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ONE-RELATOR MAXIMAL PRO-p GALOIS GROUPS

AND THE KOSZULITY CONJECTURES

CLAUDIO QUADRELLI

To John P. Labute, with respect and admiration.

Abstract. Let p be a prime number and let K be a field containing a root of 1
of order p. If the absolute Galois group GK satisfies dimH1(GK,Fp) < ∞ and
dimH2(GK,Fp) = 1, we show that L. Positselski’s and T. Weigel’s Koszulity
conjectures are true for K. Also, under the above hypothesis we show that
the Fp-cohomology algebra of GK is the quadratic dual of the graded algebra
gr

•
Fp[GK], induced by the powers of the augmentation ideal of the group al-

gebra Fp[GK], and these two algebras decompose as products of elementary
quadratic algebras. Finally, we propose a refinement of the Koszulity conjec-
tures, analogous to I. Efrat’s Elementary Type Conjecture.

1. Introduction

Let A• :=
⊕

n≥0An be a non-negatively graded algebra of finite type over a

field k. The algebra A• is called quadratic if it is generated in degree 1 (i.e., every
element is a combination of products of elements of A1) and its defining relations
are homogeneous relations of degree 2. Namely, one may write A• ≃ T•(A1)/(Ω),
where T•(A1) denotes the tensor algebra generated by A1 and (Ω) is the two-sided
ideal generated by a subset Ω ⊆ A⊗2

1 . A quadratic algebra A• comes equipped with
its quadratic dual A!

•, which is the quadratic algebra generated by the dual A∗
1 of

A1, and with defining relations the orthogonal complement Ω⊥ ≤ (A∗
1)

⊗2 of Ω (cf.
[18, § 1.2]).

Quadratic algebras gained great importance in Galois theory after the proof of
the celebrated Bloch-Kato conjecture by M. Rost and V. Voevodsky (see [27, 29,
31, 32]): from it one deduces that, given a prime number p and a field K containing
a root of 1 of order p, the Fp-cohomology algebra H•(GK) =

⊕

n≥0H
n(GK,Fp)

of the absolute Galois group GK of K, endowed with the (graded-commutative)
cup-product

∪ : Hr(GK,Fp)⊗Hs(GK,Fp) −→ Hr+s(GK,Fp),

is a quadratic algebra over the finite field Fp. This led to the achievement of
new results on the structure of maximal pro-p Galois groups of fields (see, e.g.,
[11, 1, 23, 2, 24]). Understanging which pro-p groups may occur as maximal pro-p
Galois groups of fields is one of the main open problems in modern Galois theory.

The class of Koszul algebras is a very peculiar class of quadratic algebras, sin-
gled out by S.B. Priddy in [22]. A quadratic algebra A• is called Koszul if k,
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as trivial graded A• module concentrated in degree 0, has a linear resolution (see
Definition 2.2 for the formal definition). Koszul algebras arise in various fields of
mathematics, and they have an uncommonly nice cohomological behavior — e.g.,
the cohomology of a Koszul algebra is just its quadratic dual. For the formal defi-
nition and properties of Koszul algebras we direct the reader to [18, Ch. 2] and [16,
§ 2]. Koszul algebras appeared on the Galois stage thanks to the work of L. Posit-
selski and A. Vishik (see, e.g., [21, 19]). In particular, in [20] Positselski conjectured
that H•(GK) is Koszul, for K containing a root of 1 of order p, and he proved that
this is the case if K is a number field. In view of Positselski’s conjecture and of the
cohomological properties of Koszul algebras, it is natural to ask what the quadratic
dual of H•(GK) may look like.

For a profinite group G, let

gr•Fp[G] :=
⊕

n≥0

In/In+1

denote the graded group algebra of G, with I E Fp[G] the augmentation ideal and
I0 = Fp[G]. If K contains a root of unity of order p and the maximal pro-p Galois
group of K is finitely generated, H•(GK) and gr•Fp[GK] are expected to be quadrat-
ically dual to each other, and Th. Weigel conjectured in [34] that also gr•Fp[GK] is
Koszul. Altogether, one has the following three “Koszulity conjectures”.

Conjecture 1.1. Let K be a field containing a root of 1 of order p with H1(GK,Fp)
finite.

(i) The Fp-cohomology algebra H•(GK) is Koszul (cf. [20]).
(ii) The graded group algebra gr•Fp[GK] is Koszul (cf. [34]).
(iii) H•(GK)

! ≃ gr•Fp[GK] (cf. [16]).

In [16], it is shown that the above conjecture holds true for the class of pro-
p groups of elementary type (introduced by I. Efrat in [4, § 3]), which includes
Demushkin pro-p groups, and which is particularly significan from a Galois-theoretic
point of view.

Following the trail drawn in [16], in this paper we study the Fp-cohomology alge-
bra and the graded group algebra for the class of finitely generated one-relator pro-p
groups with quadratic Fp-cohomology. A pro-p group G is said to be one-relator
if it has a minimal presentation with a single defining relation. The fundamental
example we keep in mind while dealing with one-relator pro-p groups is the class
of Demushkin groups — introduced by S.P. Demushkin and calssified completely
by J.-P. Serre and J.P. Labute —, which arise as maximal pro-p Galois groups of
local fields (see, e.g., [13] and [17, § III.9]). Our investigation on one-relator pro-p
groups aims at proving the following.

Theorem 1.2. Let K be a field containing a root of 1 of order p such that H1(GK,Fp)
is finite and dimH2(GK,Fp) = 1. Then there exists a closed subgroup S of GK with
cdp(S) = 1, generating a closed normal subgroup N E GK, such that:

(i) the maximal pro-p quotient of GK/N is a Demushkin group;
(ii) H•(GK) ≃ H•(S) ⊓H•(GK/N);
(iii) gr•Fp[GK] ≃ gr•Fp[S] ⊔ gr•Fp[GK/N ]. Moreover, also cdp(N) = 1, unless

p = 2 and
√
−1 /∈ K.

Here ⊓ and ⊔ denote the direct product and free product in the category of
quadratic algebras (see § 2.2). The assumption on Hn(GK), n = 1, 2, amounts to
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say that the maximal pro-p quotient of GK is a finitely generated one-relator pro-p
group. Theorem 1.2 may be considered as an “algebras analogue” of a result by
T. Würfel on one-relator pro-p groups which occur as absolute Galois groups (cf.
[35]).

More importantly, Theorem 1.2 implies that the “Koszulity conjectures” find
positive solution under the assumption that H1(GK,Fp) is finite and H2(GK,Fp)
has dimension 1.

Corollary 1.3. Let K be as in Theorem 1.2. Then Conjecture 1.1 holds true for
K.

Finally, in analogy with I. Efrats Elementary Type Conjecture (cf. [4]), we define
the classes of Koszul algebras ofH-elementary type and of G-elementary type as the
minimal classes of Koszul algebras generated by some “basic” quadratic algebras
via elementary products (cf. Definition 5.8). In view of the results obtained in [16]
and in the present paper, we ask the following.

Question 1.4. Let K be a field containing a root of unity of order p such that
H1(GK,Fp) is finite.

(i) Is the Fp-cohomology H•(GK) a Koszul algebra of H-elementary type?
(ii) Is the graded group algebra gr•Fp[GK] a Koszul algebra of G-elementary

type?

Acknowledgment. The author wishes to express his gratitude toward the anonymous

referee for her/his careful work and useful comments, and toward J. Mináč, F.W. Pasini,

N.D. Tân and Th. Weigel, as his interest for Koszulity in Galois cohomology originates

from the collaboration with them. Moreover, the author thanks I. Efrat and J.P. Labute

for their precious suggestions, and P. Guillot, C. Maire, E. Matzri, D. Neftin, M. Schein

and I. Snopce for their interest.

2. Quadratic algebras

Throughout the paper every graded algebra A• =
⊕

n∈Z
An is assumed to be

unitary associative over the finite field Fp, and non-negatively graded of finite-type,
i.e., A0 = Fp, An = 0 for n < 0 and dim(An) <∞ for n ≥ 1.

In this section we give only the most basic definitions and results on quadratic
algebras and Koszul algebras, and some examples, which will be sufficient for our
investigation. For a complete account on cohomology of graded algebras and Koszul
algebras, we refer to [16, § 2], and also to the first chapters of the books [18] and
[14].

2.1. Quadratic algebras and quadratic duals. Given a vector space V of
finite dimension, let T•(V ) denote the graded tensor algebra generated by V ,
endowed with the multiplication induced by the tensor product. Moreover, let
V ∗ = HomFp

(V,Fp) denote the dual space of V . Since dimV < ∞, one may
identify (V ⊗ V )∗ = V ∗ ⊗ V ∗.

Definition 2.1. A graded algebra A• =
⊕

nAn is said to be quadratic if A• is
isomorphic to the quotient T•(V )/(Ω) for some finitely generated vector space V
isomorphic to A1, and some subset Ω ⊆ V ⊗ V , with (Ω) E T•(V ) the two-sided
ideal generated by Ω. We write A• = Q(V,Ω).
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For a quadratic algebra A• = Q(V,Ω), let Ω⊥ ⊆ (V ⊗V )∗ denote the orthogonal
space of Ω, i.e., Ω⊥ = {α ∈ (V ⊗ V )∗ | α(w) = 0 for all w ∈ Ω}. The quadratic

dual of A•, denoted by A!
•, is the quadratic algebra Q(V ∗,Ω⊥).

Note that for a quadratic algebra A• one has (A!
•)

! = A•.

Definition 2.2. For a graded algebraA• =
⊕

n≥0An, the Fp-cohomology is defined

as the direct sum of the derived functors if the functor HomA•
( ,Fp) evaluated on

Fp. Namely, it is the bigraded algebra
⊕

i,j

ExtijA•

(Fp,Fp), i, j ≥ 0,

where one grading is induced by the grading of A•, and the other grading is the
cohomological grading (cf. [16, § 2.2]). The algebra A• is Koszul if the cohomology

is concentrated on the diagonal, i.e., if ExtijA•

(Fp,Fp) = 0 for i 6= j.

Every Koszul algebra is quadratic. Moreover, a quadratic algebra A• is Koszul
if, and only if, the dual algebra A!

• is Koszul (cf. [16, § 2.3]).
2.2. Examples and constructions. Henceforth V denotes a vector space of finite
dimension d.

Example 2.3. The tensor algebra T•(V ) and the quadratic algebraQ(V, V ⊗2), called
the trivial quadratic algebra, are Koszul, and Q(V, V ⊗2)! = T•(V

∗), and conversely
(cf. [14, Examples 3.2.5]).

Let X = {X1, . . . , Xd} be a set of indeterminates. The free associative algebra
Fp〈X〉 — i.e., the algebra of polynomials on the non commutative indeterminates
X — comes endowed with the grading induced by the subspaces of homogeneous
polynomials. We may identify X with a fixed basis of V , and such identification
induces an isomorphism of quadratic algebras T•(V ) ≃ Fp〈X〉.
Example 2.4. The symmetric algebra S•(V ) = Q(V,ΩS) and the exterior algebra
Λ•(V ) = Q(V,ΩΛ), where

ΩS = {vw − wv | v, w ∈ V } and ΩΛ = {vw + wv | v, w ∈ V },
are Koszul, and Λ•(V )! = S•(V

∗), and conversely (cf. [14, Examples 3.4.12]).

Given two quadratic algebras A• = Q(A1,ΩA) and B• = Q(B1,ΩB), one has
the following contrsuctions (cf. [16, Example 2.5]).

(a) The direct product of A• and B• is the quadratic algebra A•⊓B• = Q(A1⊕
B1,Ω), with

Ω = ΩA ∪ΩB ∪ (A1 ⊗B1) ∪ (B1 ⊗A1).

(b) The free product of A• and B• is the quadratic algebra A• ⊔B• = Q(A1 ⊕
B1,ΩA ∪ ΩB).

(c) The symmetric tensor product of A• and B• is the quadratic algebra A• ⊗
B• = Q(A1 ⊕B1,Ω), with Ω = ΩA ∪ ΩB ∪ ΩS , where

ΩS = {ab− ba, a ∈ A1, b ∈ B1}.
(d) The skew-symmetric tensor product of A• and B• is the quadratic algebra

A• ∧B• = Q(A1 ⊕B1,Ω), with Ω = ΩA ∪ ΩB ∪ Ω∧, where

Ω∧ = {ab+ ba, a ∈ A1, b ∈ B1}.
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One has the following (cf. [18, § 3.1]).
Proposition 2.5. If both A• and B• are Koszul, then also the algebras A• ⊓ B•,
A• ⊔B•, A• ⊗B• and A• ∧B• are Koszul. Moreover, one has

(i) (A• ⊓B•)
! ≃ A!

• ⊔B!
• and (A• ⊔B•)

! ≃ A!
• ⊓B!

•,
(ii) (A• ⊗B•)

! ≃ A!
• ∧B!

• and (A• ∧B•)
! ≃ A!

• ⊗B!
•.

3. Pro-p groups and graded algebras

The aim of this section is to provide an effective way to describe the graded
group algebra of the pro-p groups we are studying.

For a pro-p group G and n ≥ 1, Gn denotes the closed subgroup of G generated
by nth powers, and [G,G] denotes the closed commutator subgroup of G.

3.1. The p-Zassenhaus filtration. The following is an extract from [9, § 2].
Let F be a free finitely generated pro-p group with basis X = {x1, . . . , xd}. The

complete group algebra Fp[[F ]] is defined as Fp[[F ]] = lim←−U
Fp[F/U ], where U runs

through the open normal subgroups of F . The assignment x 7→ x − 1 induces an
embedding of sets F →֒ Fp[[F ]] (this map is not a morphism of groups).

Let Fp〈〈X〉〉 denote the algebra of formal power series in the non-commuting
indeterminates X = {X1, . . . , Xd}. Then there is an isomorphism of topological
algebras φ : Fp[[F ]], given by xi 7→ 1 + Xi. The composition of the embedding
F →֒ Fp[[F ]] with the isomorphism φ is the Magnus embedding ψ : F →֒ Fp〈〈X〉〉.

Let I(X) denote the augmentation ideal of Fp〈〈X〉〉, i.e., I(X) is the two-sided
ideal (X1, . . . , Xd). The p-Zassenhaus filtration of F is the filtration given by the
subgroups

F(n) = {x ∈ F | φ(x − 1) ∈ I(X)n} = {x ∈ F | ψ(x) ∈ I(X)n}, n ≥ 1.

In particular, one has F(1) = G, F(2) = F p[F, F ] (namely, F(2) is the Frattini
subgroup of F ), and

(3.1) F(3) =

{

F p[[F, F ], F ] if p 6= 2

F 4[F, F ]2[[F, F ], F ] if p = 2.

Moreover, the p-Zassenhaus filtration of F is the fastest descending series of F
starting at F and such that

(3.2) [F(n), F(m)] ⊆ F(n+m) and F p

(n) ⊆ F(np)

for every n,m ≥ 1 (cf. [3, § 11.1]), and the quotient F(n)/F(n+1) is finite.
Moreover, one has a canonical isomorphism of graded algebras

grFp〈〈X〉〉 :=
⊕

n≥0

I(X)n/I(X)n+1 ∼−→ Fp〈X〉,

so that for a series f ∈ Fp〈〈X〉〉 such that f ∈ I(X)n r I(X)n+1, one may consider
the class f + I(X)n+1 as a homogeneous polynomial of Fp〈X〉 of degree n.

For an element x ∈ F(n) r F(n+1), the class ψ(x) + I(X)n+1, considered as a
homogeneous polynomial of Fp〈X〉 of degree n, is called the initial form of x in
Fp〈X〉. Thus, one may consider the quotient F(n)/F(n+1) as a subspace of the
space of homogeneous polynomials on X of degree n. In particular, the initial form
of xi is Xi, and the initial form of the commutator [xi, xj ] = x−1

i x−1
j xixj is the

algebra commutator −[Xi, Xj ] = XiXj +XjXi, for every i, j ∈ {1, . . . , d}.
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3.2. Restricted lie algebras. In this subsection we give a description of the
graded group algebra of a finitely generated pro-p group as quotient of the algebra
Fp〈X〉.

For X = {X1, . . . , Xd}, one can make the algebra Fp〈X〉 into a Lie algebra, by
setting Lie brackets [f1, f2] = f1f2 − f2f1 for f1, f2 ∈ Fp〈X〉.

Definition 3.1. Let L be a Lie subalgebra of Fp〈X〉. Then L is said to be restricted
if fp ∈ L for each element f ∈ L. In particular, the restricted Lie algebra L(X)
is the restricted Lie subalgebra of Fp〈X〉 generated by X , it is a free restricted Lie

algebra, and Fp〈X〉 is its universal envelope.

(For the general definition of restricted Lie algebra see [10, § V.7] and [3, § 12.1].)
Let F be a free pro-p group with basis X = {x1, . . . , xd}. For every n ≥ 1, the
subspace of L(X) of the homogeneous elements of degree n is the image of the
quotient F(n)/F(n+1) via ψ, and we may identify L(X) with

⊕

n≥0 F(n)/F(n+1) (cf.

[9, Rem. 2.3]).
Let G be a pro-p group with presentation

(3.3) 1 // R // F // G // 1 .

Recall that a presentation (3.3) is minimal when R ⊆ F(2) (cf., e.g., [2, p. 215]). A
subset {r1, . . . , rm} of F is said to be a set of defining relations for G if it generates
R as closed normal subgroup of F .

Set

I(R) =
⊕

n≥2

(R ∩ F(n))F(n+1)

F(n+1)
.

Since R is a normal subgroup of F , I(R) is a restricted ideal of L(X), i.e., it is an
ideal in the sense of a Lie algebra, with the further condition that fp ∈ I(R) for each
f ∈ I(R) (cf. [16, § 7.2]). We set L(G) = L(X)/I(R), and G(n) = F(n)/(R ∩ F(n))
for n ≥ 1, i.e.,

L(G) =
⊕

n≥1

G(n)/G(n+1) = L(X)/I(R)

(for the original definition of the p-Zassenhaus filtration {G(n)}n≥1 of a pro-p group
G see [3, § 11.1]). The graded group algebra gr•Fp[G] and the restricted Lie algebra
L(G) related by Jennings’ theorem (cf. [3, § 12.2], see also [16, Thm. 3.9])

Proposition 3.2. Let G be as above. Then gr•Fp[G] is isomorphic to the universal
envelope of the restricted Lie algebra L(G).

Proposition 3.2 and [9, Prop. 2.1] yield the following.

Proposition 3.3. Let G be a finitely generated pro-p group with presentation (3.3).
Then one has a short exact sequence of graded Fp-algebras

0 // I // Fp〈X〉 // gr•Fp[G] // 0 ,

where I E Fp〈X〉 is the two-sided ideal (as ideal of an associative algebra) generated
by I(R) as subset of Fp〈X〉.
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3.3. Mild pro-p groups. Let X = {X1, . . . , Xd} be a set of non-commuting in-
determinates. For m ≥ 1, let ρ1, . . . , ρm ∈ Fp〈X〉 be homogeneous polynomials of
degree deg(ρi) = si ≥ 2 for each i. Let I E Fp〈X〉 denote the two-sided ideal gen-
erated by ρ1, . . . , ρm, and set A• = Fp〈X〉/I. The sequence {ρ1, . . . , ρm} is called
strongly free if one has an identity of formal power series

∑

n≥0

dim(An) · tn =
1

1− dt+ (ts1 + . . .+ tsm)

(cf. [9, Def. 2.6]).

Definition 3.4. Let G be a finitely generated pro-p group with minimal presenta-
tion (3.3), where F has a basis X = {x1, . . . , xd}. The group G is said to be mild

if there exists a finite set of defining relations {r1, . . . , rm} such that {ρ1, . . . , ρm}
is a strongly free sequence in Fp〈X〉, with ρi the initial form of ri for each i. Such
a presentation is called mild.

The following result is fundamental for dealing with the algebras arising from
mild pro-p groups — in particular, it provides an effective description for the ideal
I as in Proposition 3.3 (cf. [9, Thm. 2.12]).

Proposition 3.5. Let G be a mild pro-p group, with mild presentation (3.3).

(i) G has cohomological dimension 2, i.e., Hn(G,Fp) = 0 for n ≥ 3.
(ii) One has an isomorphism of graded algebras gr•Fp[G] ≃ Fp〈X〉/I, where

X = {X1, . . . , Xd} and I is the two-sided ideal generated by the initial
forms of the defining relations of G.

Note that for a generic pro-p group G the dieal I as in Proposition 3.3 may not
be generated only by the initial forms of a set of defining relations.

Example 3.6. For p odd let G be the pro-p group generated by {x1, x2, x3, x4} and
subject to the defining relations

[x1, x2]x
α12

1 xβ12

2 = [x2, x3]x
α23

2 xβ23

3 = [x3, x4]x
α34

3 xβ34

4 = [x4, x1]x
α41

4 xβ41

1 = 1,

for some αij , βij ∈ pZp. Tge group may be reslized as the generalised right-angled

Artin pro-p group associated to the square graph with vertices {x1, x2, x3, x4} (cf.
[25, Def. 5.3]). By [25, Thm. F], G is mild. Since the initial form of the defining
relations above are the commutators [X1, X2], . . . , [X4, X1], by Proposition 3.5 one
has

gr•Fp[G] ≃
Fp〈X〉

([X1, X2], [X2, X3], [X3, X4], [X4, X1])
,

where X = {X1, . . . , X4}. Consequently, by [33, § 4.2.2] the algebra gr•Fp[G] is
Koszul.

4. One-relator pro-p groups

For a pro-p group G we shall denote the Fp-cohomology groups simply by Hn(G)
for every n ≥ 0. Thus H0(G) = Fp, and given a presentation (3.3), one has the
following isomorphisms of vector spaces:

H1(G) ≃ H1(F ) ≃ (G/G(2))
∗,

H2(G) ≃ H1(R)G ≃ (R/Rp[R,F ])∗
(4.1)
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(cf. [17, Prop. 3.9.1 and Prop. 3.5.9]). The Fp-cohomology of a pro-p group comes
endowed with the cup-product

Hi(G)×Hj(G)
∪

// Hi+j(G)

which is graded-commutative, i.e., α ∪ β = (−1)ijβ ∪ α for α ∈ Hi(G) and β ∈
Hj(G). For further facts on cohomology of pro-p groups we refer to [17, § III.9].

HenceforthG is assumed to be a finitely generated one-relator pro-p group. Thus,
if (3.3) is a minimal presentation, then R is generated by a single defining relation
r ∈ F(2). Given a fixed basis X = {x1, . . . , xd} of F , and a basis B = {χ1, . . . , χd}
of H1(G) dual to X (i.e., χi(xj) = δij), one has the following (cf. [30, Prop. 1.3.2]).

Proposition 4.1. One may write

(4.2) r =

{

∏

i<j [xi, xj ]
aij · r′ if p 6= 2

∏n
i=1 x

2aii

i ·∏i<j [xi, xj ]
aij · r′ if p = 2

r′ ∈ F(3),

with 0 ≤ aij < p, and these numbers are uniquely determined by r. Moreover, one
has an isomorphism tr : H2(G) → Fp such that tr(χi ∪ χj) = −aij, with aij as in
(4.2).

In particular, from Proposition 4.1 one deduces that if χh ∪ χk 6= 0 for some
1 ≤ h ≤ k ≤ d, then

(4.3) χi ∪ χj =
aij
ahk

χh ∪ χk, for all 1 ≤ i ≤ j ≤ d.

Let Gab = G/[G,G] be the abelianization of G. Then F ab ≃ Zd
p, and one may

choose a basis X of F such that r ≡ xq1 mod [F, F ], with q a power of p or q = 0 if
r ∈ [F, F ] — i.e., one has an isomorphism of abelian pro-p groups

(4.4) Gab ≃ Zd
p or Gab ≃ Zp/qZp × Zd−1

p .

In particular, with such basis one has aii = 0 for i ≥ 2, if p = 2. Henceforth, X
will always denote a fixed basis of F satisfying this condition.

The following two propositions are crucial for applying the theory exposed in
Section 3.

Proposition 4.2. Let G be a finitely generated one-relator pro-p group, with min-
imal presentation (3.3), basis X , and defining relation r, such that q 6= 2. Then the
following are equivalent:

(i) H•(G) is quadratic;
(ii) r /∈ F(3), i.e., not all aij are equal to 0.

Moreover, if the above conditions are satisfied then G is mild.

Proof. Since q 6= 2, one has aii = 0 for all i ∈ {1, . . . , d}. Thus, by Proposition 4.1
one has χi ∪χi = 0 for all i, and moreover the initial form of r is a Lie polynomial,
namely, it is a combination of commutators [Xi, Xj].

Suppose first that H•(G) is quadratic, and let B = {χ1, . . . , χd} be a basis of
H1(G) dual to X . If p is odd, then H2(G) is a quotient of Λ2(H

1(G)) of dimension
1, so that there are i, j, with 1 ≤ i < j ≤ d, such that χi ∪ χj 6= 0. If p = 2,
then H2(G) is a quotient of S2(H

1(G)) of dimension 1, so that there are i, j, with
1 ≤ i < j ≤ d,, such that χi ∪ χj 6= 0. In both cases, Proposition 4.1 implies that
aij 6= 0 as trcolonH2(G)→ Fp is an isomorphism, and this yields (ii).
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Suppose now that aij 6= 0 for some 1 ≤ i ≤ j ≤ d. Then [9, Thm. 5.9–(i)]
implies that G is mild. In particular, Hn(G) = 0 for n ≥ 3 by Proposition 3.5.
We claim that H•(G) is quadratic. Since H2(G) is the 1-dimensional vector space
generated by χi ∪ χj , the algebra H•(G) is 1-generated. Moreover, the fact that
H3(G) is trivial is a consequence of the relations which hold in H2(G). Indeed,
let 1 ≤ h < k < l ≤ d be any triplet of indices. Then either χh ∪ χk = 0, or
χh ∪χk = b(χi ∪χj) for some b ∈ F×

p . In the former case one has χh ∪χk ∪ χl = 0,
whereas in the latter case one has

χh ∪ χk ∪ χl = b(χi ∪ χj) ∪ χl.

Then again either χj ∪ χl = 0, or χj ∪ χl = b′(χi ∪ χj) for some b′ ∈ F×
p , so that

χh ∪ χk ∪ χl = bb′(χi ∪ χi ∪ χj) = 0,

as χi ∪ χi = 0. Therefore, the relations which hold in H2(G) imply that H3(G) =
0. �

Proposition 4.3. Let G be a finitely generated one-relator pro-2 group, with min-
imal presentation (3.3), basis X , and defining relation r, such that q = 2.

(i) If H•(G) is quadratic, then r /∈ F(3), i.e., not all aij are equal to 0.
(ii) If aij 6= 0 for some 1 ≤ i < j ≤ d, then G is mild and H•(G) is quadratic.

Proof. The proof of statement (i) is the same as the proof of the implication (i)⇒(ii)
in Proposition 4.2.

If aij 6= 0 for some 1 ≤ i < j ≤ d, then the initial form of r is the polynomial

ρ = X2
1 +

∑

1≤h<k≤d

ahk[Xh, Xk] ∈ F2〈X〉, ahk ∈ {0, 1},

with aij = 1. Therefore, one may choose an order on the set X = {X1, . . . , Xd}
such that the leading monomial of the homogeneous polynomial ρ is XiXj. Since
i 6= j, the sequence {XiXj} is a combinatorially free sequence of monomials of
degree 2 (cf. [9, Def. 3.1]), and therefore the sequence {ρ} is strongly free by [9,
Thm. 3.5], and r yields a mild presentation of G. In particular, Proposition 3.5
yields Hn(G) = 0 for all n ≥ 3.

In order to prove that H•(G) is quadratic if aij 6= 0 for 1 ≤ i < j ≤ d, note that
by Proposition 4.1 one has χi ∪ χj 6= 0, and this cup-product generates H2(G).
Hence, if χh ∪ χk 6= 0 for some 1 ≤ h ≤ k ≤ d, then Proposition 4.1 implies
χh ∪χk = χi ∪χj (in particular, χ1 ∪χ1 = χi ∪χj). Therefore, the same argument
as in the proof of implication (ii)⇒(i) of Proposition 4.2 — taking any triplet of
indices 1 ≤ h ≤ k ≤ l ≤ d (thus allowing equal indices) — shows that H3(G) = 0
because of the relations which hold in H2(G), and this completes the proof of
statement (ii). �

4.1. Demushkin pro-p groups. Here we describe briefly the example we keep
in mind while dealing with one-relator pro-p groups: Demushkin groups (see [17,
§ III.9] and [16, § 5.2] for further details).

A Demushkin group is a finitely generated one-relator pro-p group G such that
the cup-product induces a perfect pairing H1(G) ×H1(G) → Fp. Equivalently, a
finitely generated one-relator pro-p group G is Demushkin if and only if it has a
presentation (3.3) with defining relation r such that one of the following holds:
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(a) d is even and r = xp
f

1 [x1, x2][x3, x4] · · · [xd−1, xd] for some f ∈ {1, 2, . . .∞}
such that pf 6= 2;

(b) d is even, p = 2 and r = x2+α
1 [x1, x2]x

2f
3 [x3, x4] · · · [xd−1, xd] for some

f ∈ {2, 3, . . . ,∞} and α ∈ 4Z4;

(c) d is odd, p = 2 and r = x21x
2f
2 [x2, x3][x4, x5] · · · [xd−1, xd] for some f ∈

{2, 3, . . . ,∞}
(cf. [13] and [17, Thm. 3.9.11 and Thm. 3,9,19]). In particular, the only finite
Demushkin group is the cyclic group of order 2 (case (c) with d=1). In this case,
the F2-cohomology algebra H•(G) is the ring of polynomials in one indeterminate
with coefficients in F2. Otherwise, Hn(G) = 0 for n ≥ 3. In both cases, H•(G) is
quadratic.

Moreover, the graded group algebra gr•Fp[G] is isomorphic to the polynomial
algebra Fp〈X〉/(f), with X = {X1, . . . , Xd}, and f a polynomial such that one of
the following cases holds:

(a) d is even and f = [X1, X2] + [X3, X4] + . . .+ [Xd−1, Xd];
(b) d is even, p = 2 and f = X2

1 + [X1, X2] + [X3, X4] + . . .+ [Xd−1, Xd];
(c) d is odd, p = 2 and f = X2

1 + [X2, X3] + [X4, X5] + . . .+ [Xd−1, Xd].

We call such a graded algebra Fp〈X〉/(f) a Demushkin graded Fp-algebra.

Remark 4.4. A quadratic algebra A• has a single relation as above if, and only
if, Ext2,2A•

(Fp,Fp) has dimension 1 and the cup-product induces a non-degenerate

alternating pairing Ext1,1A•

(Fp,Fp)× Ext1,1A•

(Fp,Fp)→ Fp.

Finally, one has the following (cf. [16, Thm. 5.2]).

Proposition 4.5. If G is a Demushkin group, then gr•Fp[G] is isomorphic to the
quadratic dual of H•(G), and both algebras are Koszul.

4.2. Cohomology. The isomorphism tr : H2(G)→ Fp induces a skewcommutative
pairing tr( ∪ ) : H1(G) × H1(G) → Fp. If this pairing is perfect, then G is a
Demushkin group by definition. Otherwise, let V2 = H1(G)⊥ be the radical of
H1(G) with respect to the cup-product — i.e.,

V2 = H1(G)⊥ = {χ ∈ H1(G) | χ ∪ ψ = 0 for all ψ ∈ H1(G)}.
Then H1(G) = V1⊕V2, so that the cup-product induces a perfect pairing V1×V1 →
Fp. Set q and x1 as in (4.4). Then (4.2) yields

(4.5) r ≡
{

∏

i<j [xi, xj ]
aij mod F(3), if q 6= 2

x21 ·
∏

i<j [xi, xj ]
aij mod F(3), if q = 2.

Proposition 4.6. Set V1 and V2 as above. Then

(4.6) H•(G) ≃ A• ⊓Q(V2, V
⊗2
2 ),

where A1 = V1 and A2 ≃ H2(G), with the cup-product inducing a perfect pairing
A1 ×A1 → Fp.

Proof. Let (3.3) be a minimal presentation of G. If q 6= 2, then the pairing induced
by tr is alternating, so that m = dim(V1) is even. Hence, V1 decomposes into a
direct sum of hyperbolic planes (cf. [17, Prop. 3.9.16]). Therefore, one may find a
basis B1 = {χ1, . . . , χm} of V1 which completes to a basis B of H1(G) such that

(4.7) χ1 ∪ χ2 = χ3 ∪ χ4 = . . . = χn−1 ∪ χn = 1
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and χi ∪ χj = 0 in any other case for i ≤ j.
If q = 2, let B1 = {χ1, . . . , χm} be a basis of V1 with χ1 dual to x1. Then by

Proposition 4.1 one has χ1∪χ1 = 1, and m can be both odd or even. Thus, by [13,
Prop. 4] we may choose the basis B1 and complete it to a basis B of H1(G) such
that

χ1 ∪ χ2 = χ3 ∪ χ4 = . . . = χm−1 ∪ χm = 1, if 2 | m,
χ2 ∪ χ3 = χ4 ∪ χ5 = . . . = χm−1 ∪ χm = 1, if 2 ∤ m.

and χi ∪ χj = 0 in any other case for i ≤ j. �

Remark 4.7. If q 6= 2, then necessarily dim(V1) ≥ 2. On the other hand, if q = 2
then one may have dim(V1) = 1. Then A• is isomorphic to the polynomial algebra
in one indeterminate F2[χ1]. This is the only case when H•(G) is quadratic and
H3(G) 6= 0.

4.3. The graded group algebra. Let G and V1, V2 ⊆ H1(G) be as above. First
we deal with the case q = 2 and dim(V1) = 1, since by Proposition 4.2 and Re-
mark 4.7, this is the only case with G not mild.

Proposition 4.8. Let G be a finitely generated one-relator pro-2 group with H•(G)
quadratic and dim(V1) = 1. Then one has an isomorphism of graded F2-algebras
gr•Fp[G] = F2〈X〉/(X2

1 ), with X = {X1, . . . , Xd}, d = d(G).

Proof. By (4.5) and Proposition 4.1, one has r = x21 · t with t ∈ F(3), with X =

{x1, . . . , xd} the basis of F . Thus, the initial form of r is X2
1 ∈ F2〈X〉, with

X = {X1, . . . , Xd}. We claim that I(R) is the restricted ideal of Fp〈X〉 generated
by X2

1 .
The subgroup R ⊆ F is the (pro-2 closure of the) normal closure of the pro-2-

cyclic group generated by r. For n ≥ 2, the non trivial elements of the subspace

(R ∩ F(n))F(n+1)

F(n+1)
≤ F(n)

F(n+1)

are the initial forms of all the elements of R of degree n. Such elements of R are

products of elements of the form [y, r2
m−1

], with m, s ≥ 0 such that n = 2m + s,

and y ∈ F(s); and also y−1r2
m−1

y in case n is a power of 2, with 2m = n and y ∈ F .
Commutator calculus and the properties (3.2) yield

r2
m−1

= (x21 · t)2
m−1 ≡ x2m1 mod F(2m+1)

for all m ≥ 1, and consequently
[

y, r2
m−1

]

=
[

y, x2
m

tm

]

≡
[

y, x2
m

1

]

mod F(2m+1+s),

y−1 · r2m−1 · y =
(

y−1x2
m

1 y
)

·
(

y−1tmy
)

≡ x2m1 mod F(2m+1),
(4.8)

with tm ∈ F2m+1, for y ∈ F as above. Therefore, the space (R∩F(n))F(n+1)/F(n+1)

—viewed as subspace of the space of homogeneous polynomials of degree n in F2〈X〉
— is generated by the polynomials [℘(X), X2m

1 ], with ℘(X) running through all Lie
polynomials in F2〈X〉 of degree s, with m, s ≥ 0 such that n = 2m + s; together
with the monomial Xn

1 in case n is a power of 2.
Hence, I(R) is generated by the monomial X2

1 as restricted ideal of the restricted
F2-Lie algebra L(X), and Proposition 3.3 yields gr•Fp[G] ≃ gr•Fp[F ]/(X

2
1 ). �
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On the other hand, if dim(V1) ≥ 2 one has the following.

Proposition 4.9. Set V1 and V2 as above, and assume that dim(V1) ≥ 2. Then
the graded group Fp-algebra of G decomposes as free product

(4.9) gr•Fp[G] ≃ A• ⊔ T •(V ∗
2 ),

where A• is a Demushkin quadratic Fp-algebra with A1 = V ∗
1 .

Proof. Set m = dim(V1), and let (3.3) be a minimal presentation of G. Also, let B
be a basis of H1(G) as in the proof of Proposition 4.6.

Let S = {x1, . . . , xm, y1, . . . , yd−m} ⊆ F be the basis dual to B. Then by (4.3)
from (4.5) one obtains

(4.10) r ≡ [x1, x2]
a[x3, x4]

a · · · [xm−1, xm]a mod F(3),

for some a ∈ {1, . . . , p− 1}, if q 6= 2, and

(4.11) r ≡
{

x21[x1, x2][x3, x4] · · · [xm−1, xm] mod F(3) if 2 | m,
x21[x2, x3][x4, x5] · · · [xm−1, xm] mod F(3) if 2 ∤ m,

if q = 2. Since [x, y]a ≡ [xa, y] ≡ [x, ya] mod F(3), after a suitable change of basis S
we may assume that a = 1 in (4.10). Therefore, after identifying gr•Fp[G] = Fp〈X〉,
whith X = {X1, . . . , Xd}, the initial form of r in F(2)/F(3) is the homogeneous
polynomial

(4.12) ρ = [X1, X2] + [X3, X4] + · · ·+ [Xm−1, Xm] ∈ Fp〈X〉,
if q 6= 2, and

(4.13) ρ =

{

X2
1 + [X1, X2] + [X3, X4] + · · ·+ [Xm−1, Xm] if 2 | m,

X2
1 + [X2, X3] + [X4, X5] + . . .+ [Xm−1, Xm] if 2 ∤ m,

if q = 2. Since G is mild, Proposition 3.5 yields the claim. �

4.4. Demushkin groups as quotients. In [35], T. Würfel proved that if a field
K contains all roots of 1 of order a power of p and its absolute Galois group GK is
a finitely generated one-relator pro-p group, then one has a short exact sequence of
pro-p groups

(4.14) 1 // N // GK
// GK/N // 1

where N is free and GK/N is a Demushkin group, and moreover the inflation map

inf2U,N : H2(U/N,Z/ps)→ H2(U,Z/ps) is an isomorphism for every open subgroup
U ⊆ GK containing N and every s ≥ 1.

If one considers finitely generated pro-p groups whose closed subgroups have
quadratic Fp-cohomology (see Remark 4.11 below), one obtains the following.

Proposition 4.10. Let G be a finitely generated one-relator pro-p group such that
every closed subgroup of G has quadratic Fp-cohomology. Then there exists a free
closed subgroup S ≤ G and a short exact sequence of pro-p groups

(4.15) 1 // N // G // G/N // 1

where N is the normal closure of S in G, G/N is a Demushkin group, and N is
free if H3(G) = 0. Moreover, one has the isomorphisms of quadratic algebras

H•(G) ≃ H•(S) ⊓H•(G/N),

gr•Fp[G] ≃ gr•Fp[S] ⊔ gr•Fp[G/N ].
(4.16)
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Remark 4.11. The assumption that every closed subgroup of G has quadratic
Fp-cohomology might seem quite restrictive and unnatural. Still, by the Rost-
Voevodsky Theorem every closed subgroup of the (maximal pro-p quotient of the)
absolute Galois group of a field containing a root of 1 of order p has quadratic
Fp-cohomology (cf. Remark 5.2 below). Thus, this assumption is natural in view of
the application of Proposition 4.10 to the Galois-theoretic case (cf. Theorem 5.4).

Proof of Proposition 4.10. Let S be the closed subgroup of G such that the restric-
tion morphism res1G,S : H

1(G)→ H2(S) induces an isomorphismH1(G)⊥ ≃ H1(S).

In particular, one has ker(res1G,S) = V1. Therefore, the commutative diagram

H1(G) ×H1(G)
∪

//

res1G,S
��
��

res1G,S
��
��

H2(G)

res2G,S

��

H1(S)×H1(S)
∪

// H2(S)

implies that the lower horizontal arrow is trivial and thus H2(S) = 0, as H•(S) is
quadratic. Consequently, S is a free pro-p group (cf. [17, Prop. 3.5.17]).

Let N ⊆ G be the normal closure of S in G, and set Ḡ = G/N . Since H1(N)Ḡ ≃
H1(S), the exact sequence

0 // H1(Ḡ)
inf1G,N

// H1(G)
res1G,N

// H1(N)Ḡ // H2(Ḡ)
inf2G,N

// H2(G)

induced by the quotient G/N implies that H1(Ḡ) ≃ V1 and that the inflation map

inf2G,N : H2(Ḡ) → H2(G) is a monomorphism (cf. [17, Prop. 1.6.7]). Thus, in the
commutative diagram

H1(Ḡ)×H1(Ḡ)
∪

//
��

inf1G,N

��

��

inf1G,N

��

H2(Ḡ)
��

inf2G,N

��

H1(G)×H1(G)
∪

// H2(G)

the upper line is a non-degenerate pairing — in particular, Ḡ is a one relator pro-p
group too. Therefore, Ḡ is a Demushkin group (cf. § 4.1). Moreover, inf2G,N is

an isomorphism, so that if H3(G) = 0 then [36, Prop. 1] implies that N is free —
recall that H3(G) = 0 if, and only if, dim(V1) = 1 (cf. Remark 4.7).

Finally, (4.16) follows form Proposition 4.6 and Proposition 4.9, since V1 ≃
H1(G/N) and V2 ≃ H1(S). �

5. Absolute Galois groups of fields

Hereinafter K will denote a field containing a root of 1 of order p. Moreover,
GK(p) will denote the maximal pro-p quotient of the absolute Galois group of K
— namely, GK(p) is the maximal pro-p Galois group (i.e., the Galois group of the
maximal pro-p extension) of K.

5.1. Maximal pro-p Galois groups. Let K× denote the multiplicative group of
K. By Kummer theory one has an isomorphism K×/(K×)p ≃ H1(GK). Moreover,
note that if p = 2 then q = 2 (where q is defined for GK(2) as in (4.4)) only if√
−1 /∈ K.



14 CLAUDIO QUADRELLI

The Rost-Voevodsky theorem has the following fundamental consequence (see,
e.g., [7, p. 222]).

Proposition 5.1. The Fp-cohomology ring H•(GK) of the absolute Galois group
of K is quadratic. In particular, the epimorphism GK → GK(p) induces an isomor-
phism of graded algebras H•(GK(p)) ≃ H•(GK).

Remark 5.2. If S is a closed subgroup of GK, respectively of GK(p), then S is the
absolute Galois group GL, repsectively the maximal pro-p Galois group GL(p), of
a suitable extension L/K, and obviously L contains a root of 1 of oder p as well.
Then by Proposition 5.1, the Fp-cohomology algebra H•(S) is again quadratic.

By Proposition 5.1 and (4.1), GK(p) is one-relator if, and only if, H2(GK) has
dimension 1. Recall that the cohomological p-dimension of a profinite group G is
the non-negative integer cdp(G) defined by

cdp(G) = max{n ≥ 0 | Hn(G,M) 6= 0 for all p-torsion G-modules M}
(cf. [17, Def. 3.3.1]). If G is a pro-p group, then cdp(G) = cd(G). Let N denote
the kernel of the epimorphism GK → GK(p). Since H1(GK(p)) ≃ H1(GK), the
group N is p-perfect, i.e., H1(N,Fp) = 0, and hence cdp(N) = 0. Moreover, if
cd(GK(p)) <∞, then [17, Prop. 3.3.8] implies that cdp(GK) = cd(GK(p)). Further-
more, if dim(H1(GK)) <∞, then cd(GK(p)) (and hence cdp(GK)) is finite (cf. [23,
Prop. 4.1]).

On the other hand, the group algebras gr•Fp[GK] and gr•Fp[GK(p)] are related
as follows (cf. [16, Rem 1.4] and [28]).

Proposition 5.3. If H1(GK) if finite the epimorphism GK → GK(p) induces an
isomorphism of graded algebras gr•Fp[GK] ≃ gr•Fp[GK(p)].

From the results of Section 4, we may prove Theorem 1.2.

Theorem 5.4. Suppose that H1(GK) is finite and dimH2(GK) = 1. Then one has
isomorphisms of quadratic algebras

(5.1) H•(GK) ≃ A• ⊓Q(V2, V
⊗2
2 ) and gr•Fp[GK] ≃ B• ⊔ T•(V ∗

2 ),

where V2 = H1(GK)
⊥ (with respect to the pairing induced by the cup-product),

A1 ≃ H1(GK)/V2 and B• a Demushkin algebra (cf. § 4.1).
Moreover, there exists a closed subgroup S̃ ≤ GK with cdp(S̃) = 1 such that

A• ≃ H•(GK/NS̃) and B• ≃ gr•Fp[GK/NS̃ ]

Q(V2, V
⊗2
2 ) ≃ H•(S̃) and T•(V

∗
2 ) ≃ gr•Fp[S̃].

— here NS̃ denotes the closed normal subgroup generated by S̃, and cdp(N§̃) = 1

as well, unless p = 2 and
√
−1 /∈ K.

Proof. By Theorem 5.1 and Proposition 5.3, it is enough to show (5.1) forH•(GK(p))
and gr•Fp[GK(p)]. By hypothesis, GK(p) is a finitely generated one-relator pro-p
group, thus (5.1) follows from Theorem 4.10.

Now let S̃ ⊆ GK be the lift of S, with S and N as in Proposition 4.10 for
G = GK(p). I.e., for π : GK → GK(p) the canonical projection, one has ker(π|S̃) =
ker(π). By Remark 5.2, both S and S̃ have quadratic Fp-cohomology. In fact, S is

the maximal pro-p quotient of S̃, and thus cdp(S̃) = cd(S) (cf. [17, Prop. 3.3.8]).
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Moreover, one has an isomorphismGK/NS̃ ≃ GK(p)/N , as NS̃ is the lift ofN and
thus NS̃/ker(π) ≃ N . Hence, GK/NS̃ is a Demushkin group, and cdp(NS̃) = cd(N).
Finally, cd(N) = 1 unless dim(H1(GK(p))/N) = 1, and this case occurs inly if
p = q = 2, namely, only if

√
−1 /∈ K.

Therefore, one may deduce all the claims of the statement from Proposition 4.10.
�

Note that Theorem 5.4 (in fact already Proposition 4.10) implies the statement

of Würfel’s result, but for the bijectivity of the maps inf2U,N . Corollary 1.3 follows
from Theorem 5.4 together with Example 2.3 and Proposition 2.5, as Demushkin
algebras are Koszul (cf. § 4.1).
Example 5.5. Let G = G◦ ∗p̂S be the free product (in the category of pro-p groups)
of a Demushkin group G◦ with a finitely generated free pro-p group S. Then
G/N ≃ G◦ (with N the normal closure of S), and one has

H•(G) ≃ H•(G◦) ⊓H•(S) and gr•Fp[G] ≃ gr•Fp[G◦] ⊔ gr•Fp[S].

Such group is a pro-p groups of elementary type (see next subsection).

Example 5.6. For p odd let G be the pro-p group with minimal presentation

G = 〈x1, x2, x3 | [x1, x2] = xq3〉 ,
with q > 1 a power of p. Such pro-p group satisfies all the conditions in Würfel’s
theorem, as stated in [12, Thm.2], and by Proposition 4.2 its Fp-cohomology algebra
is quadratic. In particular, one has H•(G) ≃ H•(S) ⊓ H•(Ḡ), with S = 〈x3〉 and
Ḡ = G/N ≃ Z2

p, with N the normal closure of S, and

gr•Fp[G] ≃ Fp[X1, X2] ⊔ Fp[X3].

Yet, the group G is not realizable as maximal pro-p Galois group of any K, by [8,
Thm. 4.2 and Thm. 8.1].

5.2. Koszul algebras of elementary type. Let µp∞ denote the group of roots
of unity of order a power of p contained in the maximal pro-p extension of K. The
maximal pro-p Galois group GK(p) acts on µp∞ , fixing the roots of order p (as
they lie in K). Since the subgroup of Aut(µp∞) which fixes the roots of order p is
isomorphic to the (multiplicative) group 1 + pZp = {1 + pλ | λ ∈ Zp}, one has a
homomorphism of pro-p groups

θK : GK(p) −→ 1 + pZp,

called the cyclotomic character.
Following [6, § 3], we call a cyclotomic pro-p pair a pair (G, θ) consisting of

a finitely generated pro-p group G and a homomorphism θ : G → 1 + pZp (the
homomorphism θ is also called an orientation of G, cf. [23, 26]). A cyclotomic pro-p
pair is realizable arithmetically if there exists a field K such that G ≃ GK(p) and
θ coincides with the cyclotomic character. The class of cyclotomic pro-p pairs of

elementary type is the class of cyclotomic pro-p pairs containing

(a) any pair (F, θ), with F a finitely generated free pro-p group and θ : F →
1+ pZp any orientation (including the trivial group with trivial orientation
θ);

(b) any pair (G, θ), with G a Demushkin group and θ : 1 + pZp as defined in
[13, Thm. 4] (including the cyclic group of order 2 with the non-trivial
orientation θ : Z/2→ {±1});
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and such that any pair contained in this class which is not of the type (a) or (b)
may be obtained iterating the following to operations:

(c) by taking the free product (G1, θ1) ∗ (G2, θ2) of two cyclotomic pro-p pairs
of elementary type, given by the free pro-p product G1 ∗p̂ G2;

(d) by taking the the semi-direct product (Zp ⋊G, θ ◦ π) of a cyclotomic pro-p
pair (G, θ), defined by gzg−1 = θ(g)·z for all z ∈ Zp and with π : Zp⋊G→ G
the canonical projection.

Remark 5.7. (i) The Fp-cohomology algebra of a pro-p group of elementary
type is always quadratic.

(ii) A one-relator pro-p group G is of elementary type if, and only if, G is
isomorphic to the free pro-p product G◦ ∗p̂S of a Demushkin groupG◦ with
a (possibly trivial) free pro-p group S. In particular, by [12, Thm. 12–(f)]
the pro-p group G as in Example 5.6 is not of elementary type.

Not all Demushkin groups are known to occur as GK(p) for some field K. On
the other hand, if one takes only Demushkin groups which occur as GK(p) for
some field K in item (b) above, then all cyclotomic pro-p pairs of elementary type
obtained are realizable as maximal pro-p Galois groups. I. Efrat’s Elementary type

Conjecture states that if a cyclotomic pro-p pair is realizable arithmetically, then
it is of elementary type (cf. [4], see also [5, Question 4.8] and [15, § 10]).

In analogy with the class of cyclotomic pro-p pairs of elementary type, we define
the classes of Koszul graded algebras of G-elementary type and of H-elementary
type.

Definition 5.8. The class of Koszul graded Fp-algebras of G-elementary type

KET G is the smallest class of quadratic Fp-algebras such that, for V be any fi-
nite Fp-vector space,

(a) the free algebra T •(V ) is in KET G;
(b) any Demushkin algebra A• is in KET G (including the trivial F2-algebra on

one generator Q(F2,F
⊗2
2 ));

and such that, for V any finite Fp-vector space,

(c) if A•, B• are in KET G, then also the free product A• ⊔B• is in KET G;
(d) if A• is in KET G, then also the symmetric tensor product A•⊗S•(V ) is in
KET G.

Dually, the class of Koszul graded Fp-algebras of H-elementary type KET H is the
smallest class of quadratic Fp-algebras such that, for V be any finite Fp-vector
space,

(a’) the trivial algebra A• = Q(V, V ⊗2) is in KET H (including the case V = 0);
(b’) the quadratic dual A!

• of any Demushkin algebra A• is in KET H (including
the polynomial algebra on one indeterminate F2[X ]);

and such that, for V be any finite Fp-vector space,

(c’) if A•, B• are in KET H , then also the direct product A• ⊓B• is in KET H ;
(d’) if A• is in KET H , then also the skew-symmetric tensor product A•∧Λ•(V )

is in KET H .

By Example 2.3, Proposition 2.5 and [16, § 5.2], all algebras of G-elementary
and H-elementary type are in fact Koszul. Combining the restults obtained in [16,
§ 5] together Proposition 4.10, one deduces the following.
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Proposition 5.9. Let K be a field containing a root of unity of order p, and assume
that H1(GK) is finite.

(i) If (GK, θ) is of elementary type, then gr•Fp[GK] and H•(GK) are Koszul
algebras of G-, respectively H-, elementary type.

(ii) If GK(p) is one-relator, then gr•Fp[GK] and H
•(GK) are Koszul algebras of

G-, respectively H-, elementary type.

Therefore, in analogy with Efrat’s conjecture, we formulate the following refine-
ment of Conjecture 1.1.

Conjecture 5.10. Let K be a field containing a root of unity of order p, such that
H1(GK) is finite.

(i) The graded group algebra gr•Fp[GK] is a Koszul algebra of G-elementary
type.

(ii) The Fp-cohomology ring H•(GK,Fp) is a Koszul algebra of H-elementary
type.

By Proposition 5.9 a positive solution of the Elementary Type Conjecture would
imply a positive answer to Conjecture 5.10.
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