
Recommending Multimedia Web Services in a

Multi-Device Environment

D. Rosaci and G.M.L. Sarné

DIMET, Università “Mediterranea” di Reggio Calabria
Via Graziella Loc. Feo di Vito, 89060 Reggio Calabria (Italy)

E-mail: {domenico.rosaci,sarne}@unirc.it

NOTICE: this is the authors version of a work that was accepted for publi-
cation in Information Systems. Changes resulting from the publishing process,
such as peer review, editing, corrections, structural formatting, and other qual-
ity control mechanisms may not be reflected in this document. Changes may
have been made to this work since it was submitted for publication. A definitive
version was subsequently published in Information Systems 38 (2) , pp. 198-212
DOI: 10.1016/j.is.2012.08.002

Abstract

In the last years, the Web community has shown a broad interest in
Web services that handle multimedia contents. To improve the usability
of these services different tools have been proposed in the literature, and
in this context agent-based recommender systems appear to be a promis-
ing solution. However, the recommender systems presented in the past
do not take into account, in their recommendation algorithms, the effect
of the device exploited by the user, while it is clear that the same user
shows a different behaviour in presence of different devices. This paper
tries to give a contribution in this setting, in order to match more ac-
curately user preferences and interests. In particular, a new agent-based
system is proposed, whose architecture allows to compute recommenda-
tions of multimedia Web services, considering the effect of the currently
exploited device. Some experimental results confirm the high quality of
the recommendations generated by the proposed approach.

1 Introduction

For the W3C [57] a Web service (WS) is “a software application identified by
a URI, whose interfaces and bindings are capable of being defined, described,
and discovered as XML artifacts. A WS supports direct interactions with other
software agents by using XML-based messages exchanged via Internet-based
protocols”. In other words, WSs realize a service-oriented architecture designed

1

Administrator
Casella di testo
NOTICE: this is the postprint version of a work that was accepted for publication in Information Systems. The editorial version was subsequently published in Information Systems 38 (2) , pp. 198-212DOI: 10.1016/j.is.2012.08.002

to support interoperable machine-to-machine interactions in order to: (i) pro-
vide some functionalities over a network; (ii) accept one or more requests from
different clients and send them one or more responses by using well defined
interfaces described in a machine-processable format; (iii) assure the WS inter-
operability, without specifying how WSs are combined or implemented.

1.1 The problem: Automatically discovering multimedia

Web services

In this context, nowadays we are assisting to a broad interest in Web services
that handle multimedia resources and more specifically in multimedia Web ser-
vices (MWSs), i.e. WSs that involve transportation of multimedia contents
over the Web and management of composite devices [65]. In the recent past, re-
searches on MWSs were mainly focused on compressing, caching and streaming
multimedia data; currently, the trend is to integrate multimedia services with
the most recent WS technologies in order to provide an easier discovery of WSs.
In fact, the effectiveness of all WS-based systems strictly depends on the facility
for the user to discovery the most interesting services.

Traditional discovery techniques range from manual (email, Web browsing,
phone calls, etc.) to automatic (WSIL, UDDI, UWSD) [23]. However, these
tools generally suffer in performance and automation level both for the intrinsic
difficulty to find the most suitable WS for a user starting by very small text
fragments, and for the necessity for the user to manually specify his request.
Therefore, the automation introduced by the above tools only consists in dis-
covering the services that satisfy the user request. Instead, it is emerged as a
key issue in the Web community the need to provide the user with opportune
recommendations in a really automatic fashion; this is even more important if
WSs involve multimedia contents. In this context, Web recommender systems
appear as a promising solution to satisfy such a necessity. Web Recommender
Systems support Web activities of a user providing him with useful suggestions
about objects, products, or services which he might be interested in [19, 21, 20].
Usually, recommender systems are intelligent applications which help the user
to identify the Web contents which could meet his interests and preferences.
A large number of different recommender systems [47, 48] have been proposed
in the last years to support users’ Web navigation. Generally, recommender
systems are partitioned in three main categories [3], namely: (i) Content-based
(CB), that suggest to a user the items which appear the most similar to those he
has already accessed in the past; (ii) Collaborative Filtering (CF), that suggest
to a user items which have been also considered by similar users; (iii) Hybrid,
that exploit both content-based and collaborative filtering techniques to gener-
ate recommendations (e.g., a Web site can generate suggestions by considering
both user personal interests and user commonalities among other known users).
In these situations, hybrid recommender systems have been usually recognized
as an effective solution [3].

2

1.2 A promising solution: Using agent-based recommender

systems

A possibility to implement recommender systems that deal with different Web
sites is represented by the Multi-Agent Systems (MASs). The main component
of a MAS is the software information agent, which is an application capable to
autonomously and proactively perform some tasks on the behalf of its human
user. For example, a user can exploit during his navigation an agent as a client
which observes his behaviour and in this way implicitly builds a model to repre-
sent his interests and preferences with respect to all the visited Web sites. For
this purpose, agent-based systems exploit in their recommendation algorithms
an internal representation (profile) of the user built by the associated software
agent which monitors his Web activities [27, 58, 44, 8, 2, 7, 39, 41]. If the user
accesses a Web site, his agent can exploit the profile in the interaction with
the site in order to provide both content-based and collaborative recommenda-
tions to the user agent by adapting the site presentation. Now, is it possible
to conceive agent-based recommender systems in the context of MWSs? In our
opinion, an important problem arises when we try to answer such a question.
In fact, nowadays users access MWSs by using different devices as desktop PCs,
cellular phones, palmtops, etc. Each of these devices presents: (i) its own inter-
face characteristics (e.g., display capability), (ii) a different Internet connection
cost, (iii) different storage space and computational capability. These differ-
ences can influence both the user behaviour and his preferences; for example,
when he accesses an MWS with a cellular phone, he could desire to download a
light content. Consequently, a different profile should be built for each device ex-
ploited by the same user. This leads us to argue that a user should be provided
with a different profile for each device he exploits and the recommendations
generated by the system should consider also the device currently exploited by
the user when he handles MWSs.

1.3 Our contribution: MWSuggest

In such a context, in order to show the effectiveness for a recommender sys-
tem to consider the device in the generation of its suggestions, we have im-
plemented a multi-agent recommender system called Multimedia Web Services-
Suggest (MWSuggest).

An important idea underlying our approach is described in [43], where we
proposed an architectural framework, called MUADDIB, to generate efficient
recommendations in a multi-device context, based on the pre-computation of
the recommendations. The theoretical analysis provided in that work has shown
that a multi-agent architecture can introduce significant advantages in terms of
time computational complexity, with respect to traditional, centralized recom-
mender architectures. Some practical applications of this multi-agent approach
have been proposed in e-Commerce context [40, 42], showing a quantification
of the introduced advantage in presence of relevant number of users. However,
while the possibility to apply MUADDIB to an e-Commerce scenario does not

3

imply significative modifications of the original framework proposed in [43], the
application of MUADDIB principles to generate multimedia Web services rec-
ommendations require much more effort.

In MWSuggest each user is monitored by a software agent, provided with a
personal profile, that supports his activity about MWSs. A user that accesses
MWSs by using different devices should be characterized by a global profile
that takes into account his behaviour when using all these devices. However,
it is not suitable to construct such a global profile based on a software running
on the exploited device, since this device (e.g., a cellular phone or a palmtop)
may have limited resources. Therefore, we choose to provide each device with a
device profile that autonomously collects information about the user behaviour
associated with just that device. On the other hand, in our system the infor-
mation are collected in a global user profile, stored on a server machine that
is assumed to have more relevant resources than the client. These profiles are
exploited in a multi-agent platform to support a user in the selection of the
most suitable MWS by generating personalized suggestions that consider also
the device currently exploited by him. Three types of agents are defined in the
MWSuggest platform and below we describe in detail each of these types. As
shown in Figure 1, each user device is associated with a device agent that moni-
tors the user in order to build a device profile containing information about the
services selected by the user only exploiting just that device. Then, a profile
agent, unique for each user and running on a server machine, collects the local
profiles provided by all the different user device agents in order to construct a
complete user profile. Finally, a recommender agent, that runs on a server ma-
chine, collects the complete profiles built by the profile agents to provide users
with useful suggestions about the most suitable MWSs.

The MWSuggest approach is significantly different from MUADDIB. While
in MUADDIB the recommendations are generated via an interaction between
an agent associated to the Web site visited by the user and the recommender
agent, in MWSuggest the recommendation activity is executed during an in-
teraction between the device agent and the recommender, and it is not present
a site agent. This modification of the original MUADDIB schema is essential
for generating effective multimedia Web services recommendations, since in this
context there is not the necessity of managing the user exploration of a Web site
by using a site agent, differently from the situations for which MUADDIB has
been conceived. This feature allows MWSuggest to generate recommendations
for a user by a direct interaction between the device agent and the recommender
agent, avoiding the intermediation of the site agent present in MUADDIB. A sec-
ond, important difference between MUADDIB and MWSuggest is represented
by the presence, in MWSuggest, of a unique recommender agent that generates
the recommendation, while in MUADDIB there are several recommenders, each
of them associated with a different cluster of users. The presence of multiple
recommenders in MUADDIB aimed at strongly decentralizing the collaborative
filtering recommendation activity; however, all the experimental tests we have
performed in the last years evidenced the small advantage, in terms of efficiency,
introduced by the multi-recommender level, while the cost of the clustering has a

4

considerable impact on the system performance. Moreover, since in MWSuggest
we have introduced a direct interaction between the device agent and the recom-
mender, a solution with multiple recommenders is not practicable, since it would
imply a large communication overhead. A further difference between MWSug-
gest and MUADDIB is in the recommendation algorithm, that in MUADDIB
is based on the content of the Web sites, while in MWSuggest is only based on
the user profiles. With respect to the e-Commerce applications of MUADDIB,
presented in [40, 42], besides the architectural differences discussed above, there
exists also a difference in the structure of the device profile and the user profile.
While in [40, 42] these profiles are mainly based on information related to the
products present in the e-stores, in MWSuggest we include the notions of service
and service evaluation as key concepts to recommend multimedia Web service
having high quality. The concept of service rate, that we introduce in MW-
Suggest and that was not present neither in MUADDIB or in its e-Commerce
applications, has been taken into account in the recommendation algorithm we
propose in this paper.

It is important to highlight that our architecture, although theoretically ap-
plicable to whatever type of Web service content, has been appositely designed
for Web services that provide multimedia content. In fact, the proposed solu-
tion aims at minimizing the impact of the recommendation activity on the Web
server, to avoid additional costs for a component that has to execute the oner-
ous task of providing multimedia content. For an analogous reason, we have
also designed a recommender level having a unique recommender, to reduce
the communication cost of the recommendation activity on the device agent,
already engaged in managing a multimedia streaming. The general architecture
of MUADDIB or those proposed in [40, 42] are not suitable to this particular
situation. We have performed some experiments on real users to evaluate the
performance of the proposed system, and the results show a significant improve-
ment of the quality of the produced recommendations with respect to the case
of applying the traditional approach that does not take into account the effect
of the exploited device.

The rest of the paper is organized as follows. Section 2 presents some related
work. Section 3 describes the MWSuggest framework, while Section 4 deals
with the architecture and the implementation details. Section 5 provides an
experimental evaluation of the approach and, finally, in Section 6 we draw our
conclusions.

2 Related Work

In the last years the opportunities provided by the Internet in terms of objects
and services offered is exponentially increased together with the number of their
potential users. In this context, an emerging issue is represented to get over the
intrinsic limits of the existing tools (e.g., WSDL [62] and UDDI [55]) to provide
users with an effective and personalized discovery service. For this purpose,
several systems and tools based on different methodologies have been developed

5

Recommender
Agent

Profile
Agents

Device
Agents

User U2User U1 User U3 User U4

Multimedia Web Services

Figure 1: The MWSuggest Architecture

[12]. However, to the best of our knowledge, all the past proposals do not take
into account the capabilities of the device currently exploited from the user.
In our opinion, device capabilities can heavily influence both the behaviour of
the user when he chooses an MWS and the consequent advantage obtainable
from the MWS. In this section we analyze some work that can be considered,
in our opinion, as effective approaches to support users in the choice of the best
available MWSs.

2.1 A rough system classification

Most part of the existing approaches try to improve the performance of the cru-
cial WS discovery phase with the aim to increase the automation level and/or the
user satisfaction level. To achieve this goal, different strategies can be followed
but they can be synthetically partitioned in two classes namely: Ontology-based
approaches that enrich the expressiveness and avoid the ambiguity of the usual
WSs textual descriptions. These approaches need manual users’ interactions and
the improvement of the performance is only due to more precise key-searches.
In this case, it is required that all the actors share the same informative bases
(i.e., ontologies, dictionaries, etc.), usually relative to a limited number of spe-
cific topics in order to reduce their size and complexity. Recommendation-based
approaches, that provide users with suggestions (e.g. content-based and collab-
orative filtering- based) that could meet their interests and preferences based on
suitable profiles built implicitly (by monitoring users’ behavious) and/or explic-
itly (by rating WSs on the basis of different parameters and criteria). In this
case, the focus is mainly on the capability of the system to realize an higher user
satisfaction, but the price to pay is of having systems considerably more complex
than those of the previous class. Below we provide, for each of the aforemen-
tioned classes, some short descriptions of well-known approaches proposed in
the past.

6

2.2 Ontology-based approaches

Without any doubt, in order to improve the discovery process, a diffuse approach
trend in the MWS world is that of providing MWSs with rich formal descriptions
of their competencies by using semantic languages as DAML [5], DAML+OIL
[6], DAML-S [4], ebXML [9], OWL-S [33], WSMF [10], XML etc. In such a
way, the MWSs discovery can be realized as a matching between declarative
descriptions of the MWSs sought and the semantic description of the MWSs
offered. Moreover, the adding of semantic descriptions to MWSs simplifies also
to composite services. Semantic MWSs are dealt within the literature in a really
greatest number of work [17, 28, 11, 35, 24]. In some interesting cases [30, 34, 31]
semantic annotations of WSs are exploited in combination with agent technol-
ogy, where agents are delegated to realize the publishing and discovery services.
Extending UDDI functionalities represent another significative approach to ob-
tain more performing discovery services. For example, UDDI+ [36] is one of
such extensions and in particular it deals with semantic and context features
(types, capabilities and models) in MWS discovery in order to support also in-
exact service matching. A further UDDI improvement is E-UDDI [32]. It has
been conceived to solve impediments in service discovery represented by differ-
ent heterogeneities as platform, data formats, domain, conceptions in handling
processes and tasks and so on. For this aim E-UDDI introduces the blue pages
for including semantic description of WSs within the UDDI service. When a ser-
vice discovery has to act in a peer-to-peer (P2P) environment, some well known
elements absent in traditional scenarios are introduced. A simple translation of
semantic enriching of MWSs in a P2P context is realized by [50] that exploits
an ontology in a simple way to publish and realize an easier MWSs search in a
generic P2P network. Another P2P network that adds semantic description to
MWSs is Speed-R [52]. Speed-R assumes that some P2P nodes of the network,
organized for domain of interest, act as registers and service discovery for all
the other peers. Note that for each domain of interest can be used a different
and specific ontology. The solution proposed by the authors of [22] combines a
traditional key-word matching with a distributed P2P storage network in which
MWSs are mapped by using XML and exploiting a hashing mechanism. Based
on the Chord P2P architecture [54], which finds an increasing favor with P2P
networks, it is described the P2P-based Web Service Discovery (PWSD) [22]
that is formed by Service Peers, that run on logic machines (note that more
service peers could run on the same hardware). The Service Peers explore the
P2P network to search MWSs based on a service description. MWS descriptions
and queries are directly hashed and routed in the Chord network.

2.3 Recommender-based approaches

Recommender Systems (RSs) are tools conceived to process large amounts of
data in a semi-automated way and to represent in a suitable manner the interests
and the preferences of a user [47, 48, 60, 3, 29, 26, 61]. RSs are useful to integrate
the UDDI service with their suggestions.

7

In the last years, the Netflix contest has boosted the research on recom-
mender systems [1], mainly due to the one million dollars prize and the chal-
lenging size of the dataset. The Netflix Prize is a collaborative filtering problem
whose dataset is much larger than the previously known benchmark sets and
thus traditional methods are stressed to their limits.

An introduction of Recommender system is provided in [19]. A complete
review of the key advances in collaborative filtering recommender systems is
proposed in [21], focusing on the evolution from research concentrated purely
on algorithms to research involving questions around the user experience with
the recommender. The authors argue that evaluating the user experience of
a recommender requires a broader set of measures than have been commonly
used, and suggest additional measures that have proven effective. They also
identify the most important open research problems, and outline key challenges
slowing the advance of the state of the art.

[20] shows how recommenders can be extended to more effectively address
information-seeking tasks by expanding the focus from accurate prediction of
user preferences to identifying a useful set of items to recommend in response
to the user’s specific information need.

The authors of [66] proposes to use taxonomic background knowledge for the
computation of personalized recommendations, exploiting relationships between
super-concepts and sub-concepts during profile generation. Besides addressing
the sparsity issue, they use parts of the proposed taxonomy-based recommender
framework for balancing and diversifying personalized recommendation lists in
order to reflect the user’s complete spectrum of interests.

A hybrid recommendation technique, implementing both CB and CF ap-
proaches (this latter compliant with [53]), is proposed in WSMX [16] by ex-
ploiting the WSMO ontology [38]. The generated suggestions are available for
users with both an automated and a manual mechanism of MWS selection. An-
other hybrid recommender system is that presented in [45], where the authors
propose a new multi-agent system, called ARSEC, where each device exploited
by a customer is associated with a device agent that autonomously monitors his
behaviour. Each customer is also associated with a customer agent that collects
in a global profile the information provided by his device agents, while each
e-Commerce Web site is associated with a seller agent. Based on the similarity
existing among the global profiles, the customers are partitioned in clusters,
each one managed by a counsellor agent. Recommendations are generated in
ARSEC due to the collaboration between the seller agent and some counsellor
agents associated with the customer. DUINE [56] is a prediction framework
adopting a hybrid approach. More precisely, it implements a switching method
to choose the prediction technique, among those available, able to provide more
accurate recommendations. Unlike other hybrid recommender systems devel-
oped for specific domain, DUINE is domain-independent. Tests referred to
different applications (a TV program guide and a movie recommender system)
demonstrate in these cases the effectiveness of the multi-prediction approach
adopted by DUINE with respect to a single-prediction strategy.

An implicit culture approach is adopted in [18], where a RS facilities the

8

discovery of MWSs that match user needs by using the history of user-system
interactions and client-service communication logs. In [25], it is described a
dynamic WS selection system that combines a RS with a semantic matching
to compose software services. The system uses a CF approach for the RS part
together with users’ feedbacks; in such a way a user is helped to select the best
service matching his request (based on a semantic service profile and Quality
of Service (QoS) parameters) from a set of similar services. The W3C QoS Re-
quirements for WSs [37] gives an overview of the QoS requirements. To estimate
the QoS of an MWS, some systems use a reputation criterion for weighing QoS
evaluations provided by users. [27] proposes an agent-based architecture based
on a reputation model to choose the MWS having the best QoS valuation (con-
sidering attributes such as price, on-time delivery and so on). This is realized by
the Agency that for each MWS selected by an agent has to aggregate its rate.
Each agent rate will be suitably weighted by means of the agent reputation. An-
other multi-agent framework for QoS-based MWS selection is proposed in [58],
where a new distributed reputation-based assessment algorithm supporting QoS
is exploited. In [51], a fuzzy inference process is presented, which detects and
eliminates invalid rating provided by users and identifies users’ preferences for
preventing collusion and deception. Furthermore, combining users’ reputation
and inferring their preferences, it simplifies the task to obtain personalized eval-
uation in the MWS choice.

Information retrieval is used in [13] to discovery and propose MWS opera-
tions. In particular, it uses a new schema matching algorithm based on the tree
edit distance and some other specific algorithms for measuring and grouping
similar WSs. A two-level method based on information retrieval and structure
matching is described in [59]. The first level starts by a partial specification
of the desiderata service and searches all the textual elements of the services
having a similar descriptions. After that correspondences have been found, the
services are ordered based on their corresponding level with the user require-
ment. Then, the second level provides with a structure-matching method to
refine the first step. However, we remark the difficulties in an MWS context to
produce significant performance for the common Web search engines by using,
as usual, a limited number of keywords [63]. A different strategy is exploited
in [46] to tackle the inadequacy of keyword-base MWS discovery by means of a
vectorial representation. Indeed, the MWS description is considered as a vector
in the vector space spanned by all the terms used in all WSs descriptions.

2.4 Similarity and Differences with MWSuggest

The system MWSuggest that we describe in this paper can be considered, with
respect to the classification introduced above, as a hybrid approach. Indeed, on
the one hand, similarly to the ontology-based systems MWSuggest exploits a
rich knowledge representation model in order to characterize the users’ profiles
as well as to accurately describe the multimedia resource. However, differently
from the ontology-based system, MWSuggest exploits recommendation tech-
niques to provide suggestions for the users that are searching for Web services,

9

and this feature makes MWSuggest more effective in supporting users than the
ontology-based approaches. On the other hand, MWSuggest differs from the
recommender-based systems described above since it takes into account, in the
generation of recommendations for a given user, the characteristics of the par-
ticular device exploited by that user. This feature improves the quality of the
generated recommendations with respect to the recommender-based systems
described above.

3 The MWSuggest Framework

In this section we describe the MWSuggest framework. We highlight that the
technical contribution of our proposal is composed of three issues, namely (i)
a new notion of user profile, that is differentiated into device user profile and
global user profile, and that also introduces the important notions of concept
rate and service rate. We clarify that this innovation allows to take into account
the particular device the user is exploiting when he requests a recommendation;
(ii) a new recommender system architecture, appositely designed to make effi-
cient the generation of multimedia Web services recommendation; (iii) a new
recommendation algorithm, that provides effective recommendations, based on
the usage of the user profiles introduced in (i) For each of the issues above, we
have introduced below a dedicated sub-section.

3.1 Knowledge Representation: Dictionary and User Pro-

file

In order to generate suitable recommendations taking into account also the
device currently used, we have conceived a recommender system, called MW-
Suggest, to exploit personal agent profiles associated with the different devices
of each user, where each profile stores information based on the Multimedia Web
Services (MWSs) selected by a user exploiting just that device. Furthermore,
to univocally identify in the MWSuggest platform both service categories and
users’ interests, a publicly available common dictionary of categories is shared
among all the agents that consequently share the same concepts (in our appli-
cation a concept can simply be a term that abstractly describes a collection of
multimedia objects, as a map or a personalized audio message, and in its turn
a concept instance is an MWS belonging to a specific concept). An MWSuggest
user profile synthetically describes the interests of a given user. It consists of
two different components, called Catalogue of Services and Catalogue of Con-
cepts, respectively. The Catalogue of Services (CS) describes the user interest,
for the different MWSs selected by him in the past taking into account for each
service accessed, how much the user is interested in it and how “old” is the user
interest. Formally, CS is a set of l tuples 〈s, c, sr, ssd〉, where l is the number of
selected services, s is an MWS, c is the concept of the common dictionary which
s belongs to, sr measures the interest of the user in s and ssd is the date of
the last selection of s. Analogously, the Catalogue of Concepts (CC) describes

10

<?xml version=“1.0” encoding=“ISO-8859-1” ?>
<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”>

<xs:element name=“conceptType”>
<xs:simpleType>
<xs:restrictionBase=“string”>
<xs:enumeration value= “c1”/ >
<xs:enumeration value= “c2”/ >
...
<xs:enumeration value= “cn”/ >

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:schema>

Figure 2: An XML Schema implementation of a concept type

the user interest in the different concepts belonging to the common dictionary.
Obviously, the interest in a concept c derives from the interest shown by the
user in those MWSs belonging to c, therefore CC represents, for each concept
accessed in the past, how much the user is interested in that service, how “old”
is the user interest and the list of all the MWSs belonging to c accessed by
the user. More formally, CC is a set of m tuples 〈c, cr, csd, Lsc〉, where m is
the number of concepts contained in the dictionary, c is a concept of the dic-
tionary, cr measures the user interest in c, csd is the last date on which the
user selected c and Lsc is the list of the selected MWSs associated with c. In
the current implementation of MWSuggest, the common dictionary is realized
as an XML (eXtensible Markup Language) Schema [64] document, where each
XML element [57] represents a concept and each MWS is an instance of a con-
cept. When an instance of a concept is selected by the user, we assume that
the associated concept is selected. This implementation of an MWS allows the
client agent to automatically detect the concept to which the service points,
and therefore understand the interests of the agent. This is obtained in the
XML schema by using a restriction construct. If the XML dictionary contains
n different concepts, say c1, c2,..,cn, then the element conceptType is expressed
as in Figure 2, stating that an instance of conceptType is an instance of c1, or
an instance of c2,.., or an instance of cn.

3.1.1 Device Agent and Device User Profile

In the MWSuggest framework, each device d of each user u is provided with
a software agent, called device agent, that manages and updates a device user
profile DUP d having the structure described above. The device agent updates
its catalogue of service CSd of the user profile DUP d as follows. When the
user u selects a service s associated with a concept c, then the u’s device agent
requests u to provide an evaluation of s, expressing a rate r belonging to the
interval [0,1]. Then, if the service s has been selected for the first time, a new
element CSd

s is inserted in the catalogue of services CSd of UP d, such that the

11

service rate sr of CSd
s is set to r and the parameter ssd of CSd

s is set to the
current date. Otherwise, if the service s is already present in CSd, the device
agent updates the service rate as follows:

sr = (sr + αr)/2 (1)

that is the new value sr computed as a weighted mean between the old value of
sr and the current rate r provided by the user, where the weight of r with respect
to the old sr is represented by the parameter α, ranging in [0, 1], arbitrarily set
by u. In particular, if α is equal to 1, the new sr is simply the average between
the old sr and r, while if α < 1 then r weights less that the old sr in the
computation of the new sr. The parameter ssd is set to the current date. Also
in this case the parameter ssd of CSd

s is set to the current date. Note that
different and more complex formulation can be used to compute sr and in the
same way the chosen of the parameters on which is computed r (see Section 5)
is orthogonal to the issue dealt in this work. Then the device agent updates
the concept catalogue CCd of the user profile as follows. For each concept c,
associated with a service s selected by u, the element CCd

c is computed by
assigning to the concept rate cr the average of the sr values of all the services
associated with c. Formally, if k is the number of the services associated with
c, we have that:

cr =

∑k

i=1 sri
k

(2)

while the last date csd is set to the most recent current date among the k
services associated with c. Note that sr (resp. cr) is considered a measure of
the user satisfaction about the service (resp. the concept), and is strictly related
to the characteristics of the exploited device. These two parameters will be used
by the system in order to select the more interesting services and concepts for
u. Obviously, when a service or, consequently, the associated concept are never
accessed by u they are set to 0. The device agent also stores for each service and
concept the last date of their selection. These values are used to periodically
decrease the rate values of services and concepts no longer selected by u, based
on their temporal distance from the last selection date.

3.1.2 Profile Agent and Global User Profile

The device agent is not the only agent in the proposed MWSuggest framework
that constructs and maintains a profile of its user. Indeed, each user u is also
provided with a personal agent, called profile agent, that runs on a server ma-
chine and stores a user profile called global user profile GUP . Such a global user
profile contains all the concepts and MWSs selected by u, independently from
the exploited device. The structure of the profile agent, described in Section
3.2, is composed by a Catalogue of Services (CSp) and a Catalogue of Concepts
(CCp). In particular, for each service s of CSp (resp., each concept c of CCp)
the profile agent computes the global service rate gsr (resp., global concept rate

12

gcr) and the associated global service selection date gssd (resp. global concept
selection date gcsd) based on the corresponding values computed for the same
service (resp. concept) by all the device agents of u. In particular, if ND is
the number of device agents exploited by u, then his profile agent computes,
for each service s (resp. concept c) accessed by u, the value gsr (resp. gcr)
equal to the weighted sum of all the service rates sr (resp. concept rates cr)
computed by the user device agents. In order to weight each service rate srd
(resp. concept rate crd) coming from a device d, it is exploited the cost for using
the device d, that we assumed to be measured by the price per kilobyte relative
to the Internet connection of the device. More formally:

gsr =

∑ND

d=1 µd × srd
∑ND

d=1 srd
(3)

gcr =

∑ND

d=1 µd × crd
∑ND

d=1 crd
(4)

where srd (resp. crd) is the interest rate computed for the given service s (resp.
concept c) by the d-th device, d = 1, ..ND, and µd is the device cost of the
d-th device. In its turn, the global last date of the service s (resp. concept c)
gssd (resp. gcsd) is computed as the maximum value among the csdd values
associated with s (resp. c) and stored in the different d-th device profile. Device
and profile agents will be detailed described in subsections 3.2.1 and 3.2.2.

3.2 The Multi-Agent Architecture

Figure 3 graphically describes how the proposed recommender system works. In
particular, we observe that the device, profile and recommender agents collabo-
rate in two different and parallel path. The first path, on the top of Figure 3, is
relative to the construction of the user profile and its exploitation in computing
similarities between users. In particular, the device agent sends its profile to the
profile agent. The profile agent collects all user profiles coming from the device
agents in order to construct the global user profile GUP and sends it to the
recommender agent. The second path, on the bottom of Figure 3, is relative to
the recommendation activities. When the user searches an MWS belonging to
a concept c, his device agent interacts with the recommender agent and sends
to it some information about the preferences of its user. These preferences are
relative to the presentation format desired by the user when exploiting the de-
vice d and are stored in the corresponding device profile DPd, whose structure
will be described in Section 3.2.1. The recommender agent pre-computed the
services that best match with the device profile of the user, to support content-
based recommendations, and those selected by other similar users that have
exploited the same device, to support collaborative filtering recommendations.
Then, these information are transmitted to the device agent of the user for se-
lecting the most suitable MWSs. In the next subsections we deal in details with
each of the three agents that compose the MWSuggest agent architecture.

13

device
agent

profile
agent

recommender
agent

user profile UP

global use profile GUP

device profile DP
d

recommendations

pre-compute
recommendations

Figure 3: The UML sequence diagram of MWSuggest

3.2.1 The Device Agent, Data Structures and Behaviour

With each device exploited by a user u we associate a device agent that monitors
u when he selects an MWS in order to locally update the associated user profile.
We describe below both the data structure and the behaviour of the device
agent. The device agent associated with a given device d, internally stores
two data structures, namely the Device Profile (DPd) and the Device User
Profile (DUPd). DPd contains some parameters that characterize the user that
is exploiting the device. These parameters are set by the user and allow him
to specify how weighting his different actions in order to compute the interest
rate and his preferences about the visualization of multimedia contents, the
periodical pruning of his profile and the recommendations to be generated. A
complete list of the parameters contained in the device user profile is reported
in Section 4. The Device User Profile (DUPd) of the device agent is conform to
the description of the user profile provided in Section 3.1.1.

The device agent, associated with the device d, supports u as follows: (i) In
order to construct the device user profile DUPd, it monitors u, recording those
MWSs selected by him. When the device user profile DUPd is changed and it is
older that td minutes (a parameter chosen by the user) the device agent sends
the DUPd to its profile agent. Note that if td is too large then the generated
suggestions could be based on obsolete date; differently if it is too small then the
user could bear high cost due to the frequent connections. (ii) When u searches
a service belonging to a specific concept of the dictionary, the device agent sends
the parameters of the exploited device, contained in the device profile DPd, to
the recommender agent in order to generate personalized suggestions for u.
(iii) For taking in account the “age” of the interest values, each P (a parameter
fixed by the user) days the device agent updates the sr and cr values (i.e.,
sr = φ(sr, ssd) and cr = φ(cr, csd)) associated with each service and concept.

14

3.2.2 The Profile Agent, Data Structure and Behaviour

Each user u is associated with a user profile agent p that runs on a server
machine. The profile agent collects by each device agent of u the information
about the MWSs and the associated concepts selected by him in order to build
his global user profile. This feature of MWSuggest allows us to leave possible
limited computation and storage capability to the devices associated with the
device agents. The profile agent provides the user with an off-line collector of all
the information obtained by his different device agents which have monitored
user activities. Then these information are sent to the recommender agent. Both
the data structure and the behaviour of the profile agent are described below.
The profile agent internally stores the Profile Setting (PS) and the Global User
Profile (GUP). The parameters contained in the Profile Setting PS are used to
compute the global rate of the interest relative to a concept (see below). Such
parameters are ND, that is the number of device agents associated with u, and
µL, that is a list containing ND elements, where each element µi is the cost of
the Internet connection of the i-th device, measured in price per Kbyte. The
Global User Profile (GUP) of the profile agent is conform to the description of
the global user profile provided in Section 3.1.1.

The behaviour of the profile agent consists in updating the global user profile
GUP by exploiting the data periodically provided by each user device agent.
The profile agent, for each concept in its GUP provides to compute both gcr
and gcsd (see Section 3.1.2).

3.2.3 The Recommender Agent, Data Structure and Behaviour

The last type of MWSuggest agent is the recommender agent, able to gener-
ate recommendations for each user. We describe in this section both the data
structure and the behaviour of such an agent. Note that the behaviour of the
recommender represents our recommendation algorithm, described in form of
pseudo code in Figures 6 and 7.

The recommender agent contains two data structures calledGlobal User Pro-
file Set (GUPS) and Device Profile Set (DPS). Each element of the Global
User Profile Set GUPS is associated with each user of the MWSuggest platform
and contains a copy of his GUP , periodically updated by his profile agent. The
Device Profile Set DPS contains the device user profiles of all the MWSuggest
users. Each element of DPS, denoted by DPS[u, d], represents the device user
profile of a given user u associated with his device d. The data structures de-
scribed above are exploited by the recommender agent to compute, for each user
u, two lists, denoted by SCB and SCF , containing content-based recommenda-
tions and collaborative-filtering recommendations, respectively, considered to be
the most interesting for u and taking into account the device currently exploited
by u.

15

3.3 The Approach to generate recommendations

Now, we explain the approach used to generate recommendations. Suppose that
the user u exploits a given device d, when he searches an MWS able to satisfy
his need. Then, the device agent associated with d contacts the recommender
agent sending a request of recommendations to it. In its turn, the recommender
agent returns to the user device agent two lists of MWSs, denoted by SCB
and SCF , which store the content-based and the collaborative filtering recom-
mendations, respectively, computed to support u in presence of the device d.
For generating content-based recommendations, the recommender agent peri-
odically pre-computes a matrix CB, relative to all its users, by exploiting the
information about both users’ interests in concepts and users’ device profiles,
stored in users’ data structures (GUPS and DPS). In particular, each ele-
ment CB[u, d] of the matrix CB is a list of concepts, ordered in a decreasing
fashion based on the coefficient gcr, and compatible with the user preferences
stored in the device profile set DPS[u, d]. When the device agent informs the
recommender agent that its user u needs of recommendations in presence of a
given device d, the recommender agent builds and returns a list SCB of MWSs.
In particular, for each one of the first mCB concepts contained in CB[u, d],
the recommender agent selects the first mICB services, based on their sr, cho-
sen in the past by the user exploiting d. Remember that mCB and mICB
are two parameters internally stored into the device profile. Analogously, in or-
der to generate collaborative-filtering recommendations, the recommender agent
periodically updates the matrix CF . In particular, each element CF [u, d] is as-
sociated with a user u and a device d and contains those concepts that the
recommender agent suggests to the user u when exploits the device d. These
concepts are the result of a collaborative-filtering phase performed by the rec-
ommender agent. Indeed, the recommender agent compares the device profile
DPS[u, d] of the device profile set, with the device profile DPS[q, d] associated
with each other user q, that has exploited the same device d. The result of this
comparison is the value ID(u, q, d), a measure of the global interest difference
(ID) of the two device agents u and q with respect to concepts of their inter-
est (see subsection 4.2 and formula (5) for the details about the computation
of ID(u, q, d)). The recommender agent orders in a decreasing order both the
users, based on the ID. Then the recommender agent inserts in CF [u, d] at
most the first mCF concepts, based on the gcr value, for each one of the first
mU users most similar, based on the ID values. When the device agent contacts
the recommender agent in order to obtain recommendations for a user u that is
exploiting a device d, the recommender agent builds and returns the list SCF
of MWSs. In particular, for each one of the concept contained in CF [u, d], the
recommender agent selects the first mICF services, based on their sr, that in
the past have been selected exploiting d. Remember that mU , mCF and mICF
are parameters internally stored into the device profile. Finally, both the list
SCB and SCF are sent to the user u in a format according with the preferences
set in the device profile DP .

An implementation of the recommendation algorithm, as well as the proce-

16

q

Device Profile Set

...c1 c2 cl

CF[u,q,d]

SCF

Dictionary

u

u

CB

...c1 c2 cl

CB[u,d]

SCB

Content-based
recommendations

Collaborative filtering
recommendations

SD P

DPS[u,d]

DPS[q,d]

.

.

.

D

CF

d

d

Figure 4: The behaviour of the MWSuggest recommender agent

dure to update CB and CF matrices is reported in Section 4.

4 System Implementation

In this section, we describe both the architecture and the implementation de-
tails of MWSuggest. The system has been realized as a Java package of classes,
called MWSuggest, containing the three main classes DeviceAgent, ProfileAgent
and Recommender Agent, and some auxiliary classes. In Figure 5, the diagram
of the main classes is represented. In particular, the class DeviceAgent exploits
the classes UserProfile and DeviceProfile to implement the two data structures
DUP and DP described in Section 3.1. Also the class ProfileAgent exploits
the class UserProfile in order to implement the structure GUP . The class Rec-
ommenderAgent, in order to implement the structures UPS and DPS, uses a
vector of UserProfile objects and a vector of DeviceProfile objects, respectively,
while the two structures SCB and SCF are implemented as a set of Recom-
mendation objects. The class UserProfile uses a vector of Ctuple (resp. Stuple)
to implement the data structures CC (resp. SC), where Ctuple (resp. Stuple)
represents all the parameters contained in a tuple of the Catalogue of Concepts
(resp. Catalogue of Services). A detailed description of these parameters is
reported in the next subsection. The two methods pre-comp and recommend,
characterizing the behaviour of the recommender agent, and performing the
pre-computation of the recommendations and the generation of requested rec-
ommendations, respectively, are described in Subsection 4.2.

17

DeviceAgent

- dup: UserProfile
- dp: DeviceProfile

+ updateDUP()
+ sendPA()
+ sendDP()
+ getRecommendations()

DeviceProfile

- : double

- : double

- 1 : double

- 2 : double

- 3 : double
- mcB : Integer
- mCF : Integer
- mCU : Integer

a

g

d

d

d

+ setProfile()
+ getProfile()

+ ()f

Stuple

- s: Identifier
- c: Concept
- sr : double
- ssd : date

+ getTuple()
+ setTuple()

UserProfile

- CC: Vector<Ctuple>
- SC: Vector<Stuple>

+ setService()
+ setConcept()
+ getService()
+ getConcept()

Ctuple

- c: Concept
- cr: double
- csd : date
- Ls : List<MWS>

+ getTuple()
+ setTuple()

ProfileAgent

- gup: UserProfile
-

+ updateGUP()
+ sendGUP()

RecommenderAgent

- gups:Vector< UserProfile>
- dps: Vector<DeviceProfile>
- scb: List<Recommandations>
- scf: List<Recommendation>

+ updateGUPS()
+ updateDPS()
+ pre-comp()
+ recommend()
+ getRecommendations()

Figure 5: The class diagram of the MWSuggest package

18

4.1 The Device Agent Parameters

Below we report a complete list of the parameters contained in DPd, together
with their meanings.

• α: it is a parameter (ranging in [0;1]) used in formula 1 to weight the rate
provided by u about a selected service;

• γ: it is the attenuation period expressed by the number of days between
two consecutive selection of a service after which the interest for the service
decreases;

• δ1, δ2, δ3: represent the maximum sizes (in Kbyte) of text, audio and
video contents that u desires to receive from the selected service when he
uses this device;

• φ: it is a function used to decrease each γ days the cr and sr values relative
to services and concepts no longer selected;

• mCB, mCF , mU , mICB and mICF : they are parameters exploited by
the device agent in its interaction with the recommender agent (see Sec-
tion 3.2.3). In particular, mCB, mCF , mU , mICB and mICF represent
respectively: (i) the maximum number of concepts that u desires to be
considered as content-based recommendations; (ii) the maximum number
of concepts that u desires to be considered as collaborative filtering rec-
ommendations coming from each other user; (iii) the maximum number
of users that u desires to be considered for determining collaborative fil-
tering recommendations; (iv) the number of maximum services associated
with the mCB concepts that u desires to be visualized as content-based
recommendations; (v) the number of maximum services associated with
the mCF concepts that u desires to be visualized as collaborative filtering
recommendations.

4.2 An implementation of the recommendation algorithm

Figure 6 shows an implementation, in the form of pseudo-code, of the recom-
mendation algorithm described above that allows the recommendations to be
pre-computed (off-line). The implementation is represented by the function
pre-comp, that is called by the recommender agent to pre-compute and return
the two matrixes of concepts CB and CF for each one of its users. This func-
tion receives as input the device profile set DPS and the global user profile set
GUPS. The function pre-comp calls for each user the function CBinsert that
provides to populate the element CB[u, d] with the first mCB concepts, based
on the gcr value. Then the interest differences among the users are computed
by the function InterestDiff and ordered calling the function sortID with
respect to each user. Finally, the function CFinsert provides to populate the
element CF [u, d] with the first mCB concepts, as it has been described in the
previous subsection. When a device agent requires the help of the recommender

19

agent, the recommender calls the function recommend to build two lists of ser-
vices (represented in the code by the type SList), namely SCB and SCF . The
function recommend receives as input the user u, the device profile set DPS, the
global user profile set GUPS and the pre-computed matrixes CB and CF and
then it calls the functions SCBinsert and SCFinsert to select the mICB and
the mICF services compatible with the device currently exploited by u based
on the method described in the previous subsection.

pre-comp(device profile set DPS, global user profile set GUPS, CMatrix CB, CF) {
IntD IDmatrix;
for each u

CB[u, d]=CBinsert(CB[u, d], DPS[u, d], mCB);
for each q 6= u

ID[u, q, d]=interestDiff(GUPS[u], DPS[u, d], GUPS[q], DPS[q, d]);
sortID(IDMatrix);
for each u

CF [u, d]=CFinsert(CF [u, d], DPS[u, d], DPS[q, d], mU , mCF);
return;

Figure 6: The Pre-computation Algorithm

recommend(user u, device profile set DPS, global user profile set GUPS,
CMatrix CB, CF SList SCB, SCF) {
SCB=SCBinsert(CB[u,d], DPS[u, d], GUPS[u], mICB);
for each q ∈ mU

SCF=SCFinsert(CF [u,d], DPS[u, d], DPS[q, d], GUPS[u], GUPS[q], mICF);
return;

Figure 7: The Recommendation Algorithm

Computation of the Interest Difference ID The difference between a
user u and another user q which uses the same device d is computed as follows.
Let c be a concept that belongs both to the device user profile DPS[u, d] of u
and the device user profile DPS[q, d] of q, and let cru(c, d) be the interest rate
assigned to the concept in DPS[u, d] and crq(c, d) be the corresponding interest
rate in DPS[q, d]. The value diff(c, d) = |cru(c, d) − crq(c, d)| is assumed to
be a reasonably measure of the difference between the two users u and q in the
evaluation of the concept c. We measure the global interest difference between
the two device agents u and q using the device d, denoted by ID(u, q, d), as the
average of all the contributions diff(c, d) relative to all the concepts c that the
profile of u and q share. More formally:

20

ID(u, q, d) =

∑
c∈DPS[u,d]

⋂
DPS[q,d] |cru(c, d)− crq(c, d)|

|DPS[u, d]
⋂
DPS[q, d]|

(5)

Updating CB and CF matrices The updating of the CB (resp., CF) ma-
trix is automatically performed when both the two following conditions are ver-
ified: (i) At least each tCB (resp., tCF) minutes an element of the CB matrix
(resp., CF matrix) is updated, where tCB (resp., tCF) is an integer value fixed
by the system administrator. (ii) When some modification has been applied to
either the dictionary or the global user profile of u (resp., the device user profile
of a user belonging to the community). Note that a value tCB (resp., tCF)
to small could imply for the recommender frequent re-computation that could
require a more powerful machine. On the contrary, a tCB (resp., tCF) too large
could imply a generation of the recommendations based on obsolete data. How-
ever, the administrator has to carefully fix such values taking into account the
number and the computational capabilities of the available machine that host
the recommender and the number of user belonging to the community. Besides,
the update of the matrix CF is a more onerous task than that of the matrix
CB, involving all the users of the community. For this reason, it is necessary to
fix a value tCF more large than tCB, to avoid too onerous computations.

5 Evaluation

This section presents some experiments devoted to evaluate, in the generation of
recommendations, the effectiveness of considering the device currently exploited
to support a user in the choice of the most suitable MWSs. We point out that
it is possible, in MWSuggest, to disable the feature that takes into account
the exploited device. In this case, our system becomes similar to traditional
recommender-based approaches, using the traditional content-based and collab-
orative filtering approaches. This consideration gives the possibility to evaluate
the improvements introduced by our mechanism of considering the exploited
device, by comparing the performance of MWSuggest in the two cases in which
this mechanism is disabled or enabled, respectively.

The experiments have been performed by using a common dictionary, imple-
mented as an XML-Schema, containing 94 different concepts, and 388 different
MWSs associated with the concepts belonging to the common dictionary. Note
that the MWSs have been built by using multimedia contents publicly available
on radio-television, photography, travel, map, literature and similar Web sites.

The experiments involved 60 users and each user has been provided with a set
of three device agents (associated with a desktop PC, a palmtop and a cellular,
built following the descriptions presented in Section 3.2.1) and a profile agent. In
particular, the profile agent has built two Global User Profiles, the first following
the description provided in Section 3.2.2 and the other in which the values gsr
and gcr has been computed as two simple sums of the different contributes sr
and cr provided by the device agents. Consequently, the recommender agent

21

Table 1: The setting of the MWSuggest device agents

device agent α γ δ1 δ2 δ3 φ td

desktop PC 0.75 3 0.6 0.8 0.9 0.90 1 h.
palmtop 0.75 3 0.6 0.9 1.0 0.95 1 day
cellular phone 0,75 3 0.5 0.9 1.0 0.95 1 day

has computed two sets of suggestions, the first considering the devices currently
exploited and the second without considering the devices. The implementation
of all the agents have been realized under the JADE framework [15] and the
setting of the agents parameters are shown in Table 1.

The experiments involved a set A composed by numA device agents (since
we have considered 3 agents for each of the users, i.e. numA is variable from 30
to 180), where each agent a ∈ A contains an initial user profile, populated with
a set of concepts (with cardinality ranging from 5 to 10 elements) selected by the
associated user from the common dictionary. Each agent navigated through a
set of the MWSs registered in an UDDI platform. In particular, this navigation
has been divided into two phases. In the first phase, called learning phase, each
agent a selected 100 MWSs in sequence, and the user profiles of both device
and profile agents are updated as previously specified. In the second phase,
called test phase, two cases have been evaluated in which the device currently
exploited has been (identified by “on”) or has not been considered (identified by
“off”), respectively. In each one of these two parallel sub-phases each agent a
performed numC choices in sequence, where numC is variable from 50 to 100.
Each choice c consists in selecting a set La of three MWSs, and before each
choice a set of recommendations (Ron

a and Roff
a , respectively), containing three

recommendations, has been provided by an interaction with the recommender
agent, following the recommendation algorithm described in 4.2. Obviously, we
desire that the recommendations coincides with La. However, only a part of
the provided recommendations are relevant for u, where a recommendation is
relevant if it is actually selected by u and thus belongs to La.

To evaluate the quality of the recommendation sets Ron
a and Roff

a , generated
by MWSuggest, can be used accuracy, classification accuracy and rank accuracy
metrics (see [14]) to measure how close the predicted ratings are to the true
user ratings. Accuracy measure adopts the mean absolute error (MAE) metric,
defined as the average absolute difference between predicted ratings (p) and
actual ratings (r). In our experiments it is computed for each user, and then
averaged over all the users with respect to the total numbers of recommendations
(N) generated for all the users. Formally:

MAE =

∑N

i=1 |pi − ri|

N
(6)

The Receiver Operating Characteristic (ROC) sensitivity measures the fre-
quency with which a recommender system makes correct (relevance) or incorrect

22

(noise) decisions about the quality of an item. The ROC curve plots recall and
fallout (percentage of good and bad recommendations returned, respectively).
A recommendation will be considered good if the user will rate it with 4 or
above, otherwise it will be considered bad; this ROC sensitivity with threshold
3 will be referred in the following as ROC-4. Note that ROC sensitivity ranges
from 0 to 1, where 1 is ideal and 0.5 is random. To simplify the comparison of
multiple systems by using ROC curves, we summarize in a single performance
number, known as Swets A measure, the area underneath a ROC curve. This
measure is able to discriminate between good and bad recommendations. Our
analysis is completed by the CROC curve ([49]) and we use the area under the
CROC curve as synthetic evaluation parameter. Moreover, as Rank accuracy
metrics to measure the correspondence between the items orders provided by
recommender system and user, we adopt the Normalized Distance-based Perfor-
mance Measure (NDPM), ranging in [0.0, 1.0] (where 0.0/1.0 means best/worst
recommendations, respectively), computed as:

NDPM =
2 · C− + Cu

2 · Ci
(7)

where C−, Cu and Ci are the numbers of contradictory preference, compatible
preference and “preferred” relations between system and user rankings, respec-
tively. More in detail: a preference relation is contradictory when the assigned
preference order of two items is reversed between system and user; a compati-
ble preference relations happens when the user preference levels of two items is
different, while the system assigns them an equal preference level; a “preferred”
relation in the user ranking is referred to the pairs of items rated by the user for
which one is rated higher than the other. In our experiments, we have computed
the average of NPDM on all the users.

The results obtained in the generation of suggestions by the system MW-
Suggest in the cases previously identified by on and off are show in Figure
8. In particular, Figure 8-(A) shows that the MAE measure in the on case is
always smaller of the 16 percent (for a size of 30 agents) to 23 percent than in
the off case. The good quality of the recommendations so generated is con-
firmed by the analysis of the Swet’s A measure relative to the ROC-4 curve (see
Figure 8-(B)), where the advantage to consider the device range from the 17 to
21 percent with respect to the off case. Analogous considerations can be done
by considering the area under the CROC curve in Figure 8-(C). The combined
analysis of MAE and ROC shows that the on case performs significantly better
than the off case in predicting the rates of the users and in providing recom-
mendations judged as good by the users. The analysis of the NPDM measure
(Figure 8-(D)) presents performances close enough in providing a recommended
ordering of items matching how the user would have ordered the same items.
However, also in this case, the inclusion of the exploited device in the construc-
tion of the user profile presents the best performance, with an advantage of
about 20 percent with respect to the other case.

To better analyze the behaviour of MWSuggest in the on configuration with
respect to the off case, we have reported, for each dimension of the agent set,

23

(A) (B)

0,4

0,6

0,8

1

1 2 3 4 5 6

number of agents

S
w

e
e
t'

s
A

m
e
a
s
u

re

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6

number of agents

a
v
e
ra

g
e

M
A

E

30 60 90 120 150 180 30 60 90 120 150 180

(C)© (D)

ON

OFF

0,4

0,6

0,8

1

1 2 3 4 5 6

number of agents

A
re

a
u

n
d

e
r

C
R

O
C

c
u

rv
e

0,1

0,15

0,2

0,25

0,3

1 2 3 4 5 6

number of agents

a
v
e
ra

g
e

N
P

D
M

30 60 90 120 150 18030 60 90 120 150 180

Figure 8: (A) The average MAE, (B) Swet’s A measure relative to the ROC-4,
(C) area under the CROC curve and (D) average NPDM relative to the two
test hypothesis for different sizes of the agent-set

the average percentage of improvement introduced by MWSuggest for MAE
(Figure 9) and Swet’s A measure (Figure 10) and for the three cases of users
exploiting a PC desktop, users exploiting a palmtop and users exploiting a
cellular phone.

The results clearly show that the improvement introduced by MWSuggest is
very significant for the users exploiting a cellular phone, achieving 34 percent for
MAE (for a dimension of 180 agents). The analogous improvement associated to
palmtop devices achieves a maximum of 22 percent, while the advantage intro-
duced for the PC desktop users is limited to 15 percent. Also the improvement
in the Swet’s A measure confirms this trend, clearly showing that MWSuggest
performs very well in presence of devices having limited resources, as in the case
of palmtops and cellular phones, while it presents minor advantages in presence
of PC desktop devices.

We have performed another experiment to better clarify this important issue.
In this experiment, we have monitored three sets of users, called S1, S2 and S3,
having a different composition of exploited devices. Each set contains 60 users,
that can exploit a PC desktop, a palmtop and a cellular phone. The users of
the set S1 use prevalently the cellular phone (in the 60 percent of the cases)
while they exploit a palmtop in the 25 percent of the cases and the desktop PC
only in the 15 percent of cases. The users of the set S2 use prevalently both
cellular phones and palmtop (35 percent of cases for both the situations) and
the PC desktop in the 30 percent of cases. Finally, the users of S3 exploit in
the 70 percent of cases the desktop PC, while they use the palmtop in the 15
percent of cases and the cellular phone in the 15 percent of cases. Also in this
experiment, we have used the values of Table 1 for the devices’ parameters.

The results of the experiments, in terms of average improvement (computed

24

Figure 9: The average percentage of improvement for the MAE measure for
different devices and different sizes of the agent-set

Figure 10: The average percentage of improvement for the Swet’s A measure
for different devices and different sizes of the agent-set

25

Figure 11: The average percentage of improvement for the MAE measure for
the sets S1, S2 and S3

on all the 60 users belonging each set) produced using MWSuggest in configu-
ration on with respect to the off case, are reported in Figure 11 for MAE and
in Figure 12 for the Swet’s A measure. The results have been plotted for each
of the three device types.

As expected, the better performance is produced for the set S1, where the
usage of cellular phones is largest. However, it is interesting to highlight that
for this set we have the best performance also for the recommendations to
PC users, that seem to be more effective in this situation. Evidently, the use
of MWSuggest in the on configuration introduces significant advantages when
devices with limited resources are used, and also the PC desktop users take
advantage of this situation since the collaborative filtering recommendations
become more effective.

This analysis also shows the limitations of MWSuggest approach, that pro-
duces small advantages in the case of a high usage of desktop PCs. In particular,
for the users of the set S3, the improvement for the PC desktop users is only 8
percent for MAE and 7 percent for Swet’s A measure.

6 Conclusions

In this paper we have proposed to consider the effect of the exploited device to
improve the quality of the recommendations generated by a recommender sys-
tem of multimedia Web services. To evaluate our approach we have presented

26

Figure 12: The average percentage of improvement for the Swet’s A measure
for the set S1, S2 and S3

and implemented a recommender system architecture called MWSuggest. This
recommender system has been specifically designed to generate recommenda-
tions based on both user profile and exploited device in order to match more
accurately user preferences and interests. In the proposed recommender sys-
tem a device agent monitors a user that is exploiting a fixed device in order
to build a light profile just for that device, while a profile agent constructs off-
line a complete user profile. This choice leads to make very light the task of
the device agent, that often has limited resources and, on the other hand, to
take into account the different exploited devices in constructing the user profile.
Furthermore, a recommender agent computes off line the similarity between
the users and stores the users’ behaviour in order to support both content-
based and collaborative filtering recommendations. The experimental results,
obtained by means of the proposed recommender system architecture, confirm
the high quality of the recommendations generated taking into account the de-
vice currently exploited. We point out that the adoption of more rich knowledge
descriptions for both users’ profiles and contents of Web services, with respect
to the simple XML representation that we have adopted in MWSuggest could
probably further improve the quality of the recommendations. We are planning,
in our ongoing research, to use ontological formalisms as, for instance, OWL, to
address this important issue.

27

References

[1] J. Bennett and S. Lanning. The Netflix Prize. In Proc. of KDD Cup and
Workshop, pages 3–6, 2007.

[2] F. Buccafurri, D. Rosaci, G.M.L. Sarné, L. Palopoli. Modeling cooperation
in multi-agent communities. Cognitive Systems Research, 5(3):171–190,
2004.

[3] R. Burke. Hybrid Recommender Systems: Survey and Experiments. User
Modeling and User-Adapted Interaction, 12(4):331–370, 2002.

[4] M.H. Burstein, J.R. Hobbs, O. Lassila, D. Martin, D.V. McDermott,
S.A. McIlraith, S. Narayanan, M. Paolucci, T.R. Payne, and K.P. Sycara.
DAML-S: Web Service Description for the Semantic Web. In Proc. 1st Int.
Conf. on The Semantic Web (ISWC ’02), volume 2342 of LNCS, pages
348–363, Berlin, Ger., 2002. Springer-Verlag.

[5] DAML+OIL URL. http://www.daml.org. 2011.

[6] DAML+OIL URL. http://www.w3.org/tr/daml+oil-reference. 2011.

[7] P. De Meo, A. Nocera, D. Rosaci, D.Ursino. Recommendation of reliable
users, social networks and high-quality resources in a social internetworking
system. AI Communications, 24(1):31–50, 2011.

[8] P. De Meo, D. Rosaci, G.M.L. Sarne, D. Ursino, G. Terracina. EC-XAMAS:
Supporting e-commerce activities by an xml-based adaptive multi-agent
system. Applied Artificial Intelligence, 21(6):529–562, 2007.

[9] ebXML URL. http://www.ebxml.org. 2011.

[10] D. Fensel and C. Bussler. The Web Service Modelling Framework WSMF.
Electronic Commerce Research and Applications, 1(2):113–137, 2002.

[11] D. Fensel, C. Bussler, and A. Maedche. Semantic Web Enabled Web Ser-
vices. In Proc. 1st Int. Semantic Web Conf. on The Semantic Web (ISWC
’02), volume 2342 of LNCS, pages 1–2, Berlin, Ger., 2002. Springer-Verlag.

[12] John D. Garofalakis, Yannis Panagis, Evangelos Sakkopoulos, and Athana-
sios K. Tsakalidis. Contemporary Web Service Discovery Mechanisms. J.
Web Engineering, 5(3):265–290, 2006.

[13] Y. Hao and Y. Zhang. Web Services Discovery Based on Schema Matching.
In Proc. 13th Australasian Conf. on Comp. Sc. (ACSC ’07), pages 107–113,
Darlinghurst, Australia, 2007. Australian Computer Society, Inc.

[14] Herlocker J.L., Konstan J.A., Terveen L.G. and Riedl J.T. Evaluating
Collaborative Filtering Recommender Systems. ACM Trans. Inf. Syst.,
22(1):5–53, 2004.

28

[15] JADE URL. http://jade.tilab.com/. 2011.

[16] M. Kerrigan. Web Service Selection Mechanisms in the Web Service Ex-
ecution Environment (WSMX). In Proc. 2006 ACM Symp. on Applied
Computing (SAC), pages 1664–1668, New York, USA, 2006. ACM.

[17] M. Klein and A. Bernstein. Serching for Services on the Semantic Web
Using Process Ontologies. In Proc. 1st Semantic Web Working Symp.
(SWWS’01), pages 431–446, Stanford, USA, 2001. Stanford Univ. Press.

[18] N. Kokash, A. Biukou, and V. D’Andrea. Web Service Discovery Based on
Past User Experience. In Business Information Systems, volume 4439 of
LNCS, pages 95–107, Berlin, Ger., 2007. Springer.

[19] Joseph A. Konstan. Introduction to recommender systems. In SIGMOD
Conference, pages 1373–1374, 2008.

[20] Joseph A. Konstan, Sean M. McNee, Cai-Nicolas Ziegler, Roberto Tor-
res, Nishikant Kapoor, and John Riedl. Lessons on applying automated
recommender systems to information-seeking tasks. In Proceedings of the
Twenty-First National Conference on Artificial Intelligence and the Eigh-
teenth Innovative Applications of Artificial Intelligence Conference, pages
1630–1633, 2006.

[21] Joseph A. Konstan and John Riedl. Recommender systems: from algo-
rithms to user experience. User Model. User-Adapt. Interact., 22(1-2):101–
123, 2012.

[22] Y. Li, F. Zu, Z. Wu, and F. Ma. A Scalable Web Service Discovery Archi-
tecture Based on Peer-to-Peer Overlay Network. In Proc. of the Advanced
Web Tech. and Appl. (APWeb04), volume 3007 of LNCS, pages 291–300,
Berlin, Ger., 2004. Springer.

[23] Q. Liang, S.Y.W. Su, H. Li, and J.Y. Chung. A United Approach to
Discover Multimedia Web Services. In Proc. of the IEEE 5th Int. Symp.
on Multimedia Software Eng. (MSE), pages 62–69, Washington, USA, 2003.
IEEE.

[24] D. Mandell and S. McIllraith. A Bottom-up Approach to Automating Web
Service Discovery, Customization, and Semantic Translation. In Proc. 12th
WWW Conf. Work. on E-Services and the Semantic Web (WWW2003);
http://www.ksl.stanford.edu/sds/www-ESSW03-workshop.pdf, New York,
USA, 2003. ACM.

[25] U.S. Manikrao and T.V. Prabhakar. Dynamic Selection of Web Services
with Recommendation System. In Proc. Int. Conf. on Next Generation
Web Services Practices (NWESP ’05), page 117, Washington, USA, 2005.
IEEE.

29

[26] N. Manouselis and C. Costopoulou. Analysis and Classification of Multi-
Criteria Recommender Systems. World Wide Web, 10(4):415–441, 2007.

[27] E. Michael Maximilien and Munindar P. Singh. Conceptual Model of Web
Service Reputation. SIGMOD Rec., 31(4):36–41, 2002.

[28] S. A. McIlraith, T.C. Son, and H.i Zeng. Semantic Web Services. IEEE
Intelligent Systems, 16(2):46–53, 2001.

[29] M. Montaner, B. Lopez, and J.L. de la Rosa. A Taxonomy of Recommender
Agents on the Internet. Journal on Web Semantics (JWS), 19(4):285–330,
2004.

[30] M. Montebello and C. Abela. DAML Enabled Web Services and Agents in
the Semantic Web. In Proc. Web and Database-Related Workshops (NODe
2002), volume 2593 of LNCS, pages 46–58, Berlin, Ger., 2002. Springer.

[31] E. Motta, J. Domingue, L. Cabral, and M. Gaspari. IRS-II: A Framework
and Infrastructure for Semantic Web Services. In Proc. 2nd Int. Semantic
Web Conf. on The Semantic Web (ISWC ’03), volume 2870 of LNCS, pages
20–23, Berlin, Ger., 2003. Springer-Verlag.

[32] S. Overhage. On Specifying Web Services Using UDDI Improvements. In
Proc. of the Web and Database-Related Workshops (NODe 2002), volume
2593 of LNCS, pages 100–119, Berlin, Ger., 2002. Springer-Verlag.

[33] OWL-S URL. http://www.daml.org/services/owl-s. 2011.

[34] M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycara. Semantic Matching
of Web Services Capabilities. In Proc. 1st Int. Semantic Web Conf. (ISWC
’02), volume 2342 of LNCS, pages 333–347, Berlin, Ger., 2002. Springer-
Verlag.

[35] J. Peer. Bringing Together Semantic Web and Web Services. In Proc. 1st
Int. Semantic Web Conf. on The Semantic Web (ISWC ’02), volume 2342
of LNCS, pages 279–291, Berlin, Ger., 2002. Springer-Verlag.

[36] S. Pokraev, J. Koolwaaij, and M. Wibbels. Extending UDDI with Context-
Aware Features Based on Semantic Service Descriptions. In Proc. 2nd Int.
Conf. on The Semantic Web (ISWC ’03), volume 2870 of LNCS, pages
184–190, Berlin, Ger., 2003. Springer-Verlag.

[37] QoS URL. http://www.w3c.or.kr/kr-office/tr/2003/ws-qos/. 2011.

[38] D. Roman, U. Keller, H. Lausen, J. de Bruijn, Lara R, M. Stollberg,
A. Polleres, C. Feier, C. Bussler, and D. Fensel. Web Service Modeling
Ontology. Applied Ontology, 1(1):77–106, 2005.

[39] D. Rosaci. Trust measures for competitive agents. Knowledge-based Sys-
tems, 28:38–46, 2012.

30

[40] D. Rosaci and G. M. L. Sarnè. A Multi-agent Recommender System for
Supporting Device Adaptivity in E-Commerce. Journal of Intelligent In-
formation Systems, 38(2):393–418, 2012.

[41] D. Rosaci, G.M.L Sarné. Efficient personalization of e-learning activities
using a multi-device decentralized recommender system. Computational
Intelligence, 26(2):121–141, 2010.

[42] D. Rosaci and G. M. L. Sarnè. TRES: A Decentralized Agent-Based Rec-
ommender System to Support B2C Activities. Lecture Notes in Computer
Science, volume 5559, pages 183–192, 2009. Springer.

[43] D. Rosaci, G. M. L. Sarnè, and S. Garruzzo. MUADDIB: A Distributed
Recommender System Supporting Device Adaptivity. ACM Transactions
on Information Systems, 27(4), 2009.

[44] D. Rosaci. Cilios: Connectionist inductive learning and inter-ontology sim-
ilarities for recommending information agents. information systems. Infor-
mation Systems, 32(6):793–825, 2007.

[45] D. Rosaci and G.M.L. Sarnè. A multi-agent recommender system for sup-
porting device adaptivity in e-commerce. J. Intell. Inf. Syst., 38(2):393–
418, 2012.

[46] N A. Sajjanhar, J. Hou, and Y. Zhang. Algorithm for Web Service Match-
ing. In Business Information Systems, Proc. of the Advanced Web Tech.
and Appl. (APWeb04), volume 3007 of LNCS, pages 665–670, Berlin, Ger.,
2004. Springer.

[47] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Analysis of Recommenda-
tion Algorithms for E-Commerce. In Proc. 2nd ACM Conf. on Electronic
Commerce (EC ’00), pages 158–167, New York, USA, 2000. ACM.

[48] J.B. Schafer, J.A. Konstan, and J. Riedl. E-Commerce Recommendation
Applications. Data Mining Knowledge Discovory, 5(1-2):115–153, 2001.

[49] Schein A.I., Popescul A., Ungar L.H. and Pennock D.M. CROC: A New
Evaluation Criterion for Recommender Systems. Electronic Commerce Re-
search, 5(1):51–74, 2005.

[50] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. A Scalable and Ontology-
Based P2P Infrastructure for Semantic Web Services. In Proc. 2nd Int.
Conf. on P2P Computing (P2P ’02), pages 104–111, Washington, USA,
2002. IEEE.

[51] W. Sherchan, S.W. Loke, and S. Krishnaswamy. A Fuzzy Model for Rea-
soning about Reputation in Web Services. In Proc. of the 2006 ACM Symp.
on Applied Computing (SAC ’06), pages 1886–1892, New York, USA, 2006.
ACM.

31

[52] K. Sivashanmugam, K. Verma, R. Mulye, and Z. Zhong. Speed-R: Semantic
P2P Environment for Diverse Web Services Registries. Final Presentation,
CSCI: 8350, Enterprise Integration, Dep. of Comp. Sc., Univ. Georgia,
2002.

[53] B. Smyth, E. Balfe, P. Briggs, M. Coyle, and J. Freyne. Collaborative Web
Search. In Proc. 18th Int. Joint Conf. on Artificial Intelligence (IJCAI-03),
pages 1417–1419, San Francisco, USA, 2003. Morgan Kaufmann.

[54] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: a Scalable Peer-to-Peer Lookup
Protocol for Internet Applications. IEEE/ACM Trans. Netw., 11(1):17–32,
2003.

[55] UDDI URL. http://uddi.xml.org. 2011.

[56] Mark Setten van. Supporting people in finding information : hybrid rec-
ommender systems and goal-based structuring. University of Twente, En-
schede, 2005.

[57] W3C URL. http://www.w3c.org. 2009.

[58] H. Wang, D. Yang, Y. Zhao, and Y. Gao. Multiagent System for
Reputation–based Web Services Selection. In Proc. 6th Int. Conf. on Qual-
ity Software (QSIC ’06), pages 429–434, Washington, USA, 2006. IEEE.

[59] Y. Wang and E. Stroulia. Flexible Interface Matching for Web-Service
Discovery. In Proc. 4th Int. Conf. on Web Information Systems Engineering
(WISE 2003), pages 147–156, Washington, USA, 2003. IEEE.

[60] C.P. Wei, M.J. Shaw, and R.F. Easley. E-Service: New directions in Theory
and Practice, chapter A Survey of Recommendation Systems in Electronic
Commerce. ME Sharpe, Armonk, USA, 2002.

[61] K. Wei, J. Huang, and S. Fu. A Survey of E-Commerce Recommender Sys-
tems. In Proc. 13th Int. Conf. on Service Systems and Service Management,
pages 1–5, Washington, USA, 2007. IEEE.

[62] WSDL URL. http://www.w3.org/tr/wsdl. 2011.

[63] WSL URL. http://www.webservicelist.com. 2011.

[64] XML URL. http://www.w3.org/xml. 2011.

[65] J. Zhang and J.Y. Chung. A SOAP-Oriented Component-Based Framework
Supporting Device-Independent Multimedia Web Services. In Proc. of the
IEEE 4th Int. Symp. on Multimedia Software Engineering (MSE), pages
40–47, Washington, USA, 2002. IEEE.

[66] Cai-Nicolas Ziegler, Georg Lausen, and Joseph A. Konstan. On exploiting
classification taxonomies in recommender systems. AI Commun., 21(2-
3):97–125, 2008.

32

