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Abstract
Purpose Post-finasteride syndrome (PFS) has been reported in a subset of patients treated with finasteride (an inhibitor of 
the enzyme 5alpha-reductase) for androgenetic alopecia. These patients showed, despite the suspension of the treatment, a 
variety of persistent symptoms, like sexual dysfunction and cognitive and psychological disorders, including depression. A 
growing body of literature highlights the relevance of the gut microbiota-brain axis in human health and disease. For instance, 
alterations in gut microbiota composition have been reported in patients with major depressive disorder. Therefore, we have 
here analyzed the gut microbiota composition in PFS patients in comparison with a healthy cohort.
Methods Fecal microbiota of 23 PFS patients was analyzed by 16S rRNA gene sequencing and compared with that reported 
in ten healthy male subjects.
Results Sexual dysfunction, psychological and cognitive complaints, muscular problems, and physical alterations symp-
toms were reported in more than half of the PFS patients at the moment of sample collection. The quality sequence check 
revealed a low library depth for two fecal samples. Therefore, the gut microbiota analyses were conducted on 21 patients. The 
α-diversity was significantly lower in PFS group, showing a reduction of richness and diversity of gut microbiota structure. 
Moreover, when visualizing β-diversity, a clustering effect was found in the gut microbiota of a subset of PFS subjects, which 
was also characterized by a reduction in Faecalibacterium spp. and Ruminococcaceae UCG-005, while Alloprevotella and 
Odoribacter spp were increased compared to healthy control.
Conclusion Gut microbiota population is altered in PFS patients, suggesting that it might represent a diagnostic marker and 
a possible therapeutic target for this syndrome.

Keywords Androgenic alopecia · Fecal microbiota · Gut microbiota-brain axis · Sexual dysfunction · Depression · 5alpha-
reductase

Introduction

The post-finasteride syndrome (PFS) is an emerging clini-
cal problem observed in a subset of patients treated with 
finasteride for androgenetic alopecia. These patients, despite 
the suspension of treatment, reported a variety of persis-
tent symptoms, including sexual dysfunction, psychologi-
cal complaints, muscular problems, physical alterations, 
and cognitive complaints [1, 2]. Examples of them are feel-
ing a lack of connection between the brain and penis, loss 
of libido and sexual drive, difficulty in achieving erection, 
genital numbness or paresthesia, depression, reduction in 
self-confidence, decreased initiative and difficulty in concen-
tration, forgetfulness or loss of short-term memory, irritabil-
ity, suicidal thoughts, anxiety, panic attacks, sleep problems, 
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muscular stiffness and cramps, tremors, chronic fatigue, joint 
pain, and muscular ache [3–22].

Finasteride is an inhibitor of the 5alpha-reductase (5α-
R). This enzyme represents a key step in the conversion of 
neuroactive steroids, such as progesterone (PROG) and tes-
tosterone (T) into their reduced metabolites, such as dihy-
droprogesterone (DHP), tetrahydroprogesterone (THP), 
and isopregnanolone in case of PROG and dihydrotes-
tosterone (DHT), 5α-androstane-3α,17β-diol (3α-diol)  
and 5α-androstane-3β,17β-diol (3β-diol) in case of T. These 
neuroactive metabolites exert an important physiologi-
cal control of the nervous functions by activating classical 
and non-classical steroid receptors [23, 24]. In agreement, 
alterations of their levels have been reported in neurodegen-
erative and psychiatric disorders [25–27] as well as in PFS 
patients [14, 21, 22]. We have recently studied the PFS in 
a pre-clinical rat model, describing alterations of neuroac-
tive steroid levels in brain areas [28] as well as depressive-
like behavior coupled with cellular and molecular markers, 
such as a decrease in the neurogenesis and increased neu-
roinflammation and reactive gliosis, one month after drug 
treatment interruption [29]. Interestingly, the composition 
of the microbiota was altered in this experimental setup, 
with a decrease in Ruminococcaceae family and Oscillospira 
and Lachnospira genus [29]. There is a growing body of 
literature showing the relevance of the gut microbiota-brain 
axis both in human health and disease [30–32]. In particular, 
alterations in gut microbiota composition have been reported 
in patients with major depressive disorder [33–35] as well 
as in animal models of depression [36].

In this study, we analyze the composition of the fecal 
microbiota in PFS patients in comparison with a healthy 
cohort.

Materials and methods

Study design and sample preparation

PFS patients were recruited through the Italian finas-
teride side effects network. Twenty-three healthy men, 
aged 25–51 years who reported persistent sexual and men-
tal health side effects after the use of 1–1.25 mg daily of 
finasteride (i.e., Propecia, Proscar, or generic finasteride) 
for androgenetic alopecia, were considered in the case 
group. Only subjects who had suspended finasteride treat-
ment at least 3 months earlier, had not used drugs known 
to potentially interfere with microbiome analysis, and were 
not affected by psychiatric disorders or sexual dysfunction 
before finasteride use, were included. The study procedure 
was approved by the Ethics Committee of the University of 
Milano-Bicocca Monza-Italy, (protocol number 434/2018) 
and the participating subjects provided their written 

informed consent before enrollment. A questionnaire was 
used to evaluate both the absence of PFS signs and symp-
toms before the finasteride treatment and the presence of this 
accompanying signs and symptoms after the drug treatment. 
Although not validated, it represents the only available tool 
to systematically collect information on patient conditions 
and to assess the features of PFS. The same questionnaire 
was used in our previous observations on PFS patients [1, 
2, 14, 21, 22]. The questionnaire was filled by the patient 
himself only after the description of the study design to 
the patient, in order to limit selection and recall bias. The 
patients answered to the following questions (Q) with never/
sometimes/often/always: (Q1) Decreased self-confidence; 
(Q2) Decline of emotional verve, initiative, and desire to do; 
(Q3) Difficulty concentrating and focusing (brain fog); (Q4) 
Mental confusion; (Q5) Forgetfulness or loss of short-term 
memory; (Q6) Losing train of thought or reasoning; (Q7) 
Slurred speech or stumbling over words; (Q8) Irritability 
or easily flying into a rage; (Q9) Nervousness, agitation, 
and inner restlessness; (Q10) Depression, hopelessness, and 
feelings of worthlessness; (Q11) Suicidal thoughts; (Q12) 
Anxiety; (Q13) Panic attacks; (Q14) Sleep problems; (Q15) 
Loss of libido and sexual desire; Q16) Difficulty in achieving 
an erection; (Q17) Feeling of a lack of connection between 
the brain and the penis; (Q18) Genital numbness or pares-
thesia; (Q19) Feeling tinglings or pinpricks; (Q20) Tics and 
muscle spasms; (Q21) Tremors; (Q22) Involuntary muscle 
tension and contraction; (Q23) Dizziness; (Q24) Headache 
and migraine; (Q25) Chronic fatigue, weakness; (Q26) Joint 
pain and muscular ache; (Q27) Decreased body temperature; 
and (Q28) Photophobia and other visual problems.

All participants were Caucasian ethnicity adhering to 
Mediterranean diet and did not show any co-morbidities 
before and after finasteride treatment. No drug treatment 
was reported after finasteride treatment, including prebiot-
ics, probiotics, and antibiotics. In addition, neither constipa-
tion nor Irritable Bowel Syndrome was registered.

The fecal gut microbiota composition in PFS patients was 
compared to healthy cohort. Stool samples were home col-
lected and stored at − 80 °C until use. The raw sequences of 
the healthy cohort (ten male subjects) are available in Borgo 
and collaborators [37] under BioProject PRJNA401981. PFS 
patients and Healthy subjects were ethnicity, sex, diet, and 
BMI matched.

Bacterial DNA extraction and 16S rRNA gene 
sequencing

Total bacterial DNA was extracted from 200 mg of stool 
samples using Dneasy Powersoil Pro Kit (Qiagen) following 
the manufacturer’s instruction. 16S rRNA gene amplicon 
libraries were performed with a two-step barcoding approach 
according to Diviccaro et al. [34].
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Briefly, the 16S rRNA gene was initially ampli-
fied by interest-specific primers targeting V3 (5′-TCG 
TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCT 
ACGGGNGGC WGC AG-3′) and V4 (5′-TCG TCG GCA GCG 
TCA GAT GTG TAT AAG AGA CAG CCT ACGGGNGGC 
WGC AG-3′) regions coupled with overhang adapters. The 
reaction was carried out in 25 µl volumes containing 6 ng/µl 
microbial DNA, 1 µM of each primer, and 2 × KAPA HiFi 
HotStart ReadyMix (Roche).

The following PCR program was used: initial denatura-
tion at 95 °C for 3 min, followed by 25 cycles consisting of 
denaturation (95 °C for 30 s), annealing (55 °C for 30 s), and 
extension (72 °C for 30 s), and a final extension step at 72 °C 
for 5 min. PCR products were analyzed by 1% agarose gel 
electrophoresis for quantity and quality. Expected size of the 
products after Amplicon PCR step is about 550 bp.

DNA samples resulting from PCR step were amplified 
with dual-index primers using Nextera Xt Index Kit V2 Set 
A (Illumina). Library concentration and exact product size 
were measured using Agilent 2100 Bioanalyzer System 
(Agilent). A 20 nM pooled library and a PhiX control v3 
(20 nM) (Illumina) were mixed with 0.2 N fresh NaOH to 
produce the final concentration at 10 pM each and injected 
on a Miseq Reagent Nano Kit V2 500 Cycles for obtaining 
a paired-end 2 × 150 bp sequencing. Sequencing was per-
formed at the IEO Genomic Unit. Fastq files were checked 
for quality using FastQC (https ://www.bioin forma tics.babra 
ham.ac.uk/proje cts/fastq c/) and data analysis was performed 
using QIIME2 suite. Denoising was performed using the 
deblur denoise-16S workflow, setting the trim length to 
245 bp. Sequences from the PFS patients (n = 23) were ana-
lyzed together with a healthy dataset (n = 10) matched by 
sex (male) and BMI (normal), by merging the output fea-
ture table and representative sequences from deblur denois-
ing step. Phylogenetic tree reconstruction was performed 
on the merged table and sequences by fragment insertion 
using SEPP, with the SILVA 128 database used as refer-
ence. Core diversity analysis was performed with the core-
metrics-phylogenetic pipeline, using the output feature table 
from deblur and tree from SEPP, with the rarefaction depth 
set to 1336 reads. Taxonomic classification of sub-OTU 
sequences identified by deblur was performed using the 
sample-classifier pipeline, by training a Naive Bayes clas-
sifier on V3–V4-trimmed 16S sequences from the SILVA 
132 database.

Statistical analysis

Sample biodiversity (i.e., α-diversity) was evaluated 
according to different microbial diversity metrics includ-
ing Chao1, Shannon index, Evenness, Observed OTUs, 
and Faith’s phylogenetic distance. Inter-sample diversity 

(i.e., β-diversity) was calculated by using both weighted 
and unweighted UniFrac and Bray–Curtis distance metrics. 
Principal Coordinates Analysis (PCoA) was performed 
using build-in functions in QIIME2. Groups significance, 
according to experimental design, was calculated by 
Kruskal–Wallis test for alpha metrics vectors, whereas 
PERMANOVA test for beta-metrics distance matrices. 
Statistical significance was calculated using a Mann–Whit-
ney test for comparison within two groups or Kruskal 
-Wallis test with Dunn’s multiple comparison correction 
within more than two groups. P < 0.05 (*), P < 0.01 (**), 
and P < 0.001 (***) are regarded as statistically significant.

Results

General data of the PFS patients at the clinical 
evaluation

Twenty-three PFS men vs healthy cohort (ten male sub-
jects) were evaluated. Table 1 reports anthropometric data 
(weight, height, and body mass index) and age at the time 
of enrollment. For PFS patients, the mean of treatment 
duration was 1176 days. The interval between finasteride 
withdrawal and clinical evaluation was very wide (range 
433–7111 days, median 2465).

No statistical significant differences vs controls were 
found for height (p = 0.25), weight (p = 0.34), and BMI 
(p = 0.91) with the exception of age (p = 0.002). However, 
as well reported in literature, the gut microbiota composi-
tion is only affected during infancy and at old ages, while 
it is stable during the adult age [38]. Therefore, we have 
considered these patients for the present study.

Frequency of the symptoms pre-finasteride and post-
finasteride was self-reported by the patients filling a ques-
tionnaire at the moment of the gut microbiota evaluations. 
More of the 50% of PFS patients considered in our study 
never reported symptoms related with sexual dysfunction, 
psychological complaints, muscular problems, physical 
alterations, and cognitive complaints before finasteride 
treatment. The only exceptions were represented by irri-
tability/easily flying into a rage (Q8) or anxiety (Q12), 
which were sometimes/often (69.6% and 65.2%, respec-
tively) reported also before treatment. Most of the symp-
toms were sometimes/often/always reported by more of 
the 50% of PFS patients at the moment of the gut micro-
biota evaluations. Panic attacks (Q13), feeling tinglings/
pinpricks (Q19), tremors (Q21), dizziness (Q23), or head-
ache (Q24) were never reported by the majority of the PFS 
patients, instead (Q13 and 24: 52.2%; Q19 and 21: 56.5%; 
Q23: 69.6%).

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/


 Journal of Endocrinological Investigation

1 3

Gut microbiota structure in PFS patients

The microbiota community structure of PFS subjects was 
examined in comparison to healthy cohort by α-diversity 
(within-sample diversity) metrics. Two PFS patients (i.e., the 
number 9 and 18 in Table 1) were characterized by a very 
low NGS library depth; therefore, we decided to remove 
them from gut microbiota evaluation. Significant differences 
among community richness were observed, as estimated by 
Chao1 (p = 0.047) index, showing a different gut microbiota 
structure in PFS subjects (Fig. 1). Phylogenetic diversity 
(Faith’s PD), which takes into consideration the phylogeny 
of microbes to estimate diversity across a tree, indicates a 
different richness and evenness (p = 0.047) (Fig. 1). No sig-
nificant differences in diversity were observed between PFS 

and healthy subjects (Observed-OTUs, p = 0.40; Shannon, 
p = 0.75; Simpson, p = 0.89) (Fig. 1).

For gaining a more comprehensive view of diversity, we 
applied three different ß-diversity (between sample diversity 
comparisons) metrics visualized by Principal Coordinate 
Analysis (PCoA) (Fig. 2). PCoA is plotted for representing 
the microbial community compositional differences between 
PFS and healthy cohorts. The bacterial composition of these 
gut microbiota communities clustered according to the 
grouping. Unweighted UniFrac distance showed a significant 
clustering based on differences in low-abundance features 
(p = 0.001). The same clustering is partially confirmed by 
the weighted UniFrac distance (p = 0.05), underlining the 
significant differences in terms of microbial composition. In 
addition, we calculated the Bray–Curtis dissimilarity within 
PFS and healthy to quantify community similarity of the 
same sample type (p = 0.001). Community dissimilarity 
between samples within each group was smaller than dis-
similarity between samples from different groups.

Interestingly, the analysis of the ß-diversity distinguishes 
two different sub-clusters within PFS patients (Fig. 2). In 
particular, the discrimination between PFS patients and 
healthy groups is driven by the sub-cluster A (Unweighted 
UniFrac, p = 0.001; Weighted UniFrac, p = 0.001; Bray–Cur-
tis, p = 0.001), rather than the sub-cluster B (Unweighted 
UniFrac, p = 0.001; Weighted UniFrac, p = 0.37, Bray–Cur-
tis metrics, p = 0.001) (Fig. 2). A strong separation was 
found for PFS-A and PFS-B in all tested ß-diversity metrics 
used (Unweighted UniFrac, p = 0.001; Weighted UniFrac, 
p = 0.001; Bray–Curtis, p = 0.001).

Overall, across the α- and ß-diversity metrics used, PFS 
group showed a significant reduction of richness, diversity, 
and composition (low-abundance features), indicating a dif-
ferent gut microbiota structure. Furthermore, the analysis 
of ß-diversity highlighted two distinct microbial clusters 
in PFS subjects, with PFS-A more distant to healthy clus-
ter. To gain insight into the microbial differences in PFS 
patients, we applied multivariate analysis in order to find 
possible associations between gut microbiota composition, 
cohort characteristics, and clinical evaluation. No significant 
association was detected, except the days from suspension 
of finasteride treatment that seems to be more associated 
with PFS-A microbiota, even if not statistically significant 
(p = 0.06, data not shown).

Gut microbiota composition in PFS patients

In addition to the microbiota structure analysis, we also 
investigated the microbiota composition. As expected, the 
most relatively abundant phyla in healthy and PFS sub-
jects were Firmicutes (mean ± SD; Healthy: 45.4 ± 7.0; 
PFS: 57.6 ± 17.3; p = 0.09) and Bacteroidetes (Healthy: 
40.4 ± 15.0; PFS: 34.8 ± 17.3; p = 0.40) (Fig. 3a). PFS 

Table 1  Clinical data

Subjects Age (years) Height (m) Weight (kg) BMI (kg/m2)

Patient 1 51 1.72 64 21.63
Patient 2 25 1.8 83 25.62
Patient 3 36 1.62 48 18.29
Patient 4 41 1.7 68 23.53
Patient 5 45 1.79 68 21.22
Patient 6 34 1.7 65 22.49
Patient 7 36 1.8 77 23.77
Patient 8 44 1.83 74 22.10
Patient 9 51 1.83 80 23.89
Patient 10 25 1.93 77 20.67
Patient 11 30 1.87 90 25.74
Patient 12 37 1.76 62 20.02
Patient 13 36 1.9 80 22.16
Patient 14 28 1.83 81 24.19
Patient 15 38 1.82 78 23.55
Patient 16 43 1.71 60 20.52
Patient 17 43 1.78 80 25.25
Patient 18 42 1.84 76 22.45
Patient 19 33 1.74 75 24.77
Patient 20 32 1.85 78 22.79
Patient 21 30 1.78 77 24.30
Patient 22 50 1.72 83 28.06
Patient 23 37 1.92 88 23.87
Healthy 1 35 1.80 80 24.69
Healthy 2 38 1.71 65 22.23
Healthy 3 42 1.70 70 24.22
Healthy 4 38 1.83 74 22.10
Healthy 5 58 1.76 70 22.60
Healthy 6 51 1.78 65 20.52
Healthy 7 56 1.70 74.5 25.78
Healthy 8 60 1.83 65 19.41
Healthy 9 46 1.75 76 24.82
Healthy 10 63 1.76 73 23.57
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group was significantly depleted in Proteobacteria 
(Healthy: 10.2 ± 15.6; PFS: 4.5 ± 11.3; p = 0.009) and 
Actinobacteria (Healthy: 22.6 ± 2.5; PFS: 4.5 ± 3.5; 
p = 0.0003) (Fig. 3a). Among the most relatively abun-
dant families, we found Acidaminococcaceae (Healthy: 
5.5 ± 10.0; PFS: 4.5 ± 4.8; p = 0.04), Enterobacteriaceae 
(Healthy: 7.3 ± 13; PFS: 2.9 ± 11.0; p = 0.005), Bifidobac-
teriaceae (Healthy: 15.2 ± 2.2; PFS: 12.3 ± 3.4; p = 0.005), 
Barnesiellaceae (Healthy: 1.5 ± 2.8; PFS: 0.3 ± 0.9; 
p = 0.001), Christensenellaceae (Healthy: 2.2 ± 2.6; PFS: 
0.04 ± 0.1; p < 0.001), and Desulfovibrionaceae (Healthy: 
1.8 ± 1.8; PFS: 0.02 ± 0.01; p < 0.001) to be significantly 
reduced in PFS patients (Fig.  3b). Interestingly, two 
families closely related to gut microbiota dysbiosis were 
found different, although not significantly present in PFS 
subjects in comparison to healthy: Prevotellaceae family 
(Healthy: 3.6 ± 6.0; PFS: 6.9 ± 10.2; p = 0.35) and Akker-
mansiaceae (Healthy: 1.1 ± 2.6; PFS: 0.5 ± 1.0; p = 0.11) 
(Fig. 4b). At genus level, the microbiota composition of 
PFS subjects was characterized by a significant reduction 
in Subdoligranulum (Healthy: 3.8 ± 2.7; PFS: 0.9 ± 1.7; 
p = 0.009), Phascolarctobacterium (Healthy: 4.3 ± 4.9; 
PFS: 2.6 ± 6.7; p = 0.009), Ruminococcaceae UCG-
002 (Healthy: 4.2 ± 3.2; PFS: 0.12 ± 0.27; p < 0.0001), 
and Escherichia–Shigella (Healthy: 7.3 ± 13.2; PFS: 
2.8 ± 10.8; p < 0.001) (Fig. 3c). Furthermore, Turicibacter 

(Healthy: 0.02 ± 0.04; PFS: 0.3 ± 0.5; p = 0.16) and Blautia 
(Healthy: 0.2 ± 0.1; PFS: 2.7 ± 4.2; p = 0.44), two genera 
described as related to depressive symptomology, were 
increased in PFS patients.

To determine whether the two sub-clusters of PFS 
patients identified have different gut microbiota compo-
sition, we analyzed their relative abundances at phylum, 
family, and genus levels. Sub-cluster A was significantly 
enriched in Firmicutes in comparison to B (p = 0.03) and 
healthy (p = 0.002), while Actinobacteria was more abun-
dant in healthy than in sub-cluster A (p = 0.04) (Fig. 4a). 
The composition of Veillonellaceae family was different 
between healthy and sub-cluster A (p = 0.02), whereas 
Peptostreptococcaceae abundance was higher in sub-clus-
ter A than in B (p = 0.03) (Fig. 4b). Subdoligranulum spp. 
(p = 0.007, p = 0.003), Lachnoclostridium spp. (p = 0.01, 
p = 0.0006), Bilophila spp. (p = 0.002, p = 0.0002) genera, 
and Christensenellaceae R7 group (p = 0.05, p = 0.0008) 
showed a higher abundance in healthy in comparison, 
respectively, to PFS-A and PFS-B. On the contrary, in 
comparison to healthy subjects, Faecalibacterium spp. 
(p = 0.02) and Ruminococcaceae UCG-005 (p = 0.02) 
were decreased only in sub-cluster A, while Alloprevotella 
(p = 0.03) and Odoribacter spp. (p = 0.02) were increased 
(Fig. 4c).

Fig. 1  Alpha-diversity analysis in 10 healthy and 21 PFS patients. Intra-samples diversity of Healthy and PFS microbiota according to Chao 1 
(p = 0.047), Evenness (p = 0.89), Faith PD, (p = 0.047), Observed-OTUs (p = 0.40), Shannon (p = 0.75)
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Discussion

Data here reported indicate for the first time that gut micro-
biota composition was altered in PFS patients. In particular, 
at the phylum level, we here reported a significant increase 
in Firmicutes and a decrease in Proteobacteria. Moreover, 
Acidaminococcaceae, Enterobacteriaceae, Bifidobacte-
riaceae, Barnesiellaceae, Christensenellaceae, and Des-
ulfovibrionaceae families were significantly decreased. 
Furthermore, at genus levels Subdoligranulum, Phasco-
larctobacterium, Ruminococcaceae UCG-002, and Escheri-
chia–Shigella were reported to be significantly decreased in 

Fig. 2  Beta-diversity analysis revealed two different sub-clusters in 
21 PFS subjects. Unweighted UniFrac distance (a) showed signifi-
cant separation for PFS-A and healthy subjects (p = 0.001), between 
PFS-B and healthy cohorts (p = 0.001), and within PFS subjects 
(PFS-A vs PFS-B; p = 0.001). Weighted UniFrac distance (b) showed 
a significant separation for PFS-A and healthy subjects (p = 0.001), 
and for PFS-A and PFS-B (p = 0.001), but no significant separation 
between PFS-B (p = 0.37) and healthy cohorts was detected. Bray–
Curtis dissimilarity (c) showed a significant clustering (p = 0.001) for 
healthy and PFS sub-clusters
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PFS patients. Thus, gut microbiota composition is altered 
in a court of patients who, despite finasteride suspension, 
report a persistent symptomatology, such as depression, 
sleep disturbance, and sexual dysfunction [1, 2]. As often 
observed, depression and insomnia are frequently associ-
ated [39, 40]. Indeed, as recently observed, alterations of 
gut microbiome have been reported in depressive disor-
ders [41–45] as well as in circadian and sleep disturbance 
[46–48]. In addition, as mentioned above, PFS reported per-
sistent sexual impairment, including feeling a lack of con-
nection between the brain and penis, loss of libido and sex 
drive, difficulty in achieving an erection, genital numbness, 
or paresthesia [1, 2]. Indeed, as demonstrated in two differ-
ent studies, PFS patients showed erectile dysfunction [13, 
14]. In agreement with the present results, gut microbiota 
population is also altered in an experimental model of dia-
betic erectile dysfunction [49].

Interestingly, under β-diversity analysis, we reported 
two different sub-clusters of PFS patients significantly dif-
ferent from the healthy group used as control. No statisti-
cal differences between the two sub-clusters were observed 
in terms of age (p = 0.5262), BMI (p = 0.1927), finasteride 
treatment period (p = 0.817), suspension period (p = 0.126), 

and symptoms reported after finasteride suspension in the 
questionnaire (data not shown).

At the phylum, family, and genus levels, some gut micro-
biota populations were modified in the sub-cluster named A 
but not in B. For instance, at the genus level, Ruminococ-
caceae UCG-005 were significantly decreased in the sub-
cluster A of the PFS patients analyzed. It is interesting to 
note that a similar decrease has been reported by us also in 
an experimental model of PFS. Indeed, male rats chronically 
treated with finasteride for 20 days revealed after one month 
of suspension a decrease of Ruminococcaceae [29]. In this 
context, it is important to highlight, that in agreement with 
the observation that depressed patients showed a decrease in 
Ruminococcaceae population [33] and Blautia spp.[50], PFS 
patients [13, 14] as well as experimental model of PFS [29] 
showed depressive symptomatology. Similarly, in agreement 
with the decrease observed in depressed patients [33, 42, 
51], in the sub-cluster A of PFS patients, we also report 
a decrease in Veillonellaceae as well as Faecalibacterium 
spp. population.

The reduction of Faecalibacterium spp. has been sug-
gested to be associated with gut dysbiosis and depressive 
disorders [52]. In addition, this genus is also an important 

Fig. 4  Gut microbiota composition in 10 Healthy and sub-clusters A and B of 21 PFS patients. Relative abundances are reported at Phylum (a), 
Family (b), and Genus (c) level. Statistical significant values are reported, highlighting the group with greater abundance. *p < 0.05, **p < 0.001, 
***p < 0.0001
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producer of butyrate [53], a short-chain fatty acid which 
exerts an important role in the communication of gut micro-
biota and brain [54] and that recently has been proposed to 
exert a role in sleep modulation [55]. Thus, Faecalibacte-
rium spp. might represent a possible target for a therapy 
aimed to restore gut microbiota alterations in PFS patients 
and possibly, on the basis of the existence of the gut micro-
biota-brain axis, also other symptoms observed in these 
patients. A relationship between gut microbiota population 
and steroid environment has been also proposed [45, 56, 57]. 
Indeed, gonadectomy and hormone replacement have a clear 
effect on gut bacteria in rodents [58–63], for instance, the 
changes observed in Ruminococcaceae after orchidectomy 
in mice [58]. Alteration in Ruminococcaceae also occurred 
in prostate cancer patients treated with oral androgen recep-
tor axis-targeted therapies [64]. On this basis, it is possi-
ble to hypothesize that gut microbiota changes observed in 
PFS patients may be ascribed to the alteration of steroid 
environment. Indeed, alterations in the levels of 5α-reduced 
metabolites of PROG and T have been reported in plasma 
and cerebrospinal fluid of PFS patients [14, 21, 22]. In addi-
tion, since as demonstrated in an experimental model of 
PFS, alteration of steroid environment also occurs in brain 
regions [28], the existence of a gut microbiota-brain axis 
[30–32] may also suggest a role by brain steroids. Finally, a 
possible contribution by intestinal steroid environment may 
be also hypothesized. Up to now, steroidogenic capacity in 
this compartment has not fully clarified. However, microbial 
species, such as Clostridium scindens, have the potentiality 
to convert glucocorticoids into androgens [65] and there-
fore may be potential target for the effect of finasteride. In 
addition, it has been recently demonstrated that type 1 5α-R 
is expressed in mouse cecum and colon with significant 
T and DHT levels in these rodent structures as well as in 
feces of healthy young adult men [66]. Moreover, both in 
PFS patients as well as in its experimental model [14, 21, 
22, 28], finasteride affects the levels of THP, thus a steroid 
able to interact with GABA-A receptor [24]. In this context, 
it is important to remember that some members of human 
microbiota (i.e., Bifidobacterium spp. and Lactobacillus 
spp.) encode for genes involved in GABA production, sug-
gesting a microbial participation in the production of this 
neurotransmitter within the gut [67, 68]. Indeed, GABA-A 
receptors have been recently identified in the mouse colon 
[69, 70]. Interestingly, we recently observed that rat colon 
expresses steroidogenic capability and, in particular, an high 
production of a T metabolite, such as the 3α-diol [71]. It is 
important to note that this androgen metabolite, like THP, is 
able to interact with GABA-A receptors [72] and its levels 
are affected in PFS patients as well as in its experimental 
model [14, 21, 22, 28]. This may further support the hypoth-
esis of a role of steroids interacting with GABA-A receptors 
in the pathogenesis of PFS.

In conclusion, data here reported indicate for the first time 
that gut microbiota population is altered in PFS patients. 
With all the limitations represented by the small cohort 
here considered for this emerging and rare syndrome, these 
results suggest that gut microbiota composition might repre-
sent a diagnostic marker and a possible target for a therapeu-
tic strategy aimed to counteract the important symptomatol-
ogy occurring in these patients.
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