
Probabilistic Business Constraints and their Monitoring

Fabrizio Maria Maggi1, Marco Montali2, Rafael Peñaloza3, and Anti Alman1

1 University of Tartu, Estonia
{f.m.maggi,anti.alman}@ut.ee
2 Free University of Bozen-Bolzano, Italy

montali@inf.unibz.it
3 University of Milano-Bicocca

rafael.penaloza@unimib.it

Abstract. Monitoring and conformance checking are fundamental tasks to de-
tect deviations between the actual and the expected courses of execution in a
business process. In a variety of application domains, the model capturing the
expected behaviors may be intrinsically uncertain, e.g., to distinguish between
standard courses of execution and exceptional but still conforming ones. Surpris-
ingly, only very few approaches consider uncertainty as a first-class citizen in
this spectrum. In this paper, we tackle this timely and challenging problem con-
sidering the setting where the model is described as a set of declarative, temporal
business constraints. First, we delve into the conceptual meaning of probabilistic
business constraints, and argue that they can be discovered from event data using
already existing techniques. Second, we study how to monitor probabilistic con-
straints, where constraints and their combinations may be in multiple monitoring
states at the same time, though with different associated probabilities. Third, we
operationalize this monitoring framework using automata coupled with probabil-
ities, and report on its actual implementation.

Keywords: Business Process Monitoring · Probabilistic Declarative Process Models ·
Probabilistic Conformance Checking

1 Introduction

A key functionality that any process-aware information system should support is com-
pliance monitoring [9], i.e., the ability to verify at runtime whether the actual flow
of work is compliant with the intended business process model. This runtime form of
conformance checking is particularly suited to recognize and handle deviations on still
running instances. A common way of representing monitoring requirements that cap-
ture the expected behavior of a process, is by using declarative, business constraints.
A plethora of studies has demonstrated that, in several settings, business constraints
can be formalized in terms of temporal logic rules. Within this paradigm, the Declare
constraint-based process modeling language [18] has been introduced as a front-end
language to specify business constraints based on Linear Temporal Logic over finite
traces (LTLf) [2]. The advantage of this approach is that the corresponding automata-
theoretic characterization of LTLf can be exploited to provide advanced monitoring fa-
cilities to continuously determine the state of constraints based on the events collected

2 F.M. Maggi et al.

at runtime [13,1], and to detect violations at the earliest moment possible by identifying
conflicting constraints [14].

In a variety of application domains, business constraints naturally come with uncer-
tainty. Consider, e.g., constraints: (i) expressing best practices that have to be followed
in most but not necessarily all the cases; (ii) partially reflecting the behavior of uncon-
trollable, external stakeholders; (iii) capturing exceptional but still conforming courses
of execution. Constraints are also inherently uncertain when they are discovered from
event data. Surprisingly, only very few approaches consider uncertainty as a first-class
citizen not only when it comes to monitoring and conformance checking of business
constraints, but also when more conventional procedural notations are considered [8].

In the context of business constraints expressed with temporal logics, introducing
uncertainty is notoriously known to be extremely challenging. Combined logics in this
spectrum thus come with semantic or syntactic restrictions to tame the interaction of
temporal operators and probabilities (see, e.g., [17,6]). In addition, such logics do not
lend themselves to be applied in the context of business processes, since they are defined
over infinite traces. To tackle these issues, the probabilistic temporal logic over finite
traces PLTLf , and its fragment PLTL0

f , have been recently proposed in [12].4 PLTL0
f

is of particular interest here, since the way probabilities are used can be interpreted by
naturally matching the notion of conformance: a constraint ϕ has probability p, if, by
imagining all the traces contained in a log, the fraction p of such traces satisfies ϕ.

Leveraging on this, we provide here a threefold contribution. First, we delve into
the conceptual meaning of probabilistic business constraints, introducing probabilities
in Declare, obtaining the ProbDeclare language. We also argue that probabilistic De-
clare constraints can be discovered from event data using, off-the-shelf, already existing
techniques, with strong guarantees on the consistency of the generated models. Interest-
ingly, this is done by interpreting the event log as a stochastic language, in the style of
[8]. Second, we study how to monitor probabilistic constraints, where constraints and
their combinations may be in multiple monitoring states at the same time, though with
different associated probabilities. This is based on the fact that a single ProbDeclare
model gives raise to multiple scenarios, each with its own distinct probability, where
some of the constraints are expected to be satisfied, and the others to be violated. Third,
we operationalise this monitoring framework using automata coupled with probabili-
ties, and report on its actual implementation.

The paper is structured as follows. In Section 2, we recall the temporal logics used
in the remainder of the paper. In Section 3, we introduce the ProbDeclare approach and
study the notion of constraints scenarios and their probabilities. In Section 4, we dis-
cuss how ProbDeclare constraints can be seamlessly discovered from event data using
existing techniques. In Section 5, we turn ProbDeclare into a monitoring framework,
which has been fully implemented.

2 A Gentle Introduction to the PLTL0
f Logic

Since PLTLf builds on LTLf , we start by briefly recalling LTLf .
LTL over finite traces. LTLf has exactly the same syntax of standard LTL, but, dif-
ferently from LTL, it interprets formulae over an unbounded, yet finite linear sequence

4 The paper is available for reading at [11].

Probabilistic Business Constraints and their Monitoring 3

of states. Given an alphabet Σ of atomic propositions (in our setting, representing ac-
tivities), an LTLf formula ϕ is built by extending propositional logic with temporal
operators:

ϕ ::= a | ¬ϕ | ϕ1 ∨ ϕ2 | ©ϕ | ϕ1 U ϕ2 where a ∈ Σ.
The semantics of LTLf is given in terms of finite traces denoting finite, possibly

empty, sequences τ = τ0, . . . , τn of elements from the alphabet 2Σ , containing all
possible propositional interpretations of the propositional symbols in Σ. In the context
of this paper, consistently with the literature on business process execution traces, we
make the simplifying assumption that in each point of the sequence, one and only one
element from Σ holds. Under this assumption, τ becomes a total sequence of activity
occurrences from Σ, matching the standard notion of (process) execution trace. The
evaluation of a formula is done in a given state (i.e., position) of the trace, and we use
the notation τ, i |= ϕ to express that ϕ holds in the position i of τ .

In the syntax above, operator © denotes the next state operator, and ©ϕ is true, if
there exists a next state (i.e., the current state is not at the end of the trace), and in the
next state ϕ holds. Operator U instead is the until operator, and ϕ1 U ϕ2 is true, if ϕ1

holds now and continues to hold until eventually, in a future state, ϕ2 holds. From the
given syntax, we can derive the usual boolean operators ∧ and →, the two formulae
true and false , as well as additional temporal operators. We consider, in particular, the
following three:
• (eventually) 3ϕ = true U ϕ is true, if there is a future state where ϕ holds;
• (globally) 2ϕ = ¬3¬ϕ is true, if now and in all future states ϕ holds;
• (weak until) ϕ1W ϕ2 = ϕ1 U ϕ2 ∨ 2ϕ1 relaxes the until operator by admitting the

possibility that ϕ2 never becomes true, in this case by requiring that ϕ1 holds now
and in all future states.

We write τ |= ϕ as a shortcut notation for τ, 0 |= ϕ, and say that formulaϕ is satisfiable,
if there exists a trace τ such that τ |= ϕ.
Example 1. The LTLf formula 2(close → ©3accept) models that, whenever an
order is closed, then it is eventually accepted. The structure of the formula follows what
is called response template in Declare. /

Every LTLf formula ϕ can be translated into a corresponding standard finite-state
automatonAϕ that accepts all and only those finite traces that satisfy ϕ [2,1]. Although
the complexity of reasoning with LTLf is the same as that of LTL, finite-state automata
are much easier to manipulate in comparison with Büchi automata, which are necessary
when formulae are interpreted over infinite traces. This is the main reason why LTLf
has been extensively and successfully adopted within BPM to capture constraint-based,
declarative processes, in particular providing the formal basis of the Declare modeling
language [18]. Specifically, automata-based techniques for LTLf have been adopted to
tackle fundamental tasks within the lifecycle of Declare processes, such as consistency
checking [18,16], enactment and monitoring [18,13,1], and discovery support [10].

Probabilistic LTL over finite traces, and its fragment PLTL0
f . The PLTLf logics

[12] extends LTLf with a special probabilistic next operator, which intuitively indi-
cates that in the next time point a formula holds with a given probability (or range
of probabilities). This is interpreted in a so-called superposition semantics, where ev-
ery trace is possible (with different probabilities) until actual events are observed. The
main drawback of the whole logic is that the interaction of probabilities and time causes

4 F.M. Maggi et al.

a complexity jump from PSPACE to EXPTIME for all standard reasoning tasks, making
it impossible to adopt the well-established automata-based techniques used in LTLf . To
tackle this issue, [12] also brings forward a fragment of this logic, called PLTL0

f . This
fragment is particularly suitable to capture business constraints and interpret probabil-
ities statistically, as the fraction of conforming vs non-conforming traces.

Specifically, a PLTL0
f formula is a set of LTLf formulae, each one coming with a

probability on the likelihood of its satisfaction.
Definition 1. A PLTL0

f formula is a set of logical expressions of the form }pϕ, where
ϕ is a classical LTLf formula, ./ ∈ {=, 6=,≤,≥, <,>}, and p ∈ [0, 1]. /

The special } operator indicates that ϕ holds with probability ./ p, giving to p
the interpretation of a statistical probability. In fact, we can read this expression as
the fact that the fraction of execution traces satisfying constraint ϕ is ./ p. Only for
simplicity of presentation, in the remainder of this paper, we restrict our attention to
expressions where we have exact probabilities, i.e., where ./ is the equality operator. For
compactness, we write }pϕ as a shortcut notation for }=pϕ. We stress here once and
for all that thanks to the logical machinery introduced in [12], all the presented results
in this paper carry over general PLTL0

f expressions employing arbitrary comparison
operators.

This statistical interpretation of probabilities is central in the context of the present
paper, and leads to the following, fundamental observation, which is key to understand
how probabilistic constraints work: the PLTL0

f formula }pϕ is logically equivalent to
the corresponding inverse formula }1−p¬ϕ. This reflects the intuition that, whenever
ϕ holds in a fraction p of traces from an event log, then ¬ϕ must hold in the comple-
mentary fraction 1−p of traces from that log. Conversely, given an unknown execution
trace τ , trace τ will satisfy ϕ with probability p, and will violate ϕ (i.e., satisfy ¬ϕ)
with probability 1 − p. Hence, we can interpret ϕ and ¬ϕ as two alternative, possible
worlds, each coming with its own probability (respectively, p and 1− p).

Since in PLTL0
f time and probability mix together, satisfiability depends on both.

Definition 2. A PLTL0
f expression }pϕ is satisfiable, if p 6= 0 and ϕ is satisfiable in

the classical LTLf sense. /

As a consequence of this definition, we get that a PLTL0
f expression }1ϕ with

probability 1 corresponds to just one possible world, where ϕ is true.
The notion of possible world introduced above carries over general PLTL0

f formulae
with multiple expressions. This is discussed in Section 3.
Example 2. The PLTL0

f formula }0.82(close → ©3accept) models that the re-
sponse formula 2(close → ©3accept) has probability 0.8, that is, in 80% of the
process traces, it is true that, whenever an order is closed, then it is eventually accepted.
This is equivalent to formula}0.23(close∧¬©3accept, which asserts that in 20% of
the traces the response is violated, i.e., there exists a state where the order is closed and
not accepted afterwards. Given a trace τ , there is then 0.8 chance that τ will satisfy the
response formula 2(close → ©3accept), and 0.2 that τ will violate such a formula
(i.e., satisfy its negation 3(close ∧ ¬©3accept)). /

PLTL0
f is interesting in the context of this paper for a twofold reason. On the one

hand, reasoning about PLTL0
f falls back to PSPACE, matching the complexity of the

classical LTLf case (without probabilities). As we will show in this paper, this allows
us to resort to standard LTLf automata-based techniques for probabilistic monitoring

Probabilistic Business Constraints and their Monitoring 5

Table 1: Some Declare templates, with their LTLf and graphical representations.

TEMPLATE NOTATION TEMPLATE NOTATION

existence(a):
3a a

1..∗
absence(a)
¬3a a

0

existence2(a)
3(a ∧©3a) a

2..∗
absence2(a)
¬3(a ∧©3a) a

0..1

response(a,b)
2(a→ ©3b) a b

precedence(a,b)
¬bWa a b

resp-existence(a,b)
3a→ 3b a b

not-coexistence(a,b)
¬(3a ∧3b) a b

and conformance checking. On the other hand, thanks to its semantics, PLTL0
f can be

used to seamlessly obtain a probabilistic variant of Declare. This is tackled next.

3 Probabilistic Declarative Process Modeling

We employ PLTL0
f as the basis for obtaining a probabilistic version of Declare [18,15],

and for reasoning on probabilistic constraints.

3.1 The ProbDeclare Framework

Declare is a constraint-based process modeling language based on LTLf . Differently
from imperative process modeling languages, Declare models a process by fixing a
set of activities, and defining a set of temporal constraints over them, accepting every
execution trace that satisfies all constraints. Constraints are specified via pre-defined
LTLf templates, which come with a corresponding graphical representation (see Table 1
for the Declare patterns we use in this paper). For the sake of generality, in the remainder
of the paper, we consider arbitrary LTLf formulae as constraints, but, in the examples,
we work on formulae whose templates can be represented graphically in Declare.

We lift Declare to its probabilistic version ProbDeclare as follows.
Definition 3. A ProbDeclare model is a pair 〈Σ, C〉, where Σ is a set of activities and
C is a set of probabilistic constraints. Each probabilistic constraint in C is a pair 〈ϕ, p〉,
where ϕ is an LTLf formula over Σ representing the constraint formula, and p is a
rational value in [0, 1] representing the constraint probability. /

Formally, a ProbDeclare model 〈Σ, {〈ϕ1, p1〉, . . . , 〈ϕn, pn〉}〉 is simply the PLTL0
f

formula {}p1ϕ1, . . . ,}pnϕn}, where each expression corresponds to a probabilistic
constraint. By recalling that, in PLTL0

f , expressions }bϕ and }1−p¬ϕ are equivalent,
we have that, in ProbDeclare, constraints 〈ϕ, p〉 and 〈¬ϕ, 1 − p〉 are equivalent. This
has the effect that, in ProbDeclare, the distinction between existence and absence
templates (cf. the first two lines of Table 1) gets blurred. In fact:

〈existence(a), p〉 = 〈3a, p〉 = 〈¬3a, 1− p〉 = 〈absence(a), 1− p〉
The same line of reasoning can be applied for the other comparison operators, and
considering the existence2 and absence2 templates. Such constraints have in fact
to be interpreted in the light of probability of (repeated) presence for a given activity.

6 F.M. Maggi et al.

Example 3. A small but illustrative ProbDeclare model is shown in the top left of Fig-
ure 1. Crisp constraints with probability 1 are shown in dark blue, and genuine prob-
abilistic constraints are shown in light blue, with probability values attached. In the
model, we express that each order is at some point closed, and, whenever this happens,
there is probability 0.8 that it will be eventually accepted, and probability 0.3 that it will
be eventually refused. Notice that the sum of these probabilities exceed 1, so even if we
have still to define formally how constraints and their probabilities interplay with each
other, we can already see that, in a small fraction of traces, there will be an acceptance
and also a rejection (capturing the fact that a previous decision on a closed order was
subverted later on). On the other hand, there is a sensible amount of traces where the
order will be eventually accepted, but not refused, given the fact that the response
constraint connecting close order to refuse order is only of 0.3. In 90% of the cases,
it is asserted that acceptance and rejection are mutually exclusive. Finally, accepting or
rejecting an order can only occur if the order has been already closed. /

3.2 Constraints Scenarios and their Probabilities

Since a ProbDeclare model contains multiple probabilistic constraints, we have to con-
sider that, probabilistically, a trace may satisfy or violate each of the constraints con-
tained in the model, thus yielding multiple possible worlds, each one defining which
constraints are satisfied, and which violated. E.g., in Figure 1 we may have a trace
containing close order followed by accept order and refuse order, thus violat-
ing the not-coexistence constraint relating acceptance and refusal. This is in-
deed possible in 10% of the traces. More in general, consider a ProbDeclare model
M = 〈Σ, {〈ϕ1, p1〉, . . . , 〈ϕn, pn〉}〉. Each constraint formula ϕi is satisfied by a trace
with probability pi, and violated with probability 1 − pi. Hence, a model of this form
implicitly yields, potentially, 2n possible worlds resulting from all possible choices of
which constraints formulae are satisfied, and which are violated (recall that violating
a formula means satisfying its negation). We call such possible worlds constraint sce-
narios. The key point is to understand which scenarios are plausible, and with which
probability, considering the probabilities attached to the various constraints.

If a constraint has probability 1, we do not need to consider the two alternatives,
since every trace will need to satisfy its formula. Hence, to identify a scenario, we pro-
ceed as follows. We consider the m ≤ n constrains with probability different than 1,
and fix an order over them. Then, a scenario is defined by a number between 0 and
m − 1, whose corresponding binary representation defines which constraint formulae
are satisfied, and which violated: specifically, for constraint formula ϕi of index i, if
the bit in position i − 1 is 1, then the scenario contains ϕi, if instead that bit is 0, then
the scenario contains ¬ϕi. The overall formula describing a scenario is then simply
the conjunction of all such formulae, together with all the formulae of constraints with
probability 1. Clearly, each execution trace belongs to one and only one constraint sce-
nario: it does so, when it satisfies the conjunctive formula associated to that scenario.
We then say that a scenario is logically plausible, if such a conjunctive formula is satis-
fiable: if it is not, then the scenario has to be discarded, since no trace will ever belong
to it.
Example 4. Figure 1 shows a ProbDeclare model with 6 constraints, three of which
are crisp constraints with probability 1, while the other three are genuinely proba-

Probabilistic Business Constraints and their Monitoring 7

close
order

1..∗
accept
order

{0.8
}

1

refuse
order

{0.3}

2

{0.9}3

1 2 3 SAT?
S000 3(close ∧ ¬©3acc) 3(close ∧ ¬©3ref) 3acc ∧3refuse no
S001 3(close ∧ ¬©3acc) 3(close ∧ ¬©3ref) ¬(3acc ∧3refuse) yes
S010 3(close ∧ ¬©3acc) 2(close→ ©3ref) 3acc ∧3refuse no
S011 3(close ∧ ¬©3acc) 2(close→ ©3ref) ¬(3acc ∧3refuse) yes
S100 2(close→ ©3acc) 3(close ∧ ¬©3ref) 3acc ∧3refuse no
S101 2(close→ ©3acc) 3(close ∧ ¬©3ref) ¬(3acc ∧3refuse) yes
S110 2(close→ ©3acc) 2(close→ ©3ref) 3acc ∧3refuse yes
S111 2(close→ ©3acc) 2(close→ ©3ref) ¬(3acc ∧3refuse) no

Fig. 1: A ProbDeclare model, with 8 constraint scenarios, out of which only 4 of which
are logically plausible. Recall that each scenario implicitly contains also the three con-
straint formulae derived from the three constraints with probability 1.

bilistic constraints. The circled numbers represent the ordering of such constraints.
8 possible constraint scenarios have to be considered, each one enforcing the satis-
faction of the three crisp constraints, while picking the satisfaction or violation of
the three probabilistic constraints response(close,acc), response(close, ref),
and not-coexistence(acc, ref). Logically speaking, recall that violating a con-
straint means satisfying its negation, and so we have to consider 6 different formu-
lae: response(close,acc) = 2(close → ©3acc), and its negation is 3(close ∧
¬©3acc) (similarly for response(close,ref)); not-coexistence(acc, ref) =
¬(3acc ∧3refuse), and its negation is 3acc ∧3refuse.

The resulting scenarios are reported in the same figure, using the naming conven-
tions introduced before. For example, scenario S111 is the one where all constraints are
satisfied, whereas scenario S101 is the scenario that satisfies response(close,acc)
and not-coexistence(acc, ref), but violates response(close, ref).

By checking the logical satisfiability of the conjunction of the formulae entailed
by a given scenario, we can see whether the scenario is logically plausible. As shown
in Figure 1, only 4 scenarios are actually logically plausible. For example, S111 is not
logically plausible. In fact, it requires that the order is closed (due to the crisp 1..∗
constraint on close order) and, consequently, that the order is eventually accepted and
refused (due to the two response constraints attached to close order, which in this sce-
nario must be both satisfied); however, the presence of both an acceptance and a refusal
violates the not-coexistence constraint linking such two activities, contradicting
the requirement that also this constraint must be satisfied in this scenario. S101 is logi-
cally plausible: it is satisfied by the trace where an order is closed and then accepted.

All in all, we have 4 logically plausible scenarios: (i) S001, where an order is closed
and later not accepted nor refused; (ii) S011, where an order is closed and later refused
(and not accepted); (iii) S101, where an order is closed and later accepted (and not
refused); (iv) S110, where an order is closed and later accepted and refused. /

While it is clear that a logically implausible scenario should correspond to probability
0, are all logically plausible scenarios really plausible when the actual constraint prob-
abilities are taken into account? By looking at Figure 1, one can notice that scenario
S001 is logically plausible: it describes traces where an order is closed but not accepted
nor refused. As we will see, however, this cannot happen given the actual probabilities
of 0.8 and 0.3 attached to response(close,acc) and response(close, ref).

More in general, what is the probability of a constraint scenario, i.e., the fraction of
traces that belong to that scenario? What are the probability values that actually admit

8 F.M. Maggi et al.

the existence of scenarios, and those that instead lead to an inconsistent ProbDeclare
model? To answer these questions, we resort to the probability calculation technique
in [12]. We associate each scenario to a probability variable, using the same naming
convention (e.g., scenario S001 mentioned before corresponds to variable x001). Given
a ProbDeclare modelM = 〈Σ, {〈ϕ1, p1〉, . . . , 〈ϕn, pn〉}〉, we then construct the system
LM of inequalities as follows:

xi ≥ 0 0 ≤ i < 2n∑2n−1
i=0 xi = 1∑

jth position is 1 xi = pj 0 ≤ j < n

xi = 0 if scenario Si is logically implausible
The first two lines guarantee that we assign a non-negative value to each variable, and
that their sum is one. We can see these assignments as probabilities, having the guaran-
tee that all scenarios together cover the full spectrum. The third line verifies the prob-
ability associated to each constraint in M . In particular, it constructs one equation per
constraint 〈ϕj , pj〉 in M , ensuring that all the variables that correspond to scenarios
making ϕi true should all together yield its probability pi. The last line ensures that
logically implausible scenarios get assigned probability 0.

First and foremost, we can use this system of inequalities to check whether a given
ProbDeclare model is consistent: M is consistent if and only if LM admits a solution.
In fact, solving LM corresponds to verifying whether the class of all possible traces can
be divided in such a way that the proportions required by the probabilistic constraints
in the different scenarios are satisfied.

Example 5. Consider the ProbDeclare model M containing two constraints:

1. existence(close)=3close with probability 0.1;
2. response(close,accept)=2(close→ ©3acc) with probability 0.8.

M indicates that only 10% of the traces contain that the order is closed, and that 80% of
the traces are so that, whenever an order is closed, it is eventually accepted. This model
is inconsistent. We can see this intuitively by reasoning as follows. The fact that in
80% of the traces, whenever an order is closed, it is eventually accepted, is equivalent
to say that, in 20% of the traces, we violate such a response constraint, i.e., we have
that an order is closed but then not accepted. All such traces satisfy the existence
constraint over the close order activity, and, consequently, the probability of such a
constraint must be at least 0.2. However, this is contradicted by the first constraint of
M , which imposes that such a probability is 0.1.

We now show how this is detected formally. M yields 4 constraint scenarios:
S00 = {¬3close,3(close ∧ ¬©3acc)} S01 = {¬3close,2(close→ ©3acc)}
S10 = {3close,3(close ∧ ¬©3acc)} S11 = {3close,2(close→ ©3acc)}
Scenario S00 is logically implausible: it requires and forbids that the order is closed;
the other scenarios are instead all logically plausible. Hence, the equations of LM are:

x00 + x01 + x10 + x11 = 1
x10 + x11 = 0.1

x01 + x11 = 0.8
x00 = 0

Probabilistic Business Constraints and their Monitoring 9

sign
consent

close
order

1..∗
{0.8} 1

{0.1} 2

1 2 SAT?
S00 ¬sign U close 3(close ∧ ¬©3sign) yes
S01 ¬sign U close 2(close→ ©3sign) yes
S10 ¬closeW sign 3(close ∧ ¬©3sign) yes
S11 ¬closeW sign 2(close→ ©3sign) yes

Fig. 2: A ProbDeclare model and its 4 constraint scenarios.

The equations yield x10 = 0.2, x01 = 0.9, and x11 = −0.1. This is an inconsistent
probability assignment, and witnesses that it is not possible to properly assign suitable
fractions of traces to the various constraint scenarios. /

When LM is solvable,M is consistent. In addition, the solutions of LM tell us what
is the probability (or range of probabilities) for each constraint scenario. If a logically
plausible scenario admits a probability that is strictly > 0, then it is actually plausi-
ble also in probabilistic terms. Contrariwise, a logically plausible scenario that gets
assigned a probability that is forcefully 0 is actually implausible. This witnesses in fact
that, due to the probabilities attached to the various constraints in M , the fraction of
traces belonging to it must be 0.
Example 6. Consider the ProbDeclare model in Figure 1. Its system of inequalities is
so that x000 = x010 = x100 = x111 = 0, since the corresponding constraint scenar-
ios are logically implausible. For the logically plausible scenarios, we instead get the
following equalities, once the variables above are removed (being them all equal to 0):

x001 + x011 + x101 + x110 = 1
x101 + x110 = 0.8

x011 + x110 = 0.3
x001 + x011 + x101 = 0.9

It is easy to see that this system of equations admits only one solution: x001 = 0,
x011 = 0.2, x101 = 0.7, x110 = 0.1. This solution witnesses that scenario S001 is
implausible, and that the most plausible scenario, holding in 70% of cases, is actually
S101, namely the one where after the order is closed, it is eventually accepted, and not
refused. In addition, the solution tells us that there are other two outlier scenarios: the
first, holding in 20% of cases, is the one where, after the order is closed, it is eventually
refused (and not accepted); the second, holding in 10% of cases, is the one where a
closed order is accepted and refused. /

In general, the system LM of inequalities for a ProbDeclare model M may have more
than one solution. In this case, we can attach to each constraint scenario a probability
interval, whose extreme values are calculated by minimizing and maximizing its cor-
responding variable over LM . Since the so-obtained intervals have been computed by
analyzing each variable in isolation, not all the combinations of values residing in such
intervals are actually consistent. Still, for sure these intervals contain probability values
that are overall consistent, and, in addition, they provide a good indicator of which are
the most (and less) plausible scenarios. We illustrate this in the next example.
Example 7. Consider the ProbDeclare model in Figure 2. It comes with
4 constraint scenarios, obtained by considering the two constraint formulae
precedence(sign,close)=¬closeWsign and response(close,sign)=2(close→
©3sign), as well as their respective negated formulae ¬sign U close and 3(close ∧
¬©3sign). All such scenarios are logically plausible, and hence the corresponding

10 F.M. Maggi et al.

system of inequalities is:
x00 ≥ 0 x01 ≥ 0 x10 ≥ 0 x11 ≥ 0

x00 + x01 + x10 + x11 = 1
x10 + x11 = 0.8

x01 + x11 = 0.1

This system is very similar to that of Example 5, but here all scenarios are logically
plausible, and so it admits multiple solutions. In fact, by calculating the minimum and
maximum values for the 4 variables, we get that:
• scenario S00, where the order is closed but consent is not signed, comes with proba-

bility interval [0, 0.1];
• scenario S01, where the order is closed and consent is signed afterwards, comes with

probability interval [0, 0.1];
• scenario S10, where the order is closed after having signed consent, comes with prob-

ability interval [0.7, 0.8];
• scenario S11, where the order is closed and consent is signed at least twice (once

before, and once afterwards), comes with probability interval [0.1, 0.2].
This shows that the actual plausibility of each constraint scenario depends on which
specific values are selected for the other ones. /

4 Discovering ProbDeclare Models from Event Logs

We now show that ProbDeclare models can be discovered from event data using, off-
the-shelf, already existing techniques, with a quite interesting guarantee: that the dis-
covered model is for sure consistent.

We start by introducing the usual definition of an event log (only consisting of punc-
tual activity occurrences, without data).
Definition 4. A log over a set Σ of activities is a multiset of finite traces over Σ. /

We make use of the standard notation [·] for multisets, and use superscript numbers to
identify the multiplicity of an element in the multiset.

A plethora of different algorithms have been devised to discover Declare models
from event data [7,10,5,19]. In general terms, the vast majority of these algorithms
adopts the following approach to discovery. (1) Candidate constraints are generated
by analyzing the activities contained in the log. (2) For each constraint, its so-called
support is computed as the fraction of traces in the log where the constraint holds.
Definition 5 (Constraint Support). The support of an LTLf constraint ϕ in an event
log L = [τ1, . . . , τn] is

suppL(ϕ) =
|Lϕ|
|L|

, where Lϕ = [τ ∈ L | τ |= ϕ] /

(3) Candidate constraints are filtered by retaining only those whose support exceeds a
given threshold. (4) Further filters (e.g., considering the “relevance” of a constraint [4])
are applied. (5) The overall model is checked for consistency, operating with different
strategies if it is not. This last step is necessary since constraints with high support, but
still less than 1, may actually conflict with each other [3].

Notably, thanks to the semantics of PLTL0
f , we can use this approach off-the-shelf

to discover ProbDeclare constraints: we just use the constraint support as its associated

Probabilistic Business Constraints and their Monitoring 11

probability. We can also relax step (3), e.g., to retain constraints with a very low support
- this would in fact imply that their negated versions have a very high support.
Example 8. Consider event log L = [〈close,acc〉7, 〈close, ref〉2, 〈close,acc, ref〉1],
capturing the evolution of 10 orders, 7 of which have been closed and then accepted, 2 of
which have been closed and then refused, and 1 of which has been closed, then accepted,
then refused. The support of constraint response(close,acc) is 8/10 = 0.8, witness-
ing that 8 traces satisfy such a constraint, whereas 2 violate it. This corresponds exactly
to the interpretation of probability 0.8 for the probabilistic response(close,acc) con-
straint in Figure 1. Actually, the entire ProbDeclare model of Figure 1 can be discovered
from L by considering the 6 constraints contained in that model and their corresponding
support over L. /

A second key observation is that once the procedure above is used to discover Prob-
Declare constraint, it is not necessary anymore to perform step 5: as shown next, since
each probabilistic constraint carries its own support, the overall discovered model is
guaranteed to be consistent.
Theorem 1. Let Σ be a set of activities, and L be an event log over Σ. Let C =
{〈ϕ1, p1〉, . . . , 〈ϕn, pn〉} be a set of probabilistic constraints discovered from L, such
that for each i ∈ {1, . . . , n}, we have that pi = suppL(ϕi). Then, the ProbDeclare
model 〈Σ, C〉 is consistent. /

Proof. Recall that 〈Σ, C〉 is consistent if its corresponding PLTL0
f formula Φ :=

{}p1ϕ1, . . . ,}pnϕn} is satisfiable. To show this, we simply use L to build a model of
Φ. For every set I ⊆ {1, . . . , n}, let ϕI be the LTLf formula

ϕI :=
∧
i∈I

ϕi ∧
∧
i/∈I

¬ϕi,

and let LI be the sublog of L containing all the traces that satisfy ϕI . Note that the
sublogs LI form a partition of L; that is, every trace appears in exactly one such LI .
For each I such that LI is not empty, choose a representative tI ∈ LI and let pI :=

|LI |
|L|

be the fraction of traces that belong to LI . We build a PLTL0
f interpretation I by setting

I := {(tI , pI) | LI 6= ∅}. It remains to be shown that I is a model of Φ. Consider
a constraint 〈ϕ, p〉 ∈ C; we need to show that p =

∑
(tI ,pI)∈I.tI |=ϕ pI . Note that by

construction, sinceLI form a partition ofL,
∑

(tI ,pI)∈I.tI |=ϕ pI is in fact the fraction of
traces that satisfy ϕ. On the other hand, p is also the support of ϕ; that is, the proportion
of traces satisfying ϕ. Hence, both values are equal, and I is a model of Φ. a
Thanks to this theorem, we have that probabilistic constraints can be discovered in
a purely local way, having the guarantee that they will never conflict with each other.
Obviously, non-local filters can still prove useful to prune implied constraints and select
the most relevant ones. Also, note that the probabilities of the discovered constraints can
be easily adjusted when new traces are added to the log, by incrementally recomputing
the support values after checking how many new traces satisfy the various constraints.

5 Monitoring Probabilistic Constraints

In Section 3.2, we have shown how we can take a ProbDeclare model and generate its
constraint scenarios, together with their corresponding probability intervals. We now

12 F.M. Maggi et al.

describe how this technique can be directly turned into an operational probabilistic
monitoring and conformance checking framework.

Let M = 〈Σ, C〉 be a ProbDeclare model with n probabilistic constraints. For sim-
plicity of exposition, we do not here distinguish between crisp and genuinely probabilis-
tic constraints, nor prune away implausible scenarios: the produced monitoring results
do not change, but obviously our implementation, presented at the end of this section,
takes into account these aspects for optimization reasons.

M generates 2n constraint scenarios. As discussed in Section 3.2, each scenario S
comes with a corresponding characteristic LTLf formula, which amounts to the con-
junction of positive and negated constraints in C, where the decision of which ones
are taken positive and which negative is defined by the scenario itself. We denote such
a formula by formula(S). For example, if C = {〈ϕ1, p1〉, 〈ϕ2, p2〉, 〈ϕ3, p3〉}, then
formula(S101) = ϕ1 ∧ ¬ϕ2 ∧ ϕ3.

In addition, each scenario S comes with its probability interval, calculated by min-
imizing and maximizing its probability variable in the system of inequalities LM . We
denote such a probability interval by prob(S). By considering Example 7, we have,
e.g., that prob(S10) = [0.7, 0.8].

Since the characteristic formula of a scenario is in standard LTLf , we can construct
a scenario monitor by recasting well-known techniques [13,1]. Specifically, given an
LTLf formula ϕ over a set Σ of activities, and a partial trace τ representing an ongoing
process execution, a monitor outputs one of the four following truth values:
• τ (permanently) satisfies ϕ, if ϕ is currently satisfied (τ |= ϕ), and ϕ stays satisfied

no matter how the execution continues, that is, for every possible continuation trace
τ ′ overΣ, we have τ ·τ ′ |= ϕ (the · operator denotes the concatenation of two traces);

• τ possibly satisfies ϕ, if ϕ is currently satisfied (τ |= ϕ), but ϕ may become violated
in the future, that is, there exists a continuation trace τ ′ over Σ such that τ · τ ′ 6|= ϕ;

• τ possibly violates ϕ, if ϕ is currently violated (τ 6|= ϕ), but ϕ may become satisfied
in the future, that is, there exists a continuation trace τ ′ over Σ such that τ · τ ′ |= ϕ;

• τ (permanently) violates ϕ, if ϕ is currently violated (τ 6|= ϕ), and ϕ stays violated
no matter how the execution continues, that is, for every possible continuation trace
τ ′ over Σ, we have τ · τ ′ 6|= ϕ.

In [13,1], it is shown that a monitor producing such outputs can be seamlessly obtained
by constructing the finite-state automaton Aϕ for ϕ, determinizing such an automaton,
and finally assigning each automaton state to one of the four truth values.

We then proceed as follows. For each plausible constraint scenario S over M , we
construct the finite-state automatonAformula(S), and turn it into a monitor as described
above.5 We then track the evolution of a running trace by delivering its events to all such
monitors in parallel, returning the truth values they produce. Note that, at runtime, we
do not know in which scenario the trace will fall when completed. Hence, we actually
do not know the exact truth value of the trace. For this reason, we compute the truth
value of the trace probabilistically by aggregating the probabilities of the scenarios that
produce the same truth value. In particular, we compute the aggregated probability
interval for each truth value, by taking the system of inequalities LM and calculating
the extreme values of the aggregated interval by minimizing/maximizing the sum of

5 Implausible scenarios are irrelevant, since they produce an output that is associated to probabil-
ity 0, and would be therefore discarded when computing the aggregated probability intervals.

Probabilistic Business Constraints and their Monitoring 13

close
order

1..1

accept
order

{0.8
}

1

refuse
order

{0.3}

2

{0.9}3
SCENARIOS

S011[0.2]

S101[0.7]

S110[0.1]

AGGREGATE OUTPUTS

sat

poss.sat

poss.viol

viol

start close acc ref complete

poss.viol viol

poss.viol poss.sat viol

poss.viol poss.sat sat

0

0

1

0

0

0

1

0

0

0.7

0.1

0.2

0

0.1

0

0.9

0.1

0

0

0.9

Fig. 3: Result computed by monitoring the ProbDeclare model on the top left against the
trace 〈close,acc, ref〉, which conforms to the outlier constraint scenario where the two
response constraints are satisfied, while the not-coexistence one is violated.

trace 〈close, sign〉 trace 〈sign, close〉
Fig. 4: Output of the implemented tool on the example in Fig.2.

the probability variables associated to the scenarios that produce that truth value. The
aggregated probabilities give an indication of how probable is that the trace can be
associated to each specific truth value.

When a trace finishes (which is signalled by a special, complete event) all moni-
tors currently outputting possible satisfaction turn to permanent satisfaction, and those

14 F.M. Maggi et al.

outputting possible violation turn to permanent violation (since no further events will
occur to subvert the current situation). Hence, when a trace finishes, it either perma-
nently violates all scenarios (thus being classified as a non-conforming one), or perma-
nently violates all scenarios but one, which is permanently satisfied and consequently
witnesses that the trace conforms to that scenario. Notably, this can be instrumental to
classify traces into process variants.
Example 9. Consider the ProbDeclare model in Figure 1 with its three plausible sce-
narios (recall that four scenarios are logically plausible there, but one of those has prob-
ability 0, so only three remains to be monitored). Figure 3 shows the result produced
when monitoring a trace that at some point appears to belong to the most plausible sce-
nario, but in the end turns out to conform to the less plausible one. From the image,
we can also clearly see that the trace consisting only of a close order activity would be
judged as non-conforming, as it would violate all scenarios. /

The aforementioned probabilistic monitoring technique has been fully imple-
mented.6 For solving systems of inequalities, we use the Java based LP solver
provided at http://lpsolve.sourceforge.net/5.5/. The implementation
comes with various optimizations. First and foremost, scenarios are computed by di-
rectly imposing that crisp constraints with probability 1 must hold in their positive form
in all scenarios. Second, only plausible scenarios are retained for monitoring. Third,
the results obtained by minimizing and maximizing for aggregate probability variables
are cached, so as to avoid solving multiple times the same problem. Fig.4 shows the
output of the implemented monitoring tool on the example in Fig.2 and for two dif-
ferent traces.7 Here, the aggregated probability intervals are shown with a dark gray
or light gray background depending on whether their midpoint is closer to 1 or to 0,
respectively, thus giving an indication of the most probable truth values for the mon-
itored trace. The first trace (on the left) is classified as belonging to scenario S01 and
is an outlier because this scenario has low probability (corresponding to a probability
interval of prob(S01) = [0.0, 0.1]). The second trace (on the right) is classified as be-
longing to the highly plausible scenario S10 (corresponding to a probability interval of
prob(S10) = [0.7, 0.8]).

6 Conclusion

In this paper, we have introduced the notion of probabilistic business constraint and
demonstrated how this notion affects the outcomes of standard process mining ap-
proaches based on Declare when standard Declare is replaced by its probabilistic coun-
terpart. We have introduced a framework for monitoring a trace with respect to a set of
probabilistic constraints by computing, during the evolution of the trace, the most prob-
able truth values for it. The framework also classifies completed traces as violating a
given probabilistic model or as belonging to a certain constraint scenario (i.e., satisfying
a certain combination of probabilistic constraints).

For future work, we plan to better investigate the influence of probabilistic con-
straints on the state-of-the-art techniques for declarative process mining. We also plan

6 https://bitbucket.org/fmmaggi/probabilisticmonitor/src/master/
7 In the screenshots, 1 and 2 represent the probabilistic constraints labeled with 1 and 2 in Fig.2,

whereas 3 represents the crisp constraint in the same example.

http://lpsolve.sourceforge.net/5.5/
https://bitbucket.org/fmmaggi/probabilisticmonitor/src/master/

Probabilistic Business Constraints and their Monitoring 15

to extend the notion of probabilistic process model and probabilistic monitoring to the
context of imperative process modeling languages.

References

1. De Giacomo, G., De Masellis, R., Grasso, M., Maggi, F.M., Montali, M.: Monitoring busi-
ness metaconstraints based on LTL & LDL for finite traces. In: Proc. of BPM. LNCS,
vol. 8659. Springer (2014)

2. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces.
In: Proc. of IJCAI. AAAI Press (2013)

3. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies and redun-
dancies in declarative process models. Inf. Syst. 64 (2017)

4. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: On the relevance of a business con-
straint to an event log. Inf. Syst. 78 (2018)

5. Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful processes.
ACM Trans. Management Inf. Syst. 5(4), 24:1–24:37 (2015)

6. Kovtunova, A., Peñaloza, R.: Cutting diamonds: A temporal logic with probabilistic distri-
butions. In: Proc. of KR. AAAI Press (2018)

7. Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative logic-based
models from labeled traces. In: Proc. of BPM. LNCS, vol. 4714. Springer (2007)

8. Leemans, S.J.J., Syring, A.F., van der Aalst, W.M.P.: Earth movers’ stochastic conformance
checking. In: Proc. of BPM Forum. LNBIP, vol. 360. Springer (2019)

9. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.: Compliance
monitoring in business processes: Functionalities, application, and tool-support. Inf. Syst. 54
(2015)

10. Maggi, F.M., Chandra Bose, R.P.J., van der Aalst, W.M.P.: Efficient discovery of understand-
able declarative process models from event logs. In: Proc. of CAiSE. LNCS (2012)

11. Maggi, F.M., Montali, M., Peñaloza, R.: Probabilistic temporal logic over finite traces (tech-
nical report). CoRR abs/1903.04940 (2019), http://arxiv.org/abs/1903.04940

12. Maggi, F.M., Montali, M., Peñaloza, R.: Temporal logics over finite traces with uncertainty.
In: Proc. of AAAI. AAAI Press (2020), to appear.

13. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring business
constraints with linear temporal logic: An approach based on colored automata. In: Proc. of
BPM. LNCS, Springer (2011)

14. Maggi, F.M., Westergaard, M., Montali, M., van der Aalst, W.M.P.: Runtime verification of
LTL-based declarative process models. In: Proc. of RV. LNCS, vol. 7186. Springer (2011)

15. Montali, M.: Specification and Verification of Declarative Open Interaction Models: a Logic-
Based Approach, LNBIP, vol. 56. Springer (2010)

16. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.: Declarative
specification and verification of service choreographies. TWEB 4(1) (2010)

17. Ognjanovic, Z.: Discrete linear-time probabilistic logics: Completeness, decidability and
complexity. J. Log. Comput. 16(2) (2006)

18. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for loosely-
structured processes. In: Proc. of EDOC. IEEE Computer Society (2007)

19. Schönig, S., Rogge-Solti, A., Cabanillas, C., Jablonski, S., Mendling, J.: Efficient and cus-
tomisable declarative process mining with SQL. In: CAiSE 2016. pp. 290–305 (2016)

http://arxiv.org/abs/1903.04940

	Probabilistic Business Constraints and their Monitoring

