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Abstract
The construction and maintenance of ontologies is an error-prone task. As such, it is not uncommon to detect unwanted or 
erroneous consequences in large-scale ontologies which are already deployed in production. While waiting for a corrected 
version, these ontologies should still be available for use in a “safe” manner, which avoids the known errors. At the same 
time, the knowledge engineer in charge of producing the new version requires support to explore only the potentially prob-
lematic axioms, and reduce the number of exploration steps. In this paper, we explore the problem of deriving meaningful 
consequences from ontologies which contain known errors. Our work extends the ideas from inconsistency-tolerant reasoning 
to allow for arbitrary entailments as errors, and allows for any part of the ontology (be it the terminological elements or the 
facts) to be the causes of the error. Our study shows that, with a few exceptions, tasks related to this kind of reasoning are 
intractable in general, even for very inexpressive description logics.

Keywords Description logics · Error-tolerance · Reasoning

1 Introduction

Description logics (DLs) [4] are a family of knowledge rep-
resentation formalisms, which have been successfully applied 
to build large ontologies modelling different application 
domains. Among the members of this large family, two sub-
families of lightweight DLs known as DL-Lite [2, 11] and EL 
[3, 6] are of particular interest due to the low complexity of 
their standard reasoning tasks. Unfortunately, building and 
maintaining large ontologies in these or other languages is 
error-prone, and one often encounters errors, even after a 
careful pre-publication verification step. In addition, well-
maintained ontologies usually stick to specific production 
cycles; for example, Snomed CT [26] produces a new version 
every 6 months. In the meantime, it should still be possible to 
use this ontology, although applying a “safe” mode that tries 
to avoid the (potential) causes for the known error.

In order to tackle this goal, we follow the original ideas 
from inconsistency-tolerant query answering first developed 

in the database realm [7] and then studied also for DLs [8, 
15, 19], except that instead of focusing on inconsistencies 
as the sole proxy of erroneous modelling, we allow arbi-
trary consequences to be considered erroneous. For example, 
EL ontologies are always consistent, but earlier versions of 
Snomed (which is modelled in this logic) wrongly entailed 
that every amputation of a finger is an amputation of a hand. 
Analogously to previous work, we consider error-tolerant 
consequences to be those which can avoid the errors, in three 
levels of generality: brave (if there is one way to avoid the 
error and entail the consequence), cautious (if any correction 
of the ontology entails the consequence) and the intersection 
of all repairs, where a repair refers to a maximal subset of 
the ontology which avoids the error. We study the complex-
ity of reasoning with these three variants, and show that in 
most cases the problems become intractable.

At the end of the paper, we study the extra-logical prob-
lem of helping the knowledge engineer in finding the wrong 
axioms which caused the error in the first place. We suggest 
finding an axiom that divides the number of potential repairs 
in half according to its membership in them, but show that 
even this task is hard for very simple logics.

This paper collects, corrects, and improves results which 
have been previously presented at conferences [20, 22, 23].
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2  Preliminaries

For this paper we focus on the lightweight families of 
description logics, which are known as the DL-Lite and EL 
families, using a meaningful representative of each family.

Consider three mutually disjoint sets NC , NR , and NI 
of concept-, role-, and individual names, respectively. 
The class of EL concepts is built by the grammar rule 
C ∶∶= A ∣ ⊤ ∣ C ⊓ C ∣ ∃r.C , where A ∈ NC and r ∈ NR . 
The classes of DL-Lite concepts and DL-Lite roles are 
defined through the grammar rules B ∶∶= A ∣ ∃s ∣ ⊤ ∣ ⊥ 
and s ∶∶= r ∣ r− , where A ∈ NC and r ∈ NR . An EL TBox 
is a finite set of general concept inclusions (GCIs) of the 
form C ⊑ D , where C and D are EL concepts. A DL-LiteHorn 
TBox is a finite set of Horn concept inclusions (HCIs) of the 
form B1 ⊓⋯ ⊓ Bn ⊑ B , where n ≥ 1 , and each B,Bi is a DL-
Lite concept, and role inclusions (RIs) of the form s1 ⊑ s2 , 
where r1 and r2 are DL-Lite roles. An ( EL or DL-LiteHorn ) 
ABox is a finite set of assertions of the form A(a) (concept 
assertion) or r(a, b) (role assertion), where A ∈ NC , r ∈ NR , 
and a, b ∈ NI . A knowledge base (sometimes also called an 
ontology) is a pair (T,A) where T  is a TBox and A is an 
ABox.

In the following, we will handle DL-Lite and EL cases 
simultaneously, and hence often avoid the prefix in the 
name, speaking of e.g. a TBox. If there are several elements, 
we are implicitly assuming that they all belong to the same 
logical language. We sometimes use the term axiom to refer 
to GCIs, HCIs, RIs, and assertions as a whole, when it is not 
relevant what kind of element of an ontology we are refer-
ring to. In that case, an ontology becomes simply a finite 
set of axioms.

As an important special case, we will also consider the 
sublogic HL , in which a TBox is a finite set of HCIs formed 
using concept names exclusively. We note that HL is a nota-
tional variant of propositional Horn logic, and that it lies at 
the intersection of EL and DL-Lite. That is, every HL ontol-
ogy is also an EL and a DL-Lite ontology.

The semantics of these logics, as all DLs, is based on 
first-order semantics, where concepts correspond to unary 
predicates, and roles are binary predicates. Formally, an 
interpretation is a pair I = (�I, ⋅I) , where �I is a non-empty 
set called the domain, and ⋅I is the interpretation function, 
which maps every individual name a ∈ NI to an element 
aI ∈ �I , every concept name A ∈ NC to a set AI ⊆ 𝛥I , and 
every role name r ∈ NR to a binary relation rI ⊆ 𝛥I × 𝛥I  . 
The interpretation function is extended to cover all other 
constructors of DL-Lite and EL—and hence interpret arbi-
trary EL and DL-Lite concepts and roles—as follows:

– (r−)I ∶= {(y, x) ∣ (x, y) ∈ rI};
– ⊤I ∶= 𝛥I;

– ⊥I ∶= �;
– (C ⊓ D)I ∶= CI ∩ DI;
– (∃s.C)I ∶= {x ∣ ∃y ∈ CI.(x, y) ∈ sI} ; and
– (∃s)I ∶= (∃s.⊤)I.

The interpretation I  satisfies the GCI or HCI C ⊑ D iff 
CI ⊆ DI  ; the RI s1 ⊑ s2 iff sI

1
⊆ sI

2
 ; the concept asser-

tion A(a) iff aI ∈ AI  ; and the role assertion r(a,  b) iff 
(aI, bI) ∈ rI . I  is a model of the TBox T  , the ABox A or 
the ontology O iff it satisfies all the axioms in T  , A , or 
O , respectively. We denote this as I ⊧ T, I ⊧ A , and I ⊧ O , 
respectively. The ontology O is consistent iff there is a model 
of O . Given an ontology O and an axiom � , we say that O 
entails � (denoted as O ⊧ 𝛼 ) iff every model of O also satis-
fies �.

One of the main reasoning tasks in DLs is entailment 
checking; that is, deciding whether a given ontology entails 
an axiom. In EL and DL-Lite, entailments can be checked in 
polynomial time. In some cases, the axiom that is tested for 
entailment is not a wanted consequence, but rather an error 
that one tries to avoid. For example, if we want to check 
whether an ontology is consistent, we might test whether 
O ⊧ ⊥(a) , which holds only in the case the O has no models. 
When this entailment holds, it is a signal of an error in the 
ontology. In these situations, if this unwanted entailment 
holds, then one may be interested in identifying the axi-
oms that cause this consequence—in an attempt to place 
the blame —or a candidate sub-ontology which excludes it, 
giving rise to the following definitions.

Definition 1 (justification, repair) Let O be an ontology and 
� an axiom such that O ⊧ 𝛼 . A justification of � w.r.t. O is a 
sub-ontology M ⊆ O such that M ⊧ 𝛼 and for all N ⊊ M , 
N ̸⊧ 𝛼 . A repair for � w.r.t. O is a sub-ontology R ⊆ O such 
that R ̸⊧ 𝛼 and for all Q ⊋ R , Q ⊧ 𝛼.

In words, a justification is a minimal (w.r.t. set inclusion) 
sub-ontology that entails the consequence, while a repair is 
a maximal (w.r.t. set inclusion) sub-ontology that avoids it. 
It is well known that there might exist exponentially many 
justifications or repairs for a given consequence. In the fol-
lowing, ����(O, �) and ���(O, �) denote the sets of all justi-
fications and repairs for � w.r.t. O . If the specific ontology 
used is irrelevant, we often remove the first argument, and 
write simply e.g. ����(�).

An interesting property of HL ontologies, which we will 
use throughout this paper, is that they can be represented 
as directed hypergraphs. Under this view, nodes represent 
concept names or individual names, and a hyperedge cor-
responds to an axiom in the ontology. Hence, entailment 
checking corresponds to the task of deciding reachability 
between nodes. More importantly, a justification is nothing 
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more than a simple hyperpath. If we further restrict HL to 
disallow conjunctions on the left-hand side of axioms, then 
this representation collapses to classical graphs and the 
exploration of simple paths determines justifications.

The (hyper)graph representation can be extended to 
DL-LiteHorn ontologies by allowing nodes to represent also 
the complex concepts provided in this language; that is, ∃s 
and ⊥ . However, reasoning becomes more complex from the 
need to handle role inclusions, inverse roles, and in particu-
lar, the special semantics of ⊥ which represents a contradic-
tion. For example, to derive O ⊧ A ⊑ B from a DL-LiteHorn 
ontology O , it suffices to derive O ⊧ A ⊑ ⊥.

3  Error‑Tolerant Reasoning

If an unwanted consequence or error is entailed by an ontol-
ogy, then we know that this ontology must contain some 
errors. That means, in particular, that we cannot directly 
trust the consequences derived from it. Still, we do not want 
to throw the whole ontology away and start from scratch, 
or wait until a human expert has fixed all the issues to use 
it. Alternatively, we want to be able to derive some con-
sequences that may still be trusted. Intuitively, these are 
consequences that can be derived using axioms which do 
not play a role in the error. This intuition gives rise to three 
main semantics.

Definition 2 (error-tolerant semantics) Let O be an ontology 
and �, � two axioms such that O ⊧ 𝛼 . We say that � is a cau-
tious consequence of O w.r.t. � if for every R ∈ ���(O, �) , 
R ⊧ 𝛽 . It is a brave consequence of O w.r.t. � if there 
exists some R ∈ ���(O, �) such that R ⊧ 𝛽 . It is an inter-
section of all repairs (IAR) consequence of O w.r.t. � if ⋂

R∈���(O,𝛼) R ⊧ 𝛽.1

Note that this definition considers the presence of one 
error only. While in practice one should expect to observe 
multiple errors, for the scope of this paper we focus on the 
simpler case and leave open the question of dealing with 
several errors. In any case, the notion of a repair, and by 
extension the error-tolerant semantics, can be easily gen-
eralised to the case with several errors in the obvious way: 
a repair is a maximal sub-ontology from which none of the 
known errors follows.

In Definition 2 we consider error-tolerant semantics 
based on the whole ontology. It is sometimes convenient to 

consider the more general cases where a portion of the ontol-
ogy is fixed, and its axioms cannot be removed to form a 
repair. Thus, we can analogously define the notions of ABox 
error-tolerant semantics, where the TBox is fixed and repairs 
are defined only as subsets of the ABox, and dually TBox 
error-tolerant semantics where the ABox is fixed.

Note that there is a natural strength relationship between 
the three semantics from Definition 2: every IAR conse-
quence is also a cautious consequence, and each cautious 
consequence is a brave consequence. It is easy to build 
examples showing that the converse implications do not hold 
in general, even for HL.

Recall that classical entailments in these logics can 
be decided in polynomial time. Unfortunately, as we will 
see shortly, the same cannot be said about the error-toler-
ant semantics in general. But first, we consider a tracta-
ble case. For the following proof we use the notion of a 
directed hypergraph. While there are many ways to define 
directed hypergraphs, are interested in those having single-
ton heads[16].

Definition 3 (directed hypergraph) A directed hypergraph 
is a pair (V, E) where V is a set of nodes and E is a set of 
directed hyperedges of the form (W, v), where W ⊆ V  and 
v ∈ V .

A hyperpath from X ⊆ V  to x ∈ V  is a sequence 
(W0, v0),… , (Wn, vn) of hyperedges such that vn = x 
and for every k, 0 ≤ k ≤ n , Wk ⊆ X ∪ {v

�
∣ 0 ≤ � < k} . 

This hyperpath is simple if for all k, 0 ≤ k ≤ n , 
vk ∉ X ∪ {v

�
∣ 0 ≤ � < k} . A subpath of the hyperpath H is 

a subsequence of H.

In words, a directed hyperedge connects a set of nodes 
(the sources) with one node (the head). The notion of a 
hyperpath generalises the idea of a path in a graph, by using 
hyperedges; that is, all the sources W of a hyperedge (W, v) 
need to be reached before this hyperedge can be followed. 
We sometimes see hyperpaths as sets of hyperedges, and 
hence treat them as hypergraphs.

Theorem 4 Brave entailment w.r.t. DL-LiteHorn ontologies 
can be decided in polynomial time.

Proof Let O be a DL-LiteHorn ontology. We construct the 
directed hypergraph HO = (V ,E) by setting V to be the set of 
all DL-LiteHorn individual names and concept names appear-
ing in O , together with the concepts ⊤,⊥ , and ∃s , where s 
is a role name appearing in O or its inverse. The set E of 
hyperedges is defined by the axioms as follows:

1 Originally, the name IAR stood for intersection of ABox repairs 
in the context of inconsistent-tolerant query answering. We have 
adapted the name to this slightly more general context to preserve the 
intuitive connection to existing work on inconsistency-tolerance.
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It is easy to verify (see also[24]) that O ⊧ B1 ⊓⋯ ⊓ Bn ⊑ B 
iff there is a hyperpath from {B1,… ,Bn} to B in HO , and 
O ⊧ A(a) iff there is a hyperpath from {a} to A in the same 
hypergraph. For the rest of the proof we consider as axioms 
only HCIs, but all other cases are treated analogously.

B1 ⊓⋯ ⊓ Bn ⊑ B is a brave consequence of O w.r.t. 
B′
1
⊓⋯ ⊓ B′

m
⊑ B′ iff there is a hyperpath from {B1,… ,Bn} 

to B that does not contain as a subpath any hyperpath from 
{B�

1
,… ,B�

m
} to B′ . This can be verified in polynomial time 

(on the size of the ontology) through a generalisation of the 
usual reachability algorithm, which marks nodes with three 
potential values: unreachable, reachable, and safely reach-
able meaning that it is reachable through a path that does 
not contain the undesired subpath. These labels are forward 
propagated through the edges of the hypergraph, until all 
nodes have been adequatedly marked.   ◻

This theorem extends the previous tractability result 
known for HL[20] which is a sublogic of DL-LiteHorn . It is 
also in contrast with the hardness result by[9], who show 
that under the ABox error-tolerant semantics, brave entail-
ments in this same logic are nP-complete, even if limited 
to the special case of � being an inconsistency check and 
� an instance query (that is, a concept assertion). Note 
that this latter result does not contradict Theorem 4 since 
for the ABox semantics no axioms from the TBox may be 
removed. In terms of the proof of the theorem, this means 
that several hyperedges of HO are always present and the 
construction of a path avoiding some nodes does not suf-
fice to guarantee the existence of an adequate repair.

If we consider EL , even brave entailment checking is 
nP-hard, as stated next.

Theorem  5 Brave entailment w.r.t EL ontologies is 
NP-complete.

Proof The upper bound is obtained by considering the fol-
lowing non-deterministic algorithm: first guess a sub-ontol-
ogy M ⊆ O and then verify that M ⊧ 𝛽 and M ̸⊧ 𝛼 . If this 
is true, then there exists a repair of � , which extends M , 
that entails �.

For the lower bound, we present a reduction from the 
more minimal valuations (mmv) problem for monotone 
Boolean formulas, which is known to be nP-hard[5, 14]: 
given a monotone Boolean formula � and a set � of mini-
mal valuations satisfying � , decide whether there exists a 

E ∶=
{
(W, v) ∣ ⊓

B∈W
B ⊑ v ∈ O

}
∪

{({∃s1},∃s2) ∣ s1 ⊑ s2 ∈ O} ∪

{({a},A) ∣ A(a) ∈ O} ∪

{({a},∃r), ({b},∃r−) ∣ r(a, b) ∈ O}.

valuation satisfying � which does not contain any valuation 
from � . The reduction is based on an idea previously used 
in the context of the enumeration of justifications in[24].

Let �,� be an instance of mmv, and let ���(�) and ����(�) 
denote the sets of all subformulas of � and of all complex 
subformulas of � , respectively. That is, csub excludes all 
propositional variables. For every � ∈ ���(�) , we introduce 
three concept names B� ,C� ,D� , and two role names r� , s� . 
For every V ∈ � , we similarly introduce BV,CV,DV , rV , and 
sV . In addition, we introduce the concept names A, E, D, 
and F. Each � ∈ ���(�) defines a TBox T� as follows: if 
� is the propositional variable p, then T𝜓 ∶= {A ⊑ Bp} ; if 
� = �1 ∧ �2 , then

and if � = �1 ∨ �2 , then

Following the same method, we construct for every V ∈ � 
the TBox

Finally, we set

Notice that, for every T′ ⊆ T  , if T′ ⊧ A ⊑ E , then also 
T′ ⊧ A ⊑ D𝜓  for all � ∈ ����(�) . It is easily seen, 
exploring the axioms in T� , that T′ ⊧ A ⊑ D𝜓 can only 
hold if T′ contains T�  . In particular, if � = �1 ∧ �2 , 
then B𝜓1

⊓ B𝜓2
⊑ B𝜓 ∈ T�  and if � = �1 ∨ �2 ,  then 

{B𝜓1
⊑ B𝜓 ,B𝜓2

⊑ B𝜓} ⊆ T� . Similarly, it must hold that 
T′ ⊧ A ⊑ DV for all V ∈ � and T′ ⊧ A ⊑ D which means that 
for every V ∈ � , ⊓p∈VBp ⊑ BV ∈ T� and also BV ⊑ F ∈ T�.

Thus, a valuation W satisfies � iff the TBox

T𝜓 ∶= {A ⊑ ∃r𝜓 .C𝜓 , C𝜓 ⊑ B𝜓1
, C𝜓 ⊑ B𝜓2

,

∃r𝜓 .B𝜓 ⊑ D𝜓 , B𝜓1
⊓ B𝜓2

⊑ B𝜓 },

T𝜓 ∶= {A ⊑ ∃r𝜓 .B𝜓1
, A ⊑ ∃s𝜓 .B𝜓2

,

∃r𝜓 .B𝜓 ⊓ ∃s𝜓 .B𝜓 ⊑ D𝜓 ,

B𝜓1
⊑ B𝜓 , B𝜓2

⊑ B𝜓 }.

TV ∶=

{
A ⊑ ∃rV.CV, ∃rV.BV ⊑ DV, ⊓

p∈V
Bp ⊑ BV

}
∪

{CV ⊑ Bp ∣ p ∈ V}.

T� ∶= {A ⊑ ∃sV.BV,BV ⊑ F ∣ V ∈ �} ∪
{

⊓
V∈�

∃sV.F ⊑ D

}

T ∶=
⋃

𝜓∈���(𝜑)

T𝜓 ∪
⋃

V∈�

TV ∪ T� ∪

{
⊓

𝜓∈����(𝜑)
D𝜓 ⊓ ⊓

V∈�
DV ⊓ D ⊓ B𝜑 ⊑ E

}
.
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entails A ⊑ E . This valuation does not contain any V ∈ � 
iff SW ̸⊧ A ⊑ F . Thus, �,� is a positive instance of mmv iff 
A ⊑ E is a brave consequence of T  w.r.t. A ⊑ F .   ◻

The next step is to show that the two remaining semantics 
are intractable as well, in general. In this case, we show that 
the problems are conP-complete and that hardness holds 
already for HL , even if we disallow conjunctions on the 
left of HCIs.

Theorem 6 Deciding cautious and IAR entailments w.r.t. 
HL , DL-LiteHorn , or EL ontologies is co NP-complete.

Proof For the upper bounds, we exploit the fact that entail-
ments in all these logics can be decided in polynomial time, 
similarly to the approach used to prove upper bounds for 
ABox repair semantics. If � is not cautiously entailed by O 
w.r.t. � , we can guess a subset R ⊆ O and verify in polyno-
mial time that R is a repair and that R ̸⊧ 𝛽 . Similarly, if � is 
not IAR entailed by O w.r.t. � , we can guess a linear family 
of sets R1,… ,Rn with n ≤ |O| and verify that each Ri is a 
repair and 

⋂n

i=1
Ri ̸⊧ 𝛽 . Both conditions can be checked in 

polynomial time.
For the lower bound, we reduce the conP-complete 

no-path-through-node (nPTn) problem: given a graph 
G = (V ,E) and nodes s, t,m ∈ V  , decide if there is no 
simple path from s to t that passes through m. Given an 
instance of nPTn, we introduce a concept name Av for every 
v ∈ (V⧵{m}) ∪ {m1,m2} , where m1,m2 ∉ V  , and construct 
the HL TBox

There is no path from s to t passing through m iff every 
repair of As ⊑ At w.r.t. O contains Am1

⊑ Am2
 . This holds iff 

Am1
⊑ Am2

 is both, a cautious and an IAR consequence of O 
w.r.t. As ⊑ At .   ◻

In the literature, the higher complexity observed for 
the error-tolerant semantics has been often attributed to 
the fact that the number of repairs may be exponential 
on the size of the ontology. While there is some truth in 
this argument, it is also incomplete; for example, it fails 

SW ∶= {A ⊑ Bp ∣ p ∈ W} ∪
⋃

𝜓∈����(𝜑)

T𝜓 ∪
⋃

V∈�

TV ∪

T� ∪

{
⊓

𝜓∈����(𝜑)
D𝜓 ⊓ ⊓

V∈�
DV ⊓ D ⊓ B𝜑 ⊑ E

}

T ∶= {Av ⊑ Aw ∣ (v,w) ∈ E, v,w ≠ m} ∪

{Av ⊑ Am1
∣ (v,m) ∈ E, v ≠ m} ∪

{Am2
⊑ Av ∣ (m, v) ∈ E, v ≠ m} ∪

{Am1
⊑ Am2

}.

to explain why brave consequences in DL-LiteHorn remain 
polynomial, even though the number of repairs remains 
unchanged. As we will see next, the reasons for hardness 
are more subtle. In fact, we can guarantee the existence of 
EL ontologies having a sub-exponential number of repairs 
w.r.t. a given consequence, for which error-tolerant entail-
ments are still intractable (unless P = NP).

Theorem 7 Assuming P ≠ NP , there is no algorithm for 
deciding cautious or brave entailments w.r.t. an EL ontol-
ogy O and unwanted consequence � that runs in polynomial 
time in the size of O and ���(O, �).

Proof Consider the nP-complete more maximal falsifiers 
(mmf) problem[21]: given a monotone Boolean formula 
� and a set � of maximal valuations falsifying � , decide 
whether there exists a valuation W falsifying � such that 
W ⊈ V for all V ∈ � . Given an instance �,� of mmf, let 
���(�) be the set of all subformulas of � , and construct the 
TBoxes T� for � ∈ ���(�) as in the proof of Theorem 5. 
Construct then the TBoxes

T h e r e  a r e  t wo  k i n d s  o f  r e p a i r s  o f  T  
w. r. t .  A ⊑ E  ,  t hose  o f  t he  fo r m T⧵{�} fo r 
𝛼 ∈

⋃
𝜓∈����(𝜑) T𝜓 ∪

�
⊓𝜓∈����(𝜑)D𝜓 ⊓ B𝜑 ⊑ E

�
 , and those 

taking the form

for some maximal valuation V  . We can thus bound 
|���(T,A ⊑ E)| ≤ 5|���(𝜑)| + n , where n is the number of 
maximal valuations falsifying �.

Assume by contradiction that there exists an algorithm 
that decides cautious entailments in polynomial time on 
|T| and |���(T,A ⊑ E)| ; that is, there exists an algorithm � 
with runtime bounded by some polynomial p(t, r), where t is 
the size of the ontology and r the number of repairs, which 
decides cautious entailment. Using this algorithm, we can 
decide mmf as follows: run � on T  for the cautious entail-
ment A ⊑ F and stop after at most p(|T|, |�| + 5|���(�)|) 
steps. If the answer is yes, then � is the set of all falsifying 
valuations, and so there is no new one. If it answers no, or 
the execution of � did not terminate until this time bound, 
then there must be at least one more falsifying valuation. 
This means that � can be used to decide mmf in polynomial 
time, contradicting the fact that mmf is nP-complete.

T� ∶=

{
⊓
p∈V

Bp ⊑ F ∣ V ∈ �

}

T ∶=
⋃

𝜓∈���(𝜑)

T𝜓 ∪ T� ∪

{
⊓

𝜓∈���(𝜑)
D𝜓 ⊓ B𝜑 ⊑ E

}
.

⋃

p∈V

Tp ∪
⋃

𝜓∈����(𝜑)

T𝜓 ∪ T� ∪

{
⊓

𝜓∈����(𝜑)
D𝜓 ⊓ B𝜑 ⊑ E

}
.
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The proof for brave entailments is analogous, but using 
a construction closer to that of Theorem 5. We leave the 
details as an exercise to the reader.   ◻

All kinds of error-tolerant entailments can be decided in 
exponential time on the size of the ontology in all the log-
ics that we consider here. In fact, one can simply enumer-
ate all the 2|O| sub-ontologies of O , and for each of them 
check in polynomial time on |O| that (i) it is a repair of � 
and (ii) whether it entails � . This means that whenever a 
consequence � has exponentially many repairs, brave and 
cautious entailments can always be decided in polynomial 
time on the size of |���(O, �)| . Hence, the hardness from 
Theorem 7 must arise from a situation with less than expo-
nentially many repairs.

Corollary 8 It is intractable to decide cautious and brave 
consequences of EL ontologies, even if the number of repairs 
is sub-exponential.

Obviously, we cannot have an analogue of Theorem 7 for 
DL-LiteHorn , since brave entailments are already known to 
be decidable in polynomial time. However, if we restrict 
to ABox repairs (that is, where the TBox is fixed, and only 
assertions from the ABox can be removed to avoid an error) 
then hardness arises again. In the following theorem, we call 
ABox-cautious and ABox-brave the error-tolerant semantics 
obtained by restricting to ABox repairs only.

Theorem 9 Assuming P ≠ NP , there is no algorithm for 
deciding ABox-cautious or ABox-brave entailments w.r.t. a 
DL-LiteHorn ontology O and unwanted consequence � that 
runs in polynomial time in the size of O and the number of 
ABox repairs.

Proof The proof follows a similar idea as that of Theorem 7, 
but the ontology is slightly adapted to this case. Let �,� be 
an instance of mmf. For each � ∈ ���(�) we create a concept 
name A� , and for each � ∈ ����(�) build the TBoxes

and the ABox A ∶= {Ap(a) ∣ p is a variable of �} . The ontol-
ogy O = (T,A) has as many ABox repairs w.r.t. ⊤ ⊑ ⊥ as 
there are maximal valuations falsifying � , and B(a) is an 
ABox-cautious entailment of O w.r.t. ⊤ ⊑ ⊥ iff every valu-
ation falsifying � is contained in some V ∈ � . If there was 
an algorithm that could decide cautious entailments in time 

T𝜓 ∶=

{
{A𝜓1

⊓ A𝜓2
⊑ A𝜓} 𝜓 = 𝜓1 ∧ 𝜓2

{A𝜓1
⊑ A𝜓 ,A𝜓2

⊑ A𝜓} 𝜓 = 𝜓1 ∨ 𝜓2

T ∶=
⋃

𝜓∈����(𝜑)

T𝜓 ∪ {A𝜑 ⊑ ⊥} ∪

{
⊓
p∈V

Ap ⊑ B ∣ V ∈ �

}
,

p(|O|, |���(O,⊤ ⊑ ⊥)|) , where p is a polynomial, then we 
can solve mmf by running this algorithm for time p(|O|, |�|).

For brave entailments, we reduce mmv. Given an instance 
�,� of mmv, construct T� and A as in the previous part of 
the proof and define

Then, A�(a) is a brave consequence of O = (T,A) w.r.t. 
⊤ ⊑ ⊥ iff there is a valuation satisfying � that does not con-
tain any V ∈ � . Using the same argument from the case of 
cautious consequences, this shows that brave entailments 
cannot be decided in polynomial time on the number of 
ABox repairs.   ◻

4  IAR Repairs

For the hardness results presented at the end of the previous 
section, we did not consider the IAR semantics. In this sec-
tion we show that, despite the complexity of the problem in 
general, some practical approaches can still be implemented 
for DL-LiteHorn . To achieve this, we exploit the duality 
between repairs and justifications, and results on enumera-
tion complexity.

It was previously shown that the simple hyperpaths of 
a directed hypergraph can be enumerated with polynomial 
delay[24]; that is, through a method that requires only poly-
nomial time (on the size of the hypergraph) between the 
output of successive answers[17]. This fact was used to 
prove that all justifications for a DL-LiteHorn TBox (when 
the ABox is empty) can be enumerated in polynomial delay, 
using the reduction to hypergraphs sketched before. The 
result (and its proof) trivially extends to general ontologies 
by including the hyperedges that represent assertions from 
the ABox.

Proposition 10 All the justifications for an axiom � w.r.t. the 
DL-LiteHorn ontology O can be enumerated with polynomial 
delay.

From the duality between justifications and repairs, we 
know that the union of all justifications and the intersec-
tion of all repairs complement each other. In other words, 
to compute the intersection of all repairs, as a step to 
deduce IAR entailments, it suffices to remove from the 
ontology the union of all justifications. From our com-
plexity results (Theorem 6), it follows immediately that 
the latter task—finding the union of all justifications—
is also intractable. Still, we can devise an anytime algo-
rithm, which iteratively computes one justification at a 

T ∶=
⋃

𝜓∈����(𝜑)

T𝜓 ∪

{
⊓
p∈V

Ap ⊑ ⊥ ∣ V ∈ �

}
.
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time—over-approximating the intersection of all repairs—
and stop when either the consequence does not follow, 
or no more justifications are available. This approach is 
described in Algorithm 1,

where more-juSTifiCaTionS is a Boolean function that veri-
fies whether there are still more justifications for � w.r.t. O 
that have not yet been enumerated, and nexT-juSTifiCaTion in 
that case outputs the next justification in the enumeration.

Note that Algorithm 1 stops as soon as it is obvious that 
� cannot be entailed by the intersection of all repairs: at 
each iteration of the while loop, the set U  monotonically 
decreases, hence further iterations would only remove more 
consequences, but never adds new ones. When the loop fin-
ishes, we know that we have enumerated all justifications, 
and hence U is exactly the intersection of all repairs, which 
guarantees the correctness of the algorithm. An important 
property of this algorithm is that the order of the enumera-
tion can be manipulated to try to add justifications with pre-
viously unseen axioms first, so that the set U shrinks as fast 
as possible. However, one can only guarantee that the IAR 
entailment holds after all justifications have been found.

The practical benefit of Algorithm 1 resides not only in 
its anytime nature, but also in the fact that it deals with the 
enumeration of justifications, rather than repairs. Indeed, 
although in theory an entailment may also have exponen-
tially many justifications, it has been empirically verified 
that in human-developed ontologies the number of justi-
fications, and their size, tends to be small[18, 27, 29]. In 
contrast, the number of repairs does grow exponentially 
in well-maintained ontologies[20].

As an alternative to over-approximating the intersec-
tion of all repairs, one can try to under-approximate it. 
One way to do this is to use modularisation techniques 
to efficiently compute a so-called justification-preserving 
module. In essence, these modules are sub-ontologies that 
contain the union of all justifications. Different techniques 
balancing the computation time and the quality of the 
approximation have been proposed[12, 13, 25, 28], but in 
general the methods based on a syntactic analysis of the 
ontology tend to behave better.

As a final remark on this aspect, we note that the com-
putation of a justification preserving module M is also 
useful to improve the efficiency of Algorithm 1: during the 
while loop, rather than computing the justification w.r.t. 
the original ontology O , one can restrict to the axioms in 
the module M . This allows the execution to avoid paths 
that will not lead to a justification, reducing the time and 
space required during runtime.

5  Correcting Errors

So far in this paper, we have considered the problem of 
dealing automatically with ontologies that are known to 
contain some errors by trying to avoid the causes of these 
errors during reasoning. Beyond this, there is not much 
that can be achieved in a fully automated manner. Indeed, 
from the purely logical point of view, all possible repairs 
are equal in the sense that they all remove the undesired 
consequence. From the knowledge representation point of 
view, however, we expect only one of them to be correct 
in the sense that their axioms all represent truths from 
the domain being modelled. Note that this is true even if 
multiple errors occur: there is one maximal sub-ontology 
that avoids all the known errors; and this is the one we are 
interested in finding.

Following approaches from belief revision, considering 
the postulate of minimal change, one could propose to focus 
on repairs of maximum cardinality. Alternatively, one could 
associate a degree of trust or preference to each axiom, and 
focus on the most trusted or preferred repairs. These, and 
other similar solutions that have been proposed, not only still 
suffer from the problem of a multiplicity of solutions (in the 
worst case, still exponentially many), but in addition cannot 
guarantee that the correct repair is among those selected; 
e.g., the correct repair might in fact be one with minimal 
cardinality. The issue is that correctness is an extra-logical 
property, which does not depend on the shape or interre-
lation of axioms, but rather on the domain that the ontol-
ogy is modelling. In fact, the only way to know whether an 
axiom—and by extension, an ontology—is a correct repre-
sentation of the domain knowledge is to ask a domain expert.

The process of consulting with a domain expert is the 
most expensive part of the process of error resolution in an 
ontology. Not only are these experts a limited resource, but 
they need to understand what the axioms say before they can 
make a determination on their correctness. For that reason, 
one would like to provide the expert with as few questions 
as possible in order to find the repair that resolves the error. 
To achieve this goal, one potential idea is to find an axiom � , 
called cut axiom, that partitions the space of repairs into two 
halves according to whether they contain � or not.
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Definition 11 (cut axiom) Let O be an ontology and � an 
unwanted consequence. For an axiom � ∈ O , we define the 
sets

The axiom � is called a cut axiom iff for every � ∈ O it holds 
that |ℜ+

�
| − |ℜ−

�
| ≤ |ℜ+

�
| − |ℜ−

�
|.

Note that this definition allows a flexibility in that the set 
of repairs might not be partitioned in half, but the cut axiom 
gets as close to it as possible. The idea behind the cut axiom 
is that, by verifying its correctness, we can immediately cut 
the search space (almost) in half. Specifically, if � is cor-
rect, then we know that the right repair is among R+

�
 , and 

if it is wrong, we should focus only on R−
�
 . Hence, the first 

question is how to compute such an axiom. Unfortunately, 
it turns out that deciding whether an axiom is a cut axiom is 
conP-hard already for the very simple sublogic of HL which 
disallows conjunctions.

Theorem 12 Let O be an HL ontology, � ∈ O an axiom, and 
� an unwanted consequence of O . Deciding whether � is a 
cut axiom is co NP-hard.

Proof We prove this by a reduction from the conP-com-
plete repair without edge (rwe) problem[22]: given a graph 
G = (V ,E) , nodes s, t ∈ V  , and an edge (v,w) ∈ E , decide if 
there is a maximal subgraph G� = (V ,F) of G such that t is 
not reachable from s and (v,w) ∉ F.

Let n ∶= |E| . Note that there can exist at most 2n−1 maxi-
mal subgraphs of the form we seek that contain (v, w) and 
at most 2n−1 that do not contain this edge. Assuming w.l.o.g. 
that there are at least two maximal subgraphs, we construct 
an ontology M , which simulates an extension of G obtained 
by adding 2n new vertices z1,… , z2n , and the edges

Formally, for every u ∈ V ∪ {z1,… , z2n} ,  we cre-
ate a concept name Au , and construct the TBox 
M ∶= {Au ⊑ Au� ∣ (u, u

�) ∈ E ∪ E�} . Clearly, the size of M 
is linear on the size of G. For a subgraph (V, F) of G, we 
define MF to be the sub-ontology of M restricted to edges 
appearing in F.

This ontology has the following property. For every maxi-
mal subgraph (V, F) of G where t is not reachable from s, 
(i) if (v,w) ∈ F , then MF is the only repair of As ⊑ At w.r.t. 
M that contains all edges from F; that is, there is a one-
to-one correspondence between the maximal subgraphs of 
G that remove reachability and the repairs of M that con-
tain Av ⊑ Aw ; and (ii) if (v,w) ∉ F , there exist 22n different 

ℜ+
�
∶= {R ∈ ���(O, �) ∣ � ∈ R},

ℜ−
�
∶= {R ∈ ���(O, �) ∣ � ∉ R}.

E� ∶= {v → zi, zi → w ∣ 1 ≤ i ≤ 2n}.

repairs of As ⊑ At w.r.t. M that contain all edges in F; in 
particular, exactly 22n−1 of them contain the axiom Av → Az1

.
In particular, if G has m maximal subgraphs that contain 

(v, w) and � that do not contain this edge, then M will have 
m + 𝓁 ⋅ 22n−1 repairs containing Av ⊑ Az1

 and 𝓁 ⋅ 22n−1 repairs 
not containing the axiom. Moreover, every other edge of G 
will appear in at most 2n−1 repairs of M , and all the edges in 
E′ will be in exactly the same number of repairs as Av ⊑ Az1

 . 
Thus, Av ⊑ Az1

 is a cut axiom w.r.t. M iff � ≥ 1 ; that is, iff 
there is at least one maximal subgraph of G avoiding the 
paths from s to t which does not contain (v, w).   ◻

In summary, this theorem tells us that it is not possible 
to efficiently construct a decision tree about the axioms pro-
posed to the domain expert for analysis, which minimises 
the overall number of questions needed to guarantee that 
a repair is obtained. Still, as explained already, the most 
expensive resources are exactly those of the domain expert. 
The decision tree could, in fact, be constructed in advance, 
as a preprocessing step, or even in parallel as the expert is 
understanding and verifying the first proposed culprits.

6  Conclusions

We have studied the problem of dealing with and manag-
ing errors in lightweight description logic ontologies. For 
the former problem, we extend the idea of inconsistency-
tolerant reasoning—defining different kinds of semantics 
depending on the use of the repairs—to deal with arbitrary 
errors that may, or may not, be connected to inconsistency. 
Analysing the complexity of three error-tolerant semantics, 
we have shown that in most cases this kind of reasoning 
becomes intractable, although we identified a few tractable 
cases and provided effective algorithms for handling them. 
Interestingly, we have shown that the cause for intractability 
is more subtle than just the number of potential repairs as 
previously argued.

For the second problem, we proposed to partition the 
space of all repairs as closely as possible in halves, to help a 
knowledge engineer (KE) to find the correct repair through 
a binary search-like process. While a decision plan can be 
constructed offline before being presented to the KE, just 
deciding whether an axiom produces an adequate partition 
of the repairs is nP-hard.

One issue that was not considered in this paper is the 
multiplicity of errors. Indeed, it is likely that more than one 
unwanted consequence is detected between two consecutive 
versions of an ontology. We note that the notions of justifi-
cation and repair can be easily extended to consider several 
consequences, and all the hardness results still apply to the 
more general situation. Whether the tractable cases remain 
so is still to be verified.
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As future work we want to pursue two different goals. On 
the one hand, we plan to extend our study to more complex 
entailments (e.g., conjunctive queries), while searching for 
conditions to regain tractability. On the other hand, we will 
develop methods for dealing efficiently with these error-
tolerant reasoning tasks, despite their computational com-
plexity. One potential approach to achieve this is to exploit 
the properties of very efficient SAT solvers. We note that 
SAT-based techniques have already shown promising results 
in the areas of axiom pinpointing and inconsistent query 
answering[1, 10, 27].
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