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Abstract

In this work we investigate on the time-stability of the homogeneity — in

terms of mutual users’ similarity within groups — into real Online Social

Networks by taking into account users’ behavioral information as personal

interests. To this purpose, we introduce a conceptual framework to repre-

sents the time evolution of the group formation in an OSN. The framework

includes a specific experimental approach that have been adopted along with

a flexible, distributed algorithm (U2G) designed to drive group formation by

weighting two different measures, mutual trust relationships and similarity,

denoted by compactness. An experimental campaign has been carried out

on datasets extracted from two social networks, CIAO and EPINIONS. Re-

sults show that the time-stability of similarity measure for groups formed by

the algorithm U2G based on the sole similarity criterion is lower than that

of groups formed by considering similarity and trust together, even when

the weight assigned to the trust component is low. Experimental trials have

shown that compactness-driven group formation will give groups showing a

time-homogeneous behavior even when uncorrelated behavioral components

(i.e., aspects of the user behavior that are mostly random, as preferences

with respect to group privacy rules, level of participation in group activities,

etc.) included in the computation of similarity assume a relevant weight.

Keywords: Online Social Network, Similarity, Homogeneity, Reputation,

Trust.
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1. Introduction

Most of the existing Online Social Networks (OSNs) platforms target at

connecting as many people as they can and it is not surprising that OSNs

are became mainstream communication medium. Indeed, everyday an over-

whelming amount of users share their interests, objectives, opinions, posts

and contents with other OSN users1.

In order to increase the fruition of the social platforms, OSNs allow the

creation of thematic groups (e.g. more than 100,000 groups per day only on

Facebook [14]). Group formation, as well as their evolution, encompasses the

dynamics underlying human interactions in forming and spreading opinions

and decisions [4]. Researchers of several communities have been studying

users’ motivations to join with a group [11] and their impact on the groups

growth [4, 13] and failure [14]. A key issue widely investigated in the latest

years is that of forming “homogeneous” groups in OSNs and, consequently,

selecting the best groups a user could join with [7, 10, 28]. Indeed, users

basically need to look for those groups which are potentially able to best

satisfy the expectations of a user, as well as the utilities that the other groups

members can receive in accepting him/her into a group.

A considerable number of works focused on understanding the driving

forces modeling group formation and their evolution, to design effective al-

gorithms to find right groups. Some of these studies [4, 13] relates Complex

Networks to OSNs, use diffusion processes to model formation and evolu-

1Almost a billion of daily active users on average on June 2015 on the sole Facebook.

http://newsroom.fb.com/company-info/
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tion of OSNs groups or highlight as some topological network properties, are

reliable indicators to predict if a user will join with a group or if a group

will survive in a particular time frame. Interestingly, a lot of work aimed at

designing algorithms and heuristics able to drive group formation rely on the

assumption that groups should be formed by like-minded people. Therefore,

there is a great interest to identify like-minded people due to the idea that

higher the similarity degree among users (or a user and a group), the higher

the chance that quality of interactions among people will increase.

Several different similarity measures have been proposed in the literature

to assess the similarity degree existing among individuals within a group [2,

7, 10, 26, 28]. Among the parameters taken into account we mention the

number of groups two users are jointly affiliated [28], user/group interests [7],

as well as personal preferences [10]. From this point of view, the compulsive

growth of OSNs users and groups implies the necessity of adopting scalable

algorithms to efficiently process large amounts of user- and group-related

data. In addition, restrictions imposed by group administrators may deny

the access to the data characterizing OSN groups to a user and, in this way,

it is made impossible for him/her to adopt a brute-force approach to find the

best groups fitting his/her needs.

1.1. Main motivations underlying our proposal

A crucial problem in the study of group formation and evolution is time

stability [5, 17], i.e. the aptitude of a group to retain its members.

It is easy to realize that time-stability constitutes a major factor in decree-

ing the success (and, then, the survival) of a group or, vice versa, its failure

(and, then, its extinction). Some concrete examples, in fact, shed light on
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the importance of building up time-stable groups: let us consider, for in-

stance, co-citation or patent networks in which nodes represent scientists

(resp., patents) and edges encode co-authorship relationships (resp., citation

between patents). In this setting, time-stable groups coincide with research

teams displaying a long-term interest in solving related research problems.

Collaboration among research teams is often an essential ingredient to ac-

celerate scientific progress and to foster research in a given field. If a group

would dissolve into many non-communicating sub-groups, we would lose the

wealth of scientific and technological achievements in the field of that group.

Due to its practical relevance, it is not surprising that several researchers

were interested in studying the evolution of OSN groups in order to under-

stand the mechanisms driving their growth [3, 16, 19]. Asur et al. [3] proposed

an intuitive approach to investigate the evolution of real OSN groups across

time frames, by computing group sizes and the degree of overlapping of all

possible pairs of groups in consecutive time frames. In [16], user-to-user sim-

ilarity is considered as the only criterion leading to group formation. The

authors of [19] identified the member diversity and the group activities as

critical factors for the stability of a group along with the presence of highly

dynamic group members.

Nevertheless, none of the aforementioned approaches investigates the lim-

itations of using user-to-user similarity alone in the process of forming groups.

To illustrate these limitations and their practical impact, let us consider the

problem of recommending groups to user. If we would rely only on similarity,

we should consider user personality traits, features and behaviors at the time

instant t to calculate to what extent user features match the overall interests
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of a group. We would recommend our target user to join the group g⋆ if g⋆

best fits the interests of our target user.

However, user behavior and preferences may rapidly vary in relatively

short time frames and, thus, we are no longer confident that g⋆ is still the

best option for our target user at the time instant t+∆t. Our paper aims at

addressing the limitations above: in detail, we target at studying techniques

to form time-stable groups and, to this extent, we suggest that user-to-user

similarity alone is not enough to ensure time stability.

1.2. Our Contribution

In this paper we present the results of an experimental campaign aimed

at understanding the main factors affecting the time-stability of OSN group

homogeneity, in terms of internal similarity between the members of the

group. Below we describe the main contributions that our work provides.

1. Our first contribution is providing an answer to the following ques-

tion: “How much time-stable is the homogeneity of those OSNs groups

formed on the basis of the users’ similarities?” By using the data of two

real OSNs, i.e., EPINIONS and CIAO [27], we had the opportunity to

verify, in different time frames, the time-stability of the homogeneity

of the groups formed within the OSN basing on the similarity. As we

discuss in Sections 7 and 8, the experimental results have shown that

group formation driven by similarity does not guarantee a time-stability

of the homogeneity, especially when uncorrelated users behavioral com-

ponents, i.e. aspects of the user behavior that can be considered mostly

random, as preferences with respect to group privacy rules, level of
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participation in group activities, etc., included in the computation of

similarity, assume a relevant weight. In other words, the sole similarity

criterion seems not sufficient to form OSN groups which will eventually

assume a stable homogeneity, in terms of similarity.

2. Given the aforementioned results, our second contribution consisted

of solving also another question, namely: “Is it possible to improve

the time-stability of the homogeneity in terms of similarity into OSNs

groups?” In this respect, we acknowledge that recent studies on group

formation processes did not consider the similarity as the sole key cri-

terion to form groups. In fact, frequently an increasing relevance is

given also to the trust as a crucial factor to keep the level of user’s

engagement into a group high enough over time and prevent group

failures [25]. Here we use the term trust that a user a has in another

user b in the following, classical meaning: a trusts b if a commits to

an action based on a belief that b’s future actions will lead to a good

outcome [9].

This notion of trust is very different from the concept of similarity

between a and b, that considers what aspects are similar in a’s and b’s

profiles (preferences, tastes etc.) Obviously, a can trust b also if b has

a very different profile from that of a, simply based on the a’s opinion

that the actions of b will produce a good income. This leads to observe

that trust is not a symmetric relationship, differently from similarity.

It is not surprising the importance of trust in social networks, because

we can note as OSNs users are more motivated to stay in groups with
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members they trust, likely we observe in other social contexts as, for

instance, the multi-agent communities [24, 23].

1.3. Differences and novelty with the state of the art and our previous work

With respect to the two research questions defined above, we observe that

approaches reviewed in [25] highlight the importance of using trust measures

in forming groups. These approaches, however, do not face the problem of

combining trust with similarity. In a previous work we proposed an approach

for integrating similarity and trust in a unique measure to form groups and

finding those most suitable a user can join with [8]. Our approach is rooted in

the Social Capital theory [25] as expression of the concrete advantage a user

can get from interacting with both trusted and like-minded users. However,

in [8] we did not consider changes in user similarity occurring over time and,

as such, we did not consider how changes in user similarity impact on the

formation of groups.

In this paper, we extend our previous work by introducing a conceptual

framework to represent the time evolution of the group formation in an OSN.

Our approach takes both similarity and trust measures into account in form-

ing groups, and, unlike existing approaches, it also considers the changes that

these measures undergo over time. We expect that our choice does not pro-

duce a starting group formation representing the best clustering of the users,

since the goal of the actual objective function is to maximize the overall in-

ternal similarity of the groups, while in our approach we will form the group

by exploiting an objective function which combines similarity and trust.

Then, we have used the new conceptual framework that we have intro-

duced for performing an extensive set of experiments on real data coming
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from the social networks CIAO and EPINIONS. Our main research result

is that groups formed by considering both similarity and trust show a time-

stable homogeneity — in term of similarity — which is higher than that of

the groups formed by considering the similarity criterion alone.

This phenomenon is remarkable even when the weight assigned to the

trust component is low. Interestingly, experimental trials have shown that

compactness-driven group formation will give groups showing a time-stable

behavior even when random components of user behavior included in the

computation of similarity assume a relevant weight. We consider random

components as those components included in the computation of the similar-

ity which appear as “uncorrelated”, i.e. as not having a strict relationship,

with the others.

Furthermore, successive experiments identify also the most suitable ratio

between uncorrelated components, included in computing similarity, and the

other components. These results can be explained as follows.

From one hand, our approach yields more robust results because potential

errors due to the similarity measures may be balanced by the trust contribu-

tion. On the other hand, this aggregation measure does not strictly depend

on the choice of the aggregating function. In principle, we could to con-

sider complex strategies to aggregate similarity and trust values, as well as

to manage further criteria in the group formation but, as in [8], we aggre-

gated similarity and trust by simply computing their weighted sum. This

choice has been due to the necessity of achieving a good trade-off between

the need of producing accurate results and the need of having a model of

easy interpretation.
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1.4. Plan of the paper

The remaining of the paper is structured as follows: in Section 2 we

compare our work with related literature, Section 3 introduces the adopted

reference scenario, while Section 4 deals with the computation of the similar-

ity and trust measures. Sections 5 illustrates the U2G algorithm. In Section 6

we present the conceptual framework we have introduced for supporting our

time-stability analysis of the group homogeneity. Then, Section 7 provides

all the details of the experimental campaign, i.e. experimental approach,

software, parameters, and results, and Section 8 provides a detailed discus-

sion of the experimental results. Finally, in Section 9 we draw our conclusions

and also some possible future works.

2. Related Work

In this section we compare our work with related literature. In detail,

we review studies first on the formation and evolution of groups (see Sec-

tion 2.1) and, subsequently, on the group time-homogeneity over time (see

Section 2.2).

2.1. Group Formation and Evolution

The study of mechanisms regulating group formation and growth has a

long tradition in Social Sciences and, more recently, in Computer Science [4].

One of the early (and most popular) theory about the formation of groups

is known as common identity and common bond [21]. It identifies two main

mechanisms driving people to join with groups: on one hand, strong personal

ties with other group members may persuade a user to join with a group; on
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the other hand, individuals are likely to join with a group based on shared

interests with other group members. In real scenarios, according to the preva-

lent reasons drifting an individual to join with a group, we can classify groups

into social and topical. Authors of [11] suggested to apply community detec-

tion algorithms to identify clusters in an OSN and to compare the structural

features of these graphs with user-defined communities. In Computer Sci-

ence field, one of the first studies devoted to clarify the mechanisms leading

a user to become member of a group and explaining the growth over time of

a group is due to [4]. In this paper, the authors focused on the LiveJournal

friendship network and on the DBLP co-authorship network. They observed

as the act of joining with a group can be modeled in terms of the spread

of new ideas. Surprisingly enough, most of the findings discovered for the

LiveJournal dataset were also true for DBLP dataset, despite groups have a

very different meaning in each of the two datasets.

Kairam et al. [13] considered diffusion growth processes (i.e., processes

in which groups attract new members by means of social ties binding new

members to existing ones) and non-diffusion growth, in which individuals

with no prior social ties to any group members decide to join with the group.

In this case, the main finding is that if a group is highly clustered, then it

is more likely to grow due to diffusion processes; however, those groups are

usually smaller than other groups.

The result of [13] is consistent with the results presented in [14]: the

authors monitored for a 3 month period almost half a million of Facebook

groups that were created in an 8-day period in 2013. It has been found

that about 57% of these groups stopped from creating new content by the
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end of the 3-month of observation. Nevertheless, some of these groups were

fictitiously formed, indeed, in other cases, group members continued to com-

municate in person or by means of other electronic means (e.g., e-mail) but

they abandoned their own group. Despite these caveats, true failure of Face-

book groups occurred very frequently. The analysis of [14] highlighted that

group survival depends on the social capital brought by group founders and

on their behavior. The papers above considered formation and evolution of

OSN groups but any of them explored the homogeneity of such group in dif-

ferent frame time. On the contrary, we do not simply study the mechanisms

of formation and growth of groups but we aim at exploring to form groups

which result time-stable homogeneous in terms of similarity.

2.2. Time-Stable Homogeneous Groups

Homogeneous processes are defined as those processes whose parameters

do not change over time or, in other words, they are time-stable with respect

to some measure. Usual group formation processes consider one or more

properties (e.g. similarity, social identity, etc.), also in a combined fashion,

but without to assure that group evolution will preserve them over time.

Conversely, different formation processes are specifically aimed to drive OSN

group formation with the aim of preserving the considered properties over

time. Therefore, a specific declination of the more general problem known as

affiliation recommendation [28] consists of selecting those suggestions about

groups to be recommended to users, and vice versa, which give a reasonable

probability to form time-stable groups.

In [22] the role played by the Social Identity and Cohesion theories in the

stability of OSN groups has been investigated together with other approaches
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based on properties, such as group size, in a large scale experimentation in-

volving diverse sets of real-world events by using data extracted from Twitter.

Authors found, as in presence of transient events, that group cohesion stabil-

ity over time is critical when compared with those groups formed on the users’

social identity when the group members are interested in a great variety of

different topics. To this purpose, for measuring Social Group Sustainability

and Membership Stability two different measures have been proposed. The

first one incorporating the notion of group discussion divergence and the

other reflecting the membership stability. Some experiments tested the ef-

fectiveness of such measures by correlating them with the size of the groups

and other measures of sustainability referred to different types of statistical

and entropic structural cohesions.

The temporal evolution of scientific collaboration is the focus of two

methods proposed in [12]. Authors applied these methods to analyze a co-

authorship network constructed with data related to conference contexts.

In [10] is provided a flexible framework in which group affiliation is treated

as an event capable of impacting on user’s preferences. To this purpose, a

probabilistic framework capable of modeling the preferences that arise in an

individual when he/she joins with a group is proposed and experimentally

validated. In other words, it implies to consider the affiliation to a group of

those users who maintain a high similarity level into the group over time and

keep homogeneous the group under this point of view.

In this scenario, we note as friendships and their relationships strictly

depend by the mutual trust occurring among individuals which, consequently,

affects the time-homogeneity of OSN communities.
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In the literature, the most part of the papers dealt with the problem of

forming time-stable groups by considering it as a problem essentially involv-

ing the affiliation into a group of those users which appear mutually similar

under some aspect. This reflects the idea that the resulting groups will be

more stable over time. Conversely, we have shown as an approach only based

on a similarity criterion could not be the best choice to form time-stable ho-

mogeneous OSN groups and that, in this context, the contribute due to the

trust plays a fundamental role. Among the cited contributions, only [5] indi-

rectly refers to trust, in the mean derived by the social theories [18], while the

other only consider some form of similarity as the unique criteria to forming

possible time-stable homogeneous OSN groups.

3. The Reference Scenario

Our framework is applied to an OSN S, represented by a tuple S = 〈U ,G〉,

where U is the set of users affiliated with S and G is the set of groups active

in S. Let’s assume also to have a set I of available items which can be

rated by the users of the OSN. They can belong, without any restriction,

to a specific category c ∈ C. An example of this scenario is represented by

those social networks, as CIAO or EPINIONS, in which items are products

belonging to commercial categories (e.g. software, hardware, books, etc.).

As already stated, it is assumed that, in S, each user u ∈ U is allowed to

review an item. Let ru,i be the generic review of an item i ∈ I released by u.

A review ru,i has a suitable form which specifies the following information:

• a rating assigned to i by u that we assume to be an integer varying

from 0 to 5;
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• a category c ∈ C associated with i, where C is the set of categories;

• a numerical score specifying the helpfulness of r(u, i);

• a timestamp.

As helpfulness we mean a measure of how many the rating associated

with a review is valuable to make a decision. To this purpose, we assumed

that each user can rate each review posted by other users. By collecting

the scores assigned by all the users to a particular review its helpfulness is

computed as the average of the scores. The field category is a bit harder

to manage. In fact, in case of product review systems like EPINIONS and

CIAO the categories are directly available and corresponding to commercial

categories, e.g. Music or Books. In other types of OSNs, the identification of

categories is sometimes, feasible as, for instance, when it is allowed members

of OSNs to apply tags to classify objects. Techniques like Latent Dirichlet

Allocation [6] might map users’ tags onto topics, which allow to partition

the space of available items into classes (each one associated with a category,

while the label associated with each class corresponds to the tag associated

with that topic).

Finally, we denote by ru the set of reviews associated with u, called review

history, and by R the set of all the review history in S.

In the aforementioned scenario, we assume to adopt a multi-agent plat-

form to manage users and groups. In detail, each user u is assisted by his/her

personal agent au, whereas each group g is assisted by an administrator agent

ag. The agents knowledge representation, the agent tasks and our definitions

of similarity and trust will be introduced below.
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3.1. The agents’ knowledge representation

To characterize the interests and the preferences of the generic user u ∈ U

it is assumed that a profile pu is associated with him, and to characterize

those of each group g ∈ G, a similar profile pg is obtained by aggregating the

profiles of its members. In particular, the profile pu stores a tuple containing

(i) interests, (ii) behaviors, (iii) preferred access modes and (iv) trust levels,

as follows:

• Interests: Let u ∈ U be a user and let c ∈ C be a category. The

interest of u in c is a function Iu(c) : U × C → [0, 1] computed as the

overall ratio of reviews for items belonging to c. More formally, Iu(c)

is expressed by:

Iu(c) =
|{ru,i : i ∈ c}|

|ru|
(1)

where ru is the review history of u, and we denote by ru,i each review

contained in ru and referred to an item i.

• Behaviors: The behavior field informs us if a past user’s activity is

(or is not) tolerated within a group. It is assumed to be a statement

of the form “The average rating of items is greater than 3.0” or “The

helpfulness of a review is less than 2.5”. Other examples may regard

the length of the longest posted message or their frequency.

The choice of relevant behavior is made by the social network analyst,

interested to study some properties of the network. The analyst, de-

pending from the particular social network and the particular goals of
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the analysis chooses the behavioral aspects that he/she judges most

significant (e.g., average rating, frequency of posts, etc.) as well as the

thresholds for discriminating the two possible boolean values that each

behavior can assume.

Let b be a behavior and let B = {b1, b2, . . . , bp} be a given a set of behav-

iors. We assume to dispose of a function ζu(b) : U×B → {True, False}

which takes a user u ∈ U and a behavior b ∈ B and checks whether

the behavior b matches with the u’s past behaviors. So, for instance, if

b is “The average rating of items is greater than 3.0” and the average

rating associated with u is 2.7; then the ζu(b) is equal to False. The

set of behaviors associated with a user u will be defined as Bu, i.e., we

set Bu = {ζu(b)| b ∈ B}.

The behaviors tolerated within a group g can be modeled in a similar

way, e.g. by a function ζg(b) : G×B → {True, False}; for each behavior

b ∈ B and each group g, it returns True if and only if the behavior b

belongs to the set Bg of behaviors tolerated within g.

• Access modes: An access mode identifies a different modality to ac-

cess a group, like to open, closed or secret, and let L be a list specifying

such accessing modes. In fact, some groups can be open, when any

user can freely access the content available in the group, or closed if

its contents are visible only to group members, etc. More in general,

we supposed that a function A : U → L is available to associate a user

u ∈ U with a mode l ∈ L for accessing to a group. For instance, the

user a could be associated with the access mode secret, meaning that
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a usually prefers to join with groups that have set their access mode

on secret. We highlight that the choice of an access mode for a group

is arbitrarily made by the group administrator, as well as each user

arbitrarily sets his/her particular preference for an access mode. This

components of the user profiles can be considered as fully random, and

not correlated with the other components.

• Trust levels: We suppose that a trust function returning how much

a user u perceives another user v as trustworthy is available. This

function is asymmetric, in the sense that if u trusts v it does not imply

that v trusts u too but, in general, tu→v 6= tv→u Therefore, let tu→v

be the level of trust of a user u with respect to the members of the

OSN. Trust levels are generally assigned directly by the users during

their interactions, in a way that depends on the specific social network.

For instance, in CIAO and EPINIONS a user a can explicitly declare if

he/she trusts or not in another user b (in this particular case, we have

a binary value for the trust level). Similarly, the trust perceived by a

user u with respect to a set g of group members can be defined as:

tu→g =

∑
v∈g tu→v

|g|
(2)

For each set of group members g ∈ G, the profile pg associated with g is

specularly defined as follows. The interest Ig(c) of g to a category c is defined

as the average of the interests of the users of g to c, where the interests are

computed as described for the user profile. Moreover, we suppose that the

administrator g is in charge of establishing the behaviors admitted into the
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group and a mode to access g (denoted as Ag). A group profile also stores

how the members of g perceive as trustworthy a user u, as follows:

tg→u =

∑
v∈g tv→u

|g|
(3)

3.2. The agents’ tasks

According to the profiles and the properties already defined, each time u

(resp., a user of g) performs an action involving any information represented

in pu (resp., pg) it is automatically updated by the associated agent au (resp.,

ag) as follows:

• When u performs an action (e.g., rating an item) his/her agent au

analyses the action and properly updates the user’s interests and the

boolean values of the variables contained in Bu. Similarly, the agent

ag updates the variables stored in Bg every time the administrator

of g changes the corresponding rules. Furthermore, if u (resp., the

administrator of g) decides to change his/her preferences with respect

to the access mode, then the agent au (resp. ag) properly updates Au

(resp. Ag).

• When u expresses his/her evaluation about a post authored by another

user v, then the agent au updates the trust measure tu→v as described

in Section 4.

We also assume that a Distributed Directory Facilitator agent (DDF)

will support user and group agents in the whole OSN, providing an Agent

Indexing Service, and a Communication Layer allows each agent to send to
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each other agent a message by using its name in the receiver field of the

message.

4. Similarity and Trust

As previously stated, our goal is studying the time-stability of groups,

in terms of similarity, in the OSN model presented in the previous section.

For this aim we consider users’ similarities and trust relationships, which are

defined in the following of this section.

4.1. Similarity measure

Let su,v be the measure of similarity between the profiles of users u and

v computed as a weighted mean of the contributions due to the interests

(cI), the behaviors (cB) and the access modes (cA) normalized in the range

[0, 1] in order to make them comparable. More formally, the similarity su,v

is computed as:

su,v =
wI · cI + wB · cB + wA · cA

wI + wB + wA

(4)

where the weight wI , wB and wA are real system coefficients belonging to

[0, 1] which suitably weight the contributes cI , cB and cA that, in turn, are

computed as follows:

• cI is based on the average difference between the interest values of u

and v for the all available categories into the OSN:

cI = 1−

∑
c∈C |Iu(c)− Iv(c)|

|C|
(5)
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• cB is based on the average difference between the boolean variables

contained in Bu and Bv. This difference is 0 (resp., 1) if the two

corresponding variables are equal (resp., different).

• cA is set to 1 (resp., 0) if Au is equal (resp., different) to Av.

The similarity su,g between a user u and a group g is computed in the

same manner described above, simply by substituting the user v with the

group g.

4.2. Trust measure

In our model, the trust is viewed as the sum of (i) a local term, which

specifies how much a user trusts another user, and (ii) a global term, to

express how much the whole OSN perceives a user as trustworthy.

For the local component, we observed that some OSNs allow their mem-

bers to directly specify if they trust (or distrust) another member of the

platform. This is, for instance, the case of platforms like EPINIONS and

CIAO we consider in this paper [27]. A more common (but harder to man-

age) configuration arises when users can interact in pairs (e.g., a user can

review/comment the reviews or ratings provided by other users) but they

are not able to provide trust values. In this case user’s behaviors has to be

analyzed to infer trust relationships. Usually, a feedback mechanism exists,

allowing each user to record if he/she is satisfied by his/her interactions with

other users (e.g., in Facebook a user can click on the button “I Like It”).

Such positive/negative users’ interactions are a useful information sources to

compute the trust between users themselves [9, 15] on the basis of the concept

of social capital [1]. In fact, a high rate of positive interactions means that a
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user u can get a concrete advantage to interact with a user v and, therefore,

trust should increase (resp., decrease) in presence of positive (resp., negative)

interactions

In compliance with terminology adopted in trust theory, the first com-

ponent to compute trust is represented by the satisfaction of u about v as

reliability and it is denoted by relu→v. We highlight that generally reliability

can indicate several types of trust relationships between two users, as, for in-

stance, the honesty that u perceives in v or the dependability that u has with

respect to the v’s behavior. In this work we use the term meaning how much

u is satisfied by the services provided by v. For example, in our experiments

with the social networks CIAO and EPINIONS, the users provide reviews on

commercial products, and the reliability that u has in v represents how much

u is satisfied by the reviews provided by v. Usually, reliability can assume

values ranging in the interval [0..1] ∈ R and the higher relu→v, the higher the

perception of the reliability of v by u. Note that reliability is an asymmetric

measure: this implies that relu→v 6= relv→u.

The second trust component is a global measure of the trust perceived by

the whole OSN about each other user v. We call this measure reputation of v

and denoted it by repv in the interval [0..1] ∈ R. The reputation is computed

by averaging all the reliability values relu→v for each v ∈ U .

The two trust components are joined in a unique value to compute the

trust tu→v of u about v as:

tu→v = αu · relu→v + (1− αu) · repv (6)

where αu is a real coefficient belonging to [0..1] which is set by u to weight

the relevance he/she assigns to the first trust term with respect to the second
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one. Trust is an asymmetric measure because in its formulation it accounts

for reliability, which is updated by au each time u provides a feedback on v.

Besides, each time a reliability value is updated by au, it sends the new value

to the DF that, in turn, returns a reputation value to au when it needs to

compute a trust measure.

4.3. Compactness: joining similarity and trust measures

As defined in [8], compactness is a measure obtained by combining trust

and similarity in a unique measure, say γu→v. By means of compactness

we are able to exploit importance users gives to the mutual similarity with

respect to the mutual trust. We model the level of importance given to the

similarity by a real coefficient Ws, ranging in [0..1], and, consequently, we

define γu→v as follows:

γu→v = Ws · su,v + (1−Ws) · tu→v (7)

Since trust is an asymmetric measure, γu→v is asymmetric, i.e., in general

γu→v 6= γv→u.

Symbol Meaning

S Social Network

G Set of groups

U Set of users

C Set of categories

I Set of items

ru,i review of the user u for the item i

au agent of the user u
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ag agent of the group g

pu profile of the user u

pg profile of the group g

Iu(c) interest value of the user u for the category c

Ig(c) interest value of the group g for the category c

Bu set of behaviors associated with the user u

Au access mode preferred by the user u

Ag access mode set by the group g

tu→v level of trust perceived by the user u with respect to the user

v

tu→g level of trust perceived by user u with respect to the group g

tg→u level of trust perceived by the group g with respect to the user

u

su,v similarity between users u and v

su,g similarity between the user u and the group g

relu→v reliability perceived by the user u with respect to the user v

repu reputation of the user u

αu weight the user u assigns to the reliability with respect to the

reputation

γu→v compactness perceived by the user u with respect to the user

v

Wsu weight the user u assigns to the similarity with respect to the

trust
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WI weights the contribution of the interest (Ic) into the compu-

tation of the similarity su,v

WB weights the contribution of the behavior (IB) in the compu-

tation of the similarity su,v

WA weights the contribution of the access mode in the computa-

tion of the similarity su,v

Table 1: Main symbols used in the paper, and their meaning.

In Table 1 we reported the meaning of all the symbols used by our nota-

tion.

In the next section we discuss the algorithm U2G, which is designed to

drive OSN group formation, and has been exploited to perform the experi-

mental campaign discussed in Section 7.

5. U2G: Matching users with Groups

In this section we summarize the design of the algorithm User-To-Group

(U2G), which enables user agents to select the groups to join with by maxi-

mizing the values of compactness, defined in Section 4.3.

Let G = {g1, g2, . . . , gn} be the OSN groups, with |G| = n. Moreover, let

ku
MAX

be a threshold ranging in [0, n] which specifies the upper bound on the

number of groups u desires to join with, i.e. from any group to all available

groups in the OSN but, reasonably, it will be kMAXu << n. In the following,

for convenience, the notation kMAX will be used instead of ku
MAX

.

Algorithm U2G has been designed to select kMAX groups yielding the largest

value of compactness of u vs the joined groups. We assume that as u joins
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Data: u: a user, X: a set of groups, m: an integer in [0, n], kMAX: the

number of groups u can join with

Result: A set Z of groups

Let Y be a set of m random groups extracted from DF;

Let Z = X
⋃
Y ;

for g ∈ Y do

au sends a message to ag associated with the group g and let pg be

the profile associated with g ;

end

Let S be the set of kMAX groups of Z having the highest values of

compactness;

for g ∈ S do

if g /∈ X then

au sends a join request to the agent ag that also contains the

profile pu of u;

else

au deletes u from g;

end

end

end

return Z

Algorithm 1: The U2G algorithm – User Agent Task

with more than one group then each of them still continues to give the whole

benefit to u, so that the overall benefit, in term of compactness, received

by u is equal to the sum of each contribution. Therefore, in presence of
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Data: u: a user, X: a set of groups associated with U ,

Result: A set of groups

for u ∈ K do

ag sends a message to au;

end

for u ∈ K
⋃
{r} do

Compute γg→u

end

Let π =

∑
ui∈g

∑
uj∈g γui→uj

|g|2
∀〈ui, uj〉 ∈ g;

Let S = ∅;

for u ∈ K
⋃
{r} do

if γg→u ≥ π then

S = S
⋃
{u};

end

end

Let TopS be the set of top-nMAX users in S;

if r ∈ S then

ag accepts the join request of r;

end

for u ∈ K ∧ u 6∈ S do

ag deletes u from g;

end

Algorithm 2: U2G – Group Agent Task
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an arbitrary number of groups K ⊆ G, the benefit gained by u in joining

with all the groups in K is given by
∑

gi∈K
γu→gi . The question of finding

the subset K⋆ ⊆ G producing the best benefit for u under the constraint

|K⋆| = ku
MAX

is equivalent to solve an optimization problem. While we analyzed

the theoretical foundation of the problem above in a previous work [8], in

this work it is enough to assume that each user agent au is not able to know,

in advance, the compactness of all groups in G versus the associated user u.

Furthermore, we assume that:

• au is able to sample m random groups from G;

• au will record into an internal cache the profiles of the groups u joined

in the past; we shall denote this set as X;

• m is the number of the group agents that at each epoch must be con-

tacted by au.

Algorithm 1 describes the steps au performs to find the kMAX groups to

which u can join with, while the algorithm implemented by the group agent

is reported in Algorithm 2. In particular, it is assumed that

• the size of each group g ∈ G can not be bigger than a threshold nMAX;

• nMAX is fixed by the group administrator;

• each agent ag stores into an internal cache the profiles of the users who

joined with g;

In the next Section 7 we discuss a set of experimental results aimed at

understanding the stability over time of the homogeneity of groups in OSNs
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when the formation of groups is driven by the sole similarity criteria or by

compactness.

6. A computational framework for analysing time-stability of group

homogeneity in OSNs

In this section we introduce the conceptual framework developed for

studying how the homogeneity of the OSN groups is stable over time.

In this framework, we associate a given OSN with a temporal dataset

of events, consisting of a matrix EM , where each row represents an event

containing a timestamp, a user identifiers, and the attributes of the event.

Events can be actions performed by users, or external events which change

the state of the OSN. In addition, we assume that a (non time-varying)

matrix TM of trust relationships is available, where each row is a pair of

user IDs (u, v), which represents a trust relationship among user u and user

v.

In our framework, we will refer to U2G-Comp and U2G-Sim as two dif-

ferent versions of the algorithm U2G described in Section 5. The former

represents the execution of the U2G algorithm on which the compactness γ

(Section 3) is computed by setting Ws < 1, i.e. groups formation is driven

by similarity and trust, while the latter represents the execution of U2G with

Ws = 1, i.e. the group formation is driven only by the similarity measure.

The framework provides two weights wI and Ws, real values in the range

[0 − 1], which can influence the results of the execution of U2G algorithm.

In particular, wI impacts on the computation of similarity su,v (see also
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Section 4.1 and Table 1), as it represents the weight assigned to the user

interest I, while the remaining value 1 − wI , in our experiments, is equally

divided among the couple (wA, wB), where wB represents the weight assigned

to the behavior of the users (the corresponding value cB is inferred from the

analysis of events in the dataset), while the value cA was set as random (it

is not in the original dataset). The lower the value of wI , the higher the

incidence of the component cA in the computation of similarity. We say

that cA is the “uncorrelated component” in our analysis. Furthermore, the

higher the value of Ws, the lower the impact of the trust relationship in the

computation of the compactness γ (see Section 4.3).

In this perspective, we define below the following measures, that can be

used when performing experiments, in dependence of framework parameters

wI and Ws.

6.1. Average similarity and compactness

We defineMAC (Mean Average Compactness) andMAS (Mean Average

Similarity), as follows:

MAC(wI ,Ws) =

∑
g∈G ACg

|G|
ACg =

∑
x,y∈g,x 6=y γx→y

|g|
. (8)

MAS(wI ,Ws) =

∑
g∈GASg

|G|
ASg =

∑
x,y∈g,x 6=y sx→y

|g|
. (9)

In particular, ACg (resp., ASg) is defined as the Average Compactness

(resp., Average Similarity), similarly to the average dissimilarity commonly

exploited in Clustering Analysis [20], since a group g can be viewed as a clus-

ter of users. As described in the following of this section, MAC is computed
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during the training phase of the U2G-Comp algorithm, i.e. it is only used

to drive group formation, while MAS is computed during the test phase.

Therefore measuring the variation of MAS can be useful to verify the homo-

geneity, in terms of similarity, of the groups formed in the training phase.

6.2. Experimental approach and main parameters

In our framework, we measure and compare the time-variation of the

average similarity of the groups in two different cases:

Comp Groups formed by the algorithm U2G-Comp, the U2G algorithm is

driven by compactness (Ws < 1).

Sim Groups formed by the U2G-Sim, i.e. the U2G algorithm is driven by

the sole similarity criterion (Ws = 1).

The computation of the measures are performed following the steps de-

scribed below:

1. Rows of the matrix EM are arranged in an increasing order, basing on

the timestamp found on the sixth column.

2. The matrix EM is divided into a number of time-windows of equal size.

The first time-window will be used as training set and the remaining

for the subsequent tests.

3. The trust network is constructed by loading the matrix TM and for

all.

4. The training is performed by executing the algorithm U2G-Comp (resp.

U2G-Sim) on the first time-window, in order to form groups of users.
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5. The training is stopped once the value of MAC for U2G-Comp (MAS

for U2G-Sim) is “stable”, i.e. the difference between the value mea-

sured after the previous execution and the current value is less than a

given threshold (in our case it was 5%).

6. Data of the remaining time-windows is loaded, one after another and,

for each of them, MAS is computed without executing the algorithm

U2G, such that group composition remains the same as in the end of

the training phase. This technique allows us to study the variation of

MAS due to the addition of events, which represent the execution of

some further actions by the users.

7. Experiments

In this section we discuss some experimental results obtained by applying

the computational framework described in the previous section on two dif-

ferent datasets extracted from social networks CIAO and EPINIONS. Both

datasets have been crawled by some researchers in order to carry out the

research described in [27]2.

We have chosen as datasets for our experiments EPINIONS and CIAO

since they are two good testbeds that are widely used in the research of

trust evaluation and trust-based recommendations, because they have both

the information of user trust relationships and user-item ratings. Users can

review items and assign them numeric ratings. They can also build their own

2Data used in our experiments are publicly available at http://www.public.asu.edu/

~jtang20/datasetcode/truststudy.htm
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trust network by adding the people whose reviews they think are valuable.

Moreover, in EPINIONS and CIAO datasets time stamps information of the

reviews have been published, and this information is crucial for our study on

time-stability of the homogeneity.

EPINIONS consists of 22, 166 users, while CIAO contains 12, 375 users.

Both datasets consist of a pair of matrices (EM,TM), as described in Sec-

tion 6. In the specific case, rows of matrix EM have the form {userID,

productID, categoryID, rating, helpfulness, timestamp}. More in detail, cate-

goryID represents the commercial category of the product identified by pro-

ductID which received the rating by the user identified by userID, and help-

fulness represents the level of satisfaction of the other user for that rating

(the latter has not been used in our experiments).

7.1. Experimental settings and software

Table 7.1 contains the parameters used to carry out the experiments for

both datasets, CIAO and EPINIONS. The size of the training set, as well as

the remaining data used for test are reported in the last two rows. In case of

EPINIONS, the training set is represented by the 100k events, while in the

case of CIAO the training set is made by the first 10k events.

The software used for the experiments is an extension of the previous one,

which has been implemented in Java, and was used to prove the convergence

of the algorithm U2G [8]. The used software, as well as the entire set of

configurations, experimental results and scripts to process and plot results

can be downloaded at https://github.com/fmes/simU2G.

33



Table 2: Parameters used in experiments on the EPINIONS and CIAO dataset.

EPINIONS CIAO

Parameter Value Parameter Value

Number of Groups 100 Number of Groups 50

kMIN 0 kMIN 0

kMAX 50 kMAX 50

nMIN 0 nMIN 0

nMAX 30 kMAX 10

NREQ 5 NREQ 5

Size of the Training Set 100, 000 Size of the Training Set 10, 000

Size of the Test Set 822, 267 Size of the Test Set 26, 065

7.2. Results

Experiments were performed by varying weights wI and Ws in the range

[0.1− 0.9].

Figures 1-2 represent the results for the CIAO network, as five-number

summary, i.e. 1st, 2nd, and 3rd quartile, minimum and maximum values

(bottom and top whiskers) of MAS computed after the training, for all the

remaining time windows. In particular, Figure 1 shows the overall behavior

of the algorithm U2G-Sim for different values of wI , while Figure 2 represents

the different values of computed MAS for the algorithm U2G-Comp. In this

last case, the value of Ws was fixed as 0.5. By comparing figures 1 and 2, it

can be observed that the lower the value of wI , the lower the value of overall

similarity obtained at the end of the test for U2G-Sim (Figure 1), while the

results obtained for the groups formed by the algorithm U2G-Comp show
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higher values of MAS, in the order of about 10%. This first set of results

say us that driving groups formation by compactness (i.e., mixing trust with

similarity) – when the weight wA of the uncorrelated component A has an

incidence in the order of at least 25% (i.e., wA + wB > 0.5) – will results

in a set of groups that best preserve their internal similarity over time, i.e.

the groups result time-stable in homogeneity with respect to the average

similarity.

A further set of results is shown into Figures 3 and 4, to report the

execution of the algorithm U2G-Comp for Ws in the range [0.1− 0.9], wI =

0.1 and wI = 0.5 respectively. In the case wI = 0.1 (Figure 3) the leverage of

the couple (wA, wB) is the highest, and even in the case the weight of the trust

component is low (i.e., Ws assume values larger than 0.5), values of MAS

assume values which are larger than 0.8 (e.g., median is 0.82 for Ws = 0.8),

showing a good resilience – in terms of time-stability – with respect to the

results of U2G-Sim (compare with Figure 1, wI = 0.1). Nevertheless, the

slight variability of the five-number summary shown in Figure 3 disappears

as wI is set to 0.5, as shown into Figure 4, which is the expected behavior,

as the uncorrelated component starts to assume a less significant weight.

Figures 5 and 6 show the results related to the execution of the algorithm

U2G-Comp and U2G-Sim for CIAO dataset in the cases [Ws = 0.5, wI =

0.1], and [Ws = 0.5, wI = 0.9] respectively, on which x-axis represents the

number of the time-window which is loaded before the computation of MAS.

By our analysis, these cases “lie at the borders”: in the former the average

similarity of the groups formed by the algorithm U2G-Comp is higher than

the similarity of the groups formed by the algorithm U2G-Sim, while in the
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Figure 1: CIAO - MAS vs parameter wI achieved by the U2G-Sim.
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Figure 2: CIAO - MAS vs. parameter wI achieved by the U2G-Comp with Ws = 0.5.

latter we observe almost no difference.

Figures 7 and 8 represents the reduction ratio – i.e., the ratio between the
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MAS measured at the end of the training and the MAS measured at the end

of the test – for the CIAO dataset. Results shown in Figure 7 confirm that the
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Figure 3: CIAO - MAS vs parameter Ws achieved by the U2G-Comp. (wI = 0.1).
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Figure 4: CIAO - MAS vs parameter Ws achieved by the U2G-Comp (wI = 0.5).
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Figure 5: CIAO - MAS measured over 10 time-windows for U2G-Sim (Ws = 0.5, wI =

0.1), and U2G-Comp, wI = 0.1 .

Figure 6: CIAO - MAS measured over 10 time-windows for U2G− Sim (Ws = 0.5, wI =

0.9), and U2G− Comp, wI = 0.9 .

average similarity inside groups is stable until wI = 0.4, while starting from

wI = 0.5 MAS reduction becomes relevant. Nevertheless, we remark that

the five-summary of Figure 2 shows values of MAS for U2G-Comp which are

higher than those reached by U2G-Sim until wI = 0.6. Figure 8 reports the
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reduction ratio of MAS for wI = 0.1. The value reported for Ws is related

to the setting of U2G-Comp (indeed, in the case of U2G-Sim, Ws = 1).

However, for U2G-Sim we reported, for convenience, the measure of MAS

next to the value obtained with U2G-Comp, by observing that the reduction

ratio in the case of U2G-Comp is always lower than that of U2G-Sim, and

does not increase as parameter Ws increase.

A further set of results is reported for EPINIONS into Figures 9-12. In

this case, we observed almost the same behavior reported in the case of

CIAO. In particular, the five-number summary shown into Figures 9 and 10

denotes an interquartile range which is lower then that shown for CIAO

(compare with Figures 1 and 2). This is due to the fact that EPINIONS

dataset is larger than CIAO by an order of magnitude, therefore results show

a less variability, i.e. more accurate that those obtained for CIAO dataset.

Furthermore, we compared results reported into Figures 5-6 with those of

Figures 11 and 12: while the overall behavior of the former (Figures 5 and

6) is quite confirmed by the latter, observed that, for wI = 0.1 the gap

between the two approaches – in terms of similarity – shown in Figure 11,

is larger than that shown into Figure 5. These results seems once again

consistent with the fact that EPINIONS dataset is made by about 1 million

events (CIAO about 36000 – see Table 7.1), as remarked before.

We further discuss the experimental results shown in this section in sec-

tion 9.
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8. Discussion

In this section we summarize and discuss the background and the main

findings of the experiments presented in the previous section.
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Figure 7: CIAO - MAS reduction vs parameter WI, U2G-Comp and U2G-Sim (Ws =

0.5) .
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Figure 8: CIAO - MAS reduction (ratio) vs parameter Ws U2G-Comp and U2G-Sim

(WI = 0.1) .
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Figure 9: EPINIONS - MAS vs parameter wI achieved by the U2G-Sim
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Figure 10: EPINIONS - MAS vs. parameter wI achieved by the U2G-Comp with Ws =

0.5 .
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The U2G algorithm presented in Section 3 is flexible, i.e. it is able to drive

the group formation by considering different combinations of several cost

functions, as specified in the experimental approach discussed in subsection 6.

In particular, we have carried out some experiments in order to verify whether

(and how much) groups formed by considering a non-trivial combination
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Figure 11: EPINIONS - MAS measured over 10 time-windows for U2G-Sim (Ws =

0.5, wI = 0.1), and U2G-Comp, wI = 0.1 .
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Figure 12: EPINIONS - MAS measured over 10 time-windows for U2G − Sim (Ws =

0.5, wI = 0.9), and U2G− Comp, wI = 0.9 .
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of trust and similarity (0 < Ws < 1) are time-stable homogeneous with

respect to users similarity, with respect to group formation driven by the

sole similarity.

Experiments show that forming groups on the base of users similarity

(i.e. U2G with Ws = 1) will lead to form “time-stable homogeneous” groups

if the uncorrelated components included in the computation of similarity

assume a weight which is not significant. In this case we verified that, as

WA +WB < 0.5 (i.e. WI > 0.5), the similarity of the resulting groups over

time is not affected by a significant degradation.

Nevertheless, when group formation is driven by compactness (i.e. com-

bining similarity and trust by setting Ws < 1 ∧Ws > 0), groups will result

in a time-stable homogeneous behavior even if uncorrelated behavioral com-

ponents included in the computation of similarity assume a significant weight

(WA +WB > 0.5, i.e. WI > 0.5). The result above says us that trust rela-

tionships will help to improve the level of resilience, in terms of similarity,

also in presence of behavioral components which are not strongly linked with

the others. In other words, mixing trust and similarity to aggregate users

into groups yields more robust results because potential errors due to the

similarity measures may be balanced by the contribution due to the trust.

Interestingly, experiments show that there is no tight relationship between

the results reported in the previous paragraph and the weight assigned to

the trust component (1−Ws) in the computation of compactness. In other

words, even when the weight assigned to the trust relationship in the com-

putation of compactness is very low (i.e., 1 − Ws = 0.1), groups formed

by the algorithm U2G show a higher level of time-stability with respect the
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similarity measure.

Finally, it is important to highlight that, in our paper, we discuss how

the effectiveness of the group formation, in terms of MAS, tightly depends

on the parameters named Ws and WI . The other parameters, that we have

reported in Table I, do not have a particular impact on this study, unless

we choose unreasonable value for them. We have performed a sensibility

analysis, varying these parameters in their space of admissibility, without

observing any significant variation of the effectiveness of the group formation.

We also remark that the only parameters that affect the results are the size of

the training and the test set. However, the issue of how the size of training

and test set influence the ability of the algorithm to form good groups is

orthogonal to the issues of how Ws and WI impact on the group formation.

Our paper is devoted to treat only these two latter issues.

9. Conclusions

In this work we discussed the results of an experimental campaign aimed

at studying the time-stability of OSN group homogeneity in terms of sim-

ilarity. In order to carry out this study, we have introduced a conceptual

framework which takes into account temporal dataset of events – which rep-

resents the evolution of the social network – and a (non time-varying) matrix

of trust relationships. The framework introduced several different weights

that allowed us to characterize the impact of the user similarity compared to

the component said “uncorrelated”, i.e. that are not in the original dataset,

as well as the impact of the weight on the trust relationships.

The experimental study has been conducted with a distributed algorithm
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for OSN groups formation, named U2G, which exploits the compactness mea-

sure, i.e. a combination of similarity and trust, on two different OSN datasets,

CIAO and EPINIONS. As algorithm U2G is provided with the flexibility

needed to implement the experimental approach of the conceptual frame-

work, it permits to employ different combination of similarity and trust, e.g.

to set the weight of the trust as zero and study the similarity-driven group

formation.

Obtained results have shown that forming groups on the base of users

similarity will lead to form time-stable homogeneous groups if the weight of

the uncorrelated components is not significant. Nevertheless, when group

formation is driven by compactness, i.e., by combining similarity and trust,

groups will result in a time-stable homogeneous behavior even if uncorrelated

behavioral components included in the computation of similarity assumes a

significant weight. Therefore, trust relationships will help to improve the level

of resilience, in terms of similarity, also in presence of behavioral components

which are not strongly linked with the others.

Interestingly, even when the weight assigned to the trust relationship

in the computation of compactness is very low, group formation driven by

compactness will lead to a number of groups having a higher level of time-

stability with respect the similarity measure.
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