
1

An Agent-based Sensor Grid
to Monitor Urban Traffic

Maria Nadia Postorino and Giuseppe M. L. Sarné

Abstract— The growing of vehicular traffic in urban areas has
worsened the citizens’ quality of life. Therefore some actions to
reduce their negative effects and to improve transport network
performances have been implemented over the years. To this pur-
pose, agent-based Intelligent Transport Systems can contribute
to manage a transport network. In this work, a non-intrusive
grid of agent-based sensors able to monitor traffic parameters
is proposed. It exploits acoustic signatures of road vehicles
and then analyses them to estimate traffic flows. Moreover,
cooperating neighboring agent sensors implement a trust system
to improve their performances. Some experimental results show
the feasibility and the advantages of the proposed solution.

Index Terms—Acoustic Vehicle Signature, Multi-Agent System,
Sensors Grid, Transport System, Trust System.

I. INTRODUCTION

Facing the increasing rate of vehicular traffic in most
cities, government Authorities’ new strategies is to manage the
existing rather than to invest in new infrastructures [1]. This
current tendency is also due to environmental awareness and
reduced availability of budgets for new and more expensive
investments [2], [3].

In this context, a relevant aid is coming from progresses in
computer science, electronic, control systems, signal process-
ing, communications and more and more sophisticated traffic
models to realize Intelligent Transport Systems (ITS) that
improves transport network performances [4], [5]. Therefore,
nowadays it is easier (i) to assist drivers on their travel de-
cisions by real-time traffic information systems (for instance,
directly provided on their personal devices [6]) (ii) to adopt
effective traffic control strategies (e.g., restricted traffic zones;
speed limitation) starting from user travel preferences [7].

In this paper, a new approach is proposed to detect and
monitor traffic flows in order to adopt suitable traffic control
strategies. The system works in real time, requires inexpensive
detectors and produces very low environmental impact. More
in detail, a sensor grid detects passages of vehicles and then
classifies them according to their acoustic signatures [8]. Each
sensor of the grid is associated to a software agent [9], [10],
an autonomous software entity coordinating all its activities
and cooperating with the other sensor agents.

The detection of the acoustic signatures generated by mov-
ing vehicles (see Section II-A) is based on the adoption of
simple and non-intrusive acoustic sensors, although it implies
a complex signal processing phase that here has been based

M.N. Postorino is with the Dept. DICEAM, University of Reggio Calabria,
Loc. Feo di Vito, 89122 Reggio Calabria, Italy, e-mail: npostorino@unirc.it

G.M.L. Sarné is with the Dept. DICEAM, University of Reggio Calabria,
Loc. Feo di Vito, 89122 Reggio Calabria, Italy, e-mail: sarne@unirc.it

on the use of artificial neural networks (ANN) [11]–[13]. Each
sensor agent manages a distributed trust system in order to
refine its outputs (see Section II-D and III). More in detail:
(i) the ANNs process the vehicle acoustic signatures and
return the traffic flow measures by limiting potential loss of
accuracy due to environmental noise signals [14]; (ii) each
sensor agent which cooperates with its neighbouring sensor
agents corrects and improves the ANNs outputs by using
the Trust Reputation Reliability (TRR) model [15], [16] takes
account of the existing interdependencies among their trust
measures (i.e. each trust measure permeates all the other trust
measures in order to obtain more reliable trust values).

A prototype of the proposed sensor agent grid has been
realized by using the agent platform JADE [17] and some
tests have been performed to verify its performances. To this
aim, the real data of a transport sub-network were used.

In the following, Section II provides an overview of the
proposed sensor agent. The trust system is described in Sec-
tion III, while the results of the real data experiments are
presented in Section IV. The Section V deals with related
work and, finally, Section VI draws some main conclusions

II. THE SENSOR AGENT

This Section presents an overview about the sensor agent,
represented in Figure 1 according to: (i) the analogic signal de-
tection; (ii) the A/D signal conversion and its pre-processing;
(iii) the ANN pattern analysis to return some traffic measures;
(iv) the traffic measure correction based on a distributed trust
system locally implemented by each agent.

A. Signal Detection

Traffic detectors [18]–[20] are classified according to the
adopted physical principle (i.e. radio frequency, pressure,
magnetic fields, audio, etc.) and their positioning (i.e. on-board
or in/over roadway).

On board traffic detectors include the GPS-based ones [21],
able to collect many travel data (i.e. travel time, average
speed, directions, etc.) for several transport applications [22],
although GPS signal could be loss, mainly due to the land
morphology. The in/over roadway class includes detectors
recognizing vehicles (and other traffic parameters) that are
moving across a detection zone. In turn, they are classified
in intrusive (e.g. inductive loops and pneumatic or piezoelec-
tric tubes) and not intrusive (e.g. video, audio, infrared or
microwave detectors) [23].

The first ones are subject to deterioration, while the others
are susceptible to the adverse weather conditions (e.g.severe
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Fig. 1. The Tasks of the sensor agent.

fog blinds video sensors) but they: (i) avoid to trouble traffic
for installation and maintenance issues; (ii) follow road di-
rection or geometry changes easily; (iii) monitor more lanes
also with a single sensor; (iv) have a low vulnerability to
mechanical damages. However, the choice of the best sensor to
use relies on many factors as required data, traffic composition,
road geometry, intrusiveness, installation and life, weather
conditions.

In this work, non-intrusive audio detectors (microphones)
have been considered. They detect the acoustic vehicle sig-
natures generated by the interactions tire-road and by other
inside noise sources (e.g. the engine) [24], [25]. Indeed, they
are cheap, easy to install or remove, return several traffic
data (i.e. speed, vehicle category, vehicles gap, etc.) and their
performances are quite good, although their accuracy might
fail for adverse weather, stopped or very slow vehicles, high
background noise level or for a wrong sensor location.

B. Signal Processing

Acoustic vehicle signatures main characteristic is its quick
variation in time (see Figure 2) and frequency domains for:
(i) kinematic, amount and traffic flow composition; (ii) road
geometry; (iii) weather; (iv) reflecting obstacles (e.g. buildings,
vehicles). Furthermore, the audio signal is apparently modified
because of the Doppler effect [26]. Then, it grows in intensity
and frequency when the vehicle approaches the sensor (i.e.
microphone) and vice versa when it moves away.

The acoustic vehicle signature is very rich of information
but not all of them need. To delete irrelevant information, the
signal processing starts with a filtering phase to cut off (i)
noise signals with a low intensity as, for instance, overnight
and (ii) the frequencies over the 5 KHz (see below).

The resulting analogical signal is converted in digital one
(A/D) [27], [28] by applying a Pulse Code Modulation (PCM)
transformation including: (i) a sampling process to return a
discrete-time signal with constant amplitude; (ii) a quantiza-
tion on a finite number of levels; (iii) a codify. According to the
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Fig. 2. The characteristic sound produced by vehicles moving with respect
to a fixed point in the time domain.

hypothesis that about 90% of useful information belongs to the
range 100÷5000 KHz [12], this process1 has been performed
by adopting a 10 Khz sample frequency, a quantization on 16
bits and a Grey codify. When vehicles are spaced for more
than 1 sec, a software procedure extracts a fragment (F ) of
1.5 seconds (centred on the peak value) from each audio track
enclosed between two gaps. According to the Doppler effect
and the used ANNs (see below), some preliminary tests shown
that a frequency spectrum analysis of such fragments allows
the passage and the class of a vehicle to be identified. Then
each audio fragment F is split into three equal slices (si, with
i = 1, 2, 3) of 0.5 second (to consider the Doppler effect) and
converted from the time to the frequency domain with a Fast
Fourier Transformation (FFT) [29].

Finally, some features representing the most salient signal
characteristics have been extracted from each slice. Their type
and number depend on the adopted analysis procedure and
then some tests have been performed by using a trial and error
method (see Section II-C). Consequently, each slice si was
split in some frequency bands (fj) from which the mean values
of the emitted signal power has been computed to represent it.
Tests identified the best balance between computational costs
and accuracy, showed a subdivision of the frequency range
100-5000 Hz in ten regions having boundary frequencies of
100, 149, 220, 325, 480, 709, 1047, 1548, 2288, 3383 and
5000 Hz. Note that any useful result is possible with less of
nine frequency bands.

C. The ANN Component

ANNs, inspired to the biological neural networks, fit well
the problem to recognize passage and class of a vehicle from
its acoustic signature [25] without having knowledge on the
specific function linking input and output data. According
to some preliminary tests, two multilayer supervised ANNs,
trained by a back-propagation (BP) algorithm [11], have been
identified as the optimal solution in terms of architecture,
topology and parameters calibration.

Briefly, the BP algorithm works for patterns (examples) and
modifies iteratively its learning parameters based on the error
between predicted and expected output values. The learning
process ends if the unknown relationship between input and
output is reached with the required precision. Then the trained
ANN can be directly applied to unknown patterns.

1Note that a 0-20 KHz signal, 44.1 kHz sampled, 16 bit quantized and
codify by using the Grey code, generates more of 40.000 samples for second.
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Specifically, we adopted three-layer ANNs with hyperbolic
tangent and sigmoid as neuron functions for the hidden and
the output layers, respectively. Both the ANNs receive in
input 30 values for pattern, i.e. the 10 feature values extracted
by each slice s in which is split F (see Section II-B), and
return real values ranging in [0, 1]. The first ANN identifies a
vehicle passage, while the second one classifies it according to
three pre-fixed categories (e.g., car, truck/bus or motorcycle).
Therefore the first ANN has only 1 output neuron and the
second one 3. Consequently, each training pattern of the
first ANN dataset consists of 30 input and 1 output value,
while that of the second ANN has 30 input and 3 output
values. Moreover, 3 vehicle type and noise organized on 6
different categories (e.g., rain, wind, strong wind, noise, loud
noise, background, respectively) have been considered for the
training.

D. The Trust System Component
Each sensor agent calibrates its ANN outputs based on those

of its neighboring agents (i.e. the agents directly connected to
it on the transport network). To this aim, the sensor agent
exploits a distributed trust system that, according to the trust
the agent assigns to its neighboring agents, weight the traffic
values provided by them. More details about the trust system
are given in Section III.

III. THE TRUST REPUTATION RELIABILITY MODEL

The Trust Reputation Reliability (TRR) model [15], [16],
is an extension - particularly a distributed version - of the
mathematical model described in [30]. Briefly, in TRR each
agent has its perception of the trust (τ ) of each other agent (in
its community) providing a service, for instance data based on
its reliability (ρ) and reputation (π) measures. In the following
the TRR model will be described in the detail.

A. Reliability in the TRR model
In TRR each agent a has its own reliability model inde-

pendently from the other agents. Therefore, the reliability of
the agent b (i.e. ρab ∈ [0, 1] ∈ R) for the agent a is given by
ρab = fa(iab), where iab is the number of interactions that a
and b performed. In other words, the level of knowledge a has
of b (i.e. iab) due to their past interactions is considered.

B. Reputation in the TRR model
The agent a computes the reputation of the agent b (i.e.

πab ∈ [0, 1] ∈ R) by asking to each other agent c of its
community, different from a and b, an opinion about the
capability of b in providing a service. In TRR the opinion
of c, represented by the trust measure (see below) that c has
in b (i.e. τcb), is weighted by the trust that a has in c (i.e. τac).
Therefore, in TRR the reputation of an agent is different for
each agent depending on both its individual perception and on
the opinions of the other agents. Formally, the reputation πab
is computed as the weighted mean of all the opinions (i.e. the
trust measures) of each other agent c, different from a and b,
weighted by the value of the trust that a has in c as:

πab =

∑
c∈C−{a,b} τcb · τac∑

c∈C−{a,b} τac
(1)

C. Trust

Commonly, the trust measure that an agent a assigns to an
agent b for its service (i.e. τab ∈ [0, 1] ∈ R) combines the
reliability measure ρab with the reputation measure πab. Thus
the direct knowledge that a has about b and the suggestions
given from the other agents to a about b are taken into account
in the trust measure. Some approaches require to specify the
percentage of relevance given to the reliability with respect to
the reputation. In TRR τab is computed by using the parameter
αab (i.e. αab ∈ [0, 1] ∈ R) to weight the reliability ρab and
(1 − αab) to weight the reputation πab. Formally, the trust
assigned by a to b is computed as:

τab = αab · ρab + (1− αab) · πab (2)

Differently from the past, it is assumed that the relevance
of the reliability with respect to the reputation increases with
the number of interactions iab occurred between the agents a
and b (i.e. αab = αab(iab)). In particular, αab = 1 only if iab
is higher than or equal to a threshold N (a system parameter);
otherwise, if αab depends on the ratio iab/N . More formally:

αab =

{
iab

N if iab < N
1 if iab ≥ N

(3)

Consequently, τab can be expressed as:

τab = αab · ρab + (1− αab) ·
∑

c∈C−{a,b} τcb · τac∑
c∈C−{a,b} τac

(4)

This equation, written for all the agents, leads to a system of
n ·(n−1) linear equations containing n ·(n−1) variables τab,
where n is the number of agents. This system is equivalent to
that described in [30] and admits only one solution.

D. Distributed solution

When there is a wide agent community, the direct solution
of this trust model is behind the computational capabilities of
our sensor agent [31]. Therefore, we implemented a distributed
approach where each agent applies the trust model only with
respect to its neighboring agents. In such a way, we obtain a
lot of small, handling and partially overlapped trust systems,
were the trust values are propagated through the trust systems.

IV. THE EXPERIMENT

This section presents the results of some experiments aimed
at verifying the effectiveness of the proposed sensor agents
both in (i) returning number and category of the detected
vehicles and (ii) operating in a grid configuration on a transport
network. The prototypes of the agents have been realized
in JADE [17] and a sampling campaign has been carried
out in the city of Reggio Calabria, in Southern Italy. Before
describing the two experiment components, a brief overview
of collected data and ANN training step is presented.

The sampling campaign involved 4 detection points, for 4
working days and 3 sessions for day (i.e. h. 8-9, 13-14 and 18-
20, when the traffic reaches its peaks) on one-ways and one-
lane roads in different traffic and weather conditions. Each
detection point consisted of a microphone close to the road
and a notebook to store data.
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Fig. 3. Traffic and Noise Recognition performed by ANN1 in recognizing
vehicles and noises at each Detection Point (DP) A-D and the average error
(DP-Av)

Part of the collected data have been used to train the
ANNs (see Section II-B). Preliminary tests defined the optimal
ANNs topologies (i.e. 30, 55 and 1 neurones and 30, 25
and 3 neurones for the input, hidden and output layers of
ANN1 and ANN2, respectively). In particular, the input data
are the feature values (see Section II-B), while the output,
ranging in [0, 1] ∈ R, for ANN1 (resp. ANN2) means
a vehicle passage or a noise (resp. the membership to a
vehicle class). The training datasets involved 2500 normalized
patterns, 50% vehicles (e.g. cars, truck/bus and motorcycles
with a prevalence of cars, likely to the real traffic, without
affecting the performances [32]) and 50% noises shared on 6
noise classes in equal amounts (see Section II-C). The training
phases ended after about 14500 iterations for ANN1 and 9800
for ANN2. Note that only one ANN was unable to detect a
vehicle passage and/or its class with an acceptable precision.

a) Experiment 1: To verify the performances of our
sensor agent, the trained ANNs received in input unknown
patterns as a continuous flow of acoustic signals to process
(see Sections II-B, II-C). As a result, 93.41% of ANN1 and
88.46% of ANN2 showed an average accuracy in respectively
recognizing vehicle passages from noises and classifying the
vehicles, see Figures 3 and 4. These results are interesting
and close to those of the best (and more expensive) traffic
detectors. However, note that: (i) some vehicles misclassi-
fication are due to their acoustic signatures similar to that
of other categories, for instance some vans are similar to
cars; (ii) ANN1 mistakes (i.e. noises classified as vehicles)
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Fig. 4. Vehicle Classification performed by ANN2 for the ANN1 output
at each Detection Point (DP) A-D and the average error (DP-Av)

impact on the ANN2 performances. (iii) idle cars or bad
weather conditions made the sensor unable to provide useful
results. More in general, tests have shown that each sensor
unit overestimates slightly traffic flows and most part of the
errors are due to noises recognized as vehicles.

b) Experiment 2: According to Figure 1, the second
part of the experiment concerns the reliability of the sensor
grid to limit unpredictable misleading (i.e. due to temporary
obstacles) and the overestimation attitude of the ANN heuristic
procedure. The test has been made on a small 4-detection point
real grid, see Figure 4. To this purpose, each sensor agent
computes periodically its traffic measures and sends them to
each of its neighboring agent together with the last calculated
trust values of their common neighboring agents.

Let Fx be the traffic flow detected by the sensor agent x in
a time ∆t and let F

′

x be its weighted value computed as F
′

x =
τxx · Fx, where τxx is the trust of x calculated by itself based
on the TRR model. Note that if Fx and F

′

x are greater than
the maximum capability of the road (i.e. Fmax

x ) then we set
them to Fmax

x . Moreover, let FIx (resp. FOx) be the sum of
all the incoming (i.e. ongoing) traffic flows for x provided by
its neighbor agents and let FI

′

x (resp. FO
′

x ) be its weighted
traffic flow computed as FI

′

x =
∑nI

i=1 τ
x
i ·FIx,i (i.e. FO

′

x =∑nO

i=1 τ
x
i ·FOx

i ), where τxi is the trust the sensor agent x has
calculated for the i-th sensor about its capability of providing
trusted values. Furthermore, let Fx be the estimated traffic flow
of x computed as mean between its incoming and ongoing
traffic flows above described (i.e. Fx = (FI

′

x + FO
′

x )/2) and
let δ and ψ be two learning coefficients ranging in [0, 1] ⊂ R.

Each sensor agent calibrates its weighted traffic measures
(i.e. F

′

x) and reliability values (i.e. ρx) with respect to those of
its neighboring agents on the grid by executing the following
heuristic procedure:

• Any correction is performed on traffic measures and
reliability values if: (i) F

′

x (resp., FI
′

x , FO
′

x ) differs
for more than the 20% with respect to the previous step;
(ii) F

′

x or the i-th incoming (resp. ongoing) traffic flow
FI

′

x,i (resp. FO
′

x,i) is equal to FImax
x,i (resp. FOmax

x,i ).
• Otherwise, the final traffic flow measure of x (i.e.

′′

x) is
updated as:

F
′′

x =

{
F

′

x − δ · Fx−F
′
x

2 if F
′′

x ≤ Fmax
x

Fmax
x otherwise

(5)

and the reliability value assigned by x to each involved
sensor agent, including itself, is updated as:

ρx =

{
ρx + ψ · F

′′
x −F

′
x

F ′
x

if ρx ≤ 1

1 otherwise
(6)

then x recomputes the trust of its neighboring agent.
The experiment has been performed as regards the detection

point C of Figure 4 by setting ∆t = 2 minutes, δ = 0.5 and
ψ = 0.75, while reliability and trust values of all the sensor
agents was initially set to 1. In Figure 6 the obtained results in
terms of overestimated number of vehicles for F , F

′
and F

′′

with respect to the real traffic flows in the detection point C are
represented. Results show that the implemented procedure is
able to obtain traffic flow measures (i.e. F

′′
) closer to real data
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Fig. 5. The representation of the used transport sub-network.

than the other measures (i.e. F and F
′
) by taking advantage

of the use of a trust model in the agent grid.

V. RELATED WORK

A complete literature overview on the different aspects
handled in this paper is beyond our aim and, therefore, only
those contributions coming closer to the matter presented here
will be discussed in the following.

To monitor and manage a transport network, ITSs widely
exploit the benefits provided by software agents to deal with
large, uncertain and dynamic systems also in a distributed and
cooperative way [4], [33]–[35]. Indeed, multi-agent systems
are characterized by learning and adaptive capabilities when
the complexity of the environments makes difficult to differ-
ently program agent behaviors [36]. Besides, agents can take
advantage of helping other agents and reciprocally share data
and experiences about other agents [37], as in our proposal.

Researchers are giving increasing attention to the appli-
cation of multi-agent systems to transport network control
and management. For instance, in [33] agents cooperate to:
(i) improve the traffic management by allocating the network
capacity; (ii) spread traffic information to drivers; (iii) take into
account drivers’ needs and preferences (in this case agents are
embedded in vehicle route assistant devices). While in [34],
[38], [39] the complex tasks involved in managing a transport
network are decomposed into simpler agent-oriented tasks.
Agents, dynamically distributed and replaced over the trans-
port network to adapt its management to various scenarios,
are hierarchically organized on a three level architecture to:
coordinate agents tasks; execute the agents control; realize the
agents activities.

However, these management tools require to be supported
by algorithmic models able to simulate and to forecast users’
path choices [4], [40], [41] but first, and foremost, it is required
to know the state of the traffic on the transport network.
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Since the knowledge of the traffic state on the transport
network is a primary need for transport planners, a large
number of sensors are currently available to detect traffic
data [42], as discussed in Section II-A. Some of them are
based on the analysis of acoustic vehicle signatures by ANNs,
although different pre-processing phase and ANNs are used.
In this context, in [24], [43] audio signals are processed
by a Linear Predictive Coding conversion, autocorrelation
analysis and Time Delay ANNs. The authors measure traffic
flows on more lane roads and classify 4 classes of vehicles,
but results are less satisfactory than those obtained in our
work (although we tested only single lane roads). In [25] the
vehicle detection exploits the audio signal peaks, while the
classification is performed by multi-layer BP ANNs that use,
as discriminative features, some characteristics of the emitted
acoustic energy. Authors state the classification process as
unreliable for vehicles different for class but similar for engine.
Authors of [44] proposed to classify type and distance between
vehicles based on their noises for different weather and speed
conditions. From the recorded sound signals some features
are extracted and, after a Discrete Fourier Transformation,
processed by two probabilistic ANNs.

Finally, advances in communications, particularly wireless
technologies, allow wide grids to be realized [45]. Such grids
exploit more and more often agent technology [46] and trust
systems for improving their effectiveness and performances.
A comparison of different trust models for grid systems is
provided in [47]. However, grids can adopt trust systems for
privacy and security reasons [48] (e.g. in presence of wireless
sensors) and not only to identify misleading sensors [49], [50],
as in our case.

VI. CONCLUSIONS

To monitor urban vehicular traffic, we presented an agent-
based sensor using information embedded into the acoustic
vehicle signatures to identify both passage and class of de-
tected vehicles. Moreover, this sensor agent has been designed
to work in a grid configuration by cooperating with its
neighboring agents in order to refine their measures. The
proposed sensor agent takes advantage of the adoption of
neural networks for processing the audio signals and the
implementation of a distributed trust system to weight the
collaboration of its neighboring sensor agents.

To test the performances of the proposed sensor agent,
we built its prototype in JADE. Two different real data
experiments have been realized. The first one considered the
sensor agent in a stand-alone configuration. As result, the
identification of passing vehicles and their class are close
to those of the best (and more expensive) traffic detectors.
The second experiment verified the effectiveness of the used
heuristic algorithm to refine the computed traffic measures by
exploiting a distributed trust system on a little grid of sensor
agents.

Future researches will be addressed to test the performances
of the proposed sensor agent on both multi-lane and/or two-
way roads and the properties of a wider grid of sensor agent.
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