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Essays on the macroeconomic impact of
heterogeneous banks

Luca Portoghese

1. Introduction

The severe and prolonged recession brought about by the 2007/2008 financial crisis called

for a renewed interest, by both the academic profession and policy-makers, into the function-

ing of the deep mechanics of the financial sector, as well as its interrelations with the real

economy. Within the financial sector, interbank markets play a crucial role: they guarantee

a stable supply of credit to the real economy by allowing banks in need of liquidity to gather

additional funds from institutions with idle resources. However, allocational efficiency of re-

sources comes at some cost. The inter-linkages nested into the interbank market potentially

spread idiosyncratic shocks across the whole system, via counterparty risk and other forms

of interbank contagion (Heider et al. 2009, Memmel and Sachs 2011). The effect on the

aggregate output is therefore unclear ex ante. Do benefits offset costs? Does the efficiency

effect prevail on welfare disruption brought about by contagion? In spite of its relevance,

surprisingly low attention has been devoted by the macro literature to the analysis of the

efficiency/contagion trade-off. Most contributions tend to focus on the adverse effects of in-

terbank contagion, among the exceptions is Goldstein and Paulzner (2004). The perspective

of the latter authors is however quite different from the aforementioned macro-literature:

they consider a stylised macro-model, where investors can diversify their portfolios by pur-

chasing assets from different countries. Portfolio diversification is welfare improving but, at

the same time, creates inter-linkages that spread shocks from one country to the other. The

aim of the present work is to investigate the effects of the presence of interbank markets on

the main aggregate variables of the economy as a whole, with particular attention to the

potential welfare gains that stems from ”diversification”. We consider a stylised environ-

ment, with a financial sector and a real sector. The financial sector is populated by two

continua of banks, that interact with each other into an interbank market. The productive

sector features a mass of entrepreneurs of two types: risky and safe. Risky entrepreneurs

are exposed to idiosyncratic shocks that erode their capital endowments, hence their pro-
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ductive capacity. Such shocks can be tought as failed investments projects that propagate

through the interbank market and directly effect safe(r) entrepreneurs. We show that the

efficiency effect offsets the contagion effect: the contraction of output arising from the risky

cluster of the production sector is more than compensated by the subsequent expansion in

the output of the safe cluster. This observed countervailing effect directly stems from the

presence of a (well-functioning) interbank market: upon observing the shocks, banks whith

surplus liquidity move resources from the - now riskier - interbank market to the safer real

investments.

2. Literature Review

Our work contributes to the growing bunch of macro-economic literature labelled finan-

cial frictions that builds on th eseminal contribution by Bernanke et al. (1999). Broadly

speaking, this literature aims at improving the understanding of the real effects of financial

variables, by providing a more realistic representations of the behaviour of financial agents

and institutions. Within this literature, our contribution relates, in particular, to Gertler

and Karadi (2011), Boissay et al. (2016) and Gerali et al. (2010), that consider models

where frictions arise essentially from: (i) market power of banks; (ii) moral hazard; and (iii)

regulatory constraints. Market power acts as an amplification mechanism of the borrowing

constraint of the type devised by Kiyotaki and Moore (1997), whereby the borrowing ca-

pacity of productive firms is endogeneously constrained by the market value of collaterals

they can provide (Gerali et al. 2010, Iacoviello 2005). Higher mark-ups stemming from

banks’ profit maximization decision inefficiently contract the supply of credit. The implicit

costs generated by the possibility of moral hazard by borrowers reduce, ceteris paribus, the

aggregate amount of loans extended to firms (Gertler and Karadi 2011, Boissay et al. 2016).

Regulatory constraints, such as capital and reserve requirements, indirectly limit the avail-

ability of credit through the anchoring of banks’ lending capacity to mandatory leverage

ratios. Despite the focus of most papers in the macro-finance literature on shocks to the

demand side of credit markets, the latter subset of frictions allows for shocks to originate

from the supply side of credit. This seems more in line with the evidence provided by the

2007/2008 crisis (Brunnermeier 2009). Although linkages between individual institutions are

shown to potentially spread idiosyncratic shocks across the whole system, e.g. via counter-

party risk (Heider et al. 2009), they are seldom explicitly represented in theoretical models.

Among the more relevant exceptions are Boissay et al. (2016), Gertler and Karadi (2011),

deWalque et al. (2010) and Giri (2018). The first two papers analize the functioning of

interbank markets from a purely macro perspective, and abstract from a detailed descrip-
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tion of decision making by individual institutions. The latter two, instead, provide a more

in-depth investigation into individual decision making, at the cost of a higher stylisation at

the aggregate level. In particular, trade on the interbank market is mandated exogeneously

via the imposition of a sequential structure, whereby a retailer bank, that lends out money

to entrepreneurs, is forced to acquire resources for lending from an upstream bank, which

collects deposits from households. As a consequence, the borrower and the lender bank can

be seen as the flip-sides of the same coin. In order to provide a more comprehensive analysis

of interbank markets, we extend the general setup proposed by Gerali et al. (2010) with a

fully-fledged interbank market, that builds on, and extends, deWalque et al. (2010) and Giri

(2018). As highlighted by the latter authors, the similarities between our model and the one

proposed by Gerali et al. (2010) relates the present work to other two branches of literature.

On one hand, there are models with financial intermediaries and a time-varying spread be-

tween deposits and lending rates (e.g., Goodfriend and McCallum 2007, Andres and Arce

2008, Christiano, Motto, and Rostagno 2008, Curdia and Woodford 2009, Gilchrist, Ortiz,

and Zakrajsek 2009). On the other side, authors have studied the role of equity and bank

capital for the transmission of macroeconomic shocks (deWalque, Pierrard, and Rouabah

2008, van den Heuvel 2008, Meh and Moran 2010). To conclude, our is to provide insights

of whether an idiosyncratic shock either spreads or fades away through the interbank sector.

So, we hope that our contribution will enrich the literature studying propagation through

interbank market in which for many works the interbank market is a propagation device for

shocks (Heider et al. 2009, Memmel and Sachs 2011) while for others, an idyosincratic shock

is absorbed by the system (Steinbacher et al. 2014, Bednarek et al 2015).

3. The model

In this section we present our working strategy. We build up three models: (i) a benchmark

model, (ii) a model with a sequential interbank sector and (iii) a model with a financial

sector represented by a single bank - no interbank sector. The benchmark model presents a

rich setup, where a propagation mechanism of shocks across the real economy arises from the

presence of an interbank market. There are two separate productive sectors differentiated

by the riskiness of their businesses. The banks differ for their ability to gather deposits from

households (one has a deposit constraint) and for the kind of entrepreneurs they lend to.

The setup with the sequential interbank sector consider only one intermediate productive

sector and only one kind of banks can collect deposits from households. The interbank

sector is sequential, because one continuum of banks collect deposits from households and

then supply them to the other banks in form of interbank loans. The latter banks are the
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only one interacting with entrepreneurs. The last model embeds a financial sector à la Gerali

(2010), where there is only one continuum of banks gathering deposits from households and

providing them to the real economy (entrepreneurs). Exploiting these configurations we

aim to understand the inefficiencies (rigidities) brought by the presence of interbank sector,

the analogies within different models and then, if possible, study the propagation of an

idiosyncratic shock particular of our model. The main goal of the proposed comparison is

twofold. First, by comparing the response of the three specifications to standard shocks, such

as TFP and banking capital shocks, we verify that the models are indeed comparable. If

this is the case, then all the differences observed in the benchmark model must boil down to

our representation of the interbank market. Additionally, consistency across the alternative

specifications serves as a preliminary robustness check. Second, we show that a more realistic

representation of the interbank market induces (positive) spillovers across different sectors

of the real economy. To this extent, we introduce an entirely novel type of real shock, in the

form of an abrupt loss of capital suffered by risky entrepreneurs. This exogeneous shock can

be interpreted as the implicit loss brought about by a failed investment project. We show

that the contraction in the demand of credit by risky entrepreneurs, after a shock occurs,

induces a corresponding contraction in the demand of interbank loans. Banks with excess

liquidity respond to this contraction by expanding their supply of credit to safe entrepreneurs.

Overall, the aggregate output remains (almost) stable, yet it shows a mild contraction. A

detailed description of the three specifications is provided in the remainder of this section.

An in-depth comparison of the results is deferred to section 4.

3.1. Benchmark Model

Our model (BK henceforth) is built following the works of Gerali et al. (2010) and Giri

(2018). We consider a stylised economy populated by infinitely lived households and two

types (risky and safe) of entrepreneurs, each group having a unit mass. Additionally, the

economy features a financial sector populated by two continua of banks and an interbank

market. Each continuum of banks is exogenously assigned to one group of entrepreneurs.

Households differ from entrepreneurs with respect to their time preferences. In particular,

their discount rate (βh) is higher than entrepreneurs’ discount rate (βe). As a consequence,

househoulds are net savers in the economy, and provide funds to the entrepreneurs - that are,

therefore, net borrowers. Households consume, work, and save facing a budget constraint.

Entrepreneurs of both types consume, ask banks for loans and own firms that produce

intermediate goods, but do not work. Entrepreneurs differ in the riskyness of their activity, so

that the riskier entrepreneur has to pay back an higher interest on loans received by the banks.
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The economy features a simple financial system, with a banking sector supervised by a non-

strategic policy making, and an interbank market. The banking sector is populated by two

groups of banks: borrowers and lenders. Borrower banks collect deposits from households,

provide loans to risky entrepreneurs, exchange resources on the interbank market and are

forced to pay a cost for diverging by a mandatory capital requirement. Lender banks, as well,

gather deposits from households, provide loans to safe entrepreneurs and provide interbank

loans to the borrower banks. We assume an exogeneous matching between entrepreneurs

and banks, whereby risky entrepreneurs are allowed to ask for loans only to the borrower

banks, whilst safe entrepreneurs interact only with lender banks. For the sake of simplicity,

it is convenient to think about safe entrepreneurs as owners of well-estabished businesses

that generate stable cash flows over time, and of risky entrepreneurs as innovative firms,

subject to an higher degree of idiosyncratic uncertainty. Banks differ also with respect to

their ability to gather deposits from households: borrower banks face a deposit constraint,

so that the quantity of deposits they can collect is exogeneously limited to a maximum

amount. Banks maximise profits subject to a regulatory capital requirement mandated by

the supervisor of the financial system. It is worth stressing that, for the sake of exposition,

in this setup the difference in risk-taking between the entrepreneurs is represented directly

by the interest rate they have to face while asking banks for loans. We follow this way of

proceding because the main focus of the work is to investigate the propagation of a shock

from one sector to the other. We can think that the borrower banks have a better capacity

to evaluate risky business than lender ones, and want to undertake them in order to make

more profits. Moreover, they are able to apply an higher interest rate for the loans they

provide. In addition, in our specific experiment we design a shock arising only amongst

the riskier entrepreneurs. Of course this approach has some drawback and we think that a

more precise characterisation of the riskiness of entrepreneurs will be interesting for future

research. Along the core of the model presented above, we assume that some agents (called

retailers) buy the intermediate goods from entrepreneurs in a competitive market, brand

them at a unit cost and sell the differentiated good at a price which includes a mark-up

over the purchasing cost; prices are sticky à la Rotemberg (1982), implying the existence of

a New Keynesian Phillips curve. As already stated, profits from retailers are redistributed

to households. Moreover, fixed-capital creation is subject to some adjustment costs and is

carried out by capital-good producers. These agents are introduced as a modelling device for

deriving an explicit expression for the price of capital, which enters entrepreneurs’ borrowing

constraint. Our model is closed by a central bank following a Taylor rule to stabilise the level

of both output and inflation, following the one proposed by Gerali et al. (2010). The image

below represents the financial flow diagram of the model. For the sake of exposition, in the
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presentation of the model below we chose to get rid of the indices (i) for the agents acting

in perfect competition (households, entrepreneurs, wholesale banks), but we keep them for

agents acting in a monopolistic-competitive environment (retailers, and the retailer-branch

of borrower bank).

Fig. 1. Financial flow diagram of the model

Note: for sake of exposition the above interest rates are represented only by letters. Rates are: (i) rer interest rate for risky

loans; (ii) res interest rate for risky loans; (iii) rib interest rate on interbank loans; (iv) r policy rate

3.1.1. Households

There is a continuum of households of unitary mass, uniformly distributed on [0, 1], that

maximise their utilities with respect to consumption, labour and deposits. They face the

following optimization problem:
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max
cht ,n

h
t ,d

h
t

E0

∞∑
t=0

βth

(
log
(
cht
)
− ψn

h
t

(1+φ)

1 + φ

)

subject to the sequence of budget constraints:

cht + dht ≤ wht n
h
t +

(1 + rt−1)

πt
dht−1 + J lbt + JRt (3.1)

where cht is the households’ consumption, dht are the households’ savings, wht n
h
t is the

salary per hours worked, rt is the interest rate on deposits. In this setup, the households

are considered to be the owners of both lender banks and retailers, so that J lbt−1 are lender

banks’ profits and JRt are profits from retailers’ activity. From the F.O.C.s, we obtain the

following standard Euler condition and labour supply of households:

1

cht
= βthEt

[
1

cht+1

(1 + rt)

πt+1

]
(3.2)

wht = ψnht
φ
cht (3.3)

3.1.2. Entrepreneurs

As already mentioned, the productive sector in the model is composed by two kinds of

entrepreneurs: risky and safe. The problem they face is identical, but they feature two main

differences: (i) the interest rate on loans they have to pay back is not equal (higher for

rikier) and (ii) their relations with the financial sector. In fact, the risky entrepreneurs can

borrow funds only from borrower banks, while the safe interact solely with lender banks.

We can interpret this difference as a bigger bank willing to undertake more risk in order to

gain higher profits, and having a better ability to evaluate these risks having more skin in

the game. It is important to underline that a proper characterisation of a riskier behaviour

from one entrepreneur is not present in this setup. The decision about following this path

is that the main focus of the present work is the evaluation of the transmission of risk from

one side of the economy to another through the interbank sector. So, we chose to keep the

model simpler and to embed the different level of riskiness in the spread between the rates

the banks apply to entrepreneurs.
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Risky Entrepreneurs choose the optimal quantity of their consumption (cert ) solving the

following standard intertemporal optimisation problem:

max
cert ,k

er
t ,n

er
t ,l

er
t

E0

∞∑
t=0

βtelog (cert ) (3.4)

subject to the following sequence of budget constraints:

cert + wht n
er
t +

(1 + rert−1)

πt
lert−1 + qkt k

er
t ≤

yert
xt

+ lert + qkt (1− δk)kert−1 (3.5)

where cert is the entrepreneurs consumption, wht n
er
t is the salary they have to pay to

workers for the labour they provide, rert is the interest rate on loans, lert are loans they ask

the borrower bank for, kert is the quantity of capital they own, yert is the production at time t

and δk is the depreciation rate of capital. The quantity xt represents the mark-up applied by

the retailers on final prices, so that the production in the budget constaint is expressed in real

terms. The discount factor βte is common between the two categories of entrepreneurs. The

production function is approximated by a Cobb-Douglas: yert = aetk
er
t−1

αnert
1−α. Provided that

the entrepreneurs are net borrowers of this stylised economy, they have to face a borrowing

constraint of the form:

(1 + rert )lert ≤ mer
t Et(q

k
t+1πt+1(1− δk)kert ) (3.6)

where mer
t is the stochastic Loan to Value (LTV) ratio for the collateral, here assumed

to be capital. Following this definition, 1−mer
t can be seen as the cost a bank has to bear

to exercise its claim on the collaterals - in case the loan would not be payed off. As for the

households, from the F.O.C.s we obtain the following consumption and investments Euler

equations and labour demand for risky entrepreneurs:

1

cert
= µert (1 + rert ) + βeEt

1

cert+1

(
(1 + rert )

πt+1

)
(3.7)

1

cert
qkt = Et{µert mer

t q
k
t+1πt+1(1− δk) + βe

1

cert+1

[qkt+1(1− δk) + rkrt+1]} (3.8)
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(1− α)yert (i)

nert xt
= wt (3.9)

where µert is the lagrangean multiplier associated to the borrowing constraint and the

return on capital is expressed as rkrt = αaert [kert−1]α−1nert
1−α/x.

Safe Entrepreneurs safe entrepreneurs face an identical intertemporal optimisation prob-

lem, defined as:

max
cest ,k

es
t ,n

es
t ,l

es
t

E0

∞∑
t=0

βtelog (cest ) (3.10)

subject to the sequence of budget constraints:

cest + wht n
es
t +

(1 + rest−1)

πt
lest−1 + qkt k

es
t ≤

yest
xt

+ lest + qkt (1− δk)kest−1 (3.11)

where cest is the safe entrepreneurs consumption, wht n
es
t is the salary they have to pay to

workers for their labour, rest is the interest rate on loans, lest are loans they ask the lender

bank for, kest is the quantity of capital they own, yest is the production at time t and δk is the

depreciation rate of capital. The production function, is approximated by a Cobb-Douglas

function of the form: yest = aetk
es
t−1

αnest
1−α. The borrowing constraint is:

(1 + rest )lest ≤ mes
t Et(q

k
t+1πt+1(1− δk)kest ) (3.12)

where mes
t is, as before, the stochastic Loan to Value (LTV) ratio for the collateral. Once

again, from the F.O.C.s we obtain the consumpion and investments Euler equation and

labour demand for safe entrepreneurs:

1

cest
= µest (1 + rest ) + βeEt

1

cest+1

(
(1 + rest )

πt+1

)
(3.13)

1

cest
qkt = Et{µest mes

t q
k
t+1πt+1(1− δk) + βe

1

cest+1

[qkt+1(1− δk) + rkst+1]} (3.14)

(1− α)yest (i)

nest xt
= wt (3.15)
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where µest is the lagrangean multiplier associated to the borrowing constraint and the

return on capital is expressed as rkst = αaest [kest−1]α−1nest
1−α/x.

3.1.3. Banks and the interbank market

Overall, our banking sector is based on Gerali et al. (2010) and Giri (2018). We chose

to follow their structure because this framework not only allows to evaluate the effects of

shocks hitting the supply side of credit, but seems to better fit our purpose of studying the

decision undertaken by a single type of banks to face the shock. Banks that borrow on

the interbank market have to obey a balance-sheet identity of the form loans = deposits +

capital + interbank loans and are required to meet a target capital-to-assets ratio (i.e., the

inverse of leverage), exogenously mandated by a regulator. Deviations from this target entail

a quadratic cost. Following Gerali et al (2010),

the optimal leverage ratio in this context can be thought of as capturing the trade-

offs that would arise in the decision of how much own resources to hold, or alter-

natively as a simple shortcut for studying the implications and costs of regulatory

capital requirements.

Furthermore, we allow for an interbank market where lender banks can provide financial

resources to borrower banks in the form of interbank loans. Since borrower banks face a con-

straint on the deposits they can collect, trade on the interbank market arises spontaneously.

Banks differ in their corporate structure. Lender banks have a wholesale branch that set

the optimal quantity of loans to safe entrepreneurs and to the interbank market. Borrower

banks, instead, are composed by a wholesale branch and a retailer branch. The wholesale

sets the optimal quantity of loans and deposits. Both wholesale banks act as price takers

under perfect competition. The retail branches of borrower banks act under monopolistic

competition. They optimally set a mark-up on the interest rate on loans they extend to risky

entrepreneurs. We choose to stick with this setup proposed by Gerali et al. (2010) because

it seems reasonable to think that the borrowing banks have market power in setting rates

on loans they provide, since the agents they interact with are assumed to be riskier. Since

the total amount of loans is set by wholesale branches, retail branches take it as an exoge-

neous constraint. Moreover, borrower banks are deposit constrained, since they can collect

a maximum amount D
bb
> 0 of deposits from households. They can, however, obtain addi-

tional financial resources by demanding loans to the lender bank on the interbank market.

Furthermore, borrower banks can unilaterally decide to repay interbank loans only partially.

This is in line with the default mechanism devised by Giri (2018) and DeWalque (2010).
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When the banks opt for partial repayment they incur a quadratic reputational cost. The

mechanism behind the functioning of our interbank market is the presence of four spreads

among interest rates. Specifically, interest rates are tied by the following relation:

rer > Rbb > rib > res > r

Where rer is the rate applied by borrower banks on loans to risky entrepreneurs (through

their retail branch), Rbb is the rate of the wholesale branch, rib is the rate on the interbank

market, res is the rate to safe entrepreneurs and r is the policy/deposit rate. Several insights

come from the above hierarchical relation: (i) there is a mark-up between rer > Rbb due

to the monopolistic power of deficit bank (retailer branch); (ii) Rbb > rib due to a mark-up

given jointly by the presence of regulatory costs and by the possibility for borrower banks to

default on interbank loans; (iii) rib > r with the possibility for the central bank of directly

influencing this relation exploitimg its ability to set the policy rate in order to push/depress

the interbank activity.

Borrower Banks

As already mentioned, borrower banks are organised according to a corporate structure that

features a wholesale and a retail branch. The wholesale branch maximises profits choosing

the optimal quantity of loans they provide to firms, deposits they collect from households,

the optimal quantity of interbank market loans and the share of interbank default that the

bank could decide not to pay back. These banks face a constraint on deposits, so that they

are forced to collect resources on the interbank market. The optimization problem faced by

the wholesale branch is structured as follows:

max
Lbbt ,IBt,σ

bb
t ,D

bb
t

E0

∞∑
t=0

βteλ
er
t [
(
1 +Rbb

t

)
Lbbt − Lbbt+1πt+1 −

(
1 + ribt

) (
1− σbbt

)
IBt+

+ IBt+1πt+1 +
(
Kb
t+1πt+1 −Kb

t

)
+Dbb

t+1πt+1 − (1 + rt)D
bb
t − Adjkbt − Adjσt ]

(3.16)

Where Lbbt are the optimal quantities of loans they provide to retail branch, IBt is the

quantity of interbank loans they ask for to lender banks, Dbb
t is the quantity of deposits they

collect from the households, Kb
t is the capital of borrowing bank and σbbt represents the share

of interbank loans the borrowing bank decides not to pay back. Borrower banks face two
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different types of costs. Costs represented by:

Adjkbt =
κkb
2

(
Kb
t

Lbbt
− νb

)2

Kb
t (3.17)

are the adjustment costs due to deviations from the optimal level of leverage. The lower the

ratio between bank capital and the total asset, the higher the penalty cost of providing an

additional unit of loans to the retail branch. This setup follows Gerali et al. (2010) and νb is

set to represent the Basel II capital requirement constraint, so that is set at 8%. Borrower

banks face also reputational costs as proposed by Dib (2010) and deWalque et al. (2010).

The term

Adjσt =
χbb
2

(
IBt−1σ

bb
t−1

πt

)2

(3.18)

is the penalty the borrower banks have to pay on loans they not repay. It can be seen as a

difficulty to find resources on the interbank market due to ”bad reputation” in the following

periods. Borrower banks have to face two constraints: a balance sheet constraint and a

constraint of the quantity of deposits they can collect;

Lbbt =IBt +Kb
t +Dbb

t

Dbb
t ≤ D

(3.19)

The problem of the wholesale branch of borrower banks is closed by the capital law of

motion:

Kb
tπt = (1− δb)Kb

t−1 + J bbt−1 (3.20)

From the F.O.C.s, we obtain the following conditions:

Rbb
t =ribt − σbbt

(
1 + ribt

)
− κkb

(
Kb
t

Lbbt
− νb

)(
Kb
t

Lbbt

)2

+ βeχ
bbEt

{(
σbbt
πt+1

)2

IBt

λert+1

λert

} (3.21)

Equation 3.21 shows the relation between the wholesale loan rate of the borrowing bank

and the interbank market conditions, taking into account also the adjustments costs this

institution has to bear. Specifically, the loan rate is affected by the capital requirement and

by the expected value of defaults. If the bank is undercapitalized, the banks transmit the

cost it has to pay for diverging by the optimal ratio to borrowers, through the wholesale

rate. In the same way we can interpret the contribution of the share of expected interbank

12



defaults on the wholesale interest rate: whenever the bank defaults, the subsequent costs

are charged over the interest rate. From the F.O.C.s we obtain also the optimal setting of

interbank loans default ratio.

σbbt = Et

(
λert
(
1 + ribt

)
(πt+1)2

λert+1βeχ
bbIBt

)
(3.22)

Equation 3.22 describes the evolution of the interbank default over time. The default ratio

has a positive relation with the interest rate over interbank borrowing. The impact of

interbank borrowing is instead negative. The formula above shows that when the interbank

rate is high the debt of the borrowing bank is more costly, so it is not convenient to pay

back all the amount of interbank loans. On the other side, an high level of interbank loans

can be seen as the need of the borrowing bank to gather resources from interbank market,

so that an high default ratio will be more expensive due to reputational costs.

γbbt = Rbb
t − rt + κkb

(
Kb
t

Lbbt
− νb

)(
Kb
t

Lbbt

)2

(3.23)

The equation 3.23 shows when the borrower banks exhaust their capacity of collecting de-

posits from households, in other words when the deposits’ constraint is binding (γbbt > 0).

We can see that it is always convenient for a bank to collect all the deposits it can gather

if the spread between the wholesale rate and the deposit rate more than offset the costs

of diverging from the mandatory capital-to-assets ratio νb. Obviously, the specific case in

which the spread has to offset costs is when the bank is exceeding the optimal ratio with an

abundance of loans, having
Kb
t

Lbbt
− νb < 0. The total profits of the borrower bank are defined

as:

J bbt = rert l
bb
t +

(
1 + ribt

)
σbbt IBt − ribt IBt − rtDbb

t −
∑

Adjbbt (3.24)

with
∑
Adjbbt collecting all the costs borrower banks have to face, from the wholesale to

the retail branch. Finally, the retailer branches of borrower banks are assumed to act in

a monopolistically competitive environment. They optimally set the interest rate on loans

to risky entrepreneurs in order to maximise their profits. The problem they face takes the

form:

max
rert (j)

E0

∞∑
t=0

βteλ
er
t

[
rert (j)lbbt (j)−Rbb

t L
bb
t (j)− Adjrert

]
(3.25)

subject to the demand for risky loans:
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lbbt (j) =

(
rert (j)

rert

)−εert
lbbt (3.26)

where

Adjrert =
κrer

2

(
rert (j)

rert−1(j)
− 1

)2

rert l
bb
t (3.27)

From the solution of the above problem, the first order conditions for the retail branches

give us a New Keynesian Phillips Curve for loan interest rates.

1− Λbb
t

Λbb
t − 1

+
Λbb
t

Λbb
t − 1

Rbb
t

rert
− κrer

(
rert
rert−1

− 1

)
rert
rert−1

+

+ βeEt

[
λert+1

λert
κrer

(
rert+1

rert
− 1

)(
rert+1

rert

)2 lbbt+1

lbbt

]
= 0

(3.28)

where Λbb
t is the markup of final loans rate on the wholesale rate.

Lender Banks

Lender banks maximize their profits, choosing the optimal quantity of loans they provide

to safe firms, and deposits they collect from households. For now, we assume these banks

cannot own capital. The balance sheet of the lender bank is summarised by the following

relation:

IBt + Llbt = Dlb
t

where IBt are the interbank loans, Llbt are the loans to the safe entrepreneurs and Dlb
t is

the quantity of deposits gathereded from the households. Since balance sheet constraint has

only deposits on the liabilities side, we can rewright the above relation as IBt = stD
lb
t , so

that the maximization problem a lender bank has to face takes the form:

max
st,Dlbt

E0

∞∑
t=0

βthλ
h
t [
(
1 + ribt

)
stD

lb
t

(
1− σbbt

)
− st+1D

lb
t+1πt+1 + (1 + rest ) (1− st)Dlb

t −

− (1− st+1)Dlb
t πt+1 − (1 + rt)D

lb
t +Dlb

t+1πt+1 − Adjst ]

(3.29)

where stD
lb
t represents the share of interbank lending on total assets. The term Adjst

represents the quadratic monitoring costs a lender bank has to face relatively to the quantity

of interbank loans it provides relative to its own resources. Namely:

14



Adjst =
Θ

2
[(st − s̄)]2Dlb

t (3.30)

From the F.O.C.s of the problem above we obtain the optimal ratio of interbank loans

for the lender bank:

st = s̄+
ribt − σbbt

(
1 + ribt

)
− rest

ΘDlb
t

(3.31)

with s is the steady state quantity of share of own resources deployed for interbank loans.

Two main driving forces are in motion here: on one hand, the increase of defaults push up the

interbank interest rate. Since the lender bank is risk neutral, higher interest rates represent

an incentive to increase the exposition on the interbank market. On the other hand, the

increase in defaults negatively affects the amount of interbank lending through the disutility

cost. The second relation is given by:

rest − rt = −st(ribt − σbbt (1 + ribt )− rest ) + Θ(st − s)2 (3.32)

The equation 3.32 shows the spread between the safe rate and the policy rate. It is easy

to see that this spread shrinks if the spread between interbank rate and policy rate widens,

since it is more profitable for banks to lend on the interbank market. On the other side,

there is a positive relation with the monitoring cost of interbank loans. In fact, when the cost

of diverging from the optimal ratio rises, the banks find more convenient to provide loans

to safe entrepreneurs, rising the safe rate and enlarging the spread. Lastly, the aggregate

profits of lender bank take the following form:

Jsbt = ribt IBt + rest L
lb
t −

(
1 + ribt

)
σbbt IBt − rtDlb

t − Adjst (3.33)

3.1.4. Capital good producers

Capital goods producers are in perfect competition and buy last period undepreciated

capital (1− δ)kt−1 at a price Qk
t from entrepreneurs (the owners of these firms) and i units

of final goods from the retailers at price Pt. The stock of effective capital x is then sold back

to entrepreneurs at price Qk
t . Considering that qkt ≡

Qkt
Pt

, they solve the following problem:

max
x̄t,it

E0

∞∑
t=0

βteλ
es
t

(
qkt ∆x̄t − it

)
(3.34)

subject to:
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x̄t = x̄t−1 +

[
1− κi

2

(
it
it−1

− 1

)2
]
it (3.35)

with ∆x̄t = kt − (1− δ)kt−1 flow of output.

From the F.O.C.s we obtain the new capital amount produced:

kt = (1− δk)kt−1 +

[
1− κi

2

(
it
it−1

− 1

)2
]
it (3.36)

and the real price of qkt is determinde by:

1 = qkt

[
1− κi

2

(
it
it−1

− 1

)2

− κi
(

i

it−1

− 1

)
it
it−1

]
+βEEt

[
λest+1

λest
qkt+1κi

(
it+1

it
− 1

)(
it+1

it

)2
]

(3.37)

3.1.5. Retailers

The model is closed by a retailer sector, with a monopolistic competitive firm wich buy

the intermediate goods by entrepreneurs and transform them at a unit cost. The retail goods

market is assumed to be monopolistically competitive as in Bernanke, Gertler, and Gilchrist

(1999). Retailers’ prices are sticky and are indexed to a combination of past and steady-

state inflation, with relative weights parameterized by ιp; if retailers want to change their

price beyond what indexation allows, they face a quadratic adjustment cost parameterized

by κp. Since it is uncommon in financial frictions models to have two productive sectors,

considering that the two entrepreneurs are not in competition among themselves and that

the main focus of this work is to investigate the dynamics arising from the interbank market,

it seems plausible to assume that the price of goods sold by risky entrepreneurs P er
t is equal

to the price proposed by safer ones P er
t . Therefore, the problem faced by the retailer takes

the form:

max
Pt(i)

E0

∞∑
t=0

βthλ
h
t

[
Pt(i)yt(i)− P es

t y
es
t (i)− P er

t y
er
t (i)− κp

2

(
Pt(i)

Pt−1(i)
− πιpt−1π

1−ιp
)2

Ptyt

]
(3.38)

subject to:

yt(i) =

(
Pt(i)

Pt

)−εyt
yt (3.39)
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where εyt is the stochastic demand price elasticity.

Assuming that P er
t = P es

t , and remembering that yert + yest = yt, we obtain the classic

Phillips curve of the form:

1− εyt +
εyt
xt
− κp

(
πt − πιpt−1π

1−ιp
)
πt + βhE0

[
λht+1

λht
κp(πt+1 − πιpt π1−ιp)π2

t+1

yt+1

yt

]
= 0 (3.40)

3.1.6. Monetary Policy

We follow Gerali et al. (2010) in setting the Monetary policy exploited by the central

bank to set the policy rate. The Taylor rule has the form:

(1 + rt) = (1 + r)(1−φR) (1 + rt−1)φR
(πt
π

)φπ(1−φR)
(

yt
yt−1

)φy(1−φR)

(3.41)

where φπ is the response of the central bank to the inflation, while φy is the response to

the output growth. Finally, r is the steady state policy rate.

3.2. Alternative specifications and comparison

As already highlited in the previous section, one of the main objectives of the present work

is to analyse how a more realistic representation of an interbank market - into an otherwise

standard financial-friction model - affects and/or contradicts well-established results. In or-

der to gain as many insights as possible from this exercise, we compare our benchmark model

with two alternative specifications: (i) one featuring a banking but no interbank market, (ii)

the other presenting a ”sequential” interbank sector of the type envisaged by deWalque et al

(2010) and Giri (2018). The first model without interbank sector (NIBK henceforth) builds

on the simplified version of Gerali et al. (2010) proposed by Gambacorta and Signoretti

(2014). The second, featuring the interbank sector, (IBK henceforth) draws upon the work

of Giri (2018). As stated above, the main difference between the two models boils down

to the way they model the financial sector. The aim of this way of proceeding is twofold.

On one hand, we want to understand what are the main insights/advantages of taking an

interbank sector into consideration. On the other side, we want to understand what are the

gains/costs of introducing some complexity, and from our viewpoint an additional hint of

realism, to a sequential interbank sector. In addition, the proposed comparison quantifies

the degree of comparability between our model and other, more standards, financial frictions

DSGEs. Recall indeed that the aim of this work is (also) to investigate whether, to what ex-

tent, and in what direction, the interbank market propagates shocks across the real economy.
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The two alternative specifications share with the benchmark model the characterisation of

households, entrepreneurs, retailers and capital good producers. Households consume, sup-

ply labour and collect deposits. Entrepreneurs consume, produce a wholesale good they sell

to retailers, face a borrowing constraint and are net borrowers in the economy. Differently

to the benchmark model, the IBK and NIBK models feature a single type of entrepreneurs.

On the contrary, the benchmark model features risky and safe entrepreneurs. Furthermore,

the IBK and NIBK models differ with respect to their financial sector: while the financial

sector of the IBK is made up of a banking sector and an interbank market, in the NIBK

the financial sector coincides with the banking sector. The NIBK presents a financial in-

termediary à la Gerali (2010), where the banks are composed by a wholesale and a retail

branch. As in the benchmark model, the wholesale branch operates in a perfectly competi-

tive environment, and sets the optimal quantity of deposits the bank can collect as well as

the amount of loans the latter can extend. The retail branch operates under monopolistic

competition and sets the mark-ups on the interest rate of loans. This design is present also

for banks that lend money to entrepreneurs in IBK model. The interbank market analysed

in this model is very similar to the one of BK model. However, two differences deserve to

be mentioned. First, the lender banks in IBK model are allowed to gather deposits from

households but not to lend funds to entrepreneurs directly. Its only available investment

alternatives are government bonds offered in fixed quantity and with an exogeneous return

assumed identical to the policy rate. Second, and crucial, borrower banks can not collect

deposits from households, so they must rise liquidity from the lender banks. This peculiar

specification implicitely defines a ”seuqntial structure” of the interbank market of the type

analysed in deWalque (2010) and Giri (2018).

3.3. The transmission channels

To close this section we present shortly what are the main driving forces in financial

frictions model. We observe three mechanisms in action: (i) the existence of a collateral

channel, (ii) the debt-deflation effect and (iii) the credit-supply channel. First two are quite

common in macro-financial literature, while the latter is specific for this type of setup. The

existence of a collateral channel is a well-known consequence of the presence of a borrowing

constraint and operates via the impact of changes of asset valuations on debtors’ balance-

sheet conditions. In this literature, this is the main channel able to generate a financial-

accelerator effect (Bernanke and Gertler, 1995). The idea is that due to agency problems,

some agents in the economy can only borrow a fraction of the value of the assets that they

can post as collateral, so that a positive technology shock increases aggregate output as well
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as asset prices. The increase in asset prices, in turn, pushes up the borrowing limit and

induces an increase in lending to those agents for which the constraint was binding. So,

the additional available resources can be used to finance more consumption and investment,

generating an extra kick to aggregate demand which reinforces the initial rise in output. The

debt-deflation effect is present in our model because we chose not to index debt-repaiments.

In fact, debts are expressed in nominal terms. So, the fall in inflation raises the cost of

debt services, further depressing entrepreneurial consumption (Iacoviello 2005). Finally, the

credit-supply channel is activated by an exogenously given capital-to-asset ratio (the inverse

of a leverage ratio) that influence the supply conditions (i.e. lending spreads) in order to

bring this ratio back to the desired level whenever it deviates from it (Gerali et al. 2010).

4. Simulations

In this section we present the simulations and results of a list of shocks to our models.

The simulation of two shocks, total factor productivity (TFP) and to banking capital, is

performed for all three models. Instead, the shock to the interbank riskiness is exclusive

for models which embed the interbank sector: IBK and BK. The TFP shock is a classic

productivity shock, while the banking capital shock can be tought as an exogenous and

unexpected destruction of banks’ capital, as in Gerali et al. (2010). The shock specific

to models with an interbank sector is a rise to the quantity of defaults on loans borrower

banks has received, introducing more riskiness on the interbank market. Since we want to

make the comparison as fair as possible, we set common relations amongst the steady states,

calibrating some parameters consequently. In the remainder of this section we present an

exercise specific for our model, in which we simulate a capital loss arising from the risky

sector.
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4.1. Calibration

As mentioned above, some steady state parameters are calibrated in line with Gerali et

al. (2010) and some others are calibrated in order to guarantee common relations among

different equilibria. In table 1 we report an extensive list of the main parameters and of

steady state ratios of our benchmark model. A list of parameters and steady state ratios of

the other models is provided in the appendix. We start our numerical setting by imposing a

steady state ratio of the Basel II capital requirement equal to 8%. The cost for managing the

bank’s capital position in line with this optimal ratio is 0.0400. Following this calibration,

our steady state default rate for banks is approximately 0.0028, that corresponds to a 1.12%

of interbank defaults on a year base. The capital share in the production function and the

depreciation rate of physical capital are in line with Gerali et al. (2010) and respectively

equal to 0.25 and 0.025. The Loan to value for risky entrepreneur mer is 0.33 while the

one faced by the safer, mes, is 0.26. Since we are interested in a steady state where an

interbank market is present, we set a spread between the risky and the safe rate of 1.6% and

a spread between the interbank rate and the policy rate equal to 1.1%. It is easy to see that,

assuming that the steady state capital-to-average ratio (kb/Lbb) is equal to the mandatory

regulation (0.08), and setting the spread between the interbank rate and the policy rate to

1.1%, from equation 3.23 a positive spread between the wholesale rate and a policy rate

arises naturally, making the lagrange multiplier related with this spread positive as well.

Since the multiplier γbb associated to the deposit constraint of borrower bank is positive, we

see that the constraint is binding in steady state, so that banks exhaust all the deposits they

can collect.
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(i)

Parameter Definition Value

βp Patient households discount factor 0.9943

βe Entrepreneurs discount factor 0.9750

α Capital share in the production function 0.2500

δk Depreciation rate of physical capital 0.0250

φ Inverse of Frisch elasticity 1.0000

ν Basel II capital requirement 0.0800

δb Cost for managing the bank’s capital position 0.0400

κp Price stickyness 20.5700

κkb Leverage dev. costs 11.4900

Θ Monitoring costs for default 0.0140

φR Taylor rule coefficient on r 0.8000

φπ Taylor rule coefficient on π 1.3000

φy Taylor rule coefficient on y 0.3500

(ii)

Ratio Expression Value

Gross inflation rate π 1.000

Consumption-to-output ratio C/Y 0.88

Deposits of borrower banks Dbb/D 0.10

Investment-to-output ratio I/Y 0.11

Household Income share whlh/Y 0.63

Firms’ profit-to-output ratio JR/Y 0.17

Banks’ capital ratio Kb/Lbb 0.08

Policy rate r 2%

Safe loans’ rate res 2%

Spread rib − r 1.1%

Spread rer − r 1.6%

Table 1: (i) Main parameters (ii) Steady-state ratios

4.2. Technology shock

We start with a technology shock designed, as common, as a perturbation to total factor

productivity. Since our model embeds two productive sector, in order to simulate an aggre-
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gate technological shock we decide to apply the same perturbation to both agents. Recalling

from subsection 3.1.2 that the production functions are defined as:

yert = aetk
er
t−1

αnert
1−α; yest = aetk

es
t−1

αnest
1−α

what we are considering is essentially a shock to the above variable aet , that we assume to

follow the AR(1) stochastic process:

aet = ρaa
e
t−1 + ηat

in which ρa is 0.94 and the variance of ηat is calibrated so that the variance of aet equals

1 per cent. The results are reported in Figure 2.
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Fig. 2. Transmission of a positive Technology shock

Note: All variables are percentage deviations from the steady state. The blue line with stars is from the model without the

interbank market (NIBK). The light-blue line with triangles is from the model with the interbank (IBK). The green line with

circles is from the benchmark model (BK).

As we can see, the response of the system to the technological shock is in line with stan-

dard results in the literature. Namely, there is an expansion of the output and consumptions,
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accompanied by an instantaneous decrease in inflation. Investments temporarily rise, and

then converge back smootly to their steady state value. As common, the central bank ac-

comodates for the expansion, lowering on impact the policy rate. First thing to underline

is that, as mentioned above, these models embed a debt-deflation mechanism. Following

Iacoviello (2005), debt deflation plays a role since obligations are not indexed, the fall in

inflation raises the cost of debt services, making households better off but further depressing

entrepreneurial consumption. Of particular interest are the variables related to the banking

sector. Loans to the real economy rise in response to a higher demand for financial resources

induced by the increased productivity of factors. As a consequence, interest rates fall due to

the relative abundance of financial resources. Following a consistent dynamic, the leverage of

banks increases with the quantity of loans extended to firms. While we observe qualitatively

the same paths among all three models, quantitatively the dynamic shows differnt outcomes.

The economy represented by the model without interbank sector (NIBK) shows a more sta-

ble inflation and an higher rise, on impact, of output. The rise in output comes along with

a rise in consumption that keeps inflation more stable relative to the other models. This

difference is driven by the fact that an interbank sector brings along some dispersion due

to the possibility of defaults by borrower banks. Knowing that less (more) resources will be

available for the final producers, even though we observe an increase of loans in all models,

the central bank acts more (less) aggresively on policy rate. This, in turn, is transmitted to

the rate of loans that decreases. In NIBK, the absence of an interbank market allows banks

to decrease less, on impact, the final rate that instead decreases more during the life of the

shock because there will be less need for resources after first periods. On the other side, the

lower interest rate set by the central bank in order to push consumption makes hoseholds less

willing to gather deposits, providing less funds to the financial sector. Finally, households

are richer in the NIBK framework for a favourable combination of the debt-deflation effect

and higher interest rate on deposits. Due to these reasons, labour receive an higher reward

in terms of wage, allowing entrepreneurs to invest less. Banking capital remains almost un-

affected since lower interest rates drive deficit-banks’ profits down. The last observation we

point out is about the puzzling response of banks’ leverage at the rise of the shock. Initially,

the leverage is negative for IBK and BK likely because of the configuration of this variable,

since in these settings it takes under consideration only loans provided by the borrower bank,

since it is the only one owning capital.
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4.3. Banking capital shock

The second shock of our exercise hits the financial sector of the models. As in Gerali et

al. (2010), we simulate an exogenous and unexpected destruction of banks’ capital and study

how it spreads through the whole economy. Specifically, the loss hits the banks’ directly in

its law of motion (eq. 3.20) as presented below:

Kb
tπt = (1− δb)

Kb
t−1

εkbt
+ J bbt−1

where εkbt is assumed to follow the AR(1) stochastic process:

εkbt = ρkbε
kb
t−1 + ηkbt

in which ρkb is 0.81. The results are reported in Figure 2.
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Fig. 3. Transmission of a Banking-capital shock

Note: All variables are percentage deviations from the steady state. The blue line with stars is from the model without the

interbank market (NIBK). The light-blue line with triangles is from the model with the interbank (IBK). The green line with

circles is from the benchmark model (BK).
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As for TFP shock, all the models present the same movement qualitatively speaking, but

the persistance and the magnitude of the responses of different variables vary across models.

First, it is worth to underline the response of output for all models, which seems strange

on a fisrt sight. The reason behind an increase in output after a banking capital shock is

that, in all our setups, wages are not sticky but flexible, making the labour supply less rigid.

Following the fact that there will be less availability of loans in the economy, entrepreneurs

ask for more labour trying to contain a dampening in the level of output. An increased

labour demand rises up the level of wages that is followed by a rise in the supply of labour

by the households. The peak observed in output for IBK at the impact can be interpreted

as a conseuqence of a perceived higher loss in the system due to dispersion of resources of

the interbank sector. In fact, since workers understand they will be poorer in the future,

they supply more labour right after the shock, driving the output up. The fallen of loans is

similar and stronger for NIBK and for IBK, because in BK setup we guarantee a quantity

of funds to borrower banks not present in the other economies, represented by the deposits

they can gather before the deposit constraint binds. In addition, since the quantity of loans

does not plunge the borrower bank is able to contain the mark-up it applies on final loans,

less limitating the demand. This transmission mechanism can be seen also observing the

pass-through of rate on loans to investments. Since they rise more for IBK, it will be more

difficult to obtain loans on impact, depressing the value of the collateral (K). Since it is

not convenient for entrepreneurs to invest in capital, the investments fall and wage rises,

following the increase in labour demand (as we can see by output in first period). As for the

technology shock, the quantity of loans rises faster for the NIBK model, due to the absence

of resources dispersion brought by the interbank sector.

4.4. Default shock on the interbank market

The default shock on the interbank market is represented by an higher probability of

default on interbank loans by the borrower bank (σbbt ). In this case, we consider an additive

shock to the optimal quantity of loans to default on set by the deficit bank based on Giri

(2017). Namely, the shock enters linearly in the equation 3.22:

σbbt = Et

(
λert
(
1 + ribt

)
(πt+1)2

λert+1βeχ
bbIBt

)
+ εσbbt (4.1)

As usual, the shock follows the AR(1) stochastic process:

εσbbt = ρσbbε
σbb
t−1 + ησbbt
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in which ρσbb is 0.85 and the steady state value of σbbt is 0.0028. The obtained impulse

responses are reported in Figure 3 below.
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Fig. 4. Transmission of a Bank-riskiness shock

Note: All variables are percentage deviations from the steady state. The light-blue line with triangles is from the model with

the interbank (IBK). The green line with circles is from the benchmark model (BK).

As we can see, the common effect of an interbank default shock modifies the composition

of the balance sheet of the borrower banks, pushing down their assets by the erosion of

interbank loans. These banks, due to the flight-to-quality mechanism (Heider et al. 2015,

Caballero and Krishnamurthy 2008) that pushes lender bank to invest more on safe busi-

nesses, reduces more the quantity of interbank loans. The combination of a lower supply

and an higher riskiness of the interbank market, leads up the interbank rate. While this

happens clearly in our BK model, the response of the interbank rate in the IBK model is

instead negative on impact. Two mechanism are working here. One is that in our setup the

aggregate output is more stable, as resources drain from one sector (risky) to the other one

(safe), because lender bank finds interbank loans more dangerous. The wider fluctuation

drags down the policy rate, that in turn leads down the interbank rate. On the other side,
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since the borrower banks in our setup are allowed to collect deposits at a limited extent,

after an interbank riskiness shock we observe a stronger decrease in interbank loans that

brings the interbank rate up. The increase of interbank rate spreads to the real economy

through the rate of loans to entrepreneurs, descouraging the demand of credit and, in turn,

the quantity of investments. The banks’ leverage move in the opposite direction relative

to the technology shock presented above, driven by the fall of loans. It is clear from the

IRFs above that our setup with two productive sectors makes the economy less volatile and

proner to better face shocks arising from the financial sector. The lender banks face the risk

providing more resources to safer businesses in the real economy, making the whole system

more stable.

4.5. Idiosincratic shock to riky entrepreneurs’ capital

The last shock of our exercise simulates an histantaneous loss of capital by risky en-

trepreneurs. Since the available capital at the start of time t is the one stockpiled at t− 1,

we simulate a shock directly hitting this quantity. Specifically, the shock takes the form
kert−1

εkrt

and enters directly in the riky entrepeurs’ budget constraint (eq. 3.5), in the production

function and in reteurn on capital relation. As for the above shocks, the capital loss follows

an AR(1) stochastic process:

εkrt = ρkrε
kr
t−1 + ηkrt

in which ρkr is 0.81. Since this shocks hits directly the risky entrepreneurs-borrower

banks’ side, it can be of some help to compare the results with IRFs from a shock to the

riskiness of the interbank system. The obtained impulse responses are reported in Figure 5

below.
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Fig. 5. Transmission of Idiosincratic-capital loss shock

Note: All variables are percentage deviations from the steady state. The light-blue line with triangles is from the shock

representing a loss in capital of risky entrepreneurs (εkr). The dark-green line with circles is from the shock representing a rise

in the riskiness of the banking sector (σbb).

As we can see, the IRFs functions are very similar from a qualitatively viewpoint. This

is reasonable since the shock hits the same side of the economy (but not the same actor).

However, the forces acting behind are quite different, and show different results on the

quantitave side. While the drop seems to be more severe for interbank riskiness shock, on

impact, the persistancy of the effects seems to last longer for the capital loss, regarding the

main variables of the interbank sector. Specifically, we observe a drop in loans lead by the

plunge of demand from risky entrepreneurs. This, in turn reverberates on the interbank

loans and interbank rate. Since there is less need of resources from one sector there is, in

both cases, a flight to quality effect from one side of the economy to the other. It is worth

noticing that, even though the main result provided by the presence of an interbank sector

seems to be the absorption of a shock hitting one side of the real economy, there is a mild

loss in the aggregate output in comparison with the interbank riskiness shock. So, analysing

the above dynamics we can observe that in our stylised economy, on aggregate the effect of

an idiosincratic shock fades away. The common dynamic of both these shocks is shown in
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figure 6. We observe the redistribution effect in action.
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Fig. 6. Idiosincratic-capital loss shock - detail

Note: All variables are percentage deviations from the steady state.

While the output on aggregate is practically stable, we can see that all the resources are

fleeing from one side of the economy to the other. Of course, since less resources are available,

we observe the same dynamic for loans.
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5. Conclusions

In this work we analysed the effects of the presence of an interbank market on the main

aggregate economic variables. In addition, particular attention has been devoted to the study

of the effects of the presence of an interbank market and, in particular, to the role played

by the latter in the propagation of real shocks originating from one side of the productive

sector. The analysis presented in the previous sections highlights two main results. First,

relatively small amounts of financial resources are diverted from the real sector by the costs

tappered from banks as a consequence of their trading activity on the interbank market.

In order to offer/acquire liquidity on the interbank market, banks must bear monitoring

and reputational costs. Those costs directly subtract resources to their lending activity.

As a consequence, we observe that the aggregate output in the presence of an interbank

market is slightly lower than the one observed without an interbank market. Second, we

show that the interbank market dampens the potentially contractionary effect of negative

real shocks, by reallocating financial resources from risky to safe entrepreneurs. We analyse

this substitution effect by simulating an entirely novel type of real shock. We simulate an

unexpected loss of capital in a productive sector characterised by an high level of riskiness.

We show that the negative shock does not propagate through the real economy because, when

risky entrepreneurs suffer losses, banks with surplus liquidity stop lending on the interbank

market and expand their supply of credit to safe entrepreneurs. In other words, we clearly

observe a flight-to-quality effect fostered by the presence of an interbank market. As a

consequence, the safe productive sector benefits from the shock suffered by the risky one and

expands its output. Overall, the expansionary effects induced by the increased availability

of credit to the safe productive sector more than offsets the contractionary effects of the

shock suffered from the risky entrepreneurs. The aggregate output remains almost stable.

Even though we observe this result on aggregate, studying the main financial variables we

saw that the interbank sector remains inefficient for several periods after the shock, and that

the whole economy starts to deploy most of resources into one productive sector. The main

insight is that well-functioning interbank market improves allocational efficiency by properly

redistributing financial resources but, at the same time, it tends to divert such resources

from the productive agents that need them most (i.e. from entrepreneurs hit by the shock).

We are well aware of the fact that our results are in part driven by some simplification

introduced in the model. However, we think that such simplifications might prove useful

to start appreciating the non-trivial role played by interbank markets in modern financial

sector.
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6. Appendix

6.1. Derivation of the main equations of the model

6.1.1. Households

max
cht ,n

h
t ,d

h
t

E0

∞∑
t=0

βth

(
log
(
cht
)
− ψn

h
t

(1+φ)

1 + φ

)

s.t. cht + dht ≤wht nht +
(1 + rt−1)

πt
dht−1 + J lbt + JRt

From which the Lagrangean at time t and t+ 1 is:

L =βth

(
log(cht )− ψ

nht
(1+φ)

1 + φ

)

+ βthλ
h
t (w

h
t n

h
t +

(1 + rt−1)

πt
dht−1 + J lbt + Jrt − cht − dht )

+ βt+1
h

(
log(cht+1)− ψ

nht+1
(1+φ)

1 + φ

)

+ βt+1
h λht+1(wht+1n

h
t+1 +

(1 + rt)

πt+1

dht + J lbt+1 + Jrt+1 − cht+1 − dht+1)

F.O.C.s

∂L
∂cht

= 0 −→ λht =
1

cht

∂L
∂dht

= 0 −→ −λht + βhEt

[
λht+1

(1 + rt)

πt+1

]
= 0 Euler equation

∂L
∂nht

= 0 −→ wht = ψ
nht

φ

λht
labor supply

∂L
∂λht

= 0 −→ cht + dht ≤ wht n
h
t +

(1 + rt−1)

πt
dht−1 + J lbt + Jrt
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6.2. Risky Entrepreneurs

max
cert ,k

er
t ,n

er
t ,l

er
t

E0

∞∑
t=0

βtelog (cert )

s.t. cert + wht n
er
t +

(1 + rert−1)

πt
lert−1 + qkt k

er
t ≤

yert
xt

+ lert + qkt (1− δ)kert−1

(1 + rert )lert ≤ mer
t Et(q

k
t+1πt+1(1− δ)kert )

with:

yert = aert [kert−1]αnert
1−α

From which the Lagrangean at time t and t+ 1 is:

L =βtelog (cert )

+ βteλ
er
t

(
yert
xt

+ lert + qkt (1− δ)kert−1 − cert − wht nert −
(1 + rert−1)

πt
lert−1 − qkt kert

)
+ βteµ

er
t (mer

t Et(q
k
t+1πt+1(1− δ)kert )− (1 + rert )lert )

+ βt+1
e log

(
cert+1

)
+ βt+1

e λert+1

(
yert+1

xt+1

+ lert+1 + qkt+1(1− δ)kert − cert+1 − wht+1n
er
t+1 −

(1 + rert )

πt+1

lert − qkt+1k
er
t+1

)
+ βt+1

e µert+1(mer
t+1Et+1(qkt+2πt+2(1− δ)kert+1)− (1 + rert+1)lert+1)

F.O.C.s

∂L
∂cert

= 0 −→ λe,rt =
1

cert

∂L
∂kert

= 0 −→ λert q
k
t = Et{µert mer

t q
k
t+1πt+1(1− δ) + βeλ

er
t+1[qkt+1(1− δ) + rkrt+1]}

with rkrt ≡ αaert [kert−1]α−1nert
1−α/xt

∂L
∂nert

= 0 −→ wht = (1− α)
yert
xtnert
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∂L
∂lert

= 0 −→ λert = µert (1 + rert ) + βeEtλ
er
t+1

(
(1 + rert )

πt+1

)

∂L
∂λert

= 0 −→ cert + wht n
er
t +

(1 + rert−1)

πt
lert−1 + qkt k

er
t ≤

yert
xt

+ lert + qkt (1− δ)kert−1

∂L
∂µert

= 0 −→ (1 + rert )lert ≤ mer
t Et(q

k
t+1πt+1(1− δ)kert )

6.3. Safe Entrepreneurs

max
cest ,k

es
t ,n

es
t ,l

es
t

E0

∞∑
t=0

βtelog (cest )

s.t. cest + wht n
es
t +

(1 + rest−1)

πt
lest−1 + qkt k

es
t ≤

yest
xt

+ lest + qkt (1− δ)kest−1

(1 + rest )lest ≤ mes
t Et(q

k
t+1πt+1(1− δ)kest )

with:

yest = aest [kest−1]αnest
1−α

From which the Lagrangean at time t and t+ 1 is:

L =βtelog (cest )

+ βteλ
es
t

(
yest
xt

+ lest + qkt (1− δ)kest−1 − cest − wht nest −
(1 + rest−1)

πt
lest−1 − qkt kest

)
+ βteµ

es
t (mes

t Et(q
k
t+1πt+1(1− δ)kest )− (1 + rest )lest )

+ βt+1
e log

(
cest+1

)
+ βt+1

e λest+1

(
yest+1

xt+1

+ lest+1 + qkt+1(1− δ)kest − cest+1 − wht+1n
es
t+1 −

(1 + rest )

πt+1

lest − qkt+1k
es
t+1

)
+ βt+1

e µest+1(mes
t+1Et+1(qkt+2πt+2(1− δ)kest+1)− (1 + rest+1)lest+1)

F.O.C.s

∂L
∂cest

= 0 −→ λest =
1

cest
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∂L
∂kest

= 0 −→ λest q
k
t = Et{µest mes

t q
k
t+1πt+1(1− δ) + βeλ

es
t+1[qkt+1(1− δ) + rkst+1]}

with rkst ≡ αaest [kest−1]α−1nest
1−α

∂L
∂nest

= 0 −→ wht = (1− α)
yest
xtnest

∂L
∂lest

= 0 −→ λest = µest (1 + rest ) + βeEtλ
es
t+1

(
(1 + rest )

πt+1

)

∂L
∂λest

= 0 −→ cest + wht n
es
t +

(1 + rest−1)

πt
lest−1 + qkt k

es
t ≤

yest
xt

+ lest + qkt (1− δ)kest−1

∂L
∂µest

= 0 −→ (1 + rest )lest ≤ mes
t Et(q

k
t+1πt+1(1− δ)kest )

6.4. Borrower Bank

6.4.1. Wholesale Branch

max
Lbbt ,IBt,σ

bb
t ,D

bb
t

E0

∞∑
t=0

βteλ
er
t [
(
1 +Rbb

t

)
Lbbt − Lbbt+1πt+1 −

(
1 + ribt

) (
1− σbbt

)
IBt

+IBt+1πt+1+
(
Kbb
t+1πt+1 −Kbb

t

)
+Dbb

t+1πt+1 − (1 + rt)D
bb
t − Adjκbt − Adjσt ]

s.t. Lbbt = IBt +Kb
t +Dbb

t

and Dbb
t ≤ D

with:

Adjkbt =
κkb
2

(
Kb
t

Lbbt
− νb

)2

Kb
t

Adjσt =
χdb
2

(
IBt−1σ

bb
t−1

πt

)2

from which we obtain the following Lagrangean in t and t− 1:
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L =βt−1
e λert−1(

(
1 +Rbb

t−1

)
Lbbt−1 − Lbbt πt −

(
1 + ribt−1

) (
1− σbbt−1

)
IBt−1

+ IBtπt +
(
Kbb
t πt −Kbb

t−1

)
+Dbb

t πt − (1 + rt−1)Dbb
t−1 − Adjκbt−1 − Adjσt−1)

+ βt−1
e λert−1(λbbt−1(IBt−1 +Kb

t−1 +Dbb
t−1 − Lbbt−1))

+ βt−1
e λert−1(γbbt−1(D −Dbb

t−1))

+ βteλ
er
t (
(
1 +Rbb

t

)
Lbbt − Lbbt+1πt+1 −

(
1 + ribt

) (
1− σbbt

)
IBt

+ IBt+1πt+1 +
(
Kbb
t+1πt+1 −Kbb

t

)
+Dbb

t+1πt+1 − (1 + rt)D
bb
t − Adjκbt − Adjσt )

+ βteλ
er
t (λbbt (IBt +Kb

t +Dbb
t − Lbbt ))

+ βteλ
er
t (γbbt (D −Dbb

t ))

F.O.C.s

∂L
∂Lbbt

= 0 −→ −βt−1
e λert−1πt + βteλ

er
t (1 +Rbb

t ) + βteλ
er
t κkb

(
Kb
t

Lbbt
− νb

)(
Kb
t

Lbbt

)2

− βtλert λbbt = 0 1)

∂L
∂IBt

= 0 −→ −βteλert (1 + ribt )(1− σbbt )− βt+1
e λert+1χbb

(
IBtσ

bb
t

πt+1

)(
σbbt
πt+1

)
2)

+ βteλ
er
t λ

bb
t + βt−1

e λert πt = 0

∂L
∂σbbt

= 0 −→ βteλ
er
t (1 + ribt )IBt − βt+1

e λert+1χbb

(
IBtσ

bb
t

πt+1

)(
IBt

πt+1

)
= 0 3)

∂L
∂Dbb

t

= 0 −→ βt−1
e λert−1πt − βteλert (1 + rt) + βteλ

er
t λ

bb
t − βteλert γbbt = 0 4)

Now, from 3) we obtain:

σbbt =
λert (1 + ribt )π2

t+1

βerλert+1χbbIBt

Then, we can combine 1) and 2):

from 1) βtλ
er
t λ

bb
t = −βt−1

e λert−1πt + βteλ
er
t (1 +Rbb

t ) + βteλ
er
t κkb

(
Kb
t

Lbbt
− νb

)(
Kb
t

Lbbt

)2
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Plugging this into 2) we obtain:

βteλ
er
t (1 +Rbb

t ) + βteλ
er
t κkb

(
Kb
t

Lbbt
− νb

)(
Kb
t

Lbbt

)2

− βt−1
e λert πt + βt−1

e λert πt

− βteλert (1 + ribt )(1− σbbt )− βt+1
e Etλ

er
t+1χbb

(
IBtσ

bb
t

πt+1

)(
σbbt
πt+1

)
= 0

−→ Rbb
t = ribt − σbbt (1 + ribt )− κkb

(
Kb
t

Lbbt
− νb

)(
Kb
t

Lbbt

)2

+ βeχbbEt

[(
σbbt
πt+1

)2

IBt

λert+1

λert

]

Combining 1) and 4):

Starting from 1):

βtλ
er
t λ

bb
t = −βt−1

e λert−1πt + βteλ
er
t (1 +Rbb

t ) + βteλ
er
t κkb

(
Kb
t

Lbbt
− νb

)(
Kb
t

Lbbt

)2

Plugging this into 4):

βt−1
e λert−1πt−βteλert (1+rt)−βt−1

e λert−1πt+β
t
eλ

er
t (1+Rbb

t )+βteλ
er
t κkb

(
Kb
t

Lbbt
− νb

)(
Kb
t

Lbbt

)2

−βteλert γbbt = 0

from which we obtain:

γbbt = Rbb
t − rt + κkb

(
Kb
t

Lbbt
− νb

)(
Kb
t

Lbbt

)2

6.4.2. Retail Branch

max
rert

E0

∞∑
t=0

βteλ
er
t

[
rert l

bb
t (j)−Rbb

t L
bb
t (j)− Adjrert

]
s.t lbbt (j) =

(
rert (j)

rert

)−εert
lbbt

where

Adjrert =
κrer

2

(
rert (j)

rert−1(j)
− 1

)2

rert l
bb
t

Now, substituting the downword sloping demand curve into the objective function, and

considering times t and t+ 1 we obtain:
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Π = βteλ
er
t

[
rert (j)

(
rert (j)

rert

)−εert
lbbt −Rbb

t

(
rert (j)

rert

)−εert
lbbt −

κrer
2

(
rert (j)

rert−1(j)
− 1

)2

rert l
bb
t

]

+βt+1
e E0λ

er
t+1

[
rert+1(j)

(
rert+1(j)

rert+1

)−εert+1

lbbt+1 −Rbb
t+1

(
rert+1(j)

rert+1

)−εert+1

lbbt+1 −
κrer

2

(
rert+1(j)

rert (j)
− 1

)2

rert+1l
bb
t+1

]

Deriving for rert (j) we obtain:

∂Π

∂rert (j)
= 0→βteλert

[(
rert (j)

rert

)−εert
lbbt − εert

(
rert (j)

rert

)−εert −1(
rert (j)

rert

)
lbbt + εert

Rbb
t

rert

(
rert (j)

rert

)−εert −1

lbbt

− κrer
(
rert (j)

rert−1(j)
− 1

)
1

rert−1(j)
rert l

bb
t

]
+ βt+1

e E0λ
er
t+1

[
κrer

(
rert+1(j)

rert (j)
− 1

)
rert+1(j)

rert (j)2
rert+1l

bb
t+1

]
= 0

Considering that in symmetric equilibrium we have rert (j) = rert and remembering that
Rbbt
rert

= 1
mkrert

dividing all members for lbbt we obtain:

βteλ
er
t

[
1− εert +

εert
mkrert

− κrer
(
rert
rert−1

− 1

)
rert
rert−1

]
+ βt+1

e E0λ
er
t+1

[
κrer

(
rert+1

rert
− 1

)(
rert+1

rert

)2 lbbt+1

lbbt

]
= 0

To conclude, we divide both members for βteλ
er
t and we end up with the following ”Taylor

rule” for loan rates:

1− εert +
εert

mkrert

− κrer
(
rert
rert−1

− 1

)
rert
rert−1

+ βeE0

λet+1

λert+1

[
κrer

(
rert+1

rert
− 1

)(
rert+1

rert

)2 lbbt+1

lbbt

]
= 0

N.B.: we can rewrite the equation above exploiting the relation between the elasticity of

substitution and the markup given their frictionless relation.

Starting from the fact that without frictions, the markup is given by:
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mkt =
εt

εt − 1

→εt − 1

εt
=

1

mkt

→1− 1

εt
=

1

mkt

→1− 1

mkt
=

1

εt

→mkt − 1

mkt
=

1

ε

→εt =
mkt

mkt − 1

so that the equation above can be rewritten as:

1− mkrert

mkrert − 1
+

mkrert

mkrert − 1

Rbb
t

rert
− κbb

(
re,rt
re,rt−1

− 1

)
re,rt
re,rt−1

+ βeE0

λet+1

λet+1

[
κbb

(
re,rt+1

re,rt
− 1

)
re,rt+1

re,rt

2 lbbt+1

lbbt

]
= 0

6.5. Lender Bank

Starting from the fact that a lender bank faces the following balance sheet constraint:

IBt + Llbt = Dlb
t

Since on the liabilities side there are only deposits, we can consider the following relation:

stD
lb
t = IBt

We can rewrite the problem a lender bank has to face adding a new variable of choice. By

now, the lender bank is able to choose also the optimal quantity of deposits it can collect:

max
st,Dlbt

E0

∞∑
t=0

βthλ
h
t

[(
1 + ribt

)
stD

lb
t

(
1− σbbt

)
− st+1D

lb
t+1πt+1 + (1 + rest ) (1− st)Dlb

t

− (1− st+1)Dlb
t+1πt+1 − (1 + rt)D

lb
t +Dlb

t+1πt+1 − Adjst
]

with

Adjst =
Θ

2
[(st − s̄)]2Dlb

t

The Lagrangean associated to the problem above, evaluated in t− 1 and t, is:
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L =βt−1
h λht−1[

(
1 + ribt−1

)
st−1D

lb
t−1

(
1− σbbt−1

)
− stDlb

t πt +
(
1 + rest−1

)
(1− st−1)Dlb

t−1

− (1− st)Dlb
t πt − (1 + rt−1)Dlb

t−1 +Dlb
t πt − Adjst−1]

+ βthλ
h
t [
(
1 + ribt

)
stD

lb
t

(
1− σbbt

)
− st+1D

lb
t+1πt+1 + (1 + rest ) (1− st)Dlb

t

− (1− st+1)Dlb
t+1πt+1 − (1 + rt)D

lb
t +Dlb

t+1πt+1 − Adjst ]

F.O.C.s

∂L
∂st

= 0 −→ βthλ
h
t (1 + ribt )Dlb

t (1− σbbt )− (1 + rest )Dlb
t β

t
hλ

h
t −Θ(st − s)Dlb

t β
t
hλ

h
t = 0

−→ 1− σbbt + ribt − ribt σbbt − 1− rest −ΘDlb
t st + ΘDlb

t s = 0

−→ st = s+
ribt − (1 + ribt )σbbt − rest

ΘDlb
t

∂L
∂Dlb

t

= 0 −→ βthλ
h
t (1 + ribt )st(1− σdt ) + βthλ

h
t (1 + re,st ) (1− st)− βthλht (1 + rt)

− βthλht Θ(st − s)2 = 0

−→ (1 + ribt )st(1− σdt ) + (1 + re,st ) (1− st)− (1 + rt)

−Θ(st − s)2 = 0

−→ st + str
ib
t − σdt st − stσdt ribt + 1 + re,st − st − r

e,s
t st − 1− rt −Θ(st − s)2 = 0

−→ re,st − rt = −st(ribt − σdt (1 + ribt )− re,st ) + Θ(st − s)2

6.6. Capital goods Producers

The problem a capital good producer faces takes the following form:

max
x̄t,it

E0

∞∑
t=0

βteλ
es
t

(
qkt ∆x̄t − it

)
s.t.: x̄t = x̄t−1 +

[
1− κi

2

(
it
it−1

− 1

)2
]
it

with ∆x̄t = kt − (1− δk)kt−1

Remembering that capital goods producers buy last period undepreciated capital (1 −
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δ)kt−1 at a price Qk
t from entrepreneurs (the owners of these firms) and i units of final

goods from the retailers at price Pt. The stock of effective capital x is then sold back to

entrepreneurs at price Qk
t . Considering that qkt ≡

Qkt
Pt

. Knowing that in t the effective capital

x̄ is equal to the capital produced kt, so that the problem can be rewritten as:

max
x̄t,it

E0

∞∑
t=0

βteλ
es
t

(
qkt (x̄t − (1− δk)kt−1)− it

)
s.t.: x̄t = x̄t−1 +

[
1− κi

2

(
it
it−1

− 1

)2
]
it

Plus, we can rewrite x̄t as x̄t−1 + kt − (1− δk)kt−1 → x̄t−1 + xt − (1− δk)kt−1 so that the

Lagrangean takes the form:

L =βteλ
es
t

(
qkt (x̄t − (1− δk)kt−1)− it

)
+ βteλ

es
t λ

kp
t

(
x̄t−1 +

[
1− κi

2

(
it
it−1

− 1

)2
]
it − x̄t−1 − x̄t + (1− δ)kt−1

)
+ βt+1

e λest+1

(
qkt+1(x̄t+1 − (1− δk)kt)− it+1

)
+ βt+1

e λest+1λ
kp
t

(
x̄t +

[
1− κi

2

(
it+1

it
− 1

)2
]
it+1 − x̄t − x̄t+1 + (1− δ)kt

)

So, the F.O.C.s are:

∂L
∂x̄t

= 0 −→ βteλ
es
t q

k
t − βteλest λ

kp
t = 0

λkpt = qkt

∂L
∂it

= 0 −→ −βteλest + βteλ
es
t λ

kp
t

(
1− κi

(
it
it−1

− 1

)(
it
it−1

)
− κi

2

(
it
it−1

− 1

)2
)

+ βt+1
e E0λ

es
t+1λ

kp
t+1κi

(
it+1

it
− 1

)(
it+1

it

)2

= 0

After substituting the multiplier from the first F.O.C. and dividing all members for βteE0λ
es
t

we obtain:
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1 = qkt

(
1− κi

(
it
it−1

− 1

)(
it
it−1

)
− κi

2

(
it
it−1

− 1

)2
)

+ βeE0q
k
t+1

λest+1

λest
κi

(
it+1

it
− 1

)(
it+1

it

)2

∂L
∂λkpt

= 0 −→ x̄t = x̄t−1 +

[
1− κi

2

(
it
it−1

− 1

)2
]
it

−→ ∆x̄t =

[
1− κi

2

(
it
it−1

− 1

)2
]
it

but since we know that∆x̄t = kt − (1− δk)kt−1 we obtain:

−→ kt = (1− δk)kt−1 +

[
1− κi

2

(
it
it−1

− 1

)2
]
it

6.7. Retailers

E0

∞∑
t=0

βthλ
h
t

[
Pt(i)yt(i)− P es

t y
es
t (i)− P er

t y
er
t (i)− κp

2

(
Pt(j)

Pt−1(j)
− 1

)2

Ptyt

]
if we assume P r

t = P s
t ≡ Pw

t , and remembering that ye,rt (i) + ye,st (i) = yt(i), we obtain:

E0

∞∑
t=0

βthλ
h
t

[
Pt(i)yt(i)− Pw

t yt(i)−
κp
2

(
Pt(i)

Pt−1(i)
− 1

)2

Ptyt

]
so that retailers have to face the following problem:

max
Pt(i)

E0

∞∑
t=0

βthλ
h
t

[
Pt(i)yt(i)− Pw

t yt(i)−
κp
2

(
Pt(i)

Pt−1(i)
− 1

)2

Ptyt

]

s.t. yt(i) =

(
Pt(i)

Pt

)−εyt
yt

Now, substituting the downword sloping demand curve into the objective function, and

considering times t and t+ 1 we obtain:

βthλ
h
t

[
Pt(i)

(
Pt(i)

Pt

)−εyt
yt − Pw

t

(
Pt(i)

Pt

)−εyt
yt −

κp
2

(
Pt(i)

Pt−1(i)
− 1

)2

Ptyt

]
+

+βt+1
h λht+1

[
Pt+1(i)

(
Pt+1(i)

Pt+1

)−εyt+1

yt+1 − Pw
t+1

(
Pt+1(i)

Pt+1

)−εyt+1

yt+1 −
κp
2

(
Pt+1(i)

Pt(i)
− 1

)2

Pt+1yt+1

]
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Differentiating for Pt(i) we obtain:

βthλ
h
t

[(
Pt(i)

Pt

)−εyt
yt − εyt

(
Pt(i)

Pt

)−εyt−1(
Pt(i)

Pt

)
yt + εyt

Pw
t

Pt

(
Pt(i)

Pt

)−εyt−1

yt

− κp
(

Pt(i)

Pt−1(i)
− 1

)
1

Pt−1(i)
Ptyt

]
+ βt+1

h E0λ
h
t+1

[
κp

(
Pt+1(i)

Pt(i)
− 1

)
Pt+1(i)

Pt(i)2
Pt+1yt+1

]
= 0

Considering that in symmetric equilibrium we have Pt(i) = Pt and remembering that
Pwt
Pt

= 1
xt

dividing all members for yt we obtain:

βthλ
h
t

[
1− εyt +

εyt
xt
− κp (πt − 1) πt

]
+ βt+1

h E0λ
h
t+1

[
κp(πt+1 − 1)π2

t+1

yt+1

yt

]
= 0

So, dividing both members for βthλ
p
t we end up with:

1− εyt +
εyt
xt
− κp (πt − 1)πt + βhE0

[
λht+1

λht
κp(πt+1 − 1)π2

t+1

yt+1

yt

]
= 0
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6.8. Main equations of the models

6.8.1. Main equations of the Benchmark Model (BK)

Household→ cht , d
h
t , wt, n

h
t , λ

h
t ;

Risky Entrepreneur → cert , n
er
t , k

er
t , l

er
t , y

er
t , r

kr
t , λ

er
t , µ

er
t ;

Safe Entrepreneur → cest , n
es
t , k

es
t , l

es
t , y

es
t , r

ks
t , λ

es
t , µ

es
t ;

Capital goods producers→ qkt , it;

Retailers→ JRt , πt, xt;

Borrower Bank → Lbbt , IBt, K
b
t , D

bb
t , σ

bb
t , l

bb
t , J

bb
t , γ

bb
t ;

Lender Bank → Dlb
t , L

lb
t , st, J

lb
t ;

Rates→ Rbb
t , r

er
t , r

es
t , r

ib
t , rt;

Aggregation→ kt; yt; ct

λht =
1

cht
(6.1)

−λht + βhEt

[
λht+1

(1 + rt)

πt+1

]
= 0 (6.2)

wht =
ψnht

φ

λht
(6.3)

cht + dht ≤ wht n
h
t +

(1 + rt−1)

πt
dht−1 + J lbt + JRt (6.4)

λert =
1

cert
(6.5)

λert q
k
t = Et{µert mer

t q
k
t+1πt+1(1− δk) + βeλ

er
t+1[qkt+1(1− δk) + rkrt+1]} (6.6)

yert = aert k
er
t−1

αnert
1−α (6.7)

rkrt = αaert [kert−1]α−1nert
1−α/x (6.8)

wht = (1− α)
yert
xtnert

(6.9)

43



λert = µert (1 + rert ) + βeEtλ
er
t+1

(
(1 + rert )

πt+1

)
(6.10)

cert + wht n
er
t +

(1 + rert−1)

πt
lert−1 + qkt k

er
t ≤

yert
xt

+ lert + qkt (1− δk)kert−1 (6.11)

(1 + rert )lert ≤ mer
t Et(q

k
t+1πt+1(1− δk)kert ) (6.12)

λest =
1

cest
(6.13)

λest q
k
t = Et{µest mes

t q
k
t+1πt+1(1− δk) + βeλ

es
t+1[qkt+1(1− δk) + rkst+1]} (6.14)

yest = aest k
es
t−1

αnest
1−α (6.15)

rkst = αaest [kest−1]α−1nest
1−α/x (6.16)

wht = (1− α)
yest
xtnest

(6.17)

λest = µest (1 + rest ) + βeEtλ
es
t+1

(
(1 + rest )

πt+1

)
(6.18)

cest + wht n
es
t +

(1 + rest−1)

πt
lest−1 + qkt k

es
t ≤

yest
xt

+ lest + qkt (1− δk)kest−1 (6.19)

(1 + rest )lest ≤ mes
t Et(q

k
t+1πt+1(1− δk)kest ) (6.20)

kt = (1− δk)kt−1 +

[
1− κi

2

(
it
it−1

− 1

)2
]
it (6.21)

1 =qkt

(
1− κi

(
it
it−1

− 1

)(
it
it−1

)
− κi

2

(
it
it−1

− 1

)2
)

+ βeE0q
k
t+1

λest+1

λest
κi

(
it+1

it
− 1

)(
it+1

it

)2
(6.22)
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σdt =
λe,rt (1 + ribt )π2

t+1

βe,rλ
e,r
t+1χIBt

(6.23)

Rbb
t = ribt − σdt (1 + ribt )− κkb

(
Kb
t

Lbbt
− νb

)(
Kb
t

Lbbt

)2

+ βeχEt

[(
σdt
πt+1

)2

IBt

λe,rt+1

λe,rt

]
(6.24)

γbbt = Rbb
t − rt + κkb

(
Kb
t

Lbbt
− vb

)(
Kb
t

Lbbt

)2

(6.25)

Lbbt = IBt +Kb
t +Dbb

t (6.26)

Dbb
t = D (6.27)

Kb
t = (1− δb)Kb

t−1 + (1− ωb)J bbt−1 (6.28)

1− εert +
εert

mkrert

− κbb
(
re,rt
re,rt−1

− 1

)
re,rt
re,rt−1

+ βeE0

λe,rt+1

λe,rt

[
κbb

(
re,rt+1

re,rt
− 1

)
re,rt+1

re,rt

2 lbbt+1

lbbt

]
= 0 (6.29)

J bbt = re,rt lbbt +
(
1 + ribt

)
σdt IBt − ribt IBt − rtDbb

t − Adjdbt (6.30)

st = s+
ribt − (1 + ribt )σdt − r

e,s
t

ΘDlb
t

(6.31)

re,st − rt = −st(ribt − σdt (1 + ribt )− re,st ) + Θ(st − s)2 (6.32)

IBt + Llbt = Dlb
t (6.33)

stD
lb
t = IBt (6.34)

Jsbt = ribt IBt + rlst L
lb
t −

(
1 + ribt

)
σdt IBt − rtDlb

t − Adjmt (6.35)
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JRt = yt −
yt
xt
− κp(πt − 1)2yt (6.36)

1− εyt +
εyt
xt
− κp (πt − 1)πt + βhE0

[
λht+1

λht
κp(πt+1 − 1)π2

t+1

yt+1

yt

]
= 0 (6.37)

(1 + rt) = (1 + r)(1−φR) (1 + rt−1)φR
(πt
π

)φπ(1−φR)
(

yt
yt−1

)φy(1−φR)

(6.38)

ct = cht + ce,rt + ce,st (6.39)

dht = Dbb
t +Dlb

t (6.40)

lbbt = Lbbt (6.41)

lbbt = le,rt (6.42)

Llbt = le,st (6.43)

kt = ke,rt + ke,st (6.44)

nht = ne,rt + ne,st (6.45)

yt = ye,rt + ye,st (6.46)
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6.8.2. Main equations of the Model with Interbank sector (IBK)

Household→ cPt , d
P
t , wt, n

P
t ;

Firm→ cEt , n
E
t , k

E
t , l

EE
t , yEt , r

k
t , xt;

Capital goods producers→ qkt , It;

Retailers→ JRt , πt;

Deficit Bank → Bt, IBt, K
b
t , σ

b
t , b

E
t , J

bb
t ;

Surplus Bank → Dt, GBt, st, J
lb
t ;

Rates→ Rb
t , r

e
t , r

ib
t , rt;

Aggregation→ Kt;Yt;Ct, Y
SS
t

Households

cPt + dPt ≤ wtn
P
t +

(1 + rt−1)

πt
dPt−1 + JRt + J lbt (6.47)

1

cPt
= Et

βp(1 + rt)

cPt+1πt+1

(6.48)

ψnPt
φ

=
wt
cpt

(6.49)

Firms

cEt +

(
1 + ret−1

)
πt

lEEt−1 + wtn
E
t + qkt k

E
t ≤

yEt
xt

+ lEEt + qkt
(
1− δk

)
kEt−1 (6.50)

lEEt ≤
mEqKt+1k

E
t (1− δk)πt+1

1 + ret
(6.51)

yEt = AEt (kEt−1)α(nEt )1−α (6.52)

rkt ≡ α
AEt (kEt−1)α−1(nEt )1−α

xt
(6.53)

βE
[
qkt+1(1− δk) + rkt − (1 + ret )χt

]
cEt+1

=
qkt − χt
cEt

(6.54)

(1− α)yEt
nEt xt

= wt (6.55)

Borrower Banks
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Lt = IBt +Kb
t (6.56)

Lt = lEt (6.57)

Rb
t = ribt − σbt

(
1 + ribt

)
− kkb

(
Kb
t

Lt
− νb

)(
Kb
t

Lt

)2

+ βeχbbEt

{(
σbt
πt+1

)2

IBt

cEt+1

cEt

}
(6.58)

σbt = Et

(
cEt
(
1 + ribt

)
(πt+1)2

βecEt+1χ
bbIBt

)
(6.59)

J bbt = ret l
E
t +

(
1 + ribt

)
σbtIBt − Adjbbt (6.60)

Kb
tπ = (1− δb)Kb

t−1 + J bbt−1 (6.61)

1− Λbn
t

Λbn
t − 1

+
Rb
t

ret

Λbn
t

Λbn
t − 1

−kbn
(
ret
ret−1

− 1

)
ret
ret−1

+βEEt

[
cEt
cEt+1

kbn

(
ret+1

ret
− 1

)(
ret+1

ret

)2 lEt+1

lEt

]
= 0

(6.62)

Lender Banks

IBt +GBt = Dt (6.63)

IBt = stDt (6.64)

st = s̄+
ribt − σbt

(
1 + ribt

)
− rt

ΘDt

(6.65)

J lbt = ribt IBt + rtGBt −
(
1 + ribt

)
σbtIBt − rtDt − Adjlbt (6.66)

Capital goods firms
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1 = qkt

[
1− κi

2

(
It
It−1

− 1

)2

− κi
(

It
It−1

− 1

)
It
It−1

]
+ βEEt

[
cEt
cEt+1

qkt+1

(
It+1

It
− 1

)(
It+1

It

)2
]

(6.67)

Kt =
(
1− δk

)
Kt−1 +

[
1− κi

2

(
It
It−1

− 1

)2
]
It (6.68)

Retailers

JRt = Yt −
Yt
xt
− κp(πt − 1)2Yt (6.69)

1− mkyt
mkyt − 1

+
mkyt

mkyt − 1
mcEt −κp (πt − 1) πt+βPEt

[
cPt
cPt+1

κp (πt+1 − 1) πt+1
Yt+1

Yt

]
= 0 (6.70)

Aggregation and clearing

Y ss
t = Ct + qkt (Kt − (1− δk)Kt−1) +

δbKb
t−1

πt
(6.71)

nEt = nPt (6.72)

Ct = cEt + cPt (6.73)

let = lEEt (6.74)

Dt = dPt (6.75)

Kt = kEt (6.76)

Yt = yEt (6.77)

GBt = GB (6.78)

Central Bank (Taylor rule)
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(1 + rt) = (1 + r)(1−φR) (1 + rt−1)φR
(πt
π

)φπ(1−φR)
(

Yt
Yt−1

)φy(1−φR)

(6.79)

With:

χt ≡ mEqkt+1

(
1− δk

)
/1 + rEt

Adjkbt =
kkb
2

(
Kb
t

Lt
− νb

)2

Kb
t

Adjσt =
χbb
2

(
IBt−1σ

b
t−1

πt

)2

Adjdbt = Adjkbt + Adjσt + κkb

(
rbet
rbet−1

− 1

)2

rbet l
e
t

Adjlbt =
Θ

2
[(st − s̄)Dt]

2
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6.8.3. Main equations of the Model without the Interbank sector (NIBK)

Household→ cPt , d
P
t , wt, n

P
t ;

Firm→ cEt , n
E
t , k

E
t , l

EE
t , yEt , r

k
t , xt;

Capital goods producers→ qkt , It;

Retailers→ JRt , πt;

Banks→ Lt, K
b
t , l

E
t , J

b
t , Dt;

Rates→ Rb
t , r

e
t , rt;

Aggregation→ Kt;Yt;Ct, Y
SS
t

Households

cPt + dPt ≤ wtn
P
t +

(1 + rt−1)

πt
dPt−1 + JRt + J lbt (6.80)

1

cPt
= Et

βp(1 + rt)

cPt+1πt+1

(6.81)

ψnPt
φ

=
wt
cpt

(6.82)

Firms

cEt +

(
1 + ret−1

)
πt

lEEt−1 + wtn
E
t + qkt k

E
t ≤

yEt
xt

+ lEEt + qkt
(
1− δk

)
kEt−1 (6.83)

lEEt ≤
mEqKt+1k

E
t (1− δk)πt+1

1 + ret
(6.84)

yEt = AEt (kEt−1)α(nEt )1−α (6.85)

rkt ≡ α
AEt (kEt−1)α−1(nEt )1−α

xt
(6.86)

βE
[
qkt+1(1− δk) + rkt − (1 + ret )χt

]
cEt+1

=
qkt − χt
cEt

(6.87)

(1− α)yEt
nEt xt

= wt (6.88)

Banks
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Lt = Dt +Kb
t (6.89)

Lt = lEt (6.90)

Rb
t = rt − kkb

(
Kb
t

Lt
− νb

)(
Kb
t

Lt

)2

(6.91)

J bt = ret l
E
t + rDt −

κkb
2

(
Kb
t

Lt
− νb

)2

Kb
t (6.92)

Kb
tπ = (1− δb)Kb

t−1 + J bbt−1 (6.93)

1− Λbn
t

Λbn
t − 1

+
Rb
t

ret

Λbn
t

Λbn
t − 1

−kbn
(
ret
ret−1

− 1

)
ret
ret−1

+βEEt

[
cEt
cEt+1

kbn

(
ret+1

ret
− 1

)(
ret+1

ret

)2 lEt+1

lEt

]
= 0

(6.94)

Capital goods firms

1 = qkt

[
1− κi

2

(
It
It−1

− 1

)2

− κi
(

It
It−1

− 1

)
It
It−1

]
+ βEEt

[
cEt
cEt+1

qkt+1

(
It+1

It
− 1

)(
It+1

It

)2
]

(6.95)

Kt =
(
1− δk

)
Kt−1 +

[
1− κi

2

(
It
It−1

− 1

)2
]
It (6.96)

Retailers

JRt = Yt −
Yt
xt
− κp(πt − 1)2Yt (6.97)

1− mkyt
mkyt − 1

+
mkyt

mkyt − 1
mcEt −κp (πt − 1) πt+βPEt

[
cPt
cPt+1

κp (πt+1 − 1) πt+1
Yt+1

Yt

]
= 0 (6.98)

Aggregation and clearing

Y ss
t = Ct + qkt (Kt − (1− δk)Kt−1) +

δbKb
t−1

πt
(6.99)
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nEt = nPt (6.100)

Ct = cEt + cPt (6.101)

let = lEEt (6.102)

Dt = dPt (6.103)

Kt = kEt (6.104)

Yt = yEt (6.105)

Central Bank (Taylor rule)

(1 + rt) = (1 + r)(1−φR) (1 + rt−1)φR
(πt
π

)φπ(1−φR)
(

Yt
Yt−1

)φy(1−φR)

(6.106)
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Optimal Lock-Down with Endogenous
Compliance

Davide Bosco - Luca Portoghese

1. Introduction

The afterward of the COVID-19 has been characterised by a wide prodcution of scientific

works. Many economists have tried to provide their contribution, commonly starting from

epidemiologic models widely used to predict the course of an epidemic (Ferguson 2020).

From our point of view, two aspects have not been already properly inspected, hence they

require a bit more of attention. Specifically, as far as we know, the economic models tipically

used to study the Corona-virus effects did not take into account i) the possibility to provide

workers forced into lockdown with a subsidy, in order to mitigate the economic loss that

comes along with the lockdown, and ii) the different levels of people’s compliance to the

lockdown policy and how to influence it. The aim of this paper is to shed some light on this

two aspects. We try to evaluate the effectiveness of a common lockdown policy combined

with a subsidy in influencing the behaviour of people in respecting the confinement.

As already pointed out by Alvarez et al. (2020), a lockdown policy cannot be completely

effective, since there will always be a mass of people that will not respect the lockdown.

While in their setup they consider this dispersion as exogeneous, we try to embedded it in

our setup with an endogenous mechanism. The purpose is twofold. On one side, nesting this

mechanism inside our model allows us to take into account a moltitude of different factors

that could contribute to determine the behaviour of different agents, i.e. the inner mortality

of the virus, the cost to stay home, the heterogeneous response of individual characteristics

to the virus. Taking all these aspects under consideration can be helpful to the planner in the

preparation of context-specific solutions to make the containment-policy more efficient facing

different scenarios. On the other side, our endogeneous setup consider a cost-to-stay home

as a possible factor of influence. This cost can be interpreted as a subsidy-policy deployed

by the government, allowing us to evaluate the effects of this additional tool to fight the

pandemic. Different levels of subsidy could modify the extent of compliance exerted by the

individuals, helping to be more effective in containing the losses, both economic and of lives.
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In addition, we depart from the majority of other models with focus on the pandemic since

we endogenise the probability of getting infected, while in other models is generally taken

as exogeneous (valuable exceptions are Eichbaum et al. (2020) and Jones et al. (2020)). As

already mentioned above, this endogeneous probability takes into account several aspects,

so that we are able to simulate a wider variety of possible scenarios relative to the ones

commonly shown by a classic SIR model. This possibility can potentially help to i) better

undertsand different dynamics of a pandemic and ii) design strategies to specificly face

different situations.

Several economic models regarding COVID-19 focus their attention on the lockdown-

policy as the only instrument to fight the spread of the disease and evaluate the economic

loss due to this policy. Among others, Alvarez et al. (2020) study a lockdown planning

problem under SIR dynamics. The only available policy-tool for the planner is a linear

lockdown technology. They find that the congestion externality plays an important role in

shaping the policy response since in their setup the mortality rate increases as the number

of infected increased, reproducing the stress that the virus has put on the health system.

Following this work, Eichenbaum et al. (2020) extend the classic SIR model proposed

by Kermack and McKendrick (1927) to study the equilibrium interaction between economic

decisions and epidemic dynamics. Combining a DSGE and a SIR model, they reproduce a

lockdown policy as a tax on consumption and overline how the cut back on consumption and

work is able to both reduce the death toll of the pandemic and to exacerbate its effects in

terms of economic losses. We share with this model and with the one proposed by Callum

et al. (2020) an endogeneous determination of the probability to get infected.

Finally, the work proposed by Acemoglu et al. (2020) studies the effects of targeted

lockdowns in a multi-group SIR model, where different age-groups (”young”, ”middle-aged”,

”old”) face different probabilities of infection, hospitalisation and mortality. They found

that a targeted lockdown is able to better mitigate both the total number of death and the

economic loss relative to a uniformly distributed linear containment policy.

We think that our work can find its place in the branch of COVID-19 literature con-

cerning the optimal-containment policy with the aforementioned works. In addition, it can

contribute to enrich the incipient economics-epidemiological literature. For example, among

the others, Atkeson (2020) and Stock (2020) provide an introduction to the SIR framework

and its implications for COVID-19 in the US. Fernández-Villaverde and Jones (2020) fit a

standard SIR model to multiple regions (countries, states and cities) and uses the model

to infer unobservables (such as nnumber of recovered) and create forecasts. Closer to our

paper, a number of recent papers started incorporating economic trade-offs and conduct-

ing optimal policy analysis within the SIR framework (e.g. Rowthorn and Toxvaerd, 2020,
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Eichenbaum, Rebelo and Trabandt 2020, Alvarez, Argente and Lippi 2020, Jones, Philippon

and Venkateswaran, 2020, Farboodi, Jarosch and Shimer, 2020 and Garriga et al., 2020).

2. The Model

We enrich a classic SIR model as proposed by (McKallum ()) with an endogeneous

mechanism of the propagation of the disease which stems from the level of compliance of

different individuals. We evaluate the problem in discrete time, quite uncommon for this

class of models, following the approach proposed by Rebelo et al. (2020) and Callum et al.

(2020) among the others. Our setup is characterised by a continuum of agents who differ for

their sensitivity to the virus. As common in this literature, they are divided in four groups

labelled as their statut relative to the virus. Namely, an agent in our model can be, at each

time t, i) Susceptible, ii) Infected, iii) Recovered or iv) Dead. We close the model with a

planner who wants to minimise both the economic and life losses due to the virus. In order

to do so, the optimal planner can i) set an optimal level of lockdown policy and ii) provide

the population with a subsidy, helping them to bear the pandemic. For the design of our

planner we stick to the formulation proposed by Alvarez et al. (2020).

2.1. Actors of the model

Citizens are uniformly distributed over [0, 1] and indexed by i, and the unit interval is

endowed with the Lebesgue measure. After the appearance of a new pathogen, an infectious

disease begins to spread across the population. We indicate with t = 0 the date at which the

policy-maker becomes aware of the ongoing infection. For the sake of simplicity, throughout

the paper we use the term i) contagiousness to indicate the probability that a non-infected

individual contracts the disease after being exposed to the pathogen; the term ii) mortality

to indicate the probability of death of an infected individual; and the term iii) susceptibil-

ity to indicate the probability that a single, non-infected individual becomes infected. It

worth highlighting that while contagiousness and mortality are intrinsic, exogenous charac-

teristics of the disease, susceptibility directly depends on the behavior of citizens both at

the individual and at the aggregate level. As a consequence, the latter is endogenous. The

contagiousness of the disease is assumed identical across citizens, and it is parameterized

by the exogenous variable β > 0, that we assume to be common knowledge. Mortality is

heterogeneous across citizens, for it is affected by both the specific characteristics of the

disease and of the infected individual – e.g. her age and/or the presence of preexisting

chronic pathologies. We refer to the mortality induced by the disease per se as the intrinsic
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component of mortality, and indicate it with θ ∈ R. The intrinsic component θ is identical

across all citizens. Conversely, we refer to the mortality induced by specific characteristics

of the infected individual as the idiosyncratic component mortality, for the sake of simplicity

summarized into a unidimensional statistic xi ∈ R defined as:

xi = x̄+ εi (2.1)

for all i ∈ [0, 1], where x is easily interpreted as the average/median idiosyncratic mor-

tality 1, and with εi a noise variable defined as

εi ∼ N
(
0, σ2

ε

)
(2.2)

for all i ∈ [0, 1]. Both mortality variables θ and x̃ are independent and common knowl-

edge. Moreover, they are independent from noise terms εi, that are assumed i.i.d. and

constant over time. The intrinsic component xi is inherently heterogeneous in the cross-

section of citizens. In particular, we assume that higher values of xi indicate an higher

post-infection mortality, ceteris paribus. Intrinsic and idiosyncratic mortality are mapped

into an individual probability of death post-infection ΠD(θ, xi) via a monotone function

ΠD : R2 7−→ [0, 1] defined as:

ΠD
(
θ, xi

)
= Φ

(
θ + αxi

)
(2.3)

where Φ(•) is the normal standard CDF, θ ∈ R is the intrinsic mortality of the disease,

xi ∈ R is the idiosyncratic component of mortality, and α > 0 is a scaling coefficient that de-

termines the relative importance of individual characteristics in determining the probability

of death of infected individuals. In the context of the recent SARS-CoV-19 pandemics, xi can

be interpreted as a summary statistic that (strictly) increases in the age of the individual.

Notice that, since both θ and xi are normally distributed, then the individual probability of

death post-infection ΠD(θ, xi) follows approximatively a Beta distribution.

1Indicate with x̃ the average idiosyncratic mortality. Due to the continuum-player nature of the static
game under inspection, and since the mass of players is normalized to one, average x̃ is defined as

x̃ =

∫ 1

0

xidi

Given expression (2.1), the above integral can be rewritten as

x̃ =

∫ 1

0

(
x̄+ εi

)
di = x̄+

∫ 1

0

εidi

It is immediate to check from expression (2.2) that
∫ 1

0
εidi = 0 almost surely, so that x̃ = x by construction.
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When the new infectious disease is discovered at the initial date t = 0, the policy-maker

can (try to) contain the infection by calling for a general lock-down, whereby social inter-

actions are partially or completely forbidden. In order to guarantee the regular functioning

of essential activities, the lock-down can be imposed only to a fraction L of citizens, with

0 < L ≤ L and L < 1. A lock-down L imposes a strict quarantine at home to all citizens

with i ∈ [0, L] ⊂ [0, 1].

2.2. The Static Game

2.2.1. Actions and Payoffs

The policy-maker has a limited capacity to enforce the lock-down, so that the actual mass

of quarantined individual – hence, the effectiveness of the lock-down as a device to contain

the infection – arises from the decentralized decision-making of single citizens. To simplify

the analysis, we assume that each citizen i ∈ [0, L] subject to lock-down faces a simple,

binary choice between being compliant or not with the prescriptions of the policy-maker. In

other words, each citizens is called to decide whether or not to stay at home in voluntary

quarantine. Moreover, citizens are not required to commit in advance to a plan of actions,

hence individual binary choices are repeated at every date t. Indicate with ait = 1 the choice

to comply at date t of the i − th generic citizen, and with ait = 0 the choice not to comply
2. The total instantaneous share At ∈ [0, 1] of citizens subject to lock-down that comply at

date t can be defined as:

At =

∫ L

0

aitdi (2.4)

We assume further that all citizens i ∈ [L, 1] that are not subject to the lock-down are

not quarantined, so that the total mass NQt of citizens that are not quarantined at date t

can be written as 3:

NQt = 1− AtLt (2.5)

Assume that citizens use the following monotone strategy to choose their action:

ait = 1⇔ xit ≥ x∗t , (2.6)

2Therefore, the action space A = {0, 1} is symmetric across citizens and time-invariant.
3Since we assume that the mass 1 − L of citizens not subject to lock-down is not quarantined, from

expression (2.4) we have that the aggregate mass Qt of quarantined citizens can simply be defined as
Qt = AtL. Given the normalization N = 1 of the total mass of citizens, it is straightforward to check
that NQt = 1−Qt.
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so that the mass of compliant citizens (2.4) can be written as:

At = Pr(xit ≥ x∗t ) = Φ

(
x̄− x∗t
σε

)
. (2.7)

Substituting (2.7) into (2.5) the mass of people who interact (Mt), represented by not

quarantined citizens can be written as:

Mt = NQt = 1− Lt
[
Φ

(
x̄− x∗t
σε

)]
. (2.8)

Now, in our setup the amount of infected individuals is divided in two categories: Symp-

tomatics (SY ) and Asymptomatics (ASY ). Hence, the total amount of infected at each time

t is:

It = SYt + ASYt, ∀t ∈ {0, 1, 2, . . .} (2.9)

where SYt = (1− p)It and ASYt = pIt, with the coefficient p ∈ (0, 1) common knowledge

and costant over time. All symptomatic citizens are recognized as infected – hence infec-

tive - and immediately quarantined, so that they are not allowed to spread the infection.

Conversely, asymptomatic individuals are never recognized as infected. Since asymptomatic

individuals are not quarantined, they spread the contagion if either i) they are not subject

to lock-down, or ii) they are subject to lock-down but not compliant. The spread of the in-

fection is therefore governed by the evolution in time of the mass of asymptomatic-infected

individuals.

Rearranging 1.1, we obtain the portion of asymptomatics depending on symptomatics:

ASYt = SYt

(
p

1− p

)
. (2.10)

At each time, the number of symptomatic individulas is communicated, so that it is possi-

ble for each agent to know the probability to meet an infected who does not show symptoms,

since these two informations are related (p is known). The total mass of susceptible people

at time t is defined as:

St = Nt − It (2.11)

and people who are not forced to stay in quarantine (NFQt) - and so free to circulate

and spread the virus - are:
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NFQt = (Nt − It)︸ ︷︷ ︸
St

+ASYt (2.12)

so that we are able to derive the probability to intercact with an infected citizen, defined

as the ratio between the asymptomatic people (that are able too circulate if do not comply)

and the total amount of people not forced to stay under quarantine. Namely:

Λt =
pIt

St + pIt
=

pIt
(Nt − It) + pIt

=
pIt

Nt − (1− p)It
(2.13)

Hence, the probability to contract the disease if not compliant (Σt) as:

Σt = βMtΛt = β

(
pIt

St + It

)[
1− Lt

(
Φ

(
x̄− x∗t
σε

))]
, (2.14)

and a mass of potential infected is:

Pt = StΣt = StβMtΛt = (Nt − It) β
(

pIt
St + It

)[
1− Lt

(
Φ

(
x̄− x∗t
σε

))]
, (2.15)

Indicate with It ∈ [0, 1] the (potentially unobserved) aggregate mass of infected citizens

at date t. Each citizen’s instantaneous probability to become infected depends both on the

constant contagiousness β of the disease, and on the number of interactions of the citizen

with other, potentially infected individuals. When compliant, a citizen is quarantined, so

that the number of interactions is zero. As a consequence, so it is her individual probability

of contagion. When not compliant, a citizen interacts with all other non-quarantined indi-

viduals. We can express the individual, action-contingent probability of contagion ΠC
t (ait, At)

at any date t as

ΠC
t

(
ait, At

)
=
(
1− ait

)
[βΛtSt (1− AtL)] (2.16)

where, once again, at is the action of the i− th citizen at date t, β > 0 is the exogenous

contagiousness of the disease, Λt is the (endogenous) instantaneous probability to interact

with an infected individual, and 1 − AtL is the total mass of non-quarantined citizens at

date t. When a citizen becomes infected, her idiosyncratic risks of death is quantified by the

probability ΠD(θ, x) . We assume that death entails a private cost d > 0 arbitrarily large

but finite, so that the individual cost of infection K(θ, xi) can be defined as

K
(
θ, xi

)
= dΠD

(
θ, xi

)
(2.17)
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for every citizen i ∈ [0, 1], where d > 0 is the private cost of death and ΠD(θ, xi) is the

idiosyncratic probability of death post-infection defined in (2.3).

Direct inspection of (2.16) immediately reveals that the probability of infection of a

non-compliant citizen strictly decreases in the total mass of quarantined individuals. This

property is quite intuitive: if the mass of compliant citizens is large, then the risk associated

to individual defection is low. However, strategic substitutability governs individual decision

making. If the level of lockdown is high, an individual may think that the number of people

outside is low, so she could misperceive the risk of meeting asymptomatics and get ting

infected.

Actions are mapped into payoffs via a utility function u : {0, 1} × R2 × [0, 1] 7−→ R
common to all citizens 4. Compliant citizens – i.e. citizens that opted for action ait = 1

– bear a sunk cost c > 0, assumed identical across citizens for the sake of simplicity. The

cost of compliance c quantifies the instantaneous welfare loss suffered by the citizens as a

consequence of the limitations imposed by the quarantine. Furthermore, recall from (2.6)

that the probability of contagion is zero for compliant citizens. Therefore, the instantaneous

(individual) utility from compliance uit(a
i
t = 1) can be defined as

uit
(
ait = 1

)
= −c (2.18)

for every i ∈ [0, L] and every t ∈ {0, 1, 2, . . . }. Note that the payoff is not risky, hence

the ex post utility from compliance uit(a
i
t = 1) coincides with the ex ante expected utility

from compliance E[uit(a
i
t = 1)|I it ] ≡ EU i

t (a
i = 1). Non-compliance entails no fixed cost to

the citizen. However, the probability of infection of non-compliant citizens is positive, hence

their expected cost of infection is nonzero, i.e.

uit
(
ait = 0, At, x

i
)

= −ΠC
t

(
ait, At

)
K
(
θ, xi

)
(2.19)

where ΠC
t is the action-contingent probability of infection defined in (2.16), and K is the

individual cost of infection defined in (2.7). Note that many of the payoff-relevant elements of

(2.19) are unknown to the citizen at the moment she chooses her course of action. Therefore,

all instantaneous decisions are driven by the comparison between the cost of compliance −c
and the expected payoff from non-compliance EU(at = 0, At, x

i). Properly substituting in

expression (2.19) for Πj
t with j = {C,D} and K, as defined in (2.16), (2.3) and (2.17)

respectively, we can define the expected payoff from non compliance as

4In words, at any date t ∈ {0, 1, 2, . . . }, the instantaneous payoff of the generic i− th citizen depends on
her action ait ∈ {0, 1}, on both the intrinsic and the idiosyncratic mortality post-infection Π(θ, xi), and on
the mass of citizens that are not quarantined.
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EU
(
ait = 0, At, x

i
)

= −dβE
[
ΛtSt (1− AtL) Φ

(
θ + αxi

)
|Hi

t

]
(2.20)

where Hi
t is the information set of the i− th citizen at date t.

Hence, the threshold above which the mass of citizens that will be compliant to the

lockdown policy set by the planner, following the optimal strategy defined in (2.6), is the

that solve the following individual indifference condition between being compliant or not:

uit
(
ait = 0, At, x

i
)

= uit
(
ait = 1, At, x

i
)

(2.21)

from which we obtain:

− c = −dβE
[
ΛtSt (1− AtL) Φ

(
θ + αxi

)
|Hi

t

]
. (2.22)

Rearranging the above expression and remembreing that Λt = pIt
Nt−(1−p)It we obtain the

following expression:

c

dβ

(
St + ASYt
StASYt

)
= Φ (θ + αx∗t )

(
1− LΦ

(
x̄− x∗t
σε

))
. (2.23)

For proper values of the ratio c
d
, it is possible to find a value of the threshold satisfying

(2.23). The mass of citizens who are compliant to the lockdown policy at time t will be

given by all xi ≤ x∗t . In figure 1 we show both the scenarion where a threshold is obtained

or not. It worth noticing that the it is possible to obtain the case represented in the right

table in figure 1 even when the number of infected peolpe is small, so that the probability

the probability of getting infected is too low. In formula, this can be seen as:

lim
Λ→0

uit(a
i
t = 0) = 0, (2.24)

making the strategy to comply strictly dominated (uit(a
i
t = 0) > uit(a

i
t = 1))5.

5More clearly, when limΛ→0 u
i
t(a

i
t = 0) = 0 we have that uit(a

i
t = 0) = 0 while uit(a

i
t = 1) = −c is the

same in each scenario. In this scenario, the cost to stay home is always higher of the cost of getting infected,
making the staying-home strategy strictly dominated. Hence, the entire mass of people does not comply
with the lockdown policy
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Fig. 1. On the left panel the value of d is high enough to guarantee the presence of a threshold satisfying the indifference contagion. It is clear that

for values of xi ≤ x∗ we have ui(ai = 0) ≤ ui(ai = 1), so that the optimal strategy for an individual is not to be compliant. For values of xi ≥ x∗ the

otherwise is true. On the right panel, the value of d does not guarantee a threshold, and it is always the case ui(ai = 0) < ui(ai = 1). In this case,

respecting the lockdown is a strictly dominated strategi, so all no one is compliant.

2.3. Propagation of the contagion

Following the mechanism described above, at the beginning of each period a mass of

citizens is still infected from the previous time. Among them, a mass of asymptomatics

is present and spread the virus. The width of the contagion is determined by the actions

undertaken by citizens, who decide whether to comply or not with the lockdown. It worth

noting that individuals consider the action of the others and the probability to meet an

asymptomatic individual when the decide their optimal action, but they are not able to

determine if they were infected and asymptomatic in previous times. To be more precise,

they know the probability to meet an asymptomatic, but they consider the sickness to last

only for one period, so they do not consider the cases in which they could have got sicked

at time t − 2 or time t − 1 in their evaluation problem. So, every period an individual

consider her optimal decision as if she was susceptible, even though this could not be the

case. This assumption is a bit stronger, but since as for now we are not taking into account

the presence of a private texting device seems not too unreasonable. That said, the real

dynamic of infected people follows a path quite similar to the one present in the SIR models.

Specifically, the path of infected at time t+ 1 is:
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It+1 = It +NIt −NDt −NRt, (2.25)

where It are the infected at previous time t, NIt are the new infeted at time t, NDt are

the death people due to the virus and NRt are the ones who recovered instead, both defined

in t. It is important to notice, that the share of death and recovered people in our setup do

not participate to the propagation of the virus, they are helpful to show the dynamic of the

population. At the beginning of time t, a portion of infected from time t−1 is asymptomatic

and a share of asymptomatic people from t−1 is still present (people without symptoms who

neither died nor recovered yet). The infected individuals at the beginning of time t spread

the virus and determine the new infected (NIt) of period t. Among these new infected, a

share p does not present any symptom. Thus, we have the total number of asymptomatic

individuals at time t:

ASYt+1 = pNIt + p(It −NRt −NDt), (2.26)

with p percentage of infected people who do not show symptoms, exogeneously defined.

The evolution of the mass of new infected people at time t requests a particular attention.

When there are enough infected citizens free to circulate, there exists a threshold solving the

individuals’ indifference condition described in section 2.2. So that, people decide either to

comply or not observing the action of the other people. Thus, the mass of new infected is

given by:

NIt = βΛtSt (1− AtLt) =
βStASYt
St + ASYt

(
1− LtΦ

(
x̄− x∗t
σε

))
6 (2.27)

where β and At are respectively the constant contagiousness of the disease and the total

instantaneous share of citizens subject to lock-down that comply at date t. Nevertheless, a

scenario in which the share of infected people is too small is possible. In this case, since the

number of infected people does not have any effect on the actions of individuals, since the

probability to contract the virus too low, being compliant is a strictly dominated strategy,

so that the mass of not compliant people in this case is equal to 1 - no one stays home.

Once again, in order to be as clearer as possible, the number of new infected individuals

at the end of time t will be the number of infected at the beginning of t + 1. In our model

6When Λ −→ 0 the strategy to comply is strictly dominated, as shown by equation (2.24). In this case,
the number of new infected in t is determined as:

NIt = βSt
ASYt

St +ASYt
.
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we keep track of whole infected people in the law of motion of asymptomatics.

The percentage of susceptible people at time t+1 follows a quite common path exploited

in SIR setup. The amount on new susceptible is given by:

St+1 = St −NIt (2.28)

The number of recovered people at time t+ 1 is the number of recovered people at time

t plus the number of infected people who just recovered (NRt):

Rt+1 = Rt +NRt (2.29)

The number of new recovered people at time t is given by:

NRt = πrIt (2.30)

where πr is exogeneously set in our setup.

Finally, the number of deceased people at time t+ 1 is the number of deceased people at

time t plus the number of new deaths (NDt):

Dt+1 = Dt +NDt (2.31)

where NDt is given by:

NDt = πdt (x
∗
t )It (2.32)

The probability of death is endogeneously set in our setup and it is a function of the

threshold (x∗). It is sensitive to the mass of people who are compliant. The ratio behind

it is that people who are compliant cannot die in our setup, since they are not susceptible

to the virus. So, the probability of death need to be the average mortality among people

who do not respect the lockdown. Since, as mentioned above, the idiosincratic mortality of

our population follows a normal distribution, each time we have to reconsider the average

mortality of the mass of people who decide to go out. In order to do so, each time the

mortality rate πdt (x
∗
t ) will be given by:

πdt (x
∗
t ) = E[Φ(θ + αx)|xi ≤ x∗t ] =

1

σε

∫ x∗t

−∞
Φ(θ + αxi)

φ(x
i−µ
σε

)

Φ(
x∗t−µ
σε

)
dx7 (2.33)

Total population, Nt+1, evolves according to:

7As already explained, when Λ −→ 0 the entire mass of people is not compliant, so that our mortality is
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Nt+1 = Nt −NDt (2.34)

2.4. Optimal planner

As for now, we design the problem of the planner as proposed by Alvarez et al. (2020).

Specifically, we assume that each agent alive produces w units of output, when she is not

in lockdown. Agents are assumed to live forever and the only cause of death is the virus.

The planner need to set the optimal lockdown policy minimising the present value of the

following flow of costs:

∞∑
t=0

γt
(

(St + It)Ltw +NDt

[
χ+

w

r

])
(2.35)

The first part of the equation represents the economic loss due to people potentially in

lockdown, if this would have been completely effective. The cost of fatalities due to the

infection is given by the present value of output that they would have produced, w/r, as well

as by the extra cost of death, χ. Of course, what matters for the problem is the magnitude
w
r

+ χ, which has the same units as the value of a statistical life. In the above formula

NDt is the number of new deaths as represented in (2.22) and γt is the discount factor on

future disutilities. It worth noticing that the planner in our setup is not able to clearly

see the optimal decisions of each individual, so she takes her policy decision evaluating the

aggregate movements of population.

3. Simulations and results

In this section we simulate and solve our model numerically, exploiting an algorithm

drawn upon the one proposed by Eichenbaum et al. (2020). In the first part of this section

we analyse the main mechanism behind our model. In order to do so, we do an exercise of

comparative statics, keeping constant the lockdown policy and analysing the dynamic for

different values of the cost to stay home (c). We perform this exercise for two values of

lockdown policy, simulating a high lockdown policy (L = 0.8) and a loose regime (L = 0.1).

Our model is simulated for 80 periods.

given by the average mortality of the whole population. Namely, we have:

πd
t = Φ

(
θ + αx√
1 + α2σ2

ε

)
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We set an appropriate parametrization of the parameters describing the distribution of

our population. A list of our parameters is provided in Table 1. The initial population is

normalized to one. The number of people that are initially infected I0 is 0.001. The value

of individual production w is normalised to one, and the value of statistical life is set equal

to 20, following the parametrization proposed by Alvarez et al. (2020). Considering our

parameters, θ is -5, meaning that the virus is not very mortal per se. Nevertheless, we

consider it to be quite contagious, with β = 1.5.

(i)

Parameter Value Definition

α 1.5 Weight of individual characteristics on mortality

θ -5 Virus’ intrinsic Mortality

x 2 Average idiosyncratic mortality

σε 10 Variance

β 1.5 Contagiousness of the disease

d 100 Individual cost of death

p 0.8 Share of asymptomatics on infected people

w 1 Unit of output produced by each individual

vsl 20 Value of staistical life

(ii)

Initial Value Value Definition

N0 1 Initial Population

I0 0.0008 Mass of initial infected

S0 0.9992 Mass of initial susceptible

D0 0 Mass of initial death

R0 0 Mass of initial recored

Table 1: (i) Main parameters (ii) Initial values of individuals’ groups

3.1. Comparative statics

3.1.1. L = 0.8

We start our exercise considering a strict lockdown policy (L = 0.8). The cost of stay

home assumes the following values: c = [0.50, 2.33, 4.17, 6]. We can consider a lower cost
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to stay home as a higher subsidy provided by the state. In figure 2 is reported the dynamic

of infected individuals, while figure 3 shows the path of population and the share of people

who are compliant in each period.
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Fig. 2. In the left table is reported the dynamic of infected individuals, while in the right panel we observe the dynamic of the population. Number

of periods in our simulation = 80.

As we can see in figure 2, an higher subsidy (lower c) is able to lower the speed of the

process, theoretically allowing the government to buy more time and develop more actions

against the Virus (for instance increasing the capacity of the health system). Nevertheless,

we do not observe a significant difference concerning the amount of total infected. The

effect on the population is more evident, since the wedge between the remaining population

determined by the upper and lower values of c is around 10 %. A lower c is more effective

in containing the disease, as at the end of our simulation the 90% of the population is still

alive. Interestingly enough, the dynamic in place in our model is clearly shown in figure

2. In fact, with a lower c, people are generally more compliant with the lockdown policy,

curbing the number of deaths. In the first table of figure 2 we observe that people stay highly

compliant for long time (approximately until period 52), and the curve of deaths flattens

consequently. The number of deaths starts to increase again once people start not to respect

the lockdown (right after time 53). Thus, from our model it seems that a subsidy provided

by the state, deployed to help people to bear the economic loss due to the Covid-19 and the

relative lockdown, can supply some relief and nudge individuals to stay home, containing

the relative effect of the virus on lives losses.
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Fig. 3. In these tables are shown together the paths of compliance and population for different levels of c but with constant lockdown policy (L = 0.8).

Number of periods in our simulation = 80.

3.1.2. L = 0.1

For this second scenario we simulate a lockdown equal to 0.1, in order to reproduce a very

loose policy and almost a total freedom of movement. Nevertheless, we repeat the experiment

of the above section and we study the dynamic of the model keeping the same levels of c.

Figure 1 shows, as above, the dynamics of infected people (Table 1) and population (Table

2). Interestingly, with L = 0.1 we obtain a classic dynamic proposed by several SIR models.

Concerning the comparison with the results obtained with a stricter policy, we observe a

higher peak of infected, since now the number reach the 15% of people at its highest value.

Yet, in our setup the infected people seem to fade away faster relative to common results

shown in this literature. Even the number of remaining population can appear quite puzzling,

since the number of total deaths for the highest value of c is lower relative to the same value

in the scenario proposed above with a stricter lockdown (L = 0.8). This result since to

be driven by the parametrization of our setup, since as shown in figure 5 our endogeneous

mechanism does not seem to play an important role in this simulation. We think that a

differ calibration of the parameters coul lead to more common dynamic, so a deeper analysis

in this direction is needed.
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Fig. 4. In the left table is reported the dynamic of infected individuals, while in the right panel we observe the dynamic of the population. Number

of periods in our simulation = 80.

In figure 5 we observe the aforementioned dynamic. For each value of c people seem to

comply only for very limited time. Furthermore, the maximum number number of compliants

is never higher than the 20%. Yet, since the value of potential lockdown is very low (only

10%), it seems plausible. Nevertheless, even in this scenario we see the curbing effect due

to compliance, since the decline in population flatten in correspondence with every start of

”compliance” periods.
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Fig. 5. In these tables are shown together the paths of compliance and population for different levels of c but with constant lockdown policy (L = 0.8).

Number of periods in our simulation = 80.

4. Conclusions

Preliminary results reported in the section above show that the a proper subsidy policy

can help in containing the spread of the disease, making individuals more willing to accept the

lockdown. An economic subsidy can provide them with some relief in bearing the pandemic.

As we have seen, during times with high level of compliance population stops to drop and the

curve flatten. In addition, our mechanism seems able to simulate different scenarios returning

results in line with classic SIR models when the lockdown policy is loose (L = 0.1). We are

aware that a deeper inspection of this scenario is needed, in order to obtain a smoother (and

more realistic) dynamic.

Furthermore, as for now the planner does not play any role in our work, but next speps

will be i) to calculate the optimal lockdown policy endogeneously set by the planner, ii)

evaluate diffrent sets of parameters in order to replicate several (and more articulate) sce-

narios and finally iii) try to endogenise the decision of the subsidy c, introducing some cost

of implementation.
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