizing 

the accuracy of the retrieval of the vegetation traits of interest, on the other hand. 

RS can provide information on PTs related to biochemical, structural and functional parameters 

(Homolová, Malenovský, Clevers, García-Santos, & Schaepman, 2013). Traits commonly retrieved 

with remote and proximal sensing include chlorophyll and nitrogen content (e.g. Knyazikhin et al., 

2013), water content (e.g. Colombo et al., 2008), LAI (e.g. Zheng and Moskal, 2009), leaf mass per 

leaf area (LMA) and specific leaf area (SLA) (e.g. Asner et al., 2011), phenology transition date (e.g. 

Zhang et al., 2003) and species richness (e.g. Rocchini et al., 2010). RS observations were also proved 

useful for inferring functional aspects of the ecosystem (EFPs). Following the model proposed by 

(Monteith, 1972) gross primary production (GPP) (i.e. assimilation of CO2) can be expressed as a 

product of photosynthetically active radiation absorbed by chlorophyll (aPARCab) and light-use 

efficiency factor (LUE): 

 𝐺𝑃𝑃 = 𝑃𝐴𝑅 × 𝑓𝑎𝑃𝐴𝑅𝐶𝑎𝑏 × 𝐿𝑈𝐸 (1) 

where aPARCab is a product of photosynthetically active radiation (PAR) (incoming light between 400 

and 700 nm) and the fraction of the photosynthetically active radiation absorbed by chlorophyll 

(faPARCab). faPARCab can be determined from RS observations using reflectance-based vegetation 

indices (VIs), exploiting the red and near-infrared bands in Normalized Difference Vegetation Index, 

NDVI (Tucker, 1979). In a seasonally dynamic biomes (broadleaf forests, grasslands, croplands) VIs 

have been successfully used to track GPP, where aPAR largely explains the variability in 

photosynthesis (Running et al., 2004). While aPAR provides insights into structural control on GPP, 

LUE represents physiological control on GPP under varying environmental conditions. Temporarily 

resolved estimations of photosynthetic dynamics affected by short-term stress conditions occurring 

before the degradation of chlorophylls or the monitoring of GPP in evergreen vegetation (Wong & 

Gamon, 2015) are only possible with accurate estimations of LUE. 

1.3. Optical indicators of plant physiological activity 

During the process of photosynthesis, plants aim to assimilate a maximum amount of CO2 and 

produce maximum energy in favourable environmental conditions. There are two main stages 

involved in this process: light reactions and dark reactions. Light reactions involve the absorption of 

PAR by photosynthetic pigments. Most of the aPAR is moved from the antenna complexes to the 

reaction centres of photosystem I (PSI) and photosystem II (PSII) (P700 and P680, respectively), 

where specialized pigment-protein complexes able to convert the excitation energy into chemical 

energy. These two photosystems are present in higher plants and act in reverse order, moving 

electrons from PSII to PSI in a series of reactions that form the Linear Electron Transport (LET) 

(Porcar-Castell et al., 2014). Dark reactions are characterised by the carbon fixation and production 

of sugars from atmospheric CO2. Environmental conditions (light, water availability, temperature) 

influence these two types of reactions differently and, therefore, the production of chemical energy 

and its consumption by the carbon reactions do not always conform. Plants evolved different 

mechanisms to maintain the balance in energy distribution. In fact, absorbed solar light can follow 



3 | Introduction 

 

three alternative pathways: 1) photochemical quenching (PQ), where the excitation energy is used 

for photosynthesis; 2) chlorophyll a fluorescence (F), where the energy is re-emitted at longer 

wavelengths (640-850 nm) than for excitation; and 3) non-photochemical quenching (NPQ), where 

the energy is dissipated as heat (Butler, 1978) (Figure 1). NPQ and F help keeping the energy balance 

of the light-absorbing complexes (the photosystems) stable, minimizing the chance of formation of 

harmful reactive species (e.g. Barber and Andersson, 1992). In particular, NPQ and F help dissipating 

the excess aPAR that is not used for PQ. 

 

Figure 1. Distribution of absorbed light in a leaf: photochemical quenching, energy dissipation as 

heat (NPQ) and chlorophyll fluorescence (modified from Gamon, 2015). 

PQ, NPQ and F emission are linked to each other in a complex way, particularly under stress caused 

by abiotic (water deficit, extremely high temperatures, toxic substances) and biotic (species types, 

photosynthetic capacities) environmental factors. Under low light unstressed conditions, absorbed 

energy is efficiently used for photochemistry. With the increase of the incoming light energy, the 

carbon fixation centres become light saturated, which results in increased dissipation of aPAR in 

form of NPQ and F. However, a quantitative general relationship between these three processes is 

hard to establish since each component is highly dependent on physiological properties. 

F emission spectrum is characterized by two peaks at approximately 685 nm (red region) and 740 

nm (far-red region). The two photosystems contribute differently to F signal: PSI emits F mostly in 

the far-red region, while PSII contributes to the emission in both the red and far-red regions. 

Originally, F was explored with active methods based on Pulse Amplitude Modulated (PAM) 

fluorometry (Baker, 2008). PAM technique involves the use of a measuring light and saturating light 

and provides a measure of the relative chlorophyll fluorescence quantum yield (ϕf) (van Der Tol, 

Berry, Campbell, & Rascher, 2014). Based on the highly cited study of Genty et al., 1989, 

photochemical yield (ϕp) can be calculated from fluorescence PAM metrics, and, subsequently, 

photosynthetic electron transport rate can be estimated. Therefore, PAM fluorometry allowed to 

study the correlation between fluorescence signal and CO2 assimilation in situ. However, active 
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fluorometry is mostly restricted to leaf-level observations, while for the monitoring of canopy- and 

ecosystem level photosynthetic activity remote sensing methods are required. 

Passive methods based on retrieval of solar-induced chlorophyll fluorescence (SIF) have been 

extensively explored during the last decades (Meroni et al., 2009; Mohammed et al., 2019) and are 

commonly employed on the canopy-level and above. Although SIF is a weak signal, comprising only 

1-5% of the reflected radiation, its contribution can be detected by high spectral resolution sensors. 

The underlying principle in retrieving TOC SIF in observation direction (hereafter F) relies on the 

exploitation of the regions of the spectrum where the incoming radiation reaching vegetation is low. 

These include the absorption features: Solar Fraunhofer Lines, where the Sun emission is lower, e.g. 

the hydrogen absorption band (Hα, 656 nm); and the two telluric oxygen absorption features in the 

Earth atmosphere – O2B (centred at 687 nm) and O2A (centred at 760 nm). Consequently, the faint 

F signal can be passively estimated by infilling the absorption features, measuring the extent to 

which the “wells” are filled with F relative to the reference value. However, the width of the 

absorption features is a function of illumination conditions, the proportion of direct/diffuse 

incoming radiation, sun zenith angle, and view geometry. Thus, these conditions have to be properly 

considered to enable accurate retrievals (e.g. Cendrero-Mateo et al., 2019). 

The two main methodologies developed for F estimation from high-spectral resolution ground 

measurements are the Fraunhofer Line Depth (FLD) and the Spectral Fitting Method (SFM). The FLD 

method proposed in Plascyk, 1975 and Plascyk and Gabriel, 1975 is the basis of radiance-based 

approaches. It is simple as it only requires measurements in two adjacent spectral bands: one inside 

and one outside the absorption feature. The FLD principle assumes that R and F remain constant in 

the two immediately adjacent measured narrow bands. However, this assumption has been 

questioned by many researchers (e.g. Alonso et al., 2008; Meroni and Colombo, 2006). Overall, the 

performance of FLD methods is influenced by the band position, the spectral resolution of the 

instrument, and the absorption feature characteristics, which are the function of the illumination 

and observation geometry, as the strength of the atmospheric absorption is related to the 

atmospheric path length. SFM estimates R and F by spectral curve fitting, based on the assumption 

that the spectral variations of R and F in the defined spectral range can be described by polynomial 

or other mathematical functions (Meroni and Colombo, 2006, Meroni et al., 2010). An optimised 

SFM algorithm (Cogliati, Verhoef, et al., 2015) offers F detection at both O2 absorption bands with 

high spectral resolution. Furthermore, the authors extended the SFM approach over the entire 

fluorescence spectral region introducing SpecFit algorithm (Cogliati et al., 2019). 

In the last years, F has been fruitfully used to derive information on photosynthetic activity using 

ground-based platforms (Yang et al., 2015; Cogliati et al., 2015a; Rossini et al., 2016; Campbell et 

al., 2019) unmanned aerial vehicles (UAVs) (Zarco-Tejada et al., 2012; Garzonio et al., 2017; Quirós 

Vargas et al., 2020), airborne (Rascher et al., 2015; Sun et al., 2018; Colombo et al., 2018; Celesti et 

al., 2018; Tagliabue et al., 2019) and satellite (He et al., 2020; Köhler, Guanter, Kobayashi, Walther, 

& Yang, 2018; Sun et al., 2018) platforms. 
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Following the framework of light-use efficiency model (Monteith, 1972), F can be defined as a 

function of aPARCab, fluorescence quantum efficiency (ϕf) and fluorescence escape probability (fesc) 

(e.g. Lee et al., 2013): 

 𝐹 =  𝑃𝐴𝑅 × 𝑓𝑎𝑃𝐴𝑅𝐶𝑎𝑏 × 𝜙𝑓 × 𝑓𝑒𝑠𝑐 (2) 

F emitted by all leaves is then propagated inside the canopy encountering complex processes of 

scattering, reabsorption, and re-emission. In particular, F in the red region is highly reabsorbed 

inside the leaf and the canopy, and potentially re-used for feeding the photosynthetic machinery, 

while F in the far-red is less reabsorbed and highly scattered (Gitelson et al.,1999) Therefore, a 

resultant TOC F signal captured by a sensor is significantly modified by the two terms of the equation 

(2) – faPARCab and fesc (Guanter et al., 2014) – which are driven by canopy structural (e.g. LAI) and 

biochemical (e.g. chlorophyll content, Cab) properties. Significant efforts have been made to 

estimate fesc using near-infrared R metrics (Yang and van der Tol, 2018; Zeng et al., 2019), and to 

identify controlling structural parameters affecting fesc (Migliavacca et al., 2017; Martini et al., 2019). 

However, those methods are not yet universally adopted, and alternative approaches in 

disentangling variability driven by structural parameters and physiology in TOC F signal should be 

developed. 

A variety of data acquisition levels (from tower-based observations to spaceborne platforms), a 

diversity of target ecosystems and differences in adopted F metrics indicate that there is an 

emerging interest in this topic. However, in order to improve the understanding of the link between 

F and GPP and/or LUE, the dynamics of NPQ and its influence on photochemistry and F should be 

considered (Porcar-Castell et al., 2014; Frankenberg and Berry, 2018). 

During the energy-dependant mechanism of NPQ, when aPAR exceeds the capacity of the 

photosynthetic reactions, xanthophyll cycle pigments adjust the energy distribution in the 

photosynthetic reaction centre resulting in dissipation of excess energy as heat (Demmig-Adams & 

Adams, 1992). The pigment changes associated with xanthophyll cycle de-epoxidation state (Figure 

1) affect R at 531 nm. Based on this, the Photochemical Reflectance Index (PRI), derived from 

reflectance at 531 nm and a reference wavelength (typically 570 nm) has been proposed as an 

indicator of xanthophyll cycle activity and photosynthetic LUE (Gamon, Peñuelas, & Field, 1992). 

The link between PRI and LUE was observed for a number of species from proximal (e.g. Filella et 

al., 1996; Zhang et al., 2015; Alonso et al., 2017), airborne (Rossini et al., 2013; Soudani et al., 2014; 

Schickling et al., 2016; Middleton et al., 2017) and spaceborne sensors (Drolet et al., 2005; Garbulsky 

et al., 2013; Stagakis et al., 2014; Middleton et al., 2016). However, PRI is also influenced by 

seasonally changing chlorophyll-carotenoid ratios, which corresponds to constitutive variability of 

PRI (Gamon & Berry, 2012). Both changing pigment pools and xanthophyll cycle activity contribute 

to photoprotection, but they operate over different timescales and their relative contribution to PRI 

signal has often been unclear. Understanding and disentangling the effects of these factors on 

different scales is necessary to interpret the PRI dynamics. 
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1.4. Rationale and research gaps 

The Fluorescence EXplorer (FLEX) mission, selected as the European Space Agency’s eighth Earth 

Explorer and planned for launch by 2022, aims to globally measure the F emission from terrestrial 

vegetation (Drusch et al., 2017). FLEX will, for the first time, enable the terrestrial observation of 

photosynthesis using an emitted radiance. An advantage of F over traditional reflectance-based 

methods is its capacity to serve as a pre-visual indicator of stress effects before damage is 

irreversible and detectable through reflectance measurements. Combining use of F, surface 

temperature and measurements of changes in the reflectance spectrum associated with NPQ and 

detectable with PRI will reduce the uncertainty in the quantification of photosynthetic rates. 

Within a framework of the FLEX mission, ground-based network of automated proximal sensing 

systems have been established to gain knowledge about a link between F and R and photosynthesis 

at canopy scale before these can be upscaled to satellite level (Aasen et al., 2019). These systems 

are often installed at research station featuring eddy covariance towers and other auxiliary 

measurements (e.g. Hyytiälä (Zhang et al., 2019) and Majadas de Tiétar (Migliavacca et al., 2017)). 

Continuous spectral measurements of high temporal resolution in conjunction with flux 

observations can bring insights into both vegetation long-term slow changes, associated with 

phenology, as well as vegetation functioning associated with short-term stress events (e.g. 

heatwaves, Wohlfahrt et al., 2018)). Another level of complexity is introduced by solar-view 

geometry. On the one hand, solar angles change at diurnal and yearly time scales, and on the other 

hand, viewing geometry also deviate from nadir in some tower-based set-ups (e.g. Wohlfahrt et al., 

2018; Yang et al., 2017). The sensitivity of F and PRI solar-view geometry implies difficulties for the 

interpretation of data acquired in different locations with different viewing geometry. There have 

been several initiatives aimed at standardizing acquisition protocols (e.g. EUROSPEC and OPTIMISE 

COST action (Balzarolo et al., 2011; Pacheco-Labrador et al., 2019)). However, for an accurate 

interpretation of the time series of spectral data, directional effects imposed both on R and F should 

be considered. While there are studies aimed at characterization of anisotropic response using 

multi-angular observations of PRI (Hall et al., 2008; Hall et al., 2011; Hilker et al., 2008; Hilker et al., 

2010a; Hilker et al., 2011; Middleton et al., 2009a; Zhang et al., 2015; Zhang et al., 2017; Hilker et 

al., 2010b; Middleton et al., 2009b; Middleton et al., 2012; Cheng et al., 2010, Cheng et al., 2012) 

and F (Liu, Liu, Wang, & Zhang, 2016; Elizabeth M. Middleton et al., 2012; Pinto et al., 2017) 

individually, these have not been explored together aiming to identify the effects of canopy 

structural properties on the peculiarities of their directional responses. Moreover, the accurate 

characterization of the directional response is needed for the development of the practical and 

physically-based approaches (e.g. based on near-infrared reflectance of vegetation (NIRv) and 

kernel-driven models) for normalizing directional F to a standard viewing geometry. 

In order to elucidate a link between spectral observations and photosynthetic rates, it is necessary 

to develop a robust method for disentangling physiologically relevant information from F and PRI 

time series. A common approach to extract pigments-driven slow variability of PRI (PRI0) is based on 

measurements of dark-adapted leaves or estimation of PRI0 as an intercept of the relationship 

between PRI and PAR (e.g. Hmimina et al., 2014). Fluorescence physiological emission is usually 
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either approximated by fluorescence apparent yield (Fy*=F/PAR) or retrieved through RTM 

inversions (e.g. Celesti et al., 2018). Time series of optical signals related to plant physiology are 

affected by processes acting at different time scales - physiological modulation of photosynthesis is 

mostly associated with short-term stress events, while pigment pools and canopy structure varies 

at seasonal scale. Thus, it is promising to test applicability of spectral-domain time series analysis 

methods, such as, for example, Fourier Transform, Empirical Mode Decomposition (Huang et al., 

1996), Wavelet Analysis, Singular Spectrum Analysis (Golyandina, Nekrutkin, & Zhigljavsky, 2001). 

These techniques have been successfully applied to extract time-dependant information from time 

series of climatic data (e.g. Ghil et al., 2002), and CO2 fluxes (e.g. Mahecha et al., 2007), however 

have not been tested on the time series of spectral data. Therefore, it is important to exploit 

potential of spectral time series analysis, which can expand the applicability of continuous spectral 

measurements towards accurate estimation of EFPs. 

1.5. Objectives 

The aim of this Ph.D. project was to exploit proximal sensing data to elucidate a link between 

continuous hyperspectral measurements of physiological optical signals and vegetation functioning. 

To reach this aim I addressed the following specific objectives: 

• to investigate the directional response of F and PRI and its correlation with R combining field 

data and radiative transfer simulations with the Soil-Canopy Observation of Photochemistry 

and Energy fluxes (SCOPE) model (van Der Tol, Verhoef, Timmermans, Verhoef, & Su, 2009) 

(Part 1); 

• to evaluate the impact of the viewing geometry on the time series of spectral measurements 

of F and PRI and to provide recommendations on geometrical configuration of optical 

measurement systems for deployment on flux towers (Part 1); 

• to test the potential of data adaptive time series decomposition method – Singular Spectrum 

Analysis (SSA) - to decouple fast variability, attributed to physiological status, and slow 

variability, attributed to seasonally changing structural and biochemical vegetation 

properties, of F and PRI in half-hourly SCOPE-simulated time series (Part 2); 

• to apply the SSA approach to real spectral data (Part 2).  

1.6. Thesis outline 

This Ph.D. thesis is organised in two parts, each one presented with its own introduction, material 

and methods, results, discussion, and conclusions. The analyses presented in this thesis are based 

on the field multi-angular data collected over four different vegetation targets in Mediterranean 

grassland (Majadas de Tiétar, Spain) and agricultural field of alfalfa, chickpea and rice (Braccagni, 

Italy), ground-based high temporal resolution time series coupled with fluxes observations in winter 

wheat field (Gebesee, Germany), and SCOPE simulations parameterised with the canopy structural 

traits and meteorological data from Majadas de Tiétar research site. 

In Part 1, I present an extensive dataset of multi-angular measurements of F, PRI and R collected 

with FloX system (JB Hyperspectral Devices UG, Germany) coupled with a goniometer device 

allowing to collect measurements with a 5° increment in view zenith and azimuth angles (VZA, VAA). 
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Spectral measurements were collected during a day in the Solar Principal Plane (SPP), Cross Principle 

Plane (CPP) and intermediate planes. I investigated the effects of canopy structural and biochemical 

parameters (LAI, LIDF, Cab) on the directional response of red (F687) and far-red (F760) fluorescence, 

fluorescence apparent yields (Fy*760 and Fy*687), PRI and R. Further, I discuss the implications for 

the ground measurements and provide recommendation for optimal setup for continuous 

measurements of F and PRI. 

In Part 2, I present a proof of concept of the decoupling of slow and fast temporal dynamics with 

SSA in time series of physiological optical signals using one year of SCOPE simulated time-series. The 

evaluation of the methodology was based on the two SCOPE runs – with and without the effect of 

the xanthophyll cycle de-epoxidation on leaf absorptance simulated with Fluspect-CX module of 

SCOPE (Vilfan et al., 2018). Similarly, TOC F was simulated featuring and excluding fluorescence 

efficiency amplification factor (ϕ’f). Therefore, this allowed to evaluate the SSA-decomposition of 

PRI, F and Fy*760 against the reference physiologically induced variables (∆PRI, ∆F) and baseline 

variables excluding the effect of physiological modulation (PRI0 , F0,760, Fy*0,760). Further, I provide 

plausible results on the correlation between fast SSA-component extracted from PRI, F760  and Fy*760 

with LUE. The applicability of the developed methodology was also tested on time series of PRI, F760 

and Fy*760 covering the whole growing cycle of winter wheat. The outcomes of this study were 

evaluated against LUE inferred from eddy covariance observations. 

In the thesis conclusions, I present the main findings of the Ph.D. project and provide suggestions 

for future research.
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2. Part 1. Effects of varying solar-view geometry 

and canopy structure on solar-induced 

chlorophyll fluorescence and PRI 
Abstract 

1The increasing amount of continuous time series of solar-induced fluorescence (SIF) and vegetation 

indices (e.g. Photochemical Reflectance Index, PRI) acquired with high temporal (sub-minute) 

frequencies is foreseen to allow tracking of the structural and physiological changes of vegetation 

in a variety of ecosystems. Coupled with observations of CO2, water, and energy fluxes from eddy 

covariance flux towers, these measurements can bring new insights into the remote monitoring of 

ecosystem functioning. However, continuously changing solar-view geometry imposes directional 

effects on diurnal cycles of the fluorescence radiance in the observation direction (F) and PRI, 

controlled by structural and biochemical vegetation properties. An improved understanding of 

these directional variations can potentially help to disentangle directional responses of vegetation 

from physiological ones in the continuous long-term optical measurements and, therefore, allow to 

deconvolve the physiological information relevant to ecosystem functioning. Moreover, this will 

also be useful for better interpreting and validating F and PRI satellite products (e.g., from the 

upcoming ESA FLEX mission). 

Many previous studies focused on the characterization of reflectance directionality, but only a 

handful of studies investigated directional effects on F and vegetation indices related to plant 

physiology. The aim of this study is to contribute to the understanding of red (F687) and far-red (F760) 

fluorescence and PRI anisotropy based on field spectroscopy data and simulations with the Soil-

Canopy Observation of Photochemistry and Energy fluxes (SCOPE) model. We present an extensive 

dataset of multi-angular measurements of F and PRI collected at canopy-level with a high-resolution 

spectrometer (FloX, JB Hyperspectral Devices UG, Germany) over different ecosystems: 

Mediterranean grassland, alfalfa, chickpea and rice. 

F760 and F687 directional responses of horizontally homogeneous canopies are characterized by 

higher values in the backward scattering direction with a maximum in the hotspot and lower values 

in the forward scatter direction. The PRI exhibited similar response due to its sensitivity to sunlit-

shaded canopy fractions. 

As confirmed by radiative transfer forward simulations, we show that in the field measurements 

leaf inclination distribution function controls the shape of F and PRI anisotropic response (bowl-

like/dome-like shapes), while leaf area index and the ratio of leaf width to canopy height affect the 

magnitude and the width of the hotspot. Finally, we discuss the implications of off-nadir viewing 

 
1 The content of this part has been published in International Journal of Applied Earth Observation and Geoinformation 
as Biriukova, K., Celesti, M., Evdokimov, A., Pacheco-Labrador, J., Julitta, T., Migliavacca, M., Giardino, C., Miglietta, F., 
Colombo, R., Panigada, C., & Rossini, M. (2020). Effects of varying solar-view geometry and canopy structure on solar-
induced chlorophyll fluorescence and PRI. International Journal of Applied Earth Observation and Geoinformation, 89, 
102069 
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geometry for continuous ground measurements. F observations under oblique viewing angles 

showed up to 67% difference compared to nadir observations, therefore, we suggest maintaining 

nadir viewing geometry for continuous measurements of F and vegetation indices. Alternatively, a 

correction scheme should be developed and tested against multi-angular measurements to properly 

account for anisotropy of canopy F and PRI observations. The quantitative characterization of these 

effects in varying illumination geometries for different canopies that was performed in this study 

will also be useful for the validation of remote sensing F and PRI products at different spatial and 

temporal scales. 

2.1. Introduction 

In the last decades, the remote sensing community has increased its interest in the study of 

vegetation physiology. Technical advances have enhanced the capabilities to exploit the subtle 

signals induced by mechanisms related to the downregulation of photosynthesis (Grace et al., 2007; 

Coops, Hilker, Hall, Nichol, & Drolet, 2010) by means of solar-induced chlorophyll fluorescence (SIF) 

and the Photochemical Reflectance Index (PRI). SIF is a part of photosynthetically active radiation 

absorbed by chlorophyll a (aPAR) and reemitted at longer wavelengths (red and far-red). SIF 

competes with photochemical quenching (PQ) and non-photochemical quenching (NPQ) for the 

same energy and can be considered as a direct probe of the functioning of the photosynthetic 

machinery (Meroni et al., 2009; Porcar-Castell et al., 2014; Mohammed et al., 2019). In fact, SIF 

emission is affected not only by variations in the efficiency of PQ, but also of NPQ. This implies that 

both SIF and NPQ should be taken into account for getting information on the photosynthetic 

functioning (Porcar-Castell et al., 2014; Frankenberg and Berry, 2018). Highly sensitive to changing 

environmental conditions, SIF was employed for monitoring variations in photosynthesis and was 

proved to serve as a better indicator of vegetation stress than traditional reflectance-based indices 

(Sun et al., 2015; Rossini et al., 2015; Guan et al., 2016; Yang et al., 2017; Luus et al., 2017; Köhler 

et al., 2018; Migliavacca et al., 2017; Celesti et al., 2018). NPQ is a regulatory mechanism that helps 

keeping the energy balance of the light-absorbing complexes stable by dissipating the excess of 

energy as heat, and thus minimizing the chance of formation of harmful reactive species (Krause 

and Weis, 1991; Müller et al., 2001). The protection of the photosystems from the photoinhibition 

takes place in the energy-dependent NPQ and it is associated with the de-epoxidation of the 

xanthophyll pigments (Demmig-Adams and Adams, 1992), that, in turn, results in a decrease in 

reflectance at 531 nm which can be assessed with PRI (Gamon et al., 1992; Peñuelas, Filella, & 

Gamon, 1995).  

The link between PRI and light-use efficiency (LUE) (Garbulsky et al., 2011) was observed for a 

number of species using proximal (Filella et al., 1996; Zhang et al., 2015; Alonso et al., 2017), 

airborne (Rossini et al., 2013; Soudani et al., 2014; Schickling et al., 2016; Middleton et al., 2017) 

and spaceborne sensors (Drolet et al., 2005; Garbulsky et al., 2013; Stagakis et al., 2014; Middleton 

et al., 2016). Similarly, in the last years, SIF datasets have been collected over a number of natural 

and agricultural vegetation targets using ground-based platforms (Cogliati et al., 2015a; Rossini et 

al., 2016; Campbell et al., 2019), unmanned aerial vehicles (UAVs) (Zarco-Tejada et al., 2012; 

Garzonio et al., 2017) and airborne platforms (Rascher et al., 2015; Sun et al., 2018; Colombo et al., 

2018). In this context, a substantial input was given by the Earth-Explorer 8 FLuorescence EXplorer 
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(FLEX) satellite mission of the European Space Agency (ESA), the first mission specifically intended 

for global-scale SIF retrieval from space in the red and far-red spectral regions (Drusch et al., 2017). 

Continuous measurements of fluorescence radiance in the observation direction (F) are becoming 

increasingly available from high spectral resolution devices (Aasen et al., 2019). Among these, the 

FloX system (JB Hyperspectral Devices UG, Germany) was developed as a ground counterpart for 

the FLEX optical payload, with intention to gain insights in short-to-long term vegetation processes, 

and to establish a ground network for validation of the satellite observations (Julitta et al., 2017). 

Leaf properties and canopy structure strongly determines the radiative transfer of F and PRI. 

Scattering and absorption processes first take place within the leaf and then propagate further 

throughout the canopy. Within the canopy, the canopy structure (leaf area index (LAI), leaf 

inclination distribution function (LIDF) and bidirectional gap fraction) determines multiple scattering 

and absorption effects between different layers of foliage. Additionally, the canopy structure also 

influences the F and PRI values observed under different solar zenith and azimuth angles (SZA, SAA), 

view zenith angles (VZA) and relative azimuth angles between the sun and the sensor (RAA) 

(Middleton et al., 2012; Van der Tol et al., 2009). 

These directional effects do not depend exclusively on the fraction of sunlit and shaded leaves 

observed with a given field of view (FOV), but are also influenced by the physiological response of 

each observed leaf to different levels of absorbed radiation (Hall et al., 2008; Hilker et al., 2008). 

Multi-angular observations from the tower-based spectroradiometer AMSPEC over conifer (Hall et 

al., 2008; Hall et al., 2011; Hilker et al., 2008; Hilker et al., 2010a; Hilker et al., 2011; Middleton et 

al., 2009a; Zhang et al., 2015; Zhang et al., 2017) and deciduous species (Hilker et al., 2010b), and 

field-based system over corn (Middleton et al., 2009b; Middleton et al., 2012; Cheng et al., 2010; 

Cheng et al., 2012) demonstrated that PRI (computed as 𝑃𝑅𝐼 = (𝑅531 − 𝑅570)/(𝑅570 + 𝑅531)), 

exhibited lower values near the hotspot due to higher fraction of sunlit foliage, where the canopy is 

exposed to the light-excess condition. 

With the proliferation of high-resolution spectrometers, the interest in characterizing F anisotropy 

through multi-angular measurements increased. Middleton et al. (2012) observed that at daily scale 

F retrieved in the O2-B absorption band (F687) in corn was insensitive to solar-view geometry, while 

the directional response of F retrieved in the O2-A absorption band (F760) varied for the young and 

the mature crop. In the early growth stage, F760 increased at high VZA, while in the mature canopy 

F760 significantly decreased at high VZA. Pinto et al. (2017) investigated F760 directionality of 

individual leaf surfaces using imaging spectroscopy and stereo imaging in sugar beet, showing that 

F760 increased with higher viewing angles. Diurnal multi-angular measurements of F in the two 

absorption bands in winter wheat (Liu et al., 2016) revealed the differences in the shapes of F 

distribution in the Solar Principal Plane (SPP) for F760 and F687. These differences were attributed to 

the dominant processes in the two absorption bands — F scattering in O2-A and F reabsorption in 

O2-B — as well as to the bidirectional gap fraction. 

Most of the ground R and F measurements have been collected at nadir (Daumard et al., 2010, 

Cogliati et al., 2015a, Yang et al., 2018). However, when the spectrometers are deployed over high 

forests, the sensor’s fiber optics were usually tilted up to 30° off-nadir to avoid having the tower 
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structure in the radiometric footprint or to observe a particular part of the canopy (Yang et al., 2015; 

Yang et al., 2017; Wohlfahrt et al., 2018). This setup has implications for the comparisons of data 

over time and space, and for potential calibration and validation (Cal/Val) activities. Several 

initiatives have aimed to identify the scientific requirements for optical measurement systems for 

deployment on flux towers, such as SpecNet (http://specnet.info; Gamon et al., 2006) and the COST 

actions EUROSPEC (ES0903) (http://cost-es0903.fem-environment.eu; Balzarolo et al., 2011; Porcar-

Castell et al., 2015) and OPTIMISE (ES1309) (http://optimise.dcs.aber.ac.uk; Aasen et al., 2019; 

Cendrero-Mateo et al., 2019; Pacheco-Labrador et al., 2019). Nevertheless, while the physical 

processes behind the F and PRI directionality have been discussed based on modelling (van der Tol 

et al., 2009; Vilfan et al., 2018) and field observations (Hilker et al., 2008; Liu et al., 2016), the impact 

of canopy structure and solar-view geometry on both signals simultaneously has not been 

quantitatively explored. 

In this study we measured the anisotropy of F760, F687, and PRI during the day with a consistent setup 

over four vegetation targets characterized by different structure and illumination geometry to 

address the following specific objectives:  

1) to investigate the directional response of F and PRI and its correlation with R combining field data 

and radiative transfer simulations with the Soil-Canopy Observation of Photochemistry and Energy 

fluxes (SCOPE) model; 2) to evaluate the impact of the viewing geometry on the time series of 

spectral measurements of F and PRI and to provide recommendations on geometrical configuration 

of optical measurement systems for deployment on flux towers. 

2.2. Materials and methods 

2.2.1. Spectral data collection and study sites 

Multi-angular measurements of F and R were acquired with the FloX system, specifically designed 

to retrieve fluorescence in the O2A (760 nm) and O2B (687 nm) absorption bands using a high-

resolution QE Pro spectrometer (wavelength range of 650 - 800 nm, spectral sampling interval (SSI) 

of 0.17 nm and full width at half maximum (FWHM) of 0.3 nm), and visible-near-infrared (VIS - NIR) 

reflectance with the Flame spectrometer (wavelength range of 400 - 950 nm, SSI = 0.65 nm, FWHM 

= 1.5 nm) (Ocean Optics, USA). Each spectrometer has two channels – one for down-welling 

irradiance and one for up-welling radiance with a FOV of 25°. Each acquisition cycle consisted of a 

series of measurements: 1) down-welling irradiance (E↓
1), 2) up-welling radiance (L↑), 3) a second 

down-welling irradiance measurement (E↓
2), 4) dark current measurement (DC). The second E↓

2 

measurement allows accounting for the stability of illumination conditions for the subsequent data 

quality control. 

To perform the multi-angular acquisition, FloX was coupled with a goniometer device with a circular 

base of 160 cm in diameter and height of 125 cm, allowing to manually vary VZA and view azimuth 

angle (VAA) with a step of 5° (Fig. 2) (Giardino and Brivio, 2003). The resulting shape of the target 

footprint varied from a circle with diameter of 55 cm when observed from nadir to an ellipse with a 

major axis of 92 cm at extreme VZAs. Down-welling irradiance was measured on a calibrated 99% 

reflective Spectralon panel (Labsphere Inc., North Sutton, NH, USA), which was fixed and leveled on 

the tripod and placed 2 - 3 m away from the goniometer device at the height of about 1 m. 

http://specnet.info/
http://cost-es0903.fem-environment.eu/
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F760 and F687 were estimated using spectral fitting methods (SFM) initially proposed by Meroni and 

Colombo (2006) and Meroni et al. (2010), and further developed by Cogliati et al. (2015b). PRI was 

computed with the following equation (Gamon et al., 1992): 

 
𝑃𝑅𝐼 =

𝑅570 − 𝑅531

𝑅570 + 𝑅531
 

(3) 

 

where R531 is the reflectance factor of the xanthophyll-sensitive band at 531 nm and R570 is 

reflectance factor of the reference band at 570 nm. With this formulation, PRI values can vary 

between -1 and 1 and are directly proportional to NPQ. In this study, PRI was scaled (sPRI) according 

to Rahman, Gamon, Fuentes, Roberts, & Prentiss, 2001 in a range from 0 to 1: 

 
𝑠𝑃𝑅𝐼 =

𝑃𝑅𝐼 + 1

2
 

(4) 

 

In our study, sPRI was chosen to facilitate the comparison of multi-angular observations between 

different canopies. 

Ground spectral measurements were collected in the following horizontally homogeneous canopies 

(Fig. 2 A - C): 1) semiarid grassland constituted by grasses, forbs and legumes (hereafter referred as 

‘grass’) in a Mediterranean tree-grass ecosystem in Majadas de Tiétar, Spain (39°56’24.68’’N, 

5°45’50.27’’W) (Perez-Priego et al., 2015), 2) alfalfa (Medicago sativa L.) and 3) chickpea (Cicer 

arietinum L.) fields in Braccagni, Italy (42°49'15.36"N, 11°4'40.49"E). Measurements were also 

acquired in a row rice canopy (Oryza sativa L.) in Braccagni (Fig. 2 D).Diurnal cycles of multi-angular 

measurements were conducted in Majadas de Tiétar from 20th to 22th of March 2018, and in 

Braccagni from 5th to 11th of June 2018 and from 8th to 10th of July 2018. 

Figure 2. Left panel: multi-angular spectral measurements of chickpea with the FloX system and the 

goniometer with schematic representation of the solar principal plane (SPP) with its backward and 

forward scatter directions and cross principle plane (CPP). Right panel: the photographs of studied 

canopies inside the azimuthal circle of the goniometer device (A – chickpea, B – alfalfa, C – grass, D 

– rice). 
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2.2.2. Spectral measurements protocol 

2.2.2.1. Protocol to characterize the diurnal cycles of the angular distribution of F, sPRI and R 

For the definition of the terms used to describe the geometry of spectral measurements please refer 

to Table 1. 

SZA Solar Zenith Angle 

SAA Solar Azimuth Angle 

VZA View Zenith Angle 

RAA Relative Azimuth Angle (relative azimuth angle between the sun 

and the sensor) 

SPP Solar Principal Plane (angular movement of the sensor sits on the 

same plane of the illumination source and the target) 

CPP Cross Principal Plane (plane normal to the SPP) 

AR Plane parallel to row direction 

CR Plane perpendicular to row direction 

Backscatter direction Direction of reflected radiation scattering opposite to that of the 

incident radiation 

Forward scatter 

direction 

Direction of reflected radiation scattering coinciding with that of 

the incident radiation 

Table 1. Definition of terms used to describe the geometry of the measurements. 

To characterize the diurnal evolution of the multi-angular response of F, sPRI and R, we sampled 

canopy radiance in the SPP, in which the zenith angular movement of the sensor happens in the 

plane of the illumination source and the target, and the cross principal plane (CPP), which is 

perpendicular to the SPP along the azimuthal axis. The predominantly sunlit part of the canopy is 

observed in the backscatter direction of the SPP (hotspot effect), whereas the shaded fraction is 

mostly observed in the forward scatter direction of the SPP (coldspot effect) (Fig. 2). One acquisition 

cycle included measurements in two planes – SPP and CPP. For alfalfa and chickpea, the VZA 

increment was set to 15° resulting in seven observation points from -45° in the backscatter direction 

to 45° in the forward scatter direction for each plane and a total of 14 observation positions within 

a cycle. For grass, VZA varied from -50° in the backscatter direction to 50° in the forward scatter 

direction with a step of 10° and a total of 22 observation positions within a cycle (Table 2). For the 

rice canopy, we adopted a modified protocol for data acquisition. One acquisition for the row crop 
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included measurements in the SPP and along the row direction (AR) from -45° to 45° with 15° step. 

During a day, we collected 12 - 15 acquisition cycles for each canopy. On average, one acquisition 

cycle took ~15 min with SZA changing from 2° to 3.5°. For the diurnal cycles of alfalfa, chickpea and 

rice at each observation point we acquired three replicates to estimate uncertainties of the 

measurements by calculating the standard deviation (σ). 

D
iu

rn
al

 c
yc

le
s 

 Chickpea Alfalfa Grass Rice 

N of 

replicates 

3 3 1 3 

VZA -45° to 

45° 15° 

step 

-45° to 

45° 15° 

step 

-50° to 

50° 10° 

step 

-45° to 

45° 15° 

step 

Azimuth 

planes 

SPP, CPP SPP, CPP SPP, CPP SPP, AR 

M
id

d
ay

 c
yc

le
s 

N of 

replicates 

1 

VZA -50° to 50° 10° step 

Azimuth 

planes 

SPP, CPP, ± 45° SPP, CPP, 

AR, CR 

Table 2. Data acquisition schemes for diurnal and midday cycles for each canopy. Negative values of 

VZA represent the backscatter direction, positive – the forward scatter direction within a plane. 

2.2.2.2. Protocol to characterize the angular distribution of F, sPRI and R over the hemisphere 

At solar noon, when SZA is at its minimum and changes slowly, we measured several consecutive 

cycles over four planes starting from the SPP with a step of 45° in azimuth direction and a step of 

10° in VZA resulting in 44 data points evenly distributed over the hemisphere for chickpea, alfalfa 

and grass. For the rice canopy, we collected measurements in the SPP, CPP, AR and across the row 

direction (CR) with the same VZA intervals (Table 2). On average, one acquisition cycle took 20 min 

with SZA variation from 0.5° to 1.5°. 

2.2.2.3. Measure of anisotropy 

For the characterization of F and sPRI response to changing solar-view geometry, we used the 

anisotropy index (ANIX) (Sandmeier et al., 1998) to assess the amplitude of the signal variations 

within a specific solar plane. Originally, ANIX was defined as the ratio of the maximum and minimum 

values of reflectance factors. In this study, we adapt the index to F and sPRI: 

 𝐴𝑁𝐼𝑋𝐹 =
𝐹max

𝐹min
; (5) 
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𝐴𝑁𝐼𝑋𝑠𝑃𝑅𝐼 =

𝑠𝑃𝑅𝐼max

𝑠𝑃𝑅𝐼min
 

(6) 

 

Moreover, for the comparison of the multi-angular observations, F, sPRI and R were normalized 

between 0 and 1 based on minimum and maximum values measured for each canopy, and the 

difference between the normalized signals most sensitive to physiology (F760, F687 and sPRI) and 

reflectance factors of close bands (R750, R680 and R570, respectively) was computed. These differences 

aim to identify physiological effects in the anisotropy since it is expected that one of the two 

variables paired to produce these differences is affected by plant physiology, whereas the second is 

expected to be independent or to be much less affected than the first one. The contribution of 

fluorescence radiance to the reflectance factor is negligible, considering that R750 and R680 are 

outside the oxygen absorption bands, and significant divergences might be interpreted as influence 

of physiology. 

To evaluate the impact of the viewing geometry on the long-term time series of F and PRI, we 

computed daily averages of apparent fluorescence yield (Fy*) and sPRI acquired with the same 

viewing geometry. Fy* was computed as F divided by PAR (W m-2). 

2.2.3. Acquisition of biochemical and structural parameters 

Biochemical and structural characteristics of vegetation targets are summarized in Table 3. The LAI 

values of the alfalfa and chickpea plots were measured with the LAI-2000 Plant Canopy Analyzer (Li-

COR, USA) device under diffuse illumination sky conditions at low solar elevation to exclude the 

effects of direct sunlight on the sensor. A single LAI value for each plot was calculated by averaging 

5 measurements collected on 3 transects. The LAI value of the rice plot was estimated using 

hemispherical photos analyzed with the software CAN-EYE (https://www6.paca.inra.fr/can-eye). 

The LAI value of grass was assigned based on the published data at the same experimental site 

(Migliavacca et al., 2017). The type of LIDF (De Wit, 1965) of each canopy was assigned based on 

the literature and visual interpretation. Leaf chlorophyll content (Cab) of alfalfa and chickpea was 

determined spectrophotometrically (V-630 UV-Vis, Jasco, Germany) in a 100% methanol extract at 

wavelengths 665.2 nm and 652.4 nm, while turbidity was checked by measuring the absorbance at 

750 nm and 520 nm. The concentration (µg/ml) for Cab was calculated according to empirical 

equations by Lichtenthaler and Buschmann (2001). Cab of grass and rice samples was estimated 

following the pigment extraction protocol by Gonzalez-Cascón and Martín (2018). The hot spot size 

parameter (sl) introduced by Wout Verhoef (1998) in the SAILH canopy reflectance model to 

describe the hot spot effect for a single layer canopy was computed as the ratio between leaf width 

(lw) and canopy height (hc) measured in the field: 

 𝑠𝑙 = 𝑙𝑤/ℎ𝑐 (7) 

 

Smaller sl factor leads to sharper hotspot peak, while higher sl results in broader hotspot peak (Jupp 

& Strahler, 1991). 

 

https://www6.paca.inra.fr/can-eye
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Canopy Date LAI 

(m2 m-2) 

LIDF Cab 

(µg cm-2) 

lw 

(m) 

hc 

(m) 

sl 

Chickpea 10/06/2018 8 Planophile 36 0.01 0.85 0.01 

Alfalfa 6/06/2018 

11/06/2018 

7 Plagiophile (Walter-

Shea et al., 1997) 

39.8 0.009 0.80 0.01 

Grass 21/03/2018 

22/03/2018 

1 Spherical 

(Migliavacca et al., 

2017) 

39 0.01 0.10 0.1 

Rice 10/07/2018 1.95 Erectophile 27 0.01 0.35 0.03 

Table 3. Biochemical and structural characteristics of vegetation targets. 

2.2.4. Simulations of spectro-directional response of F 

SCOPE model (v1.73) was used to characterize the effect of canopy structural parameters (LAI, LIDF, 

sl), Cab and SZA on spectro-directional F response. SCOPE model (van der Tol et al., 2009) is a vertical 

(1-D) integrated radiative transfer and energy balance model, which calculates radiation transfer in 

a multilayer canopy in order to obtain reflectance and fluorescence estimations in the observation 

direction as a function of the solar zenith angle and leaf inclination distribution. The parameters 

used for SCOPE simulations are reported in Table 4. 

Parameter Value Unit 

Leaf Area Index (LAI) 1, 3, 5, 7 m2 m-2 

Leaf width (lw) 0.01, 0.05, 0.1 m 

Canopy height (hc) 0.1, 0.5, 1 m 

Chlorophyll content (Cab) 20, 40, 60 µg cm-2 

LIDF types planophile, erectophile, 

spherical 

 

Sun zenith angle (SZA) 0, 15, 30, 45, 60, 75 deg 

View zenith angle (VZA) 0, 15, 30, 45, 50, 75 deg 

Relative azimuth angles 

between the sun and an 

observer (RAA) 

0, 30, 60, 90, 120, 150,180 deg 

Table 4. SCOPE model parameters used to simulate spectro-directional response of F. 
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2.3. Results 

2.3.1. Diurnal changes of the angular distribution of F, sPRI and R in the SPP, CPP and AR 

Figures 3 – 8 show results of diurnal measurements of R750, R680, R570, F760, F687, sPRI and the 

differences F760 - R750, F687 - R680, sPRI - R570 as a function of SZA (y-axis) and VZA (x-axis) in the SPP, 

CPP and AR planes. The values of ANIX computed for F and sPRI are reported in Tables S1 – S6. 

2.3.1.1. Chickpea: R, F and sPRI in the SPP and CPP 

R, F and sPRI acquired in the SPP over chickpea exhibited a dome-like shape with the highest values 

measured in the backscatter direction (Fig. 3). The hotspot effect was observed for R, F and sPRI. Its 

location was changing during the day according to the sun position. The highest values of F were 

recorded in the hotspot during midday cycles (SZA from -30° to 30°). F and sPRI exhibited an 

asymmetric diurnal course with lower values in the afternoon compared to the morning values 

measured at nadir under the same SZA. The hotspot effect of R was less pronounced and more 

localized compared to F and sPRI. R increased at higher SZA in the morning and afternoon (SZA = -

50°; 60°) with respect to the noon. Based on the difference between scaled F and R, relatively higher 

R was observed at high SZA and extreme VZA in the backscatter and forward scatter directions, while 

F was higher in the middle of the day. The difference sPRI – R570 displayed a similar pattern, except 

for the forward scatter direction, where sPRI exhibited values higher than R570. 
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Figure 3. For chickpea in the SPP: the distribution of F760, F687, sPRI (row 1), R750, R680, R570 (row 2) 

and F760 - R750, F687 - R680, sPRI - R570 (row 3) as a function of SZA and VZA. F, sPRI and R were scaled 

between 0 and 1 before subtraction. Negative values of SZA correspond to the cycles acquired before 

midday, positive - after midday. Negative values of VZA represent the backscatter direction, positive 

– the forward scatter direction within a plane. The points of measurements are marked with white 

points. The values between the measurements are linearly interpolated. 

In the CPP, R, F and sPRI were more evenly distributed and less affected by the viewing geometry 

compared to the SPP (Fig. 4). A dome-like shape of multi angular F measurements can be observed 

only around midday (SZA from -30° to 30°) with maximum values measured with a VZA of -15°. Both 

F and sPRI showed lower values in the afternoon than in the morning at the same SZA. Reflectance 

factors showed the lowest values in the afternoon when measured with a VZA from -15° to -45°. 

The differences F760 - R750 and F687 - R680 were positive for all SZA and VZA combinations except for 

a stripe in the afternoon cycles (SZA from 60° to 65°). 
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Figure 4. For chickpea in the CPP: the distribution of F760, F687, sPRI (row 1) R750, R680, R570 (row 2) and 

F760 - R750, F687 - R680, sPRI - R570 (row 3) as a function of SZA and VZA. F, sPRI and R were scaled 

between 0 and 1 before subtraction. Negative values of SZA correspond to the cycles acquired before 

midday, positive - after midday. Negative values of VZA represent the backscatter direction, positive 

- the forward scatter direction within a plane. The points of measurements are marked with white 

circles. The values between the measurements are linearly interpolated. 

2.3.1.2. Grass: R, F and sPRI in the SPP and CPP 

The distribution of F760 for grass showed a bowl-like shape along the SPP with the maximum values 

acquired at the extreme VZA in the backscatter direction and with a clear hotspot effect observed 

at noon (SZA = -39°) at VZA between 40° and 50° (Fig. 5). F measured at nadir showed asymmetric 

diurnal cycle with slightly higher values in the afternoon, while the diurnal course of PAR was 

symmetrical with respect to solar noon (Fig. S1). The diurnal cycle of sPRI measured over grass 

exhibited higher values in the morning compared to the afternoon. F687 and sPRI exhibited strong 

fluctuations in multi-angular measurements, however, an increase was observed in the backscatter 

direction. Reflectance factors displayed a smooth increase from the forward scatter to backscatter 

direction with the maximum observed at high SZA (-60°; 60°) and VZA (-50°). The contrasting 

behaviour of F760 and R750 were observed early in the morning (SZA from -60° to -50°) and in the 

evening (SZA from 50° to 60°) under high VZA, when R750 exhibited an increase. F760, in turn, showed 
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relatively higher values around noon and at lower VZA (from -30° to 30°) compared to R750. The 

difference F687 – R680 did not reveal a clear pattern due to high intrinsic variability of F687. In 

comparison to R570, sPRI showed stronger variations with higher values in the forward scatter 

direction. 

Figure 5. For grass in the SPP: the distribution of F760, F687, sPRI (row 1), R750, R680, R570 (row 2), and 

F760 - R750, F687 - R680, sPRI - R570 (row 3) as a function of SZA and VZA. F, sPRI and R were scaled 

between 0 and 1 before subtraction. Negative values of SZA correspond to the cycles acquired before 

midday, positive - after midday. Negative values of VZA represent the backscatter direction, positive 

- the forward scatter direction within a plane. The points of measurements are marked with white 

circles. The values between the measurements are linearly interpolated. 

Due to lack of measurements between SZA of 40° and 50° in the CPP, it is hard to analyze the diurnal 

changes in anisotropy of R, F and sPRI over the grass (Fig. 6). Both F760 and F687 exhibited a bowl-like 

shape for most of the cycles, while F687 was characterized by a slightly higher variability within the 

plane (Table S3, S4). sPRI showed a patchy pattern with a decline towards the forward scatter 

direction. Reflectance factors showed little angular variation with slightly higher values observed 

from oblique VZA (-50°; 50°). The difference between F760 and R750 showed that R750 was relatively 

higher than F760 in the morning (SZA from -58° to -50°) under VZA from 0° to 50° compared to the 

afternoon. 
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Figure 6. For grass in the CPP: the distribution of F760, F687, sPRI (row 1), R750, R680, R570 (row 2), and 

F760 - R750, F687 - R680, sPRI - R570 (row 3) as a function of SZA and VZA. F, sPRI and R were scaled 

between 0 and 1 before subtraction. Negative values of SZA correspond to the cycles acquired before 

midday, positive - after midday. Negative values of VZA represent the backscatter direction, positive 

- the forward scatter direction within a plane. The points of measurements are marked with white 

circles. The values between the measurements are linearly interpolated. 

2.3.1.3. Rice: R, F and sPRI in the SPP and AR 

The distribution of F760 obtained over rice exhibited a similar shape to the one of chickpea in the 

SPP, with the hotspot in the backscatter direction and the maximum values occurring at noon cycles 

(SZA from -20° to 30°) at VZA from -15° to -30° (Fig. 7). The angular distribution of F687 was 

heterogeneous, with a general increase towards high VZA in the backscatter direction. 



23 | Part 1 

 

Figure 7. For rice in the SPP: the distribution of F760, F687, sPRI (row 1), R750, R680, R570 (row 2), and F760 

- R750, F687 - R680, sPRI - R570 (row 3) as a function of SZA and VZA. F, sPRI and R were scaled between 

0 and 1 before subtraction. Negative values of SZA correspond to the cycles acquired before midday, 

positive - after midday. Negative values of VZA represent the backscatter direction, positive - the 

forward scatter direction within a plane. The points of measurements are marked with white circles. 

The values between the measurements are linearly interpolated. 

The variation of F687 within a plane was generally higher compared to F760, with ANIX changing from 

2 to 35 in the SPP (Table S5). The sPRI directional response differed from the ones measured over 

horizontally homogeneous canopies. sPRI exhibited a dome-like shape with the maximum measured 

at nadir and in the forward scatter direction, with the highest values in the afternoon (SZA from 30° 

to 50°). R680 and especially R570 showed a more distinct hotspot effect than chickpea and grass. R750, 

in turn, showed a smooth increase from the forward scatter to backscatter direction with maximum 

values measured at the highest SZA (-50°; 60°) and VZA = -45°. The difference between F760 and R750 

revealed that generally F760 was relatively higher compared to R750, especially in the backscatter 

direction. The relative difference F687 - R680, instead, was negative in the backscatter direction and 

up to VZA = 30° in the forward scatter direction. sPRI and R570 demonstrated contrasting behaviour 

with their difference being negative in the backscatter at VZA from -15° to -45° throughout the day 

and positive in the forward scatter direction. 
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When measured in the AR direction, F760 had a less evident hotspot and showed a moderate increase 

towards higher VZA compared to the SPP (Fig. 8). 

Figure 8. For rice in the AR: the distribution of F760, F687, sPRI (row 1), R750, R680, R570 (row 2), and F760 

- R750, F687 - R680, sPRI - R570 as a function of SZA and VZA. F, sPRI and R were scaled between 0 and 1 

before subtraction. Negative values of SZA correspond to the cycles acquired before midday, positive 

- after midday. Negative values of VZA represent the backscatter direction, positive - the forward 

scatter direction within a plane. The points of measurements are marked with white circles. The 

values between the measurements are linearly interpolated. 

F687 exhibited an irregular pattern along the plane with a general increase towards the backscatter. 

sPRI measured in AR had a similar behaviour to the SPP. Reflectance factors exhibited an asymmetric 

diurnal cycle with lower values in the morning compared to the afternoon and a maximum found in 

the backscatter at SZA = 40° for R680 and R750 and at SZA = 68° for R750. The difference F760 - R750 was 

negative in the afternoon at SZA > 50°, while at midday and in the morning the positive values 

prevailed. The difference between F687 and R680 showed an opposite pattern – negative values in the 

morning and midday and positive in the afternoon. The difference between sPRI and R570 showed 

an irregular pattern, where sPRI was generally relatively higher at all viewing angles except for a 

stripe of nadir measurements. 
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2.3.2. Midday cycles 

In homogeneous canopies (chickpea, alfalfa, grass), the angular distribution of both F760 and F687 

measured in four planes resembled the one of reflectance - exhibiting smooth surfaces with 

gradually increasing values towards the backscatter direction and decreasing towards the forward 

scatter direction (polar plots, Fig. 9). On the other hand, the angular distribution of F measured in 

rice canopy showed more complex patterns. An evident stripe of high values parallel to the row 

orientation was observed in F760 distribution, while F687 exhibited a bowl-like shape with lowest 

values measured from nadir and in the backscatter direction at VZA = 20° - 30°. 

The highest values of sPRI in chickpea were acquired in the backscatter and the lowest at RAA of 

270° in the CPP. Less evident, this pattern was also observed for grass. In alfalfa, the distribution of 

sPRI showed an irregular pattern, with local increases in the CPP at VZA of 50°, and close to nadir 

between VZA of 10° and 30°. In rice canopy, there was a pronounced high value stripe along the CPP 

with the maximum at low VZA (10° - 20°) in the forward scatter direction. The lowest sPRI values for 

rice were obtained at VZA = 40° - 50°. 

  



26 | Part 1 

 

Figure 9. Polar plots of the angular distribution of F760, F687, R750, R680, R570 and sPRI measured in 

chickpea, alfalfa, grass and rice canopies as a function of VZA and RAA. 
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2.3.3. Effects of canopy structure on F760 and F687 directional response in the SPP 

2.3.3.1. Modelling results 

For a fixed SZA SCOPE model showed that the shape of F760 and F687 directional response in the SPP 

is mostly driven by LIDF (Fig. S2).In the simulations, F760 and F687 exhibited a bowl-like shape for 

erectophile canopy while they show a maximum in the hotspot for planophile and spherical canopy 

types. F of planophile canopy showed a decrease towards higher VZA, while F of spherical canopy 

exhibited an increase at extreme VZAs forming a more bowl-like shape (Fig. S2). 

For a fixed SZA the model also describes that LAI variations affect the absolute values as well as the 

shape of the angular distribution of F in the SPP. In simulations of increasing LAI value, the 

magnitude of the hotspot increased for planophile and spherical canopy types for both F760 and F687. 

For the erectophile type, the F760 at VZA = 0° declined with increasing LAI, while there was a clear 

hotspot effect for F687 with LAI > 3 m2 m-2 (Fig. S3). The highest ANIX = 4.4 was observed for F687 in 

the erectophile canopy type with LAI = 1 m2 m-2. The planophile canopy type was characterized by 

the smallest ANIX for both F760 and F687 (Table S7). 

SCOPE shows that the width of the region around the hotspot point is driven by the sl parameter in 

planophile, spherical and erectophile canopy types for both F760 and F687. With decreasing sl, the 

hotspot peak became sharper (Fig. S4). For sl = 1, the hotspot effect in F760 and F687 angular 

distribution was significantly broadened and smoothed out in the case of erectophile and spherical 

canopy types. The effect of lw on the shape of F directional response was negligible for all canopy 

types. Canopy height variation only affected the amplitude of the hotspot effect in planophile and 

spherical canopy type, causing the peak levelling off at hc = 0.1 m. 

In SCOPE, SZA also plays an important role in the shape of F directional response (Fig. S5). For 

planophile canopy type, the hotspot position shifted towards the VZA coinciding with the SZA. For 

spherical canopy type, with SZA increase, the slope of the angular distribution becomes steeper 

towards higher VZA. SZA had the biggest impact on the shape of F687 directional response for 

erectophile canopy with ANIX reaching 15.7 at SZA = 75°. 

2.3.3.2. Comparison between F directional responses of canopies with different structural 

properties 

Both F760 and F687 directional response for alfalfa and chickpea showed a dome-like shape with 

maximum values measured in the hotspot at VZA = 30° and SZA = 22° - 30° during the acquisitions. 

(Fig. 10). F measured in alfalfa was higher compared to chickpea. In the forward scatter direction, 

F760 measured in chickpea exhibited a more pronounced coldspot effect decreasing down to 1.06 

mW m-2 nm-1 at VZA of 45°. The F760 directional distribution in the SPP measured for grass exhibited 

a bowl-like shape with steeper increase in the backscatter direction. F687 values for grass measured 

along the SPP were slightly lower, more scattered, and showed an increasing trend from the forward 

scatter to backscatter direction. F760 directional response for rice exhibited a pronounced hotspot, 

while F687 showed a bowl-like pattern with some fluctuations. 
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Figure 10. Distribution of multi-angular F760 (left) and F687 (right) in the solar principal plane (SPP) as 

a function of VZA for alfalfa, chickpea and rice measured with SZA of 22 - 30° and SAA of 220 - 230°, 

and grass measured with SZA of 39° and SAA of 184°. Negative values of VZA represent the 

backscatter direction, positive - the forward scatter direction within a plane. 

2.3.4. Fluorescence apparent yield and sPRI daily averages 

Fy*760 and Fy*687 were generally higher at lower VZA at all RAA for the chickpea (Fig. 11). The highest 

values of Fy*760 and Fy*687 were observed at RAA = 0° (hotspot) and the lowest at RAA = 180° 

(coldspot). Chickpea sPRI also exhibited significant variations at oblique VZA (15° - 45°), 

characterized by a decrease at RAA = 180° (coldspot) and an increase at 0° (hotspot). Similarly, sPRI 

showed higher values at lower VZA. 

Grass Fy* and sPRI daily averages exhibited inverse patterns compared to chickpea. The maximum 

values of Fy*760 and sPRI corresponded to the highest measured VZA = 45°. Fy*760 daily average 

showed its maximum in the hotspot (RAA = 0°) and minimum in the coldspot (RAA = 180°) for all 

measured VZAs. Fy*687 daily average increased at RAA = 0° and 270° as well. Interestingly, with 

higher VZA, Fy* increase at RAA = 270° became more pronounced. Similar to chickpea, grass sPRI 

showed the lowest values in the coldspot and increased values in the hotspot direction. 

Daily averages of Fy* and sPRI measured over rice showed the highest variability among the studied 

canopies. In most cases, the highest Fy*760 values were associated with the hotspot (RAA = 0°) and 

the lowest with the coldspot (RAA = 180°). In contrast, Fy*760 signal measured at VZA = 45° showed 

a distinct decrease at RAA = 90° (CPP) and absolute maximum values with RAA = 0° and 270°. sPRI 

values measured for rice showed a similar increase at lower VZA than grass but did not vary 

substantially as a function of RAA. 
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Figure 11. The daily average values for Fy*760, Fy*687 and sPRI obtained at four VZAs (0°, 15°, 30°, 

45°) with four RAAs (0°, 90°, 18°, 270°) for chickpea (row 1), grass (row 2) and rice (row 3). 

2.4. Discussion 

2.4.1. Fluorescence and sPRI anisotropy as a function of solar-view geometry 

Different crops showed diverse shapes of F, sPRI and R angular distribution as an effect of canopy 

structure and leaf orientation in varying illumination conditions during the day. In particular, the 

asymmetric diurnal course of both F and PRI with respect to solar noon does not always suggest a 

larger photosynthetic stress in the afternoon (Rascher et al., 2009; Paul-Limoges et al., 2018) as it 

would be expected (Fig. S1). This fact can be partly attributed to local changes of the portion of 

sunlit and shaded leaves inside the canopy induced by changing SZA during a day (Damm et al., 

2015). Moreover, in the case of chickpea, this behaviour might be partly driven by slightly lower PAR 

values in the afternoon compared to the morning (considering the same SZA) (Fig. S1). Regarding 

the effects of varying viewing geometry, the anisotropic response of F can be explained by changing 

canopy depths, from which the photons escape the canopy in the direction of the sensor. When 

measured under high VZA, the sensor captures the signal mostly from the upper sunlit canopy layers 

and less from deep shaded layers. The canopy structure controls the scattering and absorption of 

the light inside the canopy (Knyazikhin et al., 2013), resulting in contrasting F directional responses 

for different canopies (Fournier et al., 2012; Damm et al., 2015). For homogeneous canopies, F760 in 

the SPP is higher in the back- than in the forward scatter direction with a dome-like shape in 

chickpea and a bowl-like in grass (Fig. 3, 5). F687 has a similar shape to F760 with higher variability 

(higher ANIX). This higher variability can be attributed to the prevailing reabsorption processes in 
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the red than in the far-red region (Gitelson et al., 1999; Buschmann, 2007; Porcar-Castell et al., 

2014). F and R anisotropy responses are more coordinated in the SPP, where the backscatter and 

forward scatter directions are characterized by stronger differences in observed sunlit-shaded 

fraction than other planes. However, in the case of chickpea and grass, R tends to have higher 

hotspot values in the evening and morning compared to midday, while the hotspot values of F are 

the highest at midday (Fig. 3, 5). This contrasting behaviour might be due to the different nature of 

these two signals. R is a relative metric of scattered radiance normalized by the incoming one. Its 

anisotropy is purely driven by the radiative transfer of the light scattered by the leaf and within the 

canopy (which tends to maximize under extreme SZAs and VZAs due to volumetric scattering; 

Roujean, Leroy, & Deschamps, 1992; Sandmeier et al., 1998). Contrarily, F is an absolute variable in 

part proportional to the amount of incoming radiance, for this reason, F maximizes at solar noon, 

when down-welling radiance is also is maximum. 

F anisotropy is less pronounced in the CPP compared to SPP, as the sunlit-shaded fraction of 

observed leaves varies less due to solar-view geometry. Although for chickpea F760 values measured 

from oblique VZA in the CPP do not deviate a lot from the values acquired from nadir, we observed 

a peculiar increase at VZA between 5 and 25° and SZA of 20° and 26° (Fig. 4). This increase could be 

attributed to the planophile structure of chickpea, characterized by an average leaf angle (ALA) of 

26° (Zarco-Tejada, 2000). In this case, the sun light is perpendicular to the ALA, resulting in a higher 

proportion of sunlit leaves observed by the sensor under the corresponding solar-view geometry. 

For chickpea, the decrease of R in the CPP in the afternoon (Fig. 4) might be due to the differences 

in height within the canopy, casting shadows in this area. While the R response was evident, F did 

not decrease significantly, which suggests F is less affected by the local geometric effects inside the 

canopy. This might be explained by the fact that F signal at leaf-level is characterized by isotropic 

emission (Yang and van der Tol, 2018), which in some cases might result in a less strong angular 

response than R. Moreover, the link between the incoming radiance and the F emission is mediated 

by the different physiological state of the leaves in the shaded/illuminated portions of the canopy. 

For the homogenous canopies (chickpea and grass), sPRI directional response in the SPP is 

characterized by a decrease in the forward scatter direction and an increase in the backscatter 

direction (Fig. 3, 5). Such variability is driven by the dominance of sunlit leaf fraction observed in the 

backscatter direction, where photoprotective mechanisms activated under higher light intensity 

cause higher sPRI values (Gamon et al., 1992) compared to the values measured in the forward 

scatter direction with higher shaded fraction. These results are consistent with the previous 

research on PRI directional response in coniferous forests (Hilker et al., 2008; Hall et al., 2008, Zhang 

et al., 2015; Zhang et al., 2017) and in cornfields (Middleton et al., 2012; Cheng et al., 2010; Cheng 

et al., 2012). Midday sPRI values acquired from nadir conform with typical values associated with 

high light conditions found in literature (from 0.45 to 0.5; Rossini et al., 2010; Perez-Priego et al., 

2015; Schickling et al., 2016). 

For rice, F variability within the SPP was particularly strong (Table S5) due to the high contrast 

between nadir and off-nadir observations determined by the erectophile canopy type. At VZA = 0° 

the reflected radiance mostly originates from the less illuminated canopy levels, while with 
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increasing VZAs the contribution of well-illuminated top layers of vegetation to the signal 

proportionally increases (Sandmeier et al., 1998). When the sun elevation increases, the hotspot 

effect of F760 becomes more distinct; however, its position does not always correspond to SZA (Fig. 

7). The shift of the hotspot to lower VZA (15° - 30°) observed for several cycles (Fig. 7) can be 

attributed to complex interactions between canopy leaf angles and observation geometry, resulting 

in the maximum of vegetated fraction within the footprint. 

When observing the canopy along the row direction, the general increase of F in the backscatter 

direction is preserved (Fig. 8), which can be explained by a higher probability of having more sunlit 

fraction observed through the space between rows (Zhao et al., 2010). Lower deviation of F760 from 

nadir values in the AR plane under high sun elevation (SZA = -22°) might be explained by the fact 

that erectophile canopy does not receive direct light on the leaf surface that much, and, therefore, 

directional effects are significantly reduced. The distribution of sPRI along the SPP and AR measured 

over rice exhibited a dome-like shape (Fig. 8), which is driven by the lower fraction of vegetation 

observed from nadir in an erectophile canopy and the contribution of soil to the reflectance signal 

(Barton and North, 2001), while the sunlit-shaded fraction controls the shape of the sPRI directional 

response less evidently. 

In this work, we measured the reflectance and fluorescence from the top canopy layer, expected to 

be the one contributing the most to the measured F signal (Van Wittenberghe, Alonso, Verrelst, 

Moreno, & Samson, 2015). Due to the complexity of the measurement setup, we could not measure 

the light distribution and the reflectance/fluorescence for different layers inside the canopy. This 

would have been useful to characterize the physiological response of the different leaves to 

different levels of radiation; and potentially to better explain the anisotropic behaviour at the top 

of the canopy. In future campaigns, leaf-level reflectance/fluorescence measurements for different 

canopy layers, by means of (e.g.) the FLUOWAT leaf clip (Van Wittenberghe et al., 2015) should be 

performed as well, close in time to the multi-angular measurements. 

2.4.2. Effects of structural parameters on fluorescence directional response in the SPP: 

comparison between observations and simulations 

SCOPE forward simulations were useful to disentangle the driving factors of F anisotropy in the 

different crops. Both modelling and experimental results demonstrated that planophile (chickpea), 

plagiophile (alfalfa) and spherical (grass) canopy types have similar F directional response, while the 

erectophile canopy type (rice) significantly differs. The spectro-directional outputs of the SCOPE 

model showed F distribution characterized by a bowl-like shape with a deep decrease at VZA = 0° 

for the erectophile canopy (Fig. S2). This agrees with the results on bidirectional response of F760 in 

winter wheat (Liu et al., 2016), driven by the presence of high amount of soil fraction, which is mostly 

visible from nadir and diminishes with higher VZAs. Measurements of bidirectional radiance over 

rice were complicated by the row structure (Zhao et al., 2015), which, together with relatively wide 

FOV, might have contributed to the asymmetrical shape of F760 directional response, characterized 

by shifted minimum values towards coldspot in the forward scatter direction (Fig. 10). 

The angular distribution of F for spherical canopy type also shows a bowl-like shape but with lower 

anisotropy factor and an evident hotspot in the backscatter direction for LAI > 3 m2 m-2 (Fig. S3). For 
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grass (spherical), instead, we observed a well-defined bowl-like shape of F760 distribution, but no 

hotspot (Fig. 10). The absence of the hotspot can be explained by relatively high sl (0.1) and low LAI 

(1 m2 m-2), which minimized the width and the magnitude of the hotspot. 

Directional responses of F measured for alfalfa (plagiophile) and chickpea (planophile) are similar to 

each other (Fig. 10). This can be explained by comparable LAI (7 - 8 m2 m-2) and sl (0.01). The shape 

of the F distributions for these species conforms to the modelling results (Fig. S3), however, the 

measured hotspot is wider than the modelled one due to the averaging effect of the sensor’s FOV, 

which integrates the signal over 25° rather than in an infinitesimal solid angle as in SCOPE 

(Schaepman-Strub, Schaepman, Painter, Dangel, & Martonchik, 2006). Considering variability within 

a plane, field observations showed higher ANIX compared to modelling results (Table S1, S9) 

affected by quicker decrease in the forward scatter direction (Fig. 10). F687 directional response for 

alfalfa and chickpea canopies, which are similar in Cab and LAI, exhibited higher difference in 

absolute values and specifically in the hotspot compared to F760. Having a little higher Cab and a little 

lower LAI, one would expect to observe lower or identical values for F687 for alfalfa compared to 

chickpea due to F687 reabsorption. However, the results showed higher values of F687 for alfalfa, 

which might be explained by its heliotropic leaf movements (Walter-Shea et al., 1997; Strub et al., 

2003) resulting in high amount of sunlit leaves, especially in the backscatter direction of the SPP. 

2.4.3. Fluorescence apparent yield and sPRI daily variations as a function of VZA and RAA: 

Implications for the ground measurements 

In this work we performed a quantitative evaluation of the impact of anisotropy on Fy* and sPRI. 

We found, that for the homogenous and mature canopies of planophile type (chickpea) off-nadir 

acquisitions result in lower Fy* at all RAAs except the backscatter direction in the solar principal 

plane (RAA = 0°), where Fy* increased by 20 - 67% compared to nadir acquisitions. For all other RAAs 

(90°, 180°, 270°), Fy* values measured with the sensor’s inclination of 15° decreased by 3 - 20%. 

With an increase of observation angle (VZA = 30° - 45°), Fy*760 decreased by 10 - 35% and Fy*687 by 

10 - 45%. The same pattern was observed for sPRI, where the biggest discrepancies occurred in the 

backscatter direction of the SPP at high VZA. Therefore, an optimal setup for continuous 

measurements of F and PRI should have a nadir VZA in order to minimize the directional effects, 

with an acceptable inclination of up to 5 - 10°, which, in the case of F signal measured over grass 

(spherical canopy type), results in less than 3% difference. Balzarolo et al. (2011) suggested using 

oblique viewing angles to increase the footprint of the measurements of vegetation reflectance, 

however, based on the current analysis we do not recommend adopting this strategy for continuous 

F measurements. For tower installation we foster the use of a sufficiently long horizontal arm that 

can carry the optical fibers at the necessary distance from the tower structure. When this would not 

be possible, a correction scheme for the signal directionality should be considered. 

Multi-angular observations, like the ones presented here, can help building or validating these 

correction schemes (e.g. based on near-infrared reflectance of vegetation (NIRv) and kernel-driven 

models), as well as properly interpreting remote observations taken under varying solar-view 

geometries (e.g., at different latitudes within a satellite orbit). Moreover, multi-angular 

measurements can provide a complete characterization of F signal and help to acquire meaningful 

F values in the case of, for example, sparse canopy of erectophile type, when nadir observations are 
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confounded by a significant portion of soil background. Nevertheless, the deployment of field 

goniometers is demanding and limited to relatively short canopies. In this regard, continuous 

observations by means of automated, tower-based scanning systems (Leuning, Hughes, Daniel, 

Coops, & Newnham, 2006; Hilker et al. 2007; Corp et al., 2010) may complement nadir-looking 

systems towards a complete characterization of the canopy reflectance and fluorescence signals. 

2.5. Conclusions 

In this study we present a unique dataset of multi-angular observations of F, R and sPRI over four 

different vegetated targets measured in two main planes — the SPP and the CPP — during a day, as 

well as the angular distribution of F, R and sPRI over the hemisphere at midday, coupled with SCOPE 

simulations of spectro-directional response of F under varying structural and biochemical 

parameters. 

Radiative transfer theory and observations agreed that the shape of F bidirectional distribution is 

controlled by LIDF: a bowl-like shape with a deep decrease at nadir is typical for erectophile canopy 

type, a smooth bowl-like shape for spherical canopy with LAI < 3 m2 m-2, a dome-like shape with a 

pronounced hotspot for planophile canopy type. The magnitude and the shape of the hotspot is 

controlled by LAI and sl: a combination of low sl and high LAI determine a stronger and more 

pronounced hotspot effect. Both F and sPRI showed significant directional variability for all the 

studied canopies, with the highest ANIX of F within the SPP observed for rice. F687 is characterized 

by higher anisotropy compared to F760 due to prevailing re-absorption process in this spectral region. 

The sPRI directional response is characterized by an increase in the backscatter direction and a 

decrease in the forward scatter direction driven by different contribution of sunlit-shaded fractions 

of vegetation to the measured signal. 

Overall, for homogenous canopies, off-nadir measurements resulted in lower values of F and sPRI 

compared to nadir observations, at all RAAs except in the backscatter direction in the SPP, where, 

on the contrary, the values were higher. Based on a quantitative evaluation of the impact of canopy 

anisotropy and solar-view geometry on F and sPRI spectro-directional response, we recommend 

maintaining nadir viewing geometry in automated proximal sensing systems, with an acceptable 

inclination up to 5 - 10°. Nevertheless, UAV, airborne and satellite observations may be forced by 

design to observe the target at higher VZAs, and under different illumination conditions (i.e. 

different SZAs). In order to properly account for the effects of the canopy anisotropy on F and PRI 

observations, a proper correction scheme should be developed and tested against multi-angular 

measurements. 

The results presented in this study demonstrate that the anisotropic response of F and sPRI and the 

corresponding R do not totally covary and that the angular configuration plays an important role in 

relative contribution of F and sPRI compared to reference R. The analysis of differences between 

physiologically relevant signals (F760, F687 and sPRI) and reflectance factors of close bands (R750, R680 

and R570, respectively) showed that the contribution of the physiological component is relatively 

higher in homogeneous canopies (i.e. chickpea and grass) under all SZA and VZA combinations 

except extreme angles (>50°). This suggests, that when measured under hight SZA, physiological 

information contained in F and PRI might be masked out by directional effect. 
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The characterization of these anisotropic responses along the daily cycle (i.e., under varying SZA and 

SAA) may also prove useful for evaluating the plant response to the different relative illumination 

conditions that appear along long-term time series, within a satellite orbit, or in general for different 

geographical locations and times within a validation framework. 

2.6. Supplementary material 
 

 

Figure S1. Diurnal cycles of PAR, F760, F687 and PRI acquired from a nadir-viewing direction for 

chickpea (row 1), grass (row 2) and rice (row 3). Error bars for chickpea and rice indicate standard 

deviation (n = 3). Measurements over the grass were collected as a single acquisition (n = 1). 

Negative values of SZA correspond to the cycles acquired before midday, positive - after midday. 
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SZA (°) F760_ANIX F687_ANIX sPRI_ANIX 

-52 1.968 3.862 1.0279 

-47 1.770 3.224 1.0258 

-43 1.734 2.730 1.0166 

-37 1.776 2.347 1.0253 

-32 1.635 2.450 1.0215 

-26 1.649 2.152 1.0175 

-23 1.660 2.266 1.0298 

-20 1.671 2.345 1.0279 

22 1.942 2.216 1.0204 

28 2.999 3.135 1.021 

31 2.468 3.555 1.0226 

35 3.255 4.198 1.0198 

39 3.626 4.320 1.0205 

44 3.048  4.354 1.0179 

49 2.835 4.205 1.013 

56 2.536 4.702 1.0197 

63 1.930 4.397 1.0227 

Table S1. ANIX calculated for F760, F687 and sPRI measured in the SPP over chickpea. 
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SZA (°) F760_ANIX F687_ANIX sPRI_ANIX 

-50 1.135 1.299 1.0198 

-45 1.186 1.275 1.016 

-41 1.170 1.299 1.0161 

-36 1.209 1.299 1.0124 

-31 1.187 1.396 1.0147 

-25 1.288 1.398 1.0139 

-21 1.579 1.96 1.0337 

-20 1.819 1.919 1.0195 

23 1.38 1.464 1.0116 

30 1.289 1.49 1.0087 

33 1.300 1.337 1.0114 

37 1.257 1.178 1.0046 

40 1.268 1.619 1.017 

45 1.270 1.286 1.0102 

51 1.438 1.296 1.0152 

58 1.360 1.316 1.0124 

65 1.326 1.176 1.0223 

Table S2. ANIX calculated for F760, F687 and sPRI measured in the CPP over chickpea. 
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SZA (°) F760_ANIX F687_ANIX sPRI_ANIX 

-60 1.547 2.812 1.0106 

-57 1.638 2.104 1.0137 

-55 1.711 3.432 1.0141 

-52 1.907 3.34 1.0146 

-50 1.775 2.408 1.0139 

-47 1.671 1.807 1.0167 

-44 1.892 3.526 1.0108 

-42 1.762 2.068 1.0141 

-40 1.876 2.178 1.0105 

-39 1.984 3.352 1.0102 

41 1.880 2.565 1.0085 

43 1.932 2.696 1.01 

47 2.096 2.609 1.0101 

53 1.867 1.895 1.0142 

56 2.446 2.077 1.0163 

60 1.652 2.907 1.013 

Table S3. ANIX calculated for F760, F687 and sPRI measured in the SPP over grass. 
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SZA (°) F760_ANIX F687_ANIX sPRI_ANIX 

-58 1.368 2.035 1.0112 

-56 1.554 2.343 1.0141 

-54 1.387 1.525 1.0075 

-51 1.443 2.149 1.0099 

-48 1.515 1.435 1.0101 

-46 1.344 1.325 1.0094 

-43 1.329 2.845 1.0118 

-41 1.370 2.247 1.0116 

-40 1.371 2.83 1.0103 

-39 1.383 1.57 1.0055 

41 1.337 2.227 1.0071 

54 1.528 1.982 1.0078 

Table S4. ANIX calculated for F760, F687 and sPRI measured in the CPP over grass. 

SZA (°) F760_ANIX F687_ANIX sPRI_ANIX 

-53 2.615 3.165 1.0177 

-48 3.197 4.532 1.0225 

-43 3.547 8.86 1.0246 

-32 3.144 4.205 1.0172 

-26 2.690 4.189 1.015 

-23 2.356 3.479 1.0174 

-21 3.031 34.639 1.0246 

26 3.335 8.767 1.0232 

31 3.207 2.86 1.0198 

37 5.068 3.829 1.0136 

44 2.656 13.745 1.0172 

46 2.725 4.334 1.0188 

67 2.429 2.179 1.0181 

Table S5. ANIX calculated for F760, F687 and sPRI measured in the SPP over rice. 
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SZA (°) F760_ANIX F687_ANIX sPRI_ANIX 

-51 2.692 2.915 1.0168 

-46 2.508 4.124 1.0147 

-31 2.684 3.446 1.0098 

-28 1.721 6.423 1.0107 

-22 1.345 4.299 1.0106 

27 3.682 65.169 1.0182 

32 2.397 5.435 1.0147 

39 3.528 2.265 1.0123 

68 1.814 1.984 1.0152 

Table S6. ANIX calculated for F760, F687 and sPRI measured in the AR over rice. 

Figure S2. Distribution of multi-angular F760 (A) and F687 (B) in the solar principal plane (SPP) as a 

function of view zenith angle (VZA) and LIDF (erectophile, planophile and spherical) simulated with 

the SCOPE model. LAI = 3 m2 m-2, SZA = 0°, Cab = 40 ug cm-2, hc = 0.5 m, lw = 0.05 m. Negative values 

of VZAs represent the backscatter direction, positive – the forward scatter direction within a plane. 
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Figure S3. Distribution of multi-angular F760 (top) and F687 (bottom) in the solar principal plane (SPP) 

as a function of view zenith angle (VZA) and LAI simulated with the SCOPE model for erectophile 

(left), spherical (middle) and planophile (right) canopy types. SZA = 30°, Cab = 40 ug cm-2, hc = 0.5 m, 

lw = 0.05 m. Negative values of VZAs represent the backscatter direction, positive – the forward 

scatter direction within a plane. 

 
Figure S4. Distribution of multi-angular F760 (top) and F687 (bottom) in the solar principal plane (SPP) 

as a function of view zenith angle (VZA) and sl simulated with the SCOPE model for erectophile (left), 

spherical (middle) and planophile (right) canopy types. LAI = 3 m2 m-2, SZA = 30°, Cab = 40 ug cm-2. 

Negative values of VZAs represent the backscatter direction, positive - the forward scatter direction 

within a plane. 
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LIDF 

Cab  

(ug cm-2) 

LAI 

(m2 m-2) 

hc 

(m) 

lw 

(m) SZA (°) F760_ANIX F687_ANIX 

erectophile 40 1 0.5 0.05 30 3.677 4.3761 

erectophile 40 3 0.5 0.05 30 2.336 3.5383 

erectophile 40 5 0.5 0.05 30 1.926 3.4654 

erectophile 40 7 0.5 0.05 30 1.783 3.3834 

spherical 40 1 0.5 0.05 30 1.893 2.0301 

spherical 40 3 0.5 0.05 30 1.359 1.7913 

spherical 40 5 0.5 0.05 30 1.271 1.9671 

spherical 40 7 0.5 0.05 30 1.26 2.0237 

planophile 40 1 0.5 0.05 30 1.16 1.2665 

planophile 40 3 0.5 0.05 30 1.232 1.5551 

planophile 40 5 0.5 0.05 30 1.233 1.6129 

planophile 40 7 0.5 0.05 30 1.235 1.6241 

Table S7. ANIX calculated for F760, F687 simulated by SCOPE with the input parameters: SZA = 30°, Cab 

= 40 ug cm-2, hc = 0.5 m, lw = 0.05 m, LAI = 1, 3, 5,7 m2 m-2 and LIDF corresponding to erectophile, 

spherical and planophile canopy types. 
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LIDF 

Cab 

(ug cm-2) 

LAI 

(m2 m-2) sl 

hc 

(m) 

lw 

(m) 

SZA 

(°) F760_ANIX F687_ANIX 

erectophile 40 3 0.1 0.1 0.01 30 2.352 3.578 

erectophile 40 3 0.02 0.5 0.01 30 2.336 3.538 

erectophile 40 3 0.01 1 0.01 30 2.314 3.466 

erectophile 40 3 0.5 0.1 0.05 30 2.352 3.578 

erectophile 40 3 0.1 0.5 0.05 30 2.336 3.538 

erectophile 40 3 0.05 1 0.05 30 2.314 3.466 

erectophile 40 3 1 0.1 0.1 30 2.352 3.578 

erectophile 40 3 0.2 0.5 0.1 30 2.336 3.538 

erectophile 40 3 0.1 1 0.1 30 2.314 3.466 

planophile 40 3 0.1 0.1 0.01 30 1.209 1.512 

planophile 40 3 0.02 0.5 0.01 30 1.232 1.555  

planophile 40 3 0.01 1 0.01 30 1.236 1.561 

planophile 40 3 0.5 0.1 0.05 30 1.209 1.512 

planophile 40 3 0.1 0.5 0.05 30 1.232 1.555 

planophile 40 3 0.05 1 0.05 30 1.236 1.561 

planophile 40 3 1 0.1 0.1 30 1.209 1.512 

planophile 40 3 0.2 0.5 0.1 30 1.232 1.555 

planophile 40 3 0.1 1 0.1 30 1.236 1.561 

spherical 40 3 0.1 0.1 0.01 30 1.381 1.834 

spherical 40 3 0.02 0.5 0.01 30 1.359 1.791 

spherical 40 3 0.01 1 0.01 30 1.341 1.797 

spherical 40 3 0.5 0.1 0.05 30 1.381 1.834 

spherical 40 3 0.1 0.5 0.05 30 1.359 1.791 

spherical 40 3 0.05 1 0.05 30 1.341 1.797 

spherical 40 3 1 0.1 0.1 30 1.381 1.834 

spherical 40 3 0.2 0.5 0.1 30 1.359 1.791 

spherical 40 3 0.1 1 0.1 30 1.341 1.797 
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Table S8. ANIX calculated for F760, F687 simulated by SCOPE with the input parameters: SZA = 30°, Cab 

= 40 ug cm-2, LAI = 3 m2 m-2, hc = 0.1, 0.5, 1 m, lw = 0.01, 0.05, 0.1 m, sl = 0.01, 0.02, 0.05, 0.1, 0.2, 

0.5, 1 and LIDF corresponding to erectophile, spherical and planophile canopy types. 

Figure S5. Distribution of multi-angular F760 (top) and F687 (bottom) in the solar principal plane (SPP) 

as a function of view zenith angle (VZA) and SZA simulated with the SCOPE model for erectophile 

(left), spherical (middle) and planophile (right) canopy types. LAI = 3 m2 m-2, Cab = 40 ug cm-2, hc = 

0.5 m, lw = 0.05 m. Negative values of VZAs represent the backscatter direction, positive – the 

forward scatter direction within a plane. 
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LIDF 

Cab 

(ug cm2) 

LAI 

(m2 m-2) sl 

hc 

(m) 

lw 

(m) SZA (°) F760_ANIX F687_ANIX 

erectophile 40 3 0.1 0.5 0.05 75 5.621 15.664 

erectophile 40 3 0.1 0.5 0.05 60 3.335 7.268 

erectophile 40 3 0.1 0.5 0.05 45 2.692 4.884 

erectophile 40 3 0.1 0.5 0.05 30 2.336 3.538 

erectophile 40 3 0.1 0.5 0.05 15 2.075 2.564 

erectophile 40 3 0.1 0.5 0.05 0 1.807 1.709 

planophile 40 3 0.1 0.5 0.05 75 1.425 2.083 

planophile 40 3 0.1 0.5 0.05 60 1.143 1.379 

planophile 40 3 0.1 0.5 0.05 45 1.248 1.606 

planophile 40 3 0.1 0.5 0.05 30 1.232 1.555 

planophile 40 3 0.1 0.5 0.05 15 1.222 1.523 

planophile 40 3 0.1 0.5 0.05 0 1.216 1.501 

spherical 40 3 0.1 0.5 0.05 75 2.707 6.087 

spherical 40 3 0.1 0.5 0.05 60 1.744 3.092 

spherical 40 3 0.1 0.5 0.05 45 1.499 2.32 

spherical 40 3 0.1 0.5 0.05 30 1.359 1.791 

spherical 40 3 0.1 0.5 0.05 15 1.266 1.494 

spherical 40 3 0.1 0.5 0.05 0 1.205 1.339 

Table S9. ANIX calculated for F760, F687 simulated by SCOPE with the input parameters: SZA = 10°, 30°, 

45°, 60°, 75°, Cab = 40 ug cm-2, LAI = 3 m2 m-2, hc = 0.5m, lw =0.05 m and LIDF corresponding to 

erectophile, spherical and planophile canopy types. 
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3. Part 2. Extracting the vegetation physiological 

response from time series of solar-induced 

chlorophyll fluorescence and PRI using Singular 

Spectrum Analysis  
Abstract  

2Continuous ground-based spectral measurements of solar-induced chlorophyll fluorescence (F) 

and the Photochemical Reflectance Index (PRI) encode temporal dynamics of photosynthetic light-

use efficiency (LUE) and vegetation responses to stress factors. However, these signals are 

modulated by the processes acting at different timescales. These processes include evolution of 

pigment pools at weekly to seasonal timescales, modulation of light use efficiency due to activation 

of xanthophyll cycle and downregulation of photosynthesis at shorter timescale, and directional 

effects induced by diurnally varying solar-view geometry. Disentangling of different sources of 

variability in time series to unambiguously link optical signal to vegetation functioning is still a 

challenging task.  

Here we explore whether Singular Spectrum Analysis (SSA), a highly adaptive method of spectral 

time series decomposition, is capable to extract ecologically interpretable components from far-red 

F (F760) and PRI time series of modelled data.  

The proof of concept relies on half-hourly time series of synthetic data simulated with the Soil 

Canopy Observation, Photochemistry and Energy fluxes (SCOPE) radiative transfer model, which 

was parameterized using vegetation traits derived from field observations as well as one year of 

meteorological data from Mediterranean grassland. SCOPE models leaf-level F and PRI based on leaf 

physiology and modifies these signals via radiative transfer to the top of the canopy. We ran SCOPE 

with and without the explicit simulation of de-epoxidation of the xanthophyll cycle pigments as part 

of the non-photochemical quenching (NPQ). This allowed to compute 𝑃𝑅𝐼0
scope

, which represents 

the constitutive variability when NPQ is not activated (pigment pool modifications), and the total 

PRI (𝑃𝑅𝐼xan
scope

) which includes both constitutive and facultative variability (pigments and NPQ 

processes). The difference between the two (∆𝑃𝑅𝐼scope) represents the variability of PRI at short 

timescale related to physiological modulation of photosynthesis at canopy scale. Similarly, F was 

simulated with and without the fluorescence amplification factor (ϕ’f) - 𝐹760
scope

 and 𝐹0,760
scope

, 

respectively. Baseline fluorescence 𝐹0,760
scope

 corresponds to the emission under low light conditions, 

only affected by canopy biophysical properties and illumination conditions, and the difference 

between 𝐹760
scope

 and 𝐹0,760
scope

 is a reference of fluorescence physiological emission (∆𝐹760
scope

).  

 
2 The content of this part related to model-based study has been submitted to Journal of Geophysical Research: 
Biogeosciences as Biriukova, K., Pacheco-Labrador, J., Migliavacca, M., Mahecha, M., Gonzalez-Cascon, R., Martín, 
M.P., Rossini, M. (2020). Extracting the Vegetation Physiological Response From Time Series of Solar-Induced 
Chlorophyll Fluorescence and PRI Using Singular Spectrum Analysis: a Model-Based Study. 
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We applied SSA to deconvolve slow and fast variability in 𝑃𝑅𝐼xan
scope

, 𝐹760
scope

 and far-red fluorescence 

apparent yield (𝐹𝑦∗
760
scope). The resulting slow SSA components of 𝑃𝑅𝐼xan

scope
 and 𝐹𝑦∗

760
scope showed 

high correlations with the reference constitutive variables (R2=0.97; 0.96). Fast SSA components 

were compared to physiological variables – NPQ and light-use efficiency (LUE), computed as a ratio 

of gross primary production (GPP) to photosynthetically active radiation absorbed by chlorophyll 

(aPARCab). The best results were archived for fast modes of 𝑃𝑅𝐼xan
ssa , which exhibited linear 

relationship with LUE with distance correlation (dCor) varying in the range 0.7 - 0.95 for the most 

part of the year. Fast component of 𝐹760
ssa was negatively correlated with LUE with dCor 0.50 - 0.90 

for leaf area index (LAI) higher than 1 m2m-2. The direction of relationship between LUE and fast 

varying component of 𝐹𝑦∗
760
𝑠𝑠𝑎 , instead, was affected by NPQ. Under NPQ < 0.1 the correlation was 

negative (R=-0.55), while for NPQ varying between 0.1 and 2.5 the correlation was positive (R=0.69).  

The application of this methodology on a field dataset of spectral and flux time series collected in 

winter wheat field allowed to improve the correlation of fast components of F760 and PRI with fast 

component of LUE (dCor=0.57 and 0.66, respectively) in comparison with original time series. 

We expect time series decomposition methods such as SSA to improve the information extracted 

from time series of high-resolution ground spectral measurements. Coupled with simultaneous 

carbon flux observations, these decomposed optical signals can provide better proxies of vegetation 

functioning. 

3.1. Introduction 

Remote and proximal sensing of vegetation pursuit accurate monitoring of plant physiology and 

photosynthesis. During the last two decades, the interest of the remote sensing community towards 

solar-induced chlorophyll fluorescence (F) and Photochemical Reflectance Index (PRI) (Gamon et al., 

1992) has increased due to evidences of close relationship between plant physiological properties 

and these optical signals (Garbulsky et al., 2011; Meroni et al., 2009; Mohammed et al., 2019). The 

ability of plants to deal with environmental stress factors is maintained by a combination of different 

processes. Under optimal light conditions and adequate water and nutrients supply, photochemical 

reactions, including CO2 assimilation and electron transport, occur at high efficiency. To avoid the 

damage of the reaction centres, excessive solar energy is emitted as F in the 650-850 nm spectral 

range or dissipated as heat as part of non-photochemical quenching (NPQ) (Demmig-Adams & 

Adams, 1992). Since all three mechanisms (carbon-fixation, F and NPQ) compete for the same 

absorbed energy, characterisation of both F and NPQ is required for an accurate inference of 

photosynthesis from optical signals (Frankenberg & Berry, 2018; Porcar-Castell et al., 2014). One of 

the mechanisms of NPQ thermal dissipation is de-epoxidation of xanthophyll cycle pigments 

(Demmig-Adams, 1990; Niyogi et al., 1997). The excess energy leads to interconversion of 

xanthophyll cycle pigments, violaxanthin to antheraxanthin and then to zeaxanthin, providing a sink 

for the excess energy (Vilfan et al., 2018).This process is quickly reversible and zeaxanthin is 

converted back to violaxanthin under low light conditions and during the night. Xanthophyll cycle 

pigments conversion results in an increase in light absorptance at 531 nm, which is detectable by 

PRI (Gamon et al., 1992; Garbulsky et al., 2011). 
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Based on the conceptual light-use efficiency framework introduced in Monteith (1972), gross 

primary production (GPP) is a product of photosynthetically active radiation absorbed by chlorophyll 

(aPARCab) and efficiency with which this absorbed light is converted to fixed carbon (light-use 

efficiency, LUE): 

 𝐺𝑃𝑃 = 𝑎𝑃𝐴𝑅𝐶𝑎𝑏 ∙ 𝐿𝑈𝐸 (8) 

Numerous studies have shown that canopy and ecosystem level F and PRI measured from a variety 

of tower-based (e.g. Hilker et al., 2010a; Perez-Priego et al., 2015; Zhang et al., 2015), airborne (e.g. 

Middleton et al., 2017; Rascher et al., 2015; Rossini et al., 2015; Tagliabue et al., 2019) and 

spaceborne platforms (e.g. Middleton et al., 2016; Sun et al., 2018) can successfully track variations 

in GPP and/or LUE. However, canopy scale F and PRI are not exclusively driven by plant physiology. 

A combination of processes acting at different timescales can affect the resulting F and PRI signal. 

Slow variability includes seasonal variations related to phenology, which are manifested in changing 

pigment pools and canopy structure (e.g. leaf area index, LAI). Fast variability includes both diurnal 

cycles driven by directionally varying incoming radiation, and sub-diurnal physiological responses 

induced by variations in meteorological and stress conditions (e.g. high vapour pressure deficit, 

VPD). 

At seasonal scale, PRI was shown to be sensitive to leaf properties, especially to pigment pool 

modifications due to slow varying environmental factors, such as increasing or decreasing sun 

exposure, aging process, chronic stress (Filella et al., 2009). Those irreversible changes are termed 

constitutive properties of PRI (Gamon and Berry, 2012). Fast changes in PRI, in turn, are termed 

facultative, and include rapid reversible changes of the de-epoxidation state (DEPS) of xanthophylls 

as physiological response to illumination changes (Demmig-Adams & Adams, 1992). 

Following the adaption of the LUE model (e.g. Lee et al., 2013) top of the canopy (TOC) F signal can 

be defined as: 

 𝐹 =  𝑎𝑃𝐴𝑅𝐶𝑎𝑏 ∙ 𝜙𝑓 ∙ 𝑓𝑒𝑠𝑐 (9) 

where 𝑎𝑃𝐴𝑅𝐶𝑎𝑏 is a function of the photosynthetically active radiation (PAR) and fraction of PAR 

absorbed by chlorophyll pigments (faPARCab), ϕf is physiological F emission yield, fesc is the fraction 

of all F photons that escape from the canopy. Both faPARCab and fesc are determined by canopy 

structure and leaf biochemical properties (Migliavacca et al., 2017; Martini et al., 2019), which 

usually vary at slow (seasonal) timescale. Fluorescence yield ϕf, in turn, directly responds to the 

energy partitioning in the photosynthetic machinery, and its variability mostly occurs at fast 

timescales – diurnal and sub-diurnal – driven by the modulation of the physiological status of plants. 

Despite major efforts of remote sensing community aiming at predicting vegetation functioning, the 

separation of physiological and the remaining sources of variability from these signals is still a 

challenge which hampers full exploitation of long-term data series collected by unattended 

spectroradiometric systems as those described in Porcar-Castell et al. (2015). 
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The Singular Spectrum Analysis (SSA) is a comprehensive methodology originally established by 

Broomhead and King (1986) and Fraedrich (1986) and later developed by Golyandina et al. (2001) 

and Ghil et al. (2002). SSA was proved to be a powerful tool for time series decomposition, 

reconstruction and forecasting of climatic time series (Ghil et al., 2002; Plaut et al., 1995; Yiou et al., 

1996), as well as for characterizing dynamics of eddy covariance ecosystem-atmosphere fluxes 

(Mahecha et al., 2007; Mahecha et al., 2010a; Wang et al., 2012) and for the evaluation of terrestrial 

biosphere and semi- empirical model output performances at different timescales (Mahecha et al., 

2010b; Migliavacca et al., 2015). 

The main idea behind SSA it that time series can be described as a sum of superimposed subsignals, 

which can be extracted based on the characteristic scales of variability (Mahecha et al., 2010a). The 

main difference between one-dimensional SSA and other methods for time series analysis is that 

SSA is a non-parametric method, which does not require prior information about the number and/or 

frequencies of periodicities or a model for trend (Golyandina et al., 2018). 

We extend the use of SSA to time series of optical signals related to physiology. To prove the 

suitability of SSA to decompose time series of PRI, far-red fluorescence (F760) and far-red 

fluorescence apparent yield (F760/PAR, Fy*760) into slow and fast varying components attributed to 

different sources of variability (i.e. structural vs physiological changes) we used a realistic synthetic 

dataset generated with the Soil Canopy Observation of Photochemistry and Energy fluxes (SCOPE) 

model (van der Tol et al., 2009). SCOPE was parameterized to reproduce the spectral behaviour of 

a Mediterranean grassland. The structural traits derived from field measurements, as well as 

meteorological data from the research station of Majadas de Tiétar (Cáceres, Spain), were used. A 

complete description of the study site can be found in Perez-Priego et al. (2017) or El-Madany et al. 

(2018). SCOPE simulates leaf-level physiology and the corresponding PRI and F signals, which are 

propagated to the TOC via radiative transfer. In order to evaluate whether extracted SSA 

components are related either to constitutive or facultative variability, SCOPE model was run in two 

different modes featuring and excluding physiological effects on PRI and F (i.e. the effect of 

xanthophyll cycles de-epoxidation on leaf absorption and fluorescence efficiency amplification 

factor (ϕ’f) on F). 

In this study, we aim to test the potential of SSA to decouple fast variability, attributed to 

physiological status, and slow variability, attributed to seasonally changing structural and 

biochemical vegetation properties, using half-hourly SCOPE-simulated and measured time series of 

PRI, F760 and Fy*760. We also evaluate the potential to predict NPQ and LUE with the fast components 

of the SSA-decomposed optical signals. 

3.2. Theoretical background: Singular Spectrum Analysis  

SSA is one of several potential time series decomposition techniques. It was chosen here because it 

is highly data-adaptive and allows for decomposing highly phase-modulated signals. The method 

can be described in four steps: embedding, decomposition, grouping and reconstruction (Nina 

Golyandina & Korobeynikov, 2014). 
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Step 1: Embedding. The original time series 𝑌 = (𝑓1, . . . , 𝑓𝑁) of length N is transformed into a time-

delay-embedding covariance matrix composed of a sequence of K=N-L+1 lagged vectors of length L 

(window length): 

 𝑋𝑖 = (𝑥𝑖 , . . . , 𝑥𝑖+𝐿−1)𝑇, 𝑖 = 1, . . . , 𝐾. (10) 

Step 2: Decomposition. Singular value decomposition (SVD) leads to elementary matrices of rank 1: 

 𝑋 =  𝑋1+ . . . + 𝑋𝑑 (11) 

where d is a rank of X. Each elementary matrix 𝑋𝑖 is defined by the eigentriple: 

 𝑋𝑖 = √𝜆𝑖𝑈𝑖𝑉𝑖
𝑇 (12) 

The eigentriple consists of a singular value √𝜆𝑖, the left eigenvector 𝑈𝑖 and the right eigenvector 𝑉𝑖. 

The singular values of eigentriples are proportional to the fraction of explained variance 

corresponding to each eigentriple. 

Step 3: Grouping. The grouping is performed by choosing the sets of eigentriples (eigentriple 

grouping) so that each set corresponds to an identifiable series component. The grouping procedure 

partitions the set of indices {1, . . . , 𝑑} into m disjoint subsets 𝐼1, . . . , 𝐼𝑚. The result of this step is the 

grouped matrix decomposition of the expansion (12): 

 𝑋 =  𝑋𝐼1
+ . . . + 𝑋𝐼𝑚

 (13) 

Step 4: Reconstruction. In the last step each matrix of the grouped decomposition (7) is transformed 

into a new series of length N by diagonal averaging. As a result, the initial time series (𝑓1, . . . , 𝑓𝑁) is 

decomposed into a sum of m reconstructed series: 

 
𝑓𝑛 = ∑ 𝑓𝑛

(𝑘)

𝑚

𝑘=1

 , 𝑛 = 1, . . . , 𝑁. 
(14) 

Time series decomposition was implemented using R-packages Rssa (Golyandina et al., 2018; 

Korobeynikov et al., 2017) and spectral.methods (Buttlar et al., 2014). There are two parameters in 

SSA, which must be set by the analyst: the window length (L) and grouping of the eigentriples. The 

choice of L is dependent on the characteristics of the subsignal to be extracted. In general, L ≤ N/2, 

and the higher the L, the more detailed the decomposition is. For the identification of trend, L should 

be large enough to be separable from periodic oscillations and noise. For the extraction of a periodic 

component with a period T, it is advisable to take L proportional to T. The periods of the harmonic 

components of the time series can be identified with the periodogram. 

The grouping can be done either manually by analysing the graphs of eigenvectors and their 

frequencies, or automatically (Golyandina and Zhigljavsky, 2013). In this study we used the 
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automatic grouping implemented in spectral.methods R-package (Buttlar, 2015), which allows to 

group SSA components based on their common features. This method measures the commonality 

of components by means of the weighted correlations between the components: if weighted 

correlation is high, then the corresponding components have similar behaviours and should be 

included in one group (Golyandina et al., 2018). 

3.3. Proof of the concept: a model-based 

study 
3.3.1. Methods 

3.3.1.1. SCOPE simulations 

SCOPE version 1.73 was used to simulate one year time series of TOC reflectance factor (R), F, and 

fluxes with half-hourly time step (dataset can be found in Biriukova et al. (2020b)). Variations of leaf 

absorptance between 500 and 570 nm induced by violaxanthin into zeaxanthin and reverse 

conversions of the xanthophyll cycle were simulated by the leaf radiative transfer model (RTM) 

Fluspect (Fluspect-CX) (Vilfan et al., 2018). Fluorescence radiance was simulated by SCOPE using the 

fluorescence emission spectra characterised from FluoWat leaf clip measurements (fluorescence of 

photosystems I and II are not separated, SCOPE parameter “calc_PSI”=0) (Vilfan et al., 2016) and an 

empirical fluorescence model (van Der Tol et al., 2014) (SCOPE parameter 

“Fluorescence_model”=0). 

The distribution of absorbed light into competitive pathways is controlled by the rate coefficients 

(K) which express the probability of the different fates of the excitations (C. van Der Tol et al., 2014). 

Rate constant for constitutive thermal dissipation that is present in dark adapted plants (Kd) was 

defined by leaf temperature (T) as Kd = max (0.8738, 0.0301· (T - 273.15) + 0.0773), rate constant 

for fluorescence (Kf) was set to 0.05, and rate constant for heat dissipation as part of NPQ (Kn) was 

defined as Kn = Kno · (1 + beta) · xalpha / (beta + xalpha), where Kno, alpha, beta are fitting parameters of 

the empirical model (equal to 5.01, 1.93, 10, respectively). Rate constant of photochemistry (Kp) was 

set to 4. Degree of light saturation (x, used for computation of Kn), steady-state fluorescence yield 

(Fs), and fluorescence efficiency amplification factor (ϕ’f) are the output parameters of fluorescence 

module of SCOPE model. NPQ was computed as Kn / (KF + KD). Steady-state fluorescence yield was 

computed as Fs = Fm*(1- ϕp), where light-adapted fluorescence yield Fm= Kf / (Kf + Kd + Kn), and 

photochemical yield ϕp = ϕ0
p · Ja / Je, where ϕ0

p is photochemical yield under dark adapted 

conditions, Ja is actual electron transport rate, Je is potential electron transport rate (van Der Tol et 

al., 2014). 

The simulations included temperature correction of the maximum carboxylation rate (Vcmax, [μmol 

m-2 s-1]) (SCOPE parameter “apply_T_corr”=1). Soil heat flux was defined as a constant fraction of 

soil net radiation (SCOPE parameter “soil_heat_method”=2). 

SCOPE was parameterized using structural vegetation parameters as well as meteorological data 

from the research station of Majadas de Tiétar (39°56′24.68″N, 5°45′50.27″W) (Cáceres, Spain). The 
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station is located in a typical Mediterranean savanna ecosystem dominated by herbaceous stratum 

constituted by grasses, forbs, and legumes. The site is characterized by mean annual temperature 

of 16 °C with wet season from November to May and dry summer (Perez-Priego et al., 2015). 

In order to realistically represent seasonal and intra-daily meteorological conditions we used half-

hourly observations of forcing meteorological variables measured in 2016 (Perez-Priego et al., 

2017). Down-welling short wave (Rin, [W m-2]) and long wave (Rli, [W m-2]) radiation, air temperature 

(Tair, [°C]), atmospheric vapour pressure (ea, [hPa]), air pressure (p, [hPa]), relative humidity (RH, 

[%]) and wind speed (u, [m s-1]) were recorded at 1.6 m height. VPD, ([hPa]) was computed from Tair, 

ea, and RH. Sun zenith (SZA, [°]) and azimuth (SAA, [°]) angles were computed from site coordinates 

and timestamps using the algorithm of Reda and Andreas, 2004. 

Soil moisture content (SMp, [%]) averaged from 4 sensors at 5 cm depth was used to modulate soil 

R in the brightness-shape-moisture (BSM) sub-model of SCOPE (Verhoef et al., 2018). The 

parameterization of SCOPE was defined according to Pacheco-Labrador et al. (2019) in the same 

site. Soil resistance for evaporation from the pore space (rss, [s m-1]) was estimated from SMp as in 

Pacheco-Labrador et al. (2019). 

Seasonal variability of leaf area index (LAI, [m2 m-2]) and leaf chlorophyll (Cab, [μg cm-2]) and 

carotenoids contents (Cca, [μg cm-2]) was simulated from time series of midday Normalized 

Difference Vegetation Index (NDVI) (Tucker, 1979) measured during 2016 by Decagon SRS sensor 

(Decagon Devices, Pullman, WA, USA) on Majadas de Tiétar grassland (Luo et al., 2018). Therefore, 

these parameters varied daily. LAI was derived from empirical relationship with NDVI (Martín et al., 

2020). Cab was predicted using a model fit from field spectral measurements and pigments content 

determined from destructive samples of 25 x 25 cm grass patches sampled in several campaigns 

between 2017 and 2019 (Martín et al., 2020; Melendo-Vega et al., 2018). Cab was estimated as Cab 

= (0.007 - (0.0001 / NDVI) · log(1 + (NDVI / 0.0001))) · 4443.0 while Cca was predicted as a function 

of Cab, according to the linear model Cca = 0.24 · Cab + 0.67 using field information from the same 

dataset. The ratio Cab to Cca of the simulated dataset ranged between 3.06 in autumn to 3.78 in 

spring. Other parameters were kept constant during the simulation. Leaf angle distribution was 

assumed spherical. Vcmax was set to 80 μmol m-2 s-1 and the slope (m, [-]) of the Ball-Berry model 

(Collatz et al., 1991) was set to 10. These parameters were kept constant to simplify the simulations, 

so that the variability of F and PRI was triggered only by switching on/off the effect of changes in 

the DEPS of xanthophyll cycle pigments on PRI and the ϕ’f on F specifically. 

During the simulation, a constant diffuse to global radiation ratio of 20 % was forced. Moreover, the 

variables from the biochemical model of SCOPE (e.g. NPQ, ϕ’f, ϕp), which are not part of the default 

output of SCOPE, were also extracted. Similar to fluxes (e.g. GPP), these variables were computed 

as a weighted mean of all leaves inside the canopy considering leaf angle distribution and the 

relative depth of each leaf, which determine the amount of radiation that each leaf receives (C. van 

der Tol et al., 2009). However, unlike fluxes, biochemical variables were not scaled by LAI since they 

are leaf rather than canopy scale parameters. 

PRI was computed as follows (Gamon et al., 1992): 
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𝑃𝑅𝐼 =

𝑅570 − 𝑅531

𝑅570 + 𝑅531
 

(15) 

where R531 is the reflectance factor of the xanthophyll-sensitive band at 531 nm and R570 is the 

reflectance factor of the reference band at 570 nm. With this formulation, PRI values can vary 

between -1 and 1 and are directly proportional to NPQ. 

𝑃𝑅𝐼xan
scope

 was simulated featuring the effect of changes in the DEPS of xanthophyll cycle pigments 

on leaf absorptance with Fluspect-CX module of SCOPE (Vilfan et al., 2018), whereas 𝑃𝑅𝐼0
scope

 was 

computed from R where the effect of the conversion of violaxanthin into zeaxanthin in the 

xanthophyll cycle was not simulated (Fig. 12). 

 

Figure 12. Schematic diagram of SCOPE simulations and SSA analysis. 

Therefore, with ∆𝑃𝑅𝐼scope, computed as the difference between 𝑃𝑅𝐼xan
scope

 and 𝑃𝑅𝐼0
scope

, we denote 

PRI variability induced only by physiological changes. Similarly, we simulated a baseline TOC 

fluorescence featuring (𝐹760
scope

) and excluding (𝐹0,760
scope

) ϕ’f predicted by the photosynthesis-

fluorescence model of SCOPE (van Der Tol et al., 2014) (Fig. 12). Baseline fluorescence corresponds 

to the emission under unstressed, low light conditions, only affected by canopy biophysical 

properties and illumination conditions, while the difference between 𝐹760
scope

 and 𝐹0,760
scope

 (∆𝐹760
scope

) is 

a reference for fluorescence physiological emission. 

Fluorescence apparent yield variables (𝐹𝑦∗
760
scope, 𝐹𝑦∗

0,760
scope) were computed as F normalized by 

photosynthetically active radiation (PAR). Since aPARCab is not easily obtainable from spectral 

measurements in many field set-ups, here we normalize F with PAR and not with aPARCab to test the 

applicability of the method on the metric usually available from field datasets. For validation of the 

SSA-decomposed physiology related component of 𝐹𝑦∗
760
𝑠𝑐𝑜𝑝𝑒 we used a ratio ∆𝐹760

scope
/PAR. For the 

definition of the variables simulated with SCOPE and modelled with SSA refer to Table 5. 
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𝑷𝑹𝑰𝐱𝐚𝐧
𝐬𝐜𝐨𝐩𝐞

 Total PRI featuring the effect of the xanthophyll cycle pigments 

conversion. 

𝑷𝑹𝑰𝟎
𝐬𝐜𝐨𝐩𝐞

 Constitutive PRI excluding the effect of the xanthophyll cycle 

pigments conversion.  

∆𝑷𝑹𝑰𝐬𝐜𝐨𝐩𝐞
 Facultative PRI - the difference between 𝑷𝑹𝑰𝐱𝐚𝐧

𝐬𝐜𝐨𝐩𝐞
 and 𝑷𝑹𝑰𝟎

𝐬𝐜𝐨𝐩𝐞
. 

𝑷𝑹𝑰𝐱𝐚𝐧
𝒔𝒔𝒂  SSA decomposed components of total 𝑷𝑹𝑰𝐱𝐚𝐧

𝐬𝐜𝐨𝐩𝐞
. 

𝑭𝟕𝟔𝟎
𝐬𝐜𝐨𝐩𝐞

 Far-red F featuring the fluorescence amplification factor (ϕ’f). 

𝑭𝟎,𝟕𝟔𝟎
𝐬𝐜𝐨𝐩𝐞

 Far-red F yield excluding the fluorescence amplification factor (ϕ’f). 

∆𝑭𝟕𝟔𝟎
𝐬𝐜𝐨𝐩𝐞

 The difference between 𝑭𝟕𝟔𝟎
𝐬𝐜𝐨𝐩𝐞

 and 𝑭𝟎,𝟕𝟔𝟎
𝐬𝐜𝐨𝐩𝐞

. 

𝑭𝟕𝟔𝟎
𝒔𝒔𝒂

 SSA decomposed components of far-red 𝑭𝟕𝟔𝟎
𝐬𝐜𝐨𝐩𝐞

. 

𝑭𝒚∗
𝟕𝟔𝟎
𝐬𝐜𝐨𝐩𝐞 Far-red F apparent yield featuring the fluorescence amplification 

factor (ϕ’f) 

𝑭𝒚∗
𝟎,𝟕𝟔𝟎
𝐬𝐜𝐨𝐩𝐞 Far-red F apparent yield excluding the fluorescence amplification 

factor (ϕ’f). 

𝑭𝒚∗
𝟕𝟔𝟎
𝐬𝐬𝐚

 SSA decomposed components of far-red 𝑭𝒚∗
𝟕𝟔𝟎
𝐬𝐜𝐨𝐩𝐞. 

Table 5. Definition of the variables simulated with SCOPE and modelled with SSA. 

Only daytime data were simulated. Any situation where Rin <= 10 W m-2 or SZA >= 85° was 

considered night. Night-time values of different model outputs were linearly interpolated between 

the sunrise and sunset value. However, since R could strongly change due to small variations in SZA, 

sunrise and sunset were simulated differently in order to provide a smooth baseline. For these time 

steps we set SZA = 85° and used the forcing meteorological variables of the following or the previous 

time step, respectively. R was calculated for Rin = 10 W m-2 using the optical radiative transfer 

module of SCOPE only, so that no physiological effect was present and night-time baselines for both 

𝑃𝑅𝐼xan
scope

 and 𝑃𝑅𝐼0
scope

 were identical. The rest of model outputs were computed for Rin = 0 W m-2 

using the full model. At these radiation levels, the effects of xanthophyll cycle on the R resulted 

negligible and was assumed that these could be representative of the simulation carried out with 

no light. Night-time interpolation is necessary since the subsequent time series analyses require 

continuous data. This gap filling is considered reasonable for parameters that are not expected to 

strongly vary during the night, such as F or R-based variables such as PRI. These assumptions might 

not completely hold due, for example, to physiological recovery. As PAR equals 0 at night, the night-

time gaps in the series of Fy*760 were filled with the maximum daytime values selected in the moving 

window of 1 day. In order to simulate observational uncertainty, Gaussian noise was added to the 

time series of PRI, F760 and Fy*760 with mean (μ) equal 0 standard deviation (σ) equal 95% quantile 

of daytime data multiplied by 0.01. 

LUE [µmol CO2 / µmol photons absorbed] was computed as a ratio of simulated GPP to aPARCab. 
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3.3.1.2. SSA decomposition 

The SSA decomposition algorithm described in section 3.2 was run stepwise for each frequency 

interval (which are specified by “borders.wl” argument in Table 6). This allows adapting L for a 

particular frequency bin to be extracted. The choice of frequency bands is subjective and was 

determined here based on the time series length and temporal resolution (30 min). We divided time 

series into three intuitive frequency bins with an intention to test SSA component extracted in 

different bins and their relationships with reference signals (i.e. 𝑃𝑅𝐼0
scope

, ∆𝑃𝑅𝐼scope, 𝐹0,760
scope

, 

∆𝐹760
scope

). In particular, we defined the following classes: long-term or seasonal (2 weeks – 1 year), 

diurnal (7 hours – 2 weeks), sub-diurnal (30 min – 7 hours). For each frequency bin the 

corresponding window length was chosen: 2 months, 1 week and 1 day. The choice of window 

length was supported by the SSA theory (i.e. for the extraction of the long-term component the L 

was chosen large enough to be separable from periodic component, while for the extraction of 

diurnal oscillations, L was chosen proportional to the period of 1 day). The data associated with the 

output of SSA analysis can be found in Biriukova et al. (2020b). 

SSA decomposition was applied on time series of 𝑃𝑅𝐼xan
scope

, 𝑃𝑅𝐼0
scope

, 𝐹760
scope

, 𝐹0,760
scope

, 𝐹𝑦∗
760
𝑠cope, 

𝐹𝑦∗
760
scope. The parameters of the decomposition used in the function filterTSeriesSSA are reported 

in Table 6. 
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Argument Description Value 

borders.wl Borders of the different periodicity 

bands to extract. Units are the 

sampling frequency of the series 

(half-hourly observations). 

1) 672, Inf (seasonal) 

2) 14, 672 (diurnal) 

3) 0, 14 (sub-diurnal) 

M Window length or embedding 

dimension. 

Units are the sampling frequency of 

the series (half-hourly observations). 

Vector: (2880,336,48) 

n.comp Amount of SSA components to 

compute. 

Vector: (20, 20, 20) 

harmonics How many harmonics to include in 

each component. 

Vector: (0,0,0) 

repeat. extr How often to repeat the extraction. Vector: (2,1,1) 

center.series Whether to center the series around 

zero prior to the computation. 

TRUE 

grouping Method to use for grouping the 

individual SSA eigentriples. 

grouping.auto 

groupingMethod Method for automatic grouping. wcor 

SSA. methods Methods to use for the SSA 

computation. 

"auto" - Automatic method selection 

depending on the series length, 

window length, SSA kind and number of 

eigenvalues requested. 

Table 6. Parameters of filterTSeriesSSA (spectral.methods R-package (Buttlar, 2015)) function used 

for the decomposition of 𝑃𝑅𝐼𝑥𝑎𝑛
𝑠𝑐𝑜𝑝𝑒

, 𝑃𝑅𝐼0
𝑠𝑐𝑜𝑝𝑒

, 𝐹760
𝑠𝑐𝑜𝑝𝑒

, 𝐹760
𝑠𝑐𝑜𝑝𝑒

, 𝐹𝑦∗
760
𝑠𝑐𝑜𝑝𝑒, 𝐹𝑦∗

0,760
𝑠𝑐𝑜𝑝𝑒. 

3.3.1.3. Statistical analysis 

To assess the relationship between decomposed and original variables we used distance correlation 

(dCor) (Székely et al., 2007). dCor varies between 0 and 1, and dCor=0 when variables are 

independent. The distance dependence measures are based on certain Euclidean distances 

between sample elements rather than sample moments as in Pearson’s correlation. An advantage 

of distance correlation over Pearson’s correlation is that it measures both linear and nonlinear 

association between two random variables or random vectors. dCor of two random variables is 

computed as a ratio of their distance covariance (dCov) to the product of their distance standard 

deviations (dVar). 
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3.3.2. Results 

3.3.2.1. Seasonal cycles of simulated variables 

Mediterranean climate is characterized by a strong seasonality mostly driven by radiation and 

precipitations (e.g. El-Madany et al., 2018) with a rainy period from late fall to early spring and a dry 

season in summer extended to early fall (Fig. 13C). Simulated biophysical parameters, fluxes and 

spectral variables are coherent with the typical phenology of the grassland at the site (Luo et al., 

2020). According to the models based on NDVI observations, during green-up period from fall to 

winter, simulated LAI and Cab increased from 0.5 up to 2.5 m2 m-2 and from 7.5 to 25 µg cm-2, 

respectively (Fig. 13E). This variability is coherent with expected phenology and with the variability 

of SMp. The peak of the growing season in Majadas de Tiétar occurs in spring (Luo et al., 2020), this 

is reproduced by simulated GPP and 𝐹760
scope

, which featured maximum values at the beginning of 

May (Fig. 13F, H). Early summer is characterised by a dry-down period, a transition to hot and dry 

season with a strongly inhibited photosynthesis associated with scarce precipitations and Tair 

reaching 40 °C and VPD of 75 hPa (Fig. 13A, B), which is also represented by the simulation. 
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Figure 13. Time series of (A) air temperature (Tair), (C) vapor pressure deficit (VPD), (E) soil moisture 

content (SMp), (G) photosynthetically active radiation (PAR), (I) leaf area index (LAI) and chlorophyll 

content (Cab), (B) gross primary production (GPP), (D and F) photochemical reflectance index affected 

and not affected by xanthophyll cycle de-epoxidation (𝑃𝑅𝐼𝑥𝑎𝑛
𝑠𝑐𝑜𝑝𝑒

, 𝑃𝑅𝐼0
𝑠𝑐𝑜𝑝𝑒

) and (H and J) far-red 

fluorescence simulated with and without fluorescence amplification factor ϕ’f (𝐹760
𝑠𝑐𝑜𝑝𝑒

, 𝐹0,760
𝑠𝑐𝑜𝑝𝑒

). 

Colour lines represent mean daily values for Tair, VPD and PAR, and mean daily values in the time 

interval between 10 and 3 pm for GPP, 𝑃𝑅𝐼𝑥𝑎𝑛
𝑠𝑐𝑜𝑝𝑒

, 𝑃𝑅𝐼0
𝑠𝑐𝑜𝑝𝑒

,  𝐹760
𝑠𝑐𝑜𝑝𝑒

, 𝐹0,760
𝑠𝑐𝑜𝑝𝑒

. 

3.3.2.2. ∆𝑃𝑅𝐼scope and ∆𝐹760
scope

 as a function of vegetation physiological response 

The difference between total 𝑃𝑅𝐼xan
scope

 and constitutive 𝑃𝑅𝐼0
scope

 denoted as ∆𝑃𝑅𝐼scope (Table 5) 

represents a facultative response of a plant to environmental conditions (e.g. changing irradiance) 

occurring at daily or shorter timescales. ∆𝑃𝑅𝐼scope can be considered a reliable proxy of the 

changing DEPS of xanthophyll cycle pigments as part of NPQ. The SCOPE-simulated weighted 
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average of all leaves NPQ linearly scales with ∆𝑃𝑅𝐼scope at short temporal scale when canopy 

structural parameters (LAI) do not vary significantly (Fig. 14B). The coefficient of determination (R2) 

of the linear relationships between ∆𝑃𝑅𝐼scope and NPQ computed for classes of LAI of equal size 

(approx. 600 data points per class) varies within a range of 0.75 – 0.97. 

 

Figure 14. (A) Relationship between ∆𝑃𝑅𝐼𝑠𝑐𝑜𝑝𝑒 and NPQ and (B) coefficients of determination (R2) 

for linear relationships between ∆𝑃𝑅𝐼𝑠𝑐𝑜𝑝𝑒 and NPQ aggregated by LAI classes of equal size. (C) 

Relationship between ∆𝐹760
𝑠𝑐𝑜𝑝𝑒

 and ϕ’f and (D) coefficients of determination (R2) for linear 

relationships between ∆𝐹760
𝑠𝑐𝑜𝑝𝑒

and ϕ’f aggregated by LAI classes of equal size. The data presented 

on the figure correspond to daytime data, SZA <= 80° and the fraction of the day between 0.2 and 

0.8. 

In order to validate the decomposition of 𝐹760
scope

 into components related either to biochemical or 

physiological properties, we used the difference (∆𝐹760
scope

) between 𝐹760
scope

and 𝐹0,760
scope

 as a reference 

for the physiological information contained in fluorescence signal. 𝐹760
scope

 is scaled with fluorescence 

efficiency factor predicted by biochemical model according to the way aPARCab is dissipated in the 

photosynthetic machinery. Therefore, the remaining variability of ∆𝐹760
scope

 can be attributed to 

physiological regulation of fluorescence efficiency (Fig. 14C). R2 of the linear relationships between 

∆𝐹760
scope

 and ϕ’f computed for classes of LAI of equal size (approx. 600 data points per class) varies 

within a range of 0.73 – 0.92 (Fig. 14D). 
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For the decomposition analysis we assume that the scaling of canopy-level parameters ∆𝑃𝑅𝐼scope 

and ∆𝐹760
scope

 to leaf-level NPQ and ϕ’f is not necessary if the relationship between decomposed SSA-

components and NPQ and ϕ’f is assessed for different LAI classes. 

3.3.2.3. Proof of concept : extraction of slow dynamics from 𝑃𝑅𝐼xan
scope

, 𝐹760
scope

 and 𝐹𝑦∗
760
𝑠𝑐𝑜𝑝𝑒 with 

SSA 

Slow-varying component of 𝑃𝑅𝐼xan
ssa  [seasonal] extracted with SSA showed a high correlation with 

𝑃𝑅𝐼0
scope

 (R2 = 0.97) (Fig. 15A).  

 

Figure 15. (A) Relationship between 𝑃𝑅𝐼𝑥𝑎𝑛
𝑠𝑠𝑎  [seasonal] and 𝑃𝑅𝐼0

𝑠𝑐𝑜𝑝𝑒
 , (B) 𝐹760

𝑠𝑠𝑎 [seasonal] and 𝐹0,760
𝑠𝑐𝑜𝑝𝑒

, 

and (C) 𝐹𝑦∗
760
𝑠𝑠𝑎  [seasonal] and 𝐹𝑦∗

0,760
𝑠𝑐𝑜𝑝𝑒. The data presented on the figure correspond to daytime 

data, SZA <= 80° and the fraction of the day between 0.2 and 0.8. 

This confirms that SSA was able to separate the long-term variability of 𝑃𝑅𝐼xan
scope

 induced by 

seasonally varying structural and biochemical vegetation properties (Cab). The SSA extraction of the 

seasonal component from 𝐹760
scope

 performed worse in comparison to 𝑃𝑅𝐼xan
scope

, with R2 = 0.46 of the 

relationship between 𝐹760
ssa and 𝐹0,760

ssa  (Fig. 15B). Decomposition of 𝐹𝑦∗
760
scope allowed to separate 

seasonal cycle associated with the variability of faPARCab. High positive correlation was observed 

between 𝐹𝑦∗
760
ssa  [seasonal] and 𝐹𝑦∗

0,760
scope (R2 = 0.96) (Fig. 15C). 

3.3.2.4. Proof of concept: extraction of fast variability from 𝑃𝑅𝐼xan
scope

, 𝐹760
scope

 and 𝐹𝑦∗
760
𝑠𝑐𝑜𝑝𝑒 with 

SSA 

Fast-varying component of 𝑃𝑅𝐼xan
ssa  [diurnal + sub-diurnal] showed a strong linear correlation with 

∆𝑃𝑅𝐼scope (R2 = 0.78) (Fig. 5A). In order to understand if the relationship found is not spurious, and 

if the information extracted by SSA is related to physiological responses of vegetation, we applied 

the same decomposition on 𝑃𝑅𝐼0
scope

, and found no significant correlation with ∆𝑃𝑅𝐼scope (R2 = 

0.05) (Fig. 17A). This supports the hypothesis that SSA can be useful for separating the fast variability 

of PRI attributed to the activation of xanthophyll cycle as part of the reversible NPQ. The fast SSA 

component 𝐹760
ssa [diurnal + sub-diurnal] showed a significant correlation with ∆𝐹760

scope
 for LAI from 

1.4 up to 2.2 m2 m-2 with R2 ranging from 0.27 to 0.65 (Fig. 16B, E). 
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Figure 16. (A) Relationship between 𝑃𝑅𝐼𝑥𝑎𝑛
𝑠𝑠𝑎  [diurnal + sub-diurnal] and ∆𝑃𝑅𝐼𝑠𝑐𝑜𝑝𝑒 and R2 for linear 

relationships 𝑃𝑅𝐼𝑥𝑎𝑛
𝑠𝑠𝑎  [diurnal + sub-diurnal] vs 𝑃𝑅𝐼0

𝑠𝑐𝑜𝑝𝑒
 and 𝑃𝑅𝐼𝑥𝑎𝑛

𝑠𝑠𝑎  (30 min – 1 week) vs NPQ 

aggregated by LAI classes of equal size (D); (B) 𝐹760
𝑠𝑠𝑎 [diurnal + sub-diurnal] and ∆𝐹 760

𝑠𝑐𝑜𝑝𝑒
 and R2 for 

linear relationships aggregated by LAI classes of equal size (E); (C) 𝐹𝑦∗
760
𝑠𝑠𝑎  [diurnal + sub-diurnal] and 

∆𝐹760
𝑠𝑐𝑜𝑝𝑒

/𝑃𝐴𝑅 and R2 for linear relationships aggregated by LAI classes of equal size (F). The data 

presented on the figure correspond to daytime data, SZA <= 80° and the fraction of the day between 

0.2 and 0.8. 

 

Figure 17. (A) Relationship between 𝑃𝑅𝐼0
𝑠𝑠𝑎 [diurnal + sub-diurnal] and ∆𝑃𝑅𝐼𝑠𝑐𝑜𝑝𝑒 ; (B) 𝐹0,760

𝑠𝑠𝑎  [diurnal 

+ sub-diurnal] and ∆𝐹760
𝑠𝑐𝑜𝑝𝑒

; (C) 𝐹𝑦∗
760
𝑠𝑠𝑎  [diurnal + sub-diurnal] and ∆𝐹760

𝑠𝑐𝑜𝑝𝑒
/𝑃𝐴𝑅. The data presented 

on the figure correspond to daytime data, SZA <= 80° and the fraction of the day between 0.2 and 

0.8. 
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During the periods associated with low LAI, which coincide also with high Tair and VPD, 

decomposition did not yield satisfying results. During summer months the diurnal cycles of ∆𝐹760
scope

 

change shape, featuring minimum instead of maximum absolute values around midday (Fig. 18). 

 

Figure 18. Mean diurnal variation of ∆𝐹760
𝑠𝑐𝑜𝑝𝑒

 computed for each month. 

Negative values of ∆𝐹760
scope

 appear in the afternoon, which means that the model predicts lower 

fluorescence emission than the reference 𝐹0,760
scope

. This fact can be due to strong water stress and 

dissipation of the major part of the energy via NPQ. With SSA we are unable to extract this peculiar 

diurnal patter of ∆𝐹760
scope

 from 𝐹760
scope

. The fast component of 𝐹𝑦∗
760
ssa  [diurnal + sub-diurnal] linearly 

scales with ∆𝐹760
scope

/𝑃𝐴𝑅 (R2=0.55) (Fig. 16C). Unlike 𝐹760
scope

 , fast component of 𝐹𝑦∗
760
ssa  exhibited 

strong correlation with ∆𝐹760
scope

/𝑃𝐴𝑅 for all LAI classes varying from 0.32 for LAI between 0.6 and 

0.7 m2 m-2 to 0.82 for LAI > 2 m2 m-2. To ascertain that 𝐹𝑦∗
760
ssa  [diurnal + sub-diurnal] is related to 

physiological response, we applied that same SSA decomposition on 𝐹𝑦∗
0,760
scope, and in this case the 

components of the same frequency showed lower correlation with ∆𝐹760
scope

/𝑃𝐴𝑅 (R2=0.48) (Fig. 

17C). 

3.3.2.5. Link between fast SSA components of 𝑃𝑅𝐼xan
scope

, 𝐹760
scope

, 𝐹𝑦∗
760
𝑠𝑐𝑜𝑝𝑒 and light-use efficiency 

In order to evaluate whether SSA-decomposed fast components of optical signals are better related 

to physiological response of vegetation than the TOC raw signals, we examined their relationships 

with LUE. Extraction of the slow component from 𝑃𝑅𝐼xan
scope

 eliminated the effect of a strong 

variability of intercepts observed in the relationship between 𝑃𝑅𝐼xan
scope

 and LUE (Fig. 19A). The fast 

component 𝑃𝑅𝐼xan
ssa  [diurnal + sub-diurnal] better linearly correlates with LUE in comparison to 

undecomposed total 𝑃𝑅𝐼xan
scope

 when the relationships are considered for moving window of 20 days 

(Fig. 6C). The moving window of 20 days was chosen to account for variations in structural and 

biochemical properties as in (Soudani et al., 2014). dCor between 𝑃𝑅𝐼xan
ssa  [diurnal + sub-diurnal] and 
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LUE computed over the moving window of 20 days shows that the values vary within a range of 0.70 

- 0.95, except a decrease down to 0.30 at DOY 260 - 300 (Fig. 19C). 

 

Figure 19. First row: relationships between 𝑃𝑅𝐼𝑥𝑎𝑛
𝑠𝑐𝑜𝑝𝑒

 and LUE (A), 𝑃𝑅𝐼𝑥𝑎𝑛
𝑠𝑠𝑎  [diurnal+sub-diurnal] and 

LUE (B) and distance correlation (dCor) between the two computed using moving window of 20 days 

(C). Second row: relationships between 𝐹760
𝑠𝑐𝑜𝑝𝑒

 and LUE (D), 𝐹760
𝑠𝑠𝑎

 [diurnal+sub-diurnal] and LUE (E) 

and distance dCor between the two computed using moving window of 20 days (F). Third row: 

relationships between 𝐹𝑦∗
760
𝑠𝑐𝑜𝑝𝑒and LUE (G), 𝐹𝑦∗

760
𝑠𝑠𝑎  [diurnal+sub-diurnal] and LUE (H) and dCor 

between the two computed using moving window of 20 days (I). 

The fast component extracted from 𝐹760
scope

 - 𝐹760
ssa [diurnal + sub-diurnal] – negatively correlates with 

LUE with high dCor (0.50 - 0.90) during the periods characterized by high LAI (Fig. 19D-F). Time series 

of dCor computed for moving window of 20 days (Fig. 19F) follows LAI and Cab seasonal cycles (Fig. 

13I), which implies that the SSA decomposition of 𝐹760
scope

 is more robust for denser canopy. The 

decoupling of the 𝐹𝑦∗
760
ssa  [diurnal + sub-diurnal] component from 𝐹𝑦∗

760
scope allowed to decrease the 

scatter in the relationship between 𝐹𝑦∗
760
scope and LUE (Fig. 19G, H). Time series of dCor of the 
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relationships between 𝐹𝑦∗
760
scope and LUE computed over 20 days moving average showed the 

pattern which follows major oscillations of NPQ seasonal cycle (Fig. 19I). The control of the NPQ 

over this relationship is evident when we consider two NPQ classes – lower and higher than 0.1. 

Under low NPQ < 0.1 associated with low light conditions the correlation is negative (Pearson 

correlation coefficient (R) = -0.55; dCor=0.53), (Fig. 20A), while for NPQ varying between 0.1 and 2.5 

the correlation is positive (R = 0.69, dCor=0.75) (Fig. 20B). 

 

Figure 20. Relationship between 𝐹𝑦∗
760
𝑠𝑠𝑎  [diurnal+sub-diurnal] and LUE computed for NPQ<0.1 (A) 

and NPQ between 0.1 and 2.5 (B). 

3.3.3. Discussion 

3.3.3.1. Performance of SSA in separation of seasonal and fast dynamics in optical signals 

With the increasing availability of high temporal resolution optical data collected simultaneously 

with CO2 fluxes at eddy covariance stations (Balzarolo et al., 2011; Gamon, et al., 2006), it is pivotal 

to accurately interpret information provided by these datasets. Optical signal and particularly PRI 

and F are affected by confounding factors acting at different time scales (Gamon & Berry, 2012). To 

our knowledge, there were no previous attempts to use time series decomposition as tool to 

disentangle physiological information from these signals. 

Our approach shows that SSA decomposition of 𝑃𝑅𝐼xan
scope

, 𝐹760
scope

 and 𝐹𝑦∗
760
scope simulated with 

SCOPE for a specific case study of Mediterranean grassland ecosystem allowed to separate slow and 

fast varying components with different levels of accuracy. Following the concept that there are two 

components of PRI variability - constitutive and facultative – introduced in Gamon and Berry (2012), 

we showed that these components can be successfully distinguished using highly data-adaptive SSA 

technique. The decomposed slow variability of the total 𝑃𝑅𝐼xan
scope

 showed high correlation with 

constitutive 𝑃𝑅𝐼0
scope

 (Fig. 15A), which is highly correlated with modified red-edge normalized 

difference index (mNDI) sensitive to chlorophyll content (R2=0.94) (Sims & Gamon, 2002). This result 

is similar to the strong relationships emerging between PRI of perfectly dark adapted leaves and 
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mNDI obtained in Hmimina et al. (2014, 2015) and Merlier et al. (2015) at both leaf and canopy 

scales. The facultative variability ∆𝑃𝑅𝐼scope was well predicted by the fast component 𝑃𝑅𝐼xan
ssa  

extracted with SSA and varying at diurnal and sub-diurnal timescales (Fig. 16A). The physiological 

meaning of 𝑃𝑅𝐼xan
ssa  [diurnal+sub-diurnal] was assessed by relating it to NPQ and LUE. Since NPQ is a 

leaf-level parameter, we computed the relationships with 𝑃𝑅𝐼xan
ssa  [diurnal+sub-diurnal] based on 

LAI classes (Fig. 16D) to overcome the problem of downscaling from canopy- to leaf-level. The 

overall high R2 (Fig. 16D) gradually increased from low to high LAI values. In the modelled dataset, 

summer season is characterized by low LAI and low water availability with highly variable VPD values 

(daily range of 0 – 75 hPA) (Fig. 13C) and NPQ (daily range of 0 – 2.6). Under these severe conditions, 

there is a lack of PRI response to increasing PAR, which might explain lower correlation between 

𝑃𝑅𝐼xan
ssa  [diurnal+sub-diurnal] and NPQ at this period of the year. As shown on (Fig. 19A), total 𝑃𝑅𝐼xan

ssa  

and LUE exhibit a non-linear relationship with variability in intercepts between LAI classes. Fast 

component of 𝑃𝑅𝐼xan
ssa  [diurnal+sub-diurnal], in turn, linearly correlates with LUE when the 

relationships are considered for the periods of the stable canopy structure (Fig. 19B, C). In contrast 

to the works of Hmimina et al. (2014, 2015), where the evaluation of the relationships of total and 

pigment-corrected PRI with LUE were performed for short periods excluding sources of significant 

changes in the LAI, we assessed the SSA decomposition under varying LAI. The fast variability 𝑃𝑅𝐼xan
ssa  

[diurnal+sub-diurnal] may contain different sources of variation. On the one hand, 𝑃𝑅𝐼xan
ssa  

[diurnal+sub-diurnal] responds to diurnal and sub-diurnal variations of NPQ driven by instantaneous 

changes in light intensity (Krause & Weis, 1991) and modulated by VPD and Tair (Demmig-Adams & 

Adams, 1992); on the other hand, these are mixed with directional effects imposed on diurnal cycles 

of PRI (Biriukova et al., 2020a; Hall et al., 2008; Hilker et al., 2008). Both processes vary in the same 

frequency bin and only change in amplitude, and SSA is unable to separate these two components. 

The applicability of SSA for the decoupling of slow and fast dynamics in F was evaluated for both 

𝐹760
scope

 and 𝐹𝑦∗
760
scope. First, we attempted to disentangle aPAR-related and physiology-related 

variabilities in 𝐹760
scope

. F variability driven only by biophysical vegetation properties and irradiance 

(𝐹0,760
scope

) was not accurately disentangled with 𝐹760
ssa [seasonal] (R2=0.46) (Fig. 15B). Fast physiological 

component was only extracted for the growing period where vegetation is more active, and LAI is 

larger than 2 m2 m-2 (Fig. 16B, E). The problem with decomposition of 𝐹760
scope

 with SSA can be 

explained by the fact that both 𝐹760
scope

 and 𝐹0,760
scope

 are strongly driven by aPAR and are highly 

correlated with each other (R2=0.98). Therefore, the contribution of aPAR-related variability and 

physiology-related component is hard to decouple since both are driven by diurnal cycles of 

irradiance. By normalizing 𝐹760
scope

 with PAR we remove a part of variability attributed to irradiance, 

and thus reduce the number of unknown variables in Eq. 9. 

We hypothesized, that by decomposing 𝐹𝑦∗
760
scope, we can remove a part of the variability attributed 

to faPARCab and to infer information related to fluorescence efficiency ϕ’f. Seasonal variability, 

associated with faPARCab (R2 of the relationship between 𝐹𝑦∗
0,760
scope and faPARCab is 0.99) was 

captured by the SSA-reconstructed 𝐹𝑦∗
760
ssa  [seasonal] (Fig. 15C). The remaining variability attributed 

to physiological modulation of ∆𝐹760
scope

 normalized by PAR was considerably better predicted by 
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𝐹𝑦∗
760
ssa  [diurnal+sub-diurnal] (Fig. 16C, F) in comparison to the relationship between 𝐹760

ssa
 

[diurnal+sub-diurnal] and ∆𝐹760
scope

 (Fig. 16B, E). Moreover, dCor between 𝐹𝑦∗
760
ssa  [diurnal+sub-

diurnal] and LUE computed using moving average of 20 days follows the major changes in NPQ times 

series (Fig. 19I). Under high light conditions, when NPQ is actively involved in aPARCab dissipation, it 

becomes a determinant factor in the relationship between ϕp and ϕ’f. In contrast, under low light 

conditions, when NPQ is low and constant, the driving factor of this relationship is photochemical 

quenching (PQ) (Porcar-Castell et al., 2014). Decreasing PQ and increasing NPQ affect ϕ’f in opposite 

ways (C. van Der Tol et al., 2014) and, as a result, the relationship between photochemical yield (and 

hence LUE) and ϕ’f is positive under NPQ control and negative under PQ control. This behaviour, 

observed in the relationship between leaf-level parameters ϕp and ϕ’f (Fig. 21), can be also seen in 

the relationship between SSA-decomposed fast 𝐹𝑦∗
760
ssa  [diurnal+sub-diurnal] and LUE (Fig. 20). 

 

Figure 21. Relationship between fluorescence efficiency (ϕ’f) and photochemical yield (ϕp). The data 

presented on the figure correspond to daytime data , with PAR values >= 500 µmol m-2 s-1, SZA <= 

80° and the fraction of the day between 0.2 and 0.8. 

These results suggest that 𝐹𝑦∗
760
ssa  [diurnal+sub-diurnal] can be attributed to physiologically-related 

information contained in fluorescence signal. Previous works have proved the feasibility of ϕ’f 

extraction from TOC F signal using radiative transfer model inversion (van der Tol et al., 2016; Celesti 

et al., 2018). SSA-based approach is a step forward in decoupling physiological information from 

optical variables measured with automated proximal systems without complex and computationally 

demanding model inversions. 

The choice of SSA decomposition parameters plays an important role on the resulting reconstructed 

time series. The decomposition can be potentially improved by varying the “cut-offs” of the 

frequency bins (Table 6) in which we aim to extracting the subsignals. Here we tested different 

frequency bins of varying length and borders and have heuristically chosen broader bins covering 

three timescales interesting from ecological point of view – seasonal, diurnal, and sub-diurnal. 
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Depending on the time series length and temporal resolution, the borders of the frequency bins of 

interest might be expanded (e.g. if time series sampling frequency is lower there is no need detect 

sub-diurnal component) or narrowed (e.g. in case of sampling frequency higher than 30 min would 

be interesting to have several bins per day to explore the dynamics of the fast physiological response 

at different timescales during a day). 

3.3.3.2. Limitations and applicability to field data 

This study is a model-based proof of concept for decoupling slow dynamics related to biochemical 

composition and structural changes and fast physiological dynamics in TOC time series of F and PRI. 

We chose a model-based study because the data required for the evaluation of the proposed 

decomposition technique (i.e. a combination of canopy scale passive and leaf-level active 

measurements) are only sparsely available and prone to uncertainty related to the scaling from leaf- 

to canopy-level processes such as NPQ. In this context, with the use of a synthetic data generated 

by a state-of-the-art process-based model, we can evaluate if our method is able to disentangle the 

processes acting at different time scale as encoded in the model. This kind of model-based 

evaluation was already used for different problems but in similar condition where there was a lack 

of evaluation dataset (e.g. Nelson et al., 2018). However, it should be noted, that the SCOPE is not 

a dynamic model, which implies that some of the physiological responses (i.e. sustained NPQ) that 

can be observed in the field are not captured by the model. When analysing the links between 

decomposed PRI and NPQ, it should be taken into account that NPQ involves mechanisms operating 

at different temporal scales, such as reversible energy-dependant NPQ with over-night relaxation 

and sustained NPQ operating at longer timescales (Porcar-Castell, 2011). However, predicting NPQ 

based on PRI is only possible when reversible NPQ is dominating and sustained NPQ is insignificant 

(Alonso et al., 2017). In SCOPE simulations we kept a constant rate of sustained NPQ, so that 

modelled NPQ only includes the effect of xanthophyll cycles activation. Therefore, when applying 

SSA on field data, one should consider that decomposed fast components of PRI may not represent 

the full variability of NPQ. Additional considerations are associated with the parameterization of 

SCOPE fluorescence module with datasets limited to few species (i.e. cotton), which may also affect 

the accuracy of the representation of physiological response of the grassland. Nevertheless, we 

assume that for the purpose of the decomposition of slow and fast temporal dynamics of F and PRI 

with SSA, a simple simulation was reasonable. 

Further, we discuss the applicability of the method to field data and associated limitations. SSA 

decomposition requires high temporal resolution data, acquired with at least 1 hour - 30 min 

interval to track fast physiological response of F and the activation of xanthophyll cycle, occurring 

at timescales of minutes after the change in light intensity (Müller et al., 2001). In general, the higher 

the temporal resolution of time series, the more accurate extraction of fast varying physiological 

components can be achieved. With the expanding network of automated proximal sensing systems 

(Aasen et al., 2019; Cogliati, Rossini, et al., 2015), continuous and high-resolution time series of F 

and R become increasingly available. 

These systems can be used to acquire time series of PAR, PRI, and F, as well as normalized vegetation 

indices informing on vegetation structure. Often, these systems are installed close to eddy 
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covariance sites, which provide measurements of net ecosystem exchange (NEE), partitioned on 

GPP and respiration, and auxiliary abiotic variables (Rebmann et al., 2018) useful for the evaluation 

of the method’s performance under different environmental conditions. Some eddy covariance sites 

also provide measurements of aPAR, but often this term has to be modelled from remote sensing 

observations, which is still challenging. Apparent LUE (GPP/PAR) and fluorescence yield Fy* (F/PAR) 

are usually easier to obtain in comparison to metrics derived using aPAR or aPARCab. As shown in 

Gitelson and Gamon (2015) LUE computed as GPP/PAR is the most confounded by canopy structure 

among other LUE formulations, while LUE computed as GPP/aPARCab mostly depends on the 

physiological status of vegetation. aPAR can be estimated using several downward and upward-

facing quantum sensors installed above and below the canopy (Inoue et al., 2008; Jenkins et al., 

2007) or using automated observation system based on LED sensors (Kim, Ryu, Jiang, & Hwang, 

2019). aPARCab can be effectively retrieved from field spectral reflectance and transmittance 

measurements (Serrano et al., 2000), directly measured with destructive sampling, or approximated 

using vegetation greenness indices (e.g. NDVI), however, there is still no standard procedure that 

could be used to accurately estimate aPARCab. In this study we showed the applicability of the SSA 

decomposition on commonly available Fy*760 and evaluated its relationship with LUE computed as 

GPP/aPARCab in order to assess whether the fast component of Fy*760 is related to physiological 

status of vegetation. In case aPARCab is not available from field observations, SSA decomposition of 

apparent LUE (GPP/PAR) can be used to decouple the influence of canopy biochemical and 

structural properties on LUE. 

In addition to time series of optical variables, leaf-level pulse - PAM measurements of NPQ, ϕf and 

ϕp would be greatly beneficial for the validation of the decomposition results. For example, 

simultaneous installation of automated high spectral resolution devices (e.g. FloX system, JB 

Hyperspectral Devices UG, Germany) with micro-PAM (Atherton et al., 2016; Magney et al., 2017; 

Porcar-Castell et al., 2008) can provide a dataset for the validation of the method. However, the 

availability of these coupled datasets is still very limited. 

Since SSA requires data continuity, gap filling should be applied to time series with missing values. 

For this purpose, SSA has been also successfully used as a gap-filling tool (Buttlar et al., 2014; 

Mahecha et al., 2007). The classical SSA algorithm was modified so that SSA components are 

estimated based on non-missing values only, and the values of the reconstructions are imputed to 

missing values (Golyandina and Osipov, 2007). For night-time data, a noisy baseline should be 

provided as well, for example, by linearly interpolating the last daytime observation of a day and 

the first daytime observation of the following day, or by applying moving window to smooth a 

baseline. 
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3.4. Case study: application of SSA to 

measured time series of optical signals 
3.4.1. Methods 

3.4.1.1. Study site 

The study site is located near Gebesee in Thuringia, Germany (51°06’0.13’’N, 10°54’51.9’’E) in the 

middle of an agricultural field of approximate area of 750 m by 850 m (Anthoni et al., 2004). 

Established in 2001, this site is the eldest cropland eddy covariance site in Europe (Kutsch, Brümmer, 

Don, Dechow, & Fuß, 2013), which was included in Integrated Carbon Observation System (ICOS) in 

2013. Winter wheat (Triticum aestivum) was drilled on the 23d of October 2018, emerged in the 

beginning of April 2019, and was harvested in the mid-July 2019.  

3.4.1.2. Spectral measurements and data processing and F retrieval 

Spectral measurements were acquired with the high-resolution fluorescence box (FloX) device (JB 

Hyperspectral Devices UG, Germany) specifically designed for retrieving F and vegetation indices in 

visible (VIS) and near-infrared (NIR) domains. The FloX contains two spectrometers – QE Pro 

(wavelength range of 650 - 813 nm, spectral sampling interval (SSI) of 0.15 nm and full width at half 

maximum (FWHM) of 0.3 nm), Flame (wavelength range of 340- 1020 nm, SSI = 0.65 nm, FWHM = 

1.5 nm) (Ocean Optics, USA). Hereafter the variables acquired from QE Pro feature suffix “fluo”, and 

variables acquired from Flame feature suffix “full”. The up-welling radiance was measured with the 

field of view (FOV) of fiber optics of 25°. Down-welling irradiance was measured using cosine 

receptors with FOV of 180°. One acquisition cycle consisted of a series of measurements acquired 

sequentially by each spectrometer : 1) down-welling irradiance (E↓
1), 2) up-welling radiance (L↑), 3) 

down-welling irradiance (E↓
2), 4) dark current. The second measurement of down-welling irradiance 

allows to evaluate the stability of the illumination conditions and is used for following in data 

filtering procedure. Signal optimization is performed for each acquisition cycle for adaptation to 

varying light conditions allowing for maximized signal-to-noise ratio.  

The FloX was installed on the pole of 2 m height pointing towards south-west (Fig. 22). The resulting 

radiometric footprint of approximately 90 cm in diameter. The FloX system was installed on the 10th 

of April 2019 and disassembled on the 17th of July 2019, covering the whole phenological cycle of 

winter wheat development from emergence to harvest. Measurements were acquired continuously 

from 9 am until 8 pm local time with an interval from 20 sec (under bright sunshine) to 60 sec (in 

overcast conditions). 
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Figure 22. The FloX installed over the winter wheat field in Gebesee, Germany. The photo is taken in 

the 3d of June 2019.  

Raw data processing was performed in R software (R Core Team, 2019) using open source packages 

“FieldSpectroscopyDP” and “FieldSpectroscopyCC” available on GitHub 

(https://github.com/tommasojulitta). Before further analysis, the quality check of the dataset was 

implemented following the criteria reported in Table 7.  

Quality index Description Threshold for retained data 

E stability index Full percentage change between 

E↓
1 and E↓

2 

<=1% 

E stability index Fluo percentage change between 

E↓
1 and E↓

2 

<=2% 

SZA Solar Zenith Angle  <=70 

Dynamic range for both E↓ and 

L↑ in Fluo and Full spectrometers 

ratio of the maximum value of 

E (or L) to the saturation values 

in percent 

>=20% and <=90% 

Table 7. Data quality indices and their corresponding thresholds for which data are retained.  

F was retrieved in O2A absorption band (F760) using spectral fitting method (SFM) (Cogliati, Verhoef, 

et al., 2015; Meroni et al., 2010; Meroni & Colombo, 2006). Far-red fluorescence apparent yield 

(Fy*760) was computed as a ratio of F760 to photosynthetically active radiation (PAR). 

Photochemical Reflectance Index (PRI) (Gamon et al., 1992) was computed as: 

 
𝑃𝑅𝐼 =

𝑅570 − 𝑅531

𝑅570 + 𝑅531
 

(16) 

 

where R531 is the reflectance factor of the xanthophyll-sensitive band at 531 nm and R570 is 

reflectance factor of the reference band at 570 nm. With this formulation, PRI values can vary 

https://github.com/tommasojulitta
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between -1 and 1 and are directly proportional to NPQ. Fraction of photosynthetically active 

radiation absorbed (faPAR) was computed as a ratio of absorbed photosynthetically active radiation 

(aPARLi&Moreau) to PAR. aPARLi&Moreau was estimated following the formulation presented in Li and 

Moreau (1996) as the difference between incoming and reflected PAR multiplied by the proportion 

of canopy absorption (RAPAR): 

 𝑎𝑃𝐴𝑅𝐿𝑖&𝑀𝑜𝑟𝑒𝑎𝑢 = (𝑃𝐴𝑅𝑖𝑛𝑐 − 𝑃𝐴𝑅𝑟𝑒𝑓𝑙) × 𝑅𝐴𝑃𝐴𝑅 (17) 

Where RAPAR was calculated as: 

 𝑅𝐴𝑃𝐴𝑅 = 0.105 − 0.323 × 𝑁𝐷𝑉𝐼 + 1.468 × 𝑁𝐷𝑉𝐼2 (18) 

Chlorophyll red-edge index (CIre) (Gitelson, Gritz, & Merzlyak, 2003) was computed as: 

 𝐶𝐼𝑟𝑒 = (𝑅740/𝑅720) − 1 (19) 

3.4.1.3. Eddy covariance flux measurements and meteorological data 

CO2 and water fluxes between vegetation and atmosphere were measured with eddy covariance 

(EC) technique (e.g. Baldocchi et al., 1996). Fluxes were measured with a gas analyzer LI-COR LI7200 

(LI-COR Inc, Lincoln NE, USA), wind velocity was measured with an anemometer Gill HS-50 (Gill 

Instruments Ltd., Lymington, UK) both installed at 3 m height. Along with EC fluxes, the 

meteorological parameters were measured, such as air pressure (p, [hPa]) with pressure transmitter 

PTB101B (Vaisala), air temperature (Tair, [°C]) and humidity (RH, [%]) with temperature-humidity-

sensor HMP45D, (Vaisala, Vantaa, Finland), precipitation using heated tipping bucket rain gauge 

(Adolf Thies GmbH & Co. KG, Göttingen, Germany), PAR [µmol m-2 s-1] with quantum sensor PQS1 

(Kipp & Zonen B.V., Delft,The Netherlands). The vapor pressure deficit (VPD) was computed from 

Tair and RH. Soil water content (SWC, [m3m-3]) was measured with soil moisture probes ML-2x, Delta-

T (Delta-T Devices Ltd, Cambridge, UK). 

Data gap-filling was performed with marginal distribution sampling (MDS) and the fluxes night-time 

partitioning was done based on the method described in Reichstein et al., 2005 implemented in Tovi 

software (www.tovi.io). The footprint of eddy covariance flux measurements was determined based 

on two-dimensional parameterization method described in Kljun et al., 2015 and implemented in 

Tovi (Fig. 23). The FloX was installed approximately 35 m away from the eddy tower (Fig. 23).  

http://www.tovi.io/
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Figure 23. Site map with distribution of the peak flux footprint. The isolines and colours represent 

the percentiles of the distribution of the peak flux footprint in a particular sector.  

Net ecosystem exchange (NEE, [µmol CO2 m-2 s-1]) was partitioned on gross primary production 

(GPP, [µmol CO2 m-2 s-1]) and ecosystem respiration (Reco [µmol CO2 m-2 s-1]) using nighttime-based 

method (Reichstein et al., 2005). Based on the light-use efficiency model introduced by Monteith, 

1972, GPP is a function of absorbed photosynthetically active radiation (aPAR) and light-use 

efficiency (LUE): 

 𝐺𝑃𝑃 = 𝑎𝑃𝐴𝑅 × 𝐿𝑈𝐸 (20) 

aPAR is a product of PAR and the fraction of the fraction of photosynthetically active radiation 

absorbed (faPAR). Since aPAR is a parameter, which is not always measured at eddy covariance 

sites, we computed apparent LUE* [µmol CO2 / µmol photos of PAR] as ratio of GPP to PAR. Such 

definition is commonly adopted in remote sensing literature (e.g. Barton and North, 2001), however, 

LUE* should be used with caution since is strongly influenced by seasonal patterns of leaf area index 

(LAI) and chlorophyll content (Cab) (Gitelson & Gamon, 2015). 

3.4.1.4. Acquisition of biochemical and structural parameters 

At the beginning of the growing season (10th and 30th of April 2019), LAI was estimated via 

destructive sampling method. Wheat samples were collected from 25 x 25 cm quadrants and 

scanned with area meter (LI-3100C, LI-COR Inc, Lincoln NE, USA). Later in the growing season (5th 

and 24th of June and 10th of July 2019), LAI was measured with plant canopy analyzer LAI-2000 (LI-

3100C, LI-COR Inc, Lincoln NE, USA). A single LAI value was calculated by averaging 3 measurements 

excluding 5th ring from the analysis.  

During the same day as LAI measurements, we also estimated Cab, [µg cm-²], flavonols and 

anthocyanins content in relative absorbance units (varying from 0 to 3 for flavonols and 0 to 1.5 for 

anthocyanins) and Nitrogen Balanced Index, (NBI) computed as a ratio of Cab to flavonols content 

using a leaf clip Dualex A (Force A, Orsay Cedex, France). 
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3.4.1.5. SSA decomposition 

Prior to SSA decomposition, time series of spectral data was aggregated based on 30 min interval 

and matched with fluxes observations. Only 30 min intervals containing more than one observation 

were retained. Missing daytime data points were linearly interpolated for time series of PRI, F760, 

Fy*760 and LUE*. Values at night-time gaps in time series of F760 were set to zero. Night-time baseline 

for PRI, Fy*760 and LUE* were filled with the minimum (for PRI) and maximum (for Fy*760 and LUE*) 

daytime values selected in the moving window of 1 day. Gaussian noise was added to the night-time 

data points in time series of PRI, F760, Fy*760 and LUE* with mean (μ) equal 0 and standard deviation 

(σ) equal 95% quantile of daytime data multiplied by 0.01. 

Similarly to model-based study, PRI, F760, Fy*760 and LUE* were decomposed intro three time-

dependant components with SSA: long-term component varying in the frequency bin between 2 

week and the length of the time series (82 days), diurnal component varying in the frequency bin 

between 7 hours and 2 weeks, and sub-diurnal component varying in the frequency bin between 30 

min and 7 hours. The parameters of the decomposition used in the function filterTSeriesSSA are 

reported in the Table 8. 

Argument Description Value 

borders.wl Borders of the different periodicity 
bands to extract. Units are the sampling 
frequency of the series (half-hourly 
observations). 

4) 672, Inf (seasonal) 
5) 14, 672 (diurnal) 
6) 0, 14 (sub-diurnal) 

M Window length or embedding 
dimension. 
Units are the sampling frequency of the 
series (half-hourly observations). 

Vector: (672,336,48) 

n.comp Amount of SSA components to 
compute. 

Vector: (20, 20, 20) 

harmonics How many harmonics to include in each 
component. 

Vector: (0,0,0) 

repeat. extr How often to repeat the extraction. Vector: (2,1,1) 

center.series Whether to center the series around 
zero prior to the computation. 

TRUE 

grouping Method to use for grouping the 
individual SSA eigentriples. 

grouping.auto 

groupingMethod Method for automatic grouping. wcor 

SSA. methods Methods to use for the SSA 
computation. 

"auto" - Automatic method selection 
depending on the series length, window 
length, SSA kind and number of 
eigenvalues requested. 

Table 8. Parameters of filterTSeriesSSA (spectral.methods R-package (Jannis V Buttlar, 2015)) 

function used for the decomposition of PRI, F760, Fy*760 and LUE*. 

3.4.2. Results and discussion 

3.4.2.1. Overview of seasonal cycles 

During the period of measurements (Fig. 24), a strong gradient of daytime Tair was observed varying 

from -2°C in early April to 36°C in the end of July (Fig. 24A). While April and May were rather wet, in 
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summer SWC started to decline and VPD started to increase from 20 hPA to 67 hPA (Fig.24C, E) The 

peak of the wheat growing season occurred in the of May associated with the highest GPP of 60 

[µmol m-2 s-1] (Fig.24I). F760 generally followed the seasonal pattern of GPP, but the peak values were 

shifted a bit towards the first week of June (Fig.24H). PRI showed a strong seasonal cycle with 

sharply increasing values starting from the 10th of June (Fig.24F). LUE* and Fy*760 showed a 

decreasing trend starting from the beginning of summer (Fig.24D,J). 

 
Figure 24. Time series of (A) air temperature (Tair [°C] ), (C) vapour pressure deficit (VPD [hPA]), (E) 

soil water content (SWC [m3m-3]), (G) photosynthetically active radiation (PAR [µmol m-2 s-1]), (I) 

gross primary production (GPP [µmol m-2 s-1]), (B) chlorophyll red-edge index (CIre), (D) light-use 

efficiency (LUE* [µmol CO2 / µmol photos of PAR]), (F) Photochemical Reflectance Index (PRI),(H) far-
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red fluorescence (F760 [mW m-2 sr-1 nm-1]), (J) far-red apparent fluorescence yield (Fy*760 [sr-1 nm-1]) 

measured over winter wheat during a period from 10th of April until 30th of June 2019. 

3.4.2.2. Extraction of seasonal dynamics from PRI, LUE*, F760 and Fy*760 

Slow varying components of PRI, LUE*, F760 and Fy*760 were extracted with SSA in [seasonal] 

frequency bin (Table 8). In order to evaluate whether slow varying SSA-components are related to 

structural and biochemical variability affecting PRI, LUE*, F760 and Fy*760, we explored the 

relationship between these variables and faPAR (Fig. 25). A strong linear correlation was observed 

between PRIssa and faPAR (R2=0.96) (Fig. 25A) and between 𝐹𝑦∗
760
𝑠𝑠𝑎  and faPAR (R2=0.88) (Fig. 25C) 

Relationships between slow varying components of 𝐹760
𝑠𝑠𝑎 and LUE*ssa vs. faPAR showed weaker 

linear correlation (R2=0.62 and 0.54) (Fig. 25B, D) due to faPAR saturation. 

 

Figure 25. Linear relationships: (A) PRIssa [seasonal] vs faPAR, (B) 𝐹760
𝑠𝑠𝑎 [seasonal] vs faPAR, (C) 𝐹𝑦∗

760
𝑠𝑠𝑎  

[seasonal] vs faPAR, (D) LUE*ssa [seasonal] vs faPAR. Colour-coded with chlorophyll red-edge index 

(CIre).  

3.4.2.3. Extraction of fast variability from PRI, LUE*, F760 and Fy*760 

Diurnal and sub-diurnal components of PRI, F760, Fy*760 and LUE*, were summed up and considered 

together a fast component. In order to assess if the fast components PRIssa [diurnal+sub-diurnal], 
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𝐹760
𝑠𝑠𝑎 [diurnal+sub-diurnal] and 𝐹𝑦∗

760
𝑠𝑠𝑎  [diurnal+sub-diurnal] are linked to physiological response of 

vegetation, we evaluated their relationships with LUE*ssa [diurnal+sub-diurnal]. Similar to the results 

of the theoretical study, the relationship between PRI and LUE* is stratified by 

structural/biochemical properties of the canopy as shown by colour-coding it with CIre (Fig. 26A). 

As was shown in the previous section, both PRI and LUE* contained slow variability attributed to 

canopy structural/biochemical effects. In case of PRI, this is a pigments-related constitutive 

variability (Gamon & Berry, 2012), which obscures a functional link with LUE* (Filella, Peñuelas, 

Llorens, & Estiarte, 2004; Hmimina et al., 2014). In case of LUE*, computed as a ratio of GPP to PAR, 

it combines green canopy structure and light absorption and confounds it with physiology (Gitelson 

& Gamon, 2015). The negative relationship observed between PRIssa [diurnal+sub-diurnal] and 

LUE*ssa [diurnal+sub-diurnal] is less scattered and shows a clear linear correlation (Fig. 26B). When 

the relationship is considered for moving window of 20 days (Fig. 26C), overall high dCor (0.60-0.72) 

is observed at DOY 122-165 with lower values in the beginning and the end of time series (Fig. 26D). 

A decrease of dCor around DOY 110-120 can be associated with an increase of Tair and VPD during 

these days (Fig. 24A, C), while an decrease after DOY 165 is most probably driven by degradation of 

chlorophyll at the end of the growing season (Fig. 24B). 

The relationship between 𝐹760
ssa [diurnal+sub-diurnal] and 𝐿𝑈𝐸𝑝𝑎𝑟

ssa  [diurnal+sub-diurnal] significantly 

improved (Fig. 26E, dCor =0.66) over the relationship between original variables (Fig. 26D, dCor 

=0.44). The negative relationship observed here is similar to the result obtained in the theoretical 

study for LAI>1 (Fig.20A). Time series of dCor between decomposed variables computed over the 

moving window of 20 days (Fig. 26F) follows the pattern of CIre (Fig. 24B), which also indicates the 

similarity to the model-based study, where dCor between 𝐹760
ssa  [diurnal+sub-diurnal] and LUE 

follows LAI and Cab seasonal cycles (Fig. 19F). 

SSA-decomposition of Fy*760 into [diurnal+sub-diurnal] component did not improve the relationship 

between LUE* and Fy*760 (Fig. 26G, H). However, for different Tair ranges (optimal Tair range of 10°-

25° and sub-optimal Tair lower than 10° or higher than 25°), the relationships between 𝐹𝑦∗
760
𝑠𝑠𝑎  

[diurnal+sub-diurnal] and LUE*ssa [diurnal+sub-diurnal] show clearer correlations with negative sign 

for optimal Tair range of 10°-25° (Fig. 27A) and positive sign for sub-optimal Tair lower than 10° or 

higher than 25° (Fig. 27B). Although the correlation coefficients are lower (R =-0.28, 0.27) in 

comparison to model-based relationships binned by NPQ classes (Fig. 20), these changes in the 

direction of the relationship might be also driven by alternating NPQ and PQ control due to different 

levels of stress (e.g. under low or high Tair photosynthesis is downregulated and NPQ increases 

resulting in positive relationship 𝐹𝑦∗
760
𝑠𝑠𝑎  [diurnal+sub-diurnal] and LUE*ssa[diurnal+sub-diurnal] 

analogously similar to the relationship between leaf-level parameters ϕp and ϕ’f in the modelled 

time series (Fig. 21)). 
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Figure 26. First row: relationships between PRI and LUE* (A), PRIssa [diurnal+sub-diurnal] and LUE*ssa 

[diurnal+sub-diurnal] (B) and distance correlation (dCor) between the two computed using moving 

window of 20 days (C). Second row: relationships between F760 and LUE* (D), 𝐹760
𝑠𝑠𝑎

 [diurnal+sub-

diurnal] and LUE*ssa [diurnal+sub-diurnal] (E) and distance dCor between the two computed using 

moving window of 20 days (F). Third row: relationships between Fy*760 and LUE*(G), 𝐹𝑦∗
760
𝑠𝑠𝑎  

[diurnal+sub-diurnal] and LUE*ssa [diurnal+sub-diurnal] (H) and dCor between the two computed 

using moving window of 20 days (I). 
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Figure 27. Relationship between 𝐹𝑦∗
760
𝑠𝑠𝑎  [diurnal+sub-diurnal] and LUE*ssa computed for Tair between 

10° and 25° (A) and Tair lower than 10° or higher than 25° (B). 

3.5. Conclusions 

Automated proximal sensing is a powerful complement of ecosystem stations monitoring water and 

carbon fluxes. It provides spectral signals (F and PRI) encompassing information on light-use in the 

photosynthetic machinery and can, therefore, contribute to improve our understanding of 

ecosystem function variability in time. However, these signals are affected by confounding 

additional factors operating at different temporal scales. We demonstrated the capability of SSA to 

separate the components related to canopy structural/biochemical properties and physiology of 

these signals from a simulated realistic time series of spectral and physiological variables. This 

decomposition was especially successful in the case of PRI, whose relationship with light-use 

efficiency was still dependent on leaf area index. We also tested SSA approach on spectral and flux 

data collected during the whole growing season of winter wheat. The results showed that 

relationship between PRI and LUE (GPP/PAR) and F760 and LUE can be significantly improved if the 

slow variability associated with canopy structural/biochemical properties is removed from both 

variables. Moreover, in simulated and field datasets the direction of relationship between fast 

component of 𝐹𝑦∗
760
𝑠𝑠𝑎  and LUE was shown to be controlled by competing photochemical and non-

photochemical quenching processes determined by changing environmental conditions (i.e. Tair and 

VPD). We expect that the application of this method to automated continuous measurements will 

foster the exploitation of proximal sensing to monitoring and characterization of ecosystem 

functional properties.
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4. Thesis Summary and Conclusions 

The main aim of this research was to exploit the methods of proximal sensing of vegetation to 

elucidate a link between continuous hyperspectral measurements of optical indicators related to 

plant physiology and vegetation functioning. In particular, I focused on using multi-angular spectral 

measurements and high spectral and temporal resolution times series of solar-induced chlorophyll 

fluorescence (F) and photochemical reflectance index (PRI) to characterized the effects of 

anisotropy on these signal and to decouple slow and fast vegetation dynamics with Singular 

Spectrum Analysis technique.  

4.1. Main results 

4.1.1. Part 1.  

Far-red fluorescence (F760), red fluorescence (F687) and PRI exhibit strong anisotropic response 

under varying solar-view geometry driven by the interactions between emitted/reflected light 

and canopy structure  

The results of the Part 1, aimed at the investigation of the effects of varying solar-view geometry 

and canopy structure on F and PRI, showed that multi-angular measurements provide valuable 

information on spectro-directional response of vegetation targets. The findings of this study showed 

that the angular distribution of F, PRI and reflectance (R) is different for each canopy type in terms 

of observed patterns, the magnitude of the anisotropic response (anisotropy index, ANIX) and the 

sensitivity to geometric effects inside the canopy. The qualitative analysis of the differences 

between scaled F, PRI and the corresponding R measured in the nearby band revealed, that their 

anisotropic response do not totally covary and that the angular configuration plays an important 

role. This suggests, that while some studies have used reflectance-based metrics (or kerned-driven 

models parameterized with R observations) to correct directional F, these should be applied with 

caution since the nature of the two signal is very different (i.e. emission and reflection), and the 

directional confounding effects may intervene with physiological response of F and PRI. In the future 

studies, the characterization of the physiological status of leaves at different layers inside the 

canopy by means of, for example, FluoWat should be performed concurrently with multi-angular 

measurements to disentangle the contribution of physiology from directional effects. To minimize 

the complexity brought by off-nadir configurations of the set-ups for continuous measurements, a 

correction scheme for the signal directionality should be considered. 

4.1.2. Part 2. 

Singular Spectrum Analysis was successfully applied to decompose fast variability, attributed to 

physiological status, and slow variability, attributed to seasonally changing structural and 

biochemical vegetation properties in time series of far-red fluorescence (F760) and PRI 

This study (Part 2) aimed at disentangling time-scale dependant vegetation processes from time 

series of simulated and experimentally acquired time series of far-red fluorescence (F760), 

fluorescence apparent yield (Fy*760) and PRI. The proof of concept tested on SOPCE-simulated time 
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series showed that the most effective was the deconvolution of constitutive (slow) and facultative 

components (fast) of PRI variability. The fast SSA-decomposed component of PRI varying in the 

frequency bin 30 min – 1 week showed a better relationship with non-photochemical quenching 

(NPQ) and photosynthetic light-use efficiency (LUE) in comparison to undecomposed PRI. The 

decomposition of F760 into slow (driven by aPARCab) and fast (driven by physiology) components was 

more effective during the growing period (LAI>1), while the decomposed fast component of Fy*760 

was able to track changes in the reference fluorescence physiological variable (∆𝐹760
𝑠𝑐𝑜𝑝𝑒

 / PAR) for 

the whole time series. Interestingly, the direction of the relationship between fast Fy*760 and light-

use efficiency (LUE) was regulated by NPQ values – negative for NPQ<0.1 and positive for NPQ range 

0.1-2.5, suggesting the physiological meaning behind fast Fy*760. The application of the SSA on the 

field dataset collected in winter wheat field allowed to improve the correlation between fast 

components of F760 and PRI with apparent LUE (GPP/PAR) in comparison with original time series. 

Overall, the time series decomposition methods of spectral-domain can foster the use of continuous 

spectral measurements of high temporal resolution. The simultaneous installation of automated 

high spectral resolution devices with micro-PAM can provide the dataset of spectral and 

physiological variables for the validation of the decomposition.  

4.2. Concluding remarks 

Overall, the results of this thesis reinforce the importance of careful characterization of the factors, 

which confound the physiological meaning of solar-induced chlorophyll fluorescence (F) and 

photochemical reflectance index (PRI). Solar-view geometry is a major source of uncertainty, which 

has been shown to significantly alter the values of both F and PRI and complicate the interpretation 

of the relationships between these optical signal and estimations of gross primary production (GPP) 

and photosynthetic light-use efficiency (LUE). Multi-angular measurements of F and PRI can be used 

in conjunction with presented here SSA-based approach of decoupling slow and fast variability in 

time series of optical signals. Since SSA is not fully effective is distinguishing between directional 

effects imposed on diurnal cycles of F and PRI (as both directional effects and fast physiological 

responses can vary in the same frequency), the multi-angular measurements can provide valuable 

source of information to correct for anisotropy. However, the deployment of field goniometers is 

demanding and limited to relatively short canopies. Therefore, automatic tower-based scanning 

systems observing the canopy from different viewing angles can complement nadir-looking set-ups.  

In the view of increasing amount of RS data available from a variety of platforms (UAV, airborne, 

satellite) capable of distinguishing small changes in vegetation spectrum associated with F and NPQ, 

a robust methodology for minimization of confounding effect should be developed. The results of 

this thesis represent a step forward in this direction.
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