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Abstract. Recommender systems are exploited in many fields for help-
ing users to find goods and services. A collaborative filtering recom-
mender realizes a knowledge-sharing system to find people having similar
interests. However, some critical issues may lead to inaccurate sugges-
tions. To provide a solution to such problems, this paper presents a novel
SOM-based collaborative filtering recommender. Some experimental re-
sults confirm the effectiveness of the proposed solution.

1 Introduction

To provide users with attractive suggestions, recommender systems can adopt
Content-based CB (exploiting past users’ interests [15]), Collaborative Filtering,
CF (using knowledge-sharing techniques to find people similar for interests [2])
approaches or a their combination (Hybrid recommenders [4]). In particular,
CF recommenders generate suggestions by computing similarities between users
or items based on: (i) users’ ratings or automatic elicitation (memory-based
approach [10]); (ii) data mining or machine learning algorithms (model-based
approach [32]). A common solution, to save computational resources for adopting
more complex CF algorithms, is the off-line computation of users’ similarity and
suggestions [25] but recurring updating are required to avoid mismatching.

In such a context, this paper proposes the Social Relevance-based CF (SRCF)
recommender (i) to pre-compute suggestions based on a novel CF algorithm
based on the concept of “social relevance” of an item and (ii) using a Self-
Organizing Map (SOM) network to cluster similar users in the respect of their
privacy. Some experiments confirm the effectiveness of the proposed solution.

2 The Knowledge Representation

SRCF adopts a compact knowledge representation (see Figure 1) to describe
user’s interests and preferences in a User Profile UP [8, 19] on the basis of a
common Dictionary, called D, implemented by an XML Schema. D is organized
in categories and instances, with each instance belonging to only one category.

The profile of a user u stores: (i) Cidc (resp. Iidi), it is an identifier of the
category c (resp. instance i); (ii) LCAu

c (resp. LIAu
i ), it is the date of the last
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Fig. 1. The structure of the User Profile

access of u to c (resp. i); (iii) CWu
c (resp. IWu

i ), it is a real value, ranging in
the interval [0, 1], to measure the interest of u about c (resp. i); (iv) CPu

c (resp.
IPu

i ), it is a flag set by u to 0 or 1 to make public or private his interest about
c (resp. i); (v) αu, it is a real coefficient that u autonomously sets in ]0, 1[ and
uses in computing the IW measures; (vi) βu

c , it is a real coefficient ranging in
[0, 1] to take into account the expertise of u about the category c; (vii) ρui , it
is the Instance Relevance, a real coefficient that measures in [0, 1] the relevance
assigned to the instance i; (viii) Category Set CS, Instance Set IS and Users
Weight W , they are three sets storing data on categories, instances and weights
(these later are real values, ranging in [0, 1], that measure the reliability of the
other users in providing their relevance measures to u).

An IW parameter takes into account the whole past Web history of u in
accessing i based on the actual time tui (measured in seconds) spent by u on the
Web page containing the instance i [20]. Each user weights these components by
setting αu in ]0, 1[. To update IWu

i , the contribution due to the new u’s visit
is weighted by αu and the current value of IWu

i is weighted by (1 − αu) after
to be decreased by using the function F(current, past), where current and past
(i.e., LIAu

i ) are the dates of the actual and the last visits performed by u to i.
More in detail, F( ) returns 1− curren−past

365 if (current− past) ≤ 365, otherwise
it returns 0. Therefore, IWu

i = αu · tui + (1− αu) · F(current, past) · IWu
i .

After, the parameter LIAu
i is updated to the current date. Finally, for a user

u, the CWu
c measure of interest in a public category c is the sum of all the

IWu
i measures of its public instances, while LCAu

c is set to the most recent date
stored in the LCIuc parameters associated with such instances.

3 The Social Relevance Collaborative Filtering Algorithm

The SRCF algorithm is derived by [3, 29] and adapted for working in a recom-
mender context. In the users’ community A it exploits the concept of relevance
of the instance i belonging to the category c. In other words, for each user u ∈ A
the relevance ρui of i in A is given by the measures of how much i is significant
for him (the individual relevance µu

i ) and for his community (the social relevance
γu
i , built with the opinions of each user j ̸= u ∈ A). These values are weighted

by the coefficient βu
c that takes into account the expertise level of u about the



category c which the instance i belongs to. All the ρ, µ, γ and β are a real values
ranging in [0, 1]. More formally, ρui is calculated as ρui = βu

c · µu
i + (1− βu

c ) · γu
i .

The social relevance γu
i is the weighted mean of the ρ measures asked by u to

the other users of A about i and it is computed as γu
i =

∑n−1
j=1 Wu

j · ρji/(n− 1),
∀j ̸= u ∈ A. The parameter Wu

j (a real value ranging in [0, 1]) is computed as

Wu
j = 1 −

∣∣∣∑v
d=1(ρ

u
d − ρjd)

∣∣∣/v. It weights j’s reliability in providing his ρ mea-

sure to u by considering the last d differences between the ρ measures computed
by u and those provided by j, where d is stet to 5. The real coefficient βu

c is
computed in [0, 1] as βu

c = ICu
c /

∑p
k=1 IC

u
k and measures the expertise of u on

the category c which i belongs to. The ICu values will be updated by using F( )
with past = LCAu, and then normalized. Therefore:

ρuc =
CWu

c∑p
k=1 CWu

k

· IWu
c∑r

t=1 IW
u
t

+ (1− CWu
c∑p

k=1 CWu
k

) ·
∑n−1

j=1 Wu
j · ρjc

n− 1
(1)

where n, p and r are the number of users of A, instances and categories. To
compute the relevance measures of each instance, a system of n equations of the
type (1) in n variables needs to be solved [3, 29] and it admits only one solution.

The function SRCFRecommender( ) (see Figure 2) describes the SRCF algo-
rithm. This function requires as input the current user u, a community (cluster)
A of n users with their profiles and the integers M and N (with M,N > 0); a
list R of suggestions computed for u is returned as output. In turn the function
SRCFRecommender( ) calls the functions Relevance( ) and Recommendations( ).

RecList R=SRCFRecommender(user u, community A, int M , int N)
{ RelevanceSet RSetA=Relevance(community A, int M , int N)

RecList R Recommendations(user u, community A, RelevanceSet RSetA, int M , int N)
return R; }

RelevanceSet RSetA=Relevance(community A, int M , int N)

{ void Updating-A(userProfile UPA, date current date);
for(j = 0; j < n; j++)

{ InstanceSet ISetj=SelectTop(user j, userProfileUP j , int M , int N);

ISetA = ISetA
∪

ISetj ;}
{ for(k = 0; k < p; k++)

Relevance Rk=InstanceRelevance(Instance k, userProfile UPA);

RSetA = RSetA
∪

Rk;}
return RSetA; }

RecList R Recommendations(user u, community A, RelevanceSet RSetA, int M , int N)
{ void Updating-u(userProfile UPu, date current date);

InstanceSet ISetu=Visited(user u, userProfile UPu);

RecList R = RSetA − RSetA
∩

ISetu;

RecList R=Sort(RecList R);
RecList R=Extract(RecList R, int N);
return R; }

Fig. 2. The Social Relevance Collaborative Filtering Recommender Algorithm



The function Relevance( ) receives in input the community A (with all the
public data of its users’ profiles, pointed out by UPA) and the integers N , while
it returns the set RSetA storing the relevance measures of the instances most
significant in A. Firstly, LCA,LCI ∈ UPA are updated to the current date
by Updating-A( ). Then for each user of A, SelectTop( ) receives in input a
user with his profile and the integers M and N , while a set containing the first
N Top-rank public instances of interest for each one of the M Top-rank public
categories for that user is returned. Each one of these sets is incrementally added
to the global set ISetA of the most relevant instances in A. After this, for each
instance the function InstanceRelevance( ) is called; it receives the instance k
and the users’ profiles UPA as input and returns in Rk the relevance measure of
k in A as output. Finally, each Rk is added to the global set RSetA returned by
Relevance( ). Note that Relevance( ) is the most time consuming computation.

Recommendations( ) receives the user u, the community A, the set RSetA
of the most relevant instances in A, the integers M and N and returns a list
of suggestions. Firstly LCA,LCI ∈ UPu are updated to the current date by
Updating-u( ). Then Visited( ), for each user u and his profile, returns ISetu,
a set storing those public instances already visited by u. The instances in ISetu
are deleted from RSetA by Recommendation( ), that is ordered by Sort( ), based
on the relevance values of the instances. Finally, extract( ) returns the list R of
suggestions for u with the first N instances of RSetA having the highest score.

4 The SOM Neural Network Clustering

A high-quality clustering of users might imply a high computational burden.
Self-Organizing Maps (SOM) networks [13] can provide to an effective solution
to such a problem. SOMs are unsupervised neural networks able to map high
dimensional data in low dimensional spaces [13]. Two different learning algo-
rithms are available: (i) the sequential or stochastic learning algorithm updates
the synaptic weights immediately after a single input vector is presented; (ii) the
batch learning algorithm updates the synaptic weights after all the input vectors
have been presented. The first one is less likely stopped to a local minimum, the
other one does not suffer for convergence problems.

In order to save computational resources, SRCF exploits a SOM to cluster
the users’ profiles by using the public information stored therein and adopting
an off-line strategy. More in detail, each user is represented by an input vector
consisting of his public CW measures of interest updated to the current date and
normalized among them. Note that the updating of the public CW measures to
the current date also requires to update the associated public IW measures.

5 Related Work

A wide number of recommender systems have been proposed in the literature
(see [4, 14, 23] for an overview). Recommenders can adopt Centralized (CR) or
Distributed (DR) architectures. CRs are easy to be implemented but suffer for



lack scalability, failure risks, privacy and security [12]. DRs share information and
computation tasks among more entities but time and space complexities quickly
grow [12], while design, setting and privacy can be critical to be obtained [18].

In particular, CF systems search for similar users to suggest items popu-
lar among them. An earlier centralized CF recommender is GroupLens [24] that
searches for agreed news that could be again agreed. Another personal CF system
is PocketLens [16], a DR system that adopts a variant of the item-to-item algo-
rithm [30] and works free by connectivity and device constraints, while in [6, 28]
the CF component also considers the device characteristics in generating sugges-
tions. Also many e-Commerce platforms (i.e.,Amazon, eBay, etc.) drive visitors’
purchases with centralized CF by exploiting the past visitors’ behaviours.

To save computational resources, clustering algorithms are exploited [17].
In [1, 5] two CF agent-based systems exploit a dynamic catalogue of products,
based on categories and attributes and users’ profiles, respectively. Social and
trust information are exploited in [22], while a two-level clustering is adopted
in [11]. In EVA [26, 27], recommender agents can “migrate” among users with a
cloning mechanism based on a “genealogic” reputation model. When generating
suggestions for a new user, the agents also consider the preferences of their past
owners similarly to a CF contribution. Often DRs also take advantage from P2P
networks to exchange data locally stored on each peer in a decentralized domain
by using their efficient, scalable and robust routing algorithms as in [7].

Finally, some of the cited systems adopt the agent technology but this could
be easily adopted also from the remaining part of these systems including SRCF.

6 Experiments

The test of the proposed SRCF recommender system involved: (i) a community
of 10.000 simulated users; (ii) a common Dictionary of 20 categories, each one
provided with 50 instances, implemented by a unique XML Schema; (iii) 20
XML Web sites to simulate the users’ behaviour, each one dealing with only two
categories; (iv) 20 clusters of users; (v) 2 Top-rank categories (M = 2) and 5 Top-
rank istances (N = 5). The first 10 Web sites have been exploited for generating
the user’s profiles, while the other 10 Web sites for measuring the recommenders
performances. For sake of simplicity, all the information stored in the profiles
have been considered as public. Finally, SRCF has been compared with the CF
components of the MWSuggest [28] and EC-XAMAS [6] recommender systems.

The simulated users have been clustered on 20 clusters comparing, on the ba-
sis of the information stored in their profiles, two different clustering approaches,
(i) a SOM neural network [13] and (ii) a partitional clustering [21] based on the
Jaccard measure of similarity, respectively. To this purpose, each user has been
represented by a pattern consisting of the CW values of the 20 categories of
interest, stored in his profile, normalized among them.

Then for each user u belonging to a given cluster, each of the three recom-
mender systems generated a set of recommendations stored in a different list Lu

g

(with g = 1, · · · , 3) storing N (i.e., N = 5) suggestions lug,s (with s = 1, · · · , N),



ordered based on their supposed relevance for u. To measure the quality of
each suggestion generated for u, a rate rug,s (i.e. an integer ranging in [0, 5]) is
computed based on the information stored in his profile. If, for u and for each
suggestion lug,s ∈ Lu

g , the computed rate is rug,s ≥ 4, it is considered as a true
positive and inserted in the set TPu

g containing all the true positives of Lu
g . If it

is 0 < rug,s ≤ 3, it is considered as a false positive and inserted in the set FPu
g

of that user. Finally, if the rate is 0, it is considered as a false negative (i.e., the
user should perform a choice not belonging to Lu

g ) and inserted in the set FNu
g .

Therefore, for the user u the standard measures Precision (P ) and Recall
(R) for the sets Lu

g , generated for him, have been computed. Precision can be
interpreted by the probability that a suggestion is considered as relevant by
the user, while Recall can be considered as the probability that it is relevant.
Formally, for the user u and for the recommender system g, the Pu

g is computed as
Pu
g = |TPu

g |/|TPu
g ∪ FPu

g | and Ru
g as Ru

g = |TPu
g |/|TPu

g ∪ FNu
g |. The Average

Precision P u
g (resp. the Average Recall R u

g ) of each system is defined as the
average of the Pu

g (resp. Ru
g ) values of all the users belonging to a cluster.

Using the clustering performed by the SOM, the maximum advantage of
SRCF on a single cluster in terms of Average Precision with respect to the sec-
ond best performer, that is MWSuggest, is of the 13,23%, while in the average
with respect to all the clusters it is of the 9,13%. In terms of Average Recall
with respect to the second best performer, that is always MWSuggest, the max-
imum advantage on a single cluster is of the 14,62% and in the average on all
the clusters it is of the 9,86%. In this context, the performances of these sys-
tems adopting the SOM clustering have an advantage around 1÷2% with respect
to the partitional clustering based on the Jaccard measure of similarity. These
results are represented in Figure 3 in terms of Average Precision and Average
Recall for the three recommender systems with respect to the two tested clus-
tering techniques. Summarizing, these good SRCF performances are surely due
to the proposed novel CF algorithm but also to the contribute provided by the
high quality of the clustering performed by the SOM network.

7 Conclusions

In this paper a novel collaborative filtering recommender, called SRCF, intro-
ducing the concept of relevance of each item among the users of a community has
been presented. SRCF generates high-quality suggestions exploiting light users’
profiles, built by monitoring their interests and preferences and preserving the
users’ privacy. SRCF takes advantage from the use of a SOM network to cluster
users based on their profiles. The results of some experiments show a significant
improvement in terms of effectiveness of SRCF with respect to the other tested
recommenders. The keys of these good performances are due to the combined
action of both the proposed recommender and the accurate clustering performed
by a SOM network.
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Fig. 3. Average Precision and Average Recall of the SRCF, MWSuggest and EC-
XAMAS recommender systems exploiting A) a SOM and B) a partitional clustering
based on the Jaccard measure of similarity.
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