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H Čebyšëv polynomials 108

I More reweighted plots 110

iii



Chapter 1

Introduction

In the last years, the quest for understanding the fundamental laws of nature has

been progressively pushed to the highest level. A great amount of data has come

from experiments at particle accelerators, where the fundamental interactions are

under investigation with the highest degree of precision. In addition, the fast devel-

opment of technology will provide an even greater collection of data in the next years.

For example, at the Large Hadron Collider (LHC), many processes are already mea-

sured with an unprecedented level of precision, and the forthcoming high-luminosity

program, along with the improvements in the analysis techniques, points towards a

further level of accuracy.

On the theory side, precise perturbative predictions are demanded with an equal

effort. An example of how theoretical calculations evolved in time can be illustrated

by considering the so-called Les Houches Wishlist. This wishlist was born in 2004

when experimentalists started to identify processes which would have been useful to

know at next-to-leading order (NLO) in QCD. Later, in 2005 in Les Houches, the

cutting edge of the list corresponded to two-to-four processes at NLO [1]. In the

following years, an NLO revolution took place, when automated tools calculating

NLO corrections to high-multiplicity processes were developed. Thus, the list was

not only ticked out, but more complex processes were successfully tackled. Later,

the list has been updated with the request of next-to-next-to-leading-order (NNLO)

calculations. Thanks to the development of different subtraction schemes for han-

dling infrared divergences at NNLO, an NNLO revolution is taking place in the last

few years.

Intense development is thus rapidly on-going, also in view of extensions to the

next perturbative order, i.e. N3LO. New difficulties come both from the virtual con-

tributions with the increasing number of loops and scales, and from the development

of subtraction methods able to expose the divergent behaviour in the infrared lim-

its. At NLO several schemes exist to subtract the infrared-divergent real radiation.

The most widely used are the Frixione-Kunszt-Signer subtraction scheme [2] and the
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Catani-Seymour dipole subtraction scheme [3].

At NNLO and beyond, the development of efficient and general methods takes

up a vast area of the field, with a great progress witnessed in the last years. The

schemes mostly fit into two categories: local methods based on subtraction, and

slicing methods based on partitions of the phase space into infrared-sensitive regions,

where the cancellation of divergences is intrinsically non-local, and hard regions.

Slicing methods that have been successfully applied at NNLO are the transverse-

momentum (qT) subtraction method [4–7] and N -jettiness [8, 9].

Within the qT-subtraction framework, the NnLO differential cross section for the

production of a colour singlet F can be schematically written as

dσFNnLO =
[
dσF+jets

Nn−1LO − dσF CT
NnLO

]
+ (finite terms) , (1.1)

where dσF CT
NnLO is the non-local counterterm which cancels the divergences of dσF+jets

Nn−1LO

in the zero-qT limit. In addition, a resolution parameter, qcut
T , is introduced in order

to identify the phase-space region where the global subtraction of eq. (1.1) is used.

After the subtraction, the difference between the real contribution and the coun-

terterm, which is derived from the truncation of a qT-resummed result, consists of

finite terms and power-suppressed terms. Although the latter formally vanish in the

null-qcut
T limit, they give a non-zero numerical contribution for any finite choice of

qcut
T . Hence the non-local cancellations can be more successfully handled by comput-

ing power corrections in qcut
T , and the numerical performance of the subtraction can

be systematically improved.

The main part of the thesis, Chapter 2, is devoted to a study about the power

corrections in a transverse-momentum cutoff affecting perturbative calculations at

higher orders in the strong coupling constant. In particular, we take into account

the production of colourless systems, which constitute the main focus of the qT-

subtraction method. At the same time, the calculation of power corrections can serve

to deepen the theoretical structure on which our perturbative predictions stand, in

order to make them firmer and clearer.

Along with the first study, we recall that higher-order calculations on their own

do not comply with all the requirements coming from experimental collaborations.

In order to make a sound comparison between experimental measurements and theo-

retical predictions, any fixed-order calculation should be matched to a parton-shower

algorithm. Thus one fully simulates hadronic production processes by merging to-

gether a QCD component, the shower itself, and a model for hadron formation. The

QCD component is typically given in the collinear approximation and, as a result,

parton-shower generators are accurate only in the collinear regions, failing to predict

hard, large-angle emissions.
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In the past twenty years, a considerable effort was made in order to build NLO-

improved parton-shower generators, that can benefit both from the inclusive accuracy

of the NLO calculations and from the precision of the parton showers when being

more exclusive. Methods like MC@NLO [10] and Powheg [11, 12] allow to interface

NLO calculations to parton-shower generators, such as Pythia [13] and Herwig [14].

These techniques saw a considerable progress thanks to the appearance of computer

frameworks that automatise some aspects of the calculation, such as the computation

of virtual contributions, the implementation of a subtraction framework for the real

corrections, and the interface to a parton shower. Examples are the interfaces of the

Powheg Box [15] to MadGraph4 [16], allowing for the implementation of all tree-

level ingredients required by a given NLO process, and to automatic generators of

virtual processes such as Gosam [17, 18] and OpenLoops [19]. One of the last prod-

uct in this field is the MadGraph5 aMC@NLO framework [20], where all the aspects

of an NLO calculation are automatised and where many beyond-the-Standard-Model

processes are as well available.

The second part of the thesis, Chapter 3, is devoted to the development of an

interface between MadGraph5 aMC@NLO and the Powheg Box framework [15],

in order to match the flexibility of MadGraph5 aMC@NLO for the generation of

matrix elements for Standard-Model processes and for several of its extensions, to all

features of the Powheg Box framework. Among those, it is essential the possibility,

via the Powheg method, to generate events with positive weights, which makes

it the method of choice when large samples of events are needed. The interface

is now available and it is already used by the experimental collaborations at the

LHC (ATLAS and CMS).

As a proof of concept, we provide here a phenomenological study for the produc-

tion of a spin-0 Higgs-like boson, in association with up to two jets, with CP-violating

couplings. We discuss a few distributions able to characterise the X0 boson CP prop-

erties, and discuss a few results obtained using the Powheg Box reweighting feature.

We also present a few distributions obtained with the MiNLO method, which allows

the possibility of multijet merging without a merging scale.
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Chapter 2

Power corrections for

colour-singlet production

2.1 Introduction

Observables that can be theoretically predicted and experimentally measured with

the same uncertainty of a few percent prove to be particularly fitting to a further

investigation of the Standard Model (SM). Among them, processes involving the

production of a high-invariant-mass colour singlet play a crucial role. For example,

vector-boson Drell-Yan production and gluon-fusion Higgs production offer a wide

choice of observables, such as the transverse momentum and the rapidity of the sin-

glet, that have been measured with high accuracy in the last decades, given the

large production rates and the clean experimental signatures, and represent an opti-

mal setting for a deeper understanding of the underlying theory, given their formal

simplicity.

Within this environment one is allowed to achieve notably accurate theoretical

predictions, since QCD radiative corrections to total cross sections and differential

distributions are known at least up to the next-to-next-to-leading order (NNLO) in

the strong coupling αS. The main point here is that, at this stage in the process of

verifying the SM, there are two possible options to pursue.

• The first consists in going one step further in the perturbative computation,

requiring both new techniques for the calculation of Feynman diagrams with

more loop, legs or scales, and new subtraction methods, able to tame the

infrared cancellation at higher orders – which is likely to ask for much more

thinking with respect to the previous order in the perturbative series.

• The second, which we pursue in this thesis, relies on a deeper analysis about the

methods that are used up to NNLO in QCD, in particular about those that are

used to subtract infrared divergences. This second approach, while standing
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within the present state of the art for higher-order calculations, allows for a

broader understanding of many non-trivial features of QCD.

In this thesis, we will focus on the infrared behaviour of colour-singlet production,

in order to deepen our knowledge about it.

As a matter of fact, the scale hierarchy that characterises a high-energy scattering

process enhances the events at the boundary of the phase space, namely, the infrared

region. When these kinematic configurations are populated, the convergence of the

perturbative series in αS is spoiled and an all-order technique has to be devised. In

the last decades much effort has been made in order to correctly take into account

such large contributions, which appear in the form of large logarithms of the ratio of

two different scales. As of now, it is possible to resum these terms at all orders in the

strong coupling and to recognize universal patterns that characterise them. However,

we are only acquainted with the leading behaviour of these resummed contributions,

while a knowledge of the subleading behaviour can both shed light on the deeper

structure of QCD, and be of help when the resummation of large logarithms is used

as a tool for subtracting infrared divergences at higher orders. In fact, this is the

case for the so-called slicing methods, such as the transverse-momentum subtraction

method [4–7] and the N -jettiness subtraction [8, 9], which shall take advantage of the

knowledge of subleading contributions to the infrared behaviour of QCD observables.

In this thesis, we consider the production of a colourless system at next-to-leading

order in the strong coupling αS. We impose a transverse-momentum cutoff on the

colourless final state and we compute the subleading corrections for the inclusive

cross section in the cutoff, up to the fourth power. In particular, we present analytic

results for both Drell–Yan vector boson and Higgs boson production in gluon fusion

and we illustrate a process-independent procedure for the calculation of the all-order

power corrections in the cutoff.

The outline of the present chapter is as follows. In Section 2.2 we give a the-

oretical overview about colour-singlet production at NLO in QCD, also recovering

some useful results. In Section 2.3 we deepen the subject of subleading corrections

to QCD observables, in view of either the outcome they carry along when dealing

with the universal behaviour of cross sections and resummation structures, or the

improvement they bring about to slicing subtraction methods. In Section 2.4 we

outline the calculation we have done and in Section 2.4.4 we present and discuss

our analytic results for Z and H production, along with a study of their numerical

impact. In 2.5 we use the same procedure applied to Z + jet production at NLO in

αS. Finally, conclusions are drawn in Section 2.6.
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2.2 Colour-singlet production

Since the start of the LHC programme, processes involving the production of high-

invariant-mass colour singlets such as the W and Z bosons have played a prominent

role, due to large production rates, clean experimental signatures and the possibility

to use them as standard candles for detector calibration. In fact, this effort has led

to a highly-precise determination of the W -boson mass and to accurate evaluations

of parton distribution functions. Moreover, a great theoretical effort at computing

QCD radiative corrections for those processes was already and successfully on-going

well before the start of the LHC, and the interest even increased since the discovery

of the rarer (and equally colourless) Higgs boson.

In this section, without the aim of being exhaustive, we recall some fundamental

results in the field, as they turn out to be useful for the study that follows. In partic-

ular, since our analysis is devoted to the study of the infrared subleading behaviour

of inclusive cross sections at NLO in αS, here we restrict ourselves to Drell–Yan Z

production and Higgs production in gluon fusion at that order in QCD.

For sake of generality, we start by considering a hadronic cross section for the

production of a colourless system F , whose squared invariant mass amounts to Q2,

in association with a coloured and unspecified system X, at a hadron collider:

h1 + h2 → F +X . (2.2.1)

The definition of a set of standard variables is now in order. S is the hadronic squared

center-of-mass energy, and the hadronic differential cross section for the process can

be written as

dσ =
∑
a,b

∫ 1

τ

dx1

∫ 1

τ
x1

dx2 fa(x1) fb(x2) dσ̂ab . (2.2.2)

In the last expression

τ =
Q2

S
, (2.2.3)

fa/b are the parton distribution functions for the partons a and b, which carry the

energy fractions x1 and x2 from hadron h1 and h2 respectively, the dependence on

the renormalisation and factorisation scales and on the other kinematic invariants

of the process is implicitly assumed, and dσ̂ab is the partonic cross section for the

subprocess

a(p1) + b(p2)→ F (q) + c(k) , (2.2.4)

where a, b and c are quarks or gluons, in a combination compatible with the pro-

duction process of the colourless system F . In parentheses, the four momenta of the

particles are given.

In order to turn the expression of eq. (2.2.2) into the most suitable form for what

comes next, we deviate from the main route for a few paragraphs in order to simplify
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the partonic phase space appearing in the same equation. The standard Mandelstam

invariants related to the partonic subprocess are given by

s = (p1 + p2)2 , t = (p1 − k)2 = −2p1 · k, u = (p2 − k)2 = −2p2 · k, q2 = Q2 ,

(2.2.5)

and are accompanied by the definition of the threshold variable z

z =
Q2

s
. (2.2.6)

The phase-space volume with the appropriate flux factor is given by

dΦ2 =
1

2s

d3q

(2π)32q0

d3k

(2π)32k0
(2π)4δ4(p1 + p2 − q − k)

=
1

2s

1

(2π)2

d3k

2k0
δ
(
(p1 + p2 − k)2 −Q2

)
. (2.2.7)

Since the colourless system recoils against the final coloured parton, their transverse

momenta are equal. Calling θ the angle between p1 and k, we can write

qT = kT = k0 sin θ , (2.2.8)

t = −
√
sk0(1− cos θ) . (2.2.9)

Inverting the system, we find the relations

k0 = −sq
2
T + t2

2
√
st

, (2.2.10)

cos θ =
sq2

T − t2

sq2
T + t2

, (2.2.11)

which lead to an expression of the phase-space volume in terms of qT and t

1

(2π)2

d3k

2k0
=

1

4π
k0dk0dcos θ = − 1

4π

sq2
T + t2

2
√
st

√
s

sq2
T + t2

dq2
T dt = − 1

8π

dt

t
dq2

T . (2.2.12)

On the other hand, using the identity

t u = 4 p0

1 p
0

2 (k0)2 (1− cos θ) (1 + cos θ) = s (k0 sin θ)2 ≡ s q2
T , (2.2.13)

we can write the argument of the δ function in eq. (2.2.7) as

(p1 + p2 − k)2 −Q2 = s+ t+ u−Q2 = s+ t+
sq2

T

t
−Q2

=
1

t

[
t2 +

(
s−Q2

)
t+ sq2

T

]
=

1

t
(t− t+) (t− t−) , (2.2.14)
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where

t± =
1

2

[
Q2 − s±

√
(Q2 − s)2 − 4 s q2

T

]
. (2.2.15)

As a consequence, it is possible to write

δ
(
(p1 + p2 − k)2 −Q2

) dt

t
=

t

t2 − t+t−
[δ (t− t+) + δ (t− t−)] dt

=
1√

(Q2 − s)2 − 4 s q2
T

[δ (t− t+) + δ (t− t−)] dt ,

(2.2.16)

and using eqs. (2.2.12) and (2.2.16), we can write eq. (2.2.7) as

dΦ2 =
1

16π

1

s

1√
(Q2 − s)2 − 4 s q2

T

[δ (t− t+) + δ (t− t−)] dt dq2
T . (2.2.17)

We then add a dummy integration over the z variable,

dΦ2 =
1

16π

1

s

1√
(Q2 − s)2 − 4 s q2

T

[δ (t− t+) + δ (t− t−)] δ

(
z − Q2

s

)
dt dq2

T dz ,

(2.2.18)

that allows us to rewrite the phase-space volume as

dΦ2 =
1

16π

z2

Q4

1√
(1− z)2 − 4z

q2
T

Q2

[δ(t− t+) + δ(t− t−)] δ

(
z − Q2

s

)
dt dq2

T dz ,

(2.2.19)

where

t± =
Q2

2z

z − 1±

√
(1− z)2 − 4z

q2
T

Q2

 . (2.2.20)

Now, we can write the partonic cross sections for a 2→ 2 process as

dσ̂ = |M(s, t, u)|2 dΦ2 , (2.2.21)

whereM is the amplitude for the partonic process, that in general can be written as

a function of the Mandelstam variables s, t and u. From eqs. (2.2.6) and (2.2.13) we
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can express s and u as functions of z, qT and t, and using eq. (2.2.19) we can write

dσ̂ =
1

16π

z2

Q4

1√
(1− z)2 − 4z

q2
T

Q2

[δ(t− t+) + δ(t− t−)]

× δ
(
z − Q2

s

)
|M (z, t, qT)|2 dt dq2

T dz

=
1

16π

z2

Q4 dz

1√
(1− z)2 − 4z

q2
T

Q2

[
|M (z, t+, qT)|2 + |M (z, t−, qT)|2

]

× δ
(
z − Q2

s

)
dq2

T dz

=
dσ̂ab(qT, z)

dq2
T

δ

(
z − Q2

s

)
dq2

T dz , (2.2.22)

where we have defined

dσ̂ab(qT, z)

dq2
T

≡ 1

16π

z2

Q4

1√
(1− z)2 − 4z

q2
T

Q2

[
|M (z, t+, qT)|2 + |M (z, t−, qT)|2

]
.

(2.2.23)

This is, besides the actual matrix elements, what one needs in order to compute the

hadronic cross section of eq. (2.2.2). Using eqs. (2.2.22) and (2.2.23), we can write

it as

σ =
∑
a,b

∫ 1

τ

dx1

∫ 1

τ
x1

dx2 fa(x1) fb(x2)

∫
dq2

T dz
dσ̂ab(qT, z)

dq2
T

δ

(
z − Q2

s

)
, (2.2.24)

where s is the partonic center-of-mass energy, equal to

s = S x1 x2 . (2.2.25)

We have also made explicit the dependence on z, the ratio between the squared

invariant mass of the system F and the partonic center-of-mass energy, and on qT,

the transverse momentum of the system F with respect to the hadronic beams. Using

eqs. (2.2.25) and (2.2.3) we can write

σ =
∑
a,b

∫ 1

0

dz δ

(
z − τ

x1x2

)∫ 1

τ

dx1

∫ 1

τ
x1

dx2 fa(x1) fb(x2)

∫
dq2

T

dσ̂ab(qT, z)

dq2
T

,

(2.2.26)

and by using the δ function to integrate over x2, we obtain

σ =
∑
a,b

τ

∫ 1

τ

dz

z

∫ 1

τ
z

dx1

x1

fa(x1) fb

(
τ

z x1

)
1

z

∫
dq2

T

dσ̂ab(qT, z)

dq2
T

. (2.2.27)

9



We then introduce the parton luminosity Lab(y) defined by

Lab(y) ≡
∫ 1

y

dx

x
fa(x) fb

(y
x

)
, (2.2.28)

so that we can finally write

σ =
∑
a,b

τ

∫ 1

τ

dz

z
Lab
(τ
z

) 1

z

∫
dq2

T

dσ̂ab(qT, z)

dq2
T

. (2.2.29)

At this stage, we proceed by analysing in detail the partonic subprocesses that we are

interested in. The partonic differential cross sections are computable in perturbative

QCD as power series in αS

dσ̂ab(qT, z)

dq2
T

=
dσ̂(0)(qT, z)

dq2
T

+
αS

2π

dσ̂(1)

ab (qT, z)

dq2
T

+ . . . (2.2.30)

The Born contribution dσ̂(0)(qT, z)/dq
2
T and the virtual contributions to dσ̂(1)

ab (qT, z)/dq
2
T

are proportional to δ(qT). Applying eq. (2.2.23), with a little abuse of notation,1 we

can write at once the partonic differential cross sections. For what concerns Z pro-

duction, there are two channels contributing to the total cross section, a qg- and a

qq̄-initiated channel, respectively

q(q̄) + g → Z + q(q̄) , (2.2.31)

q + q̄ → Z + g . (2.2.32)

For what concerns Higgs production via gluon fusion, in the infinite-top-mass limit,

there are three channels contributing to the total cross section, a qg-, a gg- and a

qq̄-initiated channel, respectively

q(q̄) + g → H + q(q̄) , (2.2.33)

g + g → H + g , (2.2.34)

q + q̄ → H + g . (2.2.35)

2.2.1 Drell-Yan Z production

In this section we deal with the computation of the real emission amplitude for the

neutral-current Drell–Yan process. We start from the qg-initiated channel,

q(p1) + g(k) → Z(q) + q(p2) , (2.2.36)

where the four-momenta associated to the particles are shown between parentheses

and the same-flavour quarks q may be substitued by same-flavour anti-quarks q̄. The

1In the rest of the thesis we only deal with the real corrections to Z and H production. We then

use dσ̂(1)

ab (qT, z)/dq
2
T to indicate them.
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matrix element is computed by considering two diagrams and their interference – we

denote with the subscript s the s-channel, with t the t-channel and with s|t the

interference. We are allowed to work in a number of space-time dimensions d = 4

for reasons that will be clear in Section 2.3. We quote here the intermediate results

for the three contributions to the squared matrix element |Mqg|2(s, t), summed over

polarisations and colors∑
pol’s,col’s

|Ms|2 =
g2 g2

S

c2
w

TR

(
N2

c − 1
) 1

s2

×Tr
[
γµ (gv − gaγ5) (/p1

+ /k) γα /p1
γα (/p1

+ /k) γµ (gv − gaγ5) /p2

]
= −32π

g2 (g2
v + g2

a)

c2
w

TR

(
N2

c − 1
)
αS

t

s
, (2.2.37)∑

pol’s, col’s

|Mt|2 =
∑

pol’s, col’s

|Ms|2 {s↔ t} , (2.2.38)

∑
pol’s, col’s

∣∣Ms|t
∣∣2 =

g2 g2
S

c2
w

TR

(
N2

c − 1
) 1

st

×Tr
[
γµ (gv − gaγ5) /p2

γα (/p2
− /k) γµ (gv − gaγ5) /p1

γα (/p1
+ /k)

]
= −16π

g2 (g2
v + g2

a)

c2
w

TR

(
N2

c − 1
)
αS

2uQ2

st
, (2.2.39)

where g, gv and ga are the weak, the vector and the axial coupling, respectively,

cw is the cosine of the weak angle, gS is the strong coupling, Nc is the number of

colours and TR = 1/2. The squared amplitude averaged over the initial colour and

polarisation (sg, sq) states yields

|Mqg|2(s, t) ≡
∑

pol’s, col’s
|Ms|2 +

∑
pol’s, col’s

|Mt|2 + 2Re
∑

pol’s, col’s

∣∣Ms|t
∣∣2

= − 32π

sq sg

1

Nc (N2
c − 1)

g2 (g2
v + g2

a)

c2
w

TR

(
N2

c − 1
)
αS

(
t

s
+
s

t
+

2uQ2

st

)
.

(2.2.40)

Applying eq. (2.2.23), we can write the NLO partonic differential cross section for

the Z-production qg-initiated channel as

dσ̂(1)
qg (qT, z)

dq2
T

= σ(0)

qq TR z

z (1 + 3z)
q2

T

Q2
+ (1− z) pqg(z)√

(1− z)2 − 4z
q2

T

Q2

1

q2
T

, (2.2.41)

where

σ(0)

qq =
π

Nc

g2 (g2
v + g2

a)

c2
w

1

Q2
(2.2.42)
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is the Born-level cross section for the process qq̄ → Z. The same result holds for the

production of a W boson, if the correct quark flavours and the relevant Cabibbo–

Kobayashi–Maskawa matrix element are taken into account. The expression of the

Altarelli–Parisi splitting function pqg(z) is given in eq. (F.2).

As we turn to the qq̄-initiated channel,

q(p1) + q̄(p2) → g(k) + Z(q) , (2.2.43)

we notice that the corresponding matrix element can be obtained by crossing the

four-momenta, starting from the qg-initiated result, with the exchange

|Mqq̄|2(s, t) = −|Mqg|2(u, t) . (2.2.44)

The squared amplitude averaged over the initial colour and polarisation states yields

|Mqq̄|2(s, t) =
32π

sq sq

1

N2
c

g2 (g2
v + g2

a)

c2
w

TR

(
N2

c − 1
)
αS

(
t

u
+
u

t
+

2sQ2

ut

)
,

(2.2.45)

and applying eq. (2.2.23), we can write the NLO partonic differential cross section

for the Z-production qq̄-initiated channel as

dσ̂(1)

qq̄ (qT, z)

dq2
T

= σ(0)

qq CF z

−4z
q2

T

Q2
+ 2 (1− z) p̂qq(z)√

(1− z)2 − 4z
q2

T

Q2

1

q2
T

, (2.2.46)

where σ(0)
qq is defined in eq. (2.2.42), CF = (N2

c − 1) /(2Nc) = 4/3 and the expression

of the Altarelli–Parisi splitting function p̂qq(z) is given in eq. (F.5).

2.2.2 Higgs production in gluon fusion

In this section we deal with the computation of the real emission amplitude for Higgs

boson production via gluon fusion. The lowest-order amplitude for this process arises

from a triangle diagram. The amplitude is sensitive to all quarks which can couple

to the gluon and to the Higgs boson via a Yukawa interaction: thus it depends on

the heaviest quark mass, namely on the top-quark mass Mt. The Born-level cross

section for the process gg → H has been available in the literature from the late

Seventies – see e.g. ref. [21] for a review – and it is usually written as

σ(0)

gg =
α2

S

π

M2
H

256v2
|A|2 δ(s−M2

H) , (2.2.47)

where

|A|2 =

∣∣∣∣∣∑
q

τq [1 + (1− τq)f(τq)]

∣∣∣∣∣
2

(2.2.48)
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and MH is the Higgs boson mass. In eq. (2.2.48) the sum runs over the quark flavour

q with mass mq, v is the Higgs vacuum expectation value, τq = 4m2
q/M

2
H and

f(τq) =


arcsin2

(√
1

τq

)
if τq > 1

−1

4

(
log

η+

η−
− iπ

)2

if τq < 1 ,

(2.2.49)

where

η± = 1±
√

1− τq . (2.2.50)

In the limit in which the quark mass is infinitely large, namely τq → ∞, A → 2/3,

we have

σ(0),∞
gg =

α2
S

π

M2
H

576v2
≡ α2

S

72π

M2
H

(N2
c − 1) v2

δ(s−M2
H) . (2.2.51)

For sake of simplicity, in the formulae that follow we re-define the total Born cross-

section as

σ(0)

gg ≡
α2

S

72π

1

(N2
c − 1) v2

. (2.2.52)

Thus, in the infinite-top-mass limit, the O(α3
S) cross section for Higgs production in

gluon fusion can be obtained from the effective Lagrangian (see ref. [21] for more

details)

Leff = −1

4

(
1− αS

3πv
H
)
GµνG

µν (2.2.53)

where H is the scalar Higgs field and Gµν is the field strength tensor associated to

the gluons. From eq. (2.2.53) it is straightforward to obtain eq. (2.2.52), and now the

effective Lagrangian is the starting point in order to compute the differential cross

sections associated to the three relevant channels at NLO in αS.

We start with the qg-initiated one,

g(k) + q(p1) → H(q) + q(p2) . (2.2.54)

This contribution origins from a t-channel diagram, whose squared amplitude, aver-

aged over polarisation states and colours, yields

|Mgq|2 (s, t) = − 1

sq sg

CF Nc

Nc (N2
c − 1)

4

9

α3
S

πv2

1

t

(
u2 + s2

)
. (2.2.55)

Applying eq. (2.2.23), we can write the NLO partonic differential cross section for

the H-production qg-initiated channel as

dσ̂(1)
gq (qT, z)

dq2
T

= σ(0)

gg CF z

−3 (1− z)
q2

T

Q2
+ (1− z) pgq(z)√

(1− z)2 − 4z
q2

T

Q2

1

q2
T

, (2.2.56)
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where σ(0)
gg is defined in eq. (2.2.52) and the expression of the Altarelli–Parisi splitting

function pgq(z) is given in eq. (F.3).

The contribution from the gg-initiated channel,

g(k1) + g(k2) → H(q) + g(k) , (2.2.57)

consists of a sum of six diagrams, connected one to another via momentum permu-

tations. The squared amplitude, averaged over the initial polarisation and colour

states, yields

|Mgg|2 =
1

s2
g

CA (N2
c − 1)

(N2
c − 1)2

4

9

α3
S

πv2

Q8 + s4 + t4 + u4

stu
. (2.2.58)

Applying eq. (2.2.23), we can write the NLO partonic differential cross section for

the H-production gg-initiated channel as

dσ̂(1)
gg (qT, z)

dq2
T

= σ(0)

gg CA z

4z

(
q2

T

Q2

)2

− 8 (1− z)2 q
2
T

Q2
+ 2 (1− z) p̂gg(z)√

(1− z)2 − 4z
q2

T

Q2

1

q2
T

,

(2.2.59)

where σ(0)
gg is defined in eq. (2.2.52), CA = 3 and the expression of the Altarelli–Parisi

splitting function p̂gg(z) is given in eq. (F.6).

The third channel,

q(p1) + q̄(p2) → g(k) +H(q) , (2.2.60)

origins from an s-diagram, whose squared amplitude, averaged over helicities and

colours, is obtained from the diagram contributing to the qg-initiated channel, ap-

plying the crossing s↔ t with an overall minus sign:

|MqqH |2 =
1

sq sq̄

CF Nc

N2
c

4

9

α3
S

πv2

1

s

(
u2 + t2

)
. (2.2.61)

Applying eq. (2.2.23), we can write the NLO partonic differential cross section for

the H-production qq̄ channel as

dσ̂(1)

qq̄H(qT, z)

dq2
T

= σ(0)

gg C
2
F z

−8z

(
q2

T

Q2

)2

+ 4 (1− z)2 q
2
T

Q2√
(1− z)2 − 4z

q2
T

Q2

1

q2
T

, (2.2.62)

where σ(0)
gg is defined in eq. (2.2.52). It is clear at this stage that the cross section in

eq. (2.2.62), at variance with the corresponding quantities for the other production
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channels, is not singular in the infrared limit, namely in the limit qT → 0. Hence it

does not require an infrared subtraction, nor it is affected by transverse-momentum

subleading power corrections.

In table 2.2.2 we collect the results for the NLO partonic differential cross sec-

tions, both for Z and H production, whereas the corresponding Born-level cross

section, σ(0)

qq̄ and σ(0)
gg , are defined in eq. (2.2.42) and eq. (2.2.52), respectively. The

expressions of the Altarelli–Parisi splitting functions p̂ab(z) and pab(z) are given in

Appendix F and

G
(
q2

T

)
≡ q2

T

√
(1− z)2 − 4z

q2
T

Q2
. (2.2.63)

a b F
dσ̂(1)

ab→F (qT, z)

dq2
T

eq.

q g Z σ(0)
qq TR

z
G
(
q2

T

) [z (1 + 3z)
q2

T

Q2
+ (1− z) pqg(z)

]
(2.2.41)

q q̄ Z σ(0)
qq CF

z
G
(
q2

T

) [−4z
q2

T

Q2
+ 2 (1− z) p̂qq(z)

]
(2.2.46)

g q H σ(0)
gg CF

z
G
(
q2

T

) [−3 (1− z)
q2

T

Q2
+ (1− z) pgq(z)

]
(2.2.56)

g g H σ(0)
gg CA

z
G
(
q2

T

) [4z

(
q2

T

Q2

)2

− 8 (1− z)2 q
2
T

Q2
+ 2 (1− z) p̂gg(z)

]
(2.2.59)

q q̄ H σ(0)
gg C

2
F

z
G
(
q2

T

) [−8z

(
q2

T

Q2

)2

+ 4 (1− z)2 q
2
T

Q2

]
(2.2.62)

Table 2.1. NLO partonic differential cross sections for Drell–Yan Z production and H

production in gluon fusion. The function G
(
q2

T

)
is defined in eq. (2.2.63).

We notice that the terms proportional to the Altarelli–Parisi splitting functions in

eqs. (2.2.41), (2.2.46), (2.2.56) and (2.2.59) embody in a single expression the whole

infrared behaviour of the amplitudes, i.e. their soft and collinear limits. The structure

of these terms was derived in a completely general form, from the universal behaviour

of the scattering amplitudes in those limits, in ref. [22].
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2.3 Subleading power corrections

The current precision-physics program at the LHC requires SM theoretical predic-

tions at the highest accuracy: thus, the calculation of perturbative QCD corrections

plays a dominant role in this context. Until a few years ago, the standard for such

calculations was NLO accuracy. In recent years, a continuously-growing number of

NNLO results for many important processes has appeared in the literature, giving

birth to the so called “NNLO revolution”. For several “standard candles” processes,

the first steps towards the calculation of differential cross sections at N3LO have also

been taken – see e.g. refs. [23–30].

2.3.1 Subtraction methods

The computation of higher-order terms in the perturbative series becomes more in-

volved due to the technical difficulties arising in the evaluation of virtual contri-

butions and to the increasing complexity of the infrared (IR) structure of the real

contributions. In order to expose the cancellation of the IR divergences between

real and virtual contributions, the knowledge of the behaviour of the scattering am-

plitudes at the boundaries of the phase space is then a crucial ingredient and it is

indeed what is used by the subtraction methods in order to work. These methods

can be roughly divided into local and slicing. Among the first, the most extensively

used at NLO were proposed in refs. [2, 3]. As far as the NNLO subtraction methods

are concerned, the past few years have witnessed a great activity in their devel-

opment: the transverse-momentum (qT) subtraction method [4–7], the N -jettiness

subtraction [8, 9], the projection-to-Born [31], the residue subtraction [32, 33] and

the antenna subtraction method [34–36] have all been successfully applied to LHC

phenomenology. The first application of the qT-subtraction method to differential

cross sections at N3LO was recently proposed in ref. [23], in the calculation of the

rapidity distribution of the Higgs boson.

While a local subtraction is independent of any regularising parameter, in a

slicing method a resolution parameter, λcut, is introduced in order to avoid the issue of

cancelling infrared divergences between virtual and real contributions by separating

the integration into two regions. For example, in order to compute a QCD NLO

total cross section, we observe that

σNLO =

∫ λcut

0

dλ
dσNLO

dλ
+

∫ λmax

λcut

dλ
dσNLO

dλ
. (2.3.1)

In eq. (2.3.1) the integration below λcut is sensitive to infrared physics, namely, it can

be obtained by taking the limit for the observable λ going to zero. For example, the

integrand is given by the Born contribution multiplied by the Altarelli–Parisi kernels

if λ is the emission angle of the radiation, or by the Born contribution multiplied by

the eikonal factor if λ is the energy of the emitted radiation. If λ is the transverse
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momentum of the radiation, the integration below the cutoff is typically obtained

from the expansion of a resummed formula. Otherwise, a Monte-Carlo integration

can be safely used above λcut since there are no singularities in that region. In fact,

for colour-singlet production, a non-zero transverse momentum of the singlet implies

that a resolved radiation is recoiling against the heavy boson and this allows for a

numerical integration in d = 4 dimensions.

2.3.2 The qT-subtraction method

An example of this procedure comes from the qT-subtraction method, where a trans-

verse momentum cutoff is used as the resolution parameter: λ = q2
T. More in detail,

the integral in the below-cutoff region, for small values of the cutoff, behaves as∫ (qcut
T )2

0

dq2
T

dσNLO

dq2
T

(qcut
T )2→0
−−−−−→

∞∑
r=0

∫ (qcut
T )2

0

dq2
T

dσNLO(r)

dq2
T

(2.3.2)

where

dσNLO(0)

dq2
T

=
αS

2π

[
C(1,−1,0) δ

(
q2

T

)
+ C(1,0,0) 1

q2
T

+ C(1,1,0) log q2
T

q2
T

]
(2.3.3)

dσNLO(r>0)

dq2
T

=
αS

2π

[
C(1,0,r) + C(1,1,r)

(
q2

T

)r−1
log q2

T

]
. (2.3.4)

The first figure in the superscript of the coefficients C(n,m,r) stands for the perturbative

order in αS. In this case we are at NLO in QCD, namely n = 1. The second figure

refers to the logarithmic accuracy, which starts from zero and counts, for the n-th

order in αS, up to 2n− 1 powers (the δ-term in eq. (2.3.3) corresponds to the virtual

contribution once the divergences are subtracted according to the scheme of choice).

The third figure denotes the expansion in powers of the event-shape variable chosen

as resolution parameter.

The same expansion can be straightforwardly generalised to higher orders in αS

and the knowledge of the coefficients c(n,m,0), with 0 6 m 6 3, allows us to build the

global counterterms of the qT-subtraction method at NnLO in QCD. Such coefficients,

see eq. (2.3.3), correspond to the singular terms and are known from resummation

techniques or effective field theories [37–47]. In both cases one exploits the universal

behaviour of scattering amplitudes at the boundaries of the phase space, namely in

soft-collinear regions. Otherwise, the terms in eq. (2.3.4) are power corrections that

vanish in the small-cutoff limit and that are, in general, process dependent as much

as the finite virtual delta-term in eq. (2.3.3). Thus, after the subtraction procedure, a

residual dependence on the cutoff can remain as power corrections. While these terms

formally vanish in the null-cutoff limit, they give a non-zero numerical contribution

for any finite choice of the cutoff.

Until recently, since only the term in eq. (2.3.3), i.e. the leading power, was under

control, the solution consisted in stopping the expansion of eq. (2.3.2) at order zero
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and taking an extremely small cutoff in order to minimize the residual error induced

by the neglected subleading powers of eq. (2.3.4). As a result, the separation of the

phase space introduced by the slicing method introduces instabilities in the numerical

evaluation of cross sections and differential distributions [48–51] – some care has then

to be taken in order to obtain stable and reliable results.

From a theoretical point of view, then, the knowledge of the power corrections

greatly increases our understanding of the perturbative behaviour of the QCD cross

sections, since more non-trivial (universal and non-universal) terms appear. The ori-

gin of these terms can be traced back both to the scattering amplitudes, evaluated

at phase-space boundaries, and to the phase space itself. Thus, several papers have

tackled the study of power corrections in the soft and collinear limits [52–54], while

studies in the general framework of fixed-order and threshold-resummed computa-

tions have been also performed [55–63].

From a practical point of view, the knowledge of the subleading power corrections

makes the numerical implementation of a subtraction method more robust, since the

power terms weaken the dependence of the final result on the arbitrary cutoff. This

is not only valid when the subtraction method is applied to NLO computations, but

it is numerically more relevant when applied to higher-order calculation, as pointed

out, for example, in the evaluation of NNLO cross sections in refs. [50, 51].

Power corrections at NLO have been extensively studied in refs. [64–74] in the

context of the N -jettiness subtraction method, and in refs. [75–80] within SCET-

based subtraction methods. Power corrections at NLO for the transverse momentum

of a colour singlet have been derived for the first time at differential level in ref. [81]

within the SCET framework. In ref. [82], we presented a method to compute the

transverse-momentum power corrections at all orders, for the inclusive production

of a colourless final-state system, at NLO in QCD. Recently, the leading power

corrections for the electroweak NLO corrections to the inclusive cross section for the

production of a massive lepton pair through the Drell–Yan mechanism have been

computed in ref. [83].

N -jettiness power corrections at NNLO have been considered in refs. [64, 67]. In

particular, analytic results are obtained for the dominant αS τ log(τ) and α2
S τ log3(τ)

subleading terms, where τ is the 0-jettiness, for qq̄-initiated Drell–Yan production

and for gg-, gq- and qq̄-initiated Higgs boson production, along with a numerical fit

for the subdominant terms.

In addition, a numerical extraction of power corrections in the context of NNLL’+

NNLO calculations was done in N -jettiness [47], and a general discussion in the con-

text of the fixed-order implementation of the N -jettiness subtraction can be found

in ref. [9].

In ref. [84] we tackled instead the first step in order to compute the transverse-

momentum power corrections, up to the second power, of the NNLO cumulative

cross section for vector-boson production. In fact, together with the real-virtual qg-
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initiated channel that we consider therein, also the qq-initiated channel contributes

to the real-virtual terms, together with all the double-real radiation contributions.

These contributions will be considered in future works.

2.4 Subleading power corrections for Z and H production

In this section we outline the calculation we have done in order to obtain the sublead-

ing power corrections to an inclusive cross section at NLO in αS. We present analytic

results for both Drell–Yan Z production and Higgs boson production in gluon fusion

and we illustrate a process-independent procedure for the calculation of the all-order

power corrections in a transverse momentum cutoff.

In the small-qT region, i.e. qT � Q, the real contribution to the perturbative

cross sections of eqs. (2.2.41)–(2.2.59) contains well-known logarithmically-enhanced

terms that are singular in the qT → 0 limit [37–46]. In the context of inclusive

NLO fixed-order calculations, the logarithmic terms are cancelled when using the

subtraction prescriptions. For more exclusive quantities, such as the transverse-

momentum distribution of the colourless system, the same logarithmic terms need

to be resummed at all orders in the strong coupling constant to produce reliable

results. Although our studies are of value in the context of the transverse-momentum

resummation, here we limit ourselves to the case of inclusive fixed-order predictions

at NLO, leaving the resummation program to future investigations. In the following

we compute power-correction terms to the cross section that, although vanishing in

the small-qT limit, may give a sizable numerical contribution when using a slicing

subtraction method.

To explicitly present the perturbative structure of these terms at small qT, it is

customary in the literature [22, 68] to compute the following cumulative partonic

cross section, integrating the differential cross section in the range 0 ≤ qT ≤ qcut
T ,

σ̂<ab(z) ≡
∫ (qcut

T )
2

0

dq2
T

dσ̂ab(qT, z)

dq2
T

. (2.4.1)

The cross section in eq. (2.4.1) receives contributions from the Born and the virtual

terms, both proportional to δ(qT), and from the part of the real amplitude that de-

scribes the production of the F system with transverse momentum less than qcut
T .

The virtual and real contributions are separately divergent and are typically regu-

larised in dimensional regularisation. Since the total partonic cross section is finite

and analytically known for the processes under study, following what was done in

refs. [85, 86]2, we compute the above integral as

σ̂<ab(z) = σ̂tot

ab (z)− σ̂>ab(z) , (2.4.2)

2The same technique was used in order to compute the soft constant of the qT-subtraction hard

function and the second-order collinear coefficient functions for transverse-momentum resummation.
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with

σ̂tot

ab (z) =

∫ (qmax
T )

2

0

dq2
T

dσ̂ab(qT, z)

dq2
T

, (2.4.3)

σ̂>ab(z) =

∫ (qmax
T )

2

(qcut
T )

2
dq2

T

dσ̂ab(qT, z)

dq2
T

, (2.4.4)

where qmax
T is the maximum transverse momentum allowed by the kinematics, σ̂tot

ab (z)

is the total partonic cross section and σ̂>ab(z) is the partonic cross section integrated

above qcut
T . The advantage of using eq. (2.4.2) is that the partonic cross section

integrated in the range 0 ≤ qT ≤ qcut
T is obtained as difference of the total cross

section (formally free from any dependence on qcut
T ) and the partonic cross section

integrated in the range above qcut
T of eq. (2.4.4). Since qT > qcut

T > 0, the last

integration can be performed in four space-time dimensions, with no further use

of dimensional regularisation. This explains why in section 2.2 we work in d = 4

dimensions.

In refs. [85, 86] the computation of the cumulative cross section was performed in

the limit qcut
T � Q, neglecting terms of O((qcut

T )2) on the right-hand side of eq. (2.4.2).

Here, we compute these terms up to O((qcut
T )4) included.

2.4.1 qT-integrated partonic cross sections

In the following we present the results for the partonic cross section in eq. (2.4.4), in-

tegrated in qT, from an arbitrary value qcut
T up to the maximum transverse momentum

qmax
T allowed by the kinematics of the event, given by

(qmax

T )2 = Q2 (1− z)2

4 z
, (2.4.5)

at a fixed value of z. The integrations are straightforward and do not need any

dedicated comment beyond the results, that we report here along with the only

three master integrals needed in order to accomplish the integration. Before showing

them, in order to lighten up the notation, we introduce the dimensionless quantity3

a ≡ (qcut
T )2

Q2
, (2.4.6)

that will be our expansion parameter in the rest of the study, and we define

π2
T ≡

4az

(1− z)2
, (2.4.7)

that will allow us to write the upcoming differential cross sections in a more compact

form. In Appendix B we recall the minimal set of integrals needed in order to

compute the following qT-integrated cross sections.

3In the literature, the parameter a is also referred to as r2
cut (see e.g. [50]).
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Z production

• q(q̄) + g → Z + q(q̄)

σ̂>(1)

qg (z) =

∫ (qmax
T )

2

(qcut
T )

2
dq2

T

dσ̂(1)
qg (qT, z)

dq2
T

= σ(0)

qq TR z

{
1

2
(1 + 3z)(1− z)

√
1− 4az

(1− z)2

+ pqg(z)

[
− log

az

(1− z)2
+ 2 log

1

2

(√
1− 4az

(1− z)2
+ 1

)]}

= σ(0)

qq TR z

{
1

2
(1 + 3z)(1− z)

√
1− π2

T

+ pqg(z) log
1 +

√
1− π2

T

1−
√

1− π2
T

}
,

(2.4.8)

• q + q̄ → Z + g

σ̂>(1)

qq̄ (z) =

∫ (qmax
T )

2

(qcut
T )

2
dq2

T

dσ̂(1)

qq̄ (qT, z)

dq2
T

= σ(0)

qq CF z

{
−2 (1− z)

√
1− 4az

(1− z)2

+ 2 p̂qq(z)

[
− log

az

(1− z)2
+ 2 log

1

2

(√
1− 4az

(1− z)2
+ 1

)]}
= σ(0)

qq CF z
{
−2 (1− z)

√
1− π2

T

+ 2 p̂qq(z) log
1 +

√
1− π2

T

1−
√

1− π2
T

}
. (2.4.9)
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H production

• g + q(q̄)→ H + q(q̄)

σ̂>(1)

gq (z) =

∫ (qmax
T )

2

(qcut
T )

2
dq2

T

dσ̂(1)
gq (qT, z)

dq2
T

= σ(0)

gg CF z

{
−3(1− z)2

2z

√
1− 4az

(1− z)2

+ pgq(z)

[
− log

az

(1− z)2
+ 2 log

1

2

(√
1− 4az

(1− z)2
+ 1

)]}

= σ(0)

gg CF z

{
−3(1− z)2

2z

√
1− π2

T

+ pgq(z) log
1 +

√
1− π2

T

1−
√

1− π2
T

}
, (2.4.10)

• g + g → H + g

σ̂>(1)

gg (z) =

∫ (qmax
T )

2

(qcut
T )

2
dq2

T

dσ̂(1)
gg (qT, z)

dq2
T

= σ(0)

gg CA z

{
−4(1− z)3

z

√
1− 4az

(1− z)2

+ 4 z

[
1− z

2z

(1− z)2

6z

√
1− 4az

(1− z)2

(
1 +

2az

(1− z)2

)]

+ 2 p̂gg(z)

[
− log

az

(1− z)2
+ 2 log

1

2

(√
1− 4az

(1− z)2
+ 1

)]}

= σ(0)

gg CA z

{
−11

3

(1− z)3

z

(
1− π2

T
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)√
1− π2

T

+ 2 p̂gg(z) log
1 +

√
1− π2

T

1−
√

1− π2
T

}
.

(2.4.11)

As anticipated in section 2.2, we do not consider the process qq̄ → Hg since it is not

singular in the limit qT → 0 and the corresponding analytic/numeric integration in

the transverse momentum can be performed setting explicitly qcut
T = 0.

A couple of further comments about the above expressions are also in order. In

first place, the part of the cross sections proportional to the Altarelli–Parisi splitting
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functions in eqs. (2.4.8)–(2.4.11) has a universal origin, due to the factorisation of the

collinear singularities on the underlying Born. The rest of the above cross sections

is, in general, not universal. In addition, for Higgs boson production, the NLO

cumulative cross sections that we have computed coincide exactly with the jet-vetoed

cross sections σveto(pveto
T ) of ref. [87], provided we identify qcut

T = pveto
T .

2.4.2 Extending the integration in z

According to eq. (2.2.29), in order to compute the hadronic cross section we need to

integrate the partonic cross sections convoluted with the corresponding luminosities.

In the calculation of the total cross sections, the upper limit in the z integration is

unrestricted and is equal to 1. When a cut on the transverse momentum qT is applied,

the reality of eqs. (2.4.8)–(2.4.11) imposes the non negativity of the argument of the

square roots, i.e.

1− π2
T ≥ 0 , (2.4.12)

that in turn gives

z ≤ zmax ≡ 1− f(a) , f(a) ≡ 2
√
a
(√

1 + a−
√
a
)
. (2.4.13)

Since our aim is to make contact with the transverse-momentum subtraction formu-

lae, that describe the behaviour of the cross sections in the soft and collinear limits,

we need to extend the integration range of the z variable up to 1, i.e. the upper

integration limit of z in a Born-like kinematics. In fact, only in the z → 1 limit we

recover the logarithmic structure from the soft region of the emission. In order to

obtain explicitly all the logarithmic-enhanced terms in the small-qcut
T limit, we have

then to expand our results in powers of a. Since both the integrand and the upper

limit of the integral depend on a, the näıve approach of expanding only the integrand

does not work, due to the appearance of divergent terms in the z → 1 limit, that

have to be handled with the introduction of plus distributions.

Using the notation of ref. [85], we first introduce the function R̂ab(z), defined by

σ<ab = τ

∫ 1−f(a)

τ

dz

z
Lab
(τ
z

) 1

z
σ̂<ab(z) ≡ τ

∫ 1

τ

dz

z
Lab
(τ
z

)
σ̂(0)R̂ab(z) , (2.4.14)

where the upper integration limit in z in the last integral is exactly 1 and σ̂(0) is the

partonic Born-level cross section for the production of the colourless system F . The

function R̂ab(z) can be written as a perturbative expansion in αS

R̂ab(z) = δB δ(1− z) +
∞∑
n=1

(αS

2π

)n
R̂(n)

ab (z) , (2.4.15)

where the δ(1 − z) term is the Born-level contribution, and δB = 1 when partons a

and b are such that a + b→ F is a possible Born-like process, otherwise its value is

0.
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The coefficient functions R̂(n)

ab (z) can be computed as power series in a. It is

in fact well known in the literature [85] that the NLO coefficient R̂(1)

ab (z) has the

following form4

R̂(1)

ab (z) = log2(a) R̂(1,2,0)

ab (z) + log(a) R̂(1,1,0)

ab (z) + R̂(1,0,0)

ab (z) +O
(
a

1
2 log a

)
, (2.4.16)

and the aim of this study is to compute the first unknown terms in eq. (2.4.16) that

were neglected in refs. [85] and [86], namely R
(1,m,r)
ab (z), for r up to 4 and for any m.

In a way similar to what was done in eq. (2.4.14) for R̂ab(z), we introduce the

function Ĝab(z) defined by

σ>ab = τ

∫ 1−f(a)

τ

dz

z
Lab
(τ
z

) 1

z
σ̂>ab(z) ≡ τ

∫ 1

τ

dz

z
Lab
(τ
z

)
σ̂(0) Ĝab(z) . (2.4.17)

Since

σ<ab + σ>ab = τ

∫ 1

τ

dz

z
Lab
(τ
z

)
σ̂tot

ab (z) ≡ σtot

ab , (2.4.18)

and σtot
ab is independent of a, the coefficients of the terms that vanish in the small-qT

limit in the series expansion in a of R̂ab(z) and Ĝab(z) are equal but with opposite

sign, at any order in αS. We recall that R̂ab(z) contains terms of the form δ(1− z),

coming from the Born and the virtual contributions, that are independent of a and

are obviously absent in Ĝab(z).

In the rest of the study we compute the first terms of the expansion in a of

Ĝ(1)

ab (z), that will be obtained from the following identity

σ>(1)

ab = τ

∫ 1−f(a)

τ

dz

z
Lab
(τ
z

) 1

z
σ̂>(1)

ab (z) = τ

∫ 1

τ

dz

z
Lab
(τ
z

)
σ̂(0) Ĝ(1)

ab (z) . (2.4.19)

We have elaborated a process-independent formula to transform an integral of the

form of the first one in eq. (2.4.19) into the form of the second one, producing the

series expansion of Ĝ(1)

ab (z) in a. The application of our formula reorganizes the

divergent terms in the z → 1 limit into terms that are integrable up to z = 1 and

logarithmic terms in a. Since this is a very technical procedure, we quote in the

following section the general method, whereas all the practical details are collected

in Appendix C, and we refer the interested reader to that appendix for the application

of the method to the four channels under investigation.

4The notation for the expansion of R
(1)
ab (z) follows from the number of powers of αS, log(a) and

a
1
2 , i.e.

R̂(1)

ab (z) =
∑
m,r

logm(a) a
r
2 R̂(1,m,r)

ab (z) .

In refs. [5, 85], the leading-logarithmic R
(1,2,0)
ab (z) and next-to-leading-logarithmic R

(1,1,0)
ab (z) coef-

ficient functions are directly associated to Σ
F (1;2)
cc̄←ab(z) and Σ

F (1;1)
cc̄←ab(z), respectively. The hard-virtual

coefficient function HF (1)
cc̄←ab corresponds to R

(1,0,0)
ab (z).
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2.4.3 Process-independent procedure for extending the z integration

In this section we describe the procedure followed to extend the integration range

of the z variable up to 1, as displayed in eq. (2.4.19), performing an expansion in a.

We consider an integral of the following form

I =

∫ 1−f(a)

τ

dz l(z) g(z) , (2.4.20)

with g(z) not defined for z > 1− f(a), l(z) well behaved for τ ≤ z ≤ 1 and l(z) = 0

for z < τ . We also assume that l(z) is C∞, so that we can derive it as many times as

necessary. We then suppose that g(z) can be written as an expansion in (negative)

powers of (1− z)

g(z) = g0(z, a) +
g1(z, a)

1− z
+
g2(z, a)

(1− z)2
+ . . . =

∞∑
n=0

gn(z, a)

(1− z)n
, (2.4.21)

where, in z = 1, the gi(z, a) are not singular or have an integrable singularity. If not

identically zero everywhere, the gi(z, a) are different from 0 for z = 1 and i ≥ 1, and,

in general, the gi(z, a) functions contain growing powers of a as i increases.

The point we would like to make here is that the right-hand side of eq. (2.4.21)

is convergent only for z ≤ 1 − f(a), and it converges to g(z). For z > 1 − f(a) the

series does not converge to g(z), otherwise g(z) would be defined in this region too.

We also assume that we can exchange the order of integration and summation

of the series, and we write eq. (2.4.20) as

I =
∞∑
n=0

In , (2.4.22)

where

In ≡
∫ 1−f(a)

τ

dz l(z)
gn(z, a)

(1− z)n
=

∫ 1−f(a)

0

dz l(z)
gn(z, a)

(1− z)n
, (2.4.23)

where we have extended the z-integration down to 0, since l(z) = 0 for z < τ . Each

term of the series can now be manipulated as shown in the following.

I0

I0 =

∫ 1−f(a)

0

dz l(z) g0(z, a)

=

∫ 1

0

dz l(z) g0(z, a)−
∫ 1

1−f(a)

dz l(z) g0(z, a) (2.4.24)

is finite and poses no problems.
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I1

I1 = +

∫ 1−f(a)

0

dz
[
l(z)− l(1)

]g1(z, a)

1− z
+

∫ 1−f(a)

0

dz l(1)
g1(z, a)

1− z

= +

∫ 1

0

dz
[
l(z)− l(1)

]g1(z, a)

1− z
−
∫ 1

1−f(a)

dz
[
l(z)− l(1)

]g1(z, a)

1− z

+

∫ 1−f(a)

0

dz l(1)
g1(z, a)

1− z
, (2.4.25)

where we have added and subtracted the first term of the Taylor expansion of l(z)

around the point z = 1, and performed straightforward manipulations of the integra-

tion limits. The first and second integrands in the above equation are well behaved

when z → 1, since the numerator goes to zero at least as fast as (1 − z), cancelling

the divergence of the denominator.

I2

In a similar way, we can manipulate I2 to have

I2 = +

∫ 1

0

dz
[
l(z)− l(1)− (z − 1) l(1)(1)

] g2(z, a)

(1− z)2

−
∫ 1

1−f(a)

dz
[
l(z)− l(1)− l(1)(1) (z − 1)

] g2(z, a)

(1− z)2

+

∫ 1−f(a)

0

dz
[
l(1) + l(1)(1) (z − 1)

] g2(z, a)

(1− z)2
, (2.4.26)

where we have added and subtracted the first two terms of the Taylor expansion of

l(z) around z = 1. Again the first two integrands are finite when z → 1, since the

numerator is O((1− z)2).

Final expression

The same procedure can be applied to all the integrals In and leads to the final result

I = Ĩ1 + Ĩ2 + Ĩ3 , (2.4.27)
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where

Ĩ1 = +

∫ 1

0

dz l(z) g0(z, a)

+

∫ 1

0

dz [l(z)− l(1)]
g1(z, a)

1− z

+

∫ 1

0

dz
[
l(z)− l(1)− l(1)(1) (z − 1)

] g2(z, a)

(1− z)2
+ . . . (2.4.28)

Ĩ2 = +

∫ 1−f(a)

0

dz l(1)
[
g(z)− g0(z, a)

]
+

∫ 1−f(a)

0

dz l(1)(1) (z − 1)

[
g(z)− g0(z, a)− g1(z, a)

1− z

]
+

∫ 1−f(a)

0

dz
1

2!
l(2)(1) (z − 1)2

[
g(z)− g0(z, a)− g1(z, a)

1− z
− g2(z, a)

(1− z)2

]
+ . . .

(2.4.29)

Ĩ3 = −
∫ 1

1−f(a)

dz l(z) g0(z, a)

−
∫ 1

1−f(a)

dz
[
l(z)− l(1)

]g1(z, a)

1− z

−
∫ 1

1−f(a)

dz
[
l(z)− l(1)− l(1)(1) (z − 1)

] g2(z, a)

(1− z)2
+ . . . (2.4.30)

Notice that in Ĩ2 the sum of the terms of the series add up to give back g(z), since the

upper integration limit is 1 − f(a), so that we are within the region of convergence

of the series. The integrals in Ĩ2 have to be evaluated exactly analytically, and this

is the harsh part of the calculation.

The integrals in Ĩ3 can instead be computed by performing an expansion in a,

and this part of the calculation poses no problems. Examples for the resolution of

these integrals are given in Appendix C.

Finally, by using of the plus distributions defined in Appendix G, we can write

Ĩ1 in a more compact form

Ĩ1 =

∫ 1

0

dz l(z) g0(z, a) +

∫ 1

0

dz l(z)

[
g1(z, a)

1− z

]
+

+

∫ 1

0

dz l(z)

[
g2(z, a)

(1− z)2

]
2+

+ . . .

(2.4.31)

This completes our process-independent procedure for the manipulation of the inte-

gral in eq. (2.4.20).

2.4.4 Results

In this section we summarise our findings. In particular, we present the analytic re-

sults for the Ĝ(1)

ab (z) functions we have computed. In the calculation of these functions,
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we kept trace of all the terms originating from the manipulation of the contributions

proportional to the Altarelli–Parisi splitting functions, in the partonic cross sections

of eqs. (2.2.41)–(2.2.59). These terms constitute what we call the “universal part” of

our results, as detailed in secs. 2.2 and 2.4.1. We will indicate these terms with the

superscript “U”, while the remaining terms will have a superscript “R”. We stress

here that the distinction between universal and non-universal part is purely formal,

and it does not have a physical implication. The reason of this separation is to have

hints on the general structure of the qcut
T dependence of inclusive cross sections for

the production of arbitrary colorless systems. We comment on the results that we

have obtained in the subsequent paragraphs.

In the last part of this section we study the numerical significance of the power-

correction terms we have computed, discussing first their impact on the different

production channels for Drell–Yan Z boson and Higgs boson production in gluon

fusion. Then we present their overall effect, normalising the results with respect to

the total NLO cross section, in order to have a better grasp on the size of these

contributions.

Results for the Ĝ(1)

ab(z) functions

We indicate with ĝU(1)

ab (z) the universal part of the Ĝ(1)

ab (z) functions, and with ĝR(1)

ab (z)

the remaining part, stripped off of a common colour factor. Our expressions for

Ĝ(1)

ab (z) contain derivatives of the Dirac δ function, δ(n)(z), up to n = 5, and plus

distributions up to order 5. We report here the definition of a plus distribution of

order n∫ 1

0

dz l(z) [g(z)]n+ ≡
∫ 1

0

dz

{
l(z)−

n−1∑
i=0

1

i!
l(i)(1) (z − 1)i

}
g(z) , (2.4.32)

where g(z) has a pole of order n for z = 1, and l(z) is a continuous function in z = 1,

together with all its derivatives up to order (n− 1). For completeness, we collect in

Appendix G more details on the plus distributions, and the identities we have used

to simplify our results.

Z production

• q(q̄) + g → Z + q(q̄)

Ĝ(1)

qg (z) = TR ĝ
(1)

qg (z) , ĝ(1)

qg (z) = ĝU(1)

qg (z) + ĝR(1)

qg (z) , (2.4.33)

where
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ĝU(1)

qg (z) = − pqg(z) log(a)− pqg(z) log
z

(1− z)2

+
{
δ(1)(1− z)− 3 δ(1− z)

}
a log(a)

+

{
δ(1− z)− 2 z pqg(z)

[
1

(1− z)2

]
2+

}
a

+

{
−9 δ(1− z) +

21

2
δ(1)(1− z)

− 3 δ(2)(1− z) +
1

4
δ(3)(1− z)

}
a2 log(a)

+

{
+2 δ(1− z) +

7

4
δ(1)(1− z)− 5

4
δ(2)(1− z) +

1

6
δ(3)(1− z)

−3 z2pqg(z)

[
1

(1− z)4

]
4+

}
a2

+O
(
a

5
2 log(a)

)
, (2.4.34)

ĝR(1)

qg (z) =
1

2
(1 + 3z)(1− z)− z(1 + 3z)

[
1

1− z

]
+

a

− z2(1 + 3z)

[
1

(1− z)3

]
3+

a2

+ 2 δ(1− z) a log(a)− 2 δ(1− z) a

+

{
5 δ(1− z)− 11

2
δ(1)(1− z) + δ(2)(1− z)

}
a2 log(a)

+

{
−2 δ(1− z)− 3

4
δ(1)(1− z) +

1

2
δ(2)(1− z)

}
a2

+O
(
a

5
2 log(a)

)
, (2.4.35)

and

pqg(z) = 2z2 − 2z + 1 . (2.4.36)

• q + q̄ → Z + g

Ĝ(1)

qq̄ (z) = CF ĝ
(1)

qq̄ (z) , ĝ(1)

qq̄ (z) = ĝU(1)

qq̄ (z) + ĝR(1)

qq̄ (z) , (2.4.37)
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where

ĝU(1)

qq̄ (z) = δ(1− z) log2(a)− 2 pqq(z) log(a)

− π2

3
δ(1− z)− 2 p̂qq(z) log(z) + 4 (1− z) p̂qq(z)

[
log(1− z)

1− z

]
+

+
{

6 δ(1− z)− 8 δ(1)(1− z) + 2 δ(2)(1− z)
}
a log(a)

+

{
−6 δ(1− z) + 4 δ(1)(1− z)− 4 z (1− z) p̂qq(z)

[
1

(1− z)3

]
3+

}
a

+

{
3 δ(1− z)− 12 δ(1)(1− z) +

21

2
δ(2)(1− z)− 3 δ(3)(1− z)

+
1

4
δ(4)(1− z)

}
a2 log(a)

+

{
−4 δ(1− z) + 6 δ(1)(1− z)− 1

2
δ(2)(1− z)− δ(3)(1− z)

+
1

6
δ(4)(1− z)− 6z2(1− z) p̂qq(z)

[
1

(1− z)5

]
5+

}
a2

+O
(
a

5
2 log(a)

)
, (2.4.38)

ĝR(1)

qq̄ (z) = − 2 (1− z) + 4 z

[
1

1− z

]
+

a+ 4 z2

[
1

(1− z)3

]
3+

a2

− 2 δ(1− z) a log(a) + 2 δ(1− z) a

+
{
−2 δ(1− z) + 4 δ(1)(1− z)− δ(2)(1− z)

}
a2 log(a)

+

{
2 δ(1− z)− 1

2
δ(2)(1− z)

}
a2 +O

(
a

5
2 log(a)

)
, (2.4.39)

and

p̂qq(z) =
1 + z2

1− z
, pqq(z) =

1 + z2

(1− z)+

. (2.4.40)

In eq. (2.4.38) we have written the (1 + z2) terms coming from the numerator

of the p̂qq(z) splitting function as

1 + z2 = (1− z) p̂qq(z) , (2.4.41)

in order to keep track of the universal origin of those terms.

H production

• g + q(q̄)→ H + q(q̄)

Ĝ(1)

gq (z) = CF ĝ
(1)

gq (z) , ĝ(1)

gq (z) = ĝU(1)

gq (z) + ĝR(1)

gq (z) , (2.4.42)
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where

ĝU(1)

gq (z) = −pgq(z) log(a)− pgq(z) log
z

(1− z)2

+ δ(1)(1− z) a log(a) +

{
δ(1− z)− 2 z pgq(z)

[
1

(1− z)2

]
2+

}
a

+

{
−3

2
δ(1− z) +

3

2
δ(1)(1− z)

− 3

4
δ(2)(1− z) +

1

4
δ(3)(1− z)

}
a2 log(a)

+

{
1

4
δ(1− z) +

1

4
δ(1)(1− z) +

1

4
δ(2)(1− z) +

1

6
δ(3)(1− z)

− 3 z2 pgq(z)

[
1

(1− z)4

]
4+

}
a2 +O

(
a

5
2 log(a)

)
, (2.4.43)

ĝR(1)

gq (z) = − 3

2z
(1− z)2 + 3 a+ 3 z

[
1

(1− z)2

]
2+

a2

+
3

2

{
δ(1− z)− δ(1)(1− z)

}
a2 log(a)

− 3

4

{
δ(1− z) + δ(1)(1− z)

}
a2 +O

(
a

5
2 log(a)

)
, (2.4.44)

and

pgq(z) =
z2 − 2z + 2

z
. (2.4.45)

• g + g → H + g

Ĝ(1)

gg (z) = CA ĝ
(1)

gg (z) , ĝ(1)

gg (z) = ĝU(1)

gg (z) + ĝR(1)

gg (z) , (2.4.46)

where
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ĝU(1)

gg (z) = δ(1− z) log2(a)− 2 pgg(z) log(a)

− π2

3
δ(1− z)− 2 p̂gg(z) log(z) + 4 (1− z) p̂gg(z)

[
log(1− z)

1− z

]
+

+
{

12 δ(1− z)− 8 δ(1)(1− z) + 2 δ(2)(1− z)
}
a log(a)

+

{
−6 δ(1− z) + 4 δ(1)(1− z)− 4 z (1− z) p̂gg(z)

[
1

(1− z)3

]
3+

}
a

+

{
18 δ(1− z)− 30 δ(1)(1− z) + 15 δ(2)(1− z)− 3 δ(3)(1− z)

+
1

4
δ(4)(1− z)

}
a2 log(a)

+

{
−15

2
δ(1− z) + 3 δ(1)(1− z) +

5

2
δ(2)(1− z)− δ(3)(1− z)

+
1

6
δ(4)(1− z)− 6 z2 (1− z) p̂gg(z)

[
1

(1− z)5

]
5+

}
a2

+O
(
a

5
2 log(a)

)
, (2.4.47)

ĝR(1)

gg (z) = −11

3z
(1− z)3 + 8 (1− z) a+ 6 z

[
1

1− z

]
+

a2

− 3 δ(1− z) a2 log(a)− 5

2
δ(1− z) a2 +O

(
a

5
2 log(a)

)
, (2.4.48)

and

p̂gg(z) =
2(z2 − z + 1)2

z(1− z)
. (2.4.49)

In eq. (2.4.47) we have written the 2(z2 − z + 1)2/z terms coming from the

numerator of the p̂gg(z) splitting function as

2(z2 − z + 1)2

z
= (1− z) p̂gg(z) , (2.4.50)

in order to keep track of the universal origin of those terms.

Comments on Ĝ(1)

ab(z)

The leading-logarithmic (LL) and next-to-leading-logarithmic (NLL) coefficients of

the Ĝ(1)

ab (z) functions that we have computed agree with the ones in the literature,

along with the finite term. Their values have been known for a while [42, 45] and

are related to the perturbative coefficients of the transverse-momentum subtrac-

tion/resummation formulae for Z [44] and Higgs boson production [88], as pointed
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out in Sec. 2.4.2. The coefficients of the terms of order a log(a) and a, and of order

a2 log(a) and a2 are instead the new results. Notice, however, that all the O(a) terms,

for both Drell–Yan and Higgs production, were already computed fully differentially

in the Born phase-space, i.e. in both invariant mass and rapidity of the color singlet,

in ref. [81] within a different framework with respect to ours. The O(a2) terms are

instead completely new.

The general form of the Ĝ(1)

ab (z) functions we have computed reads5

Ĝ(1)

ab (z) = log2(a) Ĝ(1,2,0)

ab (z) + log(a) Ĝ(1,1,0)

ab (z) + Ĝ(1,0,0)

ab (z)

+ a log(a) Ĝ(1,1,2)

ab (z) + a Ĝ(1,0,2)

ab (z)

+ a2 log(a) Ĝ(1,1,4)

ab (z) + a2 Ĝ(1,0,4)

ab (z) +O
(
a

5
2 log(a)

)
, (2.4.51)

all the other coefficients being zero.

We will refer to the terms in the first line of eq. (2.4.51) as leading terms (LT).

These terms are either logarithmically divergent or finite in the a→ 0 limit. We name

the terms in the sum in the second line of eq. (2.4.51) as next-to-leading terms (NLT),

and the first two terms in the third line as next-to-next-to-leading terms (N2LT), and

so forth.

We notice that the NLT and N2LT terms are at most linearly dependent on

log(a), consistently with the fact that the LL contribution is a squared logarithm.

In addition, no odd-power corrections of
√
a = qcut

T /Q appear in the NLT and N2LT

terms. This behaviour is in agreement with what found, for example, in ref. [81],

i.e. that, at NLO, the power expansion of the differential cross section for colour-

singlet production is in (qcut
T )2. We do not expect this to be true in general when cuts

are applied to the final state. In fact, this was verified after our paper by ref. [73],

both for transverse momentum and N -jettiness.

Soft behaviour of the universal part

The origin of some of the terms in the diagonal channels, i.e. the qq̄ channel for Z

production and the gg channel for H production, can be traced back to the behaviour

of the Altarelli–Parisi splitting functions in the soft limit, i.e. z → 1. In fact, in this

limit,

P̂qq(z) ≈ 2CF

1− z
, P̂gg(z) ≈ 2CA

1− z
, (2.4.52)

5The notation for the expansion of G
(1)
ab (z) follows from the number of powers of αS, log(a) and

a
1
2 (in the same way as for R̂(1)

ab (z)), i.e.

Ĝ(1)

ab (z) =
∑
m,r

logm(a)
(
a

1
2

)r
Ĝ(1,m,r)

ab (z) .
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so that

p̂qq(z) ≈ p̂gg(z) ≈ 2

1− z
≡ p̂(z) . (2.4.53)

Inserting p̂qq(z) and p̂gg(z) in eqs. (2.4.9) and (2.4.11), respectively, they give rise to

a contribution of the form∫ 1−f(a)

τ

dz

z
L
(τ
z

)
2 p̂(z) log

1 +
√

1− π2
T

1−
√

1− π2
T

=

∫ 1

0

dz

z
L
(τ
z

){
δ(1− z) log2(a)− 2 p(z) log(a)− π2

3
δ(1− z) + . . .

}
, (2.4.54)

where, following the notation of Appendix F, we have defined

p(z) =

[
2

1− z

]
+

. (2.4.55)

The details for the derivation of eq. (2.4.54), along with the full result, are collected

in Appendix C.6. Inspecting the first three terms of the universal function ĝU(1)

qq̄ (z)

in eq. (2.4.38) and ĝU(1)
gg (z) in eq. (2.4.47), we recognize exactly the three terms on

the right-hand side of eq. (2.4.54).

In addition, we point out that the subleading terms of order a log(a) originating

from eq. (2.4.54) present a second-derivative behaviour with respect to the lumi-

nosity function, and those of order a2 log(a) a fourth-derivative behaviour. This is

reflected by the results for the universal part of the diagonal channels, eqs. (2.4.38)

and (2.4.47), whereas the origin of such terms can be particularly traced back to the

contribution of eq. (C.6.5).

The NLT (N2LT) logarithmic contributions to the off-diagonal channels present

instead a first (third)-derivative behaviour, evident from eqs. (2.4.34) and (2.4.43).

The same holds for the real-virtual contribution to the NNLO cross section for the

qg-initiated channel, that is analysed in the next section. In fact, that contribution

has the same kinematics of the tree-level one, and this is reflected by the results of

order a presented in Appendix E, where second-derivative terms are absent.

Aside from these comments, it is useful to remark that our findings for the qT

power corrections hold at inclusive level. Corresponding results for N-jettiness, such

as the power corrections computed by refs. [68] and [72], are given instead at a more

differential level, e.g. as functions of the rapidity, and present at the first subleading

order only a first-derivative behaviour.

The non-universal part

It is also interesting to notice that the non-universal part of the Ĝ(1)

ab (z) functions

contains terms proportional to log(a), multiplied by powers of a. These powers are

controlled by the form of the non-universal parts in eqs. (2.4.8)–(2.4.11), and to the
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way they enter in our generating procedure described in Section 2.4.3. In fact, by

inspecting eq. (2.4.29), we see that they contribute to ĝR(1)

ab with terms of the form

∫ 1−f(a)

τ

dz (1− z)n
√

1− π2
T =



+ a2 log(a) + a log(a) + . . . n = 1

− 2 a2 log(a) + . . . n = 2

+ a2 log(a) + . . . n = 3

− 6 a3 log(a) + . . . n = 4

+ 2 a3 log(a) + . . . n = 5

(2.4.56)

where the dots stand for power terms in a with no logarithms attached. This also

explains why, for Z production, ĝR(1)
qg (z) in eq. (2.4.35) and ĝR(1)

qq̄ (z) in eq. (2.4.39)

contain both terms a log(a) and a2 log(a): they receive contributions from all the

terms in eq. (2.4.56) starting from n = 1, since eqs. (2.4.8) and (2.4.9) contain a

term proportional to (1 − z)
√

1− π2
T. Instead, ĝR(1)

gq (z) in eq. (2.4.44) and ĝR(1)
gg (z)

in eq. (2.4.48) contain only the term a2 log(a), since they receive contributions from

the terms in eq. (2.4.56) starting from n = 2, due to the fact that eqs. (2.4.10)

and (2.4.11) contain a term proportional to (1− z)2
√

1− π2
T and (1− z)3

√
1− π2

T,

respectively.

As far as the finite term in the diagonal channels is concerned, we notice that, in

the qq̄ channel of DY production, the first term in eq. (2.4.39) happens to correspond

to the first-order collinear coefficient function defined in the “hard-resummation

scheme”, introduced in ref. [89, 90] within the qT-subtraction formalism. Instead,

the first term in the gg channel of H production in eq. (2.4.48) has no connection

with the first-order collinear coefficient function, that is zero for this production

channel. In conclusion, the structure of the terms in the non-universal part depends

on the peculiar form of the differential cross sections.

Higher-order soft behaviour of the squared amplitudes

In this section, we extend the study performed in Sec. 2.4.4 in order to investigate

the origin of the power-suppressed terms a log(a) and a2 log(a), present both in the

universal and in the non-universal parts. We will show that their origin can be

connected to the higher-order soft behaviour of the squared amplitudes. To this aim,

we have performed a Laurent expansion in the energy k0 of the final-state parton

of the exact squared amplitudes of eqs. (A.3), (A.9), (A.14) and (A.19). In the

following, we call leading soft (LS) the term proportional to the highest negative

power of k0, next-to-leading soft (N1LS) the subsequent term, and so on. All the

technical details and expressions of the expansion terms are collected in Appendix A.

We have then applied the algorithm previously described to each of the terms

of the expansions that we have calculated, in order to compute their behaviour as a

function of a. This has allowed us to trace the origin of the a log(a) and a2 log(a)

terms. Our findings are collected in the following:
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• q(q̄) + g → Z + q(q̄)

We reproduce the a log(a) behaviour of ĝ(1)
qg (z) in eq. (2.4.33) if we consider

the soft-expansion of the exact amplitude up to the N1LS level, i.e. if we

sum eqs. (A.4) and (A.5), and the a2 log(a) behaviour if we consider the soft-

expansion up to the N3LS level, i.e. if we sum eqs. (A.4)–(A.7).

• q + q̄ → Z + g

We reproduce the a log(a) behaviour of ĝ(1)

qq̄ (z) in eq. (2.4.37) if we consider

the soft-expansion of the exact amplitude up to the N1LS level, i.e. if we sum

eqs. (A.10) and (A.11), and the a2 log(a) behaviour if we consider the soft-

expansion up to the N2LS level, i.e. if we sum eqs. (A.10)–(A.12).

• g + q(q̄)→ H + q(q̄)

We reproduce the a log(a) behaviour of ĝ(1)
gq (z) in eq. (2.4.42) if we consider

the soft-expansion of the exact amplitude up to the N1LS level, i.e. if we sum

eqs. (A.15) and (A.16), and the a2 log(a) behaviour if we consider the soft-

expansion up to the N2LS level, i.e. if we sum eqs. (A.15)–(A.17).

• g + g → H + g

We reproduce the a log(a) behaviour of ĝ(1)
gg (z) in eq. (2.4.46) if we consider

the soft-expansion of the exact amplitude up to the N2LS level, i.e. if we

sum eqs. (A.20)–(A.22), and the a2 log(a) behaviour if we consider the soft-

expansion up to the N4LS level, i.e. if we sum eqs. (A.20)–(A.24).

Collecting our result in a table, we have:

Z H

ĝ(1)
qg (z) ĝ(1)

qq̄ (z) ĝ(1)
gq (z) ĝ(1)

gg (z)

a log(a) N1LS N1LS N1LS N2LS

a2 log(a) N3LS N2LS N2LS N4LS

In summary, the next-to-leading-soft approximation of the exact amplitudes repro-

duces the a log(a) term only for Z production and for the qg-initiated channel of H

production. For the gg-initiated channel of H production, only the expansion up

to next-to-next-to-leading-soft order reproduces the a log(a) term. We would like to

point out that, of the three terms contributing to the N2LS of eq. (A.22), only the

constant one, i.e. the number 16, is needed to reproduce the a log(a) coefficient. The

u/t and t/u terms do not give rise to any a log(a) contribution.

Moreover, only the expansion up to next-to-next-to-leading-soft order in the qq̄

channel for Z production and in the qg-initiated channel for H production reproduces

36



the a2 log(a) coefficient. Higher orders in the expansion in the softness of the final-

state parton are needed for the qg-initiated channel of Z production and for the

gg-initiated channel of H production.

qT-subtraction method

In the original paper on the qT-subtraction method [4], the expansion in αS of the

transverse-momentum resummation formula generates exactly the three terms in

eq. (2.4.16), plus extra power-correction terms.

In the formula for R̂(1)

ab (z) that we can build from our expression of Ĝ(1)

ab (z),

by changing the overall sign and adding the δ(1 − z) contribution from the virtual

correction, the power-correction terms are exactly those produced by the expansion of

the real amplitudes. If one is interested in using our formula for R̂(1)

ab (z) to reduce the

dependence on the transverse-momentum cutoff, within the qT-subtraction method,

the aforementioned extra terms need then to be subtracted from our expression of

R̂(1)

ab (z).

Numerical results

As previously pointed out, NLO (and NNLO) cross sections computed with the qT-

subtracted formalism exhibit a residual dependence on qcut
T , i.e. the parameter a we

have introduced in eq. (2.4.6). This residual dependence is due to power terms which

remain after the subtraction of the IR singular contributions, and vanish only in the

limit a→ 0 (limit which is unattainable in a numerical computation). In this section

we discuss the residual systematic dependence on qcut
T due to terms beyond LT, NLT

and N2LT accuracy.

We present our results for Z and H production at the LHC, at a center-of-mass

energy of
√
S = 13 TeV. In our NLO calculations we have set the renormalisation

and factorisation scales equal to the mass of the corresponding produced boson, and

we have used the MSTW2008nlo parton-distribution function set [91]. The mass of

the Z boson mZ and of the Higgs boson mH have been set to the values 91.1876 GeV

and 125 GeV, respectively.

As an overall check of our calculation, we compared the results obtained with the

analytically qT-integrated cross sections in eqs. (2.4.8)–(2.4.11) with the numerically-

integrated results computed with both the DYqT-v1.0 [92, 93] and HqT2.0 [5, 94]

codes, and found an excellent agreement.

Then, in order to study the residual qcut
T dependence of the NLO cross sections for

all the partonic subprocesses, we insert the expansion in eq. (2.4.51) into eq. (2.4.19),
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and we introduce the following definitions

σLT

ab ≡ τ

∫ 1

τ

dz

z
Lab
(τ
z

)
σ̂(0)

[
log2(a) Ĝ(1,2,0)

ab (z) + log(a) Ĝ(1,1,0)

ab (z) + Ĝ(1,0,0)

ab (z)
]
,

(2.4.57)

σNLT

ab ≡ τ

∫ 1

τ

dz

z
Lab
(τ
z

)
σ̂(0)

[
a log(a) Ĝ(1,1,2)

ab (z) + a Ĝ(1,0,2)

ab (z)
]
, (2.4.58)

σN2LT

ab ≡ τ

∫ 1

τ

dz

z
Lab
(τ
z

)
σ̂(0)

[
a2 log(a) Ĝ(1,1,4)

ab (z) + a2 Ĝ(1,0,4)

ab (z)
]
, (2.4.59)

where we have dropped the > and (1) superscripts for ease of notation, since there is

no possibility of misunderstanding in this section, because we present only the NLO

results we have computed for the Ĝ(1)

ab (z) functions.

The Ĝ(1,n,m)

ab (z) functions in eqs. (2.4.57)–(2.4.59) contain plus distributions up to

order 5 and to compute these cross sections we have first built interpolations of the

luminosity functions Lab(y), defined in eq. (2.2.28), for the channels that contribute

to Z and H production at NLO. We have expanded the luminosity functions on

the basis of the Čebyšëv polynomials up to order 30, namely we used them to fit

the previously evaluated luminosity functions. In this way, the computation of the

derivatives of the (fitted) luminosity functions can be performed in a fast and sound

way, as the derivatives of the polynomial basis are completely under control. See

Appendix H for further details.

In the forthcoming figures, we plot the following quantities as a function of qcut
T

(the corresponding value of a is given on top of each figure):

1. (σ>(1)

ab − σLT
ab ),

2. (σ>(1)

ab − σLT
ab − σNLT

ab ),

3. (σ>(1)

ab − σLT
ab − σNLT

ab − σN2LT
ab ),

where σ>(1)

ab is the cumulative cross section defined on the left-hand side of eq. (2.4.19),

obtained by integrating the exact differential cross sections of eqs. (2.4.8)–(2.4.11).

We expect that, by adding higher-power terms in a, these differences tend to zero

more and more quickly when qcut
T → 0. And in fact, the results shown in the following

figures confirm this behaviour.

We first present our findings separated according to the partonic production

channels. In all the figures presented in this section, the statistical errors of the

integration procedure are also displayed, but they are always totally negligible on

the scales of the figures.

In fig. 2.1 we collect the results for the aforementioned cross-section differences,

as a function of qcut
T , for the qg → Zq (left) and qq̄ → Zg (right) channels, and

in fig. 2.2 we collect similar results for the gq → Hq (left) and gg → Hg (right)

38



0

50

100

150

200

10−1 100 101

10−5 10−4 10−3 10−2 10−1
(σ

>
(1

)
−

σ̃
)
[p
b
]

qg → Zq @ 13 TeV

q
cut
T [GeV]

a

σ̃=σ
LT

σ̃=σ
LT+σ

NLT

σ̃=σ
LT+σ

NLT+σ
N2LT

−200

−150

−100

−50

0

10−1 100 101 102

10−5 10−4 10−3 10−2 10−1 100

(σ
>
(1

)
−

σ̃
)
[p
b
]

qq̄ → Zg @ 13 TeV

q
cut
T [GeV]

a

σ̃=σ
LT

σ̃=σ
LT+σ

NLT

σ̃=σ
LT+σ

NLT+σ
N2LT

Figure 2.1. Difference of the total cross sections (σ>(1) − σ̃) as a function of qcut
T , for Z

boson production, in the qg → Zq (left pane) and in the qq̄ → Zg channel (right pane).

The three curves correspond to the three possible choices of σ̃: results for σ̃ = σLT are

displayed in blue, for σ̃ = σLT +σNLT are displayed in black and for σ̃ = σLT +σNLT +σN2LT

are displayed in red. The corresponding values of a = (qcut
T /mZ)2 are displayed on the top

of the figure. The statistical errors of the integration are also shown, but they are totally

negligible on the scale of the figure.
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Figure 2.2. Difference of the total cross sections (σ>(1) − σ̃) as a function of qcut
T , for H

boson production, in the qg → Hq (left pane) and in the gg → Hg channel (right pane).

Same legend as in fig. 2.1. The corresponding values of a = (qcut
T /mH)2 are displayed on

the top of the figure.

channels. As expected, NLT and N2LT contributions increase the accuracy of the

expanded cross section, with respect to the exact one.

To give a more quantitative estimation of the power-suppressed corrections,

we present results for the total hadronic cross section, normalised with respect

to the corresponding exact NLO cross section σNLO (i.e. including also the virtual

contributions). The results are shown in figs. 2.3 and 2.4, where we have used

σNLO = 55668.1 pb for Z production and 31.52 pb for H production. On the left

panes we plot results in a smaller qcut
T region, while, on the right panes, we extend

the qcut
T interval to higher values.

These plots show exactly how the residual cutoff dependence of the cross sections
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Figure 2.3. Results for 1− (σ>(1) − σ̃) /σNLO as a function of qcut
T , for Z boson production,

in pp → Zj. Same legend as in fig. 2.1. In the left pane, the low-qcut
T region is displayed,

while, in the right pane, a larger region in qcut
T is shown. The total cross section at NLO

for Z production, σNLO, has been taken equal to 55668.1 pb.
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Figure 2.4. Results for 1−(σ>(1) − σ̃) /σNLO as a function of qcut
T , for H boson production,

in pp → Hj. Same legend as in fig. 2.1. In the left pane, the low-qcut
T region is displayed,

while, in the right pane, a larger region in qcut
T is shown. The total cross section at NLO

for H production, σNLO, has been taken equal to 31.52 pb.

changes when the qT-subtraction counterterm is corrected by the NLT and N2LT

power terms. For example, for Z production and for qcut
T = 10 GeV, corresponding to

a = 0.012, the LT cross section gives an estimate of the exact cross section within the

5‰, that reduces to below the 1‰ when the NLT contribution is added and becomes

less than 0.01‰ when also the N2LT is present. For Higgs boson production, the
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residual cutoff dependence is even more pronounced: in fact, at qcut
T = 10 GeV,

corresponding to a = 0.0064, the LT is precise within the 1% level. When the NLT

is added, the precision reaches the 0.2‰, and is below 0.001‰ with the addition of

the N2LT.
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Figure 2.5. Same as fig. 2.3, but using only the universal part of Ĝ(1,n,m)

ab (z) in computing

the cross sections of eqs. (2.4.57)–(2.4.59).
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Figure 2.6. Same as fig. 2.5 but for Higgs boson production.

An interesting question is to estimate the impact of the universal parts of the

Ĝ(1,n,m)

ab (z) functions, with respect to the non-universal ones. We have then com-

puted the cross sections in eqs. (2.4.57)–(2.4.59), taking into account only the uni-

versal parts of the Ĝ(1,n,m)

ab (z) functions. Our results are displayed in fig. 2.5, for Z

production, and in fig. 2.6, for H production.
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Comparing these figures with the corresponding ones with the full Ĝ(1,n,m)

ab (z)

functions, i.e. figs. 2.3 and 2.4, we see that the non-universal contributions play a

crucial role for Z production, while their role is minor in Higgs boson production.

This is due to the fact that the non-universal part in eqs. (2.4.10) and (2.4.11) is

suppressed by higher powers of (1− z), with respect to the corresponding expression

for Z production, in eqs. (2.4.8) and (2.4.9), confirming the conclusions drawn in

Sec. 2.4.4.

2.5 NNLO subleading power corrections

In the previous sections we presented our results for the subleading power corrections

relevant to inclusive Z and H production at NLO in QCD. The calculation is useful

to deepen our knowledge about the subleading and universal behaviour of scattering

amplitudes in the infrared limits. In order to elaborate even more about that, it is

essential to push our effort to the next order in αS, also in view of the fact that, as

shown in refs. [23, 50], the sensitivity to the numerical value of the cutoff increases

at higher orders.

2.5.1 V + jet production

In this thesis we consider the NNLO corrections to the production of a vector boson

V , i.e. a W±, a Z or a virtual photon γ∗. In particular, we deal with the qg-initiated

partonic channel

q(p1) + g(p2) → V (q) +X(k) , (2.5.1)

where the quadri-momenta are given in parentheses. In Sec. 2.4, among other con-

tributions, we considered the NLO cross section for V production, i.e.

q(p1) + g(p2) → V (q) + q(k) , (2.5.2)

The standard Mandelstam invariants, defined as in eq. (2.2.5), are related by

s+ t+ u = Q2 + s2 , (2.5.3)

where Q2 and s2 are the squared invariant masses of the V boson and of the system

recoiling against V at parton level.

In the following, we use the same notation and the expressions computed in

ref. [95]. The couplings appearing in the differential cross sections follow this conven-

tion: if an electroweak boson V is emitted by a quark with flavour f1 = {u, d, s, c, b}
which then changes into f2, the vertex is described by the Feynman rule

− ieγµ
[
`f2f1

1− γ5

2
+ rf2f1

1 + γ5

2

]
, (2.5.4)
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where the definitions of the left- and right-handed couplings ` and r depend on the

V boson

W− : `f2f1 =
1√

2 sin θW
(σ+)f2f1 Uf2f1 , rf2f1 = 0 , (2.5.5)

W+ : `f2f1 =
1√

2 sin θW
(σ−)f2f1 U

†
f2f1

, rf2f1 = 0 , (2.5.6)

Z : `f2f1 =
1

sin 2θW
(σ3)f2f2 − δf2f1 ef1 tan θW , rf2f1 = −δf2f1 ef1 tan θW , (2.5.7)

γ∗ : `f2f1 = rf2f1 = δf2f1 ef1 , (2.5.8)

where θW is the Weinberg angle, ef is the fractional electric charge of the quark with

flavour f , σ± = (σ1± iσ2)/2 and σ3 are the weak isospin Pauli matrices and U is the

unitary Cabibbo–Kobayashi–Maskawa mixing matrix. In addition, in the following

we abbreviate `f2f1 to `21, and the same for rf2f1 .

The QCD NLO corrections to eq. (2.5.1) were computed in ref. [95]. We report

here eq. (2.12) of this reference, since we are going to use their results in d = 4

space-time dimensions, after correcting for some known typos6

Eq
dσ̂qg
d3q

=
1

s

CF

N2
c − 1

ααS

{
δ(s2)Aqg(s, t, u)

∑
f

(
|`f1|2 + |rf1|2

)
+
αS

2π

{[
δ(s2)

(
Bqg

1 (s, t, u) + nf B
qg
2 (s, t, u) + Cqg

1 (s, t, u) + Cqg
2 (s, t, u)

)
+ Cqg

3 (s, t, u, s2)

]∑
f

(
|`f1|2 + |rf1|2

)
+ δ(s2)Bqg

3 (s, t, u) (`11 − r11)
∑
f

(`ff − rff)
}}

, (2.5.9)

where Eq is the energy of the V boson, Nc = 3 is the number of colours and

CF = (N2
c − 1)/(2Nc) = 4/3. The functions Aqg, Bqg

i , Cqg
i are defined in eqs. (A4)–

(A6), (A10)–(A12) of ref. [95]. In particular, Aqg is the contribution from the Born-

level diagrams, i.e. of the process in eq. (2.5.2), considered in detail in Sec. 2.4. The

functions Bqg
i receive contributions from the interference of one-loop virtual correc-

tions to eq. (2.5.2) with the Born-level diagrams. In particular, Bqg
2 originates from

the renormalisation counterterm, while Bqg
3 is the contribution from the virtual di-

agrams with a triangular quark loop, which are present only for Z/γ∗ production.

These contributions are then multiplied by a δ(s2) term, since the system recoil-

ing against the F boson only comprises a single quark with momentum k, so that

s2 = k2 = 0.

6See footnote § of ref. [86].
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The functions Cqg
i originate from the diagrams contributing to the real correc-

tions. In particular, Cqg
1 and Cqg

2 are the coefficient of a δ(s2) term, leftovers of

the subtraction method when dealing with initial- and final-state radiation. Cqg
3

contributes instead for non-zero values of s2, and corresponds to the double-real ra-

diation contribution to qg-initiated F boson production. In the following we neglect

all the infrared divergences appearing as poles in eqs. (A4)–(A6), (A10)–(A12) of

ref. [95], since they cancel out when summing real and virtual contributions at this

order in αS. The Bqg
i and Cqg

i are analytic functions of the kinematic invariants and

contain logarithmic and dilogarithmic functions.

In this section we present results for the calculation of the power corrections for

all the terms proportional to δ(s2) in eq. (2.5.9), i.e. the virtual-correction terms and

terms from the regularisation of the double-real radiation contributions.

Since the kinematics of these terms is equivalent to the one discussed in Sec. 2.4,

we follow the same procedure, and we integrate all the terms proportional to δ(s2)

in eq. (2.5.9), writing them in the form suitable to be inserted in eq. (2.2.29), i.e.

dσ̂qg(qT, z)

dq2
T

∣∣∣∣
δ(s2)

=
1

16π

z2

Q4

1√
(1− z)2 − 4z

q2
T

Q2

[
|M (z, t+, qT)|2 + |M (z, t−, qT)|2

]
,

(2.5.10)

where M(s, t, u) is the sum of the functions Aqg, Bqg
1 , B

qg
2 , B

qg
3 , C

qg
1 , C

qg
2 , as they ap-

pear in eq. (2.5.9), together with the global factor in front, evaluated at

u = Q2 − s− t , s =
Q2

z
, t = t± , (2.5.11)

where

t± =
Q2

2z

z − 1±

√
(1− z)2 − 4z

q2
T

Q2

 , (2.5.12)

so that M becomes a function of z and qT, for a given vector-boson virtuality Q2.

We can write eq. (2.5.9), manipulated according to the previous steps, in a

compact notation as

dσ̂qg(qT, z)

dq2
T

=
αS

2π

dσ̂(1)
qg (qT, z)

dq2
T

+
(αS

2π

)2 dσ̂(2)
qg (qT, z)

dq2
T

, (2.5.13)

where the superscript (1) denotes the tree-level cross section, while the superscript (2)

the virtual and real contributions. The choice is made in order to make contact with

the labeling of the transverse-momentum resummation coefficients, that refer to V

production as the zeroth term, to its NLO corrections as the first term, and to the

NNLO corrections, i.e. the QCD NLO corrections to V + 1 parton, as the second

one.
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From now on we focus on the contribution

dσ̂(2)
qg (qT, z)

dq2
T

∣∣∣∣
δ(s2)

(2.5.14)

and, with a little abuse of notation, when referring to eq. (2.5.14), we sometimes

drop the
∣∣
δ(s2)

, to ease the notation.

2.5.2 Real-virtual power corrections

In this section we collect fully-analytic results for the NNLO power corrections in

the transverse-momentum cutoff, up to order a. The results refer to the δ(s2) con-

tributions of the qg-initiated channel in eq. (2.5.9).

We label the different contributions of eq. (2.5.9) with the letter K, so that

K = {Aqg, Bqg
1 , B

qg
2 , B

qg
3 , C

qg
1 , C

qg
2 } . (2.5.15)

Using eq. (2.5.10) and following the discussion in Sec. 2.2.1, we integrate K(s, t, u)

in t to obtain a function of the transverse momentum of the vector boson, qT, and z∫
dtK(s, t, u) = K(qT, z) . (2.5.16)

As explained in Sec. 2.4, the functions K are then to be integrated in qT from an

arbitrary value, qcut
T , up to the maximum transverse momentum qmax

T allowed by the

kinematics of the event.

We further split the contributions of Bqg
1 and Cqg

1 according to their colour factor,

CA and CF. We then introduce a further index, c = {CA, CF}, relevant for Bqg
1 and

Cqg
1 , in order to distinguish the coefficients of the different colour factors.

The general procedure described in Sec. 2.4.3 is applied to the qT-integrated K

functions. In order to present the structure of the results, we refer to the definitions

of I, Ĩ1, Ĩ2 and Ĩ3 of eqs. (2.4.27)–(2.4.30). Moreover, we present the results for the

sum Ĩ23 ≡ Ĩ2 + Ĩ3, and we do not give the two terms separately.

After dropping the qg superscript for ease of notation, we can then write

IH = ĨH1 + ĨH23 , H = {A, B1, B2, B3, C1, C2} , (2.5.17)

where, if H = {B1, C1},

ĨH1 =
∑

c={CA, CF}

c

{∫ 1

0

dz l(z) cgH0 (z) +

∫ 1

0

dz l(z)

[
cgH1 (z)

1− z

]
+

+

∫ 1

0

dz l(z)

[
cgH2 (z)

1− z

]
++

}
,

(2.5.18)

ĨH23 =
∑

c={CA, CF}

c cJ H

23 , (2.5.19)
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while, if H = {A, B2, B3, C2},

ĨH1 =

∫ 1

0

dz l(z) gH0 (z) +

∫ 1

0

dz l(z)

[
gH1 (z)

1− z

]
+

+

∫ 1

0

dz l(z)

[
gH2 (z)

1− z

]
++

,(2.5.20)

ĨH23 = J H

23 , (2.5.21)

where l(z) is given in terms of the parton luminosity in eq. (2.2.28), where we have

dropped any subscript for ease of notation

l(z) ≡ 1

z
L
(τ
z

)
. (2.5.22)

The functions cgH0 (z), cgH1 (z), cgH2 (z), gH0 (z), gH1 (z), gH2 (z), cJ H
23 and J H

23 are the main

results of this section and are collected in Appendix E.

2.5.3 Technical details

We have written dedicated Mathematica parallel codes in order to apply the whole

method to the different contributions. As already pointed out for the NLO calcula-

tion, the hardest integrals are those to compute Ĩ2, which requires the calculation of

exact integrals in z, between 0 e 1− f(a), where f(a) is defined in eq. (2.4.13).

The integrand functions have been classified into five groups, according to the

number of logarithmic and polylogarithmic functions that appear at the integrand

level. A sample of these integrals is collected in Appendix D. We have integrated

O(800) integrals in order to compute the expressions in eqs. (2.4.29) and (2.4.30)

of ref. [82], for all the contributions in eq. (2.5.17). In general, the integrals require

dedicated changes of variables and iterated integrations by parts, peculiarly for the

ones involving polylogarithms and logarithms to the third power, that turned out to

be the most difficult ones.

2.5.4 Comments

Due to the length of the intermediate results, in Appendix E we report only the final

results, i.e. the functions cgH0 (z), cgH1 (z), cgH2 (z), gH0 (z), gH1 (z), gH2 (z), cJ H
23 and J H

23

that appear in eqs. (2.5.17)–(2.5.21).7

In agreement with what is found for the NLO calculation, no odd-power correc-

tions of qcut
T /Q =

√
a appear, i.e. the power expansion of the real-virtual interference

terms for F production in the qg channel is in (qcut
T )2.

In addition, we can define the Ĝ(2)
qg (z)

∣∣∣
δ(s2)

function, starting from the integral of

the cumulative cross section in eq. (2.4.8), as

σ>(2)

qg

∣∣
δ(s2)

= τ

∫ 1−f(a)

τ

dz

z
Lqg
(τ
z

) 1

z
σ>(2)

qg (z)
∣∣
δ(s2)
≡ τ

∫ 1

τ

dz

z
Lqg
(τ
z

)
σ̂(0) Ĝ(2)

qg (z)
∣∣∣
δ(s2)

,

(2.5.23)

7The intermediate results are available upon request to the authors.
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and, from the structure of the power corrections we have computed here, the general

form of this function is given by8

Ĝ(2)

qg (z)
∣∣∣
δ(s2)

= log3(a) Ĝ(2,3,0)

qg (z) + log2(a) Ĝ(2,2,0)

qg (z) + log(a) Ĝ(2,1,0)

qg (z) + Ĝ(2,0,0)

qg (z)

+ a log2(a) Ĝ(2,2,2)

qg (z) + a log(a) Ĝ(2,1,2)

qg (z) + a Ĝ(2,0,2)

qg (z)

+O
(
a

3
2 log(a)

)
, (2.5.24)

all the other coefficients being zero.

This also agrees with the calculation done in ref. [64], although the observable is

different. In fact, analytic results are therein obtained for the dominant αS τ log(τ)

and α2
S τ log3(τ) subleading terms for 0-jettiness (τ) for qq̄-initiated Drell–Yan-like

processes.

We do not expect this behaviour to be true in general when cuts are applied to

the final-state boson. This was verified in ref. [73, 74], both for transverse momentum

and N -jettiness. In fact, power corrections proportional to
√
a and

√
τ are found

therein.

2.6 Conclusions

In the first part of the thesis we considered the production of a colourless system at

next-to-leading order in the strong coupling constant αS. We imposed a transverse-

momentum cutoff, qcut
T , on the colour-singlet final state and we computed the power

corrections for the inclusive cross section in the cutoff, up to the fourth power. We

also considered the same production process at next-to-next-to-leading order in αS,

restricting ourselves to the real-virtual contribution plus other terms with the same

kinematics, and we computed the power corrections up to the second power in the

cutoff for the inclusive cross section. Although we studied Drell–Yan vector boson

production and Higgs boson production in gluon fusion, the procedure we followed

is general and can be applied to other similar cases, up to any order in the powers

of qcut
T .

We presented analytic results at next-to-leading order and next-to-next-to-leading

order in αS, reproducing the known logarithmic terms from collinear and soft regions

of the phase space, along with the finite contribution, and adding new terms as power

corrections in qcut
T . We found that the logarithmic terms in qcut

T show up at most

8The notation for the expansion of Ĝ
(2)
ab (z)

∣∣∣
δ(s2)

follows from the number of powers of αS, log(a)

and a
1
2 , according to

Ĝ(2)

ab (z)
∣∣∣
δ(s2)

=
∑
m,r

logm(a)
(
a

1
2

)r
Ĝ(2,m,r)

ab (z) .
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linearly (to the third power) in the next-to-leading (next-to-next-to-leading) order

power-correction contributions, consistently with the fact that the LL contribution

is a squared (fourth-power) logarithm. In addition, no odd-power corrections in qcut
T

appeared in our calculation, both at next-to-leading and next-to-next-to-leading or-

der, in agreement with known results in the literature for the NLO differential cross

section in colour-singlet production. We do not expect this to be true in general

when cuts are applied to the final state.

Along the calculation at next-to-leading order we kept track of the origin of

the newly-computed terms, so that we were able to separate them into a universal

part, and a part that depends on the process at stake. In particular we derived and

identified the contribution to the universal part coming from soft radiation, present

in the diagonal partonic channels for Z and H production. We could also explain

some features about the presence of power-suppressed logarithmic terms, appearing

in the non-universal part of the power corrections. Furthermore we showed that

the knowledge of the squared amplitudes at the next-to-leading-soft approximation

is not enough to predict the (qcut
T )2 log qcut

T behaviour of the power corrections. The

same conclusion can be drawn for the knowledge of the next-to-next-to-leading-soft

approximation in predicting the (qcut
T )4 log qcut

T power correction.

We also studied the numerical impact of the next-to-leading-order power terms

in the hadronic cross sections for Z and H production at the LHC at 13 TeV, both

by keeping track of the different partonic production channels and by summing over

all of them. We plotted the behaviours of the cross sections while adding more

and more orders of the power-correction terms, as a function of qcut
T , and comparing

them with the exact cross sections. For example, in Z production and for a value

of qcut
T = 10 GeV, the sensitivity on the cutoff can be reduced from 1‰ to 0.01‰,

when adding the (qcut
T )4 contributions to the (qcut

T )2 ones. Higgs boson production

suffers from a larger sensitivity on the cutoff, and the dependence goes from 1% to

0.2‰, when all the power corrections we computed are added. By performing the

same numerical comparisons for just the universal part of the power corrections, we

showed that the non-universal contributions play a crucial role for Z production,

while their role is minor in Higgs boson production.

The knowledge of the power terms is crucial for understanding both the non-

trivial behaviour of cross sections at the boundaries of the phase space, and the

resummation structure at subleading orders. Within the qT-subtraction method, the

knowledge of the power terms helps in reducing the cutoff dependence of the cross

sections. We recall here that at next-to-next-to-leading order the qT-subtraction

method still plays a major role, also in view of the fact that, as shown in refs. [23, 50],

the sensitivity to the numerical value of the cutoff increases at higher orders. Thus it

is mandatory to conclude our study aimed at computing analytic results for next-to-

next-to-leading-order power corrections. In fact, besides improving the efficiency of

the method, the newly-computed terms can help in order to obtain a local version of
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the qT-subtraction. This would earn a major technical income from the application

of a pointwise subtraction, at variance with a non-local one, whose big cancellations

often lead to numerical difficulties and slower integrations.
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Chapter 3

A new interface for NLO+parton

shower generators

3.1 Introduction

Next-to-leading-order (NLO) calculations for Standard Model (SM) and, sometimes,

beyond-the-SM (BSM) processes, interfaced to parton shower (PS) generators, gen-

erally dubbed NLO+PS generators, are by now the methods of choice for the gener-

ation of event samples for signal and background processes at the LHC. This state

of the art has been made possible, on the one side, by the formulations of general

methods for computing NLO corrections [2, 3], and, on the other, by the theoretical

development of algorithms for interfacing fixed order calculations with parton shower

generators [10–12, 96–98]. These algorithms were implemented in software packages

for the automatic computation of NLO corrections [20, 99–102], and for the auto-

matic implementation of NLO+PS generators [14, 15, 20, 47, 103] that considerably

ease the construction of generators for new processes.

MadGraph5 aMC@NLO, often abbreviated to MG5 aMC in the following, is

a framework where automation has been pushed to the highest level. In fact, a

user without any knowledge of NLO calculations or NLO+PS implementations can

easily generate samples of parton-level events with NLO+PS accuracy, within the

MC@NLO procedure. These events can be then directly fed into a PS generator, such

as Pythia or Herwig. The MG5 aMC framework is not restricted to the case of SM

processes. In fact, it is possible to employ any user-defined model if this is provided in

the so-called UFO format [104], for example as generated by FeynRules [105, 106].

In particular, in order to undertake an NLO computation, the model should include

the relevant UV and rational counterterms (both needed for the numerical evaluation

of the one-loop matrix elements), which can be also automatically computed with

FeynRules+NLOCT [107]. Furthermore, the FeynRules+MG5 aMC frame-

work has been recently extended in order to fully support the supersymmetric case,

including the implementation of different renormalisation conditions [108], and the
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use of the so-called diagram removal and diagram subtraction techniques when in-

termediate resonances are present. NLO capabilities for BSM processes have been

proven successful for a number of processes, see ref. [108] and references therein.

The Powheg method allows to generate events with positive weights and, be-

cause of this, it has become the method of choice when large samples of events are

needed. In fact, in view of the large amount of computer resources needed for detector

simulation, the experimental collaborations cannot afford to use the larger samples

that are required when negative weights are present.1 The method has been also

extended with the introduction of some theoretical developments of general interest.

One of them deals with the generation of multijet samples that maintain a certain

level of accuracy, even when some of the jets become unresolved [110, 111]. This

approach has also led to the development of NNLO+PS generators, i.e. generators

where next-to-next-to-leading-order (NNLO) calculations are interfaced to parton

showers [112–114].2 Another development has been the extension of the Powheg

method for the inclusion of processes with decaying coloured resonances, which is

capable of handling the interference of the emitted radiation generated in production

and decay [118].3

The Powheg Box framework automatises the construction of NLO+PS genera-

tors, once the matrix elements are available. In the early Powheg Box processes, the

matrix elements were obtained from the authors of specific calculations. A consider-

able leap in the construction of the matrix elements took place when an interface of

the Powheg Box to MadGraph4 was set up [16], allowing for the implementation of

all tree-level ingredients required by a given NLO process. After this development,

the only missing ingredient for an NLO calculation in the Powheg Box was the

virtual contribution. Later, interfaces to automatic generators of virtual processes

were also developed in refs. [17, 18] for Gosam, and in ref. [19] for OpenLoops.

As of now, an interface to the matrix-element generator that is available within

the MG5 aMC package has not been developed. The main obstacle is the fact

that MG5 aMC is built as a single package that aims at the production of par-

tonic events, at difference with MadGraph4, that was initially conceived for the

generation of tree-level matrix elements. An interface between the matrix-element

generator of MG5 aMC and the Powheg Box is also highly desirable since many

BSM processes are available within MG5 aMC. In order to exploit the full capa-

bilities of the MG5 aMC package, such interface should also build, in addition to

the virtual contribution, all the necessary tree-level matrix elements: the Born, the

colour- and spin-correlated Born, and the real matrix elements.

1A variant of the MC@NLO method for drastically reducing the negative weight fraction has

appeared in ref. [109].
2Alternative methods for multijet merging have been presented in refs. [97, 98, 115]. Alternative

methods for NNLO+PS accuracy have been proposed in refs. [116, 117].
3See also ref. [119].
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The purpose of the present work is to present an interface between the MG5 aMC

matrix-element generator and the Powheg Box. The structure of the interface

is such that developments in MG5 aMC and Powheg can remain independent to

a large extent. For this reason, our aim is not to construct a framework that is

automatised at the same level as the full MG5 aMC package itself, but rather to

build an MG5 aMC extension that makes the NLO matrix elements readily available

to Powheg. Thus, progresses on the Powheg Box side and on the MG5 aMC side

can take place independently, which is a considerable advantage in view of the way in

which theoretical projects are developed. Furthermore, this kind of interface allows

generalisations to other NLO+PS frameworks, that may also benefit from it for the

implementation of the matrix elements.

The second part of the thesis is then organised as follows. In Sec. 3.2 we describe

the interface and we give some technical details on how to use it and how to distribute

the generated code. In Sec. 3.3 we consider, as a case study, the production of a

spin-0 boson X0 plus two jets. In particular, we present a few distributions able to

characterise the X0 boson CP properties and we discuss some features connected to

the Powheg Box reweighting feature. We also show a few distributions obtained

with the MiNLO approach. Finally, in Sec. 3.4 we draw our conclusions.

3.2 Interface to MG5 aMC

The new interface between Powheg and MG5 aMC uses the capability of the latter

to provide tree-level and one-loop matrix elements to be used by the former. The

interface itself is a plugin for MG5 aMC: as such, it does not require any modi-

fication of the core code and it works with any recent version of MG5 aMC.4 It

re-organises the output of MG5 aMC in a format which is suitable for the Powheg

Box [15], closely following what is described in ref. [16]. At variance with what is

discussed there, no external providers for the one-loop matrix elements are needed.

Rather, one-loop matrix elements are directly generated by MG5 aMC thanks to the

MadLoop module [20, 121], which encapsulates several different strategies, such as

integrand reduction [122], Laurent-series expansion [123] and tensor-integral reduc-

tion [124–126], as implemented in different computer libraries [127–130] and improved

by an in-house implementation of the OpenLoops method [99]. Thus, by fully ex-

ploiting the capabilities of MadLoop, the evaluation of virtual matrix elements and

the assessment of the numerical stability of the results are granted. Along with the

matrix elements, the relevant helicity routines are also provided, in the ALOHA

format [131].

4Versions 2.6 and onward are fully supported, for what concerns QCD corrections. The extension

of the interface to more recent releases able to deal with electro-weak corrections (from version

3) [120] is left for future work.
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3.2.1 Technical details

The interface plugin, dubbed MG5aMC-PWG, is publicly available.5 Its usage

is very simple, as one only needs to copy (or link) the MG5aMC PWG folder inside

the PLUGIN directory of MG5 aMC. Please refer to the README file enclosed in the

package for conditions of usage and instructions.

The plugin can be loaded by launching, within the MG5 aMC installation di-

rectory,

./bin/mg5_aMC --mode=MG5aMC_PWG

in a command shell. In order to generate the code for a specific process at NLO

QCD accuracy, the usual syntax of MG5 aMC should be employed. For example, in

the case of top-pair production, the syntax is the following:

generate p p > t t~ [QCD]

output pp_ttx

where pp_ttx is the name (chosen by the user) of the directory where the code will

be created. During the execution of the generate command, the MG5aMC-PWG

plugin checks whether an installation of the Powheg Box V2 is available on the

system and asks for its installation path (this is needed only once).

When this stage is concluded, the user can quit MG5 aMC and finds the

MG5 aMC code for the Born, real and virtual contributions in the pp_ttx direc-

tory, in addition to a few basic Powheg Box V2 files. In particular, the Born.f,

real.f and virtual.f files are ready to be used. Also the init_processes.f file

can be used as it is, but can be also modified if particular features of the Powheg

Box V2 need to be activated and initialised.

A few comments about the other files are in order:

• The Born_phsp.f file is just a place holder. It needs to be replaced by the ac-

tual phase-space generator for the process at hand. Examples of Born_phsp.f

implementations can be found in the processes already implemented in the

Powheg Box V2. In the current setup, a subroutine born_suppression should

be also implemented in the Born_phsp.f file. This function is used at the inte-

gration stage to suppress divergences when present at the Born level, i.e. when

there are jets and photons.

• The call of the setpara("param_card.dat") routine in the init_couplings.f

file initialises the parameters listed in the Cards/param_card.dat file to the

5See https://code.launchpad.net/~mg5amc-pwg-team/mg5amc-pwg/v0, while the code can

be downloaded with the command: bzr branch lp:~mg5amc-pwg-team/mg5amc-pwg/v0. The in-

stallation of the revision control system bazaar is required.
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corresponding values, according to the UFO model [104] used in MG5 aMC.6

It is also possible to assign a value to a MG5 aMC parameter at execution

time. An example of this can be found in the init_couplings.f file for the

process X0jj, that we discuss in Sec. 3.3. In this file we reassign the value of

cosα, the CP-mixing parameter that appears in the Lagrangian of eq. (3.3.3).

This parameter is indicated with cosa in the Cards/param_card.dat file, and

is initialised to the value specified in this file, if no further action is taken.

In order to reassign its value at execution time, we change the values of the

internal MG5 aMC variables, mdl_cosa and mp__mdl_cosa (for double and

quadruple precision), that encode this parameter.

After any reassignment of the MG5 aMC parameters, the user has to call the

coup routine in order to recompute all the dependent variables.

• In order to have full consistency between the MG5 aMC amplitudes and what

is computed by the Powheg Box V2, all the physical parameters used by

the Powheg Box V2 should be set starting from those assigned or computed

by MG5 aMC. An example of this is the list of the external-particle masses,

kn_masses, used by Powheg Box V2 when generating the kinematics of the

event. Using tt̄ production as example, kn_masses should be set to

(\ 0, 0, mdl_mt, mdl_mt, 0 \)

in init_couplings.f or Born_phsp.f, where mdl_mt is the mass of the top

quark used inside MG5 aMC, the first two entries are the masses of the incom-

ing particles, and the last massless particle is the radiated one, when computing

the real contribution.

• The interface also builds a script file, prepare_run_dir, that is useful to create

a directory where the produced code can be executed. For example, by typing

the command

./prepare_run_dir test

a directory test is created. This directory contains all the relevant links to

the MG5 aMC code and a template of the powheg.input file, required by the

Powheg Box V2. This last file should then be changed and modified according

to the process at hand.

6It should be noted that the Cards/param_card.dat file is not read at execution time. Rather,

it is parsed at compilation time into a Fortran include file, which is then compiled together with

the code. Hence, after any parameter modification within this file, the main executable has to be

recompiled.
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The Powheg process generated along these lines can be completed with all sorts of

features that are commonly used in the Powheg Box V2. For example, one can

activate the MiNLO option for processes with associated jets, or use the damping

option to separate the real contributions into two parts, along the lines of what

was suggested in the original Powheg paper [11], and applied for the first time in

ref. [132].

3.2.2 Distribution of the code

A process generated with this interface to MG5 aMC cannot be distributed as a usual

Powheg Box process, since the searching path of the linked libraries are written in

several files at generation time.

An author can distribute the instructions for MG5 aMC, needed in order to

generate the process, and the actual files, that overwrite the place holders created

by the interface plugin. In this way, all relevant paths point to the right directories

in the user computer.

Alternatively, the author of the process may provide a script file that automati-

cally executes all these tasks, helping the installation phase.

3.3 A case study: X0jj production with CP-violating cou-

plings

For our case study, we considered the production of a spin-0 boson X0 (a Higgs-

like boson) that couples to a massive top quark, produced via gluon fusion, and

accompanied by two jets, in the heavy-top-mass limit. We discuss a few distributions

able to characterise the X0 boson CP properties, and discuss a few results obtained

using the Powheg Box V2 reweighting feature. We also present a few distributions

obtained with the MiNLO method.

3.3.1 Theoretical setup

The theoretical framework of this study is fully inherited from what was done in

ref. [133], where the process was studied at NLO in QCD. In particular, in the

heavy-top-mass limit, the CP structure of the X0-top interaction characterises the

effective ggX0 vertex. The starting point is the effective Lagrangian

Lt0 = −ψ̄t (kHtt gHtt cosα + i kAtt gAtt sinα γ5)ψtX0 , (3.3.1)

where X0 is the spin-0 boson, ψt the top-quark spinor, α the CP-mixing angle pa-

rameter (0 ≤ α ≤ π), kHtt and kAtt the real coupling parameters and

gHtt = gAtt =
mt

v
=

yt√
2

(3.3.2)
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the Yukawa couplings, with v the vacuum expectation value.

The CP-even case, that will be labeled 0+, corresponds to the assignment cosα =

1, namely to the SM scenario, while the CP-odd case, labeled 0−, to cosα = 0. A

CP-mixed case, 0±, where the spin-0 boson receives contributions from both a scalar

and a pseudoscalar state, is also taken into account by setting cosα = 1/
√

2.

For our purposes, it will suffice to notice that the Higgs interaction with the

gluons originates as an effective coupling induced by a top-quark loop. The relevant

effective Lagrangian, in the Higgs Characterisation framework [134], reads

Lloop

0, g = −1

4

(
kHgg gHgg cosα Ga

µν G
a,µν + kAgg gAgg sinα εµνρσ Ga

µν G
a
ρσ

)
X0 , (3.3.3)

where Ga
µν is the gluon field strength and

kHgg = − αS

3πv
, kAgg =

αS

2πv
. (3.3.4)

The theoretical setup is made available online in the FeynRules [106] repository

as a UFO model named HC NLO X0 [133, 135–137], which is in fact the one used for

our case study.

3.3.2 Generation of the code

In order to generate the code, we have first to install the UFO model HC_NLO_X0_UFO.zip

under the models directory of the MG5 aMC version being used. We have then fol-

lowed the procedure described in Sec. 3.2.1 for the generation of the code, and given

the following commands to MG5 aMC:

import model HC_NLO_X0_UFO-heft

generate p p > x0 j j / t [QCD]

install ninja

install collier

output X0jj

where we have also inserted the command lines to install ninja [128] and col-

lier [130], that are optional and need to be installed just once.

We have then overwritten the Born_phsp.f file generated by the interface with

the Born_phsp.f from the Hjj Powheg Box V2 process, taking care of assigning

to the Powheg variables hmass and hwidth (the mass and width of the Higgs-like

boson) the MG5 aMC values, mdl_mx0 and mdl_wx0 respectively.

In order to ease the installation procedure, we provide a tarball file that needs

to be inflated in the installation directory. This file contains all the modified files

that replace the place holders.
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3.3.3 Simulation parameters

We have performed a simulation for the LHC, running at a centre-of-mass energy of√
S = 13 TeV. The mass of the spin-0 boson X0 has been set equal to 125 GeV. We

have chosen the NNPDF2.3 (NLO) set [138] for the parton distribution functions,

within the LHAPDF interface [139, 140].

The differential cross section for X0jj production is already divergent at the

Born level, unless a minimum set of generation cuts is imposed on the transverse

momentum of the final-state jets and on their invariant mass. Alternatively, the

divergences can be avoided if the code is executed with the MiNLO option activated.

We have generated the kinematics of the underlying Born configurations imposing

the following minimum set of cuts

p
jk
T > 10 GeV , k = 1, 2 , mj1j2

> 10 GeV . (3.3.5)

In the phenomenological study we perform in Sec. 3.3.4, we apply more stringent cuts,

and we have checked that the results we present are insensitive to the generation cuts.

In order to integrate the divergent underlying Born cross section, the Powheg

Box V2 can further apply a suppression factor at the integrand level. We stress that

the final kinematic distributions are independent of this factor.7

3.3.4 Phenomenology

In this section we present results produced by the Powheg Box V2 at the Les

Houches Event (LHE) level, i.e. after the emission of the first radiation, accurate

at NLO for large transverse momentum, and with leading-logarithmic accuracy at

small pT, due to the presence of the Powheg Sudakov form factor. The results are

computed on samples of 3.2 M events.

The renormalisation and factorisation scales are set to

µR = µF =
HT

2
, (3.3.6)

where HT is the sum of the transverse masses of the particles in the final state.

Jets are reconstructed employing the anti-kT algorithm [141] via the FastJet

implementation [142], with distance parameter R = 0.4, and the two leading jets are

required to have transverse momentum and pseudorapidity such that

p
jk
T > 30 GeV , |ηjk | < 4.5 , k = 1, 2 . (3.3.7)

Events that do not pass this minimum set of acceptance cuts are discarded.

In Fig. 3.1 we plot the differential cross section for X0jj production as a function

of the invariant mass of the two leading jets, mj1j2 , for three different CP scenarios:

7We have set bornsuppfact to 30 GeV in our simulation.
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Figure 3.1. Differential cross section as a function of the invariant-mass distribution of the

two leading jets in pp → X0jj for the three CP scenarios. The blue curve corresponds to

the CP-even scenario with cosα = 1, the red curve to the CP-odd scenario with cosα = 0

and the black curve to the mixture of the 0+ and 0− scenarios with cosα = 1/
√

2.

CP even (0+), CP odd (0−) and a mixture of the two (0±). The shapes of the three

spectra are very similar among each other. Since a cut on the invariant mass of the

dijet system enhances the discriminating power among different CP scenarios [143],

the fact that the three spectra have similar shapes implies that the cut acts in a

similar way on each of them. Typically a cut on mj1j2 enhances the contributions

coming from the exchange of a gluon in the t channel, and these contributions are

more sensitive to the CP properties of the X0 boson.
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Figure 3.2. Normalised differential cross section as a function of the transverse momentum

of the spin-0 boson X0, for the three CP scenarios. On the left panel, a cut of 250 GeV

is imposed on the dijet mass, while on the right panel a cut of 500 GeV is applied. The

colour code is the same as in Fig. 3.1.

In the following plots we impose an additional cut on the dijet mass. In partic-
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Figure 3.3. Normalised differential cross section as a function of the pseudorapidity of

the spin-0 boson X0, for the three CP scenarios. On the left panel, a cut of 250 GeV is

imposed on the dijet mass, while on the right panel a cut of 500 GeV is applied. The colour

code is the same as in Fig. 3.1.
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Figure 3.4. Normalised differential cross section as a function of the transverse momentum

of the leading jet, for the three CP scenarios. On the left panel, a cut of 250 GeV is imposed

on the dijet mass, while on the right panel a cut of 500 GeV is applied. The colour code

is the same as in Fig. 3.1.

ular, we consider the two cases where

mj1j2
> 250 GeV and mj1j2

> 500 GeV . (3.3.8)

In addition, since we are interested in shape comparisons among different CP sce-

narios, we normalise each curve to one.

In Figs. 3.2 and 3.3 we plot the transverse momentum and pseudorapidity of

the X0 boson, and in Figs. 3.4 and 3.5 we show the transverse momentum and

pseudorapidity of the leading jet. The increase of the cut on the dijet mass hardens

the pT spectrum of the X0 boson and the leading jet j1. Moreover, there are only mild

differences among the three CP scenarios in the X0 distributions at low transverse

momentum and in the central pseudorapidity region, with a modest enhancement

when the dijet-mass cut increases. No substantial differences are present in pj1T and

59



0

0.05

0.1

0.15

0.2

−4 −2 0 2 4

pp→ X0jj @ 13 TeV

MG5aMC-PWG LHE

mj1j2
> 250 GeV(1

/σ
)
d
σ
/d
η j

1

ηj1

0+

0−

0±

0

0.05

0.1

0.15

0.2

−4 −2 0 2 4

pp→ X0jj @ 13 TeV

MG5aMC-PWG LHE

mj1j2
> 500 GeV(1

/σ
)
d
σ
/d
η j

1

ηj1

0+

0−

0±

Figure 3.5. Normalised differential cross section as a function of the pseudorapidity of

the leading jet, for the three CP scenarios. On the left panel, a cut of 250 GeV is imposed

on the dijet mass, while on the right panel a cut of 500 GeV is applied. The colour code

is the same as in Fig. 3.1.

ηj1 , also in agreement with what is found in ref. [133].8
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Figure 3.6. Normalised differential cross section as a function of the pseudorapidity

separation of the two leading jets (see eq. (3.3.9)), for the three CP scenarios. On the left

panel, a cut of 250 GeV is imposed on the dijet mass, while on the right panel a cut of

500 GeV is applied. The colour code is the same as in Fig. 3.1.

The most sensitive observables to the CP coupling of the X0 boson to the top

quark in gluon fusion are dijet-correlation variables [143, 146–152]. As displayed

in Fig. 3.6, no significant differences are seen in the differential cross sections as a

8A possible concern is to what extent the effective-field-theory (EFT) Lagrangian of eq. (3.3.3)

produces sound results in the high-energy regimes, since it describes the full theory in the heavy-

top-quark limit. From the exact calculation of ref. [144], it is known that the EFT closely reproduces

the mj1j2
spectrum even in the very high invariant-mass region. However, the EFT approximation

breaks down when the transverse momenta of the jets are larger than the top mass [145], overesti-

mating the exact prediction when pj1
T is larger than the top mass. Since the region of interest for

discriminating the CP properties is at low transverse momentum, we can trust the results obtained

within the EFT approach.
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Figure 3.7. Normalised differential cross section as a function of the azimuthal separation

of the two leading jets (see eq. (3.3.10)), for the three CP scenarios. On the left panel, a

cut of 250 GeV is imposed on the dijet mass, while on the right panel a cut of 500 GeV is

applied. The colour code is the same as in Fig. 3.1.

function of the pseudorapidity separation of the two leading jets

∆ηj1j2 = |ηj1 − ηj2| . (3.3.9)

Instead, when the differential cross sections are expressed as a function of the azimuthal-

angle separation, the CP nature of the coupling is more evident [143]. In fact, the

shape of the differential cross sections as a function of ∆φj1j2 are very different, as

shown in Fig. 3.7, where we have defined (modulo 2π)

∆φj1j2 = |φj1 − φj2 | , (3.3.10)

where the azimuth of a jet is computed as

φjk = arg
(
pjk · ŷ + ipjk · x̂

)
, k = 1, 2 , (3.3.11)

with pjk the tri-momentum of the jet k and x̂ (ŷ) the unit vector along the x (y)-axis

direction. In the following figure, z is the beam axis.

y

x

z

pj1T

pj2T

pj2
pj1

pj1T × pj2T

∆φj1j2
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Figure 3.8. Normalised differential cross section as a function of the oriented azimuthal

separation of the two leading jets, defined in eq. (3.3.12), for the three CP scenarios. On

the left panel, a cut of 250 GeV is imposed on the dijet mass, while on the right panel a

cut of 500 GeV is applied. The colour code is the same as in Fig. 3.1.

As pointed out in refs. [147, 153], a more CP-sensitive observable (especially

for the maximal mixing scenario of cosα = 1/
√

2 considered here) is the oriented

azimuthal separation of the two hardest jets. This variable contains information not

only on the azimuthal separation of the two jets but also on the sign of the azimuthal

angle. We have adopted the definition of this variable of ref. [154], namely

∆φor

j1j2
≡
(
p̂j1

T × p̂j2
T

)
· ẑ∣∣(p̂j1

T × p̂j2
T

)
· ẑ
∣∣ (pj1 − pj2) · ẑ
|(pj1 − pj2) · ẑ|

∆φj1j2 (3.3.12)

where p̂
jk
T is the jet transverse momentum, normalised to one, and ẑ is the unit vector

along the z-axis direction.

The differential cross sections for the three different CP scenarios considered in

this study, as a function of ∆φor
j1j2

, are shown in Fig. 3.8, and their shapes are visibly

different.

In particular, the oriented azimuthal separation can also distinguish between the

two scenarios with cosα = 1/
√

2 and cosα = −1/
√

2, as illustrated in Fig. 3.9, while

∆φj1j2cannot distinguish between them.

3.3.5 Reweighting

In this section we present a few results obtained with the Powheg Box V2 reweight-

ing feature. We have reweighted two of the event samples that we have produced:

the scalar and the mixed one. We have then compared the reweighted distributions

with the original ones, i.e. those computed from the beginning with a given value of

cosα. In particular, we have reweighted the scalar sample to the pseudoscalar and

CP mixed cases, and we have reweighted the mixed sample to the scalar and pseu-

doscalar ones. We have found an overall good agreement between the reweighted and
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Figure 3.9. Normalised differential cross section as a function of the oriented azimuthal

separation of the two leading jets, defined in eq. (3.3.12), for the two mixed CP scenarios

with cosα = 1/
√

2 (black curve) and cosα = −1/
√

2 (grey curve). A cut of 250 GeV is

imposed on the dijet mass.
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Figure 3.10. Normalised differential cross section as a function of the oriented azimuthal

separation of the two leading jets, defined in eq. (3.3.12), with a cut of 250 GeV imposed

on the dijet mass. On the left panel, the pseudoscalar original distribution in red, the

pseudoscalar as obtained by reweighting (rw) in pink, and the scalar one in dotted blue.

On the right panel, the CP mixed original distribution in black, the mixed as obtained

by reweighting (rw) in grey, and the scalar one in dotted blue. The ratios between the

distributions obtained by reweighting and the original ones are also shown.

the original distributions, see Appendix I for further plots, except for the distribu-

tion of the differential cross section expressed as a function of the oriented azimuthal

angle, i.e. the distributions most sensitive to the value of the CP parameter cosα.

In Fig. 3.10 we compare three curves. The ∆φor
j1j2

distribution obtained from the
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Figure 3.11. Same as Fig. 3.10 but for the reweighting of the CP mixed sample to the

scalar case (on the left) and to the pseudoscalar one (on the right).
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Figure 3.12. Same as Fig. 3.10 but for the reweighting of the scalar sample to the CP

scenario defined by cosα = 0.985.

original scalar sample is plotted in dotted blue, on both panels. This curve corre-

sponds to the 0+ line on the left panel of Fig. 3.8. The scalar sample is reweighted

to the pseudoscalar scenario on the left panel and to the mixed scenario on the right

panel. The reweighted sample, indicated with “rw” in the figures, is then compared

with the original distribution. The ratio of the last two curves is also plotted. In

both cases, in correspondence to the minima of the 0+ distribution, the discrepancy

between the reweighted distribution and the original one is more than −10%, the mi-

nus sign to indicate that the distributions obtained by reweighting underestimate the

original ones. The opposite is also true: when the 0+ distribution has maxima that
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are not close to the maxima of the 0− and 0± distributions, we have a discrepancy

on the opposite side, up to +10%.

Similar conclusions can be drawn by reweighting the 0± sample, as illustrated in

Fig. 3.11, in order to produce the differential cross section as a function of ∆φor
j1j2

for

the 0+ and 0− scenarios.

These differences can be explained by noticing that the minima of the above

distributions are actually zeros at LO, and the production of events around these

regions is then suppressed. The reweighting procedure is not able to generate the

correct distributions, if the starting one is very different from the final one, i.e., for

example, going from α = 0 to α = π/2, for the reweighting of the scalar case to the

pseudoscalar one.

Otherwise, if the reweighting procedure is used to reweight distributions with

similar values of the angle α, the procedure correctly works. This is shown in

Fig. 3.12, where the distribution computed with α = 0 is reweighted to the dis-

tribution with α ∼ 10◦ ∼ π/18, and the agreement with the exact one is very good.

3.3.6 MiNLO

In this section we present a few results for the pseudoscalar X0 production, obtained

within the MiNLO procedure. Although all the cuts applied on the jets in the

previous sections are completely removed, the differential cross sections for inclusive

quantities are finite, due to the presence of the MiNLO Sudakov form factor.

This is shown, for example, in Fig. 3.13, where we plot the inclusive differential

cross section as a function of the transverse momentum of the hardest and of the

second-to-hardest jet, on the left panel, and the inclusive rapidity of the X0 boson,

on the right one.

Although finite, we cannot make any claim on the accuracy of these distribu-

tions, i.e. they do not reach the NLO accuracy of the MiNLO’ method, described in

refs. [111, 155].9

3.4 Conclusions

In the second part of the thesis we have presented an interface between Mad-

Graph5 aMC@NLOand the Powheg Box V2, able to build a NLO + parton shower

generator for Standard Model and many beyond-the-Standard-Model processes, in

an automatic way.

9Our MG5aMC-PWG implementation is NLO accurate only for quantities involving two detected

jets. The MiNLO procedure allows to obtain finite and LO accurate predictions for quantities with

one or zero detected jets. Otherwise, the only available method able to reach NLO accuracy for

one-jet inclusive distributions, for colour-singlet production with two associated jets within the

Powheg-MiNLO method, is the one illustrated in ref. [155].
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Figure 3.13. On the left panel the inclusive differential cross section as a function of the

transverse momentum of the hardest jet, in blue, and of the second-to-hardest one, in red.

The CP scenario is defined by cosα = 0, namely, the pseudoscalar case. On the right panel

in red, the inclusive rapidity of the X0 boson, for the same CP scenario as in the left panel.

Both plots are obtained with MiNLO.

The structure of the interface is such that future developments in MadGraph5

aMC@NLO and Powheg Box V2 remain independent to a large extent, so that it

benefits from all the progresses coming from both sides. In fact, on the one side,

MadGraph5 aMC@NLO provides the matrix elements for the Born, the colour-

and spin-correlated Born, the real and the virtual contributions. On the other, the

Powheg Box uses these ingredients to generate events accurate at the NLO + parton

shower level. In addition, the interface writes other files needed by the Powheg Box

V2. Some of them, as the list of processes, are fully finalised. Others, such as the

phase-space generator, need to be adjusted in order to deal with the process at hand.

By now the interface only deals with processes for which we aim at NLO QCD

accuracy. The extension including the electroweak corrections and the interface with

the more recent version of the Powheg Box, i.e. the Powheg Box Res, is left as

future work.

As a case study, using this interface we have generated the code for the pro-

duction of a spin-0 boson plus two jets, and we have computed a few kinematic

distributions, sensitive to the CP properties of the coupling of the boson with a

massive top quark. We have compared these distributions with known results in the

literature and found full agreement. We have also presented a few results for the

pseudoscalar case, obtained within the MiNLO approach.

Finally, we have tested the Powheg Box reweighting feature. This procedure

works fine for every kinematic distributions we have examined, but for the ones most

sensitive to the CP nature of the X0 boson. In fact, we have observed that it works

if the reweighting is done from one distribution to another, with values of the mixing

angle α not very different from each other.
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Appendix A

Squared amplitudes and their soft

limit

In this section, for completeness, we collect the squared amplitudes |M(s, t, u)|2 for

Z+jet and H+jet, at the lowest order in αS, stripped off of trivial coupling, colour

and spin factors. The normalization of the following amplitudes is such that

z

2

q2
T

Q2

[
|M (z, t+, qT)|2 + |M (z, t−, qT)|2

]
(A.1)

is exactly the numerator of eqs. (2.2.41)–(2.2.59).

Together with the exact squared matrix elements, we give also the soft behaviour

of the amplitudes, using the energy k0 of the final-state parton as expansion param-

eter. We have computed the soft expansion adopting the following procedure: we

first got rid of s in favour of Q2, t and u using the identity

s = Q2 − t− u . (A.2)

In this way, the only dependence on the energy of the final-state parton is through

t and u, that are linearly dependent on k0 (see eq. (2.2.5)). Then we perform a

Laurent expansion in k0, and define leading soft (LS) the term proportional to the

highest negative power of k0, next-to-leading soft (N1LS) the subsequent term, and

so on. Finally we re-express all the soft-expansion contributions in terms of t and

u. As a result, at each order of the expansion, all the terms proportional to a given

power of k0 are included, and only them. This is an unambiguous way to define the

softness order of the expansion.

Z production

• q(q̄) + g → Z + q(q̄)

The exact squared amplitude is given by

|M(s, t, u)|2 = −2

[
t

s
+
s

t
+ 2

Q2u

st

]
(A.3)
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with soft-expansion terms

|M|2
LS

= −2
Q2

t
(A.4)

|M|2
N1LS

= −2
u

t
+ 2 (A.5)

|M|2
N2LS

= − 2

Q2

[
2
u2

t
+ 2u+ t

]
(A.6)

|M|2
N3LS

= − 2

Q4

[
2
u3

t
+ 4u2 + 3 tu+ t2

]
(A.7)

|M|2
N4LS

= . . . (A.8)

• q + q̄ → Z + g

The exact squared amplitude is given by

|M(s, t, u)|2 =
4Q4

tu
− 4

[
Q2

u
+
Q2

t

]
+ 2

[
u

t
+
t

u

]
(A.9)

with soft-expansion terms

|M|2
LS

= 4
Q4

t u
(A.10)

|M|2
N1LS

= −4

[
Q2

t
+
Q2

u

]
(A.11)

|M|2
N2LS

= 2

[
u

t
+
t

u

]
(A.12)

|M|2
NnLS

= 0 , n ≥ 3 (A.13)

We notice that, for q(q̄)+g → V +q(q̄) production, the LS term of eq. (A.4) has only

one negative power of k0, while in q + q̄ → V + g the LS term of eq. (A.10) has two

negative powers of k0, in agreement with the eikonal approximation for soft-gluon

emission.

H production

• g + q(q̄)→ H + q(q̄)

The exact squared amplitude is given by

|M(s, t, u)|2 = − 2

Q2

s2 + u2

t
(A.14)
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with soft-expansion terms

|M|2
LS

= −2
Q2

t
(A.15)

|M|2
N1LS

= 4
u

t
+ 4 (A.16)

|M|2
N2LS

= − 2

Q2

[
2
u2

t
+ 2u+ t

]
(A.17)

|M|2
NnLS

= 0 , n ≥ 3 (A.18)

• g + g → H + g

The exact squared amplitude is given by

|M(s, t, u)|2 =
2

Q2

(Q2)
4

+ s4 + t4 + u4

s t u
(A.19)

with soft-expansion terms

|M|2
LS

= 4
Q4

t u
(A.20)

|M|2
N1LS

= −4

[
Q2

t
+
Q2

u

]
(A.21)

|M|2
N2LS

= 8

[
u

t
+
t

u
+ 2

]
(A.22)

|M|2
N3LS

= 0 (A.23)

|M|2
N4LS

=
4

Q4

(u2 + t u+ t2)
2

t u
(A.24)

|M|2
N5LS

= . . . (A.25)

Similar conclusions to Z production can be drawn for H production: one negative

power of k0 in g + q(q̄) → H + q(q̄), see eq. (A.15), and two negative powers for

g + g → H + g, see eq. (A.20).
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Appendix B

q2
T integrals

We recall a couple of definitions in order to present the minimal set of q2
T integrals

that we have found for the NLO calculation:

a ≡ (qcut
T )2

Q2
, (B.1)

π2
T ≡

4az

(1− z)2
. (B.2)

Hence follow the three results∫ (qmax
T )2

(qcut
T )2

dq2
T

q2
T

1√
(1− z)2 − 4z

q2
T

Q2

= − 1

1− z
log

π2
T

4
+

2

1− z
log

1 +
√

1− π2
T

2
, (B.3)

∫ (qmax
T )2

(qcut
T )2

dq2
T

q2
T

q2
T

Q2√
(1− z)2 − 4z

q2
T

Q2

=
1− z

2z

√
1− π2

T , (B.4)

∫ (qmax
T )2

(qcut
T )2

dq2
T

q2
T

(
q2
T

Q2

)2

√
(1− z)2 − 4z

q2
T

Q2

=
1− z

2z

(1− z)2

6z

√
1− π2

T

(
1 +

π2
T

2

)
. (B.5)
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Appendix C

Detailed derivation of the results

for Z and H production

C.1 Introduction

In this appendix we present in detail how we applied the method described in Sec-

tion 2.4.3 to perform the series expansion in a for every production channel of the

processes at stake. In particular, we specify for each channel which functions are

assumed to be the l(z) and g(z) functions of eq. (2.4.20).

For ease of notation, in the following sections, the subscripts of the parton lumi-

nosities are suppressed, since any misunderstanding is prevented by the title of the

section itself.

Also, in the summary of each of the following sections, a distinction is made

while separating the final result in a universal and a non-universal part. As detailed

in Section 2.4.1, the contributions proportional to the Altarelli–Parisi splitting func-

tions constitute what we call the universal part of the results. The remaining ones

constitute the non-universal one.

Finally, a note on the integrals we have dealt with is in order. None of them

poses particular issues, except for one that we quote here, along with the method we
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used in order to solve it. The final result, with f(a) = 2
√
a
(√

1 + a−
√
a
)
, is

I =

∫ 1−f(a)

0

dz
1

1− z
log

1

2

(√
1− 4a z

(1− z)2
+ 1

)

≡
∫ 1−f(a)

0

dz J (a, z)

= π arctan

(
1√

1 + a−
√
a

)
− arctan2

(
1√

1 + a−
√
a

)
+

1

4
log2 2 +

1

2
log 2 log a− 5

2
log 2 log

(√
1 + a+

√
a
)

− 5

16
log2 (1 + a)− 1

4
log 2 log (1 + a) +

1

2
log (1 + a) log

(√
1 + a+

√
a
)

− 3

4
log (1 + a) log
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a
)

+ log
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√
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(
1 + i
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1 + a−

√
a
))

− Li2

(
1 + a−

√
a
√

1 + a
)

+
1

2
log2

( √
a√

1 + a

)
. (C.1.1)

In order to solve the integral I, two changes of variable were used. First, we intro-

duced a new variable y such that

y2 = 1− 4a z

(1− z)2
↔ z(y) =

1 + 2a− y2 − 2
√
a+ a2 − a y2

1− y2
(C.1.2)
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and we chose the z-root with the proper sign, such that z(0) = 1− f(a). Notice that

the z-interval [0, 1 − f(a)] is thus mapped onto the y-interval [1, 0]. Therefore, the

first change of variable leads to the replacement∫ 1−f(a)

0

dz J (z, a) → −
∫ 1

0

dy
dz(y)

dy
J (z(y), a) . (C.1.3)

Then, we dealt with the square roots appearing in eq. (C.1.3) via a second change

of variable inspired by Appendix A of ref. [156], namely

y(u) =
2u

c− d (2u)2
, c = 1, d = − 1

4 (1 + a)
. (C.1.4)

This is such that, by setting 0 < y(ū) < 1, where ū is the new integration extrema

different from zero, the y-interval [0, 1] is mapped onto the u-interval [0, 1 + a −√
a+ a2] ≡ [0, ū]. The final replacement is then

−
∫ 1

0

dy
dz(y)

dy
J (z(y), a) → −

∫ ū

0

du
dy(u)

du

dz(y)

dy
J (z(y(u)), a) , (C.1.5)

where

dy(u)

du

dz(y)

dy
J (u, a) =

4b u [u2 (b+ β)− b (b− β)]

(u2 + b) (u2 + 2b u+ b) (u2 − 2b u+ b)
log

u2 + 2b u+ b

2 (u2 + b)
(C.1.6)

with

b = 1 + a , β =
√
b(b− 1) . (C.1.7)

The second integral of eq. (C.1.5) is part of a known and solvable class of integrals.

C.2 Z production: qg channel

The relevant integral, corresponding to that in eq. (2.4.20), is

I =

∫ 1−f(a)

τ

dz L
(τ
z

){ 1

2z
(1 + 3z)(1− z)

√
1− 4az

(1− z)2

+ pqg(z)
1

z

[
− log

az

(1− z)2
+ 2 log

1

2

(√
1− 4az

(1− z)2
+ 1

)]}
, (C.2.1)

where

pqg(z) = 2z2 − 2z + 1 . (C.2.2)

We can express I as the sum of three integrals

I = Ia + Ib + Ic , (C.2.3)
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where

Ia =

∫ 1−f(a)

τ

dz
1

2z
(1 + 3z)(1− z)L

(τ
z

)√
1− 4az

(1− z)2
, (C.2.4)

Ib = −
∫ 1−f(a)

τ

dz pqg(z)
1

z
L
(τ
z

)
log

az

(1− z)2
, (C.2.5)

Ic =

∫ 1−f(a)

τ

dz pqg(z)
2

z
L
(τ
z

)
log

1

2

(√
1− 4az

(1− z)2
+ 1

)
, (C.2.6)

and for each of the three integrals we apply the procedure detailed in Section 2.4.

Integral Ia

We define

l(z) =
1

2z
(1 + 3z)L

(τ
z

)
, (C.2.7)

g(z) = (1− z)

√
1− 4az

(1− z)2
, (C.2.8)

and expanding g(z) according to eq. (2.4.21), we have

g(z) = (1− z)− 2az

1− z
− 2a2z2

(1− z)3
+O

(
a3
)

(C.2.9)

so that

g0(z, a) = 1− z , g1(z, a) = −2az , g2(z, a) = 0 , g3(z, a) = −2a2z2 .

(C.2.10)

With this assignment of the different terms of the expansion of g(z), we perform the

integrations in eqs. (2.4.28)–(2.4.30).

Integral Ib

The integrand of Ib is defined up to z = 1. For this reason, the computation of this

contribution is easier than the previous one. In particular we can write

Ib ≡ Ib1 + Ib2 , (C.2.11)

where

Ib1 = −
∫ 1

0

dz pqg(z)
1

z
log

az

(1− z)2
L
(τ
z

)
, (C.2.12)

Ib2 = +

∫ 1

1−f(a)

dz pqg(z)
1

z
log

az

(1− z)2
L
(τ
z

)
. (C.2.13)
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Defining

l(z) =
(
2z2 − 2z + 1

) 1

z
L
(τ
z

)
, (C.2.14)

we expand it as a power series in (z − 1), so that

Ib2 =
∞∑
n=0

1

n!
l(n)(1)

∫ 1

1−f(a)

dz (z − 1)n log
az

(1− z)2
(C.2.15)

and the integration becomes straightforward.

Integral Ic

We define

l(z) =
2

z

(
2z2 − 2z + 1

)
L
(τ
z

)
, (C.2.16)

g(z) = log
1

2

(√
1− 4az

(1− z)2
+ 1

)
, (C.2.17)

and expanding g(z) according to eq. (2.4.21), we have

g(z) = − az

(1− z)2
− 3

2

a2z2

(1− z)4
+O

(
a3
)
, (C.2.18)

so that

Bg0(z, a) = g1(z, a) = g3(z, a) = 0 , g2(z, a) = −az , g4(z, a) = −3

2
a2z2 .

(C.2.19)

We then perform the integrations in eqs. (2.4.28)–(2.4.30).

C.2.1 Summary

Summarising our results, and writing I in eq. (C.2.1) as a sum of the universal and

the non-universal part, we have

I = IU + IR , (C.2.20)

where

IU = − log(a)

∫ 1

0

dz
1

z
pqg(z)L
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z

)
−
∫ 1

0

dz
1

z
pqg(z) log

z

(1− z)2
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z

)
− 2 a
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0

dz pqg(z)L
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z

)[ 1
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]
2+
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0

dz z pqg(z)L
(τ
z

)[ 1
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]
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+
{
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}
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+

{
−3L(τ) + 3 τ L(1)(τ)− 3

4
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1

4
τ 3 L(3)(τ)

}
a2 log(a)
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{
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4
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4
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1

4
τ 2 L(2)(τ) +

1

6
τ 3 L(3)(τ)

}
a2

+O
(
a

5
2 log(a)

)
, (C.2.21)

75



IR = +

∫ 1

0

dz
1

2z
(1 + 3z)(1− z)L

(τ
z

)
− a

∫ 1

0

dz (1 + 3z)L
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z

)[ 1
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]
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0
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z
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]
3+
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+
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2
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2
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a2 log(a)

+
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4
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1

2
τ 2 L(2)(τ)

}
a2 +O

(
a

5
2 log(a)

)
. (C.2.22)

Then, writing IU and IR in the form

IU =

∫ 1

0

dz

z
L
(τ
z

)
ĝU(1)

qg (z) , IR =

∫ 1

0

dz

z
L
(τ
z

)
ĝR(1)

qg (z) , (C.2.23)

we get the expression of ĝU(1)
qg (z) and ĝR(1)

qg (z) in eqs. (2.4.34) and (2.4.35), respectively.

C.3 Z production: qq̄ channel

The relevant integral, corresponding to that in eq. (2.4.20), is

I =

∫ 1−f(a)

τ

dz L
(τ
z

){
−2

z
(1− z)

√
1− 4az

(1− z)2

+
2

z
p̂qq(z)

[
− log

az

(1− z)2
+ 2 log

1

2
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1− 4az

(1− z)2
+ 1

)]}
, (C.3.1)

where

p̂qq(z) =
1 + z2

1− z
. (C.3.2)

We can express I as the sum of three integrals

I = Ia + Ib + Ic , (C.3.3)

where

Ia = −
∫ 1−f(a)

τ

dz L
(τ
z

) 2

z
(1− z)

√
1− 4az

(1− z)2
, (C.3.4)

Ib = −
∫ 1−f(a)

τ

dz
2

z
p̂qq(z)L

(τ
z

)
log

az

(1− z)2
, (C.3.5)

Ic =

∫ 1−f(a)

τ

dz
4

z
p̂qq(z)L

(τ
z

)
log

1

2

(√
1− 4az

(1− z)2
+ 1

)
, (C.3.6)

and for each of the three integrals we apply the procedure detailed in Section 2.4.
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Integral Ia

We define

l(z) = −2

z
L
(τ
z

)
, (C.3.7)

g(z) = (1− z)

√
1− 4az

(1− z)2
, (C.3.8)

and expanding g(z) according to eq. (2.4.21), we have

g(z) = (1− z)− 2az

1− z
− 2a2z2

(1− z)3
+O

(
a3
)
, (C.3.9)

so that

g0(z, a) = 1− z , g1(z, a) = −2az , g2(z, a) = 0 , g3(z, a) = −2a2z2 .

(C.3.10)

We then perform the integrations in eqs. (2.4.28)–(2.4.30).

Integral Ib

We start by separating Ib into two further integrals, writing

Ib = Ib1 + Ib2 , (C.3.11)

where

Ib1 = −
∫ 1−f(a)

τ

dz
2

z
p̂qq(z)L

(τ
z

)
log(az) , (C.3.12)

Ib2 = +

∫ 1−f(a)

τ

dz
4

z
p̂qq(z)L

(τ
z

)
log(1− z) , (C.3.13)

and for each of them we follow our integration and expansion procedure.

• Integral Ib1

We define

l(z) = −2

z

(
1 + z2

)
log(az)L

(τ
z

)
, (C.3.14)

g(z) =
1

1− z
, (C.3.15)

and we deal with this case as with a case with g0 = 0, g1(z, a) = 1 and

all the other gi functions equal to 0. Then, we perform the integrations in

eqs. (2.4.28)–(2.4.30).

77



• Integral Ib2

We define

l(z) =
4

z

(
1 + z2

)
L
(τ
z

)
, (C.3.16)

g(z) =
log(1− z)

1− z
, (C.3.17)

and we deal with this case as with a case with g0 = 0, g1(z, a) = log(1 − z)

and all the other gi functions equal to 0. Then, we perform the integrations in

eqs. (2.4.28)–(2.4.30).

Integral Ic

We define

l(z) =
4

z

(
1 + z2

)
L
(τ
z

)
, (C.3.18)

g(z) =
1

1− z
log

1

2

(√
1− 4az

(1− z)2
+ 1

)
, (C.3.19)

and expanding g(z) according to eq. (2.4.21), we have

g(z) = − az

(1− z)3
− 3

2

a2z2

(1− z)5
+O

(
a3
)
, (C.3.20)

so that

g0(z, a) = g1(z, a) = g2(z, a) = g4(z, a) = 0 , g3(z, a) = −az , g5(z, a) = −3

2
a2z2 .

(C.3.21)

We then perform the integrations in eqs. (2.4.28)–(2.4.30).

C.3.1 Summary

Summarising our results, and writing I in eq. (C.3.1) as a sum of a universal and

non-universal part, we have

I = IU + IR , (C.3.22)
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where

IU = − 2 log(a)
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, (C.3.23)

IR = −
∫ 1
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, (C.3.24)

where we have written the (1 + z2) terms coming from the numerator of the qq̄

splitting function as

1 + z2 = (1− z) p̂qq(z) . (C.3.25)

Then, writing IU and IR in the form

IU =

∫ 1

0

dz

z
L
(τ
z

)
ĝU(1)

qq̄ (z) , IR =

∫ 1

0

dz

z
L
(τ
z

)
ĝR(1)

qq̄ (z) , (C.3.26)

we get the expression of ĝU(1)

qq̄ (z) and ĝR(1)

qq̄ (z) in eqs. (2.4.38) and (2.4.39), respectively.
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C.4 H production: gq channel

The relevant integral, corresponding to that in eq. (2.4.20), is

I =

∫ 1−f(a)

τ

dz L
(τ
z

){
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√
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)]}
, (C.4.1)

where

pgq(z) =
z2 − 2z + 2

z
. (C.4.2)

We can express I as the sum of three integrals

I = Ia + Ib + Ic , (C.4.3)

where

Ia =

∫ 1−f(a)

τ

dz

[
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, (C.4.4)

Ib =

∫ 1−f(a)

τ
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)
pgq(z)L
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)
log

az

(1− z)2
, (C.4.5)

Ic =

∫ 1−f(a)
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dz
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z
pgq(z)L
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z

)
log

1

2

(√
1− 4az

(1− z)2
+ 1

)
, (C.4.6)

and for each of the three integrals we apply the procedure detailed in Section 2.4.

Integral Ia

We define

l(z) = −3

2

1

z2
L
(τ
z

)
, (C.4.7)

g(z) = (1− z)2

√
1− 4az

(1− z)2
, (C.4.8)

and expanding g(z) according to eq. (2.4.21), we have

g(z) = (1− z)2 − 2az − 2a2z2

(1− z)2
+O

(
a3
)
, (C.4.9)

so that

g0(z, a) = (1− z)2 − 2az , g1(z, a) = 0 , g2(z, a) = −2a2z2 , g3(z, a) = 0 .

(C.4.10)

We then perform the integrations in eqs. (2.4.28)–(2.4.30).
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Integral Ib

The integrand of Ib is defined up to z = 1. Thus, the computation of this contribution

is easier than the previous one. In particular, we can proceed by separating it into

two further integrals

Ib ≡ Ib1 + Ib2 , (C.4.11)

where

Ib1 =

∫ 1

0

dz
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)
pgq(z)L
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)
log
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, (C.4.12)

Ib2 =
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log

az

(1− z)2
. (C.4.13)

Then, after defining

l(z) =

[
z2 − 2z + 2

z2

]
L
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z

)
, (C.4.14)

we expand Ib2 as a power series in (z − 1), so that

Ib2 =
∞∑
n=0

1

n!
l(n)(1)
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1−f(a)

dz (z − 1)n log
az
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, (C.4.15)

and this integration is straightforward to be performed.

Integral Ic

We define

l(z) = 2
z2 − 2z + 2

z2
L
(τ
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)
, (C.4.16)

g(z) = log
1
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(√
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)
, (C.4.17)

and expanding g(z) according to eq. (2.4.21), we have

g(z) = − az

(1− z)2
− 3

2

a2z2

(1− z)4
+O

(
a3
)
, (C.4.18)

so that

g0(z, a) = g1(z, a) = g3(z, a) = 0 , g2(z, a) = −az , g4(z, a) = −3

2
a2z2 .

(C.4.19)

We then perform the integrations in eqs. (2.4.28)–(2.4.30).
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C.4.1 Summary

Summarising our results, and writing I in eq. (C.4.1) as a sum of a universal and

non-universal part, we have

I = IU + IR , (C.4.20)

where
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, (C.4.21)
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. (C.4.22)

Then, writing IU and IR in the form

IU =

∫ 1

0

dz

z
L
(τ
z

)
ĝU(1)

gq (z) , IR =

∫ 1

0

dz

z
L
(τ
z
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ĝR(1)

gq (z) , (C.4.23)

we get the expression of ĝU(1)
gq (z) and ĝR(1)

gq (z) in eqs. (2.4.43) and (2.4.44), respectively.
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C.5 H production: gg channel

The relevant integral, corresponding to that in eq. (2.4.20), is

I =
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where

p̂gg(z) =
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. (C.5.2)

We can express I as the sum of four integrals

I = Ia1 + Ia2 + Ib + Ic , (C.5.3)

where
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1− 4az

(1− z)2
, (C.5.4)

Ia2 =

∫ 1−f(a)

τ

dz
2

3
a

1− z
z
L
(τ
z

)√
1− 4az

(1− z)2
, (C.5.5)

Ib =

∫ 1−f(a)

τ

dz

(
−2

z

)
p̂gg(z)L

(τ
z

)
log

az

(1− z)2
, (C.5.6)

Ic =

∫ 1−f(a)

τ

dz
4

z
p̂gg(z)L

(τ
z

)
log

1

2

(√
1− 4az

(1− z)2
+ 1

)
, (C.5.7)

and for each of the four integrals we apply the procedure detailed in Section 2.4.

Integral Ia1

We define

l(z) = −11

3

1

z2
L
(τ
z

)
, (C.5.8)

g(z) = (1− z)3

√
1− 4az

(1− z)2
, (C.5.9)

and expanding g(z) according to eq. (2.4.21), we have

g(z) = (1− z)3 − 2az(1− z)− 2a2z2

1− z
+O

(
a3
)
, (C.5.10)

so that

g0(z, a) = (1− z)3 − 2az(1− z) , g1(z, a) = −2a2z2 , (C.5.11)

g2(z, a) = 0 , g3(z, a) = O
(
a3
)
. (C.5.12)

We then perform the integrations in eqs. (2.4.28)–(2.4.30).

83



Integral Ia2

We define

l(z) =
2

3
a

1

z
L
(τ
z

)
, (C.5.13)

g(z) = (1− z)

√
1− 4az

(1− z)2
, (C.5.14)

and expanding g(z) according to eq. (2.4.21), we have

g(z) = (1− z)− 2az

1− z
− 2a2z2

(1− z)3
+O

(
a3
)
, (C.5.15)

so that

g0(z, a) = (1− z) , g1(z, a) = −2az , g2(z, a) = 0 , g3(z, a) = −2a2z2 .

(C.5.16)

We then perform the integrations in eqs. (2.4.28)–(2.4.30).

Integral Ib

We start by separating Ib into two further integrals

Ib = Ib1 + Ib2 , (C.5.17)

where

Ib1 =

∫ 1−f(a)

τ

dz

(
−2

z

)
p̂gg(z)L

(τ
z

)
log(az) , (C.5.18)

Ib2 =

∫ 1−f(a)

τ

dz
4

z
p̂gg(z)L

(τ
z

)
log(1− z) , (C.5.19)

and for each of them we follow our integration and expansion procedure.

• Integral Ib1

We define

l(z) = −4 (z2 − z + 1)
2

z2
log(az)L

(τ
z

)
, (C.5.20)

g(z) =
1

1− z
, (C.5.21)

We deal with this case as with a case with g0 = 0, g1(z, a) = 1 and all the other

gi functions equal to 0. Then, we perform the integrations in eqs. (2.4.28)–

(2.4.30).
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• Integral Ib2

We define

l(z) =
8 (z2 − z + 1)

2

z2
L
(τ
z

)
(C.5.22)

g(z) =
log(1− z)

1− z
(C.5.23)

We deal with this case as with a case with g0 = 0, g1(z, a) = log(1 − z) and

all the other gi functions equal to 0. Then, we perform the integrations in

eqs. (2.4.28)–(2.4.30).

Integral Ic

We define

l(z) =
8 (z2 − z + 1)

2

z2
L
(τ
z

)
, (C.5.24)

g(z) =
1

1− z
log

1

2

(√
1− 4az

(1− z)2
+ 1

)
, (C.5.25)

and expanding g(z) according to eq. (2.4.21), we have

g(z) = − az

(1− z)3
− 3

2

a2z2

(1− z)5
+O

(
a3
)
, (C.5.26)

so that

g0(z, a) = g1(z, a) = g2(z, a) = g4(z, a) = 0 , g3(z, a) = −az , g5(z, a) = −3

2
a2z2 .

(C.5.27)

We then perform the integrations in eqs. (2.4.28)–(2.4.30).

C.5.1 Summary

Summarising our results, and writing I in eq. (C.5.1) as a sum of a universal and

non-universal part, we have

I = IU + IR , (C.5.28)
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where

IU = −2 log(a)

∫ 1

0

dz
1− z
z

p̂gg(z)L
(τ
z

)[ 1

1− z

]
+

− 2

∫ 1

0

dz
1

z
p̂gg(z) log(z)L

(τ
z

)
+ 4

∫ 1

0

dz
1− z
z

p̂gg(z)L
(τ
z

)[ log(1− z)

1− z

]
+

− 4 a

∫ 1

0

dz (1− z) p̂gg(z)L
(τ
z

)[ 1

(1− z)3

]
3+

− 6 a2

∫ 1

0

dz z(1− z) p̂gg(z)L
(τ
z

)[ 1

(1− z)5

]
5+

+ L(τ) log2(a)− π2

3
L(τ)

+
{

8L(τ) + 2 τ 2 L(2)(τ)
}
a log(a) +

{
−2L(τ) + 4 τ L(1)(τ)

}
a

+

{
6L(τ) + 6 τ 2 L(2)(τ) + τ 3 L(3)(τ) +

1

4
τ 4 L(4)(τ)

}
a2 log(a)

+

{
−3

2
L(τ) + 11 τ L(1)(τ) +

11

2
τ 2 L(2)(τ) +

5

3
τ 3 L(3)(τ) +

1

6
τ 4 L(4)(τ)

}
a2

+O
(
a

5
2 log(a)

)
, (C.5.29)

IR = −11

3

∫ 1

0

dz
1

z2
(1− z)3 L

(τ
z

)
+ 8a

∫ 1

0

dz
1

z
(1− z)L

(τ
z

)
+ 6 a2

∫ 1

0

dz L
(τ
z

)[ 1

1− z

]
+

− 3L(τ) a2 log(a)− 5

2
L(τ) a2 +O

(
a

5
2 log(a)

)
. (C.5.30)

Then, writing IU and IR in the form

IU =

∫ 1

0

dz

z
L
(τ
z

)
ĝU(1)

gg (z) , IR =

∫ 1

0

dz

z
L
(τ
z

)
ĝR(1)

gg (z) , (C.5.31)

we get the expression of ĝU(1)
gg (z) and ĝR(1)

gg (z) in eqs. (2.4.47) and (2.4.48), respectively.

C.6 Study of a universal term of the form 1/(1 − z)

In this section we apply the procedure described in Section 2.4 to study the universal

part of the Altarelli–Parisi splitting functions that accounts for soft radiation, i.e. the
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z → 1 limit. In this approximation, the Altarelli–Parisi splitting functions p̂qq(z)

and p̂gg(z) behave like 1/(1 − z). The relevant integral, corresponding to that in

eq. (2.4.20), is given by

IU =

∫ 1−f(a)

τ

dz L
(τ
z

) 1

z
p(z)

×

[
− log

az

(1− z)2
+ 2 log

1

2

(√
1− 4az

(1− z)2
+ 1

)]
, (C.6.1)

where

p(z) =
1

1− z
. (C.6.2)

We write I as the sum of two integrals

I = Ib + Ic , (C.6.3)

where

Ib =

∫ 1−f(a)

τ

dz

(
−1

z

)
p(z)L

(τ
z

)
log

az

(1− z)2
, (C.6.4)

Ic =

∫ 1−f(a)

τ

dz
2

z
p(z)L

(τ
z

)
log

1

2

(√
1− 4az

(1− z)2
+ 1

)
, (C.6.5)

and for each of the two integrals we apply the procedure detailed in Section 2.4.

Integral Ib

We write Ib as sum of two further integrals

Ib = Ib1 + Ib2 , (C.6.6)

where

Ib1 =

∫ 1−f(a)

τ

dz

(
−1

z

)
p(z)L

(τ
z

)
log(az) , (C.6.7)

Ib2 =

∫ 1−f(a)

τ

dz
2

z
p(z)L

(τ
z

)
log(1− z) , (C.6.8)

Integral Ib1

We define

l(z) = −1

z
log(az)L

(τ
z

)
, (C.6.9)

g(z) =
1

1− z
, (C.6.10)

and we treat this case as the case with g0(z, a) = 0 and g1(z, a) = 1 and all the other

gi functions equal to 0. We then perform the integrations in eqs. (2.4.28)–(2.4.30).

87



Integral Ib2

We define

l(z) =
2

z
L
(τ
z

)
, (C.6.11)

g(z) =
log(1− z)

1− z
, (C.6.12)

and we treat this case as the case with g0(z, a) = 0 and g1(z, a) = log(1− z) and all

the other gi functions equal to 0. We then perform the integrations in eqs. (2.4.28)–

(2.4.30).

Integral Ic

We define

l(z) =
2

z
L
(τ
z

)
, (C.6.13)

g(z) =
1

1− z
log

1

2

(√
1− 4az

(1− z)2
+ 1

)
, (C.6.14)

and expanding g(z) according to eq. (2.4.21), we have

g(z) = − az

(1− z)3
− 3

2

a2z2

(1− z)5
+O

(
a3
)
, (C.6.15)

so that

g0(z, a) = g1(z, a) = g2(z, a) = g4(z, a) = 0 , g3(z, a) = −az , g5(z, a) = −3

2
a2z2 .

(C.6.16)

We then perform the integrations in eqs. (2.4.28)–(2.4.30).
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C.6.1 Summary

Summarising our results, we have

IU = − log(a)

∫ 1

0

dz
1

z
L
(τ
z

)[ 1

1− z

]
+

−
∫ 1

0

dz
1

z(1− z)
log(z)L

(τ
z

)
+

∫ 1

0

dz
2

z
L
(τ
z

)[ log(1− z)

1− z

]
+

− 2a

∫ 1

0

dz L
(τ
z

)[ 1

(1− z)3

]
3+

− 3a2

∫ 1

0

dz z L
(τ
z

)[ 1

(1− z)5

]
5+

+
1

4
L(τ) log2(a)− π2

12
L(τ) +

{
τ L(1)(τ) +

1

2
τ 2 L(2)(τ)

}
a log(a)

+

{
1

2
L(τ) + τ L(1)(τ)

}
a

+

{
3

4
τ 2 L(2)(τ) +

1

2
τ 3 L(3)(τ) +

1

16
τ 4 L(4)(τ)

}
a2 log(a)

+

{
−1

8
L(τ) +

1

2
τ L(1)(τ) +

13

8
τ 2 L(2)(τ) +

7

12
τ 3 L(3)(τ) +

1

24
τ 4 L(4)(τ)

}
a2

+O
(
a

5
2 log(a)

)
. (C.6.17)

Then, writing IU in the form

IU =

∫ 1

0

dz
1

z
L
(τ
z

)
ĝU(1)(z) , (C.6.18)
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we get

ĝU(1)(z) = +
1

4
δ(1− z) log2(a)−

[
1

1− z

]
+

log(a)− π2

12
δ(1− z)

− 1

(1− z)
log(z) + 2

[
log(1− z)

1− z

]
+

+

{
1

2
δ(2)(1− z)− δ(1)(1− z)

}
a log(a)

+

{
−1

2
δ(1− z) + δ(1)(1− z)− 2z

[
1

(1− z)3

]
3+

}
a

+

{
3

4
δ(2)(1− z)− 1

2
δ(3)(1− z) +

1

16
δ(4)(1− z)

}
a2 log(a)

+

{
1

8
δ(1− z) +

1

2
δ(1)(1− z)− 5

8
δ(2)(1− z)− 1

12
δ(3)(1− z)

+
1

24
δ(4)(1− z)− 3z2

[
1

(1− z)5

]
5+

}
a2

+O
(
a

5
2 log(a)

)
. (C.6.19)
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Appendix D

Samples of integrals

According to the procedure presented in Secs. 2.4, in order to compute the power

corrections, one has to perform two integrations of the differential cross sections:

an integration in qT, in general easy to perform, and an integration in z from 0 to

1 − f(a). This second integration turned out to be challenging for some integrand

functions.

We have classified the integrand functions into five groups, according to the

number of logarithms and polylogarithms appearing in the expressions. We present

here a sample of integrands for each group.

D.1 Integrand classification

Defining

r(z) ≡
√

(1− z)2 − 4az , (D.1.1)

we have groups containing:

1. one logarithm: ∫ 1−f(a)

0

dz zn log

[
(1− z)

1 + z ± r(z)

1− z ± r(z)

]
(D.1.2)∫ 1−f(a)

0

dz zn
r(z)

1 + z ± r(z)
log

[
2z

1− z ± r(z)

]
(D.1.3)

2. two logarithms: ∫ 1−f(a)

0

dz zn r(z) log(z) log

[
1− z − r(z)

2(1− z)

]
(D.1.4)∫ 1−f(a)

0

dz zn r(z) log2

[
2z

1− z ± r(z)

]
(D.1.5)
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3. three logarithms:∫ 1−f(a)

0

dz zn log2

[
1− z − r(z)

1− z + r(z)

]
log

[
(1− z)

1 + z + r(z)

1− z + r(z)

]
(D.1.6)∫ 1−f(a)

0

dz zn log(z) log2

[
1− z ± r(z)

2(1− z)

]
(D.1.7)∫ 1−f(a)

0

dz zn log3

[
1∓ z ± r(z)

2z

]
(D.1.8)∫ 1−f(a)

0

dz zn log(z) log
1− z ± r(z)

2 (1− z)
log

1− z ∓ r(z)

2z
(D.1.9)

4. one polylogarithm of order 2:∫ 1−f(a)

0

dz zn r(z) Li2

[
2z

1 + z ± r(z)

]
(D.1.10)∫ 1−f(a)

0

dz zn log

[
1− z ± r(z)

1− z ∓ r(z)

]
Li2

[
−z 1− z ± r(z)

1− z ∓ r(z)

]
(D.1.11)

5. one polylogarithm of order 3:∫ 1−f(a)

0

dz zn Li3

[
2z

1 + z ± r(z)

]
(D.1.12)∫ 1−f(a)

0

dz zn Li3

[
−z 1− z ± r(z)

1− z ∓ r(z)

]
(D.1.13)

where n = 1, . . . , 4.

D.2 Sample of integral expansion

After the z integration, the results are functions of a only, and have to be expanded

around a = 0. A sample of these expansions is given in the following:

- Example 1∫ 1−f(a)

0

dz z log2

[
1− z − r(z)

1− z + r(z)

]
log

[
(1− z)

1 + z + r(z)

1− z + r(z)

]
=

1

2
a log3(a) + 2 a log2(a) +

(
17

2
+ π2

)
a log(a) + [48− 32C − 16 log 2]

√
a

+

[
9 ζ(3)− 15

4
+

4

3
π2 + 8 log 2

]
a+O

(
a

3
2

)
, (D.2.1)

where C is the Catalan constant defined by

C =
∞∑
n=0

(−1)n

(2n+ 1)2
=

1

12
− 1

32
+

1

52
− 1

72
+ . . . ≈ 0.915965594 . . . (D.2.2)
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- Example 2∫ 1−f(a)

0

dz z3 log2

[
1− z − r(z)

1− z + r(z)

]
log

[
(1− z)

1 + z + r(z)

1− z + r(z)

]
=

5

6
a log3(a) +

71

12
a log2(a) +

(
1721

72
+

5

3
π2

)
a log(a)

+ [48− 32C − 16 log 2]
√
a

+

[
16 ζ(3) +

8711

864
+

71

18
π2 + 16 log 2

]
a+O

(
a

3
2

)
, (D.2.3)

- Example 3∫ 1−f(a)

0

dz z r(z) log(z) log

[
1− z − r(z)

2(1− z)

]
= − 5

36
log(a) +

π2

18
− 55

108
+

(
π2

3
− 5

2

)
a log(a) +

(
5

6
π2 − 25

4

)
a+O

(
a

3
2

)
,

(D.2.4)

- Example 4∫ 1−f(a)

0

dz z log(z) log

[
1− z + r(z)

2(1− z)

]
= a

[
1− π2

12
+ 2 log2 2− 2 log 2

]
+O

(
a

3
2

)
,

(D.2.5)

- Example 5∫ 1−f(a)

0

dz z log(z) log2

[
1− z − r(z)

2(1− z)

]

=
1

2
a log2(a)− log2(a)

4
+ a

(
2 +

3

4
π2 + 2 log2 2− 2 log 2

)
+

(
2

3
π2 − 4

)
a log(a) +

(
π2

3
− 7

2

)
log(a) +

2

3
π2 − 59

8
+O

(
a

3
2

)
.

(D.2.6)

We note that the intermediate integrals contain log(2) and
√
a terms, and also terms

proportional to the Catalan constant C. Despite this, once recombined to compose

the whole behaviour of the physical cross section, all these terms disappear from

the final answer, as illustrated in Appendix E. Something similar happened for the

results at NLO.
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Appendix E

NNLO final results

In this appendix we collect the results for the NNLO power corrections, up to order

a in the transverse-momentum cutoff. The results refer to the δ(s2) contribution of

the qg-initiated channel to the inclusive cross section for the production of a vector

boson F , i.e. the cgH0 (z), cgH1 (z), cgH2 (z), gH0 (z), gH1 (z), gH2 (z), cJ H
23 and J H

23 functions

in eqs. (2.5.18)–(2.5.21).

In the following, we need l(z), defined in eq. (2.5.22), and its first derivative

l(1)(z) ≡ d

dz
l(z) = − 1

z2
L
(τ
z

)
− τ

z3
L(1)

(τ
z

)
, (E.0.1)

both evaluated in z = 1. For sake of brevity, we introduce the following notation

L ≡ l(1) = L (τ) , (E.0.2)

L′ ≡ l(1)(1) = −L (τ)− τL(1) (τ) . (E.0.3)

The renormalisation and factorisation scales are indicated with µR and µF, respec-

tively, and pqg(z) is the zeroth-order Altarelli–Parisi splitting function, defined as

Pqg(z) = TR

[
2z2 − 2z + 1

]
≡ TR pqg(z) . (E.0.4)

In addition, we recall the definition of a in eq. (2.4.6): a = (qcut
T )2 /Q2.

E.1 Aqg

gA0 (z) = pqg(z)

[
− log(a) + log

(1− z)2

z

]
+

1

2
(1 + 3z)(1− z) +O

(
a

3
2 log(a)

)
(E.1.1)

gA1 (z) = −z (1 + 3z) a+O
(
a

3
2 log(a)

)
(E.1.2)

gA2 (z) = −2z pqg(z) a+O
(
a

3
2 log(a)

)
(E.1.3)

J A

23 = −
(
L+ L′

)
a log(a)−

(
3

2
L+

10

3
L′
)
a+O

(
a

3
2 log(a)

)
(E.1.4)

94



E.2 Bqg
1 : CA coefficient

CAgB1
0 (z) =

1

6
pqg(z) log3(a)− pqg(z) log(z) log2(a)

+

[
z − pqg(z)

(
log2 z

1− z
− 2 log(1− z) log(z) +

7

6
π2

)]
log(a)

+ pqg(z)

(
2

3
log3(1− z)− 1

6
log3(z) + log(1− z) log2(z)

)
−
(

6z2 − 5z +
5

2

)
log2(1− z) log(z)−

(
15

2
z2 − 5z + 1

)
log(1− z) log(z)

+

(
21

4
z2 − 3

2
z − 1

4

)
log2(z) +

(
3z2 − 4z + 1

)
log2(1− z)

+

(
14

3
π2 z2 +

9

2
z2 − 9

2
π2 z − 8z +

9

4
π2 +

3

2

)
log(1− z)

−
(

4

3
π2 z2 +

3

2
z2 − 3

2
π2 z − 3z +

3

4
π2 − 1

2

)
log(z)

−
(

3

2
z2 + 3z − 1 +

1

2
(2z − 1) log

z

1− z

)(
Li2(1− z)− Li2(z)

)
− 2(2z − 1) Li3(1− z)−

(
4z2 − 2z + 1

)
Li3(z)

+ ζ(3)
(
4z2 − 2z + 1

)
− 15

4
π2 z2 − 13

4
z2 +

23

6
π2 z +

9

2
z − 2

3
π2 − 5

4

+

[
11

6
pqg(z)

(
− log(a) + log

(1− z)2

z

)
+

11

12
(1− z) (3z + 1)

]
log

µ2
R

Q2

− 2 (1 + z) a log2(a)

+

[
39

8
z − 45

16
+ (11z + 10) log(1− z)− (16z + 19) log(z)

]
a log(a)

+

[
−
(

13

8
z3 + 9z2 +

27

16
z − 1

16

)
log(1− z) +

(
5

2
z + 2

)
log2(1− z)

+
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+
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E.3 Bqg
1 : CF coefficient
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E.7 Cqg
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Appendix F

Altarelli–Parisi splitting functions

The zero-order Altarelli–Parisi splitting functions are defined as

Pqq(z) = Pq̄q̄(z) = CF

[
1 + z2

(1− z)+

+
3

2
δ(1− z)

]
= CF

[
1 + z2

1− z

]
+

≡ CF pqq(z) +
3

2
CF δ(1− z) , (F.1)

Pqg(z) = Pq̄g(z) = TR

[
z2 + (1− z)2

]
= TR

[
2z2 − 2z + 1

]
≡ TR pqg(z) , (F.2)

Pgq(z) = Pgq̄(z) = CF

[
1 + (1− z)2

z

]
= CF

[
z2 − 2z + 2

z

]
≡ CF pgq(z) , (F.3)

Pgg(z) = 2CA

[
z

(1− z)+

+
1− z
z

+ z(1− z)

]
+

1

6
[11CA − 4nfTR] δ(1− z)

≡ CA pgg(z) +
1

6
[11CA − 4nfTR] δ(1− z) . (F.4)

The unregularised Altarelli–Parisi splitting functions are given by

P̂qq(z) = P̂q̄q̄(z) = CF

1 + z2

1− z
≡ CF p̂qq(z) , (F.5)

P̂gg(z) = 2CA

[
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z
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]
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2 (z2 − z + 1)
2
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Appendix G

Plus distributions

We define a plus distribution of order n as∫ 1

0

dz l(z) [g(z)]n+ ≡
∫ 1

0

dz

{
l(z)−

n−1∑
i=0

1

i!
l(i)(1) (z − 1)i

}
g(z) , (G.1)

where g(z) has a pole of order n for z = 1, and l(z) is a continuous function around

z = 1, together with all its derivatives up to order (n − 1). For example, the first

three plus distributions read∫ 1

0
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(G.4)

With simple manipulations, some useful identities follow∫ 1
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[
(z − 1)2

d(z)

]
+

}
,

(G.7)
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and, in general,∫ 1

0

dz l(z)

[
n(z)

d(z)

]
p+

=

∫ 1

0

dz

{
l(z)n(z)

[
1

d(z)

]
p+

−
p−1∑
i=0

1

i!
l(i)(1)n(z)

[
(z − 1)i

d(z)

]
(p−i)+

}
. (G.8)
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Appendix H

Čebyšëv polynomials

The Čebyšëv polynomial of degree n is referred to as1

Tn(x) (H.1)

and is given by the explicit formula

Tn(x) = cos(n arccosx) (H.2)

that reduces to explicit polynomial expressions by using trigonometric identities,

namely

T0(x) = 1 (H.3)

T1(x) = x (H.4)

Tn+1(x) = 2xTn(x)− Tn−1(x) n > 1 . (H.5)

These polynomials have a number of useful properties that allow us to use them in

order to fit functions whose analytic form is unknown, such as in the case of parton

distribution functions and their derivatives. To begin with, they are orthogonal in

the interval [−1, 1]

∫ 1

−1

dx
Ti(x)Tj(x)√

1− x2
=


0 i 6= j
π

2
i = j 6= 0

π i = j = 0 .

(H.6)

In addition, the polynomial Tn(x) has n zeros in the interval [−1, 1], located at points

x = cos
π
(
k − 1

2

)
n

, k = 1, 2, . . . , n . (H.7)

1The following paragraphs are inspired by ref. [157]. The Fortran subroutines used to deal

with Čebyšëv polynomials were obtained therein.
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and such that the polynomial satisfies a discrete orthogonality relation along with

the continuous one of eq. (H.6). In fact, if xk, k = 1, . . . ,m, are the m zeros of Tm(x)

given by eq. (H.7), and if i, j < m then

m∑
k=1

Ti(xk)Tj(xk) =


0 i 6= j
m

2
i = j 6= 0

m i = j = 0 .

(H.8)

With the help of eqs. (H.2), (H.7), (H.8), one can prove that, if f(x) is an arbitrary

function in the interval [−1, 1], and if N coefficients cj, j = 1, . . . , N , are defined by

cj =
2

N

N∑
k=1

f(xk)Tj−1(xk)

=
2

N

N∑
k=1

f

(
cos

π
(
k − 1

2

)
N

)
cos

π (j − 1)
(
k − 1

2

)
N

, (H.9)

then the approximation formula

f(x) '

[
N∑
k=1

ck Tk(x)

]
− c1

2
(H.10)

is exact for x equal to all of the N zeros of TN(x). The reader interested in the magic

properties of the Čebyšëv polynomials, and in particular on the reasons why one

should prefer this approximation over others, is referred to Section 5.8 of ref. [157].

Here, we only recall that the subroutines that were used in our code implemented

the change of variable

y =
x− 1

2
(b+ a)

1
2

(b− a)
(H.11)

in order to approximate a function f(x) in the interval [a, b], a < b, via a Čebyšëv

polynomial in y. Moreover, the approximation is evaluated by using the recurrence

relation of eq. (H.3) to generate values for Tk(x) from T0 = 1, T1 = x, while also

accumulating the sum of eq. (H.10).

Once the Čebyšëv coefficients that approximate a function in a certain range

are obtained, it is straightforward to transform them into Čebyšëv coefficients cor-

responding to the derivative of the function and then to evaluate them. In detail, if

ci, i = 1, . . . ,m, are the coefficients that approximate a function f as in eq. (H.10),

the coefficients that approximate the derivative of f , c′i, are such that satisfy the

recurrence relation

c′i−1 = c′i+1 + 2 (i− 1) ci , i = m− 1,m− 2, . . . , 2 , (H.12)

starting with c′m = c′m+1 = 0. These relations can be used as well in order to compute

higher-order derivatives.
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Appendix I

More reweighted plots

In the following we present all the results obtained with the Powheg Box V2

reweighting feature, as explained in Section 3.3.5, except the ones already discussed

therein. In particular, the figures display the normalised differential cross section as

a function of the transverse momentum and the pseudorapidity of the X0 boson, pX0
T

and ηX0 , with a cut on the dijet mass of 250 GeV on the left panels and of 500 GeV on

the right ones. The color code is the same on the two panels, while the distributions

are specified by the caption of each couple of figures.

In general, blue and its shades are associated to the scalar CP scenario, red

and its shades to the pseudoscalar CP scenario, black and its shades to the mixed

CP scenario. The dotted lines represent the distributions that have been taken

as references within the reweighting procedure, the full colors represent the original

distributions, i.e. obtained without any reweighting, while the lighter colors represent

the corresponding distributions obtained by reweighting (rw). On the lower panels,

the ratios between the distributions obtained by reweighting and the original ones

are also shown.
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Figure I.1. Normalised differential cross section as a function of p
X0
T . The scalar original

distribution in blue, the scalar as obtained by reweighting (rw) in light blue, and the mixed

one in dotted black. Refer to the text above for further details.
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Figure I.2. Normalised differential cross section as a function of ηX0
. The scalar original

distribution in blue, the scalar as obtained by reweighting (rw) in light blue, and the mixed

one in dotted black. Refer to the text above for further details.
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Figure I.3. Normalised differential cross section as a function of p
X0
T . The mixed original

distribution in black, the mixed as obtained by reweighting (rw) in grey, and the scalar

one in dotted blue. Refer to the text above for further details.
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Figure I.4. Normalised differential cross section as a function of ηX0 . The mixed original

distribution in black, the mixed as obtained by reweighting (rw) in grey, and the scalar

one in dotted blue. Refer to the text above for further details.
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Figure I.5. Normalised differential cross section as a function of p
X0
T . The mixed pseu-

doscalar distribution in red, the pseudoscalar as obtained by reweighting (rw) in pink, and

the scalar one in dotted blue. Refer to the text above for further details.

0

0.05

0.1

0.15

0.2

0.25 pp→ X0jj @ 13 TeV

MG5aMC-PWG LHE

mj1j2
> 250 GeV

ra
ti
o

(1
/σ

)
d
σ
/d
η X

0

0.8
0.9
1

1.1

−4 −2 0 2 4

pp→ X0jj @ 13 TeV

MG5aMC-PWG LHE

mj1j2
> 250 GeV

ra
ti
o

(1
/σ

)
d
σ
/d
η X

0

0−

0−(rw)
0+

ηX0

0

0.05

0.1

0.15

0.2

0.25 pp→ X0jj @ 13 TeV

MG5aMC-PWG LHE

mj1j2
> 500 GeV

ra
ti
o

(1
/σ

)
d
σ
/d
η X

0

0.8
0.9
1

1.1

−4 −2 0 2 4

pp→ X0jj @ 13 TeV

MG5aMC-PWG LHE

mj1j2
> 500 GeV

ra
ti
o

(1
/σ

)
d
σ
/d
η X

0

0−

0−(rw)
0+

ηX0

Figure I.6. Normalised differential cross section as a function of ηX0 . The mixed pseu-

doscalar distribution in red, the pseudoscalar as obtained by reweighting (rw) in pink, and

the scalar one in dotted blue. Refer to the text above for further details.
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Figure I.7. Normalised differential cross section as a function of p
X0
T . The mixed pseu-

doscalar distribution in red, the pseudoscalar as obtained by reweighting (rw) in pink, and

the mixed one in dotted black. Refer to the text above for further details.
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Figure I.8. Normalised differential cross section as a function of ηX0 . The mixed pseu-

doscalar distribution in red, the pseudoscalar as obtained by reweighting (rw) in pink, and

the mixed one in dotted black. Refer to the text above for further details.
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