
                           

Università degli Studi di Milano - Bicocca
Scuola di Dottorato

DIPARTIMENTO DI FISICA G. OCCHIALINI
Corso di Dottorato in Fisica e Astronomia XXXIII ciclo

Curriculum in Fisica Teorica

Tesi di Dottorato

3d SCFTs from S-duality walls

Dottorando:                    Tutore:
  

Ivan Garozzo               Alessandro Tomasiello
Matricola 827260

                                                        Supervisore:
      Noppadol Mekareeya

      Coordinatore:
       Marta Calvi

Anno Accademico 2019-2020
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Chapter 1

Introduction

Since its beginning, the aim of theoretical physics has been to provide mod-
els and theories to describe the Nature within a consistent framework. The
intellectual effort of the most brilliant physicist has been devoted to the for-
mulation of theories incorporating as much phenomena as possible starting
from the smallest set of assumptions and rules, thus unifying seemingly un-
related observations and facts. The spirit is the same of Maxwell, who gave a
unified treatment to different aspects of electricity and magnetism, culminat-
ing in the set of equations that now bring its name: the Maxwell’s equations.
Phenomenological observations have not been the only guiding principle to
build up a given theory, but elegance and beauty of the model itself, sometimes
identified with the mathematical formulation underlying physical concepts,
have played prominent role.

Nowadays, the real challenges theoretical physics have to tackle may be
identified with the following points: get a quantitative access to the strong
coupling regime of quantum field theory, QCD being the most relevant ex-
ample for the description of fundamental interactions, and find a consistent
quantum theory for gravitational interactions, hence a theory of quantum
gravity, essential in order to understand black holes or the first moments of
our Universe. In both respects, string theory is the most exciting framework
theoretical physicist have at their disposal at the moment, even though it is
fair to admit that still a lot of work have to be done in order to accomplish
the aforementioned goals.

One of the most spectacular features that string theory revealed follow-
ing its first formulations is the existence of dualities relating different frames
or regimes of the theory. The most prominent example is S-duality, a strong-
weak duality, which has its historical origin in the of Olive-Montonen duality
[2] in the context of non-supersymmetric field theory. Based on the work of
Goddard, Nuyts and Olive [3] an electric-magnetic duality has been conjec-
tured, under which a given gauge theory is dual to a different theory whose
gauge coupling constant is the inverse with respect to the original theory and
with the electric gauge group exchanged with a dual, magnetic group. This es-
sentially generalises the electro-magnetic symmetry of Maxwell’s equations
once magnetic monopoles are introduced into the game. In fact, what Monto-
nen and Olive conjectured is that each gauge theory in which “electrons” are
the basic quantised particles and magnetic monopoles are topological defects
has a dual frame in which the role of fundamental particle and soliton are ex-
changed: magnetic monopoles are the fundamental particles and electrons
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are the solitonic objects.
Despite its original formulation, such a duality has a natural realisation

in the context of supersymmetric quantum field theory, the first example be-
ing the maximally supersymmetric Yang-Mills theory in four space-time di-
mensions, a.k.a N = 4 SYM [4], and later extended to less supersymmetric
set-ups, for instance [5]. The original Montonen-Olive duality for the case
of N = 4 SYM is based on the group of fractional linear transformations,
SL(2, Z), which reveals in its full glory once the action on the gauge coupling
is extended to include the theta angle. Looking at the holomorphic coupling
defined as τ = θ

2π + 4πi
g2 , the action of the S-duality group can be described

as follows

τ → a + bτ

c + dτ
,

(
a b
c d

)
∈ SL(2, Z) (1.0.1)

The basic transformations, namely the generators of the SL(2, Z) duality
group, are the the S and T transformations. The former acts as an inversion
on the holomorphic coupling

S : τ → −1
τ

, (1.0.2)

while the latter acts as a constant shift

T : τ → τ + 1, (1.0.3)

and their matrix realisation in terms of elements of SL(2, Z) are the following

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
, (1.0.4)

satisfying the relations

S2 = −1, (ST)3 = 1. (1.0.5)

S-duality was shown to play a crucial role in string theory [6], being one
of the major advances that made the second superstring revolution to take
place. Up to that moment there were five different versions of seemingly
unrelated string theories: Type IIA, Type IIB, Type I and the two heterotic
SO(32) and E8 × E8. Through his work Sen showed that Type IIB string the-
ory with a given coupling constant is mapped to itself once the coupling is
inverted and, in the same fashion, Type I is connected to the SO(32) theory.
Interconnections among the various string theories like the ones just men-
tioned then led Witten, in a joint work with Horava [7], to conjecture the
existence of M-theory, from which all string theories descend in various lim-
its.

S-duality ofN = 4 super-Yang-Mills and its relation to three-dimensional
physics via the realisation of the aformentioned duality in Type IIB string the-
ory play a crucial role for the topics analysed in this thesis. The starting point
of the discussion is the existence of half-BPS codimension one interfaces in
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the four dimensional N = 4 SYM theory, called “Janus interface” or “Janus
domain wall” [8, 9]. From a holographic perspective, Janus solutions of Type
IIB supergravity are deformations of the celebrated AdS5 × S5 in which the
dilation is allowed to depend on a spatial coordinate and the F(2) form flux
vanishes. Janus interfaces, say localised at y = 0, where y is a spatial coor-
dinate, cut space-time into two pieces. In each region one has N = 4 SYM
with a constant value of the coupling constant, the value being different on
the two sides and changing abruptly across the interface. A special case for
the spatial dependence of the gauge coupling constant is depicted in the fol-
lowing

y

g ≫ 1

g ≪ 1

(1.0.6)

meaning that on the left and on the right of the wall a weakly and a strongly
coupled N = 4 SYM theory with G gauge group lives respectively. Recall
that S-duality is a strong-weak duality, so it possible to locally apply it on
the strongly coupled side of the interface and get an equivalent, but weakly
coupled, theory based on the dual gauge group G∨, called Langland or GNO
dual. Relevant examples of Langland groups are as follows

G G∨

U(N) U(N)
SU(N) SU(N)/ZN
SO(2N) SO(2N)

SO(2N + 1) USp(2N)
Spin(2N) SO(2N)/Z2

Spin(2N + 1) USp(2N)/Z2
G2 G2

(1.0.7)

Gaiotto and Witten analysed the consequences of applying S-duality in the
strongly coupled side of space-time in great detail [8] and found that this
operation has a “cost”: after performing an S-duality transformation the
interface supports a non-trivial three-dimensional N = 4 superconformal
field theory dubbed as T(G), with G× G∨ global symmetry that couples the
two SYM theories on the left and right side of the interface. For definite-
ness, given SU(N) N = 4 SYM theory, the theory on the S-duality wall is
T(SU(N)) whose global symmetry group is SU(N)× SU(N)/ZN. The final
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situation can be summarised in the following picture

! = 4 SYM
G

! = 4 SYM
G∨

T(G)

(1.0.8)

where the wiggle line denotes the interface and the boundary theory living
on it.

The construction just described makes it evident how S-duality furnishes
a natural bridge between the world on four and three dimensional supersym-
metric gauge theories, hence it is worth to discuss the latter and spend some
words on their properties. In particular, we restrict our attention to a large
class of three-dimensional N = 4 theories that can be engineered in Type
IIB string theory via Hanany-Witten brane systems involving D3, D5 and NS5
branes preserving eight supercharges [10]. The R-symmetry group of three
dimensional N = 4 theories is SO(3)C × SO(3)H ∼ SU(2)C × SU(2)H, re-
alised on the brane system as rotation group acting on the directions x3,4,5

and x7,8,9. With such a set-up it is possible to construct quiver gauge theories,
based on product gauge groups such as U(N1)×U(N2)× · · · ×U(Nk), with
matter multiplets transforming in the bifundamental representation of the
gauge groups and possibly in various representations of the flavour group.
The x6 direction in the brane system can be either taken to be non-compact,
in which case linear quiver theory are realised, or also compact, giving rise
to circular quivers.

A crucial feature in the study of three dimensional N = 4 theories is the
so-called mirror symmetry [11], a duality relating pair of theories with non-
trivial fixed point. Given a gauge theory, mirror symmetry acts by exchang-
ing two branches of its moduli space of vacua called Higgs and Coulomb
branch. The former branch is parametrised by non-trivial vacuum expecta-
tion values, vev, of the complex scalar in the hypermultiplets, while the latter
is parametrised by vevs of the real scalar in the vector multiplets. Due to
N = 4 supersymmetry both branches of the moduli space enjoy an hyper-
Kähler structure, the complex structure being acted on by the SU(2)C and
SU(2)H R-symmetry factors. Quantum mechanical effects, generally hard to
handle, that arise on the Coulomb branch appear as classical effects on the
Higgs branch of the moduli space of vacua of the mirror dual theory. The
relevance of mirror symmetry lies on this fact: it allows to “trade” quan-
tum effects for classical ones that are usually computable. Interestingly, this
symmetry is realised in string theory [12, 13, 10]. In particular, its Type IIB
embedding [10], involves S-duality on Hanany-Witten brane configurations.
Such stringy realisation easily allows to construct mirror pairs: starting with
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a gauge theory realised via an Hanany-Witten system, its mirror dual is ob-
tained via the S-dual of the original brane configuration.

The T(U(N)) theory, close cousin of T(SU(N)), has the special property
of being invariant under mirror symmetry. It enjoys a U(N)×U(N) global
symmetry, one factor acting on the Coulomb and one on the Higgs branch.
The nature of the two U(N) symmetry factors is different: the one on the
Higgs branch is manifest at the Lagrangian level, while the Coulomb branch
one only arises in the deep infrared, thus we refer to it as an enhanced sym-
metry. Despite the different origin of the two U(N) symmetry factors in the
global symmetry of the theory, one may consider T(U(N)) as a building block
with U(N)×U(N) symmetry for constructing quiver theories. In this way
one has at hand a sort of generalised matter at hand to construct new quiver
theories in addition to usual hypermultiplets. The idea is to gauge the global
symmetry and to couple it to matter systems. The realisation of this construc-
tion leads to the so-called S-fold theories; the analysis of various properties of
this class of superconformal field theories is the main goal of the present the-
sis.

One important motivation to study quiver theories with T(U(N)) links
(with or without non-trivial Chern–Simons levels for the U(N) gauge groups)
is because they have interesting holographic duals [14]. The construction
involves AdS4 × K6 Type IIB string solutions with monodromies1 in K6 in
the S-duality group SL(2, Z). These solutions were obtained by quotienting
the solutions corresponding to the holographic dual of Janus interfaces in 4d
N = 4 SYM [19, 20]. The former type of solutions is referred to as the S-fold
in [14]. The S-fold solutions can be divided into two classes, known as the
J-fold and the S-flip.

The J-fold solutions are those associated with a monodromy given by an
element J ∈ SL(2, Z) with tr J > 2. The corresponding geometry can be con-
structed by using AdS4 × S2 × S2 × Σ2, where Σ2 is a non-compact Riemann
surface with the topology of a strip. The ends of the strip are then identified
with a J-twisted boundary condition. It was shown in [14] that this type of
solutions preserve OSp(4|4) symmetry and thus are dual to 3d N = 4 su-
perconformal field theories. The J-fold solutions can, in fact, be obtained as a
quotient of a Janus interface solution. As a result, the quiver field theory dual
of such a solution contains a component corresponding to such an interface,
namely the T(U(N)) theory. From the brane perspective, one can introduce
a five-dimensional surface implementing the monodromy under the action
of J into the brane system. Among the possible choices of the SL(2, Z) ele-
ments, we may take the monodromy to be associated with Jk = −STk in this
case, the corresponding J-fold gives rise to a Chern–Simons level k to one of
the U(N) gauge groups.

The S-flip solutions can be discussed in a similar way as for the J-folds.
In this case, the SL(2, Z) element implementing the monodromy is taken to
be S. Geometrically, we need to perform an exchange of coordinates cor-
responding to the two S2 in AdS4 × S2 × S2 × Σ2, together with a flip at

1It should be mentioned that a similar solution in AdS5 was considered in [15, 16], and
those in AdS3 were considered in [17, 18].
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the S-interface such that Σ2 becomes a Möbius strip topologically. Similarly
to the J-fold, the insertion of the S-flip into a brane system gives rise to a
T(U(N)) link between two U(N) gauge groups, where the Chern–Simons
levels of those are zero. It was shown in [14] that the S-fold solutions pre-
serve OSp(3|4) and the dual superconformal field theory is expected to have
N = 3 supersymmetry.

Hanany-Witten brane systems realising three dimensional N = 4 theo-
ries can be enriched including additional objects string theory provides: ori-
entifold planes [21]. Orientifold p-planes, denoted as Op, are non-dynamical
(at least at weak string coupling) extended objects that can be thought of as
the fixed plane of the Z2 symmetry including both an action on the world-
sheet and on spacetime: on the former it acts via parity, while on the latter
it reverses the spatial coordinates xi → −xi with i = p + 1, . . . , 9, and for
p = 2, 3 mod 4 one has to include (−1)FL , where FL is the left-moving fermion
number, to make the combined operation to square to one. Op planes pre-
serve the same supersymmetry as a parallel Dp-brane. A classic review on
various aspects of orientifold planes may be found in [22].

Let us discuss in more detail aspects of O-planes that will be needed for a
new class of S-fold gauge theories we will introduce momentarily. Op planes
come in four variants, at least for p ≥ 5: Op+, Õp

+
, Op−, Õp

−
. Each of them

allows to realise gauge theories based on real groups on the world-volume of
a stack of D3 brane on top of the corresponding O3 plane. The four variants
of O3 planes are distinguished by two discrete Z2 charges, (b, c), defined as

b =
∫

RP2
BNS, c =

∫
RP5−p

C5−p. (1.0.9)

It is useful to summarise the charges of the various O3 planes, the gauge
group the realises and, crucial to our applications, their behaviour under the
action of S-duality

(b, c) Op Charge Gauge group S-dual (p = 3)
(0, 0) Op− −2p−5 SO(2N) (0, 0) Op−

(0, 1) Õp
− 1

2 − 2p−5 SO(2N + 1) (1, 0) Op+

(1, 0) Op+ 2p−5 USp(2N) (0, 1) Õp
−

(1, 1) Õp
+

2p−5 USp′(2N) (1, 1) Õp
+

(1.0.10)

Observe that the O3− and the Õ3
+

are self-dual under S-duality. A comment
on the USp′(2N) theory is needed. As a Lie algebra, there is no difference
between USp′(2N) and the most familiar USp(2N), the difference is in a
global factor when considered as gauge theories: in four dimensions the first
has a non-trivial θ-angle set to π, while for the second the θ-angle is vanishing
[23].

After this brief discussion on orientifold planes let us come back to S-fold
theories. The natural question is whether it is possible to construct such class
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of superconfomal field theories in the presence of Op planes. The first com-
ment on such a possibility is that, at the moment, there is no class of super-
gravity solution supporting the construction, differently to the case of original
S-folds. Nonetheless, from a field theoretical point of view it is still an inter-
esting question to pose. The string theory realisation now involves Hanany-
Witten brane set-up in the presence of orientifold planes and S-duality walls.
In the absence of O-planes, we discussed the role of the T(U(N)) theory as
a link corresponding to the S-duality wall inserted in the brane system. In
the set-up with O3 on top of D3s the T(U(N)) link is replaced by T(G) with
G = SO(2N), SO(2N + 1), USp(2N), USp′(2N) depending on the type of
orientifold. In order for T(G) to be invariant under the S-action, G has to be
invariant under S-duality.

For G being SO(2N) and USp′(2N), we propose that the corresponding
theory can be realised from a brane construction that contains an intersection
between an S-duality wall with the D3 brane segment on top of the orien-
tifold threeplane of types O3− and Õ3

+
respectively. In other words, the

S-fold CFTs of this class can be obtained by inserting an S-duality wall into
an appropriate D3 brane segment of the brane systems described in [21]. The
mirror theory can be derived by first obtaining the S-dual configuration as
discussed in [21], and then insert an S-fold in the position corresponding to
the original set-up.

A different extension to this class of theories is realised through a brane
system that contains an orientifold fiveplane or its S-dual, which is also known
as an ON plane. In which case, the corresponding quiver may contain a hy-
permultiplet in the antisymmetric (or symmetric) representation, along with
fundamental hypermultiplets, under the unitary gauge group, and the mir-
ror quiver may contain a bifurcation [24, 25].

It is interesting that the whole construction, may be extended, in prin-
ciple, to exceptional self-dual gauge groups. Among these, the G2 case pro-
vides an interesting example leading to a completely new class of theories.
To the best of our knowledge, the Type IIB brane construction for such theo-
ries is not available and mirror theories of this class of models have not been
discussed in the literature. In particular, the realised family of quivers con-
tain alternating G2 and USp′(4) gauge groups, possibly with fundamental
flavours under USp′(4). It is then possible to“insert an S-fold” into the G2
and/or USp′(4) gauge groups in the aforementioned quivers. The mirror
theory is also a quiver containing the G2, USp′(4) and possibly SO(5) gauge
groups if the original theory contains fundamental matter under USp′(4).

As it has been discussed when the supergravity realisation of S-fold theo-
ries was introduced, the amount of supersymmetry preserved by the super-
conformal field theory depends on the SL(2, Z) element used to implement
the monodromy, and it can be either N = 4 for J-fold solutions or N = 3
for S-flips, in the language of [14]. The techniques employed in that work
to unveil the amount of preserved supersymmetry of a given theory are holo-
graphic, meaning either looking at the supergravity solution itself or studying
the large-N partition function. In both cases, the results may be trusted only
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at large-N, so it is interesting to address a systematic analysis of the IR su-
persymmetry for S-fold theories at finite N. The main technical tool that will
be employed to study the supersymmetry possessed in the IR by S-fold the-
ories is the supersymmetric index, or index for brevity. This allows, in general,
to have detailed access to both the global symmetry and supersymmetry of
a given theory. The underlying reason is that, for 3d SCFTs, it is possible to
put various short multiplets into equivalence classes according to how they
contribute to the index [26] (see also [27, 28]). It also allows one to identify
the current of the enhanced symmetry. For theories with at least N = 3
supersymmetry, including S-fold SCFTs, the index serves as a rather simple
tool to diagnose the presence of the extra-supersymmetry current multiplet,
which gives rise to the enhancement of supersymmetry (see e.g. [29]). Su-
persymmetric gauge theories provides plenty of examples of enhancement
phenomena, regarding either global symmetries or supersymmetry. The lit-
erature on the subject is so vast that it is an hard task to properly cite all the
results. Let us however mention the most prominent case of supersymmetry
enhancement for three dimensional supersymmetric gauge theories, namely
the ABJM theory [30].

Up to now we have only discussed implications for three dimensional su-
persymmetric gauge theories of the existence of S-duality walls in N = 4
SYM. Nonetheless, the action of S-duality in four dimension has been dis-
cussed for less supersymmetric set-up, thus it is conceivable to imagine S-
walls for theories other than N = 4 SYM. Specifically, the case of four di-
mensional N = 2 gauge theories based on SU(N) gauge group with 2N
massless fundamental hypermultiplets is particularly interesting since it has
an exactly marginal gauge coupling with an interesting S-duality group be-
ing SL(2, Z) for N = 2 [31] and Γ0(2) ⊂ SL(2, Z) for N ≥ 3 [32, 33]. This
theory can also be realised as a twisted compactification of 6d (2, 0) theory of
type AN−1 on a punctured Riemann surface [34]. The 3d theory associated
with the duality wall in this 4d theory can be determined by utilising the AGT
correspondence [35, 36], which relates the partition function of the 4d theory
on the squashed four-sphere to an observable in the Liouville or Toda theory
on the Riemann surface [37, 38]. As pointed out in [39], the partition function
of the 3d theory associated with S-duality wall placed along the squashed
three-sphere, which is the equator of the aformentioned four-sphere, corre-
sponds to a collection of the duality transformation coefficients of conformal
blocks of the Liouville or Toda theory. From such a partition function, one
may extract the gauge group and matter content of the 3d theory in question
[40, 41, 42]. In fact, this technique has been successfully applied to determine
the 3d theory associated with the S-duality wall in the 4d N = 2∗ gauge
theory [40]. For the 4d N = 2 SU(N) gauge theory with 2N flavours, this
method was applied by the authors of [41, 42] (see also [43] for the supercon-
formal index). In [42], the theory associated with the duality wall was then
identified as the 3d N = 2 U(N − 1) gauge theory with 2N flavours, with
the R-charges of the chiral fields fixed to certain values. Such a theory will be
denoted as TM. Later, it was pointed out by the authors of [44] that the super-
potential of such a theory should be W = V+ + V−, where V± are the basic
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monopole operators of the U(N − 1) gauge group. It should be remarked
that this approach that is used to identify the 3d theory is different from that
used by Gaiotto and Witten [8], mentioned in the previous paragraph. Al-
though the Type IIA brane configuration of the 4d theory [5] and the Type
IIB brane configuration of the 3d theory with the monopole superpotential
[45, 46, 47, 48, 49] are known, to the best of our knowledge, it is not clear how
to identify the latter as the theory associated with the duality wall in the for-
mer. Once the theory on the S-duality domain wall has been identified, one
may play the same game as with the S-folds and construct various gauge
theories where TM is used as component via suitable gaugings of its global
symmetry. Thus, the idea is to consider various combinations of a number
of duality walls and analyse the properties of the three-dimensional theories
obtained in such a way.

The material presented in the thesis is organised as follows:

• Chapter 2: We start with a brief summary of basic material on three-
dimensional supersymmetric gauge theories. After the supersymme-
try algebra and multiplets forN = 4 theories have been introduces, we
move and introduce monopole operators, playing a fundamental role
in the dynamics of three-dimensional gauge theories. Then, the con-
cepts of chiral ring and moduli space of vacua are discussed. A crucial
feature of most of the topics we will discuss in the main part of the the-
sis is mirror symmetry, that is discussed first from a purely field theo-
retical point of view. Finally, we briefly describe Hanany-Witten brane
systems in Type IIB string theory and show how mirror symmetry is
embedded in such a context.

• Chapter 3 [50]: Starting from this point, the thesis contains original re-
sults. In this chapter we address the study of the moduli space of S-fold
theories. In section 3.3, we give a brief summary on the S-fold solutions
and (p, q) fivebranes, bound states of N5S and D5 branes. In section 3.4,
quiver theories corresponding to the brane systems with S-flips are ex-
amined. The Higgs and the Coulomb branches of the moduli space are
studied using the Hilbert series. We also provide a consistency check
of our results against mirror symmetry. In section 3.5, we then con-
sider abelian theories arise from the brane systems with J-folds, along
with NS5 and D5 branes. We systematically analyse various branches
of the moduli space. In section 3.6, we examine an example of non-
abelian theory with T(U(N)) links that can be realised on M2-branes
on a Calabi–Yau four fold singularity. In this example, we compute the
Hilbert series of the moduli space and analyse the contribution from
each configuration of magnetic fluxes.

• Chapter 4 [51]: In this second chapter we address the study of S-fold
theories in the presence of T(G) links different from the T(U(N)). In
section 4.2, we study the hyperKähler spaces that arise from coupling a
nilpotent cone associated with a group G to matter in the fundamen-
tal representation of G. Such spaces have some interesting features
and this notion turns out to be useful in the later sections because the
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nilpotent cone arises from the Higgs or Coulomb branch of the T(G)
theory. In section 4.3, we investigate quiver theories that arise from
brane configuration with an S-fold in the background of the O5− or the
ON− plane. We provide the consistency conditions for the relative posi-
tions between the S-fold and the orientifold plane such that the moduli
spaces of theories in question obey the freezing rule and mirror sym-
metry. In section 4.4 we study various models involving S-folds in the
background of the O3− or the Õ3

+
planes. The corresponding quiv-

ers contain a T(SO(2N)) link or a T(USp′(2N)) link between gauge
nodes. In section 4.5, we propose a new class of mirror pairs involving
G2 gauge nodes, as well as those with T(G2) link. Finally, in section 4.6,
we investigate the quivers that arise from the brane systems with O5+

or its S-dual ON+. One of the features of the latter is that the quiver
contains a “double lace”, in the same way as that of the Dynkin dia-
gram of the CN algebra. Although this part of the quiver does not have
a known Lagrangian description, one can still compute the Coulomb
branch Hilbert series using the prescription given in [52]. We find that
such a Coulomb branch agrees with the Higgs branch with the original
theory, and for the theory with an S-fold the former also respects the
freezing rule.

• Chapter 5 [53]: The main goal of this chapter is to study the supersym-
metric index of S-fold theories in order to understand possible global
symmetry and supersymmetry enhancement phenomena. In section
5.1.1 the contributions of various superconformal multiplets to the in-
dex are discussed. These are the technical tools that are needed for the
subsequent analysis. In section 5.2, we discuss S-fold theories with a
single gauge group, both in the absence and in the presence of hyper-
multiplet matters. We also study duality for a theory with two gauge
groups and use index to understand the operator map between such
theories. In section 5.3, we investigate theories corresponding to two
duality walls and with two gauge groups. The addition of fundamen-
tal hypermultiplet matter to such theories is discussed in subsection
5.3.1. Finally, in section 5.4, we consider theories with SU(2)/Z2 gauge
group with various Chern–Simons level and use the index to study the
discrete Z2 global symmetry of such theories.

• Chapter 6 [54]: In this final chapter we exploit a similar construction of
S-fold theories, but with the 3d TM theory arising on the S-duality wall
of the 4d SU(N) theory with 2N flavours. The chapter is organised as
follows. In section 6.1, we introduce the Tm theory as the basic build-
ing block that will be used to construct the other theories. We discuss
first how to couple the 4d fields to Tm as well as examine various dual-
ity frames. In section 6.2, we present the prescription for gluing many
copies of the basic building blocks together as well as propose the pre-
scription for self-gluing. The concept of the “skeleton diagram”, which
is the analog of the Riemann surface with punctures (used extensively
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in [1] to construct a large class of theories) and gives rise to a geomet-
ric interpretation of the gluing, is introduced in sections 6.1 and 6.2. In
section 6.3, we discuss two classes of theories associated with a single
wall, whose skeleton diagram contains (1) two external legs and genus
one and (2) zero external leg and genus two. The quadralities between
such theories are discussed. In sections 6.4 and 6.5, theories associated
with two duality walls, using two different types of the basic building
block, are constructed and discussed.

• Chapter 7 : We conclude the thesis with a summary of the topics dis-
cussed and with a list of questions that have been left open, that are
worth to be addressed in the future.
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Chapter 2

3d supersymmetric gauge theories

The topics discussed in this thesis 1, despite their four dimensional original,
are based on three-dimensional supersymmetric gauge theories. It is there-
fore useful to collect some known results that will be used in the rest of the
discussion.

The starting point is the superconformal algebra for three dimensional
theories with eight supercharges and the structure of matter multiplets. We
then move to discuss the Lagrangian for this class of theories. Having the
Lagrangian at hand, one may discuss on of the crucial aspects for super-
symmetric gauge theories in general, namely the moduli space of vacua and
its branches, including in particular the Higgs and the Coulomb one. Along
the way, the key role of monopole operators, one of the main characters for
the dynamics of three dimensional gauge theories, will be discussed. As we
have already mentioned in the introduction, mirror symmetry is an infrared
duality which identifies two or more theories that flow to a superconformal
fixed points and acts non-trivially on the moduli space of vacua. We will
thus discuss the basics of mirror symmetry. Among the three dimensional
theories with N = 4 supersymmetry, we will pay particular attention to the
ones having a realisation in Type IIB string theory via the Hanany-Witten
brane systems. After introducing such set-ups, we will discuss how mirror
symmetry descends from the action of S-duality on the aformentioned brane
construction.

2.1 Basics of 3d N = 4 gauge theories

The supersymmetry algebra for (2+1)-dimensional N = 4 supersymmetric
theories is generated by four real supercharges QA, with A = 1, . . . , 4, satis-
fying

{QA
α ,QB

β} = 2 σ
µ
αβδABPµ + 2 εαβZ[AB], (2.1.1)

where µ = 0, 1, 2 are Lorentz indices, α, β are spinor indices, σµ generates
the Clifford algebra and Z[AB] is the antisymmetric matrix of central charges.
The supercharges QA transforms in the vector representation 4, of SO(4) '
SU(2)H× SU(2)C, the R-symmetry group, which acts as an automorphism of
the supersymmetry algebra. In the case of a superconformal theory one has

1See also the PhD thesis [55] in which most of the material presented here have already
been discussed.
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to take the extend the aforementioned algebra to the superconformal one,
namely OSp(4|4), whose bosonic subgroup is three-dimensional conformal
group SO(2, 3) and the R-symmetry group. In the most general case of a
theory with N supersymmetries (namely when the indices A, B = 1, . . .N ),
the superalgebra is OSp(N |4), and the R-symmetry group corresponds to
SO(N ).

The multiplets needed to construct a three-dimensional N = 4 gauge
theory are vector and hypermultiplets, which can be decomposed in terms of
N = 2 multiplets. In the latter case, the basic multiplets are the vector and
the chiral one, whose component fields are as follows

chiral multiplet: Φ = {φ, ψα, F}, (2.1.2)
vector multiplet: VN=2 = {Aµ, λα, σ, D}, (2.1.3)

where the scalars φ and F in the chiral multiplet are both complex, the fermions
ψα, λα respectively in the chiral and vector multiplet have two-components,
and the vector multiplet scalars σ and D are real. Observe that F and D are
auxiliary scalars, and we will see later that their equation of motions are re-
lated to the concept of moduli space of vacua. The chiral multiplet transform
in a given representation R of the gauge group, while the vector multiplet
transform in the adjoint representation.

TheN = 4 multiplets, in terms of chiral andN = 2 vector, can be decom-
posed as follows

VN=4 = {Aµ, λα, σ, D}︸ ︷︷ ︸
VN=2

⊕{ϕ, ξα, Fϕ}︸ ︷︷ ︸
χAdj

, (2.1.4)

H = {φ, ψα, F}︸ ︷︷ ︸
χR

⊕{φ̃, ψ̃α, F̃}︸ ︷︷ ︸
χR∗

, (2.1.5)

meaning that theN = 4 vector multiplet decomposes as the sum of anN = 2
vector and a chiral in the adjoint representation, while the hyper contains a
chiral in a representation R and one in the complex conjugate representation
R∗. It is interesting to observe how the various component fields combine to
give representations of the SU(2)H × SU(2)C R-symmetry group:

Multiplet Fields SU(2)H × SU(2)C

Vector {σ, Re φ, Im φ} (0, 1)
{λα, ξα} (1

2 , 1
2)

{D, Re FΦ, Im FΦ} (1, 0)
Hyper {φ†, φ̃} (1

2 , 0)
{ψα, ψ̃α} (0, 1

2)

(2.1.6)

Having introduced the various multiplets, basics ingredients to construct
three-dimensional supersymmetric gauge theories, we now turn to the con-
struction of the action, containing several components. As we did for the
multiplets, we will discuss the action in terms of N = 2 supersymmetry
which allows for superspace formulation. First of all, the Yang-Mills term for
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each gauge node contributes with

SYM =
1
g2

∫
d3x d2θ d2θ Tr

(
W2

α −Φ†e2VΦ
)
+ c.c.. (2.1.7)

In the previous expression Wα is the field strength superfield constructed us-
ing the N = 2 vector multiplet VN=2, and Φ is the adjoint chiral multiplet
in the N = 4 vector. From now on we usually write greek capital letters to
denote adjoint chirals in the vector multplets. In writing the various pieced
of the action we omit the N = 2 for the vector multiplet, avoiding to clutter
the notation. Observe that the gauge gauge coupling for three-dimensional
gauge theories have positive dimension, [g] = 1

2 , implying a strong coupling
behaviour in the deep infrared, even for abelian theories. This is one of the
key aspects of three-dimensional gauge theories: it is possible to find very
simple models with an interesting infrared behaviour. In three-dimensions it
is possible to construct another type of action for the vector multiplet other
than the usual Yang-Mills one, namely the Chern-Simons term. The CS action
is known for being topological, i.e. with no propagating degrees of freedom.
In the setting of N = 4 gauge theories it is responsible for breaking super-
symmetry down to N = 3. The action is parametrised in term of an integer
k ∈ Z called level and reads:

SCS =
k

4π

∫
d3x Tr

[
εµνρ(Aµ∂ν Aρ +

2
3

iAµ Aν Aρ)− λλ + 2Dσ

]
+

− k
8π

∫
d3x d2θ Tr(Φ2 + c.c.)

(2.1.8)

where the first line is theN = 2 CS term. In particular, observe that the term
responsible for breaking the supersymmetry from N = 4 down to N = 3 is
the presence of the Φ2 term in the superpotential breaks the R-symmetry, be-
ing charged under the SU(2)C factor. The R-symmetry group is thus broken
down to its diagonal subgroup SU(2)H × SU(2)C → SU(2)diag. The hyper-
multiplet kinetic term and its coupling to the vector multiplet are encoded in
the action term

Shyper = −
∫

d3x d2θ d2θ (φ† e2Vφ + φ̃†e−2V φ̃). (2.1.9)

TheN = 4 superpotential is highly constrained and takes the following form

Ssuperpot = −i
√

2
∫

d3x d2θ d2θ Q̃ ΦQ + c.c., (2.1.10)

where the hypers involved are only those charged under the gauge group.
Let us conclude with two additional terms that may be added to the action

to deform a gauge theory. However, before doing that, it is necessary to in-
troduce a special feature of three-dimensional theories, namely the existence
of a rather special global symmetry: the topological symmetry. To introduce
it, let us consider for simplicity a U(1) gauge theory. It is possible to con-
struct a current Jµ = 1

4π εµνρFνρ, where Fνρ is the U(1) field strength, which is
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automatically conserved due to the Bianchi identity. The topological symme-
try acts by shifting the dual photon, a periodic scalar2 a defined as the Hodge
dual of the field strength ∂µa = εµνρFνρ. We will discuss more the topological
symmetry in the next section when monopole operators will be introduced.
It is a general feature of quantum field theory that global symmetries may
be described introducing background vector multiplets. Such a concept is es-
pecially useful to describe the deformation terms we mentioned previously,
namely mass terms for the hypermultiplets and Fayet-Iliopoulos (FI) terms. The
former is associated to global non-R symmetries while the latter to the topo-
logical symmetry. In detail, mass deformations contain a real mass, coming
from the N = 2 vector contained in the N = 4 one, and a complex mass
from the adjoint scalar. Together they form a triplet transforming in the ad-
joint representation of the SU(2)H factor of the R-symmetry group. We will
not write the action for the mass deformation since it takes the same form of
(2.1.9) and (2.1.10). In the case of FI term the three real scalars combine to
transform in the adjoint of SU(2)C. The action reads

SFI =
∫

d3x d2θ d2θ Tr(Σ VFI) +
∫

d3x d2θ Tr(Φ ΦFI + c.c.), (2.1.11)

where VFI and ΦFI are the N = 2 components of the background vector
multiplet associated to the topological symmetry and Σ is the linear multiplet,
whose lowest component is the real scalar in the vector multiplet. Observe
that the trace Tr selects the U(1) factor of the gauge group.

2.2 Monopole operators

In the previous section we introduced the basic ingredients to construct a
N = 4, also N = 3 in the presence of non-trivial CS terms, gauge theories,
namely vector and hypermultiples. However, this is not the end the story. In
fact, it is common in quantum field theory that local operators do not have to
be described as polynomials in the fundamental fields [56], but they may also
include disorder or defect operators, which are instead introduced to the game
by performing the path integral with suitable singular boundary conditions.
’t Hooft Monopole operators fall in this class of operators. For the upcoming
discussion we will closely follow the very nice review [57]. Let us take for
the moment a U(1) gauge group. To introduce a monopole operator at a
point x in space one has to integrate over the gauge fields developing a Dirac
monopole singularity [58]:

A± ∼ m
2
(±1− cos θ)dφ, (2.2.1)

where the expression is given in terms of spherical coordinates centred at the
point x where the monopole is inserted, and m is the magnetic charge. The
plus and minus signs distinguish between the gauge field behaviour in the

2The periodicity condition comes from the quantisation condition on the field strength∫
F ∈ 2πZ.
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North and South hemispheres of the S2
x surrounding the insertion point. The

result is that there is a non-trivial magnetic flux through S2
x. In the context

of supersymmetric gauge theories the singularity (2.2.1) for the gauge field
does not preserve any supersymmetry. In order to have a BPS operator, one
has to assign similar singular behaviour to the matter fields. For instance, in
the case of N = 2 supersymmetry, the real scalar in the vector multiplet σ
needs to behave, as r → 0:

σ ∼ m
2r

, (2.2.2)

and, together with (2.2.1), they preserve the same amount of supersymmetry
of an N = 2 chiral multiplet [59]. Given a non-abelian gauge group G with
rank r, i.e. the dimension of its maximal torus, the Dirac singularity is given
via the embedding U(1) ↪→ G, which allows to define the magnetic charge
m = (m1, . . . , mr), mi ∈ Z, as an element of the Cartan subalgebra modulo
the action of the Weyl group. Concretely, for the case of G = SU(N), mod-
ding out the action of the Weyl group WU(N) = SN, implies that one takes
the magnetic charges m1 ≥ m2 ≥ · · · ≥ mr > −∞, thus m ∈ ZN/SN . The
magnetic charge has to satisfy the Dirac quantisation condition [60, 61]

e2πim = 1G, (2.2.3)

implying that the magnetic charge belongs to the weight lattice of the GNO
dual group modulo the action of the Weyl group ΓG∨/WG.

A monopole operator with a magnetic charge m breaks the gauge group
G down to a residual gauge group Hm, defined as the commutant of m in
G. Physically, the breaking of the gauge group is due to an adjoint Higgs
mechanism.

The presentation we gave to introduce monopole operators as disorder
operators is based on a modern perspective, however this is not the interpre-
tation that was given when three-dimensional supersymmetric gauge theo-
ries was a developing area [62]. Initially, monopole operators were described
as follows. Let us consider a U(1) gauge theory. We have already mentioned
that it is possible to define a periodic scalar, call it a, the dual photon, and
one can combine it with the real scalar in the vector multiplet φ into a holo-
morphic quantity Φ = φ/g2 + ia. One then consider the operator

Vm ∼ em Φ, (2.2.4)

to be the monopole operator. Observe that such a relation is only valid in
a semilclassical picture, namely for large values of the scalar φ. Moreover,
such description of a monopole operator does not take into account quantum
corrections. Another remark is that the process of dualisation defining the
periodic scalar a is only known for free abelian vector multiplets.

In the previous section we introduced the concept of topological symme-
try for three-dimensional gauge theories. Given a theory based on the gauge
group G its topological symmetry is given by the centre Z(G). Monopole
operators are the objects that are charged under this symmetry. Take for def-
initeness G = U(N): its centre, hence its topological symmetry group, is
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U(1), and the topological charge of a monopole operator Vm with magnetic
charge m = (m1, . . . , mr) is

J(Vm) =
r

∑
i=1

mi. (2.2.5)

Monopole operators are not only charged under the topological symmetry,
but also under other symmetries, that may either be gauge or global. The
charges under discussion receives two type of contribution, one at the classi-
cal level and one at the quantum level. The classical pieces come from mixed
Chern-Simons couplings, when these are present. The underlying principle
is that in the presence of Chern-Simons terms, a non-trivial magnetic charge
induces an electric charge (in this case we refer to the electric charge to indi-
cate either a gauge or a global charge). Denoting with full generality MA a
magnetic flux, that can be for either for the gauge symmetry or other global
non-R symmetries, the charge of a monopole operator reads

Qclassical
A = −∑

B
kABMB, (2.2.6)

where kAB is the Chern-Simons level that enters the coupling between the
symmetries labelled by A and B. At the quantum level, this expression gets
a correction due to integration of fermionic matter, which again, generates
new Chern-Simons couplings. The quantum part of the charge is encoded in
the following expression

Qquantum
A = −1

2 ∑
ψa

QA[ψa]
∣∣∣ ∑

A
QA[ψA]MA︸ ︷︷ ︸

effective mass meff
a (M)

∣∣∣, (2.2.7)

the sum including all fermionic fields, both in chiral and vector multiplets.
Combining the classical and the quantum contributions it is possible to get
the formula for the charge of a monopole operator, which may be written in
a compact way

QA(M) = −∑
B

keff
AB(M) MB, (2.2.8)

with the effective Chern-Simons level is defined as follows

keff
AB(M) = kAB +

1
2 ∑

ψa

QA[ψa]QB[ψb] sign(meff
a (M)). (2.2.9)

The effective Chern-Simons level cannot take any possible value being con-
strained by gauge invariance to be integer. This fact implies that the matter
content which determines the quantum correction to the effective level puts
non-trivial restrictions on the possible bare levels kAB.
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2.3 Chiral ring

Let us discuss one concept that will be useful and complementary in the up-
coming discussion on the moduli space of supersymmetric vacua. Recall
that supersymmetric quantum field theories admit a special class of opera-
tors which are protected against quantum corrections called chiral operators,
that we denote as Oi, which are nothing but a set of gauge invariant opera-
tors annihilated by half of the supercharges Q:

QOi = 0. (2.3.1)

This class of operators enjoys a rather special property

〈O1(x1) . . . On(xn)〉 =
n

∏
i=1
〈Oi〉, (2.3.2)

namely their correlation functions factorises into products of one-point func-
tions. Such a property immediately descends from the definition of chiral
ring operators, namely that their spacetime derivatives vanish in cohomol-
ogy (in order for this property to hold supersymmetry must be unbroken).

Chiral operators combine to give the structure of a commutative ring, the
chiral ringR [63]:

OiOj = ck
ijOk + exact terms, (2.3.3)

where the exact terms have to be intended in a cohomological sense with
respect to the supercharges Q. Expectation values 〈Oi〉 of gauge invariant
combinations of chiral operators will play a key role in the next section when
the moduli space of supersymmetric vacua will be introduced and discussed.

2.4 Moduli space of supersymmetric vacua

One of the most prominent aspects of supersymmetric gauge theories in var-
ious dimensions is the possibility to have vacuum solutions to the equations
of motion that allows the vacuum expectation values of various scalar fields
to form non-trivial spaces, called moduli space of vacua [64], of both physical
and mathematical interest, especially in the context of algebraic and differen-
tial geometry. The relevance from the physical point of view of the concept of
moduli space of supersymmetric vacua comes from the fact that it describes
the infrared dynamics of a given gauge theory.

For a general supersymmetric theory, a space of vacuum field configu-
rations appears whenever it is possible to find non-trivial configuration of
scalar fields that make the scalar potential V to be zero. The expression for V
is as follows

V = ∑
i
|Fi|2 +

g2

2 ∑
a
(Da)2, (2.4.1)
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where Fi are the so-called F-terms and are expressed in terms of the deriva-
tives of the superpotential with respect to the various chiral fields in the the-
ory

Fi =
∂W
∂φi

, (2.4.2)

and Da are the D-terms, coming from the integration of the auxiliary D fields
in the vector multiplets, and their form depends on the space-time dimension
and on the amount of supersymmetry. Since the scalar potential is the sum of
squares of F and D-terms, the moduli space of vacua is obtained by putting
these two set of expressions to zero giving rise, respectively, to F and D-term
equations. Before going on, let us connect this general brief introduction
on the moduli space of vacua to the chiral ring. The relation comes from
the expectation values of the chiral ring operators 〈Oi〉 being holomorphic
function on the moduli space of vacua. But there is a bit more: in fact, when
the relations coming from the equations of motion for the F and D fields are
taken into account, the relation between the chiral ring and the moduli space
of vacua is one to one.

Our concern for this discussion is on the structure of the moduli space of
vacua for three-dimensional gauge theories with N = 3 and N = 4 super-
symmetry, so we will specialise what we have said to such a set-up.

It turns out that the moduli space is made up of two components, or
branches, called Higgs and Coulomb branch, depending on which scalar is tak-
ing vacuum expectation value (vev). Instead of giving a completely general
and abstract presentation we will consider first a simple example, namely the
U(1) gauge theory with F hypermultiplets (Qi, Q̃i) of charge 1, whoseN = 2
quiver description is as follows

1

φ

F

QiQ̃i W = ∑i QiφQ̃i (2.4.3)

where we specified the N = 2 superpotential of the theory. The fields in the
theory have the following charges

Field R U(1)gauge SU(F)
φ 1 0 [0, . . . , 0]
Qi 1/2 +1 [0, . . . , 0, 1]
Q̃i 1/2 −1 [1, 0, . . . , 0]

(2.4.4)

where to specify the SU(F) global symmetry we use the Dynkin label associ-
ated to the representation. In order to analyse the moduli space of this theory
we have to write down the set of F and D-term equations. For the first we
take the derivatives of the superpotential with respect to the various chiral
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fields Qi, φ, Q̃i, giving the equations

Qiφ = 0, φQ̃i = 0, QiQ̃i = 0. (2.4.5)

The set of D-term equations instead read

σQi = 0, σQ̃i = 0, QiQ† j − Q̃iQ̃†
j = 0, (2.4.6)

where σ is the real scalar in the vector multiplet. Now we will try to solve
these two sets of equations and, as mentioned before, Higgs and Coulomb
branch will arise as possible, and only, solutions.

• Higgs branch:

Consider first the situation in which the scalars that belong to the vector
multiplet, φ, σ, are set to zero on the vacuum. It is immediate from both
F and D-term equations that non-trivial vevs for Qi, Q̃i are allowed.
Nonetheless, the aformentioned VEVs are constrained to satisfy the F
and D term equations that are not trivially realised putting φ = σ = 0
(we use interchangeably the same letter to denote a scalar field and its
vev where it does not cause any confusion), namely

QiQ̃i = 0, QiQ† j − Q̃iQ̃†
j = 0. (2.4.7)

Since we want to find gauge invariant combinations of the scalar fields
with zero vacuum energy, it turns out that a convenient way to recast in
a more clear form such constraints, and hence to parametrise the Higgs
branch, is to define a meson matrix as follows

Mj
i = Qi Q̃j, (2.4.8)

a gauge invariant operator, since it is made out of the product of two
chiral fields with opposite charge with respect to the U(1) gauge group.
Thus, the idea is to describe the Higgs branch via a N×N complex ma-
trix. Nonetheless, such meson operator has to satisfy some conditions,
as we are going to describe. First, since M is constructed taking the
product of two vectors Qi and Q̃j, it has at most rank one

rank(M) ≤ 1. (2.4.9)

Furthermore, (2.4.7) implies

Tr(M) = 0, M2 = 0. (2.4.10)

Finally, we have found that the Higgs branch of (2.4.3) is parametrised
by the set of matrices

MH = {M ∈ GL(N, C) | rank(M) ≤ 1, Tr(M) = 0, M2 = 0}, (2.4.11)
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such space of matrices is known in the mathematical literature as the
minimal nilpotent orbit of SU(F). Another realisation of such a space is
obtained exploiting the ADHM construction for the moduli space of in-
stantons. In particular, (2.4.11) describes the moduli space of 1 SU(F)
instanton on C2. Observe that the VEVs for the hypermultiplets have
the effect of completely breaking the gauge symmetry on the vacuum.
In general, the Higgsing of the gauge group depends on the matter con-
tent of the theory. There can be situations in which the hypermultiplets
are “not enough” to completely Higgs the gauge group, thus one still
has a residual gauge symmetry on the vacuum, in particular one has
free vector multiplets [8]. For instance, if we take a U(N) gauge theory
with F fundamental hypermultiplets, the group is completely higgsed
if F ≥ 2N. Examples in which there is no complete higgsing have been
discussed in [65], where in the case of four dimensionalN = 2 theories
the SU(2) gauge symmetry is Higgsed down to U(1). The branch of
the moduli space of vacua has beed dubbed the Kibble branch.

Due to N = 4 supersymmetry, the Higgs branch has the structure
of an hyperkäler singular space. The presence of singularities on the
Higgs branch, has physical meaning of crucial relevance: the singular-
ity represents the point where all the VEVs are set to zero and coincides
with the superconformal point. Physically, the action of the SU(2)H R-
symmetry factor arises in the notion of hyperkäler space as the SU(2)
symmetry group acting on the variety itself by rotating the three com-
plex structures. A simple, nonetheless non-trivial example, of an hy-
perkäler singular space is given by the orbifold C2/Z2. Denote the
complex coordinates on C2 as (z1, z2), and consider all the polynomials
in such variables, representing the holomorphic ring of C2. However,
we need to take into account the action of the Z2 orbifold. On the C2

coordinates there is an action of the non-trivial Z2 element

(z1, z2)
−1∈Z2−−−−→ (−z1, −z2). (2.4.12)

The holomorphic functions on C2/Z2 are the ones of C2 which are in-
variant under the Z2 action. It is an easy task to recognise that such
polynomials are the ones constructed with even products of the coordi-
nates (z1, z2). It turns out that one may take the combinations

X = z2
1, Y = z2

2, Z = z1 z2, (2.4.13)

and generate all the Z2 invariant polynomials. Observe that the three
generators X, Y, Z are not independent quantities but satisfy the rela-
tion

X Y = Z2. (2.4.14)

In the end of this example we may summarise in a rather elegant way
that the singular hyperkäler space C2/Z2 is described in terms of three
generators X, Y, Z such that X Y = Z2. An immediate generalisation
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of this result is for the orbifold space C2/Zn, whose description in-
volves the same set of generators as before but with a different relation:
X Y = Zn. We will see how this space appears in the discussion of the
Coulomb branch for (2.4.3). The construction we have just described
may be given a clear physical interpretation: the generators X, Y, Z
represents the gauge invariant combinations of VEVs of scalar fields
parametrising the moduli space of vacua, and the relation is reminis-
cent of the ones coming from F and D term equations, similar to (2.4.10).
Another property of the Higgs branch is its exactness at the classical
level [66]. This property makes the Higgs branch a robust quantity to
study and to characterise the infrared dynamics of a supersymmetric
gauge theory.

A quantity characterising the Higgs branch of the moduli space is its
dimension. Because of the hyperkäler structure the appropriate units
to count the dimension are the quaternionic ones. To count the dimen-
sion of the Higgs branchMH one makes use of the Higgs mechanism,
namely take into account all the scalars in the hypermultiplet that re-
mains massless. The components that become massive because of the
Higgsing procedure have to be subtracted from the total number of
scalars. In detail, for a theory with gauge group G with F hypermulti-
plets in the representation R of the gauge group, one finds

dimH(MH) = dim(R)× F− dim(G). (2.4.15)

In the specific case of (2.4.3) one has

dimH(MH(2.4.3)) = F− 1. (2.4.16)

The singularity at the origin of the Higgs branch may be resolved by
turning on non-vanishing mass terms for the hypermultiplets.

• Coulomb branch: Opposite to what we have seen for the Higgs branch,
let us consider the case in which σ and φ have non trivial VEVs while
Qi and Q̃j vanish on the vacuum. This vacuum field configuration au-
tomatically satisfies the constraints put by F (2.4.5) and D-terms, (2.4.6).
In the case of the Coulomb branch it not immediate to find the appro-
priate gauge invariant operators conveniently parametrising the mod-
uli space. The name Coulomb branch is reminiscent of the fact that on
the vacuum the gauge symmetry is not completely broken but there
are still U(1) vector multiplets. To better understand this point let us
consider the term in the potential that contains the scalars in the vector
multiplets. Schematically, it takes the form

V ∼∑
i<j

[Φi, Φj]2, (2.4.17)

with i, j = 1, 2, 3, and where we denoted Φi = (σ, Re φ, Im φ). To
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achieve the vanishing of the potential V it suffices to have a set of mu-
tually communting scalars, meaning that they are actually valued in the
maximal torus U(1)dim(G) of the gauge group. Adjoint Higgs mecha-
nism is the physical process that takes place when going on the Coulomb
branch. Thus, starting from a theory with G gauge group, a generic
point of its Coulomb branch will have rank(G) massless vector multi-
plets. Now recall that monopole operators for abelian gauge theories
may be construct dualising the gauge field into a periodic scalar and
holomorphically combining it with the real scalar in the vector multi-
plet. On a generic point of the Coulomb branch we are exactly in the
situation in which such operators may be constructed. This is just a hint
on the fact that monopoles may be the main characters of the Coulomb
branch description. It turns out to be exactly the case. We have al-
ready introduced this class of operators in section 2.2 and discussed
their charges under gauge and global symmetry. In general, given a
monopole operator Vm with magnetic charge m, it can be written the
m-th power of a basic monopole with unit magnetic charge Vm = (V1)

m.
This property is related to the fact that a given magnetic lattice hosts
only one operator on each site, thus the lattice site corresponding to Vm
cannot contain two independent operators, Vm and (V1)

m. For this rea-
son we will consider only basic monopole operators V+, V−, the ones
with minimal magnetic charge. For the present discussion it is useful
to specialise the various charges to the case of theory (2.4.3) in the fol-
lowing table

Field R U(1)T SU(F)
φ 1 0 [0, . . . , 0]

Vm
F
2 |m| m [0, . . . , 0]

(2.4.18)

When we discussed the Higgs branch in the previous paragraph we
dealt with a set of classical relations satisfied by the meson matrix com-
ing from F and D terms. For the Coulomb branch the situation is dra-
matically different: there is no relation appearing at the classical level
and one has to look at quantum effects. It is conceivable that the gener-
ators of the Coulomb branch will be the scalar φ in the vector multiplet
and the basic monopole operators V+, V−. Looking at the table of their
charges (2.4.18) it is possible to guess a relation among φ, V+, V− of the
form

V+ V− = φF. (2.4.19)

As a singular space this is nothing but C2/ZF, as anticipated above.
Since it does not follow from any classical computation, such as the F-
term equations, this relation is dubbed as a quantum relation. As it has
become clear from the discussion, the Coulomb branchMC is not pro-
tected against quantum corrections as the Higgs branch. A property
the Coulomb branch shares with the Higgs branch is the presence of
an hyperkäler structure acting on it, this time the SU(2) isometry be-
ing identified with the SU(2)C factor of the R-symmetry group in the
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quantum field theory realisation. Again, quaternionic units are appro-
priate to count the dimension of the Coulomb branch, simply given by
the number of abelian vector mutiplets

dimH(MC) = dim(G). (2.4.20)

Similarly to the Higgs branch, the singularity at the origin can be re-
solved by the presence (when they are admitted) of FI terms.

Before ending the section let us mention that the Lagrangian of a three di-
mensionalN = 4 theory does not contain mixing terms among the scalars in
the hypermultiplet and the ones in the vector multiplet, thus the whole mod-
uli space is the product MH ×MC . There may be situations in which also
mixed branches appear, in which, as suggested by the name, both monopoles
and mesons may acquire non trivial VEVs. However, because of the previous
argument, one always end up with product of spaces separately parametrised
by monopoles and mesons. An example of a discussion of mixed branches
for three-dimensional N = 4 theories can be found in [67].

2.4.1 Mirror symmetry

The previous analysis of the moduli space of vacua of three-dimensional
N = 4 theories shed light on an interesting fact: one branch is “easy”3 to
study, the Higgs branch, while the other is entirely dictated by quantum cor-
rections, the Coulomb branch. Thus it seems that one may only access the
Higgs branch, since in more complicated situation than the one depicted in
(2.4.3) it may be harder to find the quantum relations among monopoles and
adjoint scalars. This is the point in which mirror symmetry comes at rescue.
Originally discovered by Intriligator and Seiberg [11], mirror symmetry is an
infrared duality which relates two or more theories that flow to a supercon-
formal fixed point. In more detail, given a gauge theory with an HiggsMH
and Coulomb branch MC , the duality conjectures the existence of a mirror
dual theory whose Higgs and Coulomb branch are exchanged:

Mmirror dual
H =MC , Mmirror dual

C =MH. (2.4.21)

As a consequence, mirror symmetry also exchanges the role of the two SU(2)
factors of the R-symmetry group and of mass terms, transforming in the ad-
joint representation of SU(2)H and trivially under SU(2)C, and FI terms,
which instead are in the adjoint of SU(2)C and in the singlet of SU(2)H.
This means that what appears as a classical effect on one duality frame man-
ifest itself as a quantum effect on the other frame, and viceversa. In [11]
the authors conjectures several mirror dual pairs starting from gauge theo-
ries constructed by Kronheimer [69], whose quiver description corresponds

3Note that we refer to the Higgs branch as being easy to analyse only because it requires a
classical analysis and does not require any quantum corrections. Despite that, it has become
clear in recent years, that the Higgs branch of various supersymmetric theories in diverse
dimensions display interesting infinite coupling phenomena. An example is the so-called
small E8 instanton transition, originally discovered in [68].
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to the (affine) Dynkin diagram of ADE Lie algebras. However, in the frame-
work of pure quantum field theory it is hard to construct new mirror dual
theories. This may be achieved via a Type IIB string theory realisation of
three-dimensional gauge theories which automatically incorporates mirror
symmetry as an incarnation of S-duality.

2.5 Hanany-Witten brane systems

A large class of three-dimensional N = 4 gauge theories can be realised in
Type IIB string theory with systems of D3, D5 and NS5 branes [10] spanning
the following space-time directions

0 1 2 3 4 5 6 7 8 9
D3 × × × ×

NS5 × × × × × ×
D5 × × × × × ×

(2.5.1)

where x6 direction can be taken to be compact or non-compact. The Lorentz
group SO(1, 9) is broken by the brane configuration to SO(1, 2) rotating x0,1,2,
SO(3)C ' SU(2)C acting on x3,4,5 and SO(3)H ' SU(2)H acting on x7,8,9. To
simplify the notation let us define two vectors m = (x3, x4, x5) and w =
(x7, x8, x9). The two SU(2) factors introduced as the isometries along the di-
rections m and w combine to give the R-symmetry group of the quantum
field theory. In this set-up the three-dimensional gauge theory lives on the
worldvolume of D3 branes. Despite being four dimensional extended ob-
jects, the D3 branes in the set-up we are discussing, called of Hanany-Witten,
extends in a finite size direction, x6. As a consequence the modes in x6 have
to be though as the Kaluza-Klein mode in a circle dimensional reduction,
meaning that the effective quantum field theory is three-dimensional.

To identify the quiver theory starting from the brane system we need to
know what is the matter content arising from the spectrum of open strings
stretching across the various D3 and D5 branes. A single D3 brane suspended
between two NS5 brane hosts a U(1) vector multiplet. If one has N D3s, the
gauge symmetry is U(1)N and becomes to U(N) when the D3 branes are co-
incident. This “classical enhancement” becomes clear when looking at the
Chan-Paton factors of the spectrum of open strings stretching among the D3
branes. In a similar fashion, a string that stretches between N coincident D3
and a D5 brane gives rise to an hypermultiplet in the fundamental represen-
tation of U(N). The last piece of information we need arises when there are
multiple stacks of D3 branes separated by various NS5 branes: in this case
string having their ends on two sets of D3 branes and crossing the NS5 sep-
arating them gives rise to hypermultiplets in the bi-fundamental representa-
tion. For definiteness, if one has N1 and N2 D3 branes to the left and to the
right of an NS5 the hypermultiplet will transform in the (N1, N2), where for
simplicity we denoted the representation via its dimension. The gauge cou-
pling of the various vector multiplets can be read from the brane realisation
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and is given in terms of the distance in the x6 direction of the NS5 branes:

1
g2 = |t1 − t2|, (2.5.2)

where t1 and t2 denotes the position in x6 of the NS5 branes. This suggests
that as the NS5 branes gets closer and closer, the gauge theory approaches a
strong coupling phase, that become infinite coupling in the case of coincident
branes. From the general brane set-up it is possible to see that D3 branes have
the freedom to move along the x3,4,5 directions, spanned by the NS5 branes,
and along x7,8,9, spanned by D5 branes. These parameters, or moduli, encodes
the structure of the moduli space of the gauge theory as we will see shortly.
Let us try to summarise the rules for constructing a quiver theory from the
brane system in a particularly simple set-up

…
…N1

N2

F1
F2

x6

x3,4,5

x7,8,9

(2.5.3)

that gives rise, with the previous rules, to the following quiver theory

N1 N2

F1 F2

(2.5.4)

Let us now consider how the Coulomb branch of a given gauge theory arises
from the brane system perspective. As we said before, a stack of N coincident
D3 branes suspended between two NS5 branes give rise to a U(N) vector
multiplet. Suppose now we take one of the D3 branes and pull it out from
the N− 1 remaining along the directions m. What does it happen to the mass-
less vector multiplet? Denoting as m1 the position of the N− 1 coincident D3
branes and with m2 the position of the D3 that has been “separated” from the
rest, the open string connecting the two sets of branes gais a non-vanishing
tension proportional to the displacement m1 −m2. In terms of the low en-
ergy degrees of freedom one gets a massive W-boson. As a consequence, the
gauge group that originally was U(N) is broken down to U(N − 1)×U(1).
In the most general case where the D3 branes are all separated the gauge
group is maximally broken down to the Cartan torus U(1)N. Recall that we
have already discussed such a situation when the Coulomb branch of the
moduli space was introduces, and it is not a coincidence. What we have seen
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is in fact the description of the Coulomb branch in terms of the brane set-up
realising the gauge theory: the origin of the Coulomb branch corresponds
to the case in which the D3 branes are all coincident, while separating them
apart in the m direction amounts to go on a generic point of the aforemen-
tioned branch where all the scalars in the vector multiplets have non-trivial
VEVs. The discussion may be repeated in the same fashion replacing the role
of NS5 branes with D5 branes and the directions m with w: what we find in
this case is the description of the Higgs branch, where massless hypermulti-
plets in the case of coincident D5 branes gain VEV and allow to explore such
branch of the moduli space.

At the end of section 2.4.1 we introduced mirror symmetry and explained
that its action on mirror dual theories is to swap their Higgs and Coulomb
branches. The Hanany-Witten realisation of three-dimensional N = 4 gauge
theories comes equipped with the tools to engineer mirror symmetry directly
at the level of the brane set-up. The fundamental ingredient one has to recall
is that S-duality acts on Type IIB string theory via the S element of SL(2, Z):

S =

(
0 −1
1 0

)
, (2.5.5)

and acts non-trivially on the five-branes by exchanging them, while the ac-
tion on the D3 brane is trivial. However, the S-transformation alone does not
correspond to mirror symmetry since one also has to take case of the spatial
directions the branes span. Thus, one supplements the action of S-duality
with the following rotation R of the spatial coordinates

m→ w, w→ −m, (2.5.6)

and trivially acts on the remaining coordinates. The lesson is now the follow-
ing: starting with a given brane set-up describing a gauge theory, it is pos-
sible to construct its mirror dual theory by performing a combined action of
S-duality and the rotation R on the brane system. Even though it may sound
a simple operation to find the mirror dual configuration, there are some rules
one to be respected and non-trivial effect to take into account. The most
prominent example being what nowadays goes under the name of Hanany-
Witten transition. Let us try to explain such effect with an example. Suppose
we start with a system of a D3 brane suspended between two NS5 branes
and a D5 brane. Denoting the x6 position of the two NS5 branes respectively
with x6

NS51
, x6

NS52
, and x6

D5 for the D5 such that x6
NS51

< x6
D5 < x6

NS52
, we ask

ourselves what happens if we move the D5 brane along x6 such that in the
end x6

D5 > x6
NS52

. Naively one could say that nothing happens and the brane
move does not have any “cost”. In picture (2.5.7) we depicted the original
configuration and called it A, and the naive one after the brane move with
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Bnaive.

A Bnaive Bcorrect

D3 creation

(2.5.7)

However one has to take into account the following fact. In the situation A,
when the D5 brane is moved on top of the D3, the mass of the corresponding
hypermultiplet proportional to |wD5 − wD3| goes to zero, providing a sin-
gularity corresponding to the appearance of a massless state. In the naive
set-up Bnaive there is no reason why a singularity should appear. Despite for
the class of three-dimensionalN = 4 theories the spectrum of BPS particles is
allowed to jump, in this specific example there is no reason why the massless
hypermultiplet should decay. The problem is resolved conjecturing that the
right configuration is Bcorrect, where a D3 brane has been created and it con-
nects the D5 and an NS5 brane. Immediately observe that such a D3 brane
has not brought any new moduli to the theory. In fact, being the D3 stretched
between an N5S and a D5 it does not possess any moduli: both its wD3 and
mD3 are fixed. The paradox of the missing singularity is now resolved noting
that a massless hypermultiplets appear in Bcorrect once the original D3 and
the new one are aligned along the m directions. It is worth to mention that
the transition also holds in the reverse way: if we start with Bcorrect config-
uration and move the D5 brane “inside” the D3 brane with no moduli gets
annihilated.

The a priori reason why the Hanany-Witten brane creation/annihilation
should take place is related to the conservation of magnetic charge. One can
assign a magnetic charge to each type of five brane, either the NS5 of the D5
brane. For definiteness, let us consider an NS5 brane and denote with LD5
the number of D5 to its left and with RD5 the D5 on the right. In a similar
fashion, LD3 and RD3 denotes the number of D3 branes ending on the NS5
from respectively from the left and from the right. The linking number of the
NS5 under consideration reads

LNS5 =
1
2
(RD3 − LD3) + (LD5 − RD5), (2.5.8)

and a completely analogue formula holds for the linking number of a given
D5. The linking number computes the total magnetic charge of a given five-
brane. Such magnetic charge for each five brane is conserved after every
brane move, a particular case being represented by the phase transition dis-
cussed above. The linking number also constraints a given brane system,
which has to satisfy the requirement that the sum of the linking numbers for
all the branes involved has to be zero. Other constraints come from unbroken
supersymmetry, such as the S-rule: given an NS5 brane and a D5 brane, there
can be one and only one D3 brane connecting them. In the end have the tools
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to analyse a given Hanany-Witten brane system, read the associated gauge
theory, and finally take the S-dual of the original set-up to read the mirror
dual theory. It is pedagogical to end the section with an example. Let us take
again the case of a U(1) gauge theory with F flavours. In the following we
depict the various steps that have to be performed in order to get the S-dual
of the original configuration

F D5

F NS5

… …

Original 
configuration

Brane  
alignment

S-dual 
configuration

S-dual 
configuration 

after HW move

(2.5.9)
Using the rules to read the gauge theory from the brane configuration we
find that the mirror pair arising from the S-dual configuration reads

1 1 1 . . . 1

1 1

(2.5.10)

where the gauge group is U(1)F−1. As a final check, we can compute the
dimension of Higgs and Coulomb branch of the mirror pair and see that the
match under mirror symmetry. The original SQED theory with F flavours
has Higgs and Coulomb branch of dimensions:

dimHHSQED w/ F = F− 1, dimHCSQED w/ F = 1. (2.5.11)

For the mirror theory, the dimension of Higgs branch can be counted tak-
ing into account the F− 2 bifundamental hypers plus the 2 coming from the
flavour nodes, minus the contribution of the F− 1 vector mutiplets

dimHHmirror = (F− 2) + 2− (F− 1) = 1, (2.5.12)

while for the Coulomb branch it suffices to take the rank of the gauge group:

dimHCmirror = F− 1. (2.5.13)

Thus, we find, as expected, that the dimension of the Higgs and Coulomb
branch across the mirror pairs match

dimHHSQED w/ F = dimHCmirror, dimHCSQED w/ F = dimHHmirror.
(2.5.14)

Obviously, matching the dimensions of Higgs and Coulomb branch does not
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imply that the branches, as singular spaces, they coincide across mirror dual-
ity, and usually a more detailed analysis is needed, nonetheless it represents
a first good check that the mirror pair has beed correctly identified. We will
not go into the detail more in this section as we will see plenty of examples of
matching Higgs and Coulomb branch of various mirror dual theories in the
main part of the thesis.
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Chapter 3

The moduli spaces of S-fold SCFTs

3.1 Linear quivers: Tσ
ρ (SU(N)) and its variants

A notable class of linear quivers, realised when the x6 direction in HW set-up
is non-compact, is as follows

N1 N2 · · · N`′−2 N`′−1

M1 M2 M`′−2 M`′−1
(3.1.1)

where a circular node with a label N denotes a U(N) gauge group and a
square node with a label M denotes a U(M) flavour symmetry. This class
of linear quivers was studied in [8] and each of the theories in this class is
represented by Tσ

ρ (SU(N)) for some N, with σ and ρ partitions of N.
From the brane perspective, if we move the D5-branes to one side and

the NS5-branes to the other side, N is the total number of D3-branes in the
middle, σ contains the differences between the number of D3-branes on the
left and on the right of each D5-brane, and ρ contains the differences between
the number of D3-branes on the left and on the right of each NS5-brane. Let
us provide an example for N = 6, σ = (3, 2, 1) and ρ = (22, 12):

NS5D5

D3

(3.1.2)
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To read off the quiver gauge theory, it is convenient to move the D5-branes
inside the NS5-brane intervals as follows:

1 1 1

1 1 1
(3.1.3)

Since three dimensional mirror symmetry [70] exchanges D5-brane and NS5-
branes [10], it also exchanges σ and ρ. A quiver description of Tσ

ρ (SU(N))
for a general σ and ρ can be found in, for example, [71, sec. 2] or [72, sec 2.1].

The T(SU(N)) theory. A theory that plays an important role in our analysis
is that with σ = ρ = [1N] 1. Such a theory is denoted by T(SU(N)) and its
quiver description is

◦
1
− ◦

2
− · · · − ◦

N−1
−�

N
. (3.1.4)

As an explicit example, the brane configurations for T(SU(3)) are as follows:

NS5D5

D3

(3.1.5)

In general T(SU(N)) is invariant under mirror symmetry. The Higgs and
the Coulomb branches of this theory are both isomorphic to the closure of
the maximal nilpotent orbit of SU(N) [8], which is denoted by NSU(N). We
can conveniently define NSU(N) as a set of N × N complex matrices M such
that tr(Mp) = 0, for p = 1, . . . , N; the quaternionic dimension of this space is
therefore 1

2 N(N − 1). For quiver (3.1.4), the symmetries of the Higgs and
Coulomb branch are thus both SU(N); the former is manifest in the La-
grangian (or quiver) description as a flavour symmetry, whereas the latter
is not manifest but gets enhanced from the topological symmetry U(1)N−1

in the infrared. There is a situation in which it is possible to have manifest
Coulomb branch symmetry, namely for the T(SU(2)) theory. In fact, there
exists an IR duality [41, 74, 75] that relates T(SU(2)) to an SU(2)1 gauge
theory with four fundamental chiral multiplets, SU(2)× SU(2) flavour sym-
metry, which only has N = 2 supersymmetry and no time-reversal symme-
try. Thus, it is possible to find a duality frame in which both the Higgs and
Coulomb symmetries are manifest, but N = 4 supersymmetry is not.

1It has been recently observed that theories specified by non-trivial partitions play a role
in understanding the three-dimensional mirror dual of the class A2N of class S theories [73].
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The T(U(N)) theory. An important variant of the T(SU(N)) theory is the
T(U(N)) theory [8, sec 4.4]. The latter is defined as a product between the
T(SU(N)) theory and an “almost trivial” T(U(1)) theory, where the lat-
ter can be characterised as follows. The Coulomb and Higgs branches of
T(U(1)) are trivial; each of them consists of only one point. Nevertheless,
T(U(1)) comes with a U(1)×U(1) background vector multiplet, along with
an N = 4 background mixed Chern–Simons term with level 1 between such
U(1) vector multiplets. Explicitly, the action for the following quiver

1k1 1k2

T(U(1)) (3.1.6)

in the N = 2 notation is given by (see e.g. [76, (4.4)])∫
d3xd4θ

(
k1

4π
Σ1 V1 +

k2

4π
Σ2 V2−

1
4π

Σ1V2 −
1

4π
Σ2V1

)
−
∫

d3xd2θ

(
k1

4π
Φ2

1 +
k2

4π
Φ2

2−
1

2π
Φ1Φ2 + c.c.

)
.

(3.1.7)

where Σi, Vi (with i = 1, 2) are, respectively, the N = 2 linear multiplet and
vector multiplet of the i-th gauge node, and Φi are the N = 2 chiral multi-
plets of the N = 4 vector multiplets of the i-th gauge group. In the above
equation, we highlight the contribution from the mixed Chern–Simons terms
due to T(U(1)) in blue. We emphasise that the mixed Chern–Simons terms
come with the level −1 in our convention for T(U(1)). Thus, one may view
the T(U(N)) theory as having a global symmetry U(N)×U(N), such that
the two U(1) subgroups of each U(N) acts trivially on the theory, and that
an N = 4 background mixed Chern–Simons term with level −N is added
for the two corresponding U(1) background vector multiplets.

It should be mentioned that there is a close cousin of the T(U(1)) theory.
This theory is called T(U(1)) in [77]. This theory can be defined almost in the
same way as above, except that the minus signs in the blue terms of (3.1.7) are
changed to plus signs. In other words, the level of the mixed Chern–Simons
terms is +1. One can then define T(U(N)) theory as a product between
T(SU(N)) and T(U(1)). As a consequence, T(U(N)) has a global symmetry
U(N)×U(N), such that the two U(1) subgroups of each U(N) acts trivially
on the theory, and that an N = 4 background mixed Chern–Simons term
with level N is added for the two corresponding U(1) background vector
multiplets.

3.2 Compact models

As it has already mentioned before, HW brane set-up allows to realise com-
pact models when the x6 direction is taken to circular. An example of this is
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as follows:

N D3

NS5

••
•

. . .

n D5s

N

n

(3.2.1)

where the loop around the node denotes a hypermultiplet in the adjoint rep-
resentation of the U(N) gauge group. The mirror theory can be obtained
simply by applying S-duality to the above brane system in the usual way:

N D3

•D5

. . .
n NS5s

N

N

NN

N

N

1

n circular nodes

(3.2.2)

3.3 S-fold solutions and their SCFT duals

3.3.1 The holographic duals of linear quivers and compact
models

Both linear quivers and compact models have known holographic duals in
sting theory. Type IIB supergravity solutions have been found in [71, 78].
Historically, these solutions descend from the seminal work [19, 20], where
AdS4 × S2 × S2 × Σ2 backgrounds have been found, with Σ2 a non-compact
Riemann surface with the topology of infinite strip R× I with coordinates
(y, x), where I is an interval. The dual field theory is supposed to be four-
dimensional SYM with space-dependent coupling constant, since the ten-
dimensional metric is actually asymptotically AdS5× S5 in the limit y → ∞.
The metric, the dilaton and the fluxes are completely determined in terms of
two harmonic functions Ai on Σ2. These functions can admit suitable singu-
larities on the boundary of the strip. Those are interpreted as the singularities
coming from D5 and NS5 branes, like those presented in example (3.1.5). We
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illustrate this in figure (3.3.1).

AdS5 ⇥ S5 AdS5 ⇥ S5

AdS4 ⇥ B6 AdS4 ⇥ B6

(3.3.1)
Backgrounds dual to 3d N = 4 linear quiver theories can be obtained by

picking suitable harmonic functions on Σ2: specifically, we can make a choice
of harmonic functions such that I shrinks to zero as y → ±∞. The resulting
topology is AdS4 × B6 where B6 ≈ S5 × I is the six-dimensional ball. This
is illustrated in (3.3.2).

AdS5 ⇥ S5 AdS5 ⇥ S5

AdS4 ⇥ B6 AdS4 ⇥ B6

(3.3.2)
Getting holographic duals of 3d N = 4 compact models is more sub-

tle and a quotient procedure is involved. Harmonic functions on Σ2 can be
chosen to have an infinite number of singularities, but in such a way to be
periodic along the infinite direction with period T:

Ai(y + T) = Ai(y) .

The whole solution is invariant under this translation, being completely de-
termined by Ai. At this stage, we can perform a quotient with respect to “T-
symmetry” ending with a configuration where points (x, y) and (x, y + T) of
the Riemann surface are identified; we end up with a surface with the topol-
ogy of the annulus; see figure (3.3.3).

(3.3.3)

3.3.2 J-folds

A more general quotient procedure can, in fact, be implemented. In par-
ticular, one may introduce an SL(2, Z) duality-twisted boundary condition
[79, 14] upon identifying the two ends of the aforementioned Riemann sur-
face. This can be done as follows. As before, the starting point is a choice
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of harmonic functions Ai, that completely fixes the physical fields of the so-
lution. For instance, let us focus on the axio-dilaton τ = C0 + i e−2φ where
C0 is the potential of the one-form flux F1 and φ is the dilaton. As it is well-
known, Type IIB supergravity admits a non-trivial action of SL(2, Z), gen-
erating orbits of equivalent solutions; the axio-dilaton is not invariant under
this SL(2, Z) action. We can imagine to pick harmonic functions Ai such:

τ(y + T) = M τ(y) (3.3.4)

where M represents the action of SL(2, Z) on the axio-dilaton and we require
that similar relations hold for all other fluxes, with an appropriate element of
SL(2, Z) acting on them. If such a choice can be performed, we can imag-
ine to quotient with respect to the joint action of SL(2, Z) and translation by
T along the non-compact direction y. Points (x, y + T) and (x, y) are again
identified; the Riemann surface has a cut along (x, T), passing through the
fields undergo an SL(2, Z) transformation. We end up with a Riemann sur-
face with the topology of the annulus and a non-trivial monodromy under
SL(2, Z). This is illustrated in (3.3.5).

y=0 y=T y=0 y=T

J J

(3.3.5)

It turns out that such a quotient is related to a particular choice of SL(2, Z)
element. Let

S =

(
0 −1
1 0

)
T =

(
1 0
1 1

)
, (3.3.6)

satisfying S2 = −1 and (ST)3 = 1, be the generators of SL(2, Z). Then the
aforementioned quotient can be performed for every element of SL(2, Z) of
the form:

Jk = −S Tk =

(
k 1
−1 0

)
, Jk = −J−k . (3.3.7)

This kind of solutions was studied in the context of abelian theories in [79]
and is referred to as the J-fold in [14]. These are often regarded as non-
geometrical, in the sense that we performed a quotient with respect to some
symmetry of the theory not descending from isometries of the metric.

The quotient also admits a realisation at the level of brane configura-
tions: it corresponds to a five-dimensional surface implementing the afore-
mentioned monodromy under SL(2, Z) action. As we have seen, Σ2 has the
topology of the annulus, thus corresponding to circular brane configuration
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with an insertion of J-folds. An example of a brane configuration with a J-
fold is as follows:

N D3

NS5

•D5 •

Jk

(3.3.8)

The insertion of the Jk-fold in such a brane system can be viewed as intro-
ducing a 3d interface, with a non-trivial SL(2, Z) action Jk, to the 4d N = 4
super-Yang-Mills theory living on the D3-branes on the circle. The theory on
such a 3d interface was studied in [8, sec. 8]. This is, in fact, the T(U(N))
theory with a Chern–Simons level k for one of the flavour U(N) symme-
try, whereas the other U(N) flavour symmetry has Chern–Simons level zero.
One can then couple this 3d theory to the theory on the D3-brane on a cir-
cle. The U(N)k and the U(N)0 flavour symmetries2 are then coupled to the
U(N)L and U(N)R gauge fields on the left and on the right of the interface,
respectively3. For instance, the three dimensional quiver theory associated
to the brane system (3.3.8) is

Nk N01 1

T(U(N))

(3.3.9)

where Nk and N0 denotes gauge groups U(N) with Chern–Simons levels k
and 0 respectively. We emphasise that there is a mixed CS term with level−N
between the two gauge groups. Due to the presence of the T(U(N)) theory as
a link, this is not a conventional Lagrangian theory, because only one U(N)
symmetry is manifest in the Lagrangian description of the T(U(N)) theory,
whereas the other U(N) symmetry emerges in the infrared4.

3.3.3 S-flips

Another type of quotients that is similar to the J-fold is possible. In this
case we select the SL(2, Z) element implementing the monodromy to be S.

2Unless specified otherwise, we denote the Chern–Simons level as the subscript.
3As pointed out in [77, 14], there are two possibilities for coupling the U(N) flavour

symmetry to the U(N) gauge field on each side, namely U(N)+ = diag(U(N)×U(N)) or
U(N)− = diag(U(N)×U(N)†). For T(U(N)), the gauging is chosen to be U(N)+ on both
sides, whereas for T(U(N)), the gauging is chosen to be U(N)+ on one side and U(N)− on
the other side.

4It should be mentioned that similar quiver theories, with special unitary gauge groups
and T(SU(N)) links, were studied in [80, sec. 4.1] and [81, sec. 5.2] in the context of 3d-
3d correspondence and the twisted compactification of the 6d N = (2, 0) theory on a torus
bundle over S1.
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However, in order to have a desired symmetry of the supergravity solution,
we have to perform an exchange of coordinates corresponding to the two S2

in AdS4 × S2 × S2 × Σ2 and a reflection of x coordinate, being identified at
the S-interface in an antipodal way, as depicted in (3.3.10).

y=0 y=T

S S

(3.3.10)

The Riemann surface now has the topology of the Möbius strip. This type of
solutions is referred to as an S-flip in [14]. Similarly to the J-fold, the S-flip
has an avatar at the level of circular brane configuration, as five-dimensional
surface passing through the configuration undergoes an SL(2, Z) transfor-
mation and a rotation of coordinates such that (x3,4,5 , x7,8,9) → (x7,8,9 ,− x3,4,5).
When an S-flip is inserted into a brane system, the corresponding quiver dia-
gram can be obtained in the same way as that with the J-fold, except that the
Chern–Simons level is set to zero. An example for this type of configurations
is depicted in (3.4.1).

3.3.4 (p, q) fivebranes

Let us now consider (p, q) fivebranes [82, 83], where (1, 0) denotes an NS5
brane and (0, 1) denotes a D5 brane. For a given ordered pair (p, q), we can
write this as

(p, q) = Jk1
Jk2

. . . Jkr (1, 0) (3.3.11)

for some k1 , k2 , . . . kr. Thus, any (p, q) brane is related to an NS5 brane by an
SL(2, Z) transformation. Using this realisation, we can convert a (p, q) brane
to an equivalent configuration involving J-folds as follows:

N D3

NS5J−1
k1

J−1
kr

Jkr
Jk1

(3.3.12)

From the perspective of the quiver diagram, each Jk gives rise to a T(U(N))
link with a Chern–Simons level k for the U(N) group on the left, whereas
each J−1

−k gives rise to a T(U(N)) link with a Chern–Simons level k for the
U(N) group on the right. In particular, the corresponding quiver theory for
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the following SL(2, Z)-equivalent brane systems

N D3

(p, q)
NS5NS5

N D3

NS5 NS5NS5 J−1
k1

J−1
kr

Jkr
Jk1

(3.3.13)
is as follows:

Nkr · · · Nk2 Nk1 N0N−kr· · ·N−k2N−k1N0

T(U(N))T(U(N))T(U(N))T(U(N)) T(U(N)) T(U(N)) T(U(N)) T(U(N))

(3.3.14)
This agrees with the description provided in [8, fig. 75] and [77, fig. 6].

3.4 Models with zero Chern–Simons levels

In this section, we consider theories with zero Chern–Simons (CS) levels and
with certain links between gauge nodes in the quiver being T(U(N)). From
the brane perspective, such a theory arises from the Hanany–Witten brane
configuration [10], namely a system of D3, NS5 and D5 branes that preserves
eight supercharges, with an insertion of S-flips [14]. The presence of an S-
flip gives rise to the aforementioned T(U(N)) link in the quiver. The moduli
space of such quiver theories is studied below. The main result can be sum-
marised as follows.

We find that these theories have two branches of the moduli space, namely
the Higgs and the Coulomb branches. Let us first discuss about the Higgs
branch. We propose that this is given by the hyperKähler quotient of a prod-
uct of each component in the quiver by the gauge symmetry. By each compo-
nent, we mean a bi-fundamental hypermultiplet, a fundamental hypermulti-
plet and a T(U(N)) link that connects two U(N) groups together. The former
two can be treated in the usual way as in a Lagrangian theory. whereas each
T(U(N)) link contributes two copies of the closure of the maximal nilpotent
orbit of SU(N), denoted by NSU(N). The reason for latter is two-fold: (1) the
Higgs and the Coulomb branches of T(U(N)) are both isomorphic toNSU(N),
and (2) in order to realise the two U(N) groups connected by T(U(N)), we
need two copies of SU(N) subgroups, one arises from the Higgs branch and
the other arises from the Coulomb branch of T(U(N)).

The Coulomb branch is similar to the usual 3d N = 4 gauge theories,
but with the following important remark. We propose that the scalars in the
vector multiplets of any two gauge nodes that are connected by a T(U(N))
link are frozen and do not contribute to the Coulomb branch. The other gauge
nodes in the quivers still give rise to vector multiplets that contribute to the
Coulomb branch. From the brane perspective, this proposal implies that the
D3-brane segment between two NS5-branes that is stretched through the S-
flip cannot move along the NS5-brane directions (i.e. the Coulomb branch
directions).
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We check that the descriptions of the Higgs and the Coulomb branches
mentioned above are consistent with S-duality and mirror symmetry. Given
a brane system, say of theory A, we can obtain a brane system of the mirror
theory, say theory B, using S-duality. We find that the moduli space of theo-
ries A and B are related by mirror symmetry [11, 10]. in the following sense.
The Higgs branch (resp. Coulomb branch) of theory A computed by using
the above proposal is in an agreement with the Coulomb branch (resp. Higgs
branch) of theory B.

Below we provide examples to demonstrate the above discussion.

3.4.1 Example 1: A flavoured affine A1 quiver

Let us consider the following brane set-up and the following theory.

N D3

NS5

•D5

•

S

N N2

T(U(N))

(3.4.1)

where, throughout this section, we denote a gauge group U(N) with zero CS
level by a circular node with the label N. The flavour symmetry U(N f ) is
denoted by a square node with the label N f .

The mirror theory can be derived by applying the S-duality to the brane
system (3.4.1) which yields

N D3

NS5

D5
•

S

N N

N

1

T(U(N))

(3.4.2)

The Higgs branches

We claim that the Higgs branch of (3.4.1) is given by

H(3.4.1) =
H ([U(2)]− [U(N)1])×NSU(N)1

×NSU(N)2
×H([U(N)1]− [U(N)2])

U(N)1 ×U(N)2
,

(3.4.3)
where NSU(N) denotes the closure of the maximal nilpotent orbit of SU(N).
We shall use shorthand notationsH and C to stand for the Higgs branch and
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the Coulomb branch respectively. The quaternionic dimension of (3.4.3) is

dimH H(3.4.1) = 2N + 2
[

1
2
(N − 1)N

]
+ N2 − N2 − N2 = N . (3.4.4)

Similarly, we claim that the Higgs branch of (3.4.2) is

H(3.4.2) =
[
H([U(N)1]− [U(N)3])×H([U(N)2]− [U(N)3])×H ([U(1)]− [U(N)2])

×NSU(N)1
×NSU(N)2

]
/ (U(N)1 ×U(N)2 ×U(N)3) .

(3.4.5)

The dimension of this space is

dimH H(3.4.2) = N2 + N2 + N + 2
[

1
2
(N − 1)N

]
− 3N2 = 0 . (3.4.6)

The Coulomb branches

Since mirror symmetry identifies the Coulomb branch C(3.4.1) of (3.4.1) with
the Higgs branchH(3.4.2) of (3.4.2), it follows that

dimH C(3.4.1) = dimH H(3.4.2) = 0 , (3.4.7)

and hence C(3.4.1) is trivial. We see that even though the theory (3.4.1) has
gauge group U(N)×U(N), its Coulomb branch is trivial. This is consistent
with our proposal: the scalars in the vector multiplets of U(N)×U(N) gauge
group in (3.4.1) are frozen to a particular value, because they are linked by
T(U(N)). From the brane perspective, this means that the D3-branes do not
move along the direction of the S-flip, but get stuck at a particular position
in the x3,4,5 directions. On the other hand, since the Higgs branch of (3.4.1)
is non-trivial, this means that the D3-branes that align along the direction of
the S-fold and NS5-branes can move along the x7,8,9 directions.

By the same token,

dimH C(3.4.2) = dimH H(3.4.1) = N . (3.4.8)

We see that even though (3.4.2) has gauge group U(N)×U(N)×U(N), its
Coulomb branch has dimension N, rather than 3N (which is the sum of the
ranks of the gauge groups). This is indeed again consistent with our pro-
posal: the scalars of the two U(N) gauge groups connected by T(U(N))
are frozen, but those of the remaining U(N) gauge group can acquire VEVs.
The latter gauge group has rank N and contributes N to dimH C(3.4.2). From
the brane perspective, the D3-brane segment between two NS5 branes that
stretch across the S-flip get stuck at a particular position along the x3,4,5 direc-
tions. On the other hand, the segment that does not stretch across the S-flip
can move along the latter.
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The Hilbert series

To confirm these statements, we compute the Hilbert series of the Higgs
branch of (3.4.1) using the description (3.4.3):5

H[H(3.4.1)](t, x) =∫
dµU(N)(u)

∫
dµU(N)(w)

× PE
[
−t2(u1 + u2)(u−1

1 + u−1
2 )− t2(w1 + w2)(w−1

1 + w−1
2 )
]

× PE

[
t(x + x−1)

{
N

∑
i=1

u−1
i +

N

∑
i=1

ui

}]
× H[NSU(N)](t, u)H[NSU(N)](t, w)

× PE

[(
N

∑
i=1

ui

)(
N

∑
i=1

w−1
i

)
t +

(
N

∑
i=1

u−1
i

)(
N

∑
i=1

wi

)
t

]
,

(3.4.9)

where the U(N) Haar measure is given by

∫
dµU(N)(z) =

(
N

∏
i=1

∮
|zi |=1

dzi

2πizi

)
∏

1≤i<j≤N

(
1− zi

zj

)
, (3.4.10)

and the Hilbert series of the closure of the maximal orbit of SU(N) is (see [84, (3.4)]
and [85]):

H[NSU(N)](t, z) =

[
N

∏
j=2

(1− t2j)

]
× PE

[
t2χ

SU(N)
adj (z)

]
, (3.4.11)

with χ
SU(N)
adj (z) the character of the adjoint representation of SU(N):

χ
SU(N)
adj (z) = (z1 + z2)(z−1

1 + z−1
2 )− 1 . (3.4.12)

Let us now explain the contribution of each line in (3.4.9). The first two lines describe
the gauging of the symmetry U(N)×U(N). The second line is the contribution of
the fundamental hypermultiplets. The third line is contribution of two copies of
NSU(N); one is the Higgs branch and the other is the Coulomb branch of T(U(N)).
The last line is the contribution of the bi-fundamental hypermultiplets. Here x is a
fugacity for the SU(2) global symmetry.

The integrals in (3.4.9) can be evaluated in an exact manner and yield

H[H(3.4.1)](t, x) = PE

[
χ

SU(2)
adj (x)

N

∑
j=1

t2j −
N

∑
j=1

t2N+2j

]
. (3.4.13)

where
χ

SU(2)
adj (x) = x2 + 1 + x−2 . (3.4.14)

The Higgs branch of (3.4.1) thus has an SU(2) isometry; this is manifest as a flavour
symmetry in the quiver. In fact, this Hilbert series is equal to that of the Coulomb

5The plethystic exponential (PE) of a multivariate function f (x1, x2, . . . , xn) such that
f (0, 0, . . . , 0) = 0 is defined as PE[ f (x1, x2, . . . , xn)] = exp

(
∑∞

k=1
1
k f (xk

1, xk
2, . . . , xk

n)
)

.
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branch of U(N) gauge theory with 2N flavours (also known as the T[12N ]
[N2]

(SU(2N))

theory [8]) [86, (5.6)], where the U(1) topological symmetry gets enhanced to SU(2)
at strong coupling :

H(3.4.1) = C (U(N) gauge theory with 2N flavours)

= C
(

T[12N ]
[N2]

(SU(N))
)

= the intersection between the Slodowy slice
transverse to the nilpotent orbit associated with [N, N]

and the nilpotent cone of SL(2N, C) [8],

(3.4.15)

Indeed, we can see an effective U(N) gauge theory with 2N flavours from (3.4.2)
as follows. Since the two U(N) gauge groups connected by the red line do not con-
tribute to the Coulomb branch, we can effectively think of them as flavour symme-
tries, and so the U(N) gauge group on the lower right hand corner has effectively
2N flavours transformed under it.

3.4.2 Example 3: Quivers with a T(U(N)) loop
We consider the following brane set-up and the following corresponding theory.

N D3

S

••
•

. . .

n D5s

N
T(U(N))

n

(3.4.16)

The mirror theory can be obtained by applying S-duality to the above system:

N D3

S

. . .
n NS5s

N

N

NN

N

N
(n + 1) nodes

T(U(N))

(3.4.17)

The Higgs branch of (5.2.1) is given by the following description

H(5.2.1) =
NSU(N) ×NSU(N) ×H ([U(N)]− [U(n)])

U(N)
. (3.4.18)
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The quaternionic dimension of which is equal to

dimH H(5.2.1) =

[
2× 1

2
(N − 1)(N)

]
+ nN − N2 = (n− 1)N . (3.4.19)

Observe that for n = 1, the Higgs branch is trivial for any N. On the other hand, the
Higgs branch of (3.4.17) is given by the following description

H(3.4.17) =
NSU(N) ×NSU(N) ×H[U(N)−U(N)]n

U(N)n+1/U(1)N , (3.4.20)

where we quotiented by U(N)n+1/U(1)N because at a generic point on the Higgs
branch, the gauge symmetry U(N)n+1 is not completely broken but it is broken to
U(1)N (see e.g. [65]). The dimension of this space is actually zero:

dimH H(3.4.17) =

[
2× 1

2
(N − 1)(N)

]
+ nN2 −

[
(n + 1)N2 − N

]
= 0 . (3.4.21)

From mirror symmetry, C(5.2.1) is identified withH(3.4.17), and so

dimH C(5.2.1) = dimH H(3.4.17) = 0 . (3.4.22)

This is consistent with our proposal because (5.2.1) has a single circular node that is
connected by the T(U(N)) link and so it does not contribute to the Coulomb branch
dynamics.

On the other hand, it can be checked using the Hilbert series that the Higgs
branchH(5.2.1) is in fact isomorphic to the Coulomb branch of the following quiver6

�
N
− ◦

N
− · · · − ◦

N︸ ︷︷ ︸
(n−1) nodes

−�
N

. (3.4.23)

This quiver can be derived from (3.4.17) using our proposal: since the vector multi-
plets two gauge nodes linked by T(U(N)) in (3.4.17) are frozen, we can take them to
be flavour nodes, and quiver (3.4.23) thus follows.

Amusingly, using brane and mirror symmetry (see [87, (2.5)]), we also know that

H(5.2.1) = C(3.4.23) = H

◦
1
− ◦

2
− · · · − ◦

N−1
−
�n
|◦
N
− ◦

N−1
− · · · − ◦

2
− ◦

1

 . (3.4.24)

In a special case of or n = 1, the quiver on right of the above equation is the star-
shaped quiver that is mirror [88] to the S1 compactification of a clsss S theory of type
AN−1 associated with a sphere with two maximal and one minimal puncture. The
latter is actually a theory of free hypermultiplets. Thus, the spaces in (3.4.24) are zero
dimensional; this is in agreement with (3.4.19).

6For example, the Hilbert series of the Higgs branch H(5.2.1) for N = n = 2 is precisely
the Coulomb branch Hilbert series of 3d N = 4 U(2) gauge theory with 4 flavours. These
can be computed similarly as in the preceding subsections.
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3.5 Abelian theories with non-zero Chern–Simons
levels

In this section, we focus on field theories that arise from Hanany–Witten brane con-
figurations, with a single D3-brane on S1 and with an inclusion of J-folds. These can
be represented as abelian quiver theories with non-zero Chern–Simons (CS) levels7,
and T(U(1)) connected between quiver nodes. The presence of a T(U(1)) link be-
tween two quiver nodes gives rise to a mixed CS level between them. In fact, the
systems consisting only a D3-brane on the circle and J-folds (but with no D5 and no
NS5 brane) were studied in [79]. Such systems give rise to pure CS theories. In order
to make the moduli space more interesting, we may also include NS5 and D5 branes
in the system. These introduce bi-fundamental and fundamental hypermultiplets
into the quiver theory. The moduli space of theories in this section is more sophisti-
cated to analyse than those in section 3.4. This is because the vacuum equations may
admit many sets of non-trivial solutions, in which case the moduli space has many
branches. Below we systematically analyse such branches, and provide necessary
conditions on the CS levels in order to have a non-trivial moduli space.

As a warm-up, we first analyse linear quivers without a T(U(1)) link in section
3.5.1. This also serves as a generalise of the analysis in [89] and a complement to the
analysis of [90], where here we provide direct analyses of the moduli space from the
vacuum equations and compute the Hilbert series. Subsequently in section 3.5.2, we
introduce a J-fold in to the brane system. Finally, in section (3.5.3), we add flavours
in to the quiver. In the latter, under some conditions, the fundamental hypermulti-
plets may contribute non-trivially to the moduli space. The analysis for theories with
more than one J-fold is more technical and we postpone the discussion to section 3.7.

3.5.1 Warm-up: Theories without a J-fold
Before adding a J-fold to the brane systems, it is instructive studying in a systematic
way the moduli space of linear quivers without fundamental matter.

1k1 1k2
1kn−1 1kn

(3.5.1)

This is made up of n U(1) gauge nodes with Chern-Simons levels ki , i = 1, . . . n.
The i-th node is connected to the (i − 1)-th one by an hyper-multiplet (Ai, Ãi). In
N = 2 language, the quiver appears as:

1k1 1k2
1kn−1 1kn

Ã1 A1 Ãn−1 An−1

ϕ1 ϕ2 ϕn−1 ϕn (3.5.2)

7We denote the CS level by a subscript, for example U(N)k denotes a group U(N) with
CS level k. In a quiver node, we abbreviate this as Nk.
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with the superpotential

W =
n−1

∑
i=1

(Ãi ϕi Ai − Ai ϕi+1Ãi) +
1
2

n

∑
i=1

ki ϕ
2
i . (3.5.3)

Due toN = 3 supersymmetry of the theory, we are allowed to collect at the same
time both F-terms and D-terms, in such a way we really need to solve a unique set
of equations. Let us call Φi = (ϕi , σi), µi = (Ai Ãi , |Ai|2 − |Ãi|2): the whole set of
F-terms and D-terms now read

Ai(Φi+1 −Φi) = 0 , Ãi(Φi+1 −Φi) = 0 i = 1 , . . . , n− 1 (3.5.4)

k1 Φ1 = µ1

ki Φi = µi − µi−1 i = 2 , . . . , n− 1
kn Φn = −µn−1

(3.5.5)

Moreover, the R-charge and gauge charges of the monopole operators with flux
(m1, . . . , mn) read, respectively:

R[V(m1,...,mn)] =
1
2

n−1

∑
i=1
|mi+1 −mi| , qi[V(m1,...,mn)] = −ki mi (3.5.6)

where mi is the magnetic flux of the i-th gauge group.

Cutting the quiver

It is convenient to study the solutions to the vacuum equations according to the van-
ishing of the VEVs of the bi-fundamental hypermultiplets. In particular, the vacuum
equations may admit the solutions in which

Al1 = Ãl1 = Al2 = Ãl2 = · · · = Alm = Ãlm = 0 , for some l1 < l2 < · · · < lm

and Ap, Ãp 6= 0 for p /∈ {l1, l2, . . . , lm} ,
(3.5.7)

In which case, the quiver diagram in question is naturally divided into sub-quivers,
and we shall henceforth say that the quiver is “cut” at the positions l1, l2, · · · , lm. If
the vacuum equations do not admit such a solution, we say that the quiver cannot
be cut. As we shall see in explicit examples below, the vacuum equations of certain
quivers may admit more than one option of cuts, in which case, each option gives
rise to a branch of the moduli space.

In order to determine whether we need to cut the quiver, we can proceed as
follows. Suppose that the quiver cannot be cut, i.e. all Ai and Ãi are non-zero. This
implies that Φi = Φ 6= 0 for all i. If the system of equations (3.5.5) admits a solution
in which µj = 0 for some j, then our initial assumption that the quiver cannot be
cut is contradicted, and we need to cut a quiver somewhere. However, it should
be emphasised that if the aforementioned system of equations have a solution in
which µj 6= 0 for all j, what we can infer is that there is a branch of the moduli space
corresponding to no cut; however, there may exist another branch of the moduli
space corresponding to a cut in the quiver.

Let us now cut the quiver in question at two positions, namely l and m with m >
l. This divides the the orginal quiver into three sub-quivers that we will denote as:
“left”, collecting the nodes first l nodes, “central”, collecting the node l + 1 , . . . , l +
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m, and finally “right” encoding the last n− l −m nodes, as depicted below.

1k1
1kl

1kl+1
1kl+m

1kl+m+1 1kn

Al = Ãl = 0 Al+m = Ãl+m = 0

(3.5.8)

Below we derive necessary conditions for each sub-quivers to contribute non-trivially
to the moduli space.

Let us consider the left sub-quiver. We fix Al = Ãl = 0 and assume that Ai
and Ãi are non-vanishing for all i = 1, 2, . . . , l. Then (3.5.85) implies that Φi =
Φ = (ϕ , σ) ∀i = 1, 2, . . . , l. The sum of the first l equations in (3.5.5) provides the
following constraint (

l

∑
i=1

ki

)
ϕ = Al Ãl = 0 . (3.5.9)

Since ϕ 6= 0 (otherwise Al−1 Ãl−1 would be zero, contradicting our assumption), we
see that a necessary condition for the left sub-quiver to contribute non-trivially to the
moduli space of vacua is

l

∑
i=1

ki = 0 . (3.5.10)

A similar argument also applies for the right sub-quiver. We fix Al+m = Ãl+m =
0 and assume that Ai and Ãi are non-vanishing for all i = l + m + 1, . . . , n. A nec-
essary condition for this sub-quiver to contribute non-trivially to the moduli space
is

n

∑
i=l+m+1

ki = 0 , (3.5.11)

If the central sub-quiver contains a sub-quiver whose CS levels sum to zero, we
may cut the former further into smaller sub-quivers. Otherwise, a necessary condi-
tion for the central sub-quiver to contribute non-trivially to the moduli space is

l+m

∑
i=l+1

ki = 0 . (3.5.12)

This again follows from the sum of the (l + 1)-th to the (l +m)-th equations in (3.5.5),
with µl = µl+m = 0.

Note that there can be many ways in cutting a given quiver into sub-quivers.
Consider the following gauge theory as an example

1−1 1+1 1−1 1+1 (3.5.13)
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There are two ways in cutting such a quiver in order to obtain a non-trivial moduli
space, namely

I : 1−1 1+1 1−1 1+1

A2 = Ã2 = 0

II : 1−1 1+1 1−1 1+1

A1 = Ã1 = 0 A3 = Ã3 = 0

(3.5.14)

In case I, both left and right sub-quivers contribute non-trivially to the moduli space,
whereas in case II, only the central sub-quiver contributes non-trivially. We shall
refer to the vacuum spaces corresponding to these two options as branches of the
moduli space for (3.5.13). We shall go over the detailed computation of the moduli
space later.

The Hilbert series

Let us consider quiver (3.5.8) and assume that the left, central and right sub-quivers
cannot be cut further. Using (3.5.85), we see that σ1 = σ2 = . . . = σl , σl+1 = σl+2 =
. . . = σl+m, and σl+m+1 = . . . = σn. In other words, the magnetic fluxes for the
monopole operators for all nodes in each sub-quiver are equal:

m1 = m2 = . . . = ml ≡ mL ,
ml+1 = ml+2 = . . . = ml+m ≡ mC,

ml+m+1 = ml+m+2 = . . . = mn ≡ mR .
(3.5.15)

The R-charge of the monopole operator with the flux (m1, . . . , mn) is therefore

R[V(m1,...,mn)] =
1
2

n−1

∑
i=1
|mi −mi+1| =

1
2
(|mL −mC|+ |mC −mR|) . (3.5.16)

The Hilbert series can be computed using the same procedure as presented in [89,
sec. 4–sec. 6]. The idea is to count the monopole operators dressed by appropriate
chiral fields in the theory such that the combination is gauge invariant. The appro-
priate combination of chiral fields that are used to dress the monopole operators are
counted by the baryonic generating function [91].

Let gL(t, B), gC(t, B) and gR(t, B) be baryonic generating functions for the left,
central and right sub-quivers, respectively. Then, the Hilbert series for the moduli
space for quiver (3.5.8) is given by

H(t; zL, zC, zR) = ∑
mL∈Z

∑
mC∈Z

∑
mR∈Z

t|mL−mC |+|mC−mR|zmL
L zmC

C zmR
R ×

gL(t, {k1mL, . . . , klmL}) gC(t, {kl+1mC, . . . , km−1mC})×
gR(t, (kmmR, . . . , knmR}) ,

(3.5.17)

where zL,C,R are fugacities for the topological symmetries. The first line is the con-
tribution from the monopole operators and the second and third lines are the con-
tribution from an appropriate combination of chiral fields in the quiver that will be
used to dress the monopole operators.
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Example 1: Quiver (3.5.13)

The two non-trivial cuts depicted in (3.5.14) corresponds to two non-trivial branches
of the moduli space.

Branch I. This corresponds to the top diagram in (3.5.14), where the VEVs of A2
and Ã2 are zero, and the VEVs of other bifundamentals are non-zero. The cut splits
the quiver (3.5.13) into two sub-quivers, each of which can be identified as the half-
ABJM theory8 [89, sec. 4.1.3]. Let us denote the magnetic fluxes associated with the
four nodes of the quiver from left to right by (mL, mL, mR, mR). The Hilbert series for
this branch of the moduli space is then given by

H(I)
(3.5.13)(t; z1, z2) = ∑

mL∈Z

∑
mR∈Z

t|mL−mR|gABJM/2(t; mL)gABJM/2(t; mR)

= ∑
mL∈Z

∑
mR∈Z

t|mL−mR| t|mL|

1− t2
t|mR|

1− t2 zmL
1 zmR

2

=
∞

∑
m=0

χ
SU(3)
[m,m]

(z1, z2)t2m .

(3.5.18)

where gABJM/2(t; B) is the baryonic generating function of the half-ABJM theory

gABJM/2(t; B) =
∮
|u1=1

du1

2πiuB+1
1

∮
|u2=1

du2

2πiu−B+1
2

PE
[
(u1u−1

2 + u−1
1 u2)t

]
=

t|B|

1− t2 ,

(3.5.19)
and the character of the adjoint representation [1, 1] of SU(3) is

χ
SU(3)
[1,1] (z1, z2) = 2 + z1z2 +

1
z1z2

+ z1 +
1
z1

+ z2 +
1
z2

. (3.5.20)

The last line indicates that this branch is isomorphic to the reduced moduli space of
one SU(3) instanton on C2 [92], or equivalently the closure of the minimal nilpotent
orbit of SU(3). The eight generators can be written in terms of a traceless 3 × 3
matrix as

M =

 ϕL V(1,1,0,0) V(1,1,1,1)
V(−1,−1,0,0) ϕR V(0,0,1,1)

V(−1,−1,−1,−1) V(0,0,−1,−1) −ϕL − ϕR

 (3.5.21)

where ϕL = ϕ1 = ϕ2 and ϕR = ϕ3 = ϕ4. The Hilbert series indicates that the matrix
M satisfies the following conditions [93]:

rank M ≤ 1 , M2 = 0 . (3.5.22)

Branch II. This corresponds to the bottom diagram in (3.5.14), where the VEVs of
A1, Ã1, A3 and Ã3 are zero, and the VEVs of other bifundamentals are non-zero. In
this case, only the central sub-quiver contributes to the computation of the Hilbert
series. The magnetic fluxes associated with the four nodes of the quiver from left to
right can be written as (0, m, m, 0), with m ∈ Z, where the zeros follow from the D-
term equations. The Hilbert series for this branch of the moduli space is then given

8We define the half-ABJM theory by a theory with U(1)k×U(1)−k gauge symmetry with
a single bi-fundamental hypermultiplet.
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by

H(II)
(3.5.13)(t; z) = ∑

m∈Z

t|0−m|+|m−m|+|m−0|gABJM/2(t; m)zm

= ∑
m∈Z

t2|m| tm

1− t2 = PE
[
t2 + (z + z−1)t3 − t6

]
.

(3.5.23)

This indicates that this branch is isomorphic to C2/Z3. The generators of this moduli
space are V(0,1,1,0), V(0,−1,−1,0) and ϕ ≡ ϕ2 = ϕ3, satisfying the relation

V(0,1,1,0)V(0,−1,−1,0) = ϕ3 . (3.5.24)

Branches I and II of (3.5.13) are indeed the Higgs and Coulomb branches of 3d
N = 4 U(1) gauge theory with 3 flavours, as pointed out in [94, sec. 4.2]. The brane
system of the former can be obtained by applying the SL(2, Z) action TT to the brane
system of the latter.

Example 2: No cut in the quiver (3.5.1)

We assume that Ai and Ãi are non-vanishing for all i = 1, . . . , n, i.e. there is no cut in
the quiver. In this case, (3.5.85) implies that

Φi = Φ = (ϕ , σ) ∀ i = 1, . . . , n (3.5.25)

As a consequence, the magnetic fluxes are constrained to be all equal m1 = m2 =
. . . = m. The equations (3.5.5), instead, simply constrain the bilinears µi in terms of
ϕ. Summing over the n equations, we obtain the following condition

(k1 + k2 + · · ·+ kn)Φ = 0 (3.5.26)

Note that Φ = 0 would imply µi = 1 ∀ i contradicting the initial assumption that all
Ai, Ãi 6= 0. Thus, as we discuss before, the moduli space is non-trivial if

n

∑
i=1

ki = 0 (3.5.27)

Let us assume (3.5.27) in the subsequent discussion.
The bare monopoles V(m,...,m), with flux (m, . . . , m), have R-charge R[V(m,...,m)] =

0. They need to be dressed in order to make them gauge invariant, because of their
gauge charge under the i-th gauge group is qi[V(m,...,m)] = −ki m. Let us define for
convenience

Ki =
i

∑
j=1

k j (3.5.28)

If Ki ≥ 0 for all i = 1, . . . , n− 1, we can form the following gauge invariant dressed
monopole operator:

V+ ≡ V(1,...,1) AK1
1 AK2

2 . . . AKn−1
n−1 ,

V− ≡ V(−1,...,−1) ÃK1
1 ÃK2

2 . . . ÃKn−1
n−1 .

(3.5.29)

Note that if Kj < 0 for some j, we replace A
Kj
j in the first equation by Ã

−Kj
j , and



3.5. Abelian theories with non-zero Chern–Simons levels 53

Ã
Kj
j in the second equation by A

−Kj
j . In any case, the R-charges of the above dressed

monopole operators are

R[V±] =
1
2

n−1

∑
i=1
|Ki| =

1
2

K (3.5.30)

with

K ≡
n−1

∑
i=1
|Ki| . (3.5.31)

The chiral ring is generated by the three operators {ϕ , V+ , V−}, statisfying the fol-
lowing relation:

V+ V− = ϕK . (3.5.32)

Thus, the variety associated to this branch is:

C2/ZK . (3.5.33)

We can obtain the same result using the Hilbert series. Let us call {q1 , q2 , . . . , qn}
the fugacities associated to the n gauge nodes and t the fugacity associated to the R-
symmetry. The ingredients entering the Hilbert series are:

• The n− 1 bifundamental hypermultiplets contribute as:

PE[t(q1q−1
2 + q−1

1 q2)]PE[t(q2q−1
3 + q−1

2 q3)] . . . PE[t(qn−1q−1
n + q−1

n−1qn)]
(3.5.34)

• There is also a contribution from ϕ which gives PE[t2].

• The F-terms (3.5.5) impose further (n− 1) constraints on the former, after tak-
ing into account the condition (3.5.26), which is the overall sum of (3.5.5).
These contribute PE[−(n− 1)t2] to the Hilbert series.

The baryonic generating function is thus:

g(t; B) = PE[−(n− 1)t2]PE[t2]
∮ dq1

2πiq1+B1
1

· · ·
∮ dqn

2πiq1+Bn
n

n−1

∏
i=1

PE[t(qiq−1
i+1 + q−1

i qi+1)]

(3.5.35)
and can perform a change of variable:

{y1 , y2 , . . . , yn} = {q1q−1
2 , q2q−1

3 . . . , qn−1q−1
n , qn} (3.5.36)

Thus, the baryonic function becomes:

PE[−(n− 2)t2]
n−1

∏
i=1

∮ dyi

2πiy1+B̃i
i

PE[t(yi + y−1
i )]

∮ dyn

2πiy1+B̃n
i

(3.5.37)

where we defined B̃i = ∑i
j=1 Bj. The previous integrals are known:

∮ dyi

2πiy1+B̃i
i

PE[t(yi + y−1
i )] =

t|B̃i|
1− t2 ,

∮ dyn

2πiy1+B̃n
i

= δB̃n , 0 (3.5.38)
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and then the baryonic generating function simplifies to

g(t; B) =
t∑n−1

i=1 |B̃i |

1− t2 δB̃n , 0 , with B̃i =
i

∑
j=1

Bj . (3.5.39)

Recall that the charge of the monopole operator under the U(1)i gauge symmetry is
qi[V(m,...,m)] = −kim. As a consequence, the Hilbert series reads:

H(t; z) = ∑
m∈Z

g(t; {k1m, . . . , knm})zm

=
1

1− t2 ∑
m∈Z

t|m|∑
n
i=1 |∑i

j=1 k j|zm

=
1

1− t2 ∑
m∈Z

tK|m|zm

= PE
[
t2 + (z + z−1)tK − t2K

]
,

(3.5.40)

where B̃n in (3.5.39) is m ∑n
i=1 ki = 0 and hence the Kronecker delta gives 1. Here z

is the fugacity for the topological symmetry. We obtained exactly the Hilbert series
of C2/ZK.

Example. Let us consider the following quiver.

1−1 1−1 1+1 1+1 (3.5.41)

This quiver has two non-trivial branches. One corresponds to no cut at all and the
other corresponds to the cuts in the first and the third position. As we discussed
above, the former branch is isomorphic to C2/Z4. The second branch is the same as
that discussed around (3.5.23) and (3.5.24); it is isomorphic to C2/Z3.

3.5.2 Theories with one J-fold
In this section we want to present the analysis of moduli space of a class of theories
dual to a brane configurations with one J-fold and a collection of (1, k) branes. The
associated quiver is

1k1 1k2 1k3 1kn

T(U(1))

(3.5.42)
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In the 3d N = 2 notation, this can be rewritten as

1k1 1k2 1k3 1kn

Ã1 A1 Ã2 A2

ϕ1 ϕ2 ϕ3 ϕn

T(U(1))

(3.5.43)

with the superpotential

W =
n−1

∑
i=1

(−Ãi ϕi Ai + Ai ϕi+1Ãi) +

(
n

∑
j=1

1
2

k j ϕ
2
j

)
−ϕ1ϕn . (3.5.44)

where we emphasise the contribution from the mixed CS term due to the T(U(1))
theory in blue. Let us write Φi = (ϕi , σi), µi = (Ai Ãi , |Ai|2 − |Ãi|2). The vacuum
equations are

Ai(Φi+1 −Φi) = 0 , Ãi(Φi+1 −Φi) = 0 i = 1 , . . . , n− 1 (3.5.45)

k1 Φ1−Φn = µ1

ki Φi = µi − µi−1 i = 2 , . . . , n− 1
kn Φn−Φ1 = −µn−1

(3.5.46)

The charges of the monopole operators V(m1,...,mn) under the i-th U(1) gauge group
are

q1[V(m1,...,mn)] = −(k1 m1−mn)

qi[V(m1,...,mn)] = −ki mi , i = 2 , . . . , n− 1

qn[V(m1,...,mn)] = −(kn mn−m1) .

(3.5.47)

The R-charges of V(m1,...,mn) is given by

R[V(m1,...,mn)] =
1
2

n−1

∑
i=1
|mi −mi+1| . (3.5.48)

Cutting the quiver

The process of cutting the quiver works similarly as in the previous subsection.
However, since there are non-trivial contributions from the T(U(1)) theory, some
conditions must be modified.

Cutting at one point

Let us consider a case in which Al = Ãl = 0 and other bifundamental hypermulti-
plets are non-zero. In other words, we cut the quiver precisely at one point where
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Al and Ãl are located. In this case equations (3.5.45) implies

Φ1 = · · · = Φl = Φ = (ϕ , σ) , Φl+1 = · · · = Φn = Φ̃ = (ϕ̃ , σ̃) (3.5.49)

The system (3.5.46) then becomes:

k1Φ− Φ̃ = µ1 , k2Φ = µ2 − µ1 , . . . , klΦ = −µl−1

kl+1Φ̃ = µl+1 , kl+2Φ̃ = µl+2 − µl+1 , . . . , knΦ̃−Φ = −µn
(3.5.50)

The sum of the first l equations and the sum of the remaining n− l ones provide two
constraints: (

l

∑
i=1

ki

)
Φ− Φ̃ = 0 ,

(
n

∑
i=l+1

ki

)
Φ̃−Φ = 0 (3.5.51)

Since Φ and Φ̃ are non-zero (otherwise, this would violate the assumption that Aj

and Ãj are non-zero for j 6= l), we arrive at the following necessary condition for the
existence of a non-trivial solution of the vacuum equation:(

l

∑
i=1

ki

)(
n

∑
i=l+1

ki

)
= 1 (3.5.52)

Since all Chern-Simons levels are integers, the above equation is equivalent to

l

∑
i=1

ki =
n

∑
i=l+1

ki = ±1 (3.5.53)

The system of equations (6.5.2) is now simply solved by Φ̃ = ±Φ. Let us analyse
separately the two cases:

• Φ = Φ̃ : In this case we choose

l

∑
i=1

ki =
n

∑
i=l+1

ki = 1 . (3.5.54)

This moduli space is parametrised by ϕ and the two basic dressed monopole
operators. Let us define for convenience

k̃ j = (k1 − 1 , k2 , . . . , kn−1 , kn − 1) ,

K̃i =
i

∑
j=1

k̃ j .
(3.5.55)

If K̃i ≥ 0 for all i = 1, . . . , l − 1, l + 1, . . . , n − 1, the basic dressed monopole
operators are

V+ = V(1,1,...,1) AK̃1
1 . . . AK̃l−1

l−1 AK̃l+1
l+1 . . . AK̃n−1

n−1

V− = V−(1,1,...,1) ÃK̃1
1 . . . ÃK̃l−1

l−1 ÃK̃l+1
l+1 . . . ÃK̃n−1

n−1 ,
(3.5.56)

If K̃j < 0 for some j, we replace A
K̃j
j in the first equation by Ã

−K̃j
j , and Ã

K̃j
j in

the second equation by A
−K̃j
j . In any case, the R-charge of the above dressed
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monopole operators are

R[V±] =
1
2 ∑

1≤i≤n−1
i 6=l

|K̃i| ≡
1
2

K̃ (3.5.57)

where the bare monopole operators have R-charge R[V±(1,1,...,1)] = 0, and we
define

K̃ = ∑
1≤i≤n−1

i 6=l

|K̃i| . (3.5.58)

Thus, V± satisfy
V+V− = ϕK̃ . (3.5.59)

This branch of the moduli space is therefore

C2/ZK̃ . (3.5.60)

Let gL(t, B) and gR(t, B) be baryonic generating functions for the left sub-
quiver (containing nodes 1, . . . , l) and the right sub-quivers (containing nodes
l + 1, . . . , n), respectively. Then, the Hilbert series for this case is given by

H(t; z) = ∑
m∈Z

zmgL(t, {(k1 − 1)m, k2m, . . . , klm})×

gR(t, {kl+1m, . . . , kn−1m, (k− 1)m})(1− t2) ,
(3.5.61)

where z is a fugacity for the topological symmetry. Using the expressions for
gL and gR given by (3.5.39). we obtain

H(t; z) = ∑
m∈Z

zm t|m|∑
l−1
i=1 |K̃i |

1− t2 δ∑l
i=1 ki ,1

× t|m|∑
n−1
i=l+1 |K̃i |

1− t2 δ∑n
i=l+1 ki ,1(1− t2)

=

{
PE
[
t2 + (z + z−1)tK̃ − t2K̃

]
if ∑l

i=1 ki = ∑n
i=l+1 ki = 1

0 otherwise .

(3.5.62)

The Hilbert series in the first line in the second equality is indeed that of
C2/ZK̃.

• Φ = − Φ̃ : In this case, we choose

l

∑
i=1

ki =
n

∑
i=l+1

ki = −1 . (3.5.63)

The basic monopole operators are V+− ≡ V(1l ,(−1)n−l) and V−+ ≡ V((−1)l ,1n−l),
whose R-symmetry are

R[V+−] = R[V−+] = 1 . (3.5.64)

Let us define for convenience

k̃′j = (k1 + 1 , k2 , . . . , kn−1 , kn + 1) ,

K̃′i =
i

∑
j=1

k̃′j .
(3.5.65)
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For K̃′i > 0 for i = 1, . . . , l − 1 and K̃′j < 0 for j = l + 1, . . . , n − 1, the basic
dressed monopole operators can be written as

V+− = V+− AK̃′1
1 . . . A

K̃′l−1
l−1 A

−K̃′l+1
l+1 . . . A

−K̃′n−1
n−1

V−+ = V−+ ÃK̃′1
1 . . . Ã

K̃′l−1
l−1 Ã

−K̃′l+1
l+1 . . . Ã

−K̃′n−1
n−1 ,

(3.5.66)

where it should be noted that in this case ∑l
i=1 ki = ∑n

i=l+1 ki = −1. Similarly
as before, V± satisfy

V+−V−+ = ϕK̃′+2 , (3.5.67)

where we define
K̃′ = ∑

1≤i≤n−1
i 6=l

|K̃′i | . (3.5.68)

This branch of the moduli space is therefore

C2/ZK̃′+2 . (3.5.69)

The Hilbert series for this case is given by

H(t; z) = ∑
m∈Z

t|m−(−m)|zmgL(t, {(k1 + 1)m, k2m, . . . , klm})×

gR(t, {−kl+1m, . . . ,−kn−1m,−(k + 1)m})(1− t2),
(3.5.70)

where z is a fugacity for the topological symmetry. Using the expressions for
gL and gR given by (3.5.39). we obtain

H(t; z) = ∑
m∈Z

t2|m|zm t|m|∑
l−1
i=1 |K̃′i |

1− t2 δ∑l
i=1 ki ,−1 ×

t|m|∑
n−1
i=l+1 |K̃′i |

1− t2 δ∑n
i=l+1 ki ,−1(1− t2)

= ∑
m∈Z

zm t|m|(2+∑l−1
i=1 |K̃′i |+∑n−1

i=l+1 |K̃′i |)

1− t2 δ∑l
i=1 ki ,−1δ∑n

i=l+1 ki ,−1

=

{
PE
[
t2 + (z + z−1)tK̃+2 − t2(K̃+2)

]
if ∑l

i=1 ki = ∑n
i=l+1 ki = −1

0 otherwise .
(3.5.71)

The Hilbert series in the first line in the third equality is indeed that of C2/ZK̃+2.

Cutting at two points

Let us consider a case in which Al = Ãl = Am = Ãm = 0 (with m > l) and other
bifundamental hypermultiplets are non-zero. In other words, we cut the quiver pre-
cisely at one point where Al , Ãl and Am, Ãm are located. This naturally divides the
quiver in question into 3 sub-quivers, which we shall refer to as left (L), central (C)
and right (R). The central sub-quiver is the same as that is considered in section 3.5.1.
In this case equations (3.5.45) implies

Φ1 = · · · = Φl = ΦL = (ϕL , σL) ,
Φl+1 = · · · = Φm−1 = ΦC = (ϕC , σC) ,

Φm+1 = · · · = Φn = ΦR = (ϕR , σR) .
(3.5.72)
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The system (3.5.46) then becomes:

k1ΦL −ΦR = µ1 , k2ΦL = µ2 − µ1 , . . . , klΦL = −µl−1
kl+1ΦC = µl+1 , kl+2ΦC = µl+2 − µl+1 , . . . , km−1ΦC = −µm−1
km+1ΦR = µm+1 , km+2ΦR = µm+2 − µm+1 , . . . , knΦR −ΦL = −µn .

(3.5.73)
The sums of the equations in the first, the second and the third lines give(

l

∑
i=1

ki

)
ΦL −ΦR = 0 ,

(
m

∑
i=l+1

ki

)
ΦC = 0 ,

(
n

∑
i=m+1

ki

)
ΦR −ΦL = 0 .

(3.5.74)

Since ΦL, ΦC and ΦR are non-vanishing (otherwise, this would violate the assump-
tion that Aj and Ãj are non-zero for j 6= l), a necessary condition for the existence of
a non-trivial solution of the vacuum equation:

l

∑
i=1

ki =
n

∑
i=m+1

ki = ±1 ,
m

∑
i=l+1

ki = 0 . (3.5.75)

Let gL(t, B), gC(t, B) and gR(t, B) be baryonic generating functions for the left,
central and right sub-quivers, respectively. Then, the Hilbert series, corresponding
to + or − sign in (3.5.75), is

H(t; zL, zC, zR)

= ∑
mL∈Z

∑
mC∈Z

∑
mR∈Z

t|mL−mC |+|mC−mR|zmL
L zmC

C zmR
R ×

gL(t, {k1mL −mR, k2mL, . . . , klmL}) gC(t, {kl+1mC, . . . , km−1mC})×
gR(t, (kmmR, . . . , kn−1mR, knmR −mL})(1− t2)δmR,±mL ,

(3.5.76)

where zL,C,R are fugacities for the topological symmetries.

Cutting at more than two points

The above discussion can be easily generalised to the case of cutting the quiver at
more than two points. For the moduli space to be non-trivial, the sum of the CS
levels in the two sub-quiver that are connected with T(U(1)) must be ±1, and the
sum of the CS levels in the other sub-quiver must be zero.

No cutting at all

Assume that Ai and Ãi are non-zero for all i. In this case, a necessary condition for
the non-trivial moduli space is

n

∑
i=1

ki = 2 . (3.5.77)

This again can be obtained from the sum of the equations in (3.5.46), with Φi = Φ =
(ϕ, σ) 6= 0 (otherwise we would have µ1 = 0 which contradicts our assumption).
The monopole operators Vm with fluxes m = ±(1, . . . , 1) are not gauge invariant;
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however, the following basic dressed monopole operators are gauge invariant

V+ = V(1,...,1) AK1
1 AK2

2 . . . AKn−1
n−1

V− = V−(1,...,1) ÃK1
1 ÃK2

2 . . . ÃKn−1
n−1 ,

(3.5.78)

for Ki ≥ 0 for all i = 1, . . . , n− 1, where we define

κi = {k1 − 1 , k2 , . . . , kn−1 , kn − 1} , Ki =
i

∑
j=1

κj . (3.5.79)

If Kj < 0 for some j, we replace A
Kj
j by Ã

−Kj
j in the first equation and Ã

Kj
j by A

−Kj
j

in the second equation.
Since the R-charges of V±(1,...,1) are zero, the R-charges of V± are 1

2 ∑n−1
i=1 |Ki|. The

moduli space is thus generate by the operators {V+ V− , ϕ} subject to the quantum
relation

V+ V− = ϕK , with K =
n−1

∑
i=1
|Ki| ; (3.5.80)

this is the algebraic definition of:
C2/ZK . (3.5.81)

Example. Let us consider the following quiver

1k1 1k2

T(U(1))

(3.5.82)

It is not possible to introduce a cut to this quiver. As a result, from (3.5.77), it is
necessary that k1 + k2 = 2 for this theory to have a non-trivial moduli space. Let us
assume this. Hence κi = {k1 − 1, k2 − 1}, Ki = {k1 − 1, k1 + k2 − 2 = 0}, and so
K = |k1 − 1| = |k2 − 1|. Therefore the moduli space of this theory is C2/Z|k1−1|.

3.5.3 Adding flavours
Let us now add fundamental flavours to the previous discussion.

1ki−1 1ki
1ki+1

fi−1 fi fi+1

(3.5.83)
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Suppose that there are n gauge groups in total. In the N = 2 notation, this quiver
can be written as

1ki−1 1ki
1ki+1

Ai−1

Ãi−1

Ai

Ai

fi−1 fi fi+1

Qi−1 Q̃i−1 Qi Q̃i Qi+1 Q̃i+1

ϕi−1 ϕi ϕi+1

(3.5.84)
The vacuum equations read

Ai−1(Φi −Φi−1) = 0 , Ai(Φi+1 −Φi) = 0, (3.5.85)

also with A↔ Ã,

Qi−1 Φi−1 = 0 , Qi Φi = 0 , Qi+1 Φi+1 = 0 (3.5.86)

also with Q↔ Q̃, and

ki−1Φi−1 = µi−1 − µi−2 + νi−1

kiΦi = µi − µi−1 + νi

ki+1Φi+1 = µi+1 − µi + νi+1 .
(3.5.87)

where we define

µj = (Aj Ãj, |Aj|2 − |Ãj|2) , νj = (QjQ̃j, |Qj|2 − |Q̃j|2) (3.5.88)

The R-charge of the monopole operators Vm with flux m = (m1, . . . , mn) is

R[Vm] =
1
2

(
n−1

∑
i=1
|mi+1 −mi| +

n

∑
i=1

fi |mi|
)

(3.5.89)

Equation (3.5.86) admits two non-trivial possibilities:

Φi = 0 or Qi = Q̃i = 0 . (3.5.90)

If we set Qi = Q̃i = 0, the analysis is similar to the linear quiver without flavours.
We will instead focus on Φi = 0. The remaining constraints in (3.5.85) and (3.5.86)
are thus:

Ai−1 Φi−1 = 0 , AiΦi+1 = 0
Qi−1 Φi−1 = 0 , Qi+1Φi+1 = 0 ,

(3.5.91)
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also with A ↔ Ã, Q ↔ Q̃. Each column of previous set of equations admit two
solutions:

Φi−1 = 0 or {Ai−1 = 0 , Qi−1 = 0}
Φi+1 = 0 or {Ai = 0 , Qi+1 = 0} (3.5.92)

The case {Ai−1 = 0 , Qi−1 = 0} obviously induce a cut in the quiver and set to zero
the adjacent fundamental matter; the same for {Ai = 0 , Qi+1 = 0}. Let us focus
on Φi−1 = Φi+1 = 0. Now, we have the vacuum equations

Ai−2 Φi−2 = 0 , Ai+1Φi+2 = 0
Qi−2 Φi−2 = 0 , Qi+2Φi+2 = 0

(3.5.93)

Again, the solutions that do not induce a cut are Φi+2 = Φi−2 = 0 and so on.
The above procedure divides the initial quiver in “Higgs" and “Coulomb" sub-

quivers, defined as follows. In the Coulomb one, fundamental matter is set to zero
while in Higgs one, all the vector multiplet scalar are set to zero. For instance, we
divide the following quiver such that the the first l nodes constitute a Coulomb sub-
quiver, the (l + 1)-th to the (l + m)-th nodes constitute a Higgs sub-quiver, and the
(l + m + 1)-th to the (n)-th nodes constitute a Coulomb sub-quiver.

k1 kl kl+1 kl+m kl+m+1 kn

f1 fl fl+1 fl+m fl+m+1 fn

(3.5.94)
where the purple nodes indicate that Φi = 0 (with i = l + 1, . . . , l + m), and the red
lines indicate that Qj = Q̃j = 0 (with j = 1, . . . , l, l + m + 1, . . . , n) and Al = Ãl =

Al+m = Ãl+m = 0 (we shall discuss about this later). For the sake of readability, in
the above diagram, we indicate only the CS level in each circular node and omit the
rank, which is 1 for each U(1) gauge group.

Since in the Higgs sub-quiver, Φi = 0 for all i = l + 1, . . . , l + m; as a conse-
quence, the magnetic flux is set to zero for all gauge nodes in the sub-quiver. Thus,
introducing a cut within the Higgs sub-quiver does not produce anything new. For
simplicity, we also assume that there is no further cut in the Coulomb branch sub-
quiver.

Moreover, a Higgs sub-quiver cannot end with a node without flavours. This can
be seen as follows. Suppose, on the contrary, that we cut the quiver at the (l + m)-
th position, namely set Al+m = Ãl+m = 0, with fl+m = 0. In this case, (3.5.87)
implies:

kl+m Φl+m = Al+m Ãl+m − Al+m−1Ãl+m−1 + Ql+mQ̃l+m . (3.5.95)

Since we cut the quiver at the (l + m)-th position, Al+m = Ãl+m = 0. We also have
Ql+m = Q̃l+m = 0 since fl+m = 0. Also, Φl+m = 0 since we are looking at the
Higgs sub-quiver. Thus the previous condition becomes:

Al+m−1Ãl+m−1 = 0 (3.5.96)
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implying a cut at Al+m−1. This procedure must be continued until we have fi 6= 0.
Let us assume that fl+1 and fl+m are non-zero. In transiting from the Coulomb

sub-quiver to Higgs sub-quiver and vice-versa, we need to introduce a cut at the
transition point; this is because from (3.5.85), we have, e.g., 0 = Al(Φl − Φl+1) =
AlΦl which indeed implies Al = 0. Indeed we need to set

Al = Ãl = 0 , Al+m = Ãl+m = 0 . (3.5.97)

In the Higgs sub-quiver, we have the vacuum equation

Al+1Ãl+1 + Ql+1Q̃l+1 = 0

Al+2Ãl+2 − Al+1Ãl+1 + Ql+2Q̃l+2 = 0
...

−Al+m Ãl+m + Ql+mQ̃l+m = 0 ,

(3.5.98)

whereas in the Coulomb sub-quiver, we have

A1Ã1 = k1ϕL

A2Ã2 − A1Ã1 = k2ϕL

...

−Al Ãl = kl ϕL ,

(3.5.99)

and

Al+m+1Ãl+m+1 = kl+m+1ϕR

Al+m+2Ãl+m+2 − Al+m+1Ãl+m+1 = kl+m+2ϕR

...

−An−1Ãn−1 = kn ϕR

(3.5.100)

The sums of these two sets of equations tell us that necessary conditions for the
existence of non-trivial moduli spaces of the Coulomb sub-quivers are

l

∑
i=1

ki = 0 ,
n

∑
j=l+m+1

k j = 0 . (3.5.101)

The gauge charge of the monopole operator Vm with flux

m = (mL, . . . ,mL︸ ︷︷ ︸
l

, 0, . . . , 0︸ ︷︷ ︸
m

,mR, . . . ,mR︸ ︷︷ ︸
n−l−m

) ≡ (ml
L, 0m,mn−l−m

R ) , (3.5.102)

where 0 is the flux for each gauge group in the Higgs sub-quivers and m is the flux
for each gauge group in the Coulomb sub-quiver, is

qi[Vm] = −kimL for i = 1, . . . , l ,
qp[Vm] = 0 for p = l + 1, . . . , l + m
qj[Vm] = −k jmR for j = l + m + 1, . . . , n

(3.5.103)
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The R-charge of the monopole operator Vm is

R[Vm] =
1
2
|mL − 0|+ 1

2

(
|mL|

l

∑
i=1

fi + |mR|
n

∑
j=l+m+1

f j

)
+

1
2
|0−mR|

≡ 1
2
|mL|(FL + 1) +

1
2
|mR|(FR + 1) ,

(3.5.104)

where we define FL,R as the total number of flavours in the left and right Coulomb
sub-quivers:

FL =
l

∑
i=1

fi , FR =
n

∑
j=l+m+1

f j . (3.5.105)

The Hilbert series for the Higgs sub-quiver can be written as

HHiggs(t; x(l+1), . . . , x(l+m))

= (1− t2)m
l+m

∏
j=l+1

∮ dqi

2πiqj
PE

[
t

f j

∑
α=1

(
qj(x(j)

α )−1 + q−1
j (x(j)

α )
)]

l+m−1

∏
i=l+1

PE[t(qi q−1
i+1 + q−1

i qi+1)]

(3.5.106)

where the first PE is related to fundamental matter and the second one to bi-fundamental
matter; the overall (1 − t2)m is due to the m F-term constraints. Observe that the
Hilbert series of this sub-quiver does not depend on the CS levels. It is also worth
noting that (3.5.106) takes the same form as the Higgs branch Hilbert series of 3d
N = 4 Tσ

ρ (SU(N)) theory [8] for some σ and ρ [95]; for example, for m = 3 and
fl+1 = fl+2 = fl+3 = 1, (3.5.106) is equal to the Higgs branch Hilbert series of
T(3,2,1)
(22,12)

(SU(6)).
Let us now focus on the Coulomb sub-quiver. The analysis is very similar to that

described in the case without flavours, discussed earlier. We emphasise that even if
all the fundamental matter is set to zero, it still contributes to the dimension of the
monopole operators. For example, if there is no cut in the left and right Coulomb
sub-quivers in (3.5.94), the baryonic generating function of each of these Coulomb
sub-quivers are similar to (3.5.40):

GL,R
Coulomb(t; m) =

1
1− t2 t|m|KL,R (3.5.107)

where

KL =
l

∑
i=1
|

i

∑
j=1

k j| , KR =
n

∑
i=l+m+1

|
i

∑
j=l+m+1

k j| . (3.5.108)

The total Hilbert series of (3.5.94) is therefore

H(t; x) = HHiggs(t; {x(i)}) ∑
mL∈Z

∑
mR∈Z

t(FL+1)|mL|+(FR+1)|mR|zmL
L zmR

R

× GL
Coulomb(t;mL)GR

Coulomb(t;mR)

= HHiggs(t; {x(α)})
[

∑
mL∈Z

1
1− t2 t(FL+KL+1)|mL|zmL

L

]
(L↔ R)

= HHiggs(t; {x(α)})H[C2/ZFL+KL+1](t, zL)H[C2/ZFR+KR+1](t, zR)

(3.5.109)
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where

H[C2/ZFL+KL+1](t, zL) = t2 + (zL + z−1
L )tFL+KL+1 − t2(FL+KL+1) . (3.5.110)

and the same for (L↔ R). The moduli space of quiver (3.5.94) is therefore

(C2/ZFL+KL+1)×MHiggs × (C2/ZFR+KR+1) , (3.5.111)

whereMHiggs denotes the moduli space of the Higgs sub-quiver, which is isomor-
phic to the Higgs branch moduli space of Tσ

ρ (SU(N)) for some appropriate N, σ
and ρ.

3.5.4 Adding flavour with one J-fold
Now we want to study the branches of a theory with one J-fold and fundamental
matter:

1k1 1k2 1kn

f1 f2 fn

T(U(1))

(3.5.112)

If all Φi (with i = 1, . . . , n) are set to zero and the presence of the T(U(1)) link does
not affect the moduli space, the analysis is the same as that discussed in the previous
subsection. On the other hand, if all Qi and Q̃i are set to zero, the analysis is similar
to that discussed in section 3.5.2; one needs to take into account of the contribution
from the fundamental matter to the R-charge of the monopole operator.

Example. Let us consider a simple example with a U(1)k gauge group, one T(U(1))
link and n flavours.

1k

T(U(1))

n

(3.5.113)

It is not possible to introduce a cut to this quiver. T(U(1)) is an almost empty theory;
it contributes the CS level −2 to the U(1) gauge group, so effectively the CS level is
k− 2.

W = Q̃i ϕQi +
1
2
(k− 2)ϕ2 , i = 1, . . . , n . (3.5.114)

We have the F-term equations:

Q̃iQi + (k− 2)ϕ = 0 , Q̃i ϕ = 0 , ϕQi = 0 . (3.5.115)
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The vacuum equations involving the real scalar field σ in the vector multiplet is

Qiσ = σQ̃i = 0 . (3.5.116)

The D-term equation reads

(Q†)iQi − Q̃i(Q̃†)i = (k− 2)σ . (3.5.117)

If k = 2, the superpotential and the moduli space are the same as that of 3d
N = 4 U(1) gauge theory with n flavours. The F-term with respect to φ implies
that Q̃iQi = 0. The Higgs branch is generating by the mesons Mi

j = QiQ̃j; this
meson matrix has rank at most 1 and subject to the matrix relation M2 = 0, which
follows from the F-term. Thus, the Higgs branch is isomorphic to the closure of the
minimal nilpotent orbit of SU(n). On the other hand, the Coulomb branch of this
theory is C2/Zn; this is generated by the monopole operators V+ and V−, carrying
the topological charges ±1 and R-charges 1

2 n, subject to the relation V+V− = ϕn.
Note that for n = 1 and k = 2, this theory has no Higgs branch and its Coulomb
branch is isomorphic to C2.

Let us now suppose that k 6= 2. If (ϕ, σ) is non-zero, (3.5.115) and (3.5.116)
implies Qi and Q̃i are zero, but this is in contradiction with the D-term. Hence
(ϕ, σ) = 0 and the Coulomb branch is trivial in this case. However, there is still the
Higgs branch generated by Mi

j = QiQ̃j. As before, this meson matrix has rank at

most 1 and subject to the matrix relation M2 = 0 (since Q̃iQi = 0). The Higgs branch
is therefore isomorphic to the closure of the minimal nilpotent orbit of SU(n). Note
that for n = 1 and k 6= 2, this theory has a trivial moduli space.

The case with one cut

For simplicity, let us first focus on the case of precisely one cut. In this case we have
two sub-quivers, left and right, connected by the T(U(1)) link. We have three possi-
bilities:

• Both the sub-quivers are in the Coulomb sector: this require the usual analysis
as in section 3.5.2.

• Both the sub-quivers are in the Higgs sector: all Φi are set to zero and the
T-link does not affect the moduli space.

• One is a Higgs sub-quiver (say, the left one) and the other is a Coulomb sub-
quiver (say, the right one).

The last case is the interesting one.

1k1
1kl

1kl+1 1kn

f1 fl fl+1 fn

T(U(1))

(3.5.118)
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where the dashed circles mean that their vector multiplet scalars are zero, and the
red lines mean that the hypermultiplets are set to zero:

Φ1 = Φ2 = . . . = Φl = 0 , (3.5.119)

The first set of vacuum equations are

Aj(Φj+1 −Φj) = Ãj(Φj+1 −Φj) = 0 , j = 1, . . . , n− 1 (3.5.120)

As a consequence, we see that

Φl+1 = Φl+2 = . . . = Φn = Φ = (ϕ, σ)

Al = Ãl = 0 ,
(3.5.121)

The latter set of equations say that we need to introduce a cut in transiting from
the Higgs sub-quiver to the Coulomb sub-quiver and vice-versa. The other vacuum
equations are

A1Ã1 + Q1Q̃1 = −ϕ

A2Ã2 − A1Ã1 + Q2Q̃2 = 0

A3 Ã3 − A2Ã2 + Q3Q̃3 = 0
...

Al Ãl − Al−1Ãl−1 + QlQ̃l = 0

(3.5.122)

and

Al+1Ãl+1 − Al Ãl = kl+1ϕ

Al+2Ãl+2 − Al+1Ãl+1 = kl+2ϕ

...

−An−1Ãn−1 = kn ϕ

(3.5.123)

where the contribution from the T(U(1)) link is denoted in blue. We denote the
vanishing terms in grey in (3.5.122) and (3.5.123). The sum of (3.5.122) gives

ϕ = −
l

∑
i=1

QiQ̃i . (3.5.124)

Moreover, a necessary condition for a non-trivial moduli space for the Coulomb sub-
quiver can be determined by summing (3.5.123) and requiring that ϕ 6= 0:

n

∑
i=l+1

ki = 0 . (3.5.125)

The gauge charge of the monopole operator Vm with flux

m = (0, . . . , 0︸ ︷︷ ︸
l

, m, . . . , m︸ ︷︷ ︸
n−l

) ≡ (0l , mn−l) , (3.5.126)



68 Chapter 3. The moduli spaces of S-fold SCFTs

where 0 is the flux for each gauge group in the Higgs sub-quiver and m is the flux
for each gauge group in the Coulomb sub-quiver, is

q1[Vm] = m , qj[Vm] = 0 for j = 2, . . . , l ,

qp[Vm] = −kpm for p = l + 1, . . . , n .
(3.5.127)

The R-charge of the monopole operator Vm is

R[Vm] =
1
2
|m− 0|+ 1

2
|m|

n

∑
i=l+1

fi ≡
1
2
|m|(FC + 1) , (3.5.128)

where we define FC as the total number of flavours in the Coulomb sub-quiver:

FC =
n

∑
i=l+1

fi . (3.5.129)

We can construct the dressed monopole operators that are gauge invariant as
follows.

V(α)
+ = V(0l ,1n−l)(Q̃α Ãα−1Ãα−2 · · · Ã1)

(
AKl+1

l+1 AKl+2
l+2 · · · A

Kn−1
n−1

)
V(α)
− = V(0l ,1n−l)(A1A2 . . . Aα−1Qα)

(
ÃKl+1

l+1 ÃKl+2
l+2 . . . ÃKn−1

n−1

)
.

(3.5.130)

where α = 1, . . . , l and

Ki =
i

∑
p=l+1

kp , for i = l + 1, . . . , n . (3.5.131)

Note that if Kj < 0 for some j, we replace A
Kj
j in the first equation by Ã

−Kj
j , and Ã

Kj
j

in the second equation by A
−Kj
j . The R-charges of V(α)

± are

R[V(α)
± ] =

1
2

[
(FC + 1) + α +

n−1

∑
p=l+1

|Kp|
]
=

1
2
[(FC + 1) + α + K] , (3.5.132)

with

K ≡
n−1

∑
p=l+1

|Kp| . (3.5.133)

As in the preceding subsection, if fl = 0 (which means Ql = Q̃l = 0), then
the Higgs sub-quiver cannot end at the l-th position because from (3.5.122) we have
Al−1Ãl−1 = 0, i.e. we need to introduce a cut at the (l − 1)-th position. However,
if f1 = 0 (which means Q1 = Q̃1 = 0), the Higgs sub-quiver still can end at the 1st
position because A1 Ã1 = −ϕ.
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The Hilbert series of quiver (3.5.118) can be obtained as follows. The baryonic
generating function for the Higgs sub-quiver is

GHiggs(t; x(1), . . . , x(l); m)

= (1− t2)l
∮ dq1

2πiq1+m
1

PE

[
t

f1

∑
α=1

(
q1(x(1)α )−1 + q−1

1 x(1)α

)]
×

l

∏
j=2

∮ dqj

2πiqj
PE

[
t

f j

∑
α=1

(
qj(x(j)

α )−1 + q−1
j x(j)

α

)] l−1

∏
i=1

PE[t(qi q−1
i+1 + q−1

i qi+1)] ,

(3.5.134)

where we indicated m in blue to emphasise that this is due to the presence of the
T(U(1)) link. The baryonic generating for the Coulomb sub-quiver is similar to
(3.5.40):

GCoulomb(t; m) =
1

1− t2 t|m|K . (3.5.135)

The total Hilbert series of (3.5.118) is therefore

H(t; {x(i)}, z; m)

= ∑
m∈Z

t(FC+1)|m|GHiggs(t; m)GCoulomb(t; m)zm

= ∑
m∈Z

t(K+FC+1)|m|zm(1− t2)l−1
∮ dq1

2πiq1+m
1

PE

[
t

f1

∑
α=1

(
q1(x(1)α )−1 + q−1

1 x(1)α

)]
×

l

∏
j=2

∮ dqj

2πiqj
PE

[
t

f j

∑
α=1

(
qj(x(j)

α )−1 + q−1
j x(j)

α

)] l−1

∏
i=1

PE[t(qi q−1
i+1 + q−1

i qi+1)] .

(3.5.136)

Example. Let us consider the following quiver

1k1 1k2 1k 1−k

1 f f ′

T(U(1))

(3.5.137)

Assume that k ≥ 0. In this case, we have K = k and FC = f + f ′. The Hilbert series
is then

H(3.5.137)(t; x(2)) = ∑
m∈Z

t(k+FC+1)|m|zm(1− t2)
∮ dq1

2πiq1+m
1

∮ dq2

2πiq2

PE
[
t
(

q2(x(2))−1 + q−1
2 x(2)

)]
PE[t(q1 q−1

2 + q−1
1 q2)]

= PE
[
t2 +

(
x(2)z−1 + (x(2))−1z

)
t3+k+FC − t2(3+k+FC)

]
.

(3.5.138)
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Hence, the moduli space of this quiver is C2/Z3+k+FC . It is generated by ϕ and V(2)
± ,

where
V(2)

+ = V(0,0,1,1)Q̃2Ã1Ak
3 , V(2)

− = V(0,0,−1,−1)A1Q2Ãk
3 , (3.5.139)

subject to the relation

V(2)
+ V(2)

− = ϕ3+k+FC . (3.5.140)

The case with more than one cuts

In this case, the original quiver is divided into many sub-quivers. The parts that are
not connected to T(U(1)) can be analysed as in section 3.5.3, and the parts that are
connected to T(U(1)) can be analysed as in section 3.5.4.

3.5.5 More examples
One Jk fold and one NS5 or D5-brane

Let us consider the following model:

1 D3

NS5

Jk

1k 10

T(U(1))

(3.5.141)

Upon applying S-duality to the above system, we obtain

1 D3

−J−1
−k

D5
•

1k

T(U(1))

1

(3.5.142)

Both of these models are analysed in detail around (3.5.82) and (3.5.113), respec-
tively. The moduli spaces these model are non-trivial if and only if k = 2. In which
case, they are isomorphic to C2.
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One (p, q)-brane and one NS5-brane

The techniques that we introduced in the section 3.5 are particularly useful to study
in a systematic way the moduli space of quiver gauge theories associated to (p, q)-
brane systems. Let us consider for instance the following brane system

1 D3

(p, q)

NS5

(3.5.143)

For simplicity, let us take (p, q) to be the following value: (p, q) = Jk3
Jk2

Jk1
(1, 0), so

that
p = k1k2k3 − k1 − k3 , q = k1k2 − 1 . (3.5.144)

Performing a duality transformation, J −1
k2

J −1
k3

, we can study the following SL(2, Z)
equivalent problem:

1 D3

(k1, 1)

(−1,−k2)

1 D3

NS5

J−1
k1

Jk1

(−1,−k2)

(3.5.145)

The associated quiver is

1k1 1−k1

1−k21k2

T(U(1)) T(U(1)) (3.5.146)
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In N = 2 language, this can be written as

1k1 1−k1

1−k21k2

T(U(1))

A Ã

B̃B

T(U(1))

φ1 φ2

φ4φ3

(3.5.147)

The vacuum equations are

A(ϕ1 − ϕ2) = 0 = Ã(ϕ1 − ϕ2) , B(ϕ3 − ϕ4) = 0 = B̃(ϕ3 − ϕ4)

k1ϕ1 − ϕ3 = A Ã , k2ϕ3 − ϕ1 = B B̃
−k1ϕ2 + ϕ4 = − A Ã , −k2ϕ4 + ϕ2 = − B B̃ .

(3.5.148)

where we emphasised the contributions due to the mixed CS levels in blue. We have
two branches as will be analysed as follow.

Branch I: AÃ 6= 0 and BB̃ 6= 0

In this case the F-terms implies:

ϕ1 = ϕ2 = ϕ , ϕ3 = ϕ4 = ϕ̃ ; (3.5.149)

moreover, two constraints are still present, fixing ϕ , ϕ̃ in terms of the mesons:

k1ϕ− ϕ̃ = AÃ , k2 ϕ̃− ϕ = BB̃ . (3.5.150)

An analogous analysis of the D-terms can be performed. The flux m for the monopole
operator Vm takes the form

m = (m, m, m̃, m̃) . (3.5.151)

The gauge charges and the R-charges of Vm are

q1[Vm] = −q2[Vm] = −(k1m− m̃) ,
q3[Vm] = −q4[Vm] = −(k2m̃−m) .

(3.5.152)

and
R[Vm] = 0 . (3.5.153)
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Let us now determine the moduli space and compute the Hilbert series of this
theory. The baryonic generating function is given by

G(t; B, B̃) =

(
4

∏
i=1

∮ dqi

2πiqi

)
1

qB
1 q−B

2 qB̃
3 q−B̃

4

PE[t(q1q−1
2 + q2q−1

1 )]PE[t(q3q−1
4 + q4q−1

3 )]

= gABJM/2(t; B) gABJM/2(t; B̃) .
(3.5.154)

where

gABJM/2(t; B) =
t|B|

1− t2 . (3.5.155)

The Hilbert series of (3.5.147) is thus:

H(3.5.147)(t, z) = ∑
m∈Z

∑
m̃∈Z

zm+m̃gABJM/2(t; k1m− m̃)gABJM/2(t; k2m̃−m)

= ∑
m∈Z

∑
m̃∈Z

zm+m̃ t|k1m−m̃|

1− t2
t|k2m̃−m|

1− t2 .
(3.5.156)

This turns out to be equal to

H(3.5.147)(t, z) =
1

k1k2 − 1

k1 k2−1

∑
j=1

1
(1− t uj)(1− t wj)

1
(1− t/uj)(1− t/wj)

= H[C4/Γ(k1, k1k2 − 1)](t, z) ,

(3.5.157)

where
uj = z

k1+1
k1k2−1 ej 2πi k1

k1k2−1 , wj = z
k2+1

k1k2−1 ej 2πi
k1k2−1 . (3.5.158)

This is the Molien formula for the Hilbert series of C4/Γ(p, q) [96], with p = k1 and
q = k1k2− 1, where Γ(p, q) is a discrete group acting on the four complex coordinate
of C4 as:

Γ(p, q) : (z1 , z2 , z3 , z4) → (z1e
2πip
q , z2e

2πi
q , z3e−

2πip
q , z4e−

2πi
q ) . (3.5.159)

This is in agreement with [97, 90].

Branch II: AÃ = 0 or BB̃ = 0

The second branch appears when we set one of the bi-fundamental hypers to zero,
say AÃ = 0. In this case, (3.5.148) implies again that:

ϕ1 = ϕ2 = ϕ , ϕ3 = ϕ4 = ϕ̃. (3.5.160)

Moreover, we have9:
k1ϕ = ϕ̃ , k2 ϕ̃ − ϕ = BB̃ . (3.5.161)

Because of N = 3 supersymmetry of the problem, the real scalar in the vector
multiplet satisfies the same equation as the complex scalar in the vector multiplet.
As a consequence, the flux m = (m, m, m̃, m̃) of the monopole operator Vm has to

9A special case is k1 = k2 = ±1. In this case BB̃ = 0 and we are left with ϕ and the
basic monopole operators. The corresponding moduli space is thus simply C2.



74 Chapter 3. The moduli spaces of S-fold SCFTs

satisfy
k1 m = m̃ (3.5.162)

The gauge charges of Vm are

q1[Vm] = −q2[Vm] = −(k1m− m̃) = 0 ,
q3[Vm] = −q4[Vm] = −(k2m̃−m) = −(k1k2 − 1)m .

(3.5.163)

The R-charge of Vm is R[Vm] = 0. The gauge invariant dressed monopole operators
are

V+ = V(1,1,k1,k1) Bk1k2−1 , V− = V(−1,−1,−k1,−k1) B̃k1k2−1 , (3.5.164)

for k1k2 − 1 > 0. If k1k2 − 1 < 0, we replace Bk1k2−1 by B̃−(k1k2−1) and B̃k1k2−1 by
B−(k1k2−1) in the above equations. They carry R-charges R[V±] = |k1k2−1|

2 . Since
(k1k2− 1)ϕ = BB̃, we see that these dressed monopole operators satisfy the quantum
relation

V+ V− = ϕ|k1k2−1| . (3.5.165)

Hence the moduli space is C2/Z|k1k2−1|.
Note that (3.5.162) implies that the magnetic lattice given by m̃ jumps by a mul-

tiple of k1, since m ∈ Z. If we further require that the magnetic lattice do not jump,
we can impose a further condition that k1 = ±1. In this case, the brane system con-
tains a (±1, 1)-brane and a (−1,−k2)-brane. Applying T∓1 to this system, (±1, 1)
becomes (±1, 0), and (−1, k2) becomes (−1,−k2 ∓ 1). This gives rise to the ABJM
theory with CS level k2 − 1 and −k2 + 1. Indeed, Branch I (which is C4/Z|k2−1|) and
Branch II (which is C2/Z|k2−1|) are the geometric branch of the ABJM theory and the
moduli space of the half-ABJM theory, respectively.

Multiple (p, q) and NS5-branes

An interesting generalisation of the example we presented in the previous subsec-
tion is the following brane configuration:

1 D3

l1 (p, q)

l2 NS5

(3.5.166)
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As before, let us take for simplicity (p, q) = Jk3
Jk2

Jk1
(1, 0). Performing a transfor-

mation, J −1
k2

J −1
k3

, we can study the following SL(2, Z) equivalent systems:

1 D3

l1 (k1, 1)

l2 (−1,−k2)

1 D3

l1 NS5

J−1
k1

Jk1

l2 (−1,−k2)

(3.5.167)

The quiver associated with the brane system on the right is

1k1 1−k110 10

1−k21k2 1010

T(U(1)) T(U(1)) (3.5.168)

where the numbers of gauge nodes are l1 + 1 and l2 + 1 on the upper and the lower
sides of the quiver, respectively. In the N = 2 notation, this can be written as

1k1 1−k110 10

1−k21k2 1010

T(U(1))

A1 Ã1 Al1 Ãl1

Bl2B̃l2

B1 B̃1

T(U(1))

ϕ1 ϕl1+1

ϕ̃l2+1ϕ̃1

ϕ2 ϕl1

ϕ̃l2ϕ̃2

(3.5.169)

The vacuum equations are

A(ϕi − ϕi+1) = 0 i = 1, . . . , l1 , B(ϕ̃i − ϕ̃i+1) = 0 i = 1, . . . , l2
k1 ϕ1 − ϕ̃1 = A1 Ã1 , k2 ϕ̃1 − ϕ1 = B1 B̃1

0 = Ai Ãi − Ai−1 Ãi−1 i = 2 , . . . , l1 , 0 = Bi B̃i − Bi−1 B̃i−1 i = 2 , . . . , l2 ,
−k1 ϕl1+1 + ϕ̃l2+1 = − Al1 Ãl1 , −k2ϕl2+1 + ϕ̃l1+1 = − Bl2 B̃l2 ,

(3.5.170)
where we highlighted in blue the contributions from the mixed CS terms due to
T(U(1)) and T(U(1)). We focus on the geometric branch, corresponding to the case



76 Chapter 3. The moduli spaces of S-fold SCFTs

ϕi = ϕ for all i = 1 . . . l1 + 1 and ϕ̃i = ϕ̃ for all i = 1 . . . l2 + 1. Imposing these
conditions, we are left with the following constraints of the mesons:

k1ϕ− ϕ̃ = A1Ã1 , Ai+1Ãi+1 − Ai Ãi = 0 , −k1ϕ + ϕ̃ = −Al1 Ãl1

k2 ϕ̃− ϕ = B1B̃1 , Bi+1B̃i+1 − Bi B̃i = 0 , −k1 ϕ̃ + ϕ = −Bl1 B̃l1

(3.5.171)

Let us consider the monopole operator Vm with flux

m = (m, . . . , m︸ ︷︷ ︸
l1+1

, m̃, . . . , m̃︸ ︷︷ ︸
l2+1

) = (ml1+1, m̃l2+1) . (3.5.172)

The R-charge of Vm is zero:
R[Vm] = 0 . (3.5.173)

and the gauge charges are

q1[Vm] = −(k1 m − m̃) , q2[Vm] = 0 , . . . , ql1 [V] = 0 , ql1+1[Vm] = (k1 m − m̃) ,
q1̃[Vm] = −(k2 m̃ − m̃) q2̃[Vm] = 0 , . . . , ql̃1

[Vm] = 0 , q̃
l̃1+1

[Vm] = (k2 m̃ − m) .
(3.5.174)

Now we have all the ingredients in order to compute the baryonic generic function:

g(t; B, B̃) = PE[−t2]l1−1 PE[−t2]l2−1
∮ dq1dq2 . . . dql1+1

(2πi)l1+1q1+B
1 q2 . . . ql1 q1−B

l1+1∮ dq̃1dq̃2 . . . dq̃l1+1

(2πi)l2+1q̃1+B̃
1 q̃2 . . . q̃l1 q̃1−B̃

l1+1

l1

∏
i=1

PE[t(qiq−1
i+1 + q−1

i qi+1)]

l2

∏
j=1

PE[t(qjq−1
j+1 + q−1

i qj+1)]

= gABJM/2(t; l1 B) gABJM/2(t; l2 B̃) =
tl1|B|+l2|B̃|

(1− t2)2

(3.5.175)

The Hilbert series of the geometric branch of (3.5.168) is then

H(3.5.168)(t, z) = g(t; k1m− m̃, k2m̃−m)

=
1

(1− t2)2 ∑
m∈Z

∑
m̃∈Z

zm+m̃tl1|k1m−m̃|+l2|k2m̃−m| .
(3.5.176)

Note that for l1 = l2 = 1 we recover (3.5.156) as expected.
In some cases, the geometric branch of (3.5.168) turns out to be isomorphic to

(C2/Zl1 ×C2/Zl2)/Γ[k1 , k1 k2 − 1], where the action of Γ[k1, k1k2 − 1] being

Γ[k1, k1k2 − 1] : (z1, z2; z̃1, z̃2)→ (ωz1, ω−1z2; ω̃z̃1, ω̃−1z̃2) , (3.5.177)

with ω = e2πi k1
k1k2−1 and ω̃ = e2πi 1

k1k2−1 ; and (z1, z2) and (z̃1, z̃2) are the coordinates of
C2/Zl1 and C2/Zl2 respectively. For example, when {k1 = 2 , k2 = 3 , l1 = l2 = 2}
we have

H(3.5.168)(t, z = 1) =
1− t2 + 4t6 − t10 + t12

(1− t2)3(1− t10)

= H[(C2/Z2 ×C2/Z2)/Γ[2 , 5]](t, z = 1) .
(3.5.178)
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and when {k1 = 2 , k2 = 2 , l1 = 5 , l2 = 1}, we have

H(3.5.168)(t, z = 1) =
(1− t + t4 − t7 + t8)(1 + t2 + t3 + t6 + t7 + t9)

(1− t) (1− t2) (1− t3) (1− t15)

= H[(C2/Z5 ×C2)/Γ[2 , 3]](t, z = 1) .
(3.5.179)

Other cases can be more complicated. For example, for {k1 = 2 , k2 = 3 , l1 =
1 , l2 = 3}, we find that

H(3.5.168)(t, z = 1) =
1

(1− t)2 (1− t5) (1− t15)
× (1− t + t2)(1− t + t2 − 2t3

+ 2t4 + t5 + 2t6 − 3t8 + palindrome up to t16)

= H[(C2 ×C2/Z3)/Γ̂](t, z = 1) ,
(3.5.180)

where the orbifold Γ̂ acts as (3.5.177) but with ω = e2πi 2
5 and ω̃ = e2πi 3

5 = ω−1 .

One (p, q)-brane and one D5-brane

Let us consider an example of one (p, q)-brane and one D5-brane. In particular, let
us assume that (p, q) = Jk1

(1, 0) = (k1, 1):

1 D3

(k1, 1)

D5
•

(3.5.181)

One may apply SL(2, Z) action to this configuration and obtain the following con-
figurations:

1 D3

(1, 0)

(1, k1)

1 D3

NS5

J−1
k1

Jk1

D5
•

(3.5.182)

where the first configuration is obtained by applying a J−1
k1

duality transformation to

(3.5.181) and using the fact that J−1
k1
(0, 1) = (1, k1), and for the second configuration

we use the fact that Jk1
(1, 0) = (k1, 1), so we recover the original set-up (3.5.181).

The brane configuration on the left in (3.5.182) is that of the ABJM theory with CS
level (k1,−k1). Thus, we expect that the moduli space of the field theories associated
with these brane configurations has two branches, namely (1) C4/ Z|k1|, which is the
geometric moduli space of the ABJM theory, and (2) C2/ Z|k1|, which is the moduli
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space of the half-ABJM theory, where a pair of bi-fundamental chiral multiplets of
the ABJM theory is set to zero.

Let us derive these moduli spaces for the theory associated with the configura-
tion on the right in (3.5.182). The quiver diagram is given by

1−k1 1k1

10

1

T(U(1)) T(U(1)) (3.5.183)

In the N = 2 notation, this quiver can be rewritten as

1−k1 1k1

10

1

T(U(1)) T(U(1))

Ã A

Q̃
Q

φ1 φ2

φ3

(3.5.184)

The vacuum equations are

A(ϕ1 − ϕ2) = 0 = Ã(ϕ1 − ϕ2) , Q ϕ3 = 0 = Q̃ ϕ3

−k1ϕ1 − ϕ3 = A Ã , QQ̃ = 0
k1ϕ2 + ϕ3 = − A Ã ,

(3.5.185)

where we indicate the contributions from the mixed CS terms due to T(U(1)) and
T(U(1)) in blue. Let us assume that A and Ã are non-zero. Therefore ϕ1 = ϕ2 = ϕ
(and the corresponding magnetic fluxes are set equal: m1 ,= m2 = m). Thus, we
have two branches: (1) Q = Q̃ = 0, and (2) ϕ3 = 0.

Branch I: Q = Q̃ = 0

The moduli space is parametrised by AÃ , ϕ , ϕ3 and the monopole operators, with
the following constraint from the vacuum equations:

− k1ϕ− ϕ3 = A Ã . (3.5.186)

The monopole operator Vm, with flux m = (m, m, m3), carries gauge and R charges:

q1[Vm] = −q2[Vm] = k1m − m3 , q3[Vm] = 0 , R[Vm] =
1
2
|m3| (3.5.187)
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where we stress that q3[Vm] = 0 since T(U(1)) and T(U(1)) contribute m and −m
respectively, and the non-trivial contribution to the R-charge is due to the presence
of the flavour. The baryonic generating function is given by

g(t; B) =
1

1− t2

∮ dq1

2π i q1+B
1

dq2

2π i q1−B
2

dq3

2π i q3
PE[t(q−1

1 q2 + q1q−1
2 )] =

=
1

1− t2 gABJM/2(t, B) =
t|B|

(1− t2)2

(3.5.188)

where the overall (1− t2)−1 is due to the the fact that only one among ϕ and ϕ3 gets
fixed. The Hilbert series is thus given by

HI(t, z) =
+∞

∑
m=∞

+∞

∑
m3 =∞

zm+m3 t|m3|g(t;−k1m − m3) =

=
+∞

∑
m=∞

+∞

∑
m3 =∞

zm+m3
t|m3|+|k1m+m3|

(1− t2)2 .

(3.5.189)

This turns out to be equal to the following Hilbert series of C4/Z|k1|:

HI(t, z) =
1
|k1|

|k1|
∑
j=1

1
(1− t wj)2(1− t / wj)2 , w = z e

2π i
|k1 | ,

= H[C4/Z|k1|](t, z) .

(3.5.190)

This is in agreement with the geometric branch of the ABJM theory.

Branch II: ϕ3 = 0

In this case, the vacuum equations imply that QQ̃ = 0. The moduli space is gen-
erated by ϕ = − 1

k AÃ and the dressed monopole operators V+ = V(1,1,0)Ak1 and
V− = V(−1,−1,0) Ãk1 if k1 > 0. If k1 < 0, we simply change Ak1 to Ã−k1 and Ãk1

to A−k1 in these equations. These dressed monopole operators satisfy the quantum
relation

V+V− = ϕ|k1| . (3.5.191)

Hence, this branch is isomorphic to C2/ Z|k1|, which is the moduli space of the half-
ABJM theory.

3.5.6 Comments on abelian theories with zero Chern–Simons
levels

Let us now revisit abelian theories with zero CS levels, namely those studied in
section 3.4 with N = 1, from the point of view of this section.

One can start by taking simple examples: comparing (5.2.1) to (3.5.113). We set
N = 1 and n = 1 in the former and set k = 0 In the latter. Indeed, as we discussed
below (3.5.113), such theory has a trivial Coulomb branch, because the scalar in the
vector multiplets are set to zero by the vacuum equations. This is perfectly consistent
with the proposal in section 3.4, namely the scalar fields in the vector multiplet of the
gauge nodes that are connected by T(U(N)) are frozen. Moreover, from (3.4.19), we
see that when n = 1 the Higgs branch is also trivial; this is also in accordance with
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the analysis below (3.5.113), where the meson vanishes. Hence the two approaches,
one presented in section 3.4 and the other presented in this section, yield the same
results. The same result can be derived easily for the mirror theory (3.4.17), with
N = 1 and n = 1, and (3.5.82) with k1 = k2 = 0.

This analysis can be generalised to other models discussed in this section. When
we set all CS levels to zero, the vacuum equations set the scalars in the vector mul-
tiplets corresponding to the gauge groups that are connected by T(U(1)) to zero.
Other parts of the quiver may still contribute non-trivially to the moduli space.

3.6 Non-abelian theories with non-zero Chern–Simons
levels

In this section, we focus on non-abelian quiver theories that contain T(U(N)) and/or
T(U(N)) theories as edges of the quiver. In terms of a brane system, these theo-
ries involve multiple D3-branes, along with J-folds and possibly with other types
of branes. In contrast to the abelian case, we do not have a general prescription of
computing the Hilbert series of the geometric branch of non-abelian theories. Nev-
ertheless, for theories that arise from N M2-branes probing Calabi-Yau 4-fold sin-
gularities, we expect that the geometric branch is the N-fold symmetric product of
such a Calabi-Yau 4-fold. In such cases, we can analyse the Hilbert series for each
configuration of magnetic fluxes. Let us demonstrate this in the following example.

One (k, 1) and one (1, k′) brane
Let us consider the generalisation of (3.5.146) for non-abelian gauge groups.

Nk1 N−k1

N−k2Nk2

T(U(N)) T(U(N)) (3.6.1)

In section 3.5.5, we see that the geometric branch of the moduli space for the abelian
theory (N = 1) is a Calabi-Yau 4-fold (this is referred to as Branch I in that section);
the latter is identified to be C4/Γ(k1, k1k2 − 1). For a general N, we expect that the
geometric branch of (3.6.1) is the N-th fold symmetric product of C4/Γ(k1, k1k2− 1),
namely SymN (C4/Γ(k1, k1k2 − 1)

)
.

Let us focus on N = 2 in the following discussion. The Hilbert series of Sym2 (C4/Γ(k1, k1k2 − 1)
)

is given by

H(3.6.1), N=2(t, z) =
1
2

[
H(3.5.147)(t, z)2 + H(3.5.147)(t

2, z2)
]

, (3.6.2)

where H(3.5.147)(t, z) is given by (3.5.156). This computation can be split into five
different cases depending on the fluxes and the residual gauge symmetries.



3.6. Non-abelian theories with non-zero Chern–Simons levels 81

1. The magnetic fluxes for the two nodes on the upper edge are both (m, m), and
the magnetic flux for the two nodes on the lower edge are both (n, n). In this
case, the residual gauge symmetry is U(2)×U(2)×U(2)×U(2). The Hilbert
series in this case can be computed as a second rank symmetric product of the
abelian case (which is a product of two half-ABJM theories). The result is

H(1)
N=2(t, z) =

1
2 ∑

m,n∈Z

[
gABJM/2(t; k1m−n)2gABJM/2(t; k2n−m)2

+ gABJM/2(t2; k1m−n)gABJM/2(t2; k2n−m)
]
z2(m+n) ,

(3.6.3)

where the terms indicated in blue are due to the mixed CS terms due to the
presence of T(U(2)) and T(U(2)) and

gABJM/2(t; B) =
t|B|

1− t2 . (3.6.4)

Let us report the unrefined Hilbert series, for k1 = 1 and k2 = 2, for this case
up to order t12:

H(1)
N=2,k=(1,2)(t, z = 1) = 1 + 6t2 + 22t4 + 62t6 + 147t8

+ 308t10 + 588t12 + . . . .
(3.6.5)

In fact, we can also compute (3.6.5) using the Molien integration [91] as fol-
lows:

H(1)
N=2,k=(1,2)(t, z = 1)

=
∮
|z1|=1

dz1

2πiz1
· · ·

∮
|z4|=1

dz4

2πiz4

∮
|q1|=1

dq1

2πiq1

∮
|q2|=1

dq2

2πiq2
×(

4

∏
j=1

H[C2/Z2](t, zj)

)
PE
[
(z1 + z−1

1 )(z2 + z−2
2 )(q1 + q−1

1 )t

+ (z3 + z−1
3 )(z4 + z−2

4 )(q2 + q−1
2 )t

− (z2
1 + 1 + z−2

1 )t2 − (z2
3 + 1 + z−2

3 )t2 + t4 − t8
]

.

(3.6.6)

We have checked that (3.6.6) agrees with (3.6.5) up to order t20. Here z1, . . . , z4
are fugacities for the gauge groups SU(2)1,2,3,4 that are subgroups of U(2)1,2,3,4
gauge groups corresponding to top left, top right, bottom left and bottom right
nodes in (3.6.1) respectively. The fugacities q1 and q2 corresponds to the two
diagonal U(1) gauge groups that are subgroups of diag(U(2)1 ×U(2)2) and
diag(U(2)3×U(2)4) of (3.6.1) respectively. H[C2/Z2](t, z) denotes the Hilbert
series of the space C2/Z2, which is the Higgs and the Coulomb branches of
T(U(2)) and T(U(2)), and its expression is given by

H[C2/Z2](t, z) = PE
[
(z2 + 1 + z−2)t2 − t4

]
. (3.6.7)

The first and the second terms in the PE denote the contributions from the bi-
fundamental hypermultiplets under U(2)×U(2). The last line of (3.6.6) de-
serves some comments. For a theory with Lagrangian, these terms would rep-
resent the contribution from the F-terms. In this case, however, T(U(2)) and
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T(U(2)) do not have a manifest Lagrangian description in the quiver. Never-
theless, such terms can still be interpreted as “effective F-terms”, where at t2

there are relations that transform in the adjoint representations of diag(SU(2)1×
SU(2)2) and diag(SU(2)3 × SU(2)4). There is also a relation at order t4 and a
syzygy (relation among the relations) at order t8.10

2. The magnetic fluxes for the two nodes on the upper edge are both (m1, m2),
with m1 > m2, and the magnetic flux for the two nodes on the lower edge are
both (n, n). In this case, each of the U(2) gauge groups on the upper edge is
broken to U(1)2. Each of the U(2) gauge groups on the lower edge remains
unbroken. In this case, T(U(2)) is expected to become T(U(1))2 (and similarly

T(U(2)) becomes T(U(1))
2
). The Hilbert series in this case is given by

H(2)
N=2(t, z) = ∑

m1>m2

∑
n∈Z

gABJM/2(t; k1m1 − n)gABJM/2(t; k1m2 − n)

gABJM/2(t; k2n−m1)gABJM/2(t; k2n−m1)zm1+m2+2n .
(3.6.8)

As an example, for k1 = 1 and k2 = 2, the unrefined Hilbert series up to t12 is

H(2)
N=2,k=(1,2)(t, z = 1) = 4t2 + 33t4 + 148t6 + 483t8 + 1288t10 + 2982t12 + . . . .

(3.6.9)

3. The magnetic fluxes for the two nodes on the upper edge are both (m, m) and
the magnetic flux for the two nodes on the lower edge are both (n1, n2), with
n1 > n2. In this case, each of the U(2) gauge groups on the lower edge is
broken to U(1)2. Each of the U(2) gauge groups on the upper edge remains
unbroken. T(U(2)) is expected to become T(U(1))2, and similarly T(U(2))

becomes T(U(1))
2
. The Hilbert series in this case is given by

H(3)
N=2(t, z) = ∑

n1>n2

∑
m∈Z

gABJM/2(t; k1m− n1)gABJM/2(t; k1m− n2)

gABJM/2(t; k2n1 −m)gABJM/2(t; k2n2 −m)z2m+n1+n2 .
(3.6.10)

10It is instructive to compare this to the following example. Let us consider a 3d N = 4
gauge theory with U(2)×U(2) gauge group with two bi-fundamental hypermultiplets. This
quiver is an A1 affine Dynkin diagram, so it arises from two M2-branes probing C2/Z2
singularity. We expect the geometric branch of this theory to be Sym2(C2/Z2). The Hilbert
series of which can be computed from the Molien integral:

H(t, x) =
∮
|z1|=1

dz1

2πiz1

(
1− z2

1
z1

) ∮
|z2|=1

dz2

2πiz2

(
1− z2

2
z2

) ∮
|q|=1

dq
2πiq

× PE
[
(z1 + z−1)(z2 + z−2)(q + q−1)(x + x−1)− (z2

1 + 1 + z−2
1 + 1)t2 − t4

]
.

This is indeed equal to H[Sym2(C2/Z2)](t, x) = 1
2
[
H[C2/Z2](t, x)2 + H[C2/Z2](t2, x2)

]
.

The first term in the PE is the contribution from the bi-fundamental hypermultiplets. Since
on the generic point on the moduli space U(2) × U(2) is not completely broken, but it is
broken to the diagonal subgroup diag(U(2)×U(2)). The second term indicates the F-terms
in such a diagonal subgroup. The last term −t4 is there due to the fact that the F-flat moduli
space is not a complete intersection because of the unbroken gauge symmetry on the moduli
space (see the detailed discussion in [65]).
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As an example, for k1 = 1 and k2 = 2, the unrefined Hilbert series up to t12 is

H(3)
N=2,k=(1,2)(t, z = 1) = 6t3 + 34t5 + 15t6 + 114t7 + 76t8 + 322t9

+ 234t10 + 778t11 + 609t12 + . . . .
(3.6.11)

4. The magnetic fluxes for the two nodes on the upper edge are both (m1, m2),
with m1 > m2. and the magnetic flux for the two nodes on the lower edge are
both (n1, n2), with n1 > n2. In this case, each of the U(2) gauge groups in the
quiver is broken to U(1)2. T(U(2)) becomes T(U(1))2, and similarly T(U(2))

becomes T(U(1))
2
. The Hilbert series in this case is given by

H(4)
N=2(t, z) = ∑

n1>n2

∑
m1>m2

gABJM/2(t; k1m1 − n1)gABJM/2(t; k1m2 − n2)

gABJM/2(t; k2n1 −m1)gABJM/2(t; k2n2 −m2)zm1+m2+n1+n2 .
(3.6.12)

As an example, for k1 = 1 and k2 = 2, the unrefined Hilbert series up to t12 is

H(4)
N=2,k=(1,2)(t, z = 1) = 4t + 10t2 + 54t3 + 115t4 + 350t5 + 643t6+

+ 1520t7 + 2505t8 + 5076t9+

+ 7771t10 + 14142t11 + 20501t12 + . . . .

(3.6.13)

5. The magnetic fluxes for the two nodes on the upper edge are both (m1, m2),
with m1 < m2. and the magnetic flux for the two nodes on the lower edge are
both (n1, n2), with n1 > n2. The discussion is very similar to the previous case.
The Hilbert series in this case is given by

H(5)
N=2(t, z) = ∑

n1>n2

∑
m1<m2

gABJM/2(t; k1m1 − n1)gABJM/2(t; k1m2 − n2)

gABJM/2(t; k2n1 −m1)gABJM/2(t; k2n2 −m2)zm1+m2+n1+n2 .
(3.6.14)

As an example, for k1 = 1 and k2 = 2, the unrefined Hilbert series up to t12 is

H(5)
N=2,k=(1,2)(t, z = 1) = 12t5 + 82t7 + 24t8 + 322t9 + 151t10

+ 992t11 + 556t12 + . . . .
(3.6.15)

Indeed, the Hilbert series H(3.6.1), N=2(t, z) given by (3.6.2) is then equal to the sum
of the contributions from these five cases:

H(3.6.1), N=2(t, z) =
5

∑
i=1

H(i)
N=2,k=(1,2)(t, z) . (3.6.16)

For k1 = 1 and k2 = 2, we have the unrefined Hilbert series

H(3.6.1), N=2,k=(1,2)(t, z = 1) = 1 + 4t + 20t2 + 60t3 + 170t4 + 396t5

+ 868t6 + 1716t7 + 3235t8 + 5720t9

+ 9752t10 + 15912t11 + 25236t12 + . . . .

(3.6.17)
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This is indeed an unrefined Hilbert series of Sym2(C4).

3.7 Theories with multiple consecutive J-folds
In this section, we generalise our discussion to theories dual to brane system con-
taining (m + 1) consecutive J-folds.

1k1 1k2 1k3 1kn

1k̂1
1k̂2

1k̂m

Ã1 A1 Ã2 A2

φ1 φ2 φ3 φn

φ̂1 φ̂2 φ̂m

T(U(1))

T(U(1)) T(U(1))

T(U(1))

(3.7.1)

The vacuum equations are

Ai(Φi+1 −Φi) = 0 , i = 1, . . . , n− 1 (3.7.2)

k1 Φ1 − Φ̂1 = µ1

kiΦi = µi − µi−1 i = 2 . . . n− 1

kn Φn − Φ̂m = µn−1

k̂1Φ̂1 − Φ1 − Φ̂2 = 0

k̂iΦ̂i − Φ̂i+1 − Φ̂i−1 = 0 i = 2 , . . . , m− 1

k̂mΦ̂m − Φ̂m−1 − Φn = 0

(3.7.3)

As in the preceding subsection, we analyse the solution of these equations according
to the VEVs of bi-fundamental fields that are set to zero (i.e. the cuts in the quiver).

No cut in the quiver

Let us first focus on the solution in which Ai and Ãi are non-zero for all i = 1, . . . , n−
1. Equations (3.7.2) are solved as usual imposing Φ1 = Φ2 = . . . = Φn = Φ =
(ϕ, σ). The sum of the first three equations in (3.7.3) gives(

n

∑
i=1

ki

)
Φ − Φ̂1 − Φ̂m = 0 (3.7.4)

This consistency equation must be added to set of equation formed by the last three
in (3.7.3). Calling

Kn =
n

∑
i=1

ki (3.7.5)
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the above system of equations can be written in a compact way as:

MCS


Φ
Φ̂1

Φ̂2
...

Φ̂m

 = 0 (3.7.6)

where we define the matrix MCS as

MCS =



Kn −1 0 0 0 . . . −1
−1 k̂1 −1 0 0 . . . 0
0 −1 k̂2 −1 0 . . . 0

0 0 −1 k̂3 −1
. . . 0

...
. . . . . . . . . . . . . . .

...
−1 0 0 0 . . . −1 k̂m


(3.7.7)

Since we assumed that all Ai and Ãi are non-zero, we require (3.7.7) to have a non-
trivial solution; this is the case if and only if

det MCS = 0 (3.7.8)

This is a necessary condition for the existence of a non-trivial moduli space.
The magnetic flux has to be of the form

m = (m, . . . ,m︸ ︷︷ ︸
n times

, m̂1, . . . , m̂m) ≡ (mn, m̂) . (3.7.9)

Then, (3.7.7) implies that this must satisfy the following condition:

MCSm
T = 0 . (3.7.10)

In particular,
Knm − m̂1 − m̂m = 0 (3.7.11)

The gauge charges of the monopole operator Vm are

q1[Vm] = −(k1m− m̂1)

qi[Vm] = −kim , i = 2, . . . , n− 1
qn[Vm] = −(knm− m̂m)

q1̂[Vm] = −(k̂1m̂1 − m − m̂2)

qî[Vm] = −(k̂im̂i − m̂i+1 − m̂i−1) , i = 2 , . . . , m− 1

qm̂[Vm] = −(k̂mm̂m − m̂m−1 − m) .

(3.7.12)

Let us now compute gauge invariant dressed monopole operators. The last three
sets of equations, setting to zero, constitute m equations in total; they give a unique
solution for m̂ = (m̂1, . . . , m̂m) in terms of the flux m. We denote such a solution by
m̂∗(m). It should be emphasised that m, m̂∗i (with i = 1, . . . , m), and the CS level Kn,
must be integers. Such integrality and equations (3.7.8), (3.7.11) put a constraint on
the possible values of (k̂1, . . . , k̂m), as well as their relation to Kn, in order to obtain a



86 Chapter 3. The moduli spaces of S-fold SCFTs

non-trivial moduli space. Note also that m̂∗(1) + m̂∗(−1) = 0.
For example, in the case of three J-folds (m = 2), we have m̂∗1(m) = k̂2+1

k̂1 k̂2−1
m and

m̂∗2(m) = k̂1+1
k̂1 k̂2−1

m. From (3.7.11), we obtain Kn = k̂1+k̂2+2
k̂1 k̂2−1

. The integrality of Kn,

m̂∗1(m) and m̂∗2(m) puts constraints on the values of k̂1 and k̂2:

k̂1 + k̂2 + 2

k̂1k̂2 − 1
∈ Z ,

k̂2 + 1

k̂1k̂2 − 1
∈ Z ,

k̂1 + 1

k̂1k̂2 − 1
∈ Z . (3.7.13)

Since m ∈ Z, we see that the magnetic lattices given by m̂∗1(m) and m̂∗2(m) “jump”

by multiples of k̂2+1
k̂1 k̂2−1

and k̂1+1
k̂1 k̂2−1

respectively. If we further require that m̂∗1(m) =

m̂∗2(m) = m (i.e. there is no such jump), we have k̂1 = k̂2 = Kn = 2, assuming that
both k̂1 and k̂2 are non-zero.

For convenience, let us define

κi = {k1 − m̂∗1(1) , k2 , . . . , kn−1 , kn − m̂∗m(1)} , Ki =
n

∑
j=1

κj . (3.7.14)

For Ki > 0 for all i = 1, . . . , n − 1, the basic gauge invariant dressed monopole
operators are

V+ = V(1n,m̂∗(1))AK1
1 AK2

2 · · · A
Kn−1
n−1

V− = V((−1)n,−m̂∗(1)) ÃK1
1 ÃK2

2 · · · Ã
Kn−1
n−1 .

(3.7.15)

If Kj < 0 for some j, we replace A
Kj
j by Ã

−Kj
j in the first equation and Ã

Kj
j by A

−Kj
j

in the second equation. Since the R-charges of V((±1)n,±m̂∗(1)) are zero, we have

R[V+] =
1
2

n−1

∑
i=1
|Ki| ≡

1
2
K , K =

n−1

∑
i=1
|Ki| . (3.7.16)

The generators of the moduli space are ϕ, V± subject to the quantum relation

V+V− = ϕK . (3.7.17)

The moduli space is indeed C2/ZK. We emphasise that the dependence of K on
k̂1, . . . , k̂m is due to m̂∗1(1).

One cut in the quiver

Let us analyse the case Al = Ãl = 0, i.e. the quiver is cut at the position l. Equations
(3.7.2) implies Φ1 = Φ2 = · · · = Φl = Φ and Φl+1 = Φl+2 = · · · = Φn = Φ̃. The
sums of the first l equations and the last n− l ones in the first three sets of equations
in (3.7.3) imply that

(k1 + k2 + · · ·+ kl)Φ− Φ̂1 = 0

(kl+1 + kl+2 + · · ·+ kn)Φ̃− Φ̂m = 0
(3.7.18)
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These two condition must be supplemented by the last three sets of equations (3.7.3)
constraining Φ̂i i = 1 . . . m These can be put in a matrix form. Calling

l

∑
i=1

ki = K ,
n

∑
i=l+1

ki = K̃ (3.7.19)

we have

MCS


Φ
Φ̂1
...

Φ̂m

Φ̃

 = 0 (3.7.20)

where

MCS =



K −1 0 0 0 . . . 0 0
−1 k̂1 −1 0 0 . . . 0 0
0 −1 k̂2 −1 0 . . . 0 0

0 0 −1 k̂3 −1
. . . 0 0

...
. . . . . . . . . . . . . . . . . .

...
0 0 0 0 . . . −1 k̂m −1
0 0 0 0 . . . 0 −1 K̃


(3.7.21)

A necessary condition for the existence of the non-trivial moduli space is

det MCS = 0 . (3.7.22)

The magnetic flux has to be of the form

m = (m, . . . ,m︸ ︷︷ ︸
l times

, m̃, . . . , m̃︸ ︷︷ ︸
n−l times

, m̂1, . . . , m̂m) ≡ (ml , m̃n−l , m̂) . (3.7.23)

Then, (3.7.7) implies that this must satisfy the following condition:

MCSm
T = 0 . (3.7.24)

In particular, it follows from (3.7.18) that

m̂1 = (k1 + k2 + · · ·+ kl)m = Km

m̂m = (kl+1 + kl+2 + · · ·+ kn)m̃ = K̃m̃ .
(3.7.25)

The gauge charges of the monopole operator Vm are

q1[Vm] = −(k1m− m̂1)

qi[Vm] = −kim , i = 2, . . . , l
qj[Vm] = −k jm̃ , j = l + 1, . . . , n

qn[Vm] = −(knm̃− m̂m)

q1̂[Vm] = −(k̂1m̂1 − m − m̂2)

qî[Vm] = −(k̂im̂i − m̂i+1 − m̂i−1) , i = 2 , . . . , m− 1

qm̂[Vm] = −(k̂mm̂m − m̂m−1 − m̃) .

(3.7.26)
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Let us now compute gauge invariant dressed monopole operators. The last three
sets of equations, setting to zero, constitute m equations in total; they give a unique
solution for m̂ = (m̂1, . . . , m̂m) in terms of the fluxes m and m̃. We denote such
a solution by m̂∗(m, m̃). The integrality of such a solution, together with (3.7.24)
and in particular (3.7.25), put restrictions on the relation between K, K̃ and k̂i (with
i = 1, . . . , m).

For example, for the case of three J-folds (m = 2), solving the last three sets of
equations gives

m̂∗1 =
mk̂2 + m̃

k̂1k̂2 − 1
, m̂∗2 =

m+ m̃k̂1

k̂1k̂2 − 1
(3.7.27)

Using (3.7.25) we have

m = − m̃

K + k̂2 − Kk̂1k̂2
, m = −m̃(K̃ + k̂1 − K̃k̂1k̂2) (3.7.28)

Suppose that we look for a solution in which m and m̃ are non-zero. The integrality
of K, K̃, k̂1,2 implies that

Kk̂1k̂2 − (K + k̂2) = K̃k̂1k̂2 − (K̃ + k̂1) = ±1 . (3.7.29)

The choice +1 sets m = m̃, whereas the choice −1 sets m = −m̃. Using these with
(3.7.27), we also obtain the constriants on k̂1 and k̂2, namely

k̂1 ± 1

k̂1k̂2 − 1
,

k̂2 ± 1

k̂1k̂2 − 1
∈ Z . (3.7.30)

Since m, m̃ ∈ Z, we see that the magnetic lattices given by m̂∗1 and m̂∗2 “jump” by

multiples of k̂2±1
k̂1 k̂2−1

and k̂1±1
k̂1 k̂2−1

respectively. If we further require that m̂∗1 = m̂∗2 = m

(i.e. there is no such jump), we have k̂1 = k̂2 = K = K̃ = ±2, assuming that both k̂1

and k̂2 are non-zero.
This can easily be generalised to an arbitrary number of J-folds. The generalisa-

tion of (3.7.29) is
minor1,1 MCS = minorm+1,m+1 MCS = ±1 (3.7.31)

These two choices correspond to m = ±m̃. The integrality of m̂∗(m, m̃) and m̂∗(m,−m̃)

impose further constraints on k̂ j. The analysis of the moduli space is similar to that
presented after (3.5.53).

Two or more cuts in the quiver

The analysis is similar to that of presented around (3.5.74). For the case of two cuts,
the quiver is divided into the left, central and right sub-quivers. The analysis for
the central part is presented in section 3.5.1, whereas those for the left and right sub-
quivers are as presented above for the one cut case. One can repeat this procedure
for the case with more than two cuts.
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Chapter 4

Variations on S-fold CFTs

4.1 Notations and conventions
Let us state the notations and conventions that will be adopted.

Gauge and global symmetries. In a quiver diagram, we denote the 3d N = 4
vector multiplet in a given gauge group by a circular node, and a flavour symmetry
by a rectangular node. A black node with a label n denotes the symmetry group
U(n), a blue node with an even label m denotes the symmetry group USp(m), and
a red node with a label k denotes the symetry group O(k) or SO(k).

U(n) : n n

USp(m) : m m with m even

O(k) or SO(k) : k k

(4.1.1)

We shall be explicit whenever we would like to emphasise whether the group is
O(k) or SO(k) We will also deal with the group known as USp′(2M), arising in
the worldvolume M physical D3 branes on the Õ3

+
plane [23]. Note that under S-

duality, USp′(2M) transforms into itself. This is in contrast to the group USp(2M),
arising in the worldvolume M physical D3 branes on the O3+ plane, where under
the S-duality transforms into SO(2M + 1). We denote the algebra corresponding to
USp′(M), with M even, in the quiver diagram by a blue node with the label M′.
In the case that the brane configuration does not give a clear indication whether the
group is USp(M) or USp′(M), we simply denote the label in the corresponding blue
node by M.

Brane configurations. The brane systems involved in the constructions include
D3, D5, NS5 branes, possibly with orientifold planes, that preserve eight super-
charges [10, 24, 25, 21, 81]. Each type of branes spans the following directions:

0 1 2 3 4 5 6 7 8 9
D3, O3 × × × ×

NS5, O5 × × × × × ×
D5 × × × × × ×

(4.1.2)

The x6 direction can be taken to be compact or non-compact.
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The T(G) theory. In the following, we also study the 3d N = 4 superconformal
theory, known as T(G), arising from a half BPS domain wall in the 4d N = 4 super-
Yang-Mills theory with gauge group G that is self-dual under S-duality [8]. We fo-
cus on G = U(N), SO(2N), USp′(2N), G2. The quiver descriptions for T(U(N))
and T(SO(2N)) are given in [8], whereas that for T(USp′(2N)) are given by [72, sec.
2.5]. The T(G) theory has a global symmetry G × G. The Higgs and the Coulomb
branches are both equal to the nilpotent cones Ng, where g is the Lie algebra as-
sociated with the group G. We denote the theory T(G) by a wiggly red line con-
necting two nodes, both labelled by G. As an example, the diagram below denotes
the T(USp′(2N)) theory, with the global symmetry USp′(2N) × USp′(2N) being
gauged:

2N′ 2N′
T(USp′(2N)) (4.1.3)

Furthermore, we can couple this theory to half-hypermultiplets in the fundamental
representations of such USp′(2N) gauge groups. For example, if we have m1 and m2
flavours of fundamental hypermultiplets under the left and the right gauge groups
of (4.1.3) respectively, the corresponding flavour symmetry algebras are so(2m1) and
so(2m2), and the quiver diagram reads

2m1 2m22N′ 2N′
T(USp′(2N)) (4.1.4)

Let us examine the case in which G is not self-dual under S-duality. This can
lead to a certain issue in constructing quivers that admit a consistent brane config-
uration and we shall not consider them. However, for the sake of completeness, let
us discuss such an issue explicitly using an example. First of all, T(G) may not be
an appropriate notation to use, but one may also need to provide the information
regarding the partitions σ and ρ of G and its dual group G∨ to specify the the-
ory Tσ

ρ (G) [8]. For example, when G = USp(4), σ is a C-partition1 of 4 whereas
ρ is a B-partition2 of 5, associated with the dual group G∨ = SO(5) [98, 99, 72].

Given this example, one may would like to consider T[14]
[15]

(USp(4)), which has a
global symmetry G × G∨ = USp(4) × SO(5). Suppose that we couple this theory

to matter as in (4.1.4), where we replace the wiggly line (T-link) by T[14]
[15]

(USp(4))
with USp(4) gauge group on the left and SO(5) gauge group on the right. Then,
the m1 and m2 fundamental flavours in (4.1.4) give rise to a SO(2m1) ×USp(2m2)
flavour symmetry, and such half-hypermultiplets transform under the representa-
tion 1

2 (4; 2m1) of USp(4) × SO(2m1) and 1
2 (5; 2m2) of SO(5) × USp(2m2), respec-

tively. One may take m1 = m2 = 2 and form a circular quiver with alternating
SO/USp gauge groups with equal rank by gauging both flavour symmetries and
couple them to bifundamental matter. Specifically, let us consider a circular quiver
with the USp(4) × SO(4) ×USp(4) × SO(5) gauge group, where the first USp(4)
and the last SO(5) are connected by the T-link and other groups are connected by
bifundamental half-hypermultiplets. One cannot realise this theory using a Type IIB
brane configuration with an orientifold threeplane and an “S-fold” in a simple way
for the following reason. Note that the first USp(4) and the last SO(5) connected by

1A C-partition is a non- increasing sequence of integers where all the odd parts appear
an even number of times.

2A B-partition is a non-increasing sequence of integers where all the even parts appear
an even number of times.
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the T-link must be associated with O3+ and Õ3
−

respectively, and as the O3 plane
crosses a half-NS5 brane it changes sign. Starting from the left USp(4) as we go
through the sequence of the gauge groups to the right, we obtain the sequence of the
associated O3 plane to be (O3+, O3−, O3+, O3−). However, this is in contradiction
to the fact that the SO(5) gauge group must be associated with Õ3

−
, and not O3−.

Due to this reason, we shall not further discuss the case of a T-link associated with a
non-self-dual group G.

4.2 Coupling hypermultiplets to a nilpotent cone
In this section we study the hyperKähler space that arises from coupling hypermul-
tiplets or half-hypermultiplets to nilpotent cone Ng of the Lie algebra g associated
with a gauge group G. We start from the nilpotent cone of g, and denote this geo-
metrical object by

G × (4.2.1)

Note that a subgroup of G may acts trivially on Ng. For example, we may take G to
be U(N); since the symmetry of the corresponding nilpotent cone is really SU(n),
the U(1) subgroup of G = U(N) acts trivially on the nilpotent cone.

The symmetry G can be gauged and can then be coupled to hypermultiplets
or half-hypermultiplets, which give rise to a flavour symmetry H. We denote the
resulting theory by the quiver diagram:

GH × (4.2.2)

The hyperKähler quotientH(4.2.2) associated with this diagram is

H(4.2.2) =
H ([H]− [G])×Ng

G
(4.2.3)

where H ([H]− [G]) denotes the Higgs branch of quiver [H]− [G]. We emphasise
that we do not interpret (4.2.2) as a field theory by itself. Instead, we regard it as a
notation that can be conveniently used to denote the hyperKähler quotient (4.2.3).

4.2.1 G = U(N) and H = U(n)/U(1)
We take G = U(N) and couple n flavours of hypermutiplets to G:

Nn × (4.2.4)

The hyperKähler quotient associated with this diagram is

H(4.2.4) =
H ([U(n)]− [U(N)])×Nsu(N)

U(N)
(4.2.5)

whereH ([U(n)]− [U(N)]) denotes the Higgs branch of the quiver [U(n)]− [U(N)].
The quaternionic dimension is

dimHH(4.2.4) =
1
2

N(N − 1) + nN − N2 . (4.2.6)
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The flavour symmetry in this case is H = U(n)/U(1), whose algebra is h = su(n).
For N = 1, Nsu(N) is trivial. The quotient (4.2.5) becomes the Higgs branch of

the U(1) gauge theory with n flavours. H(4.2.4), therefore, turns out to be the closure
of the minimal nilpotent orbit of su(n), denoted by O(2,1n−2) [85, 100]. This space is
also isomorphic to the Higgs branch of the T(n−1,1)(SU(n)) theory of [8], and is also
isomorphic to the reduced moduli space of one su(n) instanton on C2. It is precisely
n− 1 quaternionic dimensional.

For N = 2, it turns out that H(4.2.4) is the closure O(3,1n−3) of the orbit (3, 1n−3) of
su(n). This is isomorphic to the Higgs branch of the T(n−2,12)(SU(n)) theory, namely
that of the quiver [U(n)]− (U(2))− (U(1)). The quaternionic dimension of this is
precisely 2n− 3. This is indeed in agreement with (4.2.6).

For a general N, such that n ≥ N + 1, we see thatH(4.2.4) is in fact

H(4.2.4) = O(N+1,1n−N−1) , (4.2.7)

and in the special case of n = N, we have the nilpotent cone of su(N):

H(4.2.4)|n=N = O(N) = Nsu(N) . (4.2.8)

One way to verify this proposition is to compute the Hilbert series of H(4.2.4).
This is given by3

H[H(4.2.4)](t; x) =
∫

dµSU(N)(z)
∮
|q|=1

dq
2πiq

PE
[
χ

su(N)
[1,0,...,0](x)χsu(N)

[0,...,0,1](z)q
−1t

+ χ
su(N)
[0,...,0,1](x)χsu(N)

[1,0,...,0](z)q− χ
su(N)
[1,0,...,0,1]t

2
]

H[Nsu(N)](t, z)
(4.2.9)

where x denotes the flavour fugacities of su(N) and dµSU(N)(z) denotes the Haar
measure of SU(N). We refer the reader to the detail of the characters and the Haar
measures in [101]. The Hilbert series of the nilpotent cone of su(N) was computed
in [84] and is given by

H[Nsu(N)](t, z) = PE

[
χ

su(N)
[1,0,··· ,0,1](z)t

2 −
N

∑
p=2

t2p

]
. (4.2.10)

The Hilbert series (4.2.9) can then be used to checked against the results presented in
[85]. In this way, the required nilpotent orbits in (4.2.7) and (4.2.8) can be identified.
This technique can also be applied to other gauge groups, as will be discussed in the
subsequent subsections. For the sake of brevity of the presentation, we shall not go
through further details.

We remark that for n ≥ 2N + 1, the hyperKähler space (4.2.7) is isomorphic the
Higgs branch of the T(n−N,1N)(SU(n)) theory4, which corresponds to the quiver [8]:

T(n−N,1N)(SU(n)) : [U(n)]− (U(N))− (U(N − 1))− · · · − (U(1)) . (4.2.11)

3The plethystic exponential (PE) of a multivariate function f (x1, x2, . . . , xn) such that
f (0, 0, . . . , 0) = 0 is defined as PE[ f (x1, x2, . . . , xn)] = exp

(
∑∞

k=1
1
k f (xk

1, xk
2, . . . , xk

n)
)

.
4The partition (n − N, 1N) is indeed the transpose of the partition (N + 1, 1n−N−1) in

(4.2.7).
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Note that quiver (4.2.4) can be obtained from (4.2.11) simply by replacing the wiggly
line by the quiver tail as follows:

N × −→ (U(N))− (U(N − 1))− · · · − (U(1)) . (4.2.12)

4.2.2 G = USp(2N) and H = O(n) or SO(n)
We take G = USp(2N) and couple n half-hypermultiplets to G:

2Nn × (4.2.13)

The corresponding hyperKähler quotient is

H(4.2.13) =
H ([SO(n)]− [USp(2N)])×Nusp(2N)

USp(2N)
. (4.2.14)

The dimension of this space is

dimHH(4.2.13) = nN +
1
2

[
1
2
(2N)(2N + 1)− N

]
− 1

2
(2N)(2N + 1)

= N(n− N − 1) .
(4.2.15)

For n ≥ 2N + 1, the hyperKähler quotient (4.2.14) turns out to be isomorphic to the
closure of the nilpotent orbit (2N + 1, 1n−(2N+1)) of so(n):

H(4.2.13) = O(2N+1,1n−(2N+1)) . (4.2.16)

For even n, say n = 2m, this is isomorphic to the Higgs branch of Tρ(SO(n)),
with ρ = (n− 2N − 1, 12N+1),5 whose quiver description is

n 2N 2N 2N − 2 2N − 2 · · · 2 2 (4.2.18)

For odd n, say n = 2m + 1, this is isomorphic to the Higgs branch of Tρ(SO(n)),
with ρ = (n− 2N − 1, 2, 12N−2) if n > 2N + 1 and ρ = (12N) if n = 2N + 1,6 whose

5Note that the partition ρ = (n− 2N − 1, 12N+1) can be obtained from the partition λ =

(2N + 1, 1n−(2N+1)) of (4.2.16) by first computing the transpose of λ, and then performing
the D-collapse. For example, for N = 2 and m = 4 (or n = 8),

λ = (5, 14)
transpose−→ (4, 14)

D-coll.−→ ρ = (3, 15) . (4.2.17)

6Note that the partition ρ = (n − 2N − 1, 2, 12N−2) can be obtained from the partition
λ = (2N + 1, 1n−(2N+1)) of (4.2.16) by first computing the transpose of λ, subtracting 1 from
the last entry, and then performing the C-collapse. For example, for N = 3 and m = 4 (or
n = 9),

λ = (7, 12)
transpose−→ (3, 16) −→ (3, 15)

C-coll.−→ (22, 14) . (4.2.19)
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quiver description is

n 2N 2N − 1 2N − 2 · · · 2 1 (4.2.20)

4.2.3 G = SO(N) or O(N) and H = USp(2n)
Let us first take G = SO(N) and take H = USp(2n).

SO(N)2n × (4.2.21)

This diagram defines the hyperKähler quotient

H(4.2.21) =
H ([USp(2n)]− [SO(N)])×Nso(N)

SO(N)
. (4.2.22)

The quaternionic dimension of this quotient is

dimH H(4.2.21) =

{
m(2n−m) , N = 2m
m(2n−m− 1) + n , N = 2m + 1

. (4.2.23)

It is interesting to examine (4.2.22) for a few special cases. For N = 2n or N = 2n + 1
or N = 2n− 1, we find that (4.2.22) is in fact the nilpotent cone Nusp(2n) of usp(2n),
whose quaternionic dimension is n2:

H(4.2.21)|N=2n = H(4.2.21)|N=2n±1 = Nusp(2n) . (4.2.24)

This statement can be checked using the Hilbert series:

H[H(4.2.21)](t; x) =
∫

dµSO(N)(z)PE
[
χCn
[1,0,...,0](x)χso(N)

[1,0,...,0](z)t

− χ
so(N)
[0,1,0,...,0](z)t

2
]

H[Nso(N)](t, z)

= PE

[
χCn
[2,0,...,0](x)t2 −

n

∑
j=1

t4j

]
, if N = 2n or 2n± 1 .

(4.2.25)

where the Haar measure and the relevant characters are given in [101]. The last line
is indeed the Hilbert series of the nilpotent cone Nusp(2n) [85].

It is important to note that the quotient (4.2.22) is not the closure of a nilpotent
orbit in general. For example, let us take n = 4 and N = 3, i.e. G = SO(3) and
H = USp(8). The Hilbert series takes the form

H[H(4.2.21)|n=4,N=3](t; x) = PE
[
χC4
[2,0,0,0]t

2 + (χC4
[0,0,1,0] + χC4

[1,0,0,0])t
3 − t4 + . . .

]
.

(4.2.26)
Observe that there are generators with SU(2)R-spin 3/2 in the third rank antisym-
metric representation ∧3[1, 0, 0, 0] = [0, 0, 1, 0] + [1, 0, 0, 0] of USp(8). These should
be identified as “baryons”. Using Namikawa’s theorem [102], which states that all
generators of the closure of a nilpotent orbit must have SU(2)R-spin 1 (see also
[103]), we conclude that H(4.2.21)|n=4,N=3 is not the closure of a nilpotent orbit. In
general, these baryons can be removed by taking gauge group to be O(N), instead
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of SO(N). The reason is because the O(N) group does not have an epsilon tensor as
an invariant tensor, whereas the SO(N) group has one.

Let us now take G = O(N) and take H = USp(2n):

O(N)2n × (4.2.27)

This diagram defines the hyperKähler quotient

H(4.2.27) =
H ([USp(2n)]− [O(N)])×Nso(N)

O(N)
. (4.2.28)

The dimension of this hyperKähler space is the same as (4.2.23). This quotient turns
out to be isomorphic to the closure of the following nilpotent orbit of usp(2n):

H(4.2.27) =

{
O(N,2,12n−N−2) N even
O(N+1,12n−N−1) N odd

. (4.2.29)

In the special case where N = 2n, N = 2n− 1 or N = 2n + 1, we have

H(4.2.27)|N=2n = H(4.2.27)|N=2n±1 = O(2n) = Nusp(2n) , (4.2.30)

which is the same as (4.2.24).
For even N = 2m, H(4.2.27) is isomorphic to the Higgs branch of Tρ(USp(2n))

theory, with ρ = (2n− N + 1, 1N), whose quiver description is

2n 2m 2m− 2 2m− 2 2m− 4 2m− 4 · · · 2 2

(4.2.31)
On the other hand, for odd N = 2m + 1, H(4.2.27) is isomorphic to the Higgs branch
of Tρ(USp′(2n)) theory, with ρ = (2n− N + 1, 1N−1), whose quiver description is

2n 2m + 1 2m 2m− 1 2m− 2 · · · 2 1 (4.2.32)

4.2.4 G = G2 and H = USp(2n)
We take G = G2 and H = USp(2n):

G22n × (4.2.33)

This diagram defines the hyperKähler quotient

H(4.2.33) =
H ([USp(2n)]− [G2])×Ng2

G2
. (4.2.34)

For n ≥ 2, the quaternionic dimension of this space is

dimH H(4.2.33) = 7n +
1
2
(14− 2)− 14 = 7n− 8 , (4.2.35)
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and the Hilbert series of (4.2.34) is given by

H[H(4.2.34)](t, x) =
∫

dµG2(z)PE
[
χG2
[1,0](z)χ

usp(2n)
[1,0,...,0](x)t

− χG2
[0,1](z)t

2
]

H[Ng2 ](t, z) ,
(4.2.36)

where the relevant characters and the Haar measure is given in [101], and the Hilbert
series of the nilpotent cone of G2 can be obtained from [104, Table 4]. The special case
of n = 2 is particularly simple. The corresponding space is a complete intersection
whose Hilbert series is

H[H(4.2.33)|n=2](t; x1, x2) = PE
[
χC2
[2,0](x1, x2)t2 + χC2

[1,0](x1, x2)t3 − t8 − t12
]

. (4.2.37)

Note that H(4.2.33) is not the closure of a nilpotent orbit, due to the existence of a
generator at SU(2)R-spin 3/2 and Namikawa’s theorem.

The case of n = 1 needs to be treated separately, since (4.2.35) becomes negative.
We claim that

H(4.2.33)|n=1 = C2/Z2 = Nsu(2) . (4.2.38)

The reason is as follows. Let us denote by Qi
a the half-hypermultiplets in the fun-

damental representation of the G2 gauge group7, where i, j, k = 1, 2 are the USp(2)
flavour indices and a, b, c, d = 1, . . . , 7 are the G2 gauge indices. Let us also denote
by Xab the generators of the nilpotent cone of G2. Transforming in the adjoint repre-
sentation of G2, Xab is an antisymmetric matrix satisfying8

f abcXab = 0 ; (4.2.39)

this is because ∧2[1, 0] = [0, 1] + [1, 0]. Moreover, being the generators of the nilpo-
tent cone, Xab satisfy

tr(X2) = δadδbcXabXcd = 0 , tr(X6) = 0 . (4.2.40)

The moment map equations for G2 read

εijQi
aQj

b = Xab . (4.2.41)

The generators of (4.2.34), for n = 1, are

Mij = δabQi
aQi

b (4.2.42)

transforming in the adjoint representation of USp(2). Note that baryons vanish:

f abcQi
aQj

bQk
c = 0 , f̃ abcdQi

aQj
bQk

cQl
d = 0 , (4.2.43)

because i, j, k, l = 1, 2. Other gauge invariant combinations also vanish; for example,
XabQi

aQj
b has one independent component and it vanishes thanks to (4.2.40) and

7The three independent invariant tensors for G2 can be taken as (1) the Kronecker delta
δab, (2) the third-rank antisymmetric tensor f abc and (3) the fourth-rank antisymmetric tensor
f̃ abcd. See e.g. [105] for more details.

8Using the identity f [abc f cde] = f̃ abde (see [105, (A.13)]), it follows immediately from this
relation that f̃ abdeXabXde = 0.
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(4.2.41). Furthermore, the square of M vanishes:

εilεjk Mij Mkl = (εilQi
aQl

b)(εjkQj
aQk

b)
(4.2.41)
= tr(X2)

(4.2.40)
= 0 . (4.2.44)

Therefore, we reach the conclusion (4.2.38).

4.3 Models with orientifold fiveplanes
In this section, we consider models that arise from brane systems involving an S-
fold and orientifold 5-planes. For the latter, we focus on the case of the O5− plane
and postpone to discussion about the O5+ plane to section 4.6. In the absence of the
S-fold, such models and the corresponding mirror theories were studied in detailed
in [25, 8]. We start this section by reviewing the latter and then discuss the insertion
of an S-fold in the subsequent subsections.

4.3.1 The cases without an S-fold
We consider three types of models, depending on the presence of NS5 branes and
their positions relative to each O5− plane [25].

The USp(2N) gauge theory with n flavours. The quiver diagram is

2N 2n (4.3.1)

The brane system for this quiver is

O5−

• • . . . •

n physical D5s

O5−

2N
D3

(4.3.2)

The U(2N) gauge theory with one or two rank-two antisymmetric hypermultiplets
and n flavours in the fundamental representation. The quiver diagrams are

2N

A

n 2N

A

A′

n (4.3.3)
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The brane systems for the cases with one adjoint and two adjoints are, respectively,
as follows:

O5−
with an NS5 on top

• • . . . •

n physical D5s

NS5

2N
D3

O5−
with an NS5 on top

• • . . . •

n physical D5s

O5−
with an NS5 on top

2N
D3

(4.3.4)

The USp(2N)×U(2N)m×USp(2N) gauge theory with (n1, f1, . . . , fm, n2) flavours
in the fundamental representations under each gauge group. The quiver diagram
is

2N 2N · · · 2N 2N

2n1 f1 fm 2n2

(4.3.5)

The brane system for this quiver is

O5−

•
n1
•
f1
•
f2

•
fm−1

•
fm
•
n2

O5−

2N
2N

2N

D3
2N

NS5

2N
2N

m intervals

(4.3.6)

where each black dot with a label k denotes k physical D5 branes, and each black
vertical line denotes a physical NS5 brane.

Let us now discuss their mirror theories and the corresponding brane configura-
tions. Under the S-duality, each NS5 brane becomes a D5 brane and vice-versa, and
an O5− plane becomes an ON− plane. The following results can be obtained [25].

A mirror of (4.3.1). The brane system for this is

ON− ON−

N

N
2N

D3

2N

NS5

N

N

n− 3 intervals

(4.3.7)

Each of the left and the right boundaries contains an ON− plane, which is an S-
dual of the O5− plane. The combination of an ON− plane and one NS5 brane is
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also known as ON0 and was studied in detail in [24, 106]. The way that the D3-
branes stretch between two NS5 branes at each boundary is depicted in red. The
corresponding theory can be represented by the following quiver diagram:

2N 2N · · · 2N

N

N

N

N n− 3 nodes

(4.3.8)

This is indeed the affine Dynkin diagram of the Dn algebra [24].

Mirrors of (4.3.3). We consider two cases as follows:

1. The case of one antisymmetric hypermultiplet. In this case the brane configu-
ration of the mirror theory is

ON−

•D5

N

N

2N

D3 2N

1
2

NS5

...

· · · · · ·

D52N NS5sn− 2N NS5s

2N D3s

(4.3.9)

One can then move the rightmost D5 brane into the interval and obtain

ON−

•D5

N

N

2N

D3 2N

1
2

NS5

· · · · · ·•D5

2N NS5sn− 2N NS5s

(4.3.10)

Hence the corresponding quiver is

2N 2N · · · 2N

N

N

2N − 1 2N − 2 · · · 1

1
1

n− 2N − 1 nodes

(4.3.11)
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2. The case of two antisymmetric hypermultiplets. In this case the brane config-
uration of the mirror theory is

ON−

•D5

ON−

•D5

N

N
2N

D3

2N

NS5

N

N

n− 3 intervals

(4.3.12)

The corresponding quiver theory is

2N 2N · · · 2N

N

N

N

N

1 1

n− 3 nodes

(4.3.13)

A mirror of (4.3.5). The brane construction is

ON− f1 fm ON−

N

N
2N

D3 2N 2N
· · ·
•D5

· · ·
•

· · ·
2N

NS5

N

N

n1 NS5s n2 NS5s

(4.3.14)

where the boldface vertical line labelled by f j (with j = 1, . . . , m) denotes a set of f j
NS5 branes, with 2N D3 branes stretching between two successive NS5 branes. Note
that there is also one D5 brane at the interval between each set. For simplicity, let us
present the quiver for the case of m = 1:

2N · · · 2N 2N 2N · · · 2N 2N 2N · · · 2N

N

N

N

N

11

n1 − 2 nodes f1 circular nodes n2 − 2 nodes

(4.3.15)
This can be easily generalised to the case of m > 1 by simply repeating the part
under the second brace with f2, f3, . . . , fm in a consecutive manner.

4.3.2 The cases with an S-fold
In this subsection, we insert an S-fold into a brane interval of the aforementioned
configurations. In general, the resulting quiver theory contains a T(U(N)) link con-
necting two gauge nodes corresponding to the interval where we put the S-fold. The
mirror configuration can simply be obtained by inserting the S-fold in the same po-
sition in the S-dual brane configuration. In the following, the moduli spaces of such
a theory and its mirror are analysed in detail.



4.3. Models with orientifold fiveplanes 101

We make the following important observation. The Higgs (resp. Coulomb) branch
of a given theory gets exchanged with the Coulomb (resp. Higgs) branch of the mir-
ror theory in a “regular way”, provided that

1. the S-fold is not inserted “too close” to the orientifold plane; and

2. the S-fold is not inserted in the “quiver tail”, arising from a set of D3 branes
connecting a D5 brane with distinct NS5 branes.

Subsequently, we shall give more precise statements for these two points using var-
ious examples. In other words, we use mirror symmetry as a tool to indicate the
consistency of the insertion of an S-fold to the brane system with an orientifold five-
plane.

Models with one or two antisymmetric hypermultiplets

In this subsection, we focus on the models with one antisymmetric hypermultiplet
for definiteness. The case for two antisymmetric hypermultiplets can be treated al-
most in the same way. Let us insert an S-fold in the left diagram in (4.3.4) such that
there are n1 physical D5 branes on the left of the S-fold and there are n2 physical D5
branes on the right. The resulting theory is

O5−
with an NS5 on top

• . . . •
n1

• . . . •
n2

NS5

2N
D3

2N 2N

A

n1 n2

T(U(2N))

(4.3.16)

The case in which n1 ≥ 2 and n2 ≥ 2N

The corresponding mirror theory is

2N · · · 2N 2N
T(U(2N))

N

N

· · · 2N 2N − 1 · · · 1

1
1

n1 − 1 nodes n2 − 2N + 1 nodes

(4.3.17)
The condition n1 ≥ 2, n2 ≥ 2N ensures that the T(U(2N)) link in the mirror theory
(4.3.17) stay between the first U(2N) gauge node and the U(2N) gauge node with 1
flavour.

The Higgs branch of theory (4.3.16) has dimension

dimHH(4.3.16) = 2Nn1 +
1
2

2N(2N − 1) + 2 · 1
2
(4N2 − 2N) + 2Nn2

− 4N2 − 4N2

= N(2n1 + 2n2 − 2N − 3),

(4.3.18)

while the Coulomb branch is empty because there are only two gauge nodes con-
nected by a T(U(2N))-link

dimH C(4.3.16) = 0. (4.3.19)
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Since the moduli space of T(U(2N)) contains the Higgs and Coulomb branches,
each of which is isomorphic to the nilpotent cone of SU(2N), it follows that the
Higgs branch of (4.3.16) also splits into a product of two hyperKähler spaces which
can be written in the notation of section 4.2 as

H(4.3.16) =
2N 2N

A

n1 n2

× ×
× (4.3.20)

The symmetry of H(4.3.16) is U(n1)× (U(n2)/U(1)), coming from the first and sec-
ond factors respectively. According to (4.2.7) and below, the hyperKähler space cor-
responding to the second factor is identified with O(2N+1,1n2−2N−1) for n2 ≥ 2N + 1
and O(2N) for n2 = 2N.

The mirror theory (4.3.17) has the following Coulomb branch dimension

dimH C(4.3.17) = N + N + (2N)(n1 + n2 − 2N − 2) +
2N−1

∑
i=1

i

= N(2n1 + 2n2 − 2N − 3),

(4.3.21)

while the Higgs branch has dimension

dimHH(4.3.17) =N + 4N2 + 4N2(n1 + n2 − 2N − 1− 1) + (4N2 − 2N)

+ 2N +
2N−1

∑
i=1

i(i + 1)− 2N2 − 4N2(n1 + n2 − 2N)

−
2N−1

∑
i=1

i2 = 0

(4.3.22)

Indeed, we find an agreement for the dimensions of the Higgs and Coulomb branches
under mirror symmetry, namely

dimH C(4.3.16) = dimHH(4.3.17), dimH C(4.3.17) = dimHH(4.3.16). (4.3.23)

It should be pointed out the the Coulomb branch of (4.3.17) is also a product
of two hyperKähler spaces. The reason is that the nodes that are connected by the
T(U(2N)) link do not contribute to the Coulomb branch and hence can be taken
as flavours nodes. Therefore, the Coulomb branch of (4.3.17) is the product of the
Coulomb branches of the following theories:

2N · · · 2N 2N

N

N

· · · 2N 2N − 1 · · · 1

1
1

n1 − 1 nodes n2 − 2N + 1 nodes

(4.3.24)
Under mirror symmetry, each of the factor in the product (4.3.20) is mapped to the
Coulomb brach of each of the above quiver. Let us examine the symmetry of the
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Coulomb branch using the technique of [8]. In the left quiver, all balanced gauge
nodes form a Dynkin diagram of An1−1; together with the top left node which is
overbalanced, these give rise to the global symmetry algebra An1−1 × u(1), corre-
sponding to U(n1). In the right quiver, all gauge nodes are balanced; these give rise
to the symmetry algebra An2−1, corresponding to U(n2)/U(1). This is agreement of
the symmetry of the Higgs branchH(4.3.16).

It is worth commenting on the distribution of the flavours in theory (4.3.16). It
is clear from the computation of the dimension of the Higgs branch (4.3.18) that one
can change n1 and n2 keeping their sum n = n1 + n2 constant, without changing
the dimension of the Higgs branch. However, as can be clearly seen from (4.3.20),
the structure of the Higgs branch depends on n1 and n2. In addition, modifying
the distribution of the flavour will change the position of the T(U(2N)) link in the
mirror theory (4.3.17). Let us focus the case of N = 1 with n1 = 3, n2 = 3 and
n1 = 4, n2 = 2. The theories and their mirrors are

2 2

A

3 3

T(U(2))

2

1

1

1

2 2 2

1

1
T(U(2))

(4.3.25)

2 2

A

4 2

T(U(2))

2

1

1

1

2 2 2

1

1
T(U(2))

(4.3.26)

As explained in (4.3.20), the Higgs branch of the left diagram in each case splits
into a product of two hyperKähler spaces. According to (4.2.8), the second factor in
each line is the Hilbert series for the closure of the nilpotent orbit O(3) and O(2), co-
incident with the Higgs branch of the theories T(SU(3)) and T(SU(2)) respectively.
The unrefined Hilbert series for the first factor is∮

|z|=1

dz
2πiz

(1− z2)
∮
|q|=1

dq
2πiq

PE
[
n1(z + z−1)(q + q−1)

+ (q2 + q−2)t + (z2 + 1 + z−2)t2 − t4 − (z2 + 1 + z−2 + 1)t2
]

× PE
[
(z2 + 1 + z−2)t2 − t4

]
.

(4.3.27)

We therefore arrive at the following results:

H[Hn1=3,n2=3
(4.3.16) ] = PE [9t2 + 6t3 − t4 − 6t5 − 10t6 + . . . ]PE [8t2 − t4 − t6],

H[Hn1=4,n2=2
(4.3.16) ] = PE [16t2 + 12t3 − t4 − 32t5 − 54t6 + . . . ]PE [3t2 − t4],

(4.3.28)

These indicate that the symmetry of the Higgs branch is U(n1)× (U(n2)/U(1)).
Of course, the above Hilbert series can also be obtained from the Coulomb branch
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of the corresponding mirror theory. As an example, as stated in (4.3.24), for n1 =
4, n2 = 2, the Coulomb branch of the right quiver of (4.3.26) is a product of the
Coulomb branches of the following theories:

2

1

1

1

2 3 2 1 (4.3.29)

The Coulomb branch Hilbert series of the left quiver can be computed as follows:

∑
a1≥a2>−∞

∑
m∈Z

∑
n∈Z

t2∆(a,m,n)PU(2)(t, a)PU(1)(t, m)PU(1)(t, n)

= PE [16t2 + 20t3 − 12t5 − 32t6 + . . . ] ,
(4.3.30)

with a = (a1, a2),

∆(a, m, n) = ∆U(2)−U(1)(a, m) + ∆U(2)−U(1)(a, n) + ∆U(2)−U(2)(a, 0)

+ ∆U(1)−U(1)(m, 0)− ∆vec
U(2)(a)

(4.3.31)

and all of the other notations are defined in (4.6.10). This is indeed equal to the first
factor in the first line of (4.3.28). The right quiver in (4.3.29) is the T(SU(3)) theory
whose Coulomb and Higgs branch Hilbert series is equal to the second factor in the
first line of (4.3.28).

Issues regarding S-folding the quiver tail

Let us consider the case in which n2 < 2N. In this case, in the mirror theory (4.3.11),
the T-link appears on right of the U(2N) node that is attached with one flavour. Let
us suppose that the T-link connects two U(n2) gauge nodes where 1 ≤ n2 ≤ 2N− 1.

2N 2N · · · 2N

N

N

· · · n2 n2 · · · 1

1
1

n1 + n2 − 2N − 1 nodes

(4.3.32)

The Higgs branch dimension of such theory is

dimHH(4.3.32) = dimHH(4.3.11) + (n2
2 − n2)− n2

2 = 2N − n2 . (4.3.33)

Observe that this is non-zero for 1 ≤ n2 ≤ 2N − 1. However, as in (4.3.19), we have
dimH C(4.3.16) = 0 for any n2, since the two gauge nodes are connected by a T-link.
Hence, this is inconsistent with mirror symmetry, based on our assumption that the
gauge nodes connected by a T-link do not contribute to the Coulomb branch. One
possible explanation of this inconsistency is that, in the presence of the S-fold, when
move the D5 brane into the interval between NS5 branes, as depicted in (4.3.9), such
a D5 brane has to cross the S-fold. Since S-fold can be regarded as the duality wall,
the aforementioned D5 brane turns into an NS5 brane, with fractional D3 branes
ending on it. In this sense, the mirror theory is not (4.3.32).
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We shall see in section 4.3.3 that, from the perspective of the duality frames in
which the quivers do not contain a T-link, the range 1 ≤ n2 ≤ 2N − 1 corresponds,
in one frame, to a problematic quiver and, in the other frame, to a theory which is
not “good” in the sense of [8].

Now let us consider the following possibility:

2N 2N · · · 2N

N

N

2N · · · 1

1
1

n1 − 1 nodes

(4.3.34)

In the brane picture (4.3.10), this corresponds to putting the S-fold just next to the
right of the D5 brane located in the the (2N)-th interval from the right. This also cor-
responds to taking n2 = 2N. As before, the Higgs branch of this theory is expected
to be a product of two hyperKähler spaces, with one factor being

× 2N · · · 1 (4.3.35)

The Higgs branch dimension turns out to be negative if one assume that all gauge
groups are completely broken:

1
2
(4N2 − 2N) +

1
2
(2N − 1)(2N)− (2N)2 = −2N . (4.3.36)

Since the case of n2 = 2N has been discussed earlier, we should not use (4.3.34) to
describe this case and we shall not explore this possibility further.

Issues regarding putting the S-fold “too close” to the orientifold plane

Consider the model with one rank-two antisymmetric hypermultiplet where we put
an S-fold next to the O5− plane in the left diagram of (4.3.4). In this case we have
n1 = 0 and n2 = n (with n ≥ 2N). The corresponding quiver diagram is

2N 2N

A

n

T(U(2N))
(4.3.37)

The dimension of the Higgs branch is

dimHH(4.3.37) =
1
2
(2N)(2N − 1) + (4N2 − 2N) + 2Nn− 4N2 − 4N2

= 2Nn− 2N2 − 3N ,
(4.3.38)

assuming that the gauge symmetry is completely broken. For a given N, this is
positive for a sufficiently large n. However, it is also worth pointing out that if we
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split the above Higgs branch into a product as in (4.3.20), we see that the first factor

2N

A

× (4.3.39)

has a negative dimension, provided that the gauge symmetry U(2N) is completely
broken:

1
2
(4N2 − 2N) +

1
2
(2N)(2N − 1)− (2N)2 = −2N . (4.3.40)

Since both gauge nodes are connected by the T-link, we expect that

dimH C(4.3.37) = 0 (4.3.41)

The putative mirror theory can be obtained by inserting an S-fold next to the
ON− plane in (4.3.10). The corresponding quiver is

2N · · · 2N

N

N

N

2N − 1 · · · 1

T(U(N))

1
1

n− 2N − 1 nodes

(4.3.42)

The Higgs and Coulomb branch dimensions read

dimH C(4.3.42) = N + 2N(n− 2N − 1) +
2N−1

∑
i=1

i = 2Nn− 2N2 − 2N ,

dimHH(4.3.42) = N + (N2 − N) + 2N2 + 2N2 + 4N2(n− 2N − 2)

+ 2N +
2N−1

∑
i=1

i(i + 1)− N2 − N2 − N2

− 4N2(n− 2N − 1)−
2N−1

∑
i=1

i(i + 1)

= N .

(4.3.43)

We see that these are inconsistent with mirror symmetry, if we assume that the gauge
symmetry is completely broken and that the circular nodes that are connected by a
T-link do not contribute to the Coulomb branch. We see that these assumptions are
violated or (4.3.42) is not a mirror theory of (4.3.37) if we insert the S-fold next to the
orientifold plane.

A similar issue also happens if we take n1 = 1 and n2 = n− 1 (with n− 1 ≥ 2N).
In which case, the putative mirror theory looks like

2N · · · 2N

N

N

N

2N − 1 · · · 1

N

T(U(N))

1
1

n− 2N − 1 nodes

(4.3.44)
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Upon computing the Higgs branch of this theory, the lower left part contributes a
factor:

N × (4.3.45)

Assuming that the gauge symmetry is completely broken, we obtain a negative
Higgs branch dimension:

1
2
(N2 − N)− N2 = −1

2
N(N + 1) . (4.3.46)

This, again, confirms the statement that under the aforementioned assumptions, the
S-fold cannot be inserted “too close” to the orientifold plane (n1 ≥ 2). In other
words, in order for the S-fold to co-exist with an orientifold fiveplane, it must be
“shielded” by a sufficient number of fivebranes.

Similarly to the preceding case of 1 ≤ n2 ≤ 2N − 1, we can also see the issue
regarding 0 ≤ n1 ≤ 1 from the perspective of the duality frames in which the quivers
do not contain a T-link in section 4.3.3.

S-folding the USp(2N)×U(2N)×USp(2N) gauge theory

Let us consider the following theory:

2N 2N 2N
T(U(2N))

2N

2n1 F1 F2 2n2

(4.3.47)

The brane construction for this is given by (4.3.6), with m = 1 and with an S-fold
inserted in the interval labelled by f1. The S-fold partitions f1 D5 branes into F1 and
F2 D5 branes on the left and on the right of the S-fold, respectively. The dimension
of the Higgs branch of this theory reads

dimHH(4.3.47) = 2Nn1 + 4N2 + 2NF1 + (4N2 − 2N) + 2NF2 + 4N2

+ 2Nn2 − N(2N + 1)− 4N2 − 4N2 − N(2N + 1)
= 2N(F1 + F2 + n1 + n2 − 2) ,

(4.3.48)

and, for the Coulomb branch, we find

dimH C(4.3.47) = 2N. (4.3.49)

We remark that it is not possible to insert an S-fold in the interval labelled by n1 in
the diagram (4.3.6). The reason is that such a brane interval corresponds to the gauge
group USp(2N), and not USp′(2N). We do not have the notion of a T(USp(2N))
link since USp(2N) is not invariant under the S-duality. This supports the point we
made earlier that the S-fold cannot be inserted “too close” to the orientifold plane; it
must be “shielded” by a sufficient numbers of fivebranes.

In order to obtain the mirror configuration, we can insert an S-fold anywhere
between two D5-branes denoted by the black dots in (4.3.14). (Recall that m = 1 in
this case.) In terms of the quiver, this means that we can put the T-link anywhere
in between the two (2N)-nodes attached by one flavour. For example, for N = 1,
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n1 = n2 = 3, F1 = 1 and F2 = 0, the mirror theory is

2

1

1

2 2 2 2

1 1

T(U(2))

1

1

(4.3.50)

In order to compute the dimensions of Higgs and Coulomb branches of the mirror
theory we can simply start with the corresponding non S-folded theory and observe
that inserting a T-link implies the following:

• For the Higgs branch, we need to add the dimension of the T(U(2N)) link,
that in this case gives 4N2 − 2N and subtract the gauging of the extra U(2N),
hence we subtract 4N2; in total we find that

dimHHmirr of (4.3.47) = dimHH(4.3.15) + (4N2 − 2N)− 4N2

= dimHH(4.3.15) − 2N

= (N + 2N + N)− 2N = 2N .

(4.3.51)

• For the Coulomb branch, the result of inserting an S-fold is to add one gauge
node and then consider that the ones connected by the T-link are frozen, so in
total we have

dimH Cmirr of (4.3.47) = dimH C(4.3.15) − 2N

= 2N(F1 + F2 + n1 + n2 − 2) , with f1 = F1 + F2 .
(4.3.52)

These are in agreement with mirror symmetry.
In the above example of N = 1, n1 = n2 = 3, f1 = 1 and f2 = 0, one can compute

the Hilbert series for (4.3.47) and its mirror (4.3.50). The unrefined results are

H[H(4.3.47)] = H[C(4.3.50)]

= PE [16t2 + 12t3 − 15t4 − 40t5 + 19t6 + . . . ]×
PE [15t2 − 16t4 + 35t6 + . . . ] ,

(4.3.53)

and

H[C(4.3.47)] = H[H(4.3.50)]

= H[CUSp(2) with 5 flv]
2 = PE [t4 + t6 + t8 + . . . ]2 .

(4.3.54)

The above results deserve some explanations. In (4.3.50), the Coulomb branch sym-
metry can be seen from the after taking the two U(2) gauge groups connected by the
T-link to be two separate flavour symmetries. The left part gives an SU(4)×U(1)
symmetry due to the fact that the balanced nodes form an A3 Dynkin diagram and
that there is one overbalanced node (namely, the U(2) node that is attached to one
flavour). The right part gives an SU(4) symmetry due to the fact that the balanced
nodes form an A3 Dynkin diagram [8]. The Coulomb branch of (4.3.47) is identified
with a product of two copies of the Coulomb branch of USp(2) gauge theory with
5 flavours due to the following reason. The nodes connected by the T-link do not
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contribute to the Coulomb branch and therefore each of the left and the right parts
contains the USp(2) gauge theory with 2N + n1 = 2 + 3 = 5 flavours.

4.3.3 Duality with theories without an S-fold
For theories with one orientifold fiveplane and an S-fold, one can move the S-fold
away from the brane system to infinity. For example, in (4.3.16), this corresponds
to moving the S-fold to +∞ in x6-direction on the right of the brane diagram. Each
time the S-fold crosses an NS5 brane (resp. a D5 brane), it is transformed into a D5
brane (resp. an NS5 brane) by S-duality. Specifically, in doing so, the n2 D5 branes in
(4.3.16) turn into n2 NS5 brane and the rightmost NS5 brane turns into a D5 brane.
The corresponding quiver can be obtained in a similar way to that of (4.3.17):

2N 2N · · · 2N 2N − 1 · · · 1

n1 1

A

n2 − 2N + 1 circular nodes

(4.3.55)

The mirror quiver of (4.3.55) is

2N · · · 2N

N

N

1

n2

n1 − 1 nodes

(4.3.56)

Observe that (4.3.55) and (4.3.56) no longer contain a T-link. We expect that (4.3.16)
and (4.3.17) are dual to (4.3.55) and (4.3.56).

We see that if the value of n2 falls in the interval 1 ≤ n2 ≤ 2N− 1, quiver (4.3.55)
is problematic and (4.3.56) is not a good theory in the sense of [8], due to the fact
the last U(2N) gauge node does not have a sufficiently large number of flavours. A
similar situation occurs when 0 ≤ n1 ≤ 1.

Note that the procedure of moving the S-fold away from the brane system to in-
finity can be applied, in general, to “non-compact” models and obtain four theories
that are dual to each other. It would be interesting to study such a duality further,
for example, by computing and matching the three sphere partition functions of such
theories in a similar fashion to [14] (see also [107]).

For theories with two orientifold fiveplanes, such as the models with two anti-
symmetric hypermultiplets as well as the model discussed in (4.3.2), the notion of
“infinity” in the x6 direction no longer makes sense. This is due to the action of the
two orientifold fiveplanes that defines the boundaries of the brane system and, in
this sense, the model should be regarded as “compact”, as discussed in [25]. Hence,
in this case, we do not expect to have a duality with non-S-fold theories as in the
preceding case9.

9If one really insists to move the S-fold crossing one of the O5− planes, the resulting brane
system consists of an O5− plane on one side and an ON− plane on the other side. Although
such a system has not been much explored in the literature, one may try to write down the
gauge theory corresponding to such boundary conditions and study its properties such as
the three sphere partition function.
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4.4 Models with an orientifold threeplane
In this section, we discuss circular quivers whose brane configurations contain an
orientifold threeplane. We first review the brane configurations for theories without
an S-fold and their mirrors. Subsequently, we introduce an S-fold to such brane
systems. We only focus the cases in which the types of the orientifold planes on
both sides of the S-fold are (O3−, O3−) or (Õ3

+
, Õ3

+
). These correspond to the

presence of an T(SO(2N)) link or an T(USp′(2N)) link in the quiver. Using the
same argument as in [14], we expect that the theories with an S-fold has N = 3
supersymmetry. This is because, when the global symmetry G×G of T(G) is gauged
in the circular quiver (so that both of them act on the Coulomb branch), the two
SU(2) factors in the original SU(2)× SU(2) R-symmetry of T(G) are identified to a
single SU(2) R-symmetry, corresponding to N = 3 supersymmetry.

4.4.1 The cases without an S-fold
In this subsection, we summarise brane constructions for the elliptic models with
alternating orthogonal and symplectic gauge groups, in the absence of the S-fold.
Such brane configurations and their S-duals were studied extensively in [21] (see
also [108] for a related discussion). For brevity of the discussion, we shall not go
through the detail on how to obtain the S-dual configurations but simply state the
results. The following quiver diagrams and their brane configurations will turn out
to be useful for the discussion in the subsequent subsections.

The SO(2N)×USp(2N) gauge theory with two bifundamentals and n flavours for
USp(2N) and its mirror. Their quivers are

2N

2N

2n

...

2N

2N + 1

2N′
2N + 1

2N

2N2N

One red (2N) node + two blue (2N) nodes

with a half-flavour each, and alternating

(n− 2) blue (2N′) nodes with no flavour

+ (n− 1) red (2N + 1) nodes with no flavour

1

1

(4.4.1)
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Their brane configurations are, respectively, given by [21, Fig. 23]:

1
2 NS5

− 2N 2N

•
+

•̃
+

+...

•
1
2 D5+

1
2 NS5

...

•

•

2N

2N + 1

2N + 1

2N

2N−

+
+̃

−̃

+ +̃

−̃

(4.4.2)

where in the left diagram we have n half-D5 branes, and in the right diagram we
have n half-NS5 branes. Here and subsequently, we denote in blue the number of
half-D3 branes at each interval between two succesive half-NS5 branes. Note that
one may also add flavours (say, m flavours, or equivalently a blue rectangular node
with label 2m) to the SO(2N) gauge group in the left diagram of (4.4.1), the resulting
mirror quiver can be obtained from the right diagram of (4.4.1) by simply replacing
the (2N) red node by a series of alternating m + 1 red (2N) nodes and m blue (2N)
nodes:

2N

2m

−→ 2N 2N 2N 2N · · · 2N

(m + 1) red nodes & m blue nodes

(4.4.3)

The USp′(2N)×SO(2N + 1) gauge theory with two bifundamentals and n flavours
for SO(2N + 1) and its mirror. Their quivers are

2N′

2N + 1

2n

...

2N + 2

2N

2N + 2

2N

2N + 2

2N′2N′

n red circular nodes + (n− 1) blue

usual circular nodes + 2 blue nodes

connected by T(USp′(2N))

2

(4.4.4)
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The corresponding brane configurations are respectively given by [21, Fig. 29]:

1
2 NS5

+̃ 2N 2N + 1

•
−̃

•
−

−̃...

•
1
2 D5−̃

1
2 NS5

...
•

•

+

+

2N + 2

2N

2N

2N + 2

2N+̃

−

+

−

+

(4.4.5)

where in the left diagrams there are 2n half-D5 branes, and on the right diagram
there are 2n half NS5 branes. One may also add flavours (say, m flavours or equiv-
alently a red square node with label 2m) to the USp′(2m) gauge group in the left
diagram of (4.4.4), the resulting mirror quiver can be obtained from the right dia-
gram of (4.4.4) by making the following replacement:

2N′

2m

−→ 2N 2N 2N 2N · · · 2N

1 1

m red nodes & (m− 1) blue nodes

(4.4.6)

4.4.2 Quiver with a T(SO(2N)) loop
We start by examining the following brane configuration and the corresponding
quiver:

••
••1

2 D5

2N

. . .

− −

−̃−̃

2N

T(SO(2N))

2n

(4.4.7)

where in the left diagram the red wriggly denotes the S-fold and there are 2n half D5
branes. In order to obtain the mirror theory, we apply S-duality to the above brane
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system. The result is

. . .

2N2N

2N 2N

−−

++

1
2 NS5

...

2N

2N

2N

2N

2N

2N

2N

n blue circular nodes + (n− 1) red

usual circular nodes + 2 red nodes

connected by T(SO(2N))

T(SO(2N))

(4.4.8)

where in the left diagram there are 2n half-NS5 branes.
In the absence of the S-fold, quivers (4.4.7) and (4.4.8) reduce to conventional

Lagrangian theories that are related to each other by mirror symmetry. In particular,
(4.4.7) reduces to a theory of free 4Nn half-hypermultiplets, namely

2N 2n (4.4.9)

and quiver (4.4.8) reduces to

...

2N
2N

2N
2N

2N

2N 2n alternating red/blue circular nodes

(4.4.10)

where the two SO(2N) gauge groups that were connected by T(SO(2N)) merged
into a single SO(2N) circular node. It can be checked that the Higgs branch dimen-
sion of (4.4.10) is indeed zero:

(2n)(2N2)− n
[

1
2
(2N)(2N − 1)

]
− n

[
1
2
(2N)(2N + 1)

]
= 0 , (4.4.11)

and the quaternionic dimension of the Coulomb branch of (4.4.10) is 2Nn. These are
in agreement with mirror symmetry.

Theory (4.4.7)
The Higgs branch of this theory is given by the hyperKähler quotient:

H(4.4.7) =
Nso(2N) ×Nso(2N) ×H ([S/O(2N)]− [USp(2n)])

S/O(2N)
. (4.4.12)
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where the notation S/O means that we may take the gauge group to be SO(2N) or
O(2N). The dimension of this space is

dimH H(4.4.7) =

[
1
2
(2N)(2N − 1)− N

]
+ 2Nn− 1

2
(2N)(2N − 1) = (2n− 1)N .

(4.4.13)
Since the circular nodes that are connected by T(SO(2N)) do not contribute to the
Coulomb branch, it follows that the Coulomb branch of (4.4.7) is trivial:

dimH C(4.4.7) = 0 . (4.4.14)

Let us now discuss certain interesting special cases below.

The Higgs branch of (4.4.7) for N = 1, 2

For N = 1, since Nso(2) is trivial, it follows that H(4.4.7) is the Higgs branch of the
3d N = 4 S/O(2) gauge theory with n flavours. If the gauge group is taken to be
O(2), H(4.4.7) is isomorphic to the closure of the minimal nilpotent orbit of usp(2n).
On the other hand, if the gauge group is taken to be SO(2), H(4.4.7) turns out to
be isomorphic to the closure of the minimal nilpotent orbit of su(2n). The reason
is because the generators of the moduli space with SU(2)R-spin 1 are mesons and
baryons; they transform in the representation [2, 0, . . . , 0] + [0, 1, 0, . . . , 0] of usp(2n).
This representation combines into the adjoint representation [1, 0, . . . , 0, 1] of su(2n).

For N = 2, let us denote the fundamental half-hypermultiplets by Qi
a with

i, j, k, l = 1, . . . , 2n and a, b, c, d = 1, 2, 3, 4, and the generators ofNso(4) by a rank-two
antisymmetric tensor Xab. We find that for the O(4) gauge group, the generators of
the Higgs branch are as follows:

• The mesons Mij = Qi
aQj

bδab, with SU(2)R-spin 1, transforming in the adjoint
representation [2, 0, . . . , 0] of usp(2n).

• The combinations Qi
aQj

bXab, with SU(2)R-spin 2, transforming in the adjoint
representation [0, 1, 0, . . . , 0] of usp(2n).

For the SO(4) gauge group, we have, in addition to the above, the following gener-
ators of the Higgs branch:

• The baryons Bijkl = εabcdQi
aQj

bQk
cQl

d, with SU(2)R-spin 2, transforming in the
adjoint representation [0, 0, 0, 1, 0, . . . , 0] + [0, 1, 0, . . . , 0] of usp(2n).

• The combinations εabcdQi
aQj

bXcd, with SU(2)R-spin 2, transforming in the ad-
joint representation [0, 1, 0, . . . , 0] of usp(2n).

• The USp(2n) flavour singlet εabcdXabXcd, with SU(2)R-spin 2.

The Higgs branch of (4.4.7) for n = 1

In this case, it does not matter whether we take the gauge group to be SO(2N) or
O(2N), the Higgs branch is the same. The corresponding Hilbert series is

H[H(4.4.7)|n=1] = PE

[
χ

su(2)
[2] (x)

N−1

∑
j=0

t4j+2 −
2N−1

∑
l=N

t4l

]
. (4.4.15)
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Indeed, for N = n = 1, we recover the nilpotent cone of su(2), which is isomorphic
to C2/Z2.

Theory (4.4.8)
Since the nodes that are connected by T(SO(2N)) do not contribute to the Coulomb
branch, it follows that the dimension of the Coulomb branch is

C(4.4.8) = (2n− 1)N . (4.4.16)

Note, however, that quiver (4.4.8) is a “bad” theory in the sense of [8], due to the fact
that each USp(2N) gauge group has 2N flavours. Nevertheless, we shall analyse
the case of n = 1 and general N in detail below. In which case, we shall see that the
result is consistent with mirror symmetry.

The computation of the Higgs branch dimension of (4.4.8) indicates that the
gauge symmetry is not completely broken at a generic point of the Higgs branch.
Indeed, if we assume (incorrectly) that the gauge symmetry is completely broken,
we would obtain the dimHH(4.4.8) to be

(4.4.11) +
[

1
2
(2N)(2N − 1)− N

]
− 1

2
(2N)(2N − 1) = −N . (4.4.17)

We conjecture that the SO(2N)× SO(2N) gauge group connected by T(SO(2N)) is
broken to SO(2)N , whose dimension is N. This statement can be checked explic-
itly in the case of N = 1, where T(SO(2)) is trivial. Taking into account such an
unbroken symmetry, we obtain dimHH(4.4.8) = 0, which is in agreement with the
Coulomb branch of (4.4.7).

The special case of n = 1

In this case, the Coulomb branch of (4.4.8) is equal to that of the USp(2N) gauge
theory with 2N flavours. As pointed out in [109], the most singular locus of the
Coulomb branch consists of two points, related by a Z2 global symmetry. The in-
frared theory at any of these two points is an interacting SCFT, which we denote by
TN .

For n = N = 1, the corresponding singularity is of an A1 type [110], and the
corresponding SCFT is T2 = T(SU(2)) whose Higgs/Coulomb branch is a nilpotent
cone of su(2); this is indeed in agreement with the Higgs branch of (4.4.7). The situa-
tion here is the same as that described on Page 30 of [109], namely mirror symmetry
is realized locally at each of the two singular points. The Higgs branch of (4.4.7) has
one component, whereas the the Coulomb branch of (4.4.8) (for N = n = 1) splits
into two components, each of which is isomorphic to the former.

For n = 1 and N > 1, the mirror theory of TN is described by the following
quiver [111]:

N − 1

N2

2N − 2 2N − 3 . . . 1 (4.4.18)
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By mirror symmetry, the Coulomb branch of TN is equal to the Higgs branch of
(4.4.18), whose Hilbert series is given by [109, (D.11)]:

H[CTN ](t, x) = H[H(4.4.18)](t, x) = PE

[
χ

su(2)
[2] (x)

N−1

∑
j=0

t4j+2 −
2N−1

∑
l=N

t4l

]
. (4.4.19)

This is perfectly in agreement with (4.4.15).

4.4.3 Quivers with a T(SO(2N)) link or a T(USp′(2N)) link
Let us insert an S-fold in the brane interval marked by red minus sign (−) in each
brane set-up in (4.4.2). This leads to the presence of T(SO(2N)) link in the corre-
sponding quiver diagram. In particular, the insertion of an S-fold in the left diagram
of (4.4.2) leads to the following configuration:

1
2 NS5

−

−

2N

2N
2N

•
+

•̃
+

+...

•
1
2 D5+

2N 2N

2N

2n

T(SO(2N))

(4.4.20)

The mirror theory can be obtained from the S-dual configuration of the above,
or simply inserting an S-fold to the left interval of the right diagram in (4.4.2). The
result is

1
2 NS5

...

•

•

2N

2N + 1

2N + 1

2N

2N

2N

−
−

+
+̃

−̃

+ +̃

−̃

...

2N

2N + 1

2N′

2N + 1

2N

2N

2N

n blue circular nodes + (n− 1) red

usual circular nodes + 2 red nodes

connected by T(SO(2N))

T(SO(2N))

1

1

(4.4.21)

where the number of half-NS5 branes is 2n. Note that for n = 1, the theory is self-
mirror.
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Theory (4.4.20)

The Higgs branch of (4.4.20) is described by the hyperKähler quotient

H(4.4.20) =
(
Nso(2N) ×H([SO(2N)]− [USp(2N)])×Nso(2N) ×H(SO(2N)]− [USp(2N)])×

H([USp(2N)]− [SO(2n)])
)

/ (SO(2N)× SO(2N)×USp(2N))

=
Nusp(2N) ×Nusp(2N) ×H([USp(2N)]− [SO(2n)])

USp(2N)
,

(4.4.22)
where we have used (4.2.24) to obtain the last line. We remark that both red circular
nodes can be chosen to be either SO(2N) or O(2N) and the results for both options
are the same, thanks to the equality between (4.2.24) and (4.2.30). Moreover, the
hyperKähler quotient in the last line of (4.4.22) suggests the equality between (4.4.22)
and the Higgs branch of the following theory:

••
••1

2 D5

2N2N

. . .

+̃ +̃

++

2N′

T(USp′(2N))

2n

(4.4.23)

where the blue circular node is a USp′(2N) gauge group. In other words, we have
the following equality of the Higgs branch between two different gauge theories:

H(4.4.20) = H(4.4.23) . (4.4.24)

The quaternionic dimension of (4.4.22) is

dimHH(4.4.20) =

[
1
2
(2N)(2N − 1)− N

]
+ 2(4N2) + 2Nn

−
[

2× 1
2
(2N)(2N − 1)

]
− 1

2
(2N)(2N + 1)

= (2n− 1)N .

(4.4.25)

Since the nodes that are connected by T(SO(N)) does not contribute to the Coulomb
branch of the theory, the Coulomb branch of (4.4.20) is isomorphic to the Coulomb
branch of the 3dN = 4 USp(2N) gauge theory with 2N + n flavours, whose Hilbert
series is given by [86, (5.14)]. Its quaternionic dimension is

dimH C(4.4.20) = N . (4.4.26)

Example: n = 1. The theory is self-mirror. One can check that the Hilbert series
of the quotient (4.4.34) is indeed equal to the Coulomb branch of USp(2N) gauge
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theory with 2N + 1 flavours [86, (5.14)], which is

PE

[
2N

∑
j=1

t2j +
N

∑
j=1

t4j −
N

∑
j=1

t4j+4N

]
. (4.4.27)

Note that for N = n = 1, we have C2/Z4, as expected from the Coulomb branch of
USp(2) with 3 flavours.

There is another way to check that theory (4.4.20) for n = 1 (and a general N)
is self-mirror. We can easily compute a mirror theory of (4.4.23), with n = 1, by
applying S-duality to the brane system; see (4.4.31). The result is

2N′ 2N′

2N + 1

T(USp′(2N))

(4.4.28)

The Coulomb branch of this theory is isomorphic to that of 3d N = 4 SO(2N + 1)
gauge theory with 2N flavours, whose Hilbert series is given in [86, (5.18)]. How-
ever, as pointed out in that reference, this turns out to be isomorphic to the Coulomb
branch of the USp(2N) gauge theory with 2N + 1 flavours, whose Hilbert series is
given by (4.4.27). We thus establish the self-duality of (4.4.20) for n = 1.

Theory (4.4.21)

The Higgs branch dimension of (4.4.21) is

dimH H(4.4.21) = (2)(2N2) + (2n− 2)N(2N + 1) +
[

1
2
(2N)(2N − 1)− N

]
+ N + N − n

[
1
2
(2N)(2N + 1)

]
− 2

[
1
2
(2N)(2N − 1)

]
− (n− 1)

[
1
2
(2N + 1)(2N)

]
= N .

(4.4.29)

The Coulomb branch dimension of (4.4.21) is equal to the total rank of the gauge
groups that are not connected by T(SO(2N)):

dimH C(4.4.21) = (2n− 1)N . (4.4.30)

These agree with the dimensions of the Coulomb and the Higgs branches of (4.4.20).
Similarly to the previous discussion, the red circular nodes that are connected by

T(SO(2N)) can be taken as O(2N) or SO(2N) without affecting the Higgs branch
moduli space of (4.4.21). Moreover, we find that this applies to other red circular
nodes in the quiver, namely the choice between O(2N + 1) and SO(2N + 1) does
not change the Higgs branch of the theory. This can be checked directly using the
Hilbert series.
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It is worth pointing out that there is another gauge theory that gives the same
Coulomb branch as (4.4.20). This is the mirror theory of (4.4.23) which is given by

1
2 NS5

...

2N + 1

2N

2N

2N + 1

2N

2N

+̃

+̃

−̃

−̃

+̃

+̃

...

2N + 1

2N′

2N + 1

2N′

2N + 1

2N′

2N′

n red circular nodes + (n− 1) blue

usual circular nodes + 2 blue nodes

connected by T(USp′(2N))

T(USp′(2N))

(4.4.31)

where the number of half-NS5 branes is 2n. We expect that the Coulomb branch
of (4.4.31) has to be equal to the Coulomb branch of (4.4.21). This can be seen as
follows. Let us focus on (4.4.31). Note that the two blue circular nodes that are
connected by T(USp′(2N)) do not contribute to the Coulomb branch computation,
so we can take them to be two flavour nodes that are not connected. As pointed
out below [86, (5.18)], the Coulomb branch of the SO(2N + 1) gauge theory with 2N
flavours is the same as that of Coulomb branch of the USp(2N) gauge theory with
2N + 1 flavours. We can apply this fact to every node in quiver (4.4.31) and see that
the resulting quiver has the same Coulomb branch as that of (4.4.21).

4.4.4 More quivers with a T(USp′(2N)) link
Let us insert an S-fold in the interval labelled by +̃ in each of the diagram in (4.4.5).
Doing so in the left diagram yields the following theory:

1
2 NS5

+̃

+̃

2N

2N

2N + 1

•
−̃

•
−

−̃...

•
1
2 D5−̃

2N′ 2N′

2N + 1

2n

T(USp′(2N))

(4.4.32)
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On the other hand, inserting an S-fold to the right diagram yields the mirror config-
uration:

1
2 NS5

...
•

•

+

+

2N + 2

2N

2N

2N + 2

2N

2N

+̃

+̃

−

+

−

+

...

2N + 2

2N

2N + 2

2N

2N + 2

2N′

2N′

n red circular nodes + (n− 1) blue

usual circular nodes + 2 blue nodes

connected by T(USp′(2N))

T(USp′(2N))

1

1

(4.4.33)

Theory (4.4.32)

The Higgs branch of (4.4.32) is described by the hyperKähler quotient

H(4.4.32) =
Nso(2N+1) ×Nso(2N+1) ×H([SO(2N + 1)]− [USp(2n)])

SO(2N + 1)
,

(4.4.34)
where we have used (4.2.14) and (4.2.16) (with n = 2N + 1). The dimension of this
is

dimHH(4.4.32) =

[
1
2
(2N + 1)(2N)− N

]
+ (2N + 1)n− 1

2
(2N + 1)(2N)

= 2nN + n− N .
(4.4.35)

A special case of N = n = 1 is particularly simple. The corresponding Higgs branch
is a complete intersection with the Hilbert series

H[H(4.4.20)|N=n=1](t; x) = PE
[
χ

su(2)
[2] (x)t2 + χ

su(2)
[1] (x)t3 − t8

]
. (4.4.36)

The Coulomb branch of (4.4.32) is isomorphic to that of the 3dN = 4 SO(2N + 1)
gauge theory with 2N + n flavours, whose Hilbert series is given by [86, (5.18)]. Note
that this is also equal to that of the Coulomb branch of the USp(2N) gauge theory
with 2N + n + 1 flavours.

Theory (4.4.33)

The quaternionic dimension of the Coulomb branch of this theory is

dimH C(4.4.33) = n(N + 1) + (n− 1)N = 2nN + n− N . (4.4.37)

This matches with the dimension of the Higgs branch of (4.4.32). It should be noted
that (4.4.33) is a “bad” theory in the sense of [8], due to the fact that each SO(2N + 2)
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gauge group effectively has 2N flavours. Nevertheless, we shall analyse the case of
N = n = 1 below.

Let us now turn to the Higgs branch. In the absence of the S-fold, it was pointed
out below [21, (7.1)] that the gauge symmetry is not completely broken at a generic
point on the Higgs branch, but is broken to n copies of SO(2). We conjecture that
this still holds for (4.4.33). Indeed, if we assume that this is true, we obtain the
quaternionic dimension of the Higgs branch to be

dimHH(4.4.33)

=

[
1
2
(2N)(2N + 1)− N

]
+ N + N + (2n)N(2N + 2)

− (n)
[

1
2
(2N + 2)(2N + 1)

]
− (n− 1 + 2)

[
1
2
(2N)(2N + 1)

]
+ n

= N ,

(4.4.38)

where n in the second line is there due to the unbroken symmetry SO(2)n at a generic
point of the Higgs branch. This is in agreement with the dimension of the Coulomb
branch of (4.4.32), and is indeed consistent with mirror symmetry.

The special case of N = n = 1

In this case, the Coulomb branch of (4.4.33) is equal to that of the SO(4) gauge theory
with 2 flavours (which has a USp(4) flavour symmetry). Although the latter is a bad
theory, there is a mirror theory which has a “good” Lagrangian description. The
latter is denoted by T(2,12)(USp(4)), whose quiver description is (see [72, Table 2]):

2 2 3

1 2

(4.4.39)

where each red circular node should be taken as an SO gauge group. The Higgs
branch Hilbert series of (4.4.39) is indeed in agreement with (4.4.36), consistent with
mirror symmetry.

4.5 Models with the exceptional group G2

4.5.1 Self-mirror models with a T(G2) link
In this section, we turn to models with a T(G2) link connecting between two G2
gauge groups. We do not have the Type IIB brane construction for such theories.
Nevertheless, it is still possible to make some interesting statements regarding the
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moduli space. We consider the following quiver:

...

4′

G2

4′

G2

4′

G2

G2

n blue nodes + (n− 1) G2 usual

circular nodes + 2 G2 nodes

connected by T(G2)T(G2)

(4.5.1)

Note that every gauge group in the quiver has the same rank, in the same way as
the preceding sections. The Higgs branch dimension of this quiver is

dimH H(4.5.1) = (14− 2) +
1
2
(2n)(4)(7)− 10n− 14(n− 1+ 2) = 2(2n− 1) . (4.5.2)

On the other hand, the Coulomb branch dimension of this quiver is

dimH C(4.5.1) = 2(2n− 1) . (4.5.3)

Observe that the dimensions of the Higgs and Coulomb branches are equal. Indeed,
we claim that quiver (4.5.1) if self-mirror. We shall consider some special cases and
compute the Hilbert series to support this statement below.

In the absence of S-fold, the two G2 gauge groups merge into a single gauge
group and quiver (4.5.1) reduces to

...

4′
G2

4′
G2

4′

G2
2n alternating G2/USp′(4)

circular nodes

(4.5.4)

It can also be checked that the Higgs and Coulomb branch dimensions of this quiver
are equal:

dimH H(4.5.4) = dimH C(4.5.4) = 4n . (4.5.5)

Again, we claim that quiver (4.5.4) is also self-mirror. Indeed, one can check using
the Hilbert series (say for n = 1, 2), in a similar way as that will be presented below,
that the Higgs and Coulomb branches of (4.5.4) are equal.

Since we do not know the brane configurations for (4.5.1) and (4.5.4), we cannot
definitely confirm if the gauge nodes labelled by 4 is really USp(4) or USp′(4). Nev-
ertheless, we conjecture that such gauge nodes are USp′(4), due to the fact that we
can perform an “S-folding” and obtain another quiver which is self-dual. The latter
is depicted in (4.5.15) and will be discussed in detail in the next subsection.
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The case of n = 1
In this case, (4.5.1) reduces to the following quiver:

G2 G2

4′

T(G2)

(4.5.6)

The Higgs branch Hilbert series can be computed as

H[H(4.5.6)](t) =
∫

dµUSp(4)(z)
{

H[H(4.2.33)](t; z)
}2

PE
[
−χC2

[2,0](z)t
2
]

, (4.5.7)

where z = (z1, z2) and H[H(4.2.33)](t; z) is given by (4.2.37). The integration yields

H[H(4.5.6)](t) = PE
[
t4 + t6 + 2t8 + t10 + t12 − t20 − t24

]
. (4.5.8)

This is the Coulomb branch Hilbert series of 3d N = 4 USp(4) gauge theory with
7 flavours [86, (5.14)]. On the other hand, since the vector multiplet of the G2 gauge
groups connected by T(G2) do not contribute to the Coulomb branch, the Coulomb
branch of (4.5.6) is also isomorphic to the Coulomb branch of 3d N = 4 USp(4)
gauge theory with 7 flavours.

We see that the Higgs and the Coulomb branches of (4.5.6) are equal to each
other. We thus expect that theory (4.5.6) is self-mirror.

The case of n = 2
In this case, (4.5.1) reduces to the following quiver:

G2

4′

G2

4′

G2

T(G2)

(4.5.9)

The Higgs branch Hilbert series can be computed similarly as before:

H[H(4.5.9)](t) =
∫

dµUSp(4)(u)
∫

dµUSp(4)(v)
∫

dµG2(w)×

H[H(4.2.33)](t; u)H[H(4.2.33)](t; v)PE
[
χC2
[1,0](u)χ

G2
[1,0](w) + u↔ v

]
PE
[
−χC2

[2,0](u)t
2 − χC2

[2,0](v)t
2 − χG2

[0,1](w)t2
]

.

(4.5.10)
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The Coulomb branch Hilbert series can be computed as if the two G2 symmetries
that are connected by T(G2) becomes two separated flavour nodes:

H[C(4.5.9)](t) = ∑
n1,n2≥0

∑
a1≥a2≥0

∑
b1≥b2≥0

t2∆(n,a,b)PG2(t; n)PC2(t; a)PC2(t; b) (4.5.11)

where n = (n1, n2) are the fluxes of the G2 gauge group, a = (a1, a2) and b = (b1, b2)
are the fluxes for the two USp(4) gauge groups. Here ∆(n, a, b) is the dimension of
the monopole operator:

∆(n, a, b) = ∆hyp
G2−C2

(0, a) + ∆hyp
G2−C2

(0, b) + ∆hyp
G2−C2

(n, a) + ∆hyp
G2−C2

(n, b)

− ∆vec
G2

(n)− ∆vec
C2

(a)− ∆vec
C2

(b)

2∆hyp
G2−C2

(n, a) =
1
2 ∑
±

2

∑
i=1

[
|n1 ± ai|+ |n1 + n2 ± ai|+ |2n1 + n2 ± ai|+

+ (n1 → −n1, n2 → −n2) + | ± ai|
]

∆vec
G2

(n) = |n1|+ |n2|+ |n1 + n2|+ |2n1 + n2|+ |3n1 + n2|+ |3n1 + 2n2|
∆vec

C2
(a) = |2a1|+ |2a2|+ |a1 + a2|+ |a1 − a2| .

(4.5.12)

The dressing factors PC2(t; a) and PG2(t; n) are given by [86, (A.8), (5.27)]:

PC2(t; a1, a2) =


(1− t2)−2 a1 > a2 > 0
(1− t2)−1(1− t4)−1 a1 > a2 = 0 or a1 = a2 > 0
(1− t4)−1(1− t8)−1 a1 = a2 = 0

PG2(t; n1, n2) =


(1− t2)−2 n1 > n2 > 0
(1− t2)−1(1− t4)−1 n1 = 0, n2 > 0 or n1 > 0, n2 = 0
(1− t4)−1(1− t12)−1 n1 = n2 = 0

.

(4.5.13)

Upon calculating the integrals and the summations, we check up to order t8 that
the Higgs branch and the Coulomb branch Hilbert series are equal to each other:

H[H(4.5.9)](t) = H[C(4.5.9)](t) = PE
[
4t4 + 5t6 + 10t8 + . . .

]
. (4.5.14)

This again supports our claim that (4.5.9) is self-mirror.
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4.5.2 Self-mirror models with a T(USp′(4)) link
We can obtain another variation of (4.5.1) by simply S-folding one of the USp′(4)
gauge nodes in (4.5.4). The result is

...

G2

4′

G2

4′

G2

4′

4′

n G2 circular nodes + (n− 1) blue

usual circular nodes + 2 blue nodes

connected by T(USp′(4))T(USp′(4))

(4.5.15)

The dimension of the Higgs branch is indeed equal to that of the Coulomb branch:

dimH H(4.5.15) = dimH C(4.5.15) = 2(2n− 1) . (4.5.16)

We claim that (4.5.15) is also self-mirror for any n ≥ 1. One can indeed check, for
example in the cases of n = 1, 2, that the Higgs and the Coulomb branch Hilbert
series are equal, in the same way as presented in the preceding subsection. As an
example, for n = 1, these are equal to the Coulomb branch Hilbert series of the G2
gauge theory with 4 flavours [86, (5.28)]:

H[H(4.5.15)|n=1] = H[C(4.5.15)|n=1] = PE
[
2t4 + t6 + t8 + t10 + 2t12 + . . .

]
. (4.5.17)

We finally remark that since we can perform an “S-folding” at any blue node,
this confirms that each blue node labelled by 4 is indeed USp′(4).

4.5.3 More mirror pairs by adding flavours
In this subsection, we add fundamental flavours to the self-mirror models discussed
earlier and obtain mirror pairs that are not self-dual.

Models with a T(G2) link

Let us start the discussion by adding n flavours to the USp′(4) gauge group in (4.5.6).
This yields

G2 G2

4′

2n

T(G2)

(4.5.18)
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where the flavour symmetry is SO(2n). The dimensions of the Higgs and Coulomb
branches of this quiver are

dimH H(4.5.18) = 4n + 2 , dimH C(4.5.18) = 2 . (4.5.19)

We propose that (4.5.18) is mirror dual to

...

4′

5

4′

5

4′

G2

G2

(n + 1) blue circular nodes + n red

circular nodes + 2 G2 nodes

connected by T(G2)

(4.5.20)

The Higgs branch dimension of this model is

dimH H(4.5.20) = (14− 2) + 2
(

1
2
× 7× 4

)
+ 10(2n)

− 14− 14− 10(n + 1)− 10n
= 2 .

(4.5.21)

and the Coulomb branch dimension of this is dimH C(4.5.20) = 2(2n + 1). This is
consistent with mirror symmetry. We shall soon match the Higgs/Coulomb branch
Hilbert series of (4.5.18) with the Coulomb/Higgs branch Hilbert series of (4.5.20)
for n = 1.

Although we do not have a brane construction for (4.5.20) due to the presence of
the G2 gauge groups, the part of the quiver that contains alternating USp′(4)/SO(5)
gauge groups could be “realised” by a series of brane segments involving alternat-
ing Õ3

+
/Õ3

−
across NS5 branes. In other words, starting from (4.5.18), the mirror

theory (4.5.20) can be obtained by making the following replacement:

4′ 2n −→ ...

4′

5

4′

5

4′

(n + 1) blue circular nodes

+ n red circular nodes

(4.5.22)

In the absence of the S-fold, the two G2 gauge groups that were connected by
T(G2) merge into a single one. We thus obtain the mirror pair between the following
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elliptic models:

G2

4′

2n

←→ ...

4′
5

4′
5

4′

G2

(n + 1) blue circular nodes +

n red circular nodes + 1 G2 node

(4.5.23)

The case of n = 1

Let us first focus on (4.5.18). The Higgs branch Hilbert series can be computed sim-
ply by putting the term PE[(x + x−1)χC2

[1,0](z)t] in the integrand of (4.5.7), where x is
the SO(2) flavour fugacity. Performing the integral, we obtain (after setting x = 1):

H
[
H(4.5.18)|n=1

]
(t; x = 1) = 1 + t2 + 9t4 + 15t6 + 60t8 + 113t10 + . . . . (4.5.24)

The Coulomb branch Hilbert series for (4.5.18) is equal to that of the 3d N = 4
USp(4) gauge theory with 7 + 1 = 8 flavours. The latter is given by

H
[
C(4.5.18)|n=1

]
(t) = PE

[
t4 + 2t8 + t10 + t12 + t14 − t24 − t28

]
. (4.5.25)

Let us now turn to (4.5.20). The Higgs branch Hilbert series is given by (4.5.10)
with the following replacement:∫

dµG2(w)→
∫

dµSO(5)(w) , χG2
[1,0](w)→ χB2

[1,0](w) , χG2
[0,1](w)→ χB2

[0,2](w) .

(4.5.26)
We checked that the result of this agrees with (4.5.25) up to order t10. The Coulomb
branch Hilbert series of (4.5.20) can be obtained in a similar way from (4.5.11) with
the following replacement:

∆vec
G2

(n)→ ∆vec
B2

(n) = |n1|+ |n2|+ |n1 + n2|+ |n1 − n2|
∆hyp

G2−C2
(n, a or b)→ ∆hyp

B2−C2
(n, a or b)

PG2(t; n)→ PC2(t; n)

(4.5.27)

with

∆hyp
B2−C2

(n, a) =
1
2
× 1

2

1

∑
s1,s2=0

2

∑
j=1

[
|(−1)s2 aj|+

2

∑
i=1
|(−1)s1 ni + (−1)s2 aj|

]
. (4.5.28)

Again, we checked that the result of this agrees with (4.5.24) up to order t10.
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Generalisation of (4.5.18) to a polygon with flavours added

We can generalise (4.5.18) to a polygon consisting of alternating G2/USp′(4) gauge
groups, with n flavours added to one of the USp′(4) gauge group. This is depicted
below.

4′

G2

...

4′

2n

· · ·
G2

4′

G2

G2

m blue nodes + (m− 1) G2 usual

circular nodes + 2 G2 nodes

connected by T(G2)

T(G2)

(4.5.29)

The mirror theory can simply be obtain by applying the replacement rule (4.5.22).
For example, we have the following mirror pair

4′
G2

4′ 2

G2

4′

G2

G2

T(G2) ←→

4′

G2

4′

5

4′
G2

4′

G2

G2

T(G2)

(4.5.30)
As emphasised before, as a by-product, one may obtain a mirror pair between

the usual field theories, without an S-fold, by simply merging the two G2 nodes that
are connected by T(G2). The replacement rule described in (4.5.22) still applies. As
an example, (4.5.30) becomes

4′ G2

4′ 2

G24′

G2G2 ←→

4′

G2

4′

5

4′

G2

4′

G2G2

(4.5.31)
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Models with a T(USp′(4)) link

Instead of S-folding the G2 node as in (4.5.29), we can S-fold the USp′(4) node and
obtain

G2

4′

...

2n1

2n2

4′
G2

4′

4′

m G2 nodes + (m− 1) usual blue

circular nodes + 2 blue nodes

connected by T(USp′(4))

T(USp′(4)) (4.5.32)

The mirror theory of this quiver can be obtained by applying the replacement rule
(4.5.22), with one of the external legs on each side being a T-link. As an example, we
have the following mirror pair:

4′ 4′

G2

2n1 2n2

T(USp′(4))

←→ G2

4′

4′

· · ·
5

4′

5 · · ·

4′

n1 red and n1 blue nodes

n2 red and n2 blue nodes

(4.5.33)

Yet another generalisation one can possibly consider is to add flavour to any of
the 4′-node that is not connected by the T-link in (4.5.32). The mirror theory can
simply be obtained, again, by applying the replacement rule given by (4.5.22).

As emphasised before, as a by-product, one may obtain a mirror pair between
the usual field theories, without an S-fold, by simply merging the two USp′(4) nodes
that are connected by T(USp′(4)).

4.6 Models with an O5+ plane
In this last section, we analyse models with O5+ plane. In particular, we focus on
a theory with one symmetric hypermultiplet and its mirror theory. One of the im-
portant features is that the mirror theory does not admit a conventional Lagrangian
description. Nevertheless, we can represent it by a quiver diagram with a “multiple-
lace”, in the same sense of the Dynkin diagram of the CN algebra [112, 52]. As
pointed out in [52], it is possible to compute the Coulomb branch Hilbert series of
such a mirror theory with the multiple-lace, and equate the result with the Higgs
branch Hilbert series of the original theory with one symmetric hypermultiplet.
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The point is to demonstrate that one may insert an S-fold into the brane system
of the original theory and the corresponding mirror configuration, and still obtain a
consistent mirror theory. Again, one can compute the Coulomb branch Hilbert series
of the latter and match it with the Higgs branch Hilbert series of the former.

Models without an S-fold

We start by looking at the following theory:

O5+
with an NS5 on top

• • . . . •

n physical D5s

NS5

2N
D3

2N

S

n (4.6.1)

The presence of the O5+ plane gives rise to a rank-two symmetric hypermultiplet.
The Higgs and Coulomb branch dimensions for theory are as follows

dimH C(4.6.1) = 2N ,

dimHH(4.6.1) =
1
2

2N(2N + 1) + 2Nn− 4N2 = 2Nn− 2N2 + N .
(4.6.2)

Applying S-duality to the brane system (4.6.1) we get

ON+

•D5
2N

2N

2N

D3 2N

1
2

NS5

...

· · · · · ·

D52N NS5sn− 2N NS5s

2N D3s

(4.6.3)

and, after moving the rightmost D5 brane into the brane interval, we arrive at

ON+

•D5
2N

2N

2N

D3 2N

1
2

NS5

· · · · · ·•D5

2N NS5sn− 2N NS5s

(4.6.4)
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The corresponding quiver theory associated to this system is [112, 52]

2N

1

2N · · · 2N 2N − 1 · · · 1

1

n− 2N + 1 circular nodes

(4.6.5)

The presence of the ON+ plane gives rise to the double lace at the left end. This
part of the quiver does not have a known Lagrangian description. However, as
explained in [52], the part of the quiver that corresponds to a double lace, whose
arrow goes from the gauge group U(N1) to U(N2), contributes to the dimension of
the monopole operator as

∆(U(N1))⇒(U(N2))(m
(1), m(2)) =

1
2

N1

∑
i=1

N2

∑
j=1
|2m(1)

i −m(2)
j |, (4.6.6)

where m(1) and m(2) are the magnetic fluxes associated with the gauge groups U(N1)
and U(N2) respectively. For (4.6.5), the Coulomb branch has dimension

dimH C(4.6.5) = 2N(n− 2N + 1) +
2N−1

∑
i=1

i = 2Nn− 2N2 + N , (4.6.7)

equal to the Higgs branch dimension of (4.6.1), as expected from mirror symmetry.
Note that we have assumed that the two gauge nodes connected by the double lace
contribute as the others. Since we do not have information about matter associated
with the double lace, we cannot compute the Higgs branch dimension of (4.6.5) us-
ing the quiver description.

Let us consider a specific example by choosing N = 1 and n = 4. The unrefined
Higgs branch Hilbert series of (4.6.1) is

H[H(4.6.1)] =
∮
|z|=1

dz
2πiz

(1− z2)
∮
|q|=1

dq
2πiq

PE
[
4(z + z−1)(q + q−1)

+ (z2 + 1 + z−2)(q2 + q−2)t− (z2 + 1 + z−2 + 1)t2
]

= PE [16t2 + 20t3 − 12t5 − 32t6 + . . . ] .

(4.6.8)

For the mirror theory (4.6.5) the unrefined Coulomb branch Hilbert series can be
computed in the same way as described in [52]. The result is

H[C(4.6.5)] = ∑
m(1)

1 ≥m(1)
2 >−∞

∑
m(2)

1 ≥m(2)
2 >−∞

∑
m(3)

1 ≥m(3)
2 >−∞

∑
m∈Z

t2∆(m(1),m(2),m(3),m)

× PU(2)(t, m(1))PU(2)(t, m(2))PU(2)(t, m(3))PU(1)(t, m)

= PE [16t2 + 20t3 − 12t5 − 32t6 + . . . ],

(4.6.9)
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where m(i) = (m(i)
1 , m(i)

2 ) for i = 1, 2, 3 and we define

∆(m(1), m(2), m(3), m) = ∆U(2)⇒U(2)(m
(1), m(2)) + ∆U(2)−U(2)(m

(2), m(3))

+ ∆U(2)−U(1)(m
(3), m) + ∆U(2)−U(1)(m

(1), 0)

+ ∆U(2)−U(1)(m
(3), 0)−

3

∑
i=1

∆vec
U(2)(m

(i))

2∆U(N1)⇒U(N2)(m, n) =
N1

∑
i=1

N2

∑
j=1
|2mi − nj|

2∆U(N1)−U(N2)(m, n) =
N1

∑
i=1

N2

∑
j=1
|mi − nj|

∆vec
U(2)(m) = |m1 −m2|

PU(2)(t; m1, m2) =

{
(1− t2)−2 , m1 6= m2

(1− t2)−1(1− t4)−1 , m1 = m2

PU(1)(t; m) = (1− t2)−1 .

(4.6.10)

The two Hilbert series are equal as expected.

The case with an S-fold

One can insist with the insertion of an S-fold also for theories involving an O5+

plane. The brane configuration and the quiver theory are as follows

O5+
with an NS5 on top

• . . . •
n1

• . . . •
n2

NS5

2N
D3

2N 2N

S

n1 n2

T(U(2N))

(4.6.11)

This theory has Coulomb and Higgs branches with the following dimensions

dimH C(4.6.11) = 0,

dimHH(4.6.11) = dimHH(4.6.1)|n=n1+n2 + (4N2 − 2N)− 4N2

= 2N(n1 + n2)− 2N2 − N ,

(4.6.12)

where the first line follows from the fact that the two circular nodes are connected
by the T-link and hence do not contribute to the Coulomb branch. The brane system
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we get after applying S-duality is

ON+

•D5
2N

2N

D3

2N 2N

1
2

NS5

· · · · · · · · ·•D5

2N NS5sn2 − 2N NS5sn1 NS5s

(4.6.13)

whose associated gauge theory reads

2N

1

2N · · · 2N 2N · · · 2N 2N − 1 · · · 1

1

T(U(2N))

n1 + 1 nodes n2 − 2N + 1 nodes

(4.6.14)
The Coulomb branch dimension of this theory reads

dimH C(4.6.14) = 2N(n1 + 1 + n2 − 2N + 1− 2) +
2N−1

∑
i=1

i = 2N(n1 + n2)− 2N2 − N ,

(4.6.15)
which equal to (4.6.12).

Let us consider the example of N = 1, n1 = 2 and n2 = 2. The Higgs branch of
(4.6.11) splits into a product of two hyperKähler spaces as usual. The right part gives
the nilpotent cone of su(2) (which is isomorphic to C2/Z2), as pointed out in (4.2.8);
the corresponding unrefined Hilbert series is PE[3t2 − t4]. The left part contributes
to the Hilbert series as∮

|z|=1

dz
2πiz

(1− z2)
∮
|q|=1

dq
2πiq

PE
[
2(z + z−1)(q + q−1)

+ (z2 + 1 + z−2)(q2 + q−2)t + (z2 + 1 + z−2)t2 − t4

− (z2 + 1 + z−2 + 1)t2
]
= PE [4t2 + 6t3 + 4t4 + . . . ] .

(4.6.16)

Hence the Higgs branch Hilbert series of (4.6.11) is

H[H(4.6.11)] = PE [4t2 + 6t3 + 4t4 + . . . ]PE [3t2 − t4]. (4.6.17)

The Coulomb branch Hilbert series of (4.6.14), with N = 1, n1 = 2 and n2 = 2,
can be obtained by taking the circular nodes connected by the T-link to be separated
flavour nodes. Hence, the quiver splits into two parts. The right part contributes
as the U(1) gauge theory with 2 flavours, whose Coulomb branch is C2/Z2. The
Coulomb branch Hilbert series of the left part can be computed in a similar way as
(4.6.9). The result is therefore

H[C(4.6.14)] = PE [4t2 + 6t3 + 4t4 + . . . ]PE [3t2 − t4]. (4.6.18)
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This is equal to the Higgs branch Hilbert series of (4.6.11) and is, therefore, consistent
with mirror symmetry.
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Chapter 5

Supersymmetric Indices of 3d
S-fold SCFTs

5.1 A brief review of the 3d supersymmetric index
In this section, we briefly review the 3d supersymmetric index, which we shall refer
to as the index for brievity. This is the supersymmetric partition function on S2 × S1.
It is defined as a trace over states on S2×R [113, 114, 115, 116, 117, 118] (we also use
the same notation as [119, 120]):

I(x, µ) = Tr

[
(−1)2J3 x∆+J3 ∏

i
µTi

i

]
, (5.1.1)

where ∆ is the energy in units of the S2 radius (for superconformal field theories,
∆ is related to the conformal dimension), J3 is the Cartan generator of the Lorentz
SO(3) isometry of S2, and Ti are charges under non-R global symmetries. The index
only receives contributions from the states that satisfy:

∆− R− J3 = 0 , (5.1.2)

where R is the R-charge. As a partition function on S2 × S1, localisation implies that
the index receives contributions only from BPS configurations, and it can be written
in the following compact way:

I(x; {µ, n}) = ∑
m

1
|Wm|

∫ dz
2πiz

Zcl Zvec Zmat , (5.1.3)

where we denoted by z the fugacities parameterising the maximal torus of the gauge
group, and by m the corresponding GNO magnetic fluxes on S2. Here |Wm| is the
dimension of the Weyl group of the residual gauge symmetry in the monopole back-
ground labelled by the configuration of magnetic fluxes m. We also use {µ, n} to
denote possible fugacities and fluxes for the background vector multiplets associ-
ated with global symmetries, respectively. As usual in localisation computations,
the index receives contributions from the non-exact terms of the classical action and
from the 1-loop corrections, and each term in the above equation can be described
as follows.

Zcl: The classical contribution is associated to Chern-Simons and BF interactions
only. Denoting with k the CS level and with ω and n the fugacity and the
background flux for the topological symmetry, the classical contribution takes



136 Chapter 5. Supersymmetric Indices of 3d S-fold SCFTs

the form

Zcl =
rkG

∏
i=1

ωmi zk mi+n
i , (5.1.4)

where rkG is the rank of the gauge group G.

Zvec: This is the contribution of the N = 2 vector multiplet in the theory:

Zvec = ∏
α∈g

x−
|α(m)|

2 (1− (−1)α(m)zαx|α(m)|) (5.1.5)

where α are roots in the gauge algebra g.

Zmat: The term encoding the matter fields in the theory enters as the product of the
contributions of each N = 2 chiral field χ, transforming in some representa-
tion R and RF of the gauge and the flavour symmetry respectively. Denoting
by rχ the R-charge of χ, its contribution to the index is of the form

Zχ = ∏
ρ∈R

∏
ρ̃∈RF

(
zρ µρ̃ xrχ−1

)− |ρ(m)+ρ̃(n)|
2 ×

× ((−1)ρ(m)+ρ̃(n) z−ρ µ−ρ̃ x2−rχ+|ρ(m)+ρ̃(n)|; x2)∞

((−1)ρ(m)+ρ̃(n) zρ µρ̃ xrχ+|ρ(m)+ρ̃(n)|; x2)∞
,(5.1.6)

where ρ and ρ̃ are the weights ofR andRF respectively.

Let us discuss some examples that will be used later. The T(U(1)) theory is
an almost empty theory, containing only the mixed CS coupling between two U(1)
background vector multiplets; its index is

IT(U(1))({µ, n}, {τ, p}) = τnµp . (5.1.7)

Next, we consider 3d N = 4 U(1) gauge theory with 2 flavours, whose SCFT is
known as T(SU(2)). The index of this theory is

IT(SU(2))({µ, n}, {τ, p})

= ∑
m∈Z

(
τ1

τ2

)m ∮ dz
2πiz

zn1−n2
2

∏
a=1

x
|m−pa |

2
((−1)m−pa z∓1µ±1

a x3/2+|m−pa|;x2
)∞

((−1)m−pa z±1µ∓1
a x1/2+|m−pa|;x2)∞

,
(5.1.8)

with the conditions µ1µ2 = τ1τ2 = 1 and n1 + n2 = p1 + p2 = 0 being imposed.
Another important example is the index for T(U(2)):

IT(U(2))({µ, n}, {τ, p})

=

[
2

∏
i=1
IT(U(1))({µi, ni}, {τi, pi})

]
× IT(SU(2))({µ, n}, {τ, p}) ,

(5.1.9)

where in this expression there is no need to impose the constraints on {µ, n}, {τ, p}
as for T(SU(2)). Hence we may regard {µ, n} as fugacities and fluxes for the flavour
U(2) symmetry, and {τ, p} as fugacities and fluxes for the enhanced U(2) topolog-
ical symmetry. The fact that T(U(2)) is a self-mirror theory can be translated into
the invariance of IT(U(2))({µ, n}, {τ, p}) under the simultaneous exchange µ ↔ τ,
n↔ p. For our purpose, we turn off background magnetic fluxes.
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5.1.1 Superconformal multiplets and the index
Let us now focus on 3d superconformal field theories (SCFTs). The index keeps track
of the short multiplets, up to recombination. This feature makes the reconstruction of
the whole content of short multiplets from the index an extremely hard task. Never-
theless, one may classify the equivalence classes of the multiplets according to their
contribution to the index; see [27, 28] for 4d SCFTs, and [26] for 3d SCFTs. For this
purpose, it is convenient to set the background magnetic fluxes to zero and expand
the index as a power series in x

I(x, {µ, n = 0}) =
∞

∑
p=0

χp(µ) xp (5.1.10)

where χp(µ) is the character of a certain representation of the global symmetry of the
theory. As demonstrated in [26], one can study the contribution of superconformal
multiplets to each order of x in the power series.

Since the shortening conditions for 3d superconformal algebras have been clas-
sified [121, 122] (we follow the notation of [122]), one can extract a lot of useful
information about the SCFT in question using the power series of the index. In-
deed this approach has proved successful, in the context of 3d N = 2 gauge theo-
ries, for the study of global symmetry enhancement (see e.g. [123, 26, 124, 125]) and
supersymmetry enhancement (see e.g. [29, 126]). We adopt this approach to study
enhancement of supersymmetry and other global symmetries in the context of 3d
S-fold SCFTs. More recent investigation of N = 2 preserving exactly marginal de-
formations for 3d S-fold SCFTs has been presented in [127].

As pointed out in [29], it is useful to define the modified index as follows:

Ĩ(x, {µ, n = 0}) = (1− x2) [I(x, {µ, n = 0})− 1] (5.1.11)

Note that all of the terms up to order x2 in the modified index Ĩ are equal to those in
the original index I with the same power. As discussed in [26], theN = 2 multiplets
that can non-trivially contribute to the modified index at order xp for p ≤ 2 are as
follows:

Multiplet Contribution to the modified index Comment
A2B1[0]

(1/2)
1/2 +x1/2 free fields

B1 A2[0]
(−1/2)
1/2 −x3/2 free fields

LB1[0]
(1)
1 +x relevant operators

LB1[0]
(2)
2 +x2 marginal operators

A2A2[0]
(0)
1 −x2 conserved currents

(5.1.12)
Indeed, as pointed out in [26, 125] (see also [28]), the coefficient of x2 in the index
counts the number of marginal operators minus the number of conserved currents.

Since our S-fold SCFTs has at least N = 3 supersymmetry, we shall work with
N = 3 superconformal multiplets. The ones that are relevant to us are tabulated
below, along with the decomposition rules into N = 2 superconformal multiplets
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[29].

Type N = 3 multiplet Decomposition into N = 2 multiplets
Flavour current B1[0]

(2)
1 LB1[0]

(1)
1 + B1L[0](1)−1 + A2A2[0]

(0)
1

Extra SUSY-current A2[0]
(0)
1 A2A2[0]

(0)
1 + A1A1[1]

(0)
3/2

Stress tensor A1[1]
(0)
3/2 A1A1[1]

(0)
3/2 + A1 A1[2]

(0)
2

(5.1.13)
From the point of view of N = 2 supersymmetry, the presence of the extra SUSY-
current multiplet leads to an enhanced flavour symmetry. The latter then combines
with the SO(2) R-symmetry of the original N = 2 supersymmetry to become an
R-symmetry of the theory with higher supersymmetry. We discuss in an example
below (5.2.4).

In [29], the author also provided certain conditions on the index regarding su-
persymmetry enhancement from N = 3. Let us denoted by ap the coefficient of
xp in the unrefined modified index Ĩ(x, {µ = (1, . . . , 1), n = 0}), where µi are set
to 1 for all i. A sufficient condition for supersymmetry enhancement states that if
−a2 > a1, then supersymmetry is enhanced from N = 3 to N = 3− a1 − a2. The
explanation of this condition is as follows. As it can be seen from tables (5.1.12)
and (5.1.13), (−a2) is the number of flavour current multiplets plus the number of
extra-SUSY current multiplets, and a1 is the number of flavour current multiplets.
The quantity (−a2) − a1 is therefore the number of extra-SUSY current multiplets
that give rise to the supersymmetry enhancement. Furthermore, the author of [29]
also discussed necessary conditions for supersymmetry enhancement to N = 4 and
N = 5. For enhancement to N = 4, one must have a1 + a2 + 2 ≥ 0 and a1 equal
to the dimension of the flavour symmetry. For enhancement to N = 5, one must
have a1 = 1, a2 ≥ −3 and ap even for non-integer p. We emphasise, however, that
if one uses the refined index (i.e. not setting the fugacities µi to unity), one may get
more information regarding the presence of the extra SUSY-current multiplets (and
hence supersymmetry enhancement), because such a contribution to the index may
get cancelled in the unrefined version by the one coming from marginal operators.
We discuss this point in detail in the main text.

5.2 A single U(N)k gauge group with a T-link and
n flavours

In this section, we consider the following theory:

N D3

Jk = −STk

••
•

. . .

n D5s

Nk

T(U(N))

n

(5.2.1)
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In [14], the following statements are proposed:

1. For k = 0, the SCFT has N = 3 supersymmetry.

2. For k ≥ 3 and n = 0, the SCFT hasN = 4 supersymmetry. This statement was
confirmed at large N using the corresponding supergravity solutions and the
computation of the three sphere partition function in the large N limit.

In the following we compute the superconformal index at low rank N and small
values of n. Whenever possible, we deduce the amount of supersymmetry of the
SCFT from the index.

5.2.1 The abelian case: N = 1
The moduli space of this theory was analysed in [50, sec. 4.4]. Recall that the T(U(1))
is almost an empty theory, with only a prescription for how coupling external gauge
fields A1 and A2, which is the supersymmetric completion of the following CS cou-
pling [8]

− 1
2π

∫
A1 ∧ dA2 . (5.2.2)

In (5.2.1), we identify the U(1) gauge fields A1 and A2 to a single one, and hence the
above equation gives rise to a CS level −2 to the U(1) gauge group. In other words,
quiver (5.2.1), with N = 1, can be identify with the following theory

1k−2 n (5.2.3)

where we emphasise that this theory no longer contains a T-link.
As an immediate consequence, for k = 2, this theory is simply a 3d N = 4 U(1)

gauge theory with n flavours. For k = 2 and n = 1, this is dual to a theory of a free
hypermultiplet.

Another interesting case is when k = 1 and n = 1, which is equivalent to having
3d N = 3 U(1)−1 gauge theory with 1 flavour. The index in this case reads

I(5.2.1), N=1, k=1, n=1(x; ω) = IU(1)±1 with 1 flavour(x; ω)

= 1 + x− x2
(

ω + ω−1 + 1
)
+ x3

(
ω + ω−1 + 2

)
− x4

(
ω + ω−1 + 2

)
+ x5 + . . . .

(5.2.4)

where ω denotes the topological fugacity. The modified index of this theory is

(1− x2)
[
I(5.2.1), N=1, k=−1(x; ω)− 1

]
= x− x2

(
ω + ω−1 + 1

)
+ . . . . (5.2.5)

We expect the enhancement of supersymmetry from N = 3 to N = 5 due to the
following argument1. The presence of the term +x indicates that there must be an

1Upon setting ω = 1, we obtain the unrefined modified index x− 3x2 + 3x3− x4− 3x5 +
. . .. Denoting the coefficient of xk by ak, we see that (−a2) = 3 > a1 = 1. Therefore
according to [29, sec. 4.3], it is expected that supersymmetry gets enhanced from N = 3
to N = 3 − a1 − a2 = 5. Moreover, since a1 = 1, a2 = −3 ≥ −3 and ap = 0 (which
is even) for all non-integers p, the necessary condition in [29, sec. 4.3] for having N = 5
supersymmetry is satisfied.
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N = 3 flavour current multiplet B1[0]
(2)
1 , which gives rise to the N = 2 multiplet

LB1[0]
(1)
1 contributing +x and the N = 2 multiplet A2A2[0]

(0)
1 contributing −x2.

Since the coefficient of x2 counts the number of marginal operators minus the num-
ber of conserved currents [26, 125] (see also [28]), there must be two extra conserved
currents associated with the terms −

(
ω + ω−1) x2. Such extra conserved currents

come from twoN = 3 extra SUSY-current multiplets A2[0]
(0)
1 , one carries fugacity ω

and the other carries fugacity ω−1.
It is also instructive to consider the above argument from the perspective ofN =

2 supersymmetry, whose R-symmetry is SO(2)R to begin with. At the level of the
Lagrangian, the theory has U(1) ∼= SO(2) topological symmetry. However, from
the x2 terms in (5.2.4), we see that this global symmetry is enhanced to SO(3). This
symmetry then combines with the original SO(2)R symmetry to become SO(5) R-
symmetry of the theory with N = 5 supersymmetry.

5.2.2 U(2)k gauge group and no flavour
We focus on the following quiver

2k

T(U(2))
(5.2.6)

We remark that the theory (5.2.6) can be also be represented as T(U(2))/U(2)diag
k ,

where the diagonal subgroup U(2)diag of the symmetry U(2)×U(2) of T(U(2)) is
gauged with CS level k. Nevertheless, we find that the index of such a theory does
not depend on the fugacity associated with the topological symmetry, and it is equal
to T(SU(2))/SU(2)diag

k , where the diagonal subgroup SU(2)diag is gauged with CS
level k.

In fact, the theory T(SU(2))/SU(2)diag
k was studied in a series of papers [80, 81,

124, 126], mainly in the context of the 3d-3d correspondence. In particular, it was
pointed out in [126] that for k = 3, T(SU(2))/SU(2)diag

3 is a product of two identical
3d N = 4 SCFTs. Such an SCFT admits a 3d N = 2 Lagrangian in terms of the
U(1)−3/2 gauge theory with 1 chiral multiplet carrying gauge charge +1 (denoted
by T−3/2,1), where it turns out that supersymmetry of this theory gets enhanced to
N = 4 in the infrared.

In addition to the case of |k| = 3, we find that the supersymmetry gets enhanced
for all k such that |k| ≥ 4. We summarise the results in the following table.

CS level Index Type of Jk Comment
|k| ≥ 4 (5.2.7) hyperbolic
|k| = 3 (5.2.10) hyperbolic Studied in [126], a product of two N = 4 SCFTs
|k| = 2 diverges parabolic
|k| = 1 1 elliptic
k = 0 1 elliptic

We emphasise the cases whose indices indicate supersymmetry enhancement in yel-
low. In the following, we discuss the detail of each case.

For |k| ≥ 4, Jk is hyperbolic. We find that the index reads

I(5.2.6), N=2, |k|≥4(x) = 1− x2 + 2x3 − x4 + . . . . (5.2.7)
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where, for each k such that |k| ≥ 4, the indices differ at order of x greater than 4. For
example, up to order x8, the indices are as follows:

|k| = 4 1− x2 + 2x3 − x4 − 4x5 + 10x6 − 10x7 + 8x8 + . . .
|k| = 5 1− x2 + 2x3 − x4 − 2x5 + 6x6 − 8x7 + 4x8 + . . .
|k| = 6 1− x2 + 2x3 − x4 − 2x5 + 6x6 − 8x7 + 6x8 + . . .

(5.2.8)

The modified index is

(1− x2)
[
I(5.2.6), N=2, |k|≥4(x)− 1

]
= −x2 + 2x3 + . . . . (5.2.9)

The fact that the coefficient of x vanishes implies that we have no N = 3 flavour
current multiplet B1[0]

(2)
1 . The term −x2 indicates the presence of the N = 3 ex-

tra SUSY-current multiplet A2[0]
(0)
1 . We thus conclude that the supersymmetry gets

enhanced from N = 3 to N = 4 when |k| ≥ 4.
For |k| = 3, the index reads

I(5.2.6), N=2, |k|=3(x) = 1− 2x2 + 4x3 − 3x4 + . . . . (5.2.10)

According to [126], this is equal to the square of the index of T−3/2,1. In the notation
we adopted, the index of T−3/2,1 reads

IT−3/2,1(x; w) = 1− x2 +
(

w + w−1
)

x3 − 2x4 + . . . . (5.2.11)

where w is the topological fugacity. Indeed, we find that[
IT−3/2,1(x; w = 1)

]2
= I(5.2.6), N=2, k=−3(x) . (5.2.12)

The modified index corresponding to (5.2.10) reads

(1− x2)
[
I(5.2.6), N=2, |k|=3(x)− 1

]
= −2x2 + 4x3 − x4 . . . . (5.2.13)

Let us denote the coefficient of xp by ap. Naively, from the condition −a2 = 2 >
a1 = 0 discussed in [29], one might expect that supersymmetry gets enhanced to
N = 3− a1 − a2 = 5. However, this cannot be true, for the reason that the N = 5
stress tensor multiplet in the representation [1, 0] of SO(5) decomposes into oneN =

2 multiplet LB1[0]
(1)
1 , which contributes a1 = 1 [29, (B.25)] (but here we have a1 = 0).

Since this theory is a product of two copies of T−3/2,1, which has enhanced N = 4
supersymmetry, there are two copies of the N = 3 extra SUSY-current multiplet
A2[0]

(0)
∆=1. This is consistent with the fact that the modified index has a1 = 0 and

a2 = −2.
For the theory with |k| = 2 (J2 is parabolic), the index diverges, and so we have

a “bad” theory in the sense of [8]. For |k| = 1 and k = 0 (Jk is elliptic in these cases),
we find that the index is equal to unity.
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5.2.3 Adding one flavour (n = 1) to the U(2)k gauge group
We now consider the following theory

2k

T(U(2))
1 (5.2.14)

Let us summarise the results in the following table.

CS level Index Type of Jk Comment
k = −2 (5.2.23) parabolic
k = −1 (5.2.22) elliptic
k = 0 (5.2.22) elliptic
k = 1 (5.2.15) elliptic
k = 2 (5.2.17) parabolic A free hyper × an N = 4 SCFT
|k| ≥ 3 (5.2.22) hyperbolic

where we emphasise the cases that have supersymmetry enhancement in yellow.
For k = 1, we find that the index reads

I(5.2.14), k=1(x; ω) = 1 + x + x2
[
1− (1 + ω + ω−1)

]
− x3

(
ω + ω−1

)
+ x4(4 + ω2 + ω−2 + 3ω + 3ω−1) + . . . ,

(5.2.15)

where ω is the topological fugacity. From the above expression, we find that the
modified index is as follows:

(1− x2)
[
I(5.2.14),k=1(x; ω)− 1

]
= x + x2

[
1− (1 + ω + ω−1)

]
+ . . . . (5.2.16)

From this, one can see the enhancement of supersymmetry from N = 3 to N = 5
as follows. The presence of the term +x indicates that there must be an N = 3
flavour current multiplet B1[0]

(2)
1 , which gives rise to the N = 2 multiplet LB1[0]

(1)
1

contributing +x and the N = 2 multiplet A2A2[0]
(0)
1 contributing −x2. Since the

coefficient of x2 counts the number of marginal operators minus the number of con-
served currents [26, 125] (see also [28]), there must be an N = 2 marginal operator
(in the multiplet LB1[0]

(2)
2 ) contributing +x2 to cancel the aforementioned contribu-

tion −x2, and there must be two extra conserved currents associated with the terms
−
(
ω + ω−1) x2. The latter can only come from two copies of theN = 3 extra SUSY-

current multiplet A2[0]
(0)
1 , carrying the global symmetry associated with ω and ω−1.

(This gives rise to two copies of N = 2 A2A2[0]
(0)
1 multiplet contributing the term

−
(
ω + ω−1) x2.) The presence of such a multiplet leads to the enhancement of su-

persymmetry from N = 3 to N = 52.

2We remark that one has to use the sufficient condition stated in [29, sec. 4.3] with great
care. Upon setting ω = 1 in the modified index, we obtain x− 2x2. Denoting the coefficient
of xk by ak, we see that −a2 = 2 > a1 = 1, and from [29], one might naively expect that
supersymmetry gets enhanced to N = 3 − a1 − a2 = 4, because we have only (−a2) −
a1 = 1 extra SUSY-current multiplet. The unrefinement of the index is misleading here,
because we in fact have two extra SUSY-current multiplets carrying the global fugacities ω
and ω−1, and these cannot be cancelled with−1 at order x2 in the index. The reason for us to
write x2 [1− (1 + ω + ω−1)

]
is to show explicitly that the contribution −1 of the conserved
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For k = 2, the index reads

I(5.2.14), k=2(x; w)

= 1 +
(

w +
1
w

)
x

1
2 +

(
2w2 +

2
w2 + 2

)
x +

(
2w3 +

2
w3 + 2w +

2
w

)
x

3
2

+

(
3w4 +

3
w4 + 2w2 +

2
w2 + 1

)
x2 + . . .

(5.2.17)

The term x1/2 indicates that this theory contains a free part due to the fact that the
R-charge of the basic monopole operators hits the unitary bound. The above index
can be rewritten as

I(5.2.14), k=2(x; w) = Ifree(x; w)× I (5.2.14), k=2
SCFT (x; w) (5.2.18)

where the index of a free hypermultiplet is given by

Ifree(x; w) =
(x2− 1

2 w; x2)∞

(x
1
2 w−1; x2)∞

(x2− 1
2 w−1; x2)∞

(x
1
2 w; x2)∞

(5.2.19)

and the index of the interacting SCFT part is

I (5.2.14), k=2
SCFT (x; w)

= 1 + x
(

w2 +
1

w2 + 1
)
+ x2

(
w4 +

1
w4 − 1

)
+ x5/2

(
−w− 1

w

)
+ . . .

= 1 + xχ
SU(2)
[2] (w) + x2

[
χ

SU(2)
[4] (w)− (χ

SU(2)
[2] (w) + χ

SU(2)
[0] (w))

]
− x

5
2 χ

SU(2)
[2] (w) + . . . ,

(5.2.20)

with the unrefinement

I (5.2.14), k=2
SCFT (x; w = 1) = 1 + 3x + x2 − 2x5/2 + 4x3 + 4x7/2 + 3x4 + . . . . (5.2.21)

As can be seen from (5.2.20), the interacting SCFT has enhancedN = 4 supersymme-
try. The argument is similar to the one used before. The term +xχ

SU(2)
[2] (w) indicates

that the theory has an SU(2) flavour symmetry. Indeed, there is an N = 3 flavour
current multiplet B1[0]

(2)
1 transforming in the adjoint representation [2] of this sym-

metry; this gives rise to theN = 2 multiplet LB1[0]
(1)
1 contributing +xχ

SU(2)
[2] (w) and

the N = 2 multiplet A2A2[0]
(0)
1 contributing −x2χ

SU(2)
[2] (w). The term +x2χ

SU(2)
[4] (w)

corresponds to the N = 2 marginal operator3 in the multiplet LB1[0]
(2)
2 . It can

be clearly seen that there is another conserved current corresponding to the term
−x2χ

SU(2)
[0] (w). Indeed, the latter comes from the N = 3 extra SUSY-current multi-

plet A2[0]
(0)
1 in the trivial representation [0] of SU(2); this gives rise to an N = 2

current has to be cancelled with the contribution +1 from the marginal operator, which is
neutral under the symmetry associated with ω. Note that since a1 = 1, a2 = −2 ≥ −3 and
ap = 0 (which is even) for all non-integers p, the necessary condition in [29, sec. 4.3] for
having N = 5 supersymmetry is satisfied.

3It should be noted that the 2nd symmetric power of [2] is Sym2[2] = [4] + [0]. The
representation [4], appearing at order x2 of the index, is a part of this symmetric power.
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conserved current multiplet A2A2[0]
(0)
1 contributing the term −x2χ

SU(2)
[0] (w). The ex-

istence of the extra SUSY-current multiplet indicates that there is an enhancement of
supersymmetry from N = 3 to N = 4.

For k = 0, −1 and |k| ≥ 3, we find that the index reads

1 + x + 0x2 + . . . . (5.2.22)

The term +x indicates that there must be anN = 3 flavour current multiplet B1[0]
(2)
1 ,

which gives rise to the N = 2 multiplet LB1[0]
(1)
1 contributing +x and the N = 2

multiplet A2 A2[0]
(0)
1 contributing −x2. Hence the theory has a U(1) flavour sym-

metry. The fact that the term x2 vanishes implies that there is an N = 2 marginal
operator in the multiplet LB1[0]

(2)
2 , contributing +x2, which cancels the aforemen-

tioned −x2 term. Hence, in this case, there is no signal of the existence of the extra
SUSY-current multiplet, i.e. we cannot deduce the enhancement of supersymmetry.

For k = −2, we find that the index reads

1 + 2x + x2 + 8x4 + . . . . (5.2.23)

There are twoN = 3 flavour current multiplet B1[0]
(2)
1 which gives rise to two copies

of N = 2 multiplets LB1[0]
(1)
1 contributing +2x and two copies of N = 2 multiplets

A2 A2[0]
(0)
1 contributing −2x2. Hence the theory has a U(1)2 flavour symmetry. We

may construct threeN = 2 marginal operators by taking a symmetric product of two
relevant operators in the LB1[0]

(1)
1 multiplets. Their contribution +3x2 cancels the

aforementioned −2x2 and yields +x2. There is no signal of the existence of the extra
SUSY-current multiplet, i.e. we cannot deduce the enhancement of supersymmetry.

5.2.4 Adding n flavours to the U(2)2 gauge group
In this section, we add an arbitrary number of flavours to the parabolic case4, namely

22

T(U(2))
n (5.2.24)

When the number of flavours is one (i.e. n = 1), we have seen from (5.2.18) that
the theory factorises into a product of the theory of a free hypermultiplet and an
interacting SCFT with enhanced N = 4 supersymmetry. For n ≥ 2, the index does
not exhibit explicitly the presence of the extra SUSY-current multiplet. Nevertheless,
as we demonstrate below, the theory still has interesting physics that is bares cer-
tain resemblance to the 3d N = 4 U(1) gauge theory with n flavours, such as the
properties of monopole operators.

4Here J2 = −ST2 is a parabolic element of SL(2, Z). It is related to T−1 by the following
similarity transformation: (TST)J2(TST)−1 = T−1. However, we emphasise that, when
fundamental flavours are added as in (5.2.24), the theory is different from U(2)−1 with n
flavours. This can be seen clearly from the indices. For example, for n = 1, the index for
U(2)−1 with 1 flavour is 1 but (5.2.18) is non-trivial.
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For concreteness, let us first consider the case of n = 2. The index reads5

I(5.2.24), n=2(x; ω, y)

= 1 + x
[
χ

SU(2)
[2] (ω) + χ

SU(2)
[2] (y)

]
+ x2

[(
1 + 2χ

SU(2)
[4] (ω) + χ

SU(2)
[4] (y)

+ χ
SU(2)
[2] (ω)χ

SU(2)
[2] (y) + χ

SU(2)
[2] (y)

)
−
(

χ
SU(2)
[2] (ω) + χ

SU(2)
[2] (y)

) ]
+ . . . ,

(5.2.25)

with the unrefinement

I(5.2.24), n=2(x; ω = 1, y = 1) = 1 + 6x + 22x2 + 18x3 + 29x4 + . . . . (5.2.26)

where the topological fugacity is denoted by w = ω2. We see that the U(1) topolog-
ical symmetry gets enhanced to SU(2). This phenomenon also occurs for 3d N = 4
U(1) gauge theory with 2 flavours, whose index is

IT(SU(2))(x; ω, y)

= 1 + x
[
χ

SU(2)
[2] (ω) + χ

SU(2)
[2] (y)

]
+ x2

[
χ

SU(2)
[4] (ω) + χ

SU(2)
[4] (y)−

(
χ

SU(2)
[2] (ω) + χ

SU(2)
[2] (y) + 1

)]
+ . . .

(5.2.27)

with the unrefinement

IT(SU(2))(x; ω = 1, y = 1) = 1 + 6x + 3x2 + 6x3 + 17x4 + . . . , (5.2.28)

For n = 3, we find that the index of (5.2.24) reads

I(5.2.24), n=3(x; w, y)

= 1 + x
[
1 + χ

SU(3)
[1,1] (y)

]
+ x

3
2 (w + w−1)

+ x2
[
χ

SU(3)
[2,2] (y) + 2χ

SU(3)
[1,1] (y) + 1

]
+ . . . ,

(5.2.29)

with the unrefinement

I(5.2.24), n=3(x; w = 1, y = (1, 1)) = 1 + 9x + 2x
3
2 + 44x2 + 18x

5
2

+ 117x3 + 34x
7
2 + 188x4 + . . . ,

(5.2.30)

where w the topological fugacity and y the SU(3) flavour fugacities. Again, this
bares some similarity with the U(1) gauge theory with 3 flavours, whose index is

IT(2,1)(SU(3))(x; w, y) = 1 + x
[
1 + χ

SU(3)
[1,1] (y)

]
+ x

3
2 (w + w−1)

− x2
[
χ

SU(3)
[2,2] (y)− (1 + χ

SU(3)
[1,1] (y))

]
+ . . . ,

(5.2.31)

5The symmetric product of the representation [2; 0] + [0; 2] of SU(2)× SU(2) is 2[0; 0] +
[4; 0] + [0; 4] + [2; 2]. The representation in the first bracket of order x2 (i.e. those with plus
signs) can be written as Sym2([2; 0] + [0; 2]) + [4; 0] + [0; 2] − [0; 0]. In the same way as in
footnote 3, one singlet in the decomposition of the symmetric power does not participate in
the index; this explains the term −[0; 0]. Moreover, it is worth pointing out that, in this case,
there are extra representations that are not contained in the symmetric product, namely [4; 0]
and [0; 2].
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with the unrefinement

IT(2,1)(SU(3))(x; w = 1, y = (1, 1)) = 1 + 9x + 2x
3
2 + 18x2 + 21x3 + 54x4 + . . . ,

(5.2.32)
We observe that for a general n, (5.2.24) has a global symmetry SU(n) ×U(1),

where the U(1) is the topological symmetry, which is enhanced to SU(2) for n =
2. Moreover, the terms x

n
2 (w + w−1) indicate that theory (5.2.24) contains the basic

monopole operators V±(1,0) (with flux±(1, 0) under the U(2) gauge group), carrying
R-charge n

2 , similar to V±1 in the U(1) gauge theory with n flavours. Moreover,
with CS level k = 2, these basic monopole operators are gauge neutral, so they are
gauge invariant themselves without any dressing by a chiral field in the fundamental
hypermultiplet6. A non-trivial physical implication is that the contribution of the T-
link cancel the contribution of the non-abelian vector multiplet in the R-charge of
the monopole operator.

5.2.5 Duality with theories with two gauge groups
Here we examine the duality between the following theories

Nk

T(U(N))

n N0 Nk n− 1

T(U(N))

(5.2.33)

This duality can be seen from the brane system by moving one of the D5-brane across
the J-fold and, thereby, turning it into an NS5 brane. For general values of N and
k, both theories have a global symmetry U(n). However, as can be seen from the
indices, they arise from different origins in the quiver description.

Let us take, for example, N = 2, k = 2 and n = 3. The index of the left quiver is
given by (5.2.29). The index of the right quiver reads

1 + x
[
2 + (w1 + w−1

1 )χ
SU(2)
[1] (ỹ) + χ

SU(2)
[2] (ỹ)

]
+ x

3
2

(
w1w2 +

1
w1w2

)
+ x2

[
4 + (w2

1 + 3 + w−2
1 )χ

SU(2)
[2] (ỹ) + (w1 + w−1

1 )
(

χ
SU(2)
[3] (ỹ) + 2χ

SU(2)
[1] (ỹ)

)
+ χ

SU(2)
[4] (ỹ)

]
+ . . . .

(5.2.34)

where w1 and w2 are the topological fugacities associated with the left and right
nodes, and we denote the flavour fugacities by ỹ. This expression can be rewritten
in the way that the SU(3) symmetry is manifest by setting

w1 = y−
3
2

1 , ỹ = y−
1
2

1 y2 , (5.2.35)

upon which we recover the expression (5.2.29).
From the coefficient of x, we see that the mesons in the adjoint representation

[1, 1] of SU(3) of the left quiver in (5.2.33) are mapped to the following operators of
the right quiver in (5.2.33):

6Note that this statement does not hold when the CS level is not equal to 2, and in order
to form a gauge invariant combination, the monopole operators need to be dressed by chiral
fields in the fundamental hypermultiplet.



5.3. U(2)k1 ×U(2)k2 with two T-links 147

1. the mesons in the adjoint representation [2] of the SU(2) flavour symmetry;

2. the dressed monopole operators in the fundamental representation [1] of SU(2)
and carrying topological charges ±1 under the left node7; and

3. the trace of the adjoint chiral field associated with the left node.

Moreover, by comparing the terms at order x
3
2 in (5.2.29) and (5.2.34), we see that the

basic monopole operators V±, carrying topological charges ±1, in the left quivers
are mapped to the basic monopole operators V±(1,1), carrying topological charges
±(1, 1), in the right quivers.

These statements can be easily generalised to other values of k and n.

5.3 U(2)k1 ×U(2)k2 with two T-links
In this subsection we consider the following theory

2 D3

Jk1 = −STk1

Jk2 = −STk2

2k1 2k2

T(U(2))

T(U(2))

(5.3.1)

The three sphere partition function as well as the supergravity solution corre-
sponding to U(N)k1 ×U(N)k2 gauge group (i.e. N D3 branes), in the large N limit,
were studied in [14]. In such a reference, the CS levels were restricted such that
tr(±Jk1 Jk2) > 2, equivalently ±(k1k2 − 2) > 2, where the sign ± is chosen such that
the trace is greater than 2. In which case, Jk1 Jk2 is a hyperbolic element of SL(2, Z),
and the theory was predicted to have N = 4 supersymmetry in the large N limit.
Here, instead, we focus on the superconformal indices and supersymmetry enhance-
ment when the gauge group is taken to be U(2)k1 ×U(2)k2 for general values of k1
and k2.

Note that if one of k1 or k2 is 1, say k1 = 1, we have J1 Jk2 = STSTk2 . This is related
by a T-similarity transformation to TJ1 Jk2 T−1 = T(STSTTk2−1)T−1 = −STk2−2 =
Jk2−2, where have used the identity TSTST = −S (see also [14, footnote 19]). In
other words, the two duality walls J1 and Jk2 can be reduced to a single duality wall
Jk2−2 (assuming that there are no NS5 and D5 branes). Henceforth, we shall not
consider such a possibility in the absence of hypermultiplet matter.

In general, we observe that whenever Jk1 Jk2 is a parabolic element of SL(2, Z),
i.e. | tr(Jk1 Jk2)| = |k1k2 − 2| = 2 or equivalently k1k2 = 0 or 4, the index diverges
and the theory is “bad” in the sense of [8]. In which case, we cannot deduce the low
energy behaviour of the theory from its quiver description.

We observe that the index of (5.3.1) does not depend on the fugacities associated
with the topological symmetries. Similarly to section 5.2.2, the gauge group in (5.3.1)
can be taken to be SU(2)k1 × SU(2)k2 and this yields the same index.

Let us now take k1 = 2 and examine various values of k2 as follows.

7This is similar to the dressed monopole operators (5.5.18) in the abelian theory.
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CS levels (k1, k2) Index Type of Jk1 Jk2 Comment
(2, 5) 1 + x4 + . . . hyperbolic
(2, 4) 1 + x4 + . . . hyperbolic
(2, 3) 1− x2 + 2x3 − x4 + . . . hyperbolic New, SUSY enhancement
(2, 2) diverges parabolic
(2, 1) 1 elliptic Same as (5.2.6), k = 0
(2, 0) diverges parabolic
(2,−1) (5.2.7) hyperbolic Same as (5.2.6), k = ±4
(2,−2) 1 + x4 + . . . hyperbolic
(2,−3) 1 + x4 + . . . hyperbolic
(2,−4) 1 + x4 + . . . hyperbolic

The cases whose indices exhibit supersymmetry enhancement are emphasised in
yellow. The indices for the cases not highlighted in yellow do not signalise the pres-
ence of extra SUSY-current multiplets. The CS levels (k1, k2) = (2, 3) gives a new
SCFT with enhanced N = 4 supersymetry, whereas the case with (k1, k2) = (2,−1)
is the same as theory (5.2.6) with k = −4, which also has supersymmetry enhance-
ment to N = 4.

For k1 = 3, we find a similar pattern, as tabulated below. Unfortunately, the
cases that has supersymmetry enhancement, namely (k1, k2) = (3, 2) and (3,−1),
are identical with certain theories that have been discussed before.

CS levels (k1, k2) Index Type of Jk1 Jk2 Comment
(3, 4) 1 + x4 + . . . hyperbolic
(3, 3) 1 + 2x4 + . . . hyperbolic
(3, 2) 1− x2 + 2x3 + . . . hyperbolic Same as (k1, k2) = (2, 3)
(3, 1) 1 elliptic Same as (5.2.6), k = ±1
(3, 0) diverges parabolic
(3,−1) (5.2.7) hyperbolic Same as (5.2.6), k = ±5
(3,−2) 1 + x4 + . . . hyperbolic

5.3.1 Adding flavours to the parabolic case
In this section, we add fundamental flavours to either or both nodes in the parabolic
case. For definiteness, we consider the theory involving two J2 duality walls8 and a
collection of D5 branes arranged in the following way:

N D3

•
...n1 D5

•

•
... n2 D5

•
J2

J2

N2 N2n1 n2

T(U(N))

T(U(N))

(5.3.2)

8Similarly to the remark in footnote 4, even though J2
2 is related to T−2 by a similarity

transformation in SL(2, Z), upon adding hypermultiplet matter, the theory becomes non-
trivial.
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and focus on the cases of N = 1 and N = 2. Such theories have interesting physical
properties as we shall describe below.

Let us first discuss the abelian case. Since this theory admits a conventional La-
grangian description, we can easily analyse this theory along the line of [50]. The
detailed analysis is provided in section 5.5. We find that whenever fundamental
hypermultiplets are added to the quiver associated with parabolic J-folds, an inter-
esting branch of the moduli space arises, mainly due to the presence of the gauge
neutral monopole (or dressed monopole) operators. In particular, for quiver (5.3.2)
with N = 1, we find that there are two branches of the moduli space. One can
be identified as the Higgs branch and the other can be identified as the Coulomb
branch, both of which are hyperKähler cones. This feature is very similar to that of
general 3dN = 4 gauge theories. The Higgs branch is isomorphic to a product of the

closures of the minimal nilpotent orbits OSU(n1)
min ×OSU(n2)

min , where each factor is gen-
erated by the mesons constructed using the chiral multiplets in each fundamental
hypermultiplet; see (5.5.7). The Coulomb branch is isomorphic to C2/Zn1+n2 , which
is generated by the monopole operators V±(1,1) with fluxes ±(1, 1) and the complex
scalar in the vector multiplet; see (5.5.11). For a general n1 and n2, this theory has a
global symmetry

(
U(n1)×U(n2)

U(1)

)
×U(1), where the former factor denotes the flavour

symmetry coming from the fundamental hypermultiplets and latter U(1) denotes
the topological symmetry. For the special case of n1 + n2 = 2, the U(1) topological
symmetry gets enhanced to SU(2), which is also an isometry of the Coulomb branch
C2/Z2. Interestingly, if we set one of n1 or n2 to zero, say

12 12 n

T(U(1))

T(U(1))

(5.3.3)

This theory turns out to be the same as quiver (5.2.1) with N = 1, k = 2, which is
identical to 3d N = 4 U(1) gauge theory with n flavours (i.e. the T(n,n−1)(SU(n))
theory [8]). One can indeed check that the moduli spaces and the indices of the two
theories are equal. Such an identification indicates that when n1 = 0 (or n2 = 0), the
two J2 duality walls can be “collapsed” into one, and the gauge node in (5.3.3) that is
not flavoured can be removed such that the T-link becomes a loop around the other
gauge node. We remark that this statement only holds for the abelian case; we will
see that for N = 2 this is no longer true.

Quiver (5.3.2) with N > 1 still bares the same features as in the abelian (N = 1)
theory. In general, the index of (5.3.2) contains the terms x

1
2 (n1+n2)(w1w2 + w−1

1 w−1
2 ),

which indicates that there are gauge invariants monopole operators V±(1,0,...,0;1,0,...,0),
with fluxes ±(1, 0, . . . , 0) under each of the U(N) gauge group, carrying R-charge
1
2 (n1 + n2). Again, for n1 + n2 = 2, the U(1) topological symmetry gets enhanced to
SU(2). Furthermore, when n1 + n2 = 1, i.e. (n1, n2) = (1, 0) or (0, 1), such monopole
operators decouple as a free hypermultiplet (this is similar to the one flavour case
discussed in section 5.2.3). Let us consider, in particular, the case of N = 2, n1 = 0
and n2 = 1:

22 22 1

T(U(2))

T(U(2))

(5.3.4)
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Indeed the index can be written as

I(5.3.4) = Ifree(x; w)× I (5.3.4)
SCFT (x; w) (5.3.5)

where we define w as the product of the topological fugacities associated with the
two gauge groups: w = w1w2. The index of the free hypermultiplet Ifree(x; w) is
given by (5.2.19), and the index for the interacting SCFT is

I (5.3.4)
SCFT (x; w) = 1 + xχ

SU(2)
[2] (w) + x2

[
χ

SU(2)
[4] (w)− χ

SU(2)
[2] (w)

]
− x

5
2 χ

SU(2)
[2] (w) + . . . .

(5.3.6)

with the unrefinement

I (5.3.4)
SCFT (x; w = 1) = 1 + 3x + 2x2 − 2x5/2 − 4x3 + . . . (5.3.7)

The interacting SCFT has a flavour symmetry SU(2). Notice that the index of the
SCFT (5.3.6) is different from (5.2.20). (Hence, we cannot collapse two J2 duality
walls into one as in the abelian case.) In particular, while (5.2.20) exhibits the pres-
ence of the extra-SUSY current multiplet, (5.3.6) does not.

5.4 Gauge group SU(2)k/Z2

In this section we consider a theory with a single SU(2)k/Z2 gauge node with n
T-links attached to it.

SU(2)k/Z2

. . .
n T-links

(5.4.1)

Although the brane configuration for n > 1 is not known, we demonstrate below
that such theories have interesting properties from the field theoretic perspective.

The indices involving SU(N)/ZN gauge group for theories in 3d were discussed
in [125, 128]9. Here, we write down the expression of the index for (5.4.1), analogous
to those presented in [125]:10

I(5.4.1)(x; g) =
1
2

1

∑
l=0

gl ∑
m∈Z+ l

2

∮ dz
2πiz

x−2|m|∏
±

(
1− (−1)2mz±2x2|m|

)
× z2km

[
ÎT(SU(2))(x; {z, m}, {z, m})

]n
,

(5.4.2)

9Note the index for 3d gauge theories can be obtained as the limit of the lens space index
for 4d gauge theories [129]. As discussed extensively in [130], the latter is sensitive to the
global structure of the gauge group.

10Since SU(2)/Z2 is isomorphic to SO(3), one can also compute the index for SO(3) gauge
group using the formulae described in [120, sec. 6.1]. Note that the normalisation for the
CS level for SO(3) is such that SO(3)k = SU(2)2k/Z2, and that the fugacity ζ for the ZM2
symmetry in [120, sec. 6.1] is identified with the fugacity g here.
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where g is a fugacity for the global Z2 symmetry which takes values 1 or −1, and
ÎU(1) with 2 flv is the index for the U(1) gauge theory with 2 flavours such that the sum
over the gauge flux is properly quantised:

ÎT(SU(2))(x; {µ, p}, {τ, n})

= ∑
m∈Z+ 1

2 (p mod 2)

τ2m
∮ dz

2πiz
z2nx

|m−p|
2

((−1)m−pz∓1µ±1x3/2+|m−p|;x2
)∞

((−1)m−pz±1µ∓1x1/2+|m−p|;x2)∞
×

x
|m+p|

2
((−1)m+pz∓1µ∓1x3/2+|m+p|;x2

)∞

((−1)m+pz±1µ±1x1/2+|m+p|;x2)∞
.

(5.4.3)

We may obtain the result for the gauge group SU(2)k, instead of SU(2)k/Z2, by
gauging the Z2 global symmetry associated with g:

I(5.4.1) with SU(2)k gauge group =
1
2

[
I(5.4.1)(x; g = 1) + I(5.4.1)(x; g = −1)

]
. (5.4.4)

We find that for k ∈ Z and n = 1, the index is the same as that of the theory with
the same k presented in section 5.2.2. However, the result becomes more interesting
when both n and k is even, since the index depends on the fugacity g. This indicates
the presence of the operators carrying a non-trivial charge under the Z2 discrete
symmetry which are gauge invariant monopole operators. Let us focus on the case
of n = 2. We provide some examples in the following table.

CS level Index
k = 0 1 + 2gx + 4x2 − 4x3 + (9 + 8g)x4 + . . .
|k| = 2 1 + (2− g)x2 − (4 + 4g)x3 + (9 + 8g)x4 + . . .
|k| = 4 1 + gx + 3x2 − (4 + 2g)x3 + (8 + 8g)x4 + . . .
|k| = 6 1 + (2 + g)x2 − (4 + 4g)x3 + (7 + 4g)x4 + . . .
|k| = 8 1 + 2x2 − 4x3 + (7− 4g)x4 + . . .

The case of |k| = 2 is highlighted in yellow to indicate that the index exhibits super-
symmetry enhancement. Since the coefficient of x is zero, the theory has no flavour
current. The term −g at order x2 indicates the presence of an extra SUSY-current
multiplet, acted non-trivially by the Z2 global symmetry. For this reason, we con-
clude that supersymmetry is enhanced to N = 4. We emphasise that it is important
to refine the index with respect to g in order to see such a multiplet. On the other
hand, the indices for the other values of k do not exhibit the existence of the extra
SUSY-current multiplet. The same is also true if we gauge the Z2 global symmetry
as described in (5.4.4).

Finally, let us consider the case in which k is half-odd-integral and n = 1. For
|k| ≥ 1

2 , we find that the indices are different from those theories that have been
considered in earlier, and so it seems to us that these theories are new. Moreover,
they exhibit the presence of an extra SUSY-current multiplet, which leads to the con-
clusion that supersymmetry is enhanced toN = 4. We tabulate the indices for a few
values of half-odd-integral CS levels below.

CS level Index
|k| = 1/2 1− x2 + 2x3 − x4 − 2x5 + 6x6 + . . .
|k| = 3/2 1− x2 + 2x3 − 2x5 + 6x6 + . . .
|k| = 5/2 1− x2 + 2x3 − 2x4 − 2x5 + 6x6 + . . .
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5.5 Moduli space of flavoured abelian parabolic J-
fold theories

In this section we study the moduli space of a class of parabolic J-fold theories, in the
presence of the hypermultiplet fundamental matter. We focus on the models with
abelian gauge group, since the Lagrangian description is available. More general
detailed discussions can be found in [50].

For definiteness, let us focus on the following model with U(1)k1 ×U(1)k2 gauge
group:

1 D3

•
...n1 D5

•

•
... n2 D5

•
Jk1 = −STk1

Jk2 = −STk2

1k1 1k2
n1 n2

T(U(1))

T(U(1))

(5.5.1)

For the moment we allow for generic CS levels k1 and k2, but we will see that the vac-
uum equations admit solutions for non-trivial branches of the moduli space when
J1 J2 is parabolic, i.e. | tr J1 J2| = 2, or equivalently k1k2 = 0 or 4.

Let us rewrite the quiver (5.5.1) in N = 2 language:

1k1 1k2
n1 n2

A1 Ã1 Ã2 A2

ϕ1 ϕ2

T(U(1))

T(U(1))

(5.5.2)

with superpotential:

W = − tr(A1ϕ1Ã1 + A2ϕ2Ã2) +
1
2
(k1ϕ2

1 + k2ϕ2
2)−2ϕ1ϕ2 . (5.5.3)

where we denoted in blue the contribution due to the two T-links, consisting of a
mixed CS coupling. The vacuum equations are as follows:

A1ϕ1 = Ã1ϕ1 = 0 , A2ϕ2 = Ã2ϕ2 = 0 , (5.5.4)

and

k1ϕ1−2ϕ2 = (A1)a(Ã1)
a ,

k2ϕ2−2ϕ1 = (A2)i(Ã2)
i.

(5.5.5)

where a, b, c = 1, . . . , n1 and i, j, k = 1, . . . , n2.
The vacuum equations (5.5.4) and (5.5.5) admit the solutions in which ϕ1 = ϕ2 =

0, regardless of the CS levels. This branch of the moduli space is generated by the
mesons (M1)

b
a = (A1)a(Ã1)

b and (M2)
j
i = (A2)i(Ã2)j subject to the following rela-

tions:
rank(M1,2) ≤ 1 , M2

1,2 = 0 , (5.5.6)
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where the first relations come from the fact that each of the matrices M1 and M2 is
constructed as a product of two vectors, and the second matrix relations follow from
(5.5.5). We refer to this branch of the moduli space as the Higgs branch, denoted by
H(5.5.1). Indeed, it is isomorphic to a product of the closures of the minimal nilpotent
orbits:

H(5.5.1) = OSU(n1)
min ×OSU(n2)

min . (5.5.7)

There are also other non-trivial branches of moduli spaces, which we are analysing
in the following.

Let us consider the branch on which ϕ1 6= 0 and ϕ2 6= 0. From (5.5.4), we have
A1 = Ã1 = A2 = Ã2 = 0. Equations (5.5.5) admit solutions only if:

k1ϕ1 = 2ϕ2 , k2ϕ2 = 2ϕ1 , k1k2 − 4 = 0 ; (5.5.8)

the latter implies that J1 J2 has to be parabolic such that either (k1, k2) = (1, 4) or
(k1, k2) = (2, 2). (The case the (k1, k2) = (4, 1) can be considered by simply exchang-
ing n1 and n2.) We analyse these cases below.

• The case of (k1, k2) = (2, 2). The first equation of (5.5.8) sets ϕ1 = ϕ2 ≡ ϕ.
Since the real scalars in the vector multiplets belong to the same multiplets as
ϕ1,2, the magnetic fluxes of the monopole operators V(m1,m2) satisfy m1 = m2 ≡
m. The R-charge and the gauge charges with respect to the first and second
nodes are respectively

R[V(m,m)] =
1
2
(n1 + n2)|m| ,

q1[V(m,m)] = −(k1m− 2m) = 0 , q2[V(m,m)] = −(k2m− 2m) = 0 .
(5.5.9)

Observe that the V(m,m) are gauge neutral for all m. This branch is generated
by the basic monopole operators V±(1,1) and ϕ (the latter has R-charge 1), sat-
isfying the quantum relation.

V(1,1) V−(1,1) = ϕn1+n2 . (5.5.10)

This branch is thus a Coulomb branch and it is isomorphic to

Ck1=k2=2
(5.5.1) = C2/Zn1+n2 . (5.5.11)

In the special case of one flavour, i.e. (n1, n2) = (1, 0) or (0, 1), we see that
the Coulomb branch is isomorphic to C2 ∼= H. Indeed, the basic monopole
operators decouple as a free hypermultiplet.

• The case of (k1, k2) = (1, 4). In this case ϕ1 = 2ϕ2 = 2ϕ and the allowed
magnetic fluxes for the monopole operators V(m1,m2) are such that m1 = 2m2 ≡
2m. The R-charge and the gauge charges with respect to the first and second
nodes are respectively

R[V(2m,m)] =
1
2
(n1|2m|+ n2|m|) =

(
n1 +

1
2

n2

)
|m|

q1[V(2m,m)] = −[k1(2m)− 2m] = 0 , q2[V(2m,m)] = −[k2(m)− 2(2m)] = 0 .
(5.5.12)
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Observe that V(2m,m) are gauge neutral for all m. This branch of the moduli
space is generated by V±(2,1) and ϕ, satisfying the quantum relation:

V(2,1)V−(2,1) = ϕ2n1+n2 . (5.5.13)

This branch is thus a Coulomb branch and it is isomorphic to

C(k1,k2)=(1,4)
(5.5.1) = C2/Z2n1+n2 . (5.5.14)

It is worth pointing out that for both (k1, k2) = (2, 2) and (1, 4), the vacuum equa-
tions admit the solutions such that there is a clear separation between the Higgs and
Coulomb branches, in the same way as general 3d N = 4 gauge theories. This is
mainly due to the fact that the monopole operators are gauge neutral. Note also that
both branches are hyperKähler cones.

Next, we analyse the case in which one of ϕ1 and ϕ2 is zero. For definiteness, let
us take ϕ2 = 0 and 0 6= ϕ1 ≡ ϕ. From (5.5.4), we see that A1 = Ã1 = 0, and so (5.5.5)
admits a solution only if k1 = 0. Let us suppose that

k1 = 0 . (5.5.15)

Observe that the CS levels (0, k2) satisfies the parabolic condition on J0 Jk2 , because
|Tr(J0 Jk2)| = 2 for any k2. Then the second equation of (5.5.5) implies that

(A2)i(Ã2)
i = −2ϕ . (5.5.16)

The fluxes (m1, m2) of the monopole operators V(m1,m2), satisfies m2 = 0. For con-
venience, we write m1 = m. The R-charge and the gauge charges of the monopole
operators V(m,0) are

R[V(m,0)] =
1
2
(n1|m|+ n2|0|) =

1
2

n1|m|
q1[V(m,0)] = −[k1(m)− 2(0)] = 0 , q2[V(m,0)] = −[k2(0)− 2(m)] = 2m .

(5.5.17)

In this case the monopole operator V(m,0) is no longer neutral under the gauge sym-
metry, but it carries charge 2m under the U(1)k2 gauge group. We can form the basic
gauge invariant dressed monopole operators as follows:

(W+)ij = V(1,0)(Ã2)
i(Ã2)

j , (W−)ij = V(−1,0)(A2)i(A2)j . (5.5.18)

These operators transform under the representation [2, 0, . . . , 0] and [0, . . . , 0, 2] of
SU(n2) respectively. The carries R-charges

R[W±] =
1
2

n1 + 1 , (5.5.19)

and satisfy the quantum relation

Tr(W+W−) = (W+)ij(W−)ji = ϕn1+2 . (5.5.20)

Since the dressed monopole operators W± are generators of this branch of the mod-
uli space, we can regard this as a “mixed” Higgs and Coulomb branch.

Note that if we take instead ϕ1 = 0 and 0 6= ϕ2 ≡ ϕ, the situation is reversed. In
order for the vacuum equations to admit a solution we must have k2 = 0. This leads
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to the gauge invariant dressed monopole operators

(U+)ij = V(0,1)(Ã1)
i(Ã1)

j , (U−)ij = V(0,−1)(A1)i(A1)j , (5.5.21)

which transform under the representation [2, 0, . . . , 0] and [0, . . . , 0, 2] of SU(n1) re-
spectively. The carries R-charges R[U±] = 1

2 n2 + 1 and satisfy the quantum relation
Tr(U+U−) = ϕn2+2.

Finally, we remark that if (k1, k2) = (0, 0), which is another possibility for Jk1 Jk2

to be parabolic, then both dressed monopole operators W± and U±, as described
above, are generators of the moduli space.
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Chapter 6

Duality walls in 4d N = 2 theory

6.1 The 3d gauge theory with a monopole super-
potential

The theory associated with the S-duality wall of the 4d N = 2 SU(N) gauge theory
with 2N flavours is the 3d N = 2 U(N − 1) gauge theory with 2N flavours and su-
perpotential W = V+ + V−, where V± are the basic monopole operators of the latter
theory [44]. For the sake of brevity, following [44], we refer to the aforementioned 3d
theory as TM, where M stands for the monopole superpotential. The identification
of the theory on the S-duality wall of the 4d theory and the TM theory1 had been
attempted by several authors, e.g. [41, 43, 42]. The main technique was to study a
collection of the duality transformation coefficients of conformal blocks (also known
as the kernel) of the Liouville or Toda theory, which are in the AGT correspondence
[35, 36] with the 4d theory. The kernel was then interpreted as the partition function
of the 3d theory associated with the duality wall [39]. Knowing the former allows
one to identify the matter content of the 3d theory associated with the duality wall
[41, 42]. In [42] it was observed that the R-charges of the chiral fields in the 3d theory
were fixed to certain particular values. This was later interpreted in [44] as due to
the monopole superpotential.

The TM theory has a global symmetry SU(2N) × SU(2N). We represent this
theory by the following quiver diagram:

TM : N − 1 2N2N (6.1.1)

where we denoted the gauge node in yellow in order to indicate the monopole su-
perpotential W = V+ + V−. Due to the monopole superpotential, the topological
and axial symmetries are broken, and the R-charge r of the chiral fields is fixed to be
r = 1/2 due to the relation 2N(1− r)− (N − 1− 1) = 2.

1On the other hand, the 3d theory associated with the S-duality wall of the 4d N = 2∗

SU(N) gauge theory has been identified as the axial mass-deformed T(SU(N)) gauge theory
by [40].
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In fact, as pointed out in [44]2, theory (6.1.1) is dual to another theory with the
same gauge group U(N − 1), also with 2N flavours and 4N2 singlets M

N − 1 2N2N
q q̃

M

(6.1.2)

and superpotential W = V+ + V− + Mqq̃. In other words, we have duality

(6.1.1) ←→ (6.1.2) (6.1.3)

6.1.1 Indices of theories (6.1.1) and (6.1.2)
Our main tool is the supersymmetric index, which we shall refer to as index for the
sake of brevity. It can be computed as the partition function on S2 × S1. We have
already summarised the necessary details in 5.1.

In order to write the supersymmetric index of a theory with monopole super-
potential one has to take into account suitable contributions of BF couplings with
the global symmetries and the R-symmetry that make the monopole operators un-
charged and exactly marginal. In the case of theory (6.1.1) we are considering the
monopole superpotential breaks the topological as well as the axial symmetries.
Hence, the index can be easily obtained from that of the U(N− 1) gauge theory with
2N flavours and zero superpotential, turning off the fugacities for the axial and the
topological symmetries, as well as setting the R-charge of the chiral fields to r = 1

2

I(6.1.1)(x; {µ, n}, {τ, p})

= ∑
m∈ZN−1

1
(N − 1)!

∮ N−1

∏
a=1

dua

2πi ua
Zvec(x; {u, m})Zchir(x; {u, m}, {µ, n}, {τ, p}) ,

(6.1.4)

where the contribution of the N = 2 vector multiplet is

Zvec(x; {u, m}) =
N−1

∏
a,b=1

x−|ma−mb|
(

1− (−1)ma−mb x|ma−mb|
(

za

zb

)±1
)

, (6.1.5)

while that of the chiral multiplets is

Zchir(x; {u, m}, {µ, n}, {τ, p})

=
N−1

∏
a=1

2N

∏
i=1

(
uaµ−1

i x1/2
) |ni−ma |

2

(
(−1)ni−ma uaµ−1

i x3/2+|ni−ma|; x2
)

∞(
(−1)ni−ma u−1

a µix1/2+|ni−ma|; x2
)

∞

×

×
(

u−1
a τix1/2

) |ma−pi |
2

(
(−1)ma−pi u−1

a µix3/2+|ma−pi |; x2
)

∞(
(−1)ma−pi uaµ−1

i x1/2+|ma−pi |; x2
)

∞

2More precisely, in [44], a more general duality relating the U(Nc) gauge theory with N f

flavors and W = V+ + V− and the U(Nc − N f ) gauge theory with N f flavors, N2
f singlets M

and W = V+ + V− + Mqq̃ was proposed.
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In the above expressions we denoted by {u, m} the fugacities and the magnetic
fluxes respectively for the gauge symmetry and with {µ, n}, {τ, p} those of the two
SU(2N) global symmetries, which have to satisfy the constraints ∏2N

i=1 µi = ∏2N
i=1 τi =

1 and ∑2N
i=1 ni = ∑2N

i=1 pi = 0.
The index of the dual theory (6.1.2) is related to that of (6.1.1) by the following

relation:

I(6.1.2)(x; {µ, n}, {τ, p}) =
2N

∏
i,j=1

(
µiτ
−1
j

)− |ni−pj |
2

(
(−1)ni−pj µ−1

i τjx1+|ni−pj|; x2
)

∞(
(−1)ni−pj µiτ

−1
j x1+|ni−pj|; x2

)
∞

×

× I(6.1.1)(x; {µ−1,−n}, {τ−1,−p}) , (6.1.6)

where the right hand side of the first line is the contribution of the 4N2 gauge singlets
M. We point out that an analogous identity for the partition functions on S3

b was
actually derived in [44] as a limit of the identity for the 4d supersymmetric indices
associated to Intriligator–Pouliot duality [131], where the latter was proven in [132].
Although we shall not provide an analytic proof3 of the relation (6.1.6), it can be
checked perturbatively by expanding both sides as power series in x and matching
each order of the power expansion. Moreover, as a further support of (6.1.6), one
may take an appropriate 2d limit of the index of each side in (6.1.6) to obtain certain
complex integrals [133], which are related to CFT free field correlators; the equality
of such integrals was proposed in [134, 135].

6.1.2 Inclusion of the 4d fields
As a theory realised on the wall, one of the SU(2N) symmetries (say, the one as-
sociated with the left square node) can be decomposed into a subgroup SU(N) ×
SU(N)×U(1), where we shall refer to the latter U(1) as U(1)q. Each of these SU(N)
can then be coupled to the SU(N) gauge symmetry of the 4d theory on each side
of the wall. Moreover, the 3d chiral fields of the theory on the wall also couple
non-trivially to the chiral fields coming from the 4d theory. The appropriate quiver
description for the 3d N = 2 theory on the wall is

N − 1 2N

N

N

A

B

Q

φ

φ′

(6.1.7)

where φ is one of the chiral fields contained in the hypermultiplets of the 4d N =
2 SU(N) gauge theory with 2N flavours on one side of the wall restricted to the
interface. The same is for φ′ on the other side of the wall. The superpotential of
(6.1.7) is

W(6.1.7) = V+ + V− + QφA + Qφ′B . (6.1.8)

3Relation (6.1.6) could, in principle, be derived in a similar way to the one for the S3
b

partition functions if a generalization of Rains’ results for the lens space index [129], which
is the partition function on S3/Zp × S1, were known.
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We shall, from now on, denote as blue arrows the chiral fields coming from the 4d
theory.

The arrows in the right diagram are consistent with the decomposition rule of
the fundamental representation of SU(2N) to SU(N)× SU(N)×U(1)q:

[1, 02N−2] −→ q[1, 0N−2; 0N−1] + q−1[0N−1; 1, 0N−2] , (6.1.9)

which correspond to chiral fields A and B respectively. Note that Q carries zero
charge under U(1)q, and so from the superpotential, φ and φ′ carry U(1)q charges
−1 and +1 respectively.

Let us now explain the “skeleton” diagram on the left of (6.1.7). Each blue ex-
ternal leg (or each end of the blue line) denotes an SU(N) global symmetry, and
the wiggly red line denotes a duality wall, which brings about an SU(2N)×U(1)q
global symmetry. Note that the latter is the symmetry of the 4dN = 2 SU(N) gauge
theory with 2N flavours, where U(1)q plays a role as the baryonic symmetry.

One may, in fact, apply the duality (6.1.3) to the yellow node in (6.1.7). As a
result, φ and φ′ disappear, and the arrows of A, B and Q are reversed. We denote
the chiral fields in the dual theory as Ã, B̃ and Q̃; they carry opposite U(1)q charges
with respect to A, B and Q respectively. The dual theory is therefore

N − 1 2N

N

N

Ã

B̃

Q̃ (6.1.10)

with the superpotential
W(6.1.10) = V+ + V− . (6.1.11)

Theory (6.1.7) will be used as as a basic building block to construct other theories.
For the sake of readability, we shall suppress the number N − 1 in the yellow node
from now on.

6.1.3 Another representation of (6.1.7)
There is another equivalent way to represent theory (6.1.7). We further decompose the
SU(2N) flavour node in quiver (6.1.7) into SU(N)× SU(N)×U(1)p. The resulting
quiver is

N

N

N

N

A

C

D

B

ϕAD

ϕAC

ϕBC

ϕBD (6.1.12)
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Here C and D are the chiral fields that come from the decomposition of Q in (6.1.7),
and ϕAD, ϕAC, ϕBC and ϕBD are the fields that come from the 4d theory. The super-
potential is

W(6.1.12) = V+ + V− + AϕADD + AϕACC + BϕBCC + BϕBDD . (6.1.13)

The U(1)p and U(1)q charge assignment is depicted as follows.

N

N

N

N

p−1

q

q−1

p

pq

pq−1

p−1q−1

p−1q (6.1.14)

We use the “skeleton” diagram on the left of (6.1.12) to represent such a building
block. Each red and blue external leg (or each end of the red and blue lines) corre-
sponds to a flavour symmetry SU(N). The red colour indicates that the two SU(N)
symmetries come from the group decomposition SU(2N) due to the duality wall.
The blue colour is the same as that used in (6.1.7). Observe the directions of the ar-
rows of the chiral fields A, B, C, D that are transformed under each SU(N) flavour
symmetry associated with each external legs: it is ingoing for blue and outcoming
for red.

Similar to the discussion around (6.1.10), we may get rid of the 4d chiral fields
ϕAD, ϕAC, ϕBC and ϕBD using the duality (6.1.3). This results in

N

N

N

N

(6.1.15)

with the monopole superpotential W = V+ + V−.

6.2 Gluing basic building blocks
Having discussed the basic building block, we now consider construction involving
multiple duality walls. The corresponding 3d theory can be obtained by gluing to-
gether the same number of basic building blocks in certain ways along the 4d fields
(denoted by blue arrows in the quiver). In the following, we discuss the prescrip-
tion for the gluing in detail. In fact, such a prescription is heavily motivated by that
adopted in [1, 136, 137] in the context of compactifications of 6d theories on a Rie-
mann surface with fluxes for the global symmetries. We discuss the motivation and
the similarity of our set-up and that of [1] in the last subsection of this section.
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6.2.1 Using basic building block (6.1.7)
We start by considering the cases in which we glue a number of copies of the basic
block (6.1.7). This corresponds to set-up involving the same number of duality walls.

Prescription

Let us consider two copies of the basic building blocks (6.1.7). For the first copy, we
assign the U(1)q × SU(2N) fugacities ai = q ui to φ (and hence a′i = q−1 ui to φ′),
where i = 1, 2, . . . , N and ui are the parameters that have to satisfy ∏2N

i=1 ui = 1 being
SU(2N) fugacities. For the second copy, let us call the 4d fields φ̃ and φ̃′ and assign
the U(1)q̃× SU(2N) fugacities ãi = q̃ ũi to φ̃ (and hence ã′i = q̃−1 ũi to φ̃′), again with
the constraint ∏2N

i=1 ũi = 1.
The prescription is that two building blocks can be glued along φ and φ̃′ (or along

φ′ and φ̃) if and only if one of the following conditions is satisfied:

Φ-gluing: ai = ã′i,

S-gluing: ai =
1
ã′i

, ∀i = 1, · · · , 2N . (6.2.1)

Let us illustrate this using explicit examples. We can perform an S-gluing, but not a
Φ-gluing, for these two models along φ and φ̃′ (or along φ′ and φ̃):

2N

N

N

q−1

q

φ
qui

φ′
q−1ui

2N

N

N

q

q−1

φ̃′
q−1u−1

i

φ̃
qu−1

i

(6.2.2)

On the other hand, it is possible to perform a Φ-gluing, but not an S-gluing, for these
two model along φ and φ̃′ (or along φ′ and φ̃):

2N

N

N

q−1

q

φ
qui

φ′
q−1ui

2N

N

N

q−1

q

φ̃′
qui

φ̃
q−1ui

(6.2.3)

The next step is to turn on some superpotential terms to identify the 4d fields
along which we glue.

The Φ-gluing. To identify φ with φ̃′, we introduce an additional set of chiral fields
Φ that are coupled to the 4d fields via the superpotential term

δW = Φ(φ− φ̃′) , (6.2.4)

where the contraction of indices is understood. This is a mass term for the fields Φ,
φ and φ̃′ and integrating them out we are left with only one combination of φ and
φ̃′. In the process, the equations of motion of Φ precisely identify φ = φ̃′ as desired.
Moreover, this superpotential breaks the two SU(N) symmetries from each copy of



6.2. Gluing basic building blocks 163

the building blocks to a diagonal combination, which we gauge with Chern–Simons
(CS) level k. Similarly, the two copies of the SU(2N) symmetry are also broken to a
diagonal subgroup, which remains as a flavour symmetry in the resulting theory. In
the quiver description, the Φ-gluing and the resulting model are

2N

NN q−1q

φ

qui

φ′
q−1ui

2N

N

Φq−1u−1
i

2N

NN q−1 q

φ̃′

qui

φ̃

q−1ui

= 2N

Nk

N N
P

Aq−1

B

q

Cq−1

D

qQ

φ
q

φ′

q−1

φ̃

q−1

(6.2.5)

where the superpotential is

W = V(1)
+ + V(1)

− + V(2)
+ + V(2)

− + AφP + CφQ + Bφ′P + Dφ̃Q , (6.2.6)

and we drop the fugacity ui in the lower diagram (the transformation rule of each
chiral field under SU(2N) is clear from the arrow). We denote by Nk in a dashed
circle the SU(N) gauge group with CS level k. Notice that the charges and the rep-
resentations of all the chiral fields under the global symmetries implied by the Φ-
gluing condition are compatible with the cubic superpotential terms corresponding
to each loop in the quiver. We use the following skeleton diagram to denote the
Φ-gluing (6.2.5):

Φ (6.2.7)

The two blue external legs correspond to the two SU(N) flavour nodes in the lower
diagram of (6.2.5). As discussed before, the two SU(2N) symmetries coming from
each duality wall (red wiggle line) are broken to a diagonal subgroup by the afore-
mentioned superpotential, and this is denoted by the square node labelled by 2N in
the bottom quiver in (6.2.5).

The S-gluing. The S-gluing can be implemented by introducing the superpoten-
tial term

δW = φφ̃′ . (6.2.8)

This implies that both φ and φ̃′ are integrated out and we are left with no field.
Again the two SU(N) symmetries are broken to a diagonal combination, which we
gauge with a CS level k. The two SU(2N) symmetries are also broken to a diagonal
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subgroup. In the quiver description, the S-gluing and the resulting model are

2N

NN q−1q

φ

qui

φ′
q−1ui

2N

NN q q−1

φ̃′
q−1u−1

i

φ̃

qu−1
i

= 2N

Nk

N N
P

Aq−1

B

q

Cq

D

q−1Q

φ′

q−1

φ̃

q

(6.2.9)

The superpotential of the resulting theory is

W = V(1)
+ + V(1)

− + V(2)
+ + V(2)

− + CAPQ + Bφ′P + Dφ̃Q . (6.2.10)

Notice again that the charges and the representations of all the chiral fields under the
global symmetries implied by the S-gluing condition are compatible with the cubic
and quartic superpotential terms corresponding to each loop in the quiver. We use
the following skeleton diagram to denote the S-gluing (6.2.9):

S (6.2.11)

Note that we can also treat odd number of duality walls in a similar way as
described above. For example, in the case of three duality walls, we can perform
S-gluing in the following way:

S

S

(6.2.12)
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The corresponding theory is

2N

NN q−1q

φ̂

qui

φ̂′
q−1ui

2N

NN q q−1

φ̃′
q−1u−1

i

φ̃

qu−1
i

2N

NN q−1q

φ

qui

φ′
q−1ui

=

2N

Nk1Nk2

NN

φ̂′ φ

(6.2.13)

Self-gluing: closing external legs

With the prescription for the Φ- and S-gluing one can construct several other models,
either adding more basic building blocks or gauging the remaining flavour symme-
tries. The latter corresponds to closing external legs of the skeleton diagram. For
example, in (6.2.5) and (6.2.9) we can “self-glue” the theory along φ′ and φ̃ which
results in gauging together the two remaining SU(N) flavour symmetries.

In the model (6.2.5), obtained from the Φ-gluing of two basic building blocks, we
can only perform a further Φ-gluing along φ′ and φ̃. The latter is because both φ′ and
φ̃ carry the same U(1)q charge and transform the same way under SU(N)× SU(2N).
This leads to the model

Φ 2N

Nk1

Nk2

P

A

B

C

D

Q

φ

φ′

(6.2.14)

with superpotential

W = V(1)
+ + V(1)

− + V(2)
+ + V(2)

− + AφP + Bφ′P + CφQ + Dφ′Q . (6.2.15)

On the other hand, in the model (6.2.9), obtained from the S-gluing, we can only
perform a further S-gluing along φ′ and φ̃′. This is because φ′ and φ̃ carry opposite
U(1)q charges and transform the opposite way under SU(N) × SU(2N). We thus
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arrive at the following model

S 2N

Nk1

Nk2

P

A

B

C

D

Q (6.2.16)

with superpotential

W = V(1)
+ + V(1)

− + V(2)
+ + V(2)

− + PQCA + PQDB . (6.2.17)

Notice that the two previous models have similar structures, apart from the fact
that in (6.2.16) the 4d fields φ and φ′ are absent, and the U(1) charges as well as
the arrows of the right half of the quiver are inverted with respect to (6.2.14). This
is very similar to the difference between the models (6.1.7) and (6.1.10). Indeed,
by applying duality (6.1.3) locally on the right yellow node of (6.2.16), one obtains
(6.2.14). Models (6.2.14) and (6.2.16) are actually dual to each other for any N ≥ 2:

(6.2.14)
(6.1.3)←→ (6.2.16) . (6.2.18)

As a result there is no need to specify Φ or S when we draw the skeleton diagram
with all external legs being closed.

This result can be generalised for any even number of duality walls. We state a
general result as follows.

For given N and the Chern–Simons levels as well as a topology of the skeleton diagram,
if all external legs of the latter are closed, the theories associated with the Φ-gluing
and/or S-gluing of an even number of walls are dual to each other.

Let us provide an example for theories associated with four duality walls such
that all external legs are closed.

(6.2.19)
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We have eight duality frames with an “octality” that relates them to each other.

2N

Nk1

Nk2 Nk4

Nk3

2N

Nk1

Nk2 Nk4

Nk3

2N

Nk1

Nk2 Nk4

Nk3

2N

Nk1

Nk2 Nk4

Nk3

2N

Nk1

Nk2 Nk4

Nk3

2N

Nk1

Nk2 Nk4

Nk3

2N

Nk1

Nk2 Nk4

Nk3

2N

Nk1

Nk2 Nk4

Nk3

(6.2.20)

The superpotential of each theory contains the basic monopole operators from each
yellow node; the cubic terms coming from every closed triangular loop that contains
one blue line as an edge; and the quartic terms coming from every closed rectangular
loop that does not contain a blue line.

As a final remark, we point out that in the case of odd number of duality walls,
it is not possible to close all external legs in the skeleton diagram. For example, in
(6.2.13), φ̂′ and φ carry the fugacities q−1ui and qui respectively. These do not satisfy
the gluing condition (6.2.1) and so we cannot glue the theory along φ̂′ and φ and
hence the external legs cannot be closed. A way to evade this problem is to use
(6.1.12) as a basic building block instead of (6.1.7). We discuss this in further detail
in section 6.2.2.

6.2.2 Using basic building block (6.1.12)
Rectangular gluing

Instead of using (6.1.7), we can perform a Φ gluing or an S-gluing for multiple copies
of the building block (6.1.12). For example, if we take two copies of (6.1.12) and
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perform a Φ-gluing along ϕBD in both copies, the resulting theory is

N

N

Nk1

Nk2

N

N

A

C

D

B

D′

B′

A′

C′

ϕAD

ϕAC

ϕBC

ϕA′D′

ϕB′C′

ϕA′C′φ

(6.2.21)
with superpotential containing the basic monopole operators from both yellow nodes
and the cubic terms coming from every closed triangular loop in the quiver that
contains one blue line. Upon gluing, we have gauged the upper and lower SU(N)
symmetries with CS levels k1 and k2 respectively. In the skeleton diagram, for the
Φ-gluing, a blue (resp. red) line joins with another blue (resp. red) line. Topologically,
the skeleton diagram has genus 1, as well as 2 red and 2 blue external legs.

Let us now consider the S-gluing. We take two copies of (6.1.12) and glue them
along ϕBD of one copy and ϕAC of the other copy. As a result we obtain

N

N

Nk1

Nk2

N

N

A

C

D

B

D′

B′

A′

C′

ϕAD

ϕAC

ϕBC

ϕA′D′

ϕB′C′

ϕA′C′

(6.2.22)
The superpotential of the resulting theory contains the basic monopole operators
from each yellow node; the cubic terms coming from every closed triangular loop in
the quiver that contains one blue line; and the quartic term DD′B′B coming from the
middle rectangular loop. In the skeleton diagram, for the S-gluing, a blue (resp. red)
line joins with another red (resp. blue) line – this is opposite to the Φ-gluing.

Observe that as a result of such gluing, which involves two pairs of external legs
at the same time, we end up with a rectangle in the skeleton diagram. We will refer to
these types of gluing as rectangular Φ-gluing and rectangular S-gluing respectively.
There is also another type of gluing which is not a rectangular gluing. For example,
one may self-glue the left part of the skeleton diagram of (6.1.12) to obtain

(6.2.23)

First of all, the “loop” on the left is not rectangular. Secondly, this type of gluing
involves only one pair of external legs, not two pairs as for the rectangular gluing.
We postpone the discussion of the non-rectangular gluing until later.

Theories (6.2.21) and (6.2.22) will be analysed in detail in section 6.5.

Gluing amusement. As a final remark, we can further perform a rectangular
self-Φ-gluing on (6.2.21) such that the blue (resp. red) external leg on the left is joined
with the blue (resp. red) external leg on the right. As a result, we obtain the skeleton
diagram (as well as the quiver diagram) whose topology is an “strip”, whose face
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containing two rectangles. Similarly, we can further perform a rectangular self-S-
gluing on (6.2.22) such that the blue external legs are joined with the red ones. The
topology of the diagram is also a strip, but with half of the face “flipped” with respect
to the former.

Odd number of basic building blocks

As we have discussed in the paragraph below (6.2.20), it is not possible to close all
external legs for odd number of duality walls, provided that we use (6.1.7) as a basic
building block. This can also be seen in the case of one duality wall. In particular, it
is not possible to perform the following self-gluing:

(6.2.24)

This is because none of the conditions in (6.2.1) is satisfied, since φ carries a fugacity
q ui, whereas φ′ carries a fugacity q−1 ui). However, if we instead use (6.1.12) as a
basic building block, we can perform a rectangular (self-)S-gluing along the oppo-
site blue edges, namely along (ϕAD, ϕBC) or along (ϕAC, ϕBD). For definiteness, let
us consider the former option. In terms of the skeleton diagram, we can identify
the left (resp. right) blue external leg with the left (resp. right) red external leg. As a
result, we obtain

Nk2Nk1
ϕAC

A

C

B

D

ϕBD

W = V+ + V− + CϕAC A + BϕBDD

(6.2.25)

Note that the skeleton diagram is rectangular in the sense that it has four sides. Also,
since this gluing involves two pairs of external legs at the same time, it is qualified
as a rectangular gluing. Moreover, the blue lines that connect SU(N)k1 and SU(N)k2

disappear because we have performed an S-gluing. We can further apply duality
(6.1.3) to the yellow node of the quiver (6.2.25) and obtain the following dual theory:

(6.2.25)
(6.1.3)←→ Nk2Nk1

(6.2.26)

with the monopole superpotential and the two cubic terms coming from the upper
and lower triangular loops. We further explore these theories in section 6.3.2, where
we find two more dual theories. These four theories are then related to each other
by a quadrality as shown in (6.3.20).
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Non-rectangular gluing

Let us now consider a closure of one pair of external legs. We propose the following
prescription:

N

N

NkϕAC

A

C

D

B
ϕBD

W = V+ + V− + CϕAC A + DϕBDB

(6.2.27)

When a pair of external legs is glued together, the corresponding SU(N) flavour
symmetries associated to those legs are commonly gauged with a certain CS level
k. The 4d fields that was connecting the two SU(N) flavour symmetries becomes
an adjoint field and a singlet under the gauge group SU(N)k (this is ϕAC in the
above example). We also remove the 4d fields connecting the SU(N)k gauge groups
to other SU(N) flavour symmetries (hence ϕAD and ϕBC are absent in the above
example).

The reason we proposed such a prescription for the non-rectangular gluing is the
consistency with (6.2.25). Observe that when we also close the right pair of external
legs in (6.2.27), we obtain precisely (6.2.25).

Notice also that the above prescription for closing a pair of external legs commutes
with duality (6.1.3). In (6.2.26), we first closed all external legs and then applied
duality (6.1.3) to the yellow node to obtain the right quiver diagram. Now suppose
that we first apply duality (6.1.3) to the yellow node in (6.2.27) to obtain4

(6.2.27) ←→
N

N

Nk (6.2.28)

with the monopole superpotential and the two cubic terms coming from the upper
and lower triangular loops. Upon closing the right pair of external legs using the
above prescription, one obtain precisely the quiver in (6.2.26). In section 6.3.1, we
analyse (6.2.27) and (6.2.28) in more detail.

4We emphasise that, upon applying duality (6.1.3), all black arrows in (6.2.28) have to be
reversed with respect to those in (6.2.27). (The directions of the blue arrows are then fixed.)
However, since the quiver has a horizontal symmetry, we draw the quiver as it is in (6.2.28).
One should keep in mind that the roles of the upper and lower nodes in (6.2.28) are reversed
with respect to those of (6.2.27).
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This prescription can, of course, be applied to a more complicated theory. For
example, we have

Nk3Nk3

Nk1

Nk2

Nk4Nk4

A

C

D

B

D′

B′

A′

C′

W = V(1)
+ + V(1)

− + V(2)
+ + V(2)

− + BDD′B′

(6.2.29)

6.2.3 Comparison with the gluing prescription in [1]
As mentioned earlier, the gluing prescription adopted is heavily motivated by that
used in [1]. The reason why we adopted the latter is due to the similarity of our
construction and [1].

Let us first briefly summarise the construction of [1]. In that reference, the basic
building block arises from the 6d E-string theory compactified on a sphere with two
punctures (a tube) with a particular choice of flux that breaks the E8 symmetry of the
E-string theory to E7 ×U(1)F. The latter was then realised from the 5d E-string the-
ory with a duality domain wall [138], which gives rise to a subgroup SU(8)×U(1)F
of the former symmetry. The U(1)F charge on one side of the domain wall flips
its sign as we cross to the other side. Let us mention that the compactification of
higher-rank E-string theory has been recently discussed in [137] and further anal-
ysed in [139]. Some of the results obtained in [137] have been applied, in the spirit of
duality walls in five-dimensional gauge theories [138], to study various global and
supersymmetry enhancement of 4d N = 1 theories [140].

We now turn to our construction. We consider duality domain walls in 4dN = 2
SU(N) gauge theory with 2N flavours. In this case, the duality wall gives rise to a
symmetry SU(2N) × U(1)q, which is also the flavour symmetry of the 4d theory.
The analog of U(1)F in [1] is indeed U(1)q. As we explained around (6.1.7), each
of the two SU(N) flavour symmetries are coupled to the SU(N) gauge symmetry
of the 4d theory on each side of the wall. Since A and B as well as φ and φ′ carry
opposite charges under U(1)q, we see that, indeed, the U(1)q charge on the left flips
its sign on the right of the duality wall. The cubic superpotential terms also appear
in the same way as described in [1].

Although we do not have a realisation of our theory as coming from a 5d theory
on a Riemann surface (analog of 6d E-string theory on a Riemann surface in [1]), we
have a very similar geometric analog of the Riemann surface, namely the skeleton
diagram. The genus and the external legs of the latter play the same roles as the
genus and the puncture of the Riemann surface in [1]. It would be nice to understand
the theory studied here as coming from compactification of a higher dimensional
theory.

6.3 A single duality wall
In this section we consider the case of a single duality wall, whose skeleton diagram
has genus one. We first discuss theories with two external legs and then move on to
those with zero external legs and genus two. We study indices of such theories and
discuss various dualities among them.
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6.3.1 Two external legs
We have already introduced two dual theories associated with the skeleton diagram
with genus one and two external legs, namely (6.2.27) and (6.2.28). In this subsection,
we introduce two more theories that are closely related to the former. The first one
is

N

N

NkϕAC

A

C

D

B
ϕBD

ϕAD

ϕBC

W = V+ + V− + CϕAC A + DϕBDB + DϕAD A + CϕBCB

(6.3.1)

To obtain the second theory, we apply duality (6.1.3) to the yellow node. We get
rid of ϕAD, ϕBC, ϕBD and ϕAC, and reverse all the black arrows. However, since the
quiver has a horizontal symmetry, we can draw the quiver for the dual theory as
follows:

N

N

Nk

W = V+ + V−

(6.3.2)

where we emphasise that the roles of the upper and lower flavour nodes are reversed
with respect to that of (6.3.1).

Let us summarise the four closely related theories:

(6.3.1)
(6.1.3)←→ (6.3.2)

(6.2.27)
(6.1.3)←→ (6.2.28)

(6.3.3)

where each pair is related by the duality (6.1.3). We shall discuss in the next subsec-
tion that, for N = 2, the four theories are, in fact, dual to each other. However, for
N > 2, the theories in the first line are not dual to those in the second line.

Quadrality for the case of N = 2

In the special case of N = 2, as we shall discuss below, the indices of the four models
in (6.3.3) are equal. We thus conjecture that the four models are related by a quadral-
ity:

(6.3.1)
(6.1.3)←→ (6.3.2) for N = 2←→ (6.2.28)

(6.1.3)←→ (6.2.27) (6.3.4)

The indices for the theories in (6.3.4) with N = 2

Let us first fix the convention in drawing the quivers in (6.3.4). All black lines
in every model in (6.3.4) are drawn in the following way and carry the following
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U(1)p ×U(1)q fugacities:
N

N

Nk

p−1

q

q−1

p

(6.3.5)

The U(1)p ×U(1)q charges of the chiral fields corresponding to the blue line then
follow from the superpotential. For example, ϕBD in (6.3.1) carries the U(1)p×U(1)q
fugacity p−1q.

We first examine theory (6.3.1). For N = 2 and the CS level k ≥ 25, the index
reads

IN=2
(6.3.1)(x; y, z, p, q)

= 1 + C1(y, z, p, q)x + C2(y, z, p, q)x2 + C3(y, z, p, q)x3 + . . . .
(6.3.6)

where the coefficients C1, C2 and C3 are as follows:

C1(y, z, p, q) = p−1q[1; 1] + pq−1

C2(y, z, p, q) = p−2q2[2; 2] + [1; 1] + p2q−2 − ([2; 0] + [0; 2] + 2[0; 0])

C3(y, z, p, q) = p−3q3[3; 3] + p−1q[2; 2] + 2pq−1[1; 1] + p−1q + p3q−3

− p−1q([1; 3] + [3; 1])− pq−1([2; 0] + [0; 2])− 2p−1q[1; 1]

− p−3q−1[2; 0]− 2pq−1 .

(6.3.7)

Here we use the shorthand notation [a; b] to denote the characters χ
SU(2)
[a] (y)χSU(2)

[b] (z)
of the representation [a; b] of the global symmetry SU(2)× SU(2), with the first slot
a corresponding to the upper node and second slot to the lower node.

We find that the indices of the other theories in (6.3.4) are related to that of (6.3.6)
by the following relation:

IN=2
(6.3.1)(x; y, z, p, q) = IN=2

(6.3.2)(x; y, z, p−1, q−1)

= IN=2
(6.2.27)(x; z, y, p, q) = IN=2

(6.2.28)(x; z, y, p−1, q−1) .
(6.3.8)

This serves as a non-trivial test for the quadrality proposed in (6.3.4).
Let us label the chiral fields in (6.3.2) and their U(1) charges as follows.

N

N

Nk

p−1

P

q
Q

q−1

R

p
S

(6.3.9)

Recall that for this theory we need to invert p and q in (6.3.7). The terms in the
coefficient coefficient C1 correspond to the following gauge invariant quantities:

pq−1[1; 1] : Xi′
i := RiSi′ ,

p−1q : Y := PαQα .
(6.3.10)

5We take the CS level to be generic; unless specified otherwise, we take its absolute value
to be larger than or equal to 2. When the CS level is taken to be 0 or 1, for example, the index
may diverge depending on the cases we are considering.
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where i, j = 1, 2 and i′, j′ = 1, 2 are the flavour indices for the upper and lower square
nodes respectively, and α, β = 1, 2 are the SU(2)k gauge indices. These are relevant
operators. The positive terms in C2 correspond to

p2q−2[2; 2] : Xi′
i X j′

j ,

[1; 1] : Xi′
i Y ,

p2q−2 : Y2 .

(6.3.11)

These are marginal operators. The negative terms in C2 indicate that the global sym-
metry is SU(2)2 ×U(1)2, as is manifest in the quiver diagram.

The indices for the case of N = 3

Let us take N = 3 and k ≥ 2. The indices of (6.3.1) and (6.3.2) are given by

I(6.3.2)(y, z, p, q) = I(6.3.1)(y, z, p−1, q−1)

= 1 + C1(y, z, p, q)x + C2(y, z, p, q)x2 + . . . ,
(6.3.12)

where

C1(y, z, p, q) = pq−1[1, 0; 0, 1] + p−1q

C2(y, z, p, q) = p2q−2[2, 0; 0, 2] + 2p−2q2 + p2q−2[0, 1; 1, 0] + 2[1, 0; 0, 1]

− [1, 1; 0, 0]− [0, 0; 1, 1]− 2− p2q−2 .

(6.3.13)

Here the notation [R1; R2] denote a representation of the SU(3)× SU(3) flavour sym-
metry, where the first slot corresponds to the lower node and the second slot corre-
sponds to the upper node of (6.3.2) (which becomes the upper and lower nodes of
the dual theory (6.3.1)). Let us use the notation as in (6.3.9) and take N = 3. Now
the yellow node is U(2), whose indices will be denoted by a, b = 1, 2. The terms in
the coefficient C1 correspond to

pq−1[1, 0; 0, 1] : Xi′
i := Ra

i Si′
a ,

p−1q : Y := Pα
a Qa

α .
(6.3.14)

These are the relevant operators. The positive terms in C2 correspond to

p2q−2[2, 0; 0, 2] : Xi′
i X j′

j ,

2p−2q2 : Y2 , Pα
a Qa

βPβ
b Qb

α ,

p2q−2[0, 1; 1, 0] : εabεcdRa
i Rb

j Si′
c Sj′

d ,
2[1, 0; 0, 1] : Xi′

i Y , Si′
a Qa

αPα
b Rb

i .

(6.3.15)

These are the marginal operators.
On the other hand, the indices of (6.2.27) and (6.2.28) are given by

I(6.2.28)(y, z, p, q) = I(6.2.27)(y, z, p−1, q−1)

= 1 + c1(y, z, p, q)x + c2(y, z, p, q)x2 + . . . ,
(6.3.16)
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where

c1(y, z, p, q) = pq−1[1, 0; 0, 1] + p−1q

c2(y, z, p, q) = p2q−2[2, 0; 0, 2] + 2p−2q2 + [1, 0; 0, 1] + (1 + p2q−2)[0, 1; 1, 0]

− [1, 1; 0, 0]− [0, 0; 1, 1]− 2− p2q−2 .

(6.3.17)

Let us analyse theory (6.2.28). The relevant operators, corresponding to the terms in
c1, are

pq−1[1, 0; 0, 1] : Xi′
i := Bi′

a Da
i ,

p−1q : Y := Aα
a Ca

α .
(6.3.18)

The marginal operators, corresponding to the terms in c2, are

p2q−2[2, 0; 0, 2] : Xi′
i X j′

j

2p−2q2 : Y2 , Aα
a Ca

β Aβ
b Cb

α

[1, 0; 0, 1] : Xi′
i Y

[0, 1; 1, 0] : (ϕAD)
i
a(ϕBC)

a
i′

p2q−2[0, 1; 1, 0] : εabεcdDa
i Db

j Bi′
c Bj′

d

(6.3.19)

Let us now compare the two sets of results. Observe that the operators in (6.3.14)
are in correspondence with (6.3.18), and so as the first two lines of (6.3.15) and
(6.3.19). However, the last two lines of (6.3.15) do not agree with (6.3.19). In particu-
lar, in the former the representation [1, 0; 0, 1] appears with multiplicity 2, whereas it
appears with multiplicity 1 in the latter. For this reason we conclude that for N > 2,
the two sets of theories stated in (6.3.3) are not dual to each other.

Superconformal fixed points

Let us focus on N = 3, and assume that theories (6.3.1), (6.3.2), (6.2.27) and (6.2.28)
flow to superconformal fixed points. Due to the dualities (6.3.3), theory (6.3.1) flows
to the same fixed point as theory (6.3.2), and theory (6.2.27) flows to the same fixed
point as theory (6.2.28). Due to the previous discussion, we expect that the two fixed
points are different for N = 3.

Under the assumption of the existence of the superconformal fixed point, the
negative terms in C2 of (6.3.13) and those in c2 of (6.3.17) correspond to the conserved
current of each set of theories. Both contain a term−p2q−2, which should correspond
to a U(1) conserved current and should appear in the index as 1 (since its character
is 1). Therefore our assumption on the conformality forces us to set p = q. The
terms 2p−2q2 − 2− p2q−2 thus combine into −1, and we are left with the negative
terms −[1, 1; 0, 0] − [0, 0; 1, 1] − 1 in both C2 and c2. These indicate that the global
symmetries of both superconformal fixed points are indeed SU(3)× SU(3)×U(1),
where the fugacity of such a U(1) symmetry is identified with p = q. Another
possible interpretation of this phenomenon is as follows: if we deform theory (6.3.13)
or theory (6.3.17) by two real mass deformations, one associated with U(1)p and the
other with U(1)q, then we reach the aftermentioned fixed point only when the two
real masses are set to be equal.
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6.3.2 Zero external leg and quadrality
In this subsection, the two SU(N) global symmetry in each of the theories in (6.3.3)
are commonly gauged with CS level k2, and let us denote the CS level k for the
former SU(N) gauge group by k1. We have introduced actually two of the resulting
theories in (6.2.25) and (6.2.26), whose skeleton diagram has genus two and zero
external leg. In this subsection we discuss the relation between the four theories
after such gauging.

We find that the indices of the following four theories are equal for any N ≥ 2
and for k1, k2 ≥ 2:

Nk2Nk1 Nk2Nk1

Nk2Nk1 Nk2Nk1

(6.3.20)

where, for each quiver, there is a monopole superpotential due to the yellow node
and the cubic superpotential terms coming from every closed triangular loop that
contains one blue line as an edge. We thus claim that these four theories are related to
each other by a quadrality. Note that for the special case of N = 2, such a quadrality
is an immediate consequence of that discussed in (6.3.4).

Let us analyse such theories in more detail. For definiteness, we choose one of
the theories from the above list, say

Nk2Nk1

A1

Ã1

A2

Ã2

(6.3.21)

with the superpotential
W = V+ + V− . (6.3.22)

The case of N = 2

For k1 ≥ 1 and k2 ≥ 2 (or k2 ≥ 1 and k1 ≥ 2), the first few orders of the power
expansion of the index are6

I(6.3.21)(x; u) = 1 + C1(p, q)x + C2(p, q)x2 + C3(p, q)x3 + C4(p, q)x4 + . . . , (6.3.23)

6We find that for k1 = k2 = 1, the index is equal to unity, and if either k1 or k2 is zero, the
index diverges.
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where

C1(p, q) = pq−1 + p−1q

C2(p, q) = (p2q−2 + 1 + p−2q2)− 2

C3(p, q) = p3q−3 + p−3q3

C4(p, q) = p4q−4 + p−4q4 + p2q2 + p−2q−2 + ck1,k2 ,

(6.3.24)

with ck1,k2 a positive interger that depends on the values of k1 and k2. For example,
c2,2 = 1, c2,k = 2 for k ≥ 3, and ck1,k2 = 3 for k1, k2 ≥ 3.

Using the assignment as in (6.1.14), we see that the relevant operators, corre-
sponding to the terms pq−1 and p−1q in C1(p, q), are

X1 := (A1)
α(Ã1)α , X2 := (A2)α′(Ã2)

α′ , (6.3.25)

where α = 1, 2, . . . , N and α′ = 1, 2, . . . , N are the gauge indices for SU(N)k1 and
SU(N)k2 respectively. The marginal operators, corresponding to the terms p2q−2, 1
and p−2q2 in C2(p, q), are X2

1 , X1X2, X2
2 . The term −2 in C2(p, q), corresponding to

the conserved current, confirms that the global symmetry of the theory is U(1)p ×
U(1)q. Note that due to terms in C4(p, q), it is not possible to rewrite the fugacities
p, q in terms of characters of SU(2) representations.

The case of N = 3

For N = 3 with k1 ≥ 2 and k2 ≥ 2, the first few coefficients of the index (6.3.23) are

C1(p, q) = pq−1 + p−1q

C2(p, q) = (xk1 p2q−2 + 2 + xk2 p−2q2)− 2 ,
(6.3.26)

where

xk =

{
1 if k = 2
2 if k ≥ 3

. (6.3.27)

The term −2 in C2(p, q) in (6.3.26) indicates that the global symmetry of the the-
ory is U(1)×U(1), whose fugacities are denoted by p and q. Let us now explain the
other terms in C2(p, q), as well as those in C1(p, q).

Let us first consider the case of k1 = k2 = 2, so that xk1 = xk2 = 1. A crucial
difference between the coefficient C2(p, q) for N = 3 and that for N = 2 in (6.3.24) is
that there is an extra marginal operator that carry zero charges under both U(1)p and
U(1)q in the former case. For N ≥ 3, the relevant operators are similar to (6.3.25):

X1 = (A1)
α
a(Ã1)

a
α , X2 := (A2)

a
α′(Ã2)

α′
a , (6.3.28)

where a, b = 1, 2, . . . , N − 1 are the indices for the U(N − 1) gauge group denoted
by the yellow node. These correspond to the terms in the coefficient C1(p, q). In
addition to X2

1 , X1X2, X2
2 , there is an extra marginal operator given by

Q = (A1)
α
a(A2)

a
α′(Ã2)

α′
b (Ã1)

b
α , (6.3.29)

which is different from X1X2, for N ≥ 3, and is neutral under both U(1)p and U(1)q.
These four marginal operators correspond to the terms in the bracket in the coeffi-
cient C2(p, q).
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Now let us assume that one of k1 and k2 or both are strictly greater than 2. The
left or right gauge nodes can be regarded as SU(3)k with 2 flavours, where k is either
k1 or k2. To analyse this, we find that it is convenient to apply the duality (3.23) of
[119]. The dual theory is U(k− 1)−k,−1 with 2 flavours q, q̃, the chiral field M in the
adjoint representation of the yellow U(2) node in (6.3.21), and the superpotential
W = Mqq̃. Let us denote by M1 and M2 the adjoint fields of the yellow U(2) node
that arise from dualising the SU(3)k1 and SU(3)k2 respectively. The gauge invariant
quantities tr(M1) and tr(M2) in this dual theory can be mapped to X1 and X2 in the
original theory (6.3.28).

Let us consider the case of k = 2. The dual theory has the U(1)−1 gauge group.
The F-terms with respect to q and q̃ are Ma

bqb = 0 and Ma
b q̃a = 0. Then, M can be re-

garded as a two by two matrix of rank 1, since M maps a vector to zero and so the di-
mension of its kernel is one. Since M has rank 1, it can be written as a product of two
vectors and it follows that tr(M2) = (tr M)2. Therefore, in the case of k1 = k2 = 1,
the operators X2

1 , X1X2, X2
2 , Q can be mapped to tr(M2

1), tr(M1) tr(M2), tr(M2
2), tr(M1M2),

where M1,2 satisfy tr(M2
1) = (tr M1)

2 and tr(M2
2) = (tr M2)2.

However, when k > 2, the dual gauge group U(k − 1)−k,1 has a higher rank.
On the contrary to the case of k = 2, M has rank greater than 1. As a consequence,
tr(M2) and (tr M)2 are not identical and they correspond to two different opera-
tors. This explains the presence of xk1 and xk2 in C2(p, q) in (6.3.26). In particu-
lar, if k1, k2 > 2, the marginal operators corresponding to the terms in the brackets
in C2(p, q) are tr(M2

1), (tr M1)
2, tr(M2

2), (tr M2)2, corresponding to 2p2q−2 + 2q2 p−2,
and tr(M1) tr(M2), tr(M1M2), corresponding to 2.

6.4 Two duality walls: using (6.1.7) as a building
block

Let us now consider the theories associated with two duality walls. As discussed
in section 6.2, if we use (6.1.7) as a basic building block, we obtain two theories
(6.2.5) and (6.2.9) from Φ-gluing and S-gluing respectively. One can perform further
gauging to close the external legs and obtain (6.2.14) and (6.2.16). We discuss in
detail the four models in this section. One the other hand, we discuss the case of two
duality walls if we use (6.1.12) as a basic building block in section 6.5.

6.4.1 Indices of models (6.2.5) and (6.2.9) for N = 2
We first analyse model (6.2.9).

2N

Nk

N N
P

Aq−1

B

q

Cq

D

q−1Q

φ′

q−1

φ̃

q

(6.4.1)

For k ≥ 2, the index for N = 2 reads

IN=2
(6.2.9)(x; yL, y, yR) = 1 + C1x + C2x2 + . . . (6.4.2)
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where

C1 = q−1[1; 1, 0, 0; 0] + q[0; 0, 0, 1; 1] ,

C2 = q−2[2; 2, 0, 0; 0] + q2[0; 0, 0, 2; 2] + {[1; 1, 0, 1; 1] + [1; 0, 0, 0; 1]}
− [2; 0, 0, 0; 0]− [0; 1, 0, 1; 0]− [0; 0, 0, 0; 2]− 1 .

(6.4.3)

The unrefined index for this model is

IN=2
(6.2.9)(x; yL = 1, y = 1, yR = 1) = 1 + 16x + 102x2 + 288x3 + 396x4 + . . . . (6.4.4)

The terms in C1 in (6.4.3) correspond to φ′ and φ̃ respectively. The terms in the
curly brackets in C2 come from the tensor product of the two terms in C1. The sec-
ond symmetric power of the representation q−1[1; 1, 0, 0; 0] in C1 is q−2[2; 2, 0, 0; 0] +
q−2[0; 0, 1, 0; 0]. However, the gauge invariant combinations εαβ Mij

αβ
7, with Mij

αβ =

(φ′)i
α(φ
′)j

β associated with the latter representation vanish in the chiral ring, due to
the quantum rank condition (in the same way as in the Seiberg duality). This can be
seen by applying duality (6.1.3) to the left yellow node; we see that (φ′)i

α is identi-
fied with B̃αP̃i, where B̃ and P̃ are the chiral fields (whose arrows are in the opposite
direction to B and P) in the dual theory, and so εαβ Mij

αβ = εαβB̃αB̃βP̃i P̃j = 0. This
is the reason why only q−2[2; 2, 0, 0; 0] survives in the index. The similar argument
can be applied to the second symmetric power of q[0; 0, 0, 1; 1]. The negative terms
in C2 tell us that the global symmetry of the theory is SU(2)2 × SU(4)×U(1).

Now let us analyse model (6.2.5).

2N

Nk

N N
P

Aq−1

B

q

Cq−1

D

qQ

φ
q

φ′

q−1

φ̃

q−1

(6.4.5)

The index for N = 2 and for k ≥ 2 reads

IN=2
(6.2.5)(x; yL, y, yR) = 1 + c1x + c2x2 + . . . (6.4.6)

where

c1 = q−1[1; 1, 0, 0; 0] + q−1[0; 1, 0, 0; 1] ,

c2 = q−2[2; 2, 0, 0; 0] + q−2[0; 2, 0, 0; 2] + {q−2[1; 0, 1, 0; 1] + q−2[1; 2, 0, 0; 1]}
+q−2[0; 0, 1, 0; 0]− q2[0; 0, 1, 0; 0]− [2; 0, 0, 0; 0]− [0; 1, 0, 1; 0]
− [0; 0, 0, 0; 2]− 1 .

(6.4.7)

7Recall that we take N = 2. Here i, j = 1, . . . , 4 are the SU(4) flavour indices, and α, β =
1, 2 are the indices for the left SU(2) flavour node. Note also that, due to the definition of M,
M[ij]

αβ , with an antisymmetrisation on i and j, can be written as εαβ Mij
αβ.
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The unrefined index of this theory turns out to be equal to that of (6.2.5), which is
given by (6.4.4):

IN=2
(6.2.5)(x; yL = 1, y = 1, yR = 1) = IN=2

(6.2.9)(x; yL = 1, y = 1, yR = 1) . (6.4.8)

The interpretation for (6.4.7) is very similar to the above. The terms in c1 correspond
to φ′ and φ̃. The terms in the curly brackets in c2 come from the tensor product
of the two terms in c1. The term +q−2[0; 0, 1, 0; 0] can be conveniently explained
using another duality frame. If we dualise both left and right yellow nodes using
duality (6.1.3), the chiral fields φ′ and φ̃ disappear and we replace φ by a chiral field
χ, whose arrow is in the opposite direction of φ and carrying the U(1)q fugacity q−1.
(The arrows for A, B, P, C, Q, D also reverse their directions.) We can construct the
gauge invariant quantity εabχa

i χb
j , where a, b = 1, 2 is the SU(2)k gauge indices and

i, j = 1, . . . , 4 are the SU(4) flavour indices, in the representation q−2[0; 0, 1, 0; 0], as
required.

It is interesting to point out that even though the unrefined indices of the two
models are equal, their refined indices are different. In particular, the representation
[1; 1, 0, 1; 1] + [1; 0, 0, 0; 1] that appears in the former but not the latter, and the rep-
resentation [1; 0,1,0; 1] +[1; 0,0,2; 1] that appears in the latter but not in the former.
Although their dimensions are equal and they both come from the tensor products
of the two terms of the coefficient of x, their characters are different.

Another important point is the negative term −q−2[0; 0, 1, 0; 0] that appears in
c2 in (6.4.7). Since this is not the adjoint representation, it cannot correspond to a
conserved current. If we assume that theory (6.2.5) flows to a fixed point, this nega-
tive term cannot be there by itself. Indeed, if we set q = 1, such a term cancels with
another positive term (both are indicated in blue). After the cancellation, the nega-
tive terms indicate that the global symmetry of the theory is SU(2)2× SU(4)×U(1).
Since the fugacity q has already been set to 1, the index no longer has a manifest U(1)
fugacity, and we interpret such a U(1) global symmetry as emergent in the infrared.

6.4.2 Various dualities for any N ≥ 2
Given models (6.2.5) and (6.2.9), we can generate a number of dualities that hold for
any N ≥ 2 by applying duality (6.1.3) to each yellow node. For (6.2.5), we have a
triality between the following theories:

2N

Nk1

N N

2N

Nk1

N N 2N

Nk1

N N

(6.4.9)
where the top and bottom left theories are related by dualising the left yellow node,
and the bottom left and bottom right theories are related by dualising the right yel-
low node. For each quiver, there is a monopole superpotential due to the yellow
node, the cubic superpotential terms coming from every closed triangular loop that
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contains one blue line as an edge, and there is also a quartic term for the bottom left
quiver coming from the middle triangle.

For (6.2.9), we have a triality between the following theories:

2N

Nk1

N N

2N

Nk1

N N 2N

Nk1

N N

(6.4.10)
The superpotential for each quiver is in the same way as described above.

If we commonly gauge the two SU(N) flavour symmetry corresponding to the
left and right square nodes, we obtain models (6.2.14) and (6.2.16) and their duality.
We discuss this in detail below.

Duality between models (6.2.14) and (6.2.16)

Applying duality (6.1.3) to either of the yellow nodes, we find that models (6.2.14)
and (6.2.16) are dual to each other for any N ≥ 2. Indeed, we find that the indices
for (6.2.14) and (6.2.16) are equal.

In particular, for N = 2 and k1, k2 ≥ 2, their indices are

IN=2
(6.2.14)(x; q, y) = IN=2

(6.2.16)(x; q, y) = 1 + 0x + 0x2 + 0x3 + C4(q, y)x4 + . . . , (6.4.11)

where the coefficients of x, x2, x3 vanish, and

C4(q) = χ
SU(4)
[1,0,1] (y) + χ

SU(4)
[0,2,0] (y) + 2(q2 + q−2)χ

SU(4)
[0,1,0] (y) + q4 + 1 + q−4 , (6.4.12)

where y = (y1, y2, y3) are fugacities of the SU(4) flavour symmetry and q is a fugac-
ity of the U(1) global symmetry.

The vanishing coefficient of x2 in (6.4.11) deserves some explanations. Models
(6.2.14) and (6.2.16) in fact have the global symmetry SU(4)×U(1). The contribution
−χ

SU(4)
[1,0,1] (y)− 1 at order x2 of the conserved current is cancelled by the contribution

χ
SU(4)
[1,0,1] (y) + 1 of the marginal operators. For model (6.2.16), such marginal operators

are AαCαQiPj, corresponding to the close path in the upper triangle. Note that these
are equal to −Bα′Dα′QiPj, corresponding to the close path in the lower triangle, due
to the F-terms that are the derivatives with respect to Pj of the superpotential (6.2.17).

6.5 Two duality walls: using (6.1.12) as a building
block

In this section, we consider the theories associated with two duality walls, using
(6.1.12) as a basic building block. We consider the theories arising from Φ-gluing
and S-gluing and their dual theories. We finally compute their indices and discuss
the duality for the case of N = 2.
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Φ-gluing
The theory associated with the Φ-gluing of two building blocks has already been
introduced in (6.2.21). We present such a theory, with the fugacities for U(1)p ×
U(1)q ×U(1)p′ ×U(1)q′ for each chiral fields, along with its duals below.
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(6.5.1)

where the bottom left and right quivers come from applying (6.1.3) to the left yellow
node and to both yellow nodes of the top diagram, respectively. There are monopole
superpotential terms, the cubic superpotential terms coming from each triangular
loop in the quiver that contains one blue line as an edge, and the quartic superpo-
tential term for the bottom left quiver coming from rectangular loop in the middle.
Such a superpotential imposes the following condition on the U(1) fugacities:

p−1qp′q′−1 = 1 . (6.5.2)

S-gluing

The theory associated with the S-gluing of two building blocks has already been
introduced in (6.2.22). We present such a theory, with the fugacities for U(1)p ×
U(1)q ×U(1)p′ ×U(1)q′ for each chiral fields, along with its duals below.
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(6.5.3)

where the bottom left and right quivers come from applying (6.1.3) to the left yellow
node and to both yellow nodes of the top diagram, respectively. There are monopole
superpotential terms, the cubic superpotential terms coming from each triangular
loop in the quiver that contains one blue line as an edge, and the quartic superpo-
tential term for the top and bottom right quivers coming from the rectangular loop
in the middle. Such a superpotential imposes the following condition on the U(1)
fugacities:

pq−1 p′−1q′ = 1 . (6.5.4)
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6.5.1 The indices of (6.5.1) and (6.5.3) for N = 2
We focus only on the case of N = 2 and k1, k2 ≥ 2.

Theory (6.5.3)

The index of this theory is

IN=2
(6.5.3)(x; p, q, p′, q′, y1, . . . , y4) = 1 + C1x + C2x2 + . . . , (6.5.5)

where the coefficients Ci are functions of p, q, p′, q′, y1, . . . , y4. Here we report only
the two coefficients C1 and C2 in full:

C1 =
p
q

[
1 0
1 0

]
+

q′

p′

[
0 1
0 1

]
(6.5.4)
=

p
q

[
1 0
1 0

]
+

q
p

[
0 1
0 1

]
,

C2 =
p2

q2

[
2 0
2 0

]
+

q′2

p′2

[
0 2
0 2

]
+

pq′

qp′

[
1 1
1 1

]
+ pqp′q′

[
1 1
0 0

]
+

1
pqp′q′

[
0 0
1 1

]
−
[

2 0
0 0

]
−
[

0 2
0 0

]
−
[

0 0
2 0

]
−
[

0 0
0 2

]
− 4 +

qp′

pq′︸︷︷︸
(6.5.4)
= 1

.

(6.5.6)

We have used the notation
[

a b
c d

]
to denote the representation [a; b; c; d] of the flavour

symmetry SU(2)4 associated with each corner of the quiver. Upon setting p, q, p′, q′, y1, . . . , y4
to 1, the unrefined index for (k1, k2) = (2, 2) is

1 + 8x + 27x2 + 24x3 − 14x4 + . . . . (6.5.7)

We now focus on gauge invariant combinations of chiral fields corresponding to
various terms in the index. For convenience, we consider the bottom right quiver in
(6.5.3) and label the chiral fields as follows:

N

N

Nk1

Nk2

N

N

A

B

C

D

D′

C′

B′

A′

(6.5.8)

Explicitly, the superpotential of the above quiver is W = V+ + V− + V ′+ + V ′− +

CDC′D′. Let us use the indices
[

i, j m, n
i′, j′ m′, n′

]
, each of which takes values 1, 2, for the

flavour symmetry SU(2)4 associated with each corner of the quiver. We use a, b =
1, 2 and a′, b′ = 1, 2 to denote the SU(2)k1 and SU(2)k2 gauge indices respectively.

The terms in the coefficient C1 corresponds to the following gauge invariant com-
binations:

Xi′
i = AiBi′ , (X′)m

m′ = A′m′B
′m . (6.5.9)
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Indeed, X and X′ are the relevant operators. The positive terms of the coefficient C2
correspond to the following gauge invariant combinations:

Xi′
i X j′

j , (X′)m
m′(X′)n

n′ , Xi′
i (X′)m

m′ ,

Ym
i := AiCaD′aB′m , Y′i

′
m′ := Bi′DaC′aB′i

′ (6.5.10)

These are the marginal operators. From the negative terms in the coefficient C2, we
see that the global symmetry of the theory is SU(2)4 ×U(1)3. Indeed, the SU(2)4

symmetry is manifest as the four square nodes in the quiver, and the three copies of
U(1) correspond to the fugacities p, q, p′, q′ subject to (6.5.4).

Theory (6.5.1)

The index of this theory is

IN=2
(6.5.1)(x; p, q, p′, q′, y1, . . . , y4) = 1 + c1x + c2x2 + . . . , (6.5.11)

where the coefficients ci are functions of p, q, p′, q′, y1, . . . , y4. We report only c1 and
c2 in full:

c1 =
p
q

[
1 0
1 0

]
+

p′

q′

[
0 1
0 1

]
(6.5.2)
=

p
q

[
1 0
1 0

]
+

p
q

[
0 1
0 1

]
,

c2 =
p2

q2

[
2 0
2 0

]
+

p′2

q′2

[
0 2
0 2

]
+

pp′

qq′

[
1 1
1 1

]
+ pqp′q′

[
1 1
0 0

]
+

1
pqp′q′

[
0 0
1 1

]
−
[

2 0
0 0

]
−
[

0 2
0 0

]
−
[

0 0
2 0

]
−
[

0 0
0 2

]
+

p2

q2 −
q2

p2 − 4 +
pq′

qp′︸︷︷︸
(6.5.2)
= 1

.

(6.5.12)

Upon setting p, q, p′, q′, y1, . . . , y4 to 1, the unrefined index of this theory for (k1, k2) =
(2, 2) is

1 + 8x + 27x2 + 24x3 − 14x4 + . . . . (6.5.13)

From (6.5.7) and (6.5.13), we see the unrefined indices of theory (6.5.1) and theory
(6.5.3) are equal to each other.

Let us consider (6.5.12) in more detail. Notice that the coefficient c2 contains
a negative term − q2

p2 . If we assume that theory (6.5.1) flows to a superconformal
fixed point, the negative terms in c2 must correspond to a conserved current. Let us
proceed with this assumption. The− q2

p2 term should correspond to a U(1) conserved
current and should appear in the index as 1 (since its character is 1). Therefore our
assumption on the conformality forces us to set p = q. It follows from (6.5.2) that
p′ = q′. Therefore (6.5.12) can be rewritten as

c1 =

[
1 0
1 0

]
+

[
0 1
0 1

]
,

c2 =

[
2 0
2 0

]
+

[
0 2
0 2

]
+

[
1 1
1 1

]
+ p2 p′2

[
1 1
0 0

]
+

1
p2 p′2

[
0 0
1 1

]
−
[

2 0
0 0

]
−
[

0 2
0 0

]
−
[

0 0
2 0

]
−
[

0 0
0 2

]
− 3 .

(6.5.14)
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For the coefficient c3, we report the result only for y1 = y2 = y3 = y4 = 1:

c3 = 8 + 16
(

p2 p′2 +
1

p2 p′2

)
− 8

(
p2

p′2
+

p′2

p2

)
. (6.5.15)

It can be see from the negative terms in c2 that the theory has a global symmetry
SU(2)4 ×U(1)3. Although SU(2)4 is manifest in the quiver, not all three U(1) sym-
metries is manifest. Since we have two fugacities p and p′ appearing in the index,
only two U(1) symmetries is manifest. We conjecture that the other U(1) global
symmetry emerges at the superconformal fixed point in the infrared.

In fact, it is important to emphasise that the indices of (6.5.3) and (6.5.1) are equal
if we set p = q and p′ = q′:

IN=2
(6.5.1)(x; p = q, p′ = q′, y1, . . . , y4) = IN=2

(6.5.3)(x; p = q, p′ = q′, y1, . . . , y4) . (6.5.16)

We have checked this relation up to order x6 for various (k1, k2). We conjecture
that theories (6.5.1) and (6.5.3) are dual to each other, in the sense that they flow
to the same fixed point in the infrared. For (6.5.3), the global symmetry SU(2)4 ×
U(1)3 is manifest in the quiver description, and it is therefore possible to refine all
of the corresponding fugacities in the index. For (6.5.1), the global symmetry is also
SU(2)4 × U(1)3, but among all global fugacities, it is possible to refine only two
U(1) fugacities in the index, since the other U(1) is emergent in the infrared. This
interpretation is consistent with the relation (6.5.16). An immediate consequence of
this conjecture is that we have six dual descriptions, namely

(6.5.1) for N = 2←→ (6.5.3) . (6.5.17)

Let us end this subsection by briefly discussing the case of N = 3. We find that
the indices of models (6.5.3) and (6.5.1) are not equal, and so the two theories are not
dual. In particular, for N = 3 and (k1, k2) = (2, 2), their unrefined indices are

(6.5.1) : 1 + 18x + 136x2 + 562x3 + . . .

(6.5.3) : 1 + 18x + 154x2 + 832x3 + . . . .
(6.5.18)
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Chapter 7

Summary and perspectives

In this thesis we have studied various properties of three-dimensional supersym-
metric gauge theories whose origin comes from the existence of S-duality domain
walls in four dimensions. The main character four dimensional theories have been
the N = 4 SYM and the N = 2 SU(N) theory with 2N flavours, that give rise
respectively to the class of T(G) theories and to the 3d N = 2 U(N − 1) theory
with 2N flavours and a linear monopole superpotential. The general idea has been
to take the aforementioned theories as basic building blocks to construct a variety of
quiver theories, and analyse various aspects, such as their moduli spaces and their
symmetries in the infrared, either global or supersymmetry itself.

In chapter 3 we studied the moduli space of quiver theories arising from the
Hanany–Witten brane system, with an insertion of S-folds. We find that such theo-
ries have the Higgs and the Coulomb branches, the former given by the hyperKähler
quotient description, and the latter computed in a similar way to the usual 3dN = 4
gauge theories, with the remark that the vector multiplets of the gauge nodes linked
by T(U(N)) are frozen and do not contribute to the Coulomb branch. Such a rule
has been dubbed “freezing rule”. We check that this proposal is consistent with
mirror symmetry. Moreover, in the case of J-folds, we examine the moduli space
of the abelian theories with T(U(1)) links and non-zero Chern–Simons levels sys-
tematically. With the inclusion of bifundamental and fundamental hypermultiplets
into the quiver, the moduli space can be non-trivial, and in many cases the vacuum
equations admit many branches of solutions. Finally, for the case of non-abelian
theories with T(U(N)) links and non-zero Chern–Simons levels, we do not have a
general prescription to compute the moduli space of such theories. Nevertheless, we
demonstrate the computation of the Hilbert series for an example that belongs to a
special class of models arising from multiple M2-branes probing Calabi–Yau 4-fold
singularities.

In chapter 4 we propose new classes of three dimensional S-fold CFTs and study
their moduli spaces. We explored the possibility of replacing T(U(N)) by a more
general T(G) theory, where G is self-dual under the S-duality, restricting our atten-
tion to the cases where G is taken be SO(2N), USp′(2N) and G2. For G = SO(2N)
and USp′(2N), we propose that the quiver can be realised from an insertion of an
S-fold into a brane configuration that involves D3 branes on top of orientifold three-
planes, possibly with NS5 and D5 branes [21]. In which case, the S-fold needs to be
inserted in an interval of the D3 brane where the orientifold is of the O3− type or
the Õ3

+
type for G = SO(2N) or USp′(2N), respectively. The resulting quiver con-

tains alternating orthogonal and symplectic gauge groups, along with a T(G) theory
connecting two gauge groups G in the quiver. Moreover, we also obtain the mirror
theory by performing S-duality on the brane system. Under the action of latter, the
O3− and Õ3

+
planes, as well as the S-fold remain invariant. Hence the resulting
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mirror theory can be obtained from the S-dual configuration discussed in [21], with
an S-fold inserted in the position corresponding to the original set-up. The freezing
rule conjectured in the first chapter has been successfully tested by study the mod-
uli spaces of various quiver theories and their mirrors. The results turned out be
nicely consistent with mirror symmetry, namely the Higgs and Coulomb branches
of the original theory get exchanged with the Coulomb and Higgs branches of the
mirror theory. We perform similar consistency checks. We find that the freezing
rule still holds for the quiver with T(SO(2N)) and T(USp′(2N)) and the results are
consistent with mirror symmetry. Such consistency supports the statement that the
S-fold can be present in the background of O3− and Õ3

+
planes. Following the same

logic, we also investigate the presence of the S-fold in the background of orientifold
fiveplanes. In particular, we examine the insertion of the S-fold into the brane config-
urations involving orientifold fiveplanes, studied in [25]. The corresponding quiver
contains several interesting features such as the presence of the antisymmetric hy-
permultiplet, along with the T(U(N)) link connecting two unitary gauge groups.
The mirror configuration consists of an ON plane that gives rise to a bifurcation in
the mirror quiver [24], with the S-fold inserted in the position corresponding to the
original set-up. An important result that we discover for this class of theories is that,
in order for the freezing rule to hold and for the moduli spaces of the mirror pair to
be consistent with mirror symmetry, the S-fold must not be inserted “too close” to
the orientifold plane; there must be a sufficient number of NS5 branes that separate
the S-fold from the orientifold plane. This suggests that the NS5 branes provide a
certain “screening effect” or “shielding effect” in the combination of the orientifold
plane and the S-fold. We hope to understand this phenomenon better in the future.
Finally, we propose a novel class of circular quivers that contains the exceptional G2
gauge groups. In particular, the quiver contains alternating G2 and USp′(4) gauge
groups, possibly with flavours under USp′(4). Although the Type IIB brane config-
uration for this class of theories is not known and the S-fold supergravity solution
for the exceptional group is not available, we propose that it is possible to “insert
an S-fold” into the G2 and/or USp′(4) gauge groups in the aforementioned quiv-
ers. This results in the presence of the T(G2) link connecting two G2 gauge groups,
and/or the T(USp′(4)) link connecting two USp′(4) gauge groups. Furthermore,
we propose the mirror theory which is also a circular quiver, consisting of the G2,
USp′(4) and possibly SO(5) gauge groups if the original theory has the flavours
under USp′(4). To the best of our knowledge, such mirror pairs are new and have
never been studied in the literature before. We check, using the Hilbert series, that
moduli spaces of such pairs satisfy the freezing rule and are consistent with mirror
symmetry. This, again, serves as strong evidence for the existence of an S-fold of the
G2 type.

In chapter 5 several properties of 3d S-fold SCFTs have been investigated us-
ing supersymmetric indices. We have found several theories whose indices exhibit
supersymmetry enhancement, due to the presence of extra-supersymmetry current
multiplets. Dualities between different S-fold quiver theories have also been ex-
plored and the indices allow us to establish the operator map between such theories.
Moreover, we studied S-fold theories whose gauge symmetries have different global
structures, namely SU(2) and SU(2)/Z2. We found that the indices of the latter re-
veal interesting properties regarding the discrete topological symmetry as well as
supersymmetry enhancement in a certain case.

Finally, in chapter 6, we study 3dN = 2 gauge theories associated with S-duality
walls in the 4d N = 2 SU(N) gauge theory with 2N flavours. Motivated by [1], we
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propose a prescription in gluing theories associated with multiple duality walls as
well as self-gluing for arbitrary number of walls. The analog of the geometric view
point of [1], involving Riemann surfaces, is presented using the skeleton diagram.
Using supersymmetric indices, we find a number of dualities between different the-
ories, some of them hold only for N = 2 and many of them are true for all N ≥ 2.
In particular, we find that for an even number of walls, if all external legs of the
skeleton diagrams are closed, the theories associated with the same topology of the
skeleton diagram (for given rank and CS levels of the gauge groups) are dual to
each other, independent of the way we glue the basic building block (6.1.7). The
gluing that has been used can also be viewed as a generalisation of the S-fold theory
[80, 81, 124, 126, 14] associated with duality walls in the 4d N = 4 super-Yang-Mills
to a theory with lower amounts of supersymmetry, which is the 4d N = 2 gauge
theory in our case.

Let us end with some future perspectives and open questions. First of all, it
would be nice to find a general prescription to compute the moduli space of non-
abelian theories with T(U(N)) links, non-zero Chern–Simons levels and possibly
with bifundamental and fundamental hypermultiplets. One could ask if it is possi-
ble to replace the T(U(N)) link between two U(N) gauge groups by the Tσ

σ (U(N))
link, with an appropriate σ, between two Gσ gauge groups (where Gσ is a subgroup
of U(N) that is left unbroken by σ). Since Tσ

σ (U(N)) is invariant under mirror sym-
metry, we expect this to be a good candidate to replace T(U(N)) in the quiver di-
agram. Observe that we restricts ourself to models with equal-rank gauge nodes;
this avoids problem arising from non-complete Higgsing of the gauge symmetries.
It would be interesting to generalise all the result to the unequal-rank cases. This
amounts to consider S-fold configurations with fractional branes. Moreover, regard-
ing the analysis of S-fold theories with T(G) with G 6= U(N), we have taken the
Chern–Simons levels of all gauge groups connected by the T-link to be zero. It would
be interesting to study the moduli spaces as well as the duality between theories with
non-zero Chern–Simons levels. Finally, it should be possible to generalise our result
on the G2 group to other exceptional groups, including F4 and E6,7,8, which are also
invariant under the S-duality. It is natural to expect that the S-fold associated with
such groups should exist and, in that case, it should be possible to find quivers as
well as their mirror theories that describe such S-fold CFTs. It would be nice to find
a string or an F-theoretic construction for such theories. The investigation of theories
involving the TM as a component have also led to a number of open problems that
deserve a further investigation in the future. First of all, it would be interesting to
understand the geometric origin, such as compactification of a higher dimensional
theory, for our theories and, in particular, the skeleton diagrams. Another related
line of future research would be to understand the holographic dual of this class
of theories along the line of [14, 141]. Finally, it would interesting to understand
properties of the moduli space of vacua of the 3d N = 2 theories along the line of
[50], as well as to generalise our result to 4d N = 2 gauge theory with orthogonal,
symplectic and exceptional gauge groups in analogy to those studied in [51].
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