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Abstract. In this work we consider the homogeneous Neumann eigenvalue problem for the

Laplacian on a bounded Lipschitz domain and a singular perturbation of it, which consists in

prescribing zero Dirichlet boundary conditions on a small subset of the boundary. We first
describe the sharp asymptotic behaviour of a perturbed eigenvalue, in the case in which it

is converging to a simple eigenvalue of the limit Neumann problem. The first term in the

asymptotic expansion turns out to depend on the Sobolev capacity of the subset where the
perturbed eigenfunction is vanishing. Then we focus on the case of Dirichlet boundary conditions

imposed on a subset which is scaling to a point; by a blow-up analysis for the capacitary
potentials, we detect the vanishing order of the Sobolev capacity of such shrinking Dirichlet

boundary portion.
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1. Introduction

The present work concerns the eigenvalue problem for the Laplacian with mixed Dirichlet-
Neumann homogeneous boundary conditions. More in particular, our attention is devoted to the
study of the behaviour of an eigenvalue of the mixed problem when the region where Dirichlet
boundary conditions are prescribed is disappearing, in a suitable sense that will be specified later.
Actually, the methods developed in the present paper to derive eigenvalue asymptotics under
perturbed mixed boundary conditions turn out to be quite flexible and capable of treating also
more general kinds of perturbation, e.g. the eigenvalue problem for the Neumann-Laplacian with
a shrinking hole in the interior of the domain where homogeneous Dirichlet boundary conditions
are assigned.

Let us introduce some basic assumptions and the functional setting. Let Ω ⊆ RN (with N ≥ 2)
be an open, bounded, Lipschitz and connected set and let K ⊆ Ω be compact. Let c ∈ L∞(RN )
be such that

(1.1) c(x) ≥ c0 > 0 a.e. in RN , for some c0 ∈ R.

We define the bilinear form q = qc : H1(Ω)×H1(Ω)→ R as

(1.2) q(u, v) :=

∫
Ω

(∇u · ∇v + cuv) dx for any u, v ∈ H1(Ω).

For simplicity of notation we denote by q(·) also the quadratic form corresponding to (1.2), i.e.
q(u) = q(u, u). Thanks to assumption (1.1), the square root of the quadratic form q(·) is a norm
on H1(Ω), equivalent to the standard one

‖u‖H1(Ω) =

(∫
Ω

(|∇u|2 + u2) dx

)1/2

.

We also introduce the Sobolev space H1
0,K(Ω) defined as the closure in H1(Ω) of C∞c (Ω \K). We

observe that, if ∂Ω is smooth and K is a regular submanifold of ∂Ω, the space H1
0,K(Ω) can be

characterized as

H1
0,K(Ω) = {u ∈ H1(Ω): u = 0 on K},
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where u = 0 on K, for functions in H1(Ω), is meant in the trace sense, see [6]. Defining qK as
the restriction of the form q to H1

0,K(Ω), we say that λ ∈ R is an eigenvalue of qK if there exists

u ∈ H1
0,K(Ω), u 6≡ 0, called eigenfunction, such that

(1.3) qK(u, v) = λ(u, v)L2(Ω) for all v ∈ H1
0,K(Ω),

where (·, ·)L2(Ω) is the usual scalar product in L2(Ω). From classical spectral theory we have that
problem (1.3) admits a diverging sequence of positive eigenvalues

0 < λ1(Ω;K) < λ2(Ω;K) ≤ · · · ≤ λn(Ω;K) ≤ · · · ,

where each one is repeated as many times as its multiplicity. Moreover, we denote by (ϕn(Ω;K))n
a sequence of eigenfunctions, which we choose so that it forms an orthonormal family in L2(Ω).
Hereafter we denote, for any integer n ∈ N∗,

(1.4) λn := λn(Ω; ∅), ϕn := ϕn(Ω; ∅),

where N∗ := N \ {0}. We notice that the connectedness of the domain Ω is not a restrictive
assumption, since the spectrum of qK in a non connected domain is the union of the spectra on
the single connected components. We also point out that the assumption (1.1) is not substantial
and it can be dropped, since, up to a translation of the spectrum, we can recover a coercive
form as in (1.2). Besides, we notice that, in the particular case when K is the empty set and
c(x) ≡ c > 0, (λn(Ω; ∅)− c)n coincides with the sequence of eigenvalues of the standard Laplacian
with homogeneous Neumann boundary condition. If K is smooth (e.g. if K is the closure of
a smooth open set of RN or a regular submanifold of ∂Ω), problem (1.3) admits the following
classical formulation

(1.5)


−∆u+ cu = λu, in Ω \K,

u = 0, on K,

∂u

∂ν
= 0, on ∂Ω \K.

When K ⊆ ∂Ω, (1.5) is an elliptic problem with mixed Dirichlet-Neumann homogeneous boundary
conditions and one can interpret the spectrum (λn(Ω;K))n as the square roots of the frequencies
of oscillation of an elastic, vibrating membrane, whose boundary is clamped on K and free in the
rest of ∂Ω.

In this paper we start from the unperturbed situation corresponding to the Neumann eigenvalue
problem, i.e. the case K = ∅, and then we introduce a singular perturbation of it, which consist in
considering a “small”, nonempty K ⊆ Ω and zero Dirichlet boundary conditions on it. Our aim is
to study the eigenvalue variation due to this perturbation and to find the sharp asymptotics of the
perturbed eigenvalue, in the limit when K is “disappearing” as a function of a certain parameter.

A detailed analysis in dimension 2 has been performed in [14], where Gadyl’shin investigated
the case in which the perturbing set is a segment of length ε→ 0+ contained in the boundary of
the domain: a (possibly multiple) eigenvalue of the limit Neumann problem is considered and the
full asymptotic expansion of the perturbed eigenvalues is provided, see Theorems 1 and 2 in [14].
These expansions strongly depend on the vanishing order of the limit eigenfunctions in the point
of the boundary where the segment is concentrating. In [14] a complete pointwise expansion of
the perturbed eigenfunctions is provided as well. Moreover, in [13], Gadyl’shin considered, again
in dimension 2, the complementary problem, i.e. the case in which the portion of the boundary
where Neumann conditions are prescribed is vanishing. For this problem, in [13], the splitting of
a multiple, limit eigenvalue is proved, together with a full asymptotic expansion of the perturbed
eigenvalues. In the same framework, in [2] simple limit eigenvalues were considered, with the
derivation of a more explicit expression of the coefficient of the leading term in the expansion stated
in [13]. Besides, [2] contains a blow-up convergence result for the scaled, perturbed eigenfunction
and some applications to eigenvalue problems for operators with Aharonov-Bohm potentials.

On the other hand, for arbitrary dimensions, [9] and [1] treated the eigenvalue problem for the
Dirichlet-Laplacian under perturbations consisting in making a hole in the interior of the domain
and letting it shrink. In particular, in [1] (and in its nonlocal counterpart [3]), where arguments
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and techniques that inspired the ones developed in the present work were introduced, the sharp
asymptotic behaviour of perturbed eigenvalues is described. We also mention [8], which concerns
the spectral stability of the first eigenvalue, in both cases of shrinking Neumann and Dirichlet part,
and [16], where again the first eigenvalue of the mixed problem is considered, but in a nonlocal
framework.

2. Statement of the main results

In this section we give the basic definitions used in our work and we present our main results.
Let us recall that, throughout the paper, Ω denotes an open, bounded, Lipschitz and connected
subset of RN , where N ≥ 2.

As in [1, 3, 9], the quantity that measures the “smallness” of the perturbation set K ⊆ Ω, which
is suitable for the development of an eigenvalue stability theory for our problem, is a notion of
capacity, as defined below.

Definition 2.1. Let K ⊆ Ω be compact. We define the relative Sobolev capacity of K in Ω as
follows

CapΩ̄(K) := inf

{∫
Ω

(|∇u|2 + u2) dx : u ∈ H1(Ω), u− 1 ∈ H1
0,K(Ω)

}
.

We refer to [5] for the mathematical description of this set function. A first taste of the fact that
the relative Sobolev capacity defined above is a good perturbation parameter for our purposes is
given by Proposition 3.3, which states that the space H1

0,K(Ω) coincides with H1(Ω) if and only if

CapΩ̄(K) = 0. This means that zero capacity sets are negligible for H1 functions. Furthermore,
the following theorem yields continuity of perturbed eigenvalues when CapΩ̄(K)→ 0.

Theorem 2.2. Let K ⊆ Ω be compact and let λn(Ω;K) be an eigenvalue of problem (1.3) for
some n ∈ N∗. Let also λn be as in (1.4). Then there exist C > 0 and δ > 0 (independent of K)
such that, if CapΩ̄(K) < δ, then

0 ≤ λn(Ω;K)− λn ≤ C (CapΩ̄(K))
1/2

.

We observe that the left inequality is an easy consequence of the Min-Max variational charac-
terization of the eigenvalues, namely

(2.1) λn(Ω;K) = min

{
max
u∈Vn

q(u)

‖u‖2L2(Ω)

: Vn ⊆ H1
0,K(Ω) n-dimensional subspace

}
.

In order to state the first main result of this paper, we introduce the following notion of convergence
of sets.

Definition 2.3. Let K ⊆ Ω be compact and let {Kε}ε>0 be a family of compact subsets of Ω.
We say that Kε is concentrating at K, as ε → 0, if for any open set U ⊆ RN such that K ⊆ U
there exists εU > 0 such that Kε ⊆ U for all ε ∈ (0, εU ).

We observe that the “limit” set of a concentrating family is not unique. Indeed, if Kε is
concentrating at K, then it is also concentrating at any compact set K̃ such that K ⊆ K̃ ⊆ Ω.
Nevertheless, in the cases considered in the present paper (e.g. when the limit set has zero capacity)
this notion of convergence is the one that ensures the continuity of the capacity (see Proposition
3.8); furthermore, it is related to the convergence of sets in the sense of Mosco, see [1]. An example
of family of concentrating sets is given by a decreasing family of compact sets, see Example 3.7.

In order to sharply describe the eigenvalue variation, the following definition of capacity asso-
ciated to a H1-function plays a fundamental role.

Definition 2.4. For any f ∈ H1(Ω) and K ⊆ Ω compact, we define the relative Sobolev f -capacity
of K in Ω as follows

(2.2) CapΩ̄,c(K, f) := inf
{
q(u) : u ∈ H1(Ω), u− f ∈ H1

0,K(Ω)
}
.
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We remark that, if K ⊆ ∂Ω, the above definition actually only depends on the trace of f on
∂Ω, which belongs to H1/2(∂Ω), and in particular on its values on K, if K is regular. Moreover
one can prove that, if a family of compact sets Kε ⊆ Ω is concentrating to a compact K ⊆ Ω such
that CapΩ̄(K) = 0, then CapΩ̄,c(Kε, f) → 0 as ε → 0 for all f ∈ H1(Ω), see Proposition 3.8 and
Remark 3.4.

Hereafter we assume n0 ∈ N∗ to be such that

(2.3) λ0 := λn0
is simple

and we denote as

(2.4) ϕ0 := ϕn0 ,

a corresponding L2(Ω)-normalized eigenfunction. Our first main result is the following sharp
asymptotic expansion of the eigenvalue variation.

Theorem 2.5. Let {Kε}ε>0 be a family of compact subsets of Ω concentrating to K ⊆ Ω compact
such that CapΩ̄(K) = 0. Let λ0, ϕ0 be as in (2.3), (2.4) respectively and let λε := λn0(Ω;Kε).
Then

λε − λ0 = CapΩ̄,c(Kε, ϕ0) + o(CapΩ̄,c(Kε, ϕ0))

as ε→ 0.

In order to give some relevant examples of explicit expansions, in the last part of the present
work we provide the sharp asymptotic behavior of the function ε 7→ CapΩ̄,c(Kε, ϕ0) appearing

above, in a particular case. More precisely, we consider a family {Kε}ε>0 ⊆ Ω which is concentrat-
ing at a point x̄ ∈ Ω in an appropriate way, that resembles the situation where a fixed set is being
scaled and it is therefore maintaining the same shape while shrinking to the point. Hereafter we
illustrate these results by distinguishing the cases x̄ ∈ ∂Ω and x̄ ∈ Ω. Without losing generality
we can assume that x̄ = 0. We perform this analysis under the assumption N ≥ 3, since a detailed
study of the case N = 2, with Kε,K ⊆ ∂Ω, has been already pursued in [14]; nevertheless, our
method, which is based on a blow-up analysis for the capacitary potentials, could be adapted to
the 2-dimensional case by using a logarithmic Hardy inequality to derive energy estimates, instead
of the Hardy-type inequality of Lemma 6.7, which does not hold in dimension 2.

2.1. Sets scaling to a boundary point. We first focus on the case in which the perturbing
compact sets Kε ⊆ Ω are concentrating to a point of the boundary of Ω, which, up to a translation,
can be assumed to be the origin. In this situation, we assume that the boundary ∂Ω is of class
C1,1 in a neighbourhood of 0 ∈ ∂Ω, namely

(2.5)

there exists r0 > 0 and g ∈ C1,1(B′r0) such that

Br0 ∩ Ω = {x ∈ Br0 : xN > g(x′)},
Br0 ∩ ∂Ω = {x ∈ Br0 : xN = g(x′)},

where Br0 = {x = (x1, x2, . . . , xN ) ∈ RN : |x| < r0} is the ball in RN centered at the origin with
radius r0, x′ = (x1, . . . , xN−1) and B′r0 = {(x′, xN ) ∈ Br0 : xN = 0}. It is not restrictive to assume
that ∇g(0) = 0, i.e. that ∂Ω is tangent to the coordinate hyperplane {xN = 0} in the origin. Let
us introduce the following class of diffeomorphisms that “straighten” the boundary near 0:

C := {Φ : U → BR : U is an open neighbourhood of 0, R > 0,(2.6)

Φ is a diffeomorphism of class C1,1(U ;BR), Φ(0) = 0,

JΦ(0) = IN , Φ(U ∩ Ω) = RN+ ∩BR and Φ(U ∩ ∂Ω) = B′R},

where RN+ := {(x1, . . . , xN ) ∈ RN : xN > 0} and IN is the identity N ×N matrix. Let us assume

that, for any ε ∈ (0, 1), Kε ⊆ Ω is a compact set and the family {Kε}ε satisfies the following
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properties:

there exists M ⊆ RN+ compact such that Φ(Kε)/ε ⊆M for all ε ∈ (0, 1),(2.7)

there exists K ⊆ RN+ compact such that

RN \ (Φ(Kε)/ε)→ RN \K in the sense of Mosco, as ε→ 0,
(2.8)

for some Φ ∈ C, where Φ(Kε)/ε := {x/ε : x ∈ Φ(Kε)}. With reference to [10, 18], we recall below
the definition of convergence of sets in the sense of Mosco.

Definition 2.6. Let ε ∈ (0, 1) and let Uε, U ⊆ RN be open sets. We say that Uε is converging to
U in the sense of Mosco as ε→ 0 if the following two properties hold:

(i) the weak limit points (as ε → 0) in H1(RN ) of every family of functions {uε}ε ⊆ H1(RN ),
such that uε ∈ H1

0 (Uε) for every ε > 0, belong to H1
0 (U);

(ii) for every u ∈ H1
0 (U) there exists a family {uε}ε ⊆ H1(RN ) such that uε ∈ H1

0 (Uε) for every
ε > 0 and uε → u in H1(RN ), as ε→ 0.

We may also say that H1
0 (Uε) is converging to H1

0 (U) in the sense of Mosco.

In order to clarify hypotheses (2.7) and (2.8) we adduce below a bunch of examples in which
they hold for subsets Kε of ∂Ω.

Examples 2.7.

(i) The easiest case is when ∂Ω is flat in a neighbourhood of the origin and

Kε := εK = {εx : x ∈ K},

for a certain fixed K ⊆ RN−1 compact. Here we can choose as Φ the identity so that
Φ(Kε)/ε ≡ K, which clearly satisfies both hypotheses (2.7) and (2.8).

(ii) Another interesting example (always in the case of flat boundary) is when Φ is the identity
and Kε/ε is a perturbation of a compact set. More precisely, let K1,K2 ⊆ RN−1 be two
compact sets containing the origin and let f : (0, 1) → (0,+∞) be such that f(s)/s → 0 as
s→ 0. If we consider

Kε := εK1 + f(ε)K2 = {εx+ f(ε)y : x ∈ K1, y ∈ K2}

then Φ(Kε)/ε fulfills (2.7) and (2.8) with K = K1. We remark that it is possible to generalize
this idea and produce other examples.

(iii) In the case of non-flat boundary, we have that conditions (2.7) and (2.8) hold e.g. when Kε

is the image through Φ−1, for some Φ ∈ C, of sets like the ones in (i)–(ii). A remarkable case
is when Φ(x′, xN ) = (x′, xN − g(x′)) in a neighbourhood of the origin, so that the restriction
of Φ to ∂Ω is the orthogonal projection of ∂Ω onto its tangent hyperplane at 0. Hence
assumption (2.8) is satisfied, for example, if the each set Kε is a compact subset of ∂Ω whose
orthogonal projection on the hyperplane tangent to ∂Ω at 0 is of the form εK, for K being
a compact subset of RN−1.

(iv) Finally, it is easy to prove that assumptions (2.7) and (2.8) hold for

Kε := Bε ∩ ∂Ω, with K = RN−1 ∩B1.

The last ingredient needed to detect the sharp asymptotics of the Sobolev capacity of shrinking
sets is the notion of vanishing order for the limit eigenfunction. Let

L2(SN−1
+ ) :=

{
ψ : SN−1

+ → R : ψ is measurable and

∫
SN−1
+

|ψ|2 dS <∞

}
,

where SN−1
+ := {(x1, . . . , xN ) ∈ RN : |x| = 1, xN > 0}. Moreover let

H1(SN−1
+ ) := {ψ ∈ L2(SN−1

+ ) : ∇SN−1ψ ∈ L2(SN−1
+ )}.

The following proposition asserts that the limit eigenfunction ϕ0 behaves like a harmonic polyno-
mial near the origin.



6 V. FELLI, B. NORIS, AND R. OGNIBENE

Proposition 2.8. Let Ω satisfy assumption (2.5) and let ϕ0 be as in (2.4). Then there exists

γ ∈ N (possibly 0) and Ψ ∈ C∞(SN−1
+ ), Ψ 6= 0 such that, for all Φ ∈ C, there holds

(2.9)
ϕ0(Φ−1(εx))

εγ
→ |x|γ Ψ

(
x

|x|

)
in H1(B+

R) as ε→ 0,

for all R > 0, where B+
R := BR ∩ RN+ .

Furthermore, for every R > 0,

(2.10) ε−N−2γ

∫
Ω∩BRε

ϕ2
0(x) dx→

∫
B+
R

ψ2
γ(x) dx as ε→ 0

and

(2.11) ε−N−2γ+2

∫
Ω∩BRε

|∇ϕ0(x)|2 dx→
∫
B+
R

|∇ψγ(x)|2 dx as ε→ 0

where

(2.12) ψγ(x) := |x|γ Ψ

(
x

|x|

)
.

We observe that the function Ψ appearing in (2.9) and (2.12) is necessarily a spherical harmonic
of degree γ which is symmetric with respect to the equator xN = 0, hence satisfying homogeneous
Neumann boundary conditions on {xN = 0}. More precisely, Ψ solves{

−∆SN−1Ψ = γ(N + γ − 2)Ψ, in SN−1
+ ,

∇SN−1Ψ · eN = 0, on ∂SN−1
+ ,

where eN = (0, . . . , 0, 1). The integer number γ is called the vanishing order of ϕ0 in the origin.
We also mention [7, 12, 19, 20] for asymptotic behaviour of solutions to elliptic PDEs.

Remark 2.9. We observe that the restriction of Ψ to the N − 2 dimensional unit sphere ∂SN−1
+

cannot vanish everywhere. Indeed this would mean that the nonzero harmonic function ψγ defined
in (2.12) vanishes on ∂RN+ together with is normal derivative; but then the trivial extension of ψγ
to the whole RN would violate the classical unique continuation principle (see [22]), thus giving
rise to a contradiction.

For N ≥ 3, let us introduce the Beppo Levi space D1,2(RN+ ) defined as the completion of

C∞c (RN+ ) with respect to the norm

‖u‖D1,2(RN+ )
:=

(∫
RN+
|∇u|2 dx

)1/2

.

Furthermore, for any compact K ⊆ RN+ , we define the space D1,2(RN+ \ K) as the closure of

C∞c (RN+ \K) in D1,2(RN+ ). Thereafter we introduce a notion of capacity that will appear in the
asymptotic expansion of CapΩ̄,c(Kε, ϕ0), when ε→ 0.

Definition 2.10. For any compact K ⊆ RN+ and for any f ∈ D1,2(RN+ ) we define the relative

f -capacity of K in RN+ as

capRN+
(K, f) := inf

{∫
RN+
|∇u|2 dx : u ∈ D1,2(RN+ ), u− f ∈ D1,2(RN+ \K)

}
.

If f ∈ D1,2(RN+ ) is equal to 1 in a neighbourhood of K, we denote by

capRN+
(K) := capRN+

(K, f)
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the relative capacity of K in RN+ . The definition can be extended to functions f ∈ H1
loc(RN+ ) by

letting

capRN+
(K, f) := inf

{∫
RN+
|∇u|2 dx : u ∈ D1,2(RN+ ), u− ηKf ∈ D1,2(RN+ \K)

}
,

where ηK ∈ C∞c (RN+ ) is such that ηK = 1 in a neighbourhood of K.

Remark 2.11. We remark that the relative Sobolev capacity in RN+ of a compact set K ⊆ ∂RN+ ,
here denoted by capRN+

(K), actually coincides with half of the capacity of K, in the classical sense

(see [17, Chapter 2.1]), defined as

capRN (K) = inf

{∫
RN
|∇u|2 dx : u ∈ D1,2(RN ), u− ηK ∈ D1,2(RN \K)

}
.

Moreover we notice that capRN+
(K) coincides, up to a constant, with the Gagliardo 1

2 -fractional

capacity of K in RN−1, see e.g. [3] for the definition.

In this framework we are able to state the second main result of our paper, which concerns the
sharp behaviour of the function ε 7→ CapΩ̄,c(Kε, ϕ0) as ε→ 0+.

Theorem 2.12. Let N ≥ 3. Assume (2.5) holds true. Let {Kε}ε>0 ⊆ Ω be a family of compact
sets concentrating at {0} ⊆ ∂Ω as ε → 0 and let (2.7)-(2.8) hold for some Φ ∈ C and for some

compact set K ⊆ RN+ satisfying capRN+
(K) > 0. Let ϕ0 be as in (2.4) and let γ, ψγ be as in

(2.9)-(2.12). Then

CapΩ̄,c(Kε, ϕ0) = εN+2γ−2
(
capRN+

(K,ψγ) + o(1)
)
, as ε→ 0,

with capRN+
(K,ψγ) being as in Definition 2.10.

Combining Theorems 2.12 and 2.5 we directly obtain the following corollary.

Corollary 2.13. Under the same assumptions and with the same notations of both Theorems 2.12
and 2.5, we have that

λε − λ0 = εN+2γ−2
(
capRN+

(K,ψγ) + o(1)
)
, as ε→ 0.

The expansion stated in Corollary 2.13 provides the sharp asymptotics of the eigenvalue vari-
ation if capRN+

(K,ψγ) > 0. This happens e.g. whenever K ⊆ ∂RN+ is a compact set such that

capRN+
(K) > 0, as proved in Proposition 3.12; we observe that the validity of such result strongly

relies on the position of the nodal set of ψγ with respect to the set K.
On the other hand, if K ⊆ ∂RN+ is compact, we have that capRN+

(K) > 0 if its N−1 dimensional

Lebesgue measure is nonzero, see Proposition 3.13.

2.2. Sets scaling to an interior point. Although the present study was mainly motivated by our
interest in the eigenvalue asymptotics for moving mixed Dirichlet-Neumann boundary conditions,
our techniques also apply to another class of perturbations, without any substantial difference, in
view of the various possibilities embraced by Theorem 2.5. In particular, it is possible to state a
result analogous to Theorem 2.12 in the case in which the perturbing sets Kε are concentrating at
a point that lies in the interior of Ω. In this case the limit problem is the one with homogeneous
Neumann boundary conditions on ∂Ω and the perturbed problem can be thought of as Ω without
a “small” hole, on which zero Dirichlet boundary conditions are prescribed. We assume that 0 ∈ Ω
is the “limit” of the concentrating subsets Kε and we ask assumptions similar to (2.7)-(2.8) to be
satisfied, that is

there exists M ⊆ RN compact such that Kε/ε ⊆M for all ε ∈ (0, 1),(2.13)

there exists K ⊆ RN compact such that

RN \ (Kε/ε)→ RN \K in the sense of Mosco, as ε→ 0.
(2.14)
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As before, these assumptions are fulfilled, for instance, in the case Kε := εK, for a certain compact
K ⊆ RN such that Kε ⊆ Ω for every ε ∈ (0, 1). Since 0 ∈ Ω is an interior point, from classical
regularity results for elliptic equations (see e.g. [20]), there exist κ ∈ N and a spherical harmonic
Z of degree κ such that

−∆SN−1Z = κ(N + κ− 2)Z in SN−1

and

(2.15)
ϕ0(εx)

εκ
→ ζκ(x) := |x|κ Z

(
x

|x|

)
in H1(BR) as ε→ 0,

for all R > 0. We can now state the last main result of our paper, which is analogous to Theorem
2.12.

Theorem 2.14. Let N ≥ 3 and {Kε}ε>0 ⊆ Ω be a family of compact sets concentrating at {0} ⊆ Ω
as ε→ 0. Let (2.13)-(2.14) hold for some compact set K ⊆ RN satisfying capRN (K) > 0. Let ϕ0

be as in (2.4) and κ, ζκ be as in (2.15). Then

CapΩ̄,c(Kε, ϕ0) = εN+2κ−2
(
capRN (K, ζκ) + o(1)

)
, as ε→ 0,

where and capRN (K, ζκ) is the standard Newtonian ζκ-capacity of K (see Definition 3.10).

We point out that, in general, capRN (K, ζκ) may not be strictly positive, since K, still having
positive capacity, may happen to be a subset of the zero level set of ζκ. In Lemma 3.11 we
provide sufficient conditions for capRN (K, ζκ) to be strictly positive: e.g. this happens when K
has nonzero capacity whereas the intersection of K with the nodal set of ζκ has zero capacity. We
refer to [11, Theorem 4.15] for a sufficient condition for capRN (K) > 0: more precisely, we have
that capRN (K) > 0 if its N -dimensional Lebesgue measure is nonzero.

The paper is organized as follows: in Section 3 we focus on the notion of capacity (as given in
Definitions 2.1 and 2.10) and we prove some important properties (such as Propositions 3.12 and
3.13), also in relation with the notion of concentration of sets. In Section 4 we prove the continuity
of eigenvalues λn(Ω;K) with respect to CapΩ̄(K), i.e. Theorem 2.2. In Section 5 we prove our
first main result Theorem 2.5. In Section 6 we prove our second main result Theorem 2.12 and
finally, in Section 7, we prove Theorem 2.14.

2.3. Notation. Let us fix some notation we use throughout the paper:

- N∗ := N \ {0};
- BR := {x ∈ RN : |x| < R} and SR = ∂BR for, respectively, balls and spheres centered at

the origin;
- RN+ := {(x1, . . . , xN ) ∈ RN : xN > 0} for the upper half space;

- we may identify RN−1 := ∂RN+ ;

- B+
R := BR ∩ RN+ and S+

R := ∂B+
R ∩ RN+ for half balls and half spheres;

- SN−1 := S1 and SN−1
+ := S+

1 denote respectively the unitary sphere and upper unitary
half-sphere;

- B′R := BR ∩ ∂RN+ .

3. Preliminaries on concentration of sets and capacity

In this section we focus on the notions of capacity and concentration of sets (see Definitions
2.1 and 2.3): we prove some basic properties and we investigate their mutual relations. We start
by mentioning the existence of a capacitary potential, that is to say a function that achieves the
infimum in the definition of capacity. We omit the proof since it follows the classical one.

Proposition 3.1 (Capacity is Achieved). Let K ⊆ Ω be compact, f ∈ H1(Ω) and c ∈ L∞(Ω)
satisfying (1.1). The f -capacity of K, as introduced in Definition 2.4, is uniquely achieved, i.e.
there exists a unique VK,f,c ∈ H1(Ω) which satisfies

VK,f,c − f ∈ H1
0,K(Ω) and CapΩ̄,c(K, f) = q(VK,f,c).
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Since in the following the function c is fixed, for the sake of brevity we will write

VK,f := VK,f,c

omitting the dependence on c in the notation. We observe that VK,f satisfies
−∆VK,f + cVK,f = 0, in Ω \K,

∂VK,f
∂ν

= 0, on ∂Ω \K,

VK,f = f, on K,

in a weak sense, that is VK,f − f ∈ H1
0,K(Ω) and

(3.1) q(VK,f , ϕ) =

∫
Ω

(∇VK,f · ∇ϕ+ cVK,fϕ) dx = 0 for all ϕ ∈ H1
0,K(Ω).

Remark 3.2. In the particular case c, f ≡ 1 (as in Definition 2.1), we have that the potential
VK := VK,1 ∈ H1(Ω) satisfies

(3.2) VK − 1 ∈ H1
0,K(Ω) and

∫
Ω

(∇VK · ∇ϕ+ VKϕ) dx = 0 for all ϕ ∈ H1
0,K(Ω).

It is easy to verify that V −K , (VK−1)+ ∈ H1
0,K(Ω), so that we can choose ϕ = V −K and ϕ = (VK−1)+

as test functions in the above equation, thus obtaining that V −K ≡ 0 and (VK − 1)+ ≡ 0, i.e.

(3.3) 0 ≤ VK(x) ≤ 1 for a.e. x ∈ Ω.

The following proposition asserts that the Sobolev spaces H1(Ω) and H1
0,K(Ω) coincide if and

only if the set K has zero capacity, and draws conclusions on the eigenvalues of (1.3).

Proposition 3.3. Let K ⊆ Ω be compact. The following three assertions are equivalent:

(i) CapΩ̄(K) = 0;
(ii) H1(Ω) = H1

0,K(Ω);

(iii) λn(Ω;K) = λn for every n ∈ N∗.

Proof. In order to prove that (i) implies (ii) it is sufficient to prove that H1(Ω) ⊆ H1
0,K(Ω)

since the converse is trivial. We actually prove that C∞(Ω) ⊆ H1
0,K(Ω) and the claim follows

by density. By assumption (i), there exists {un}n≥1 ⊂ H1(Ω) such that un − 1 ∈ H1
0,K(Ω) for

every n ∈ N∗ and ‖un‖H1(Ω) → 0 as n → ∞. Let u ∈ C∞(Ω) and let us consider the sequence

{u(1− un)}n≥1 ⊂ H1
0,K(Ω). We claim that u(1− un)→ u in H1(Ω). Indeed

‖u− u(1− un)‖2H1(Ω) = ‖uun‖2H1(Ω)

≤ 2

∫
Ω

(u2 |∇un|2 + u2
n |∇u|

2
) dx+

∫
Ω

u2u2
n dx

≤ 4 max{‖u‖2L∞(Ω) , ‖∇u‖
2
L∞(Ω)} ‖un‖

2
H1(Ω) → 0,

as n→∞.
We now prove that (ii) implies (i). Let us consider the equation (3.2) solved by VK . Since

H1
0,K(Ω) = H1(Ω), we can choose ϕ = VK in (3.2) and then reach the conclusion.

Finally, let us show that (ii) is equivalent to (iii). The fact that (ii) implies (iii) follows from the
min-max characterization (2.1). Conversely, suppose that (iii) holds, i.e. λn(Ω;K) = λn for every
n ∈ N∗. Then for every n ∈ N∗ there exists an eigenfunction belonging to H1

0,K(Ω) associated to

λn. By the Spectral Theorem, there exists an orthonormal basis of H1(Ω) made of H1
0,K-functions,

which implies that property (ii) holds. �

Remark 3.4. An inspection of the proof of Proposition 3.3 shows that (ii) actually implies that
CapΩ̄,c(K, f) = 0 for all f ∈ H1(Ω), and so

CapΩ̄(K) = 0 if and only if CapΩ̄,c(K, f) = 0 for all f ∈ H1(Ω).

Moreover, for any f ∈ H1(Ω), we trivially have that CapΩ̄,c(K, f) = 0 if and only if VK,f = 0.
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Example 3.5 (Capacity of a Point). Let x0 ∈ Ω, then CapΩ̄({x0}) = 0.

Proof. If N ≥ 3, let vn ∈ C∞(Ω) be such that vn(x) = 1 if x ∈ B(x0,
1
n ) ∩ Ω, vn(x) = 0

if x ∈ Ω \ B(x0,
2
n ), 0 ≤ vn(x) ≤ 1 and |∇vn(x)| ≤ 2n for all x ∈ Ω. It is easy to prove

that q(vn) → 0, as n → ∞ thus concluding the proof for N ≥ 3. If N = 2, we can instead
consider vn ∈ H1(Ω) defined as vn(x) = 1 if x ∈ B(x0,

1
n ) ∩ Ω, vn(x) = 0 if x ∈ Ω \ B(x0,

1√
n

),

vn(x) = (log n)−1(− log n − 2 log |x − x0|) if x ∈ Ω ∩
(
B(x0,

1√
n

) \ B(x0,
1
n )
)
. It is easy to prove

that q(vn)→ 0, as n→∞ thus concluding the proof for N = 2. �

Remark 3.6. Let {Kε}ε>0,K ⊆ Ω be compact sets such that Kε is concentrating at K as ε→ 0.
Then, for any ϕ ∈ C∞c (Ω \ K), there exists εϕ > 0 such that ϕ ∈ C∞c (Ω \ Kε) for all ε < εϕ.
Moreover

⋂
ε>0

Kε ⊆ K.

Example 3.7. An example of concentrating sets is a family of compact sets decreasing as ε→ 0.
Precisely, let {Kε}ε>0 be a family of compact subsets of Ω such that Kε2 ⊆ Kε1 for any ε2 ≤ ε1
and let K ⊆ Ω be a compact set such that K = ∩ε>0Kε. Then, arguing by contradiction, thanks
to Bolzano-Weierstrass Theorem in RN , it is easy to prove that Kε is concentrating at K.

With the next proposition we emphasize what is the relation between the notion of concentration
of sets and that of convergence of capacities: it turns out that convergence holds if the limit set
has zero capacity.

Proposition 3.8. Let K ⊆ Ω be a compact set and let {Kε}ε>0 be a family of compact subsets of
Ω concentrating at K. If CapΩ̄(K) = 0 then

VKε,f → VK,f in H1(Ω) and CapΩ̄,c(Kε, f)→ CapΩ̄,c(K, f) as ε→ 0

for all f ∈ H1(Ω) and all c ∈ L∞(Ω) satisfying (1.1). This result holds true, in particular, for the
Sobolev capacity (see Definition 2.1) and its potentials, corresponding to the case in which c ≡ 1.

Proof. Since q(VKε,f ) ≤ q(f) for all ε > 0, then {VKε,f}ε is bounded in H1(Ω) and so there exists
W ∈ H1(Ω) such that, along a sequence εn → 0,

VKεn ,f ⇀W weakly in H1(Ω) as n→∞,
that is

(3.4)

∫
Ω

(∇VKεn ,f · ∇ϕ+ cVKεn ,fϕ) dx→
∫

Ω

(∇W · ∇ϕ+ cWϕ) dx for all ϕ ∈ H1(Ω).

Therefore, taking into account Remark 3.6 and the equation solved by VKε,f (3.1), we have that

(3.5)

∫
Ω

(∇W · ∇ϕ+ cWϕ) dx = 0

for all ϕ ∈ C∞c (Ω \K) and then, by density, for all ϕ ∈ H1
0,K(Ω). Moreover, taking ϕ = VK,f − f

(respectively ϕ = VKε,f − f) in the equation (3.1) for VK,f (respectively VKε,f ), we obtain

(3.6) CapΩ̄,c(K, f) =

∫
Ω

(∇VK,f · ∇f + cVK,ff) dx,

respectively

(3.7) CapΩ̄,c(Kε, f) =

∫
Ω

(∇VKε,f · ∇f + cVKε,ff) dx.

From Proposition 3.3, we have that H1
0,K(Ω) = H1(Ω) and then (3.5) yields W = VK,f = 0; on

the other hand, from (3.7) and (3.6) it follows that

CapΩ̄(Kεn , f)→ CapΩ̄,c(K, f) = 0 as n→∞.
Urysohn’s Subsequence Principle concludes the proof. �

The following lemma is a fundamental step in the proof of our main results. It states that,
when a sequence of sets is concentrating, as ε→ 0, at a zero capacity set, the squared L2(Ω)-norm
of the associated capacitary potentials is negligible, as ε→ 0, with respect to the capacity.
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Lemma 3.9. Let K ⊆ Ω be compact and let {Kε}ε>0 be a family of compact subsets of Ω concen-
trating at K. If CapΩ̄(K) = 0, then∫

Ω

|VKε,f |
2

dx = o(CapΩ̄,c(Kε, f)) as ε→ 0

for all f ∈ H1(Ω) and all c ∈ L∞(Ω) satisfying (1.1).

Proof. Assume by contradiction that, for a certain f ∈ H1(Ω), there exists εn → 0 and C > 0
such that ∫

Ω

∣∣VKεn ,f ∣∣2 dx ≥ 1

C
CapΩ̄,c(Kεn , f).

Let

Wn :=
VKεn ,f∥∥VKεn ,f∥∥L2(Ω)

.

Then ‖Wn‖L2(Ω) = 1 and

‖∇Wn‖2L2(Ω) +

∫
Ω

cW 2
n dx =

CapΩ̄,c(Kεn , f)∥∥VKεn ,f∥∥2

L2(Ω)

≤ C.

Hence {Wn}n is bounded in H1(Ω) and so there exists W ∈ H1(Ω) such that Wn ⇀W weakly in
H1(Ω), up to a subsequence, as n → ∞. By compactness of the embedding H1(Ω) ↪→ L2(Ω) we
have that ‖W‖L2(Ω) = 1. Using Remark 3.6, we can pass to the limit in the equation satisfied by

Wn and then obtain ∫
Ω

(∇W · ∇ϕ+ cWϕ) dx = 0 for all ϕ ∈ C∞c (Ω \K).

On the other hand, since CapΩ̄(K) = 0, in view of Proposition 3.3 C∞c (Ω \K) is dense in H1(Ω)
and so W = 0, thus a contradiction arises. �

We are now going to prove that the term capRN+
(K,ψγ), appearing in the expansion stated in

Corollary 2.13, is nonzero whenever K ⊆ ∂RN+ is a compact set such that capRN+
(K) > 0; to this

aim we prove a more general lemma concerning the standard (Newtonian) capacity of a set, whose
definition we recall below. For any open set U ⊆ RN , we denote by D1,2(U) the completion of
C∞c (U) with respect to the L2(U)-norm of the gradient.

Definition 3.10. For N ≥ 3, let K ⊆ RN be a compact set and let ηK ∈ C∞c (RN ) be such that
ηK = 1 in a neighbourhood of K. If f ∈ H1

loc(RN ), the following quantity

capRN (K, f) = inf

{∫
RN
|∇u|2 dx : u ∈ D1,2(RN ), u− fηK ∈ D1,2(RN \K)

}
is called the f -capacity of K. For f = 1, capRN (K) := capRN (K, 1) is called the capacity of K (as
already introduced in Remark 2.11).

Lemma 3.11. Let N ≥ 3 and K ⊆ RN be a compact set such that capRN (K) > 0. Let
f ∈ C∞(RN ) and let Zf := {x ∈ RN : f(x) = 0}. If capRN (Zf ∩K) < capRN (K), then

capRN (K, f) > 0.

Proof. In this proof we make use of some properties of the classical Newtonian capacity of a set
and we refer to [17, Chapter 2] for the details. Let us consider a sequence of bounded open sets
Un ⊆ RN such that

Zf ∩K ⊆ Un+1 ⊆ Un, for all n and
⋂
n≥1

Un = Zf ∩K.

Let Kn := K \ Un. Since K ⊆ Kn ∪ Un, by subaddittivity and monotonicity of the capacity

capRN (Kn) ≥ capRN (K)− capRN (Un).
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Moreover, since ∩n≥1Un = Zf ∩K, then capRN (Zf ∩K) = limn→∞ capRN (Un), and so

(3.8) capRN (Kn) > 0

for large n, by the assumption capRN (K)− capRN (Zf ∩K) > 0. Now we claim that

(3.9) capRN (K, |f |) > 0.

Let us fix a sufficiently large n in order for (3.8) to hold and let us set

cn :=
1

2
inf
Kn
|f | = 1

2
min
Kn
|f | > 0.

By definition of Kn we have |f | ≥ 2cn > cn on Kn and therefore, by continuity, |f | > cn in an
open neighbourhood of Kn. Let ηK ∈ C∞c (RN ) be such that ηK = 1 in a neighbourhood of K
and let un ∈ D1,2(RN ) be an arbitrary function such that un− ηK |f | ∈ D1,2(RN \Kn). We define

vn := min{1, un/cn} ∈ D1,2(RN ).

We have that vn−ηKn ∈ D1,2(RN \Kn), where ηKn ∈ C∞c (RN ) is equal to 1 in a neighbourhood of
Kn. Therefore vn is an admissible competitor for capRN (Kn) and also, by truncation, the energy
of vn is lower than the energy of un/cn. Hence

capRN (Kn) ≤
∫
RN
|∇vn|2 dx ≤

∫
RN

|∇un|
c2n

dx.

By arbitrariness of un, we have that capRN (Kn, |f |) ≥ c2n capRN (Kn) > 0. Moreover, by mono-
tonicity, capRN (K, |f |) ≥ capRN (Kn, |f |) > 0 and so (3.9) is proved. Finally, we claim that

(3.10) capRN (K, f) ≥ capRN (K, |f |).

Indeed, if ξ ∈ D1,2(RN ) is such that ξ − ηKf ∈ D1,2(RN \K), then |ξ| − ηK |f | ∈ D1,2(RN \K).
Hence

capRN (K, |f |) ≤
∫
RN
|∇|ξ||2 dx =

∫
RN
|∇ξ|2 dx

for all ξ ∈ D1,2(RN ) such that ξ − ηKf ∈ D1,2(RN \K), which implies (3.10). Combining (3.9)
and (3.10) we can conclude the proof. �

As an application of the previous lemma, we obtain the following result.

Proposition 3.12. For N ≥ 3, let K ⊆ ∂RN+ be a compact set such that capRN+
(K) > 0 and let

ψγ be as in (2.12). Then

capRN+
(K,ψγ) > 0.

Proof. Let Zψγ = {x ∈ RN : ψγ(x) = 0} as in the statement of Lemma 3.11. We notice that
capRN (K) = 2capRN+

(K) > 0 (see Remark 2.11), so that the first assumption of Lemma 3.11 holds.

Concerning the second assumption, we have that capRN (Zψγ ∩K) = 2capRN+
(Zψγ ∩K) = 0, since

the set Zψγ ∩K is (N − 2)-dimensional, in view of Remark 2.9, and (N − 2)-dimensional sets have

zero capacity in RN , see e.g. [17, Theorem 2.52]. Then Lemma 3.11 provides capRN (K,ψγ) > 0
and the proof follows by applying again Remark 2.11. �

We conclude this section with the following lower bound of capRN+
(K) in terms of its N − 1

dimensional Lebesgue measure.

Proposition 3.13. Let N ≥ 3 and K ⊆ ∂RN+ be compact. Then there exists a constant C > 0
(only depending on N) such that

(|K|N−1)
N−2
N−1 ≤ C capRN+

(K),

where | · |N−1 denotes the N − 1 dimensional Lebesgue measure.
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Proof. By definition of D1,2(RN+ ) and capRN+
(K), for every ε > 0 there exists u ∈ C∞c (RN+ ) such

that u = 1 in an open neighbourhood U of K and∫
RN+
|∇u|2 dx ≤ capRN+

(K) + ε.

On the other hand

|K|N−1 ≤ |U |N−1 =

∫
U

|u|
2(N−1)
N−2 dS ≤

∫
RN−1

|u|
2(N−1)
N−2 dS.

By combining the two previous inequalities with the embedding D1,2(RN+ ) ↪→ L
2(N−1)
N−2 (RN−1) we

can conclude the proof. �

4. Continuity of the eigenvalues with respect to the capacity

5The aim of this section is to prove continuity of the eigenvalues λn(Ω;K), in the limit as
CapΩ̄(K)→ 0.

Proof of Theorem 2.2. If CapΩ̄(K) = 0 the conclusion follows obviously from Proposition 3.3. Let
us assume that CapΩ̄(K) > 0. Then, by definition of CapΩ̄(K), there exists v ∈ C∞(Ω) such
that v − 1 ∈ C∞c (Ω \K) and ‖v‖2H1(Ω) ≤ 2 CapΩ̄(K). Letting w = (1− (1− v)+)+, we have that

w ∈W 1,∞(Ω), 0 ≤ w ≤ 1 a.e. in Ω, w − 1 ∈ H1
0,K(Ω), and ‖w‖2H1(Ω) ≤ ‖v‖

2
H1(Ω) ≤ 2 CapΩ̄(K).

Let ϕ1, . . . , ϕn be the eigenfunctions corresponding to λ1, . . . , λn and let Φi := ϕi(1 − w),
i = 1, . . . , n. It’s easy to prove that Φi ∈ H1

0,K(Ω) for all i = 1, . . . , n. Let us consider the linear

subspace of H1
0,K(Ω)

En := span{Φ1, . . . ,Φn}.
We claim that, if CapΩ̄(K) is sufficiently small, {Φi}ni=1 is linearly independent, thus implying that
dimEn = n. In order to compute q(Φi,Φj), we test the equation satisfied by ϕi with ϕj(1−w)2.
It follows that∫

Ω

[(1− w)2∇ϕi · ∇ϕj + c(1− w)2ϕiϕj ] dx =

∫
Ω

[λi(1− w)2ϕiϕj + 2(1− w)ϕj∇ϕi · ∇w] dx.

Thanks to the previous identity, we are able to compute

q(Φi,Φj) =

∫
Ω

[ϕj(1− w)∇ϕi · ∇w − ϕi(1− w)∇ϕj · ∇w + ϕiϕj |∇w|2 + λiϕiϕj(1− w)2] dx.

From classical elliptic regularity theory (see e.g. [21, Proposition 5.3]) it is well-known that
ϕi ∈ L∞(Ω). Then, thanks also to Hölder inequality and (1.1), we have that

|q(Φi,Φj)− δijλi| ≤ C1[(CapΩ̄(K))1/2 + CapΩ̄(K)],

for a certain C1 > 0 (depending only on ‖ϕi‖L∞(Ω) and λi, i = 1, . . . , n), where δij is the Kro-
necker’s Delta. The above inequality implies that

q(Φi,Φj) = δijλi +O((CapΩ̄(K))1/2) as CapΩ̄(K)→ 0,

hence there exists δ > 0 such that, if CapΩ̄(K) < δ, then Φ1, . . . ,Φn are linearly independent. Let
us now compute the L2 scalar products∫

Ω

ΦiΦj dx =

∫
Ω

ϕiϕj(1− w)2 dx = δij − 2

∫
Ω

ϕiϕjw dx+

∫
Ω

ϕiϕjw
2 dx.

Arguing as before, by Hölder inequality we obtain that∣∣∣∣∫
Ω

ΦiΦj dx− δij
∣∣∣∣ ≤ 2

√
2 ‖ϕiϕj‖L2(Ω) (CapΩ̄(K))1/2 + 2 ‖ϕiϕj‖L∞(Ω) CapΩ̄(K)

≤ C2[(CapΩ̄(K))1/2 + CapΩ̄(K)],

for a certain C2 > 0 (depending only on ‖ϕi‖L∞(Ω), i = 1, . . . , n), i.e.∫
Ω

ΦiΦj dx = δij +O((CapΩ̄(K))1/2) as CapΩ̄(K)→ 0.
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Now, from the min-max characterization (2.1), we have that

λn(Ω;K) ≤ max
α1,...,αn∈R∑n
i=1 α

2
i=1

q (
∑n
i=1 αiΦi)∑n

i,j=1 αiαj
∫

Ω
ΦiΦj dx

= max
α1,...,αn∈R∑n
i=1 α

2
i=1

∑n
i,j=1 αiαjq(Φi,Φj)∑n

i,j=1 αiαj(δij +O((CapΩ̄(K))1/2))

= max
α1,...,αn∈R∑n
i=1 α

2
i=1

∑n
i=1 α

2
iλi +O((CapΩ̄(K))1/2)

1 +O((CapΩ̄(K))1/2)

≤ λn +O((CapΩ̄(K))1/2)

1 +O((CapΩ̄(K))1/2)
= λn +O((CapΩ̄(K))1/2)

as CapΩ̄(K)→ 0. �

5. Sharp asymptotics of perturbed eigenvalues

This section is devoted to the proof of Theorem 2.5. To this aim, let us give a preliminary
lemma concerning the inverse of the operator −∆ + c, when it acts on functions that vanish on a
compact set.

Lemma 5.1. For K ⊆ Ω compact, let AK : H1
0,K(Ω) → H1

0,K(Ω) be the linear bounded operator
defined by

(5.1) q(AK(u), v) = (u, v)L2(Ω) for every u, v ∈ H1
0,K(Ω).

Then

(i) AK is symmetric, non-negative and compact; in particular, 0 belongs to its spectrum σ(AK).
(ii) σ(AK) \ {0} = {µn(Ω;K)}n∈N∗ and µn(Ω;K) = 1/λn(Ω;K) for every n ∈ N∗.
(iii) For every µ ∈ R and u ∈ H1

0,K(Ω) \ {0} it holds

(5.2) (dist(µ, σ(AK)))
2 ≤ q(AK(u)− µu)

q(u)
.

Proof. (i) AK is clearly symmetric and non-negative; let us show that it is compact. We write
AK = R ◦ I, where I : H1

0,K(Ω)→ (H1
0,K(Ω))∗ is the compact immersion

(H1
0,K(Ω))∗〈I(u), v〉H1

0,K(Ω) =

∫
Ω

uv dx for every u, v ∈ H1
0,K(Ω),

and R : (H1
0,K(Ω))∗ → H1

0,K(Ω) is the Riesz isomorphism (on H1
0,K(Ω) endowed with the scalar

product q) given by

q(R(F ), v) = (H1
0,K(Ω))∗〈F, v〉H1

0,K(Ω)

for every v ∈ H1
0,K(Ω) and F ∈ (H1

0,K(Ω))∗. Then AK is compact and 0 ∈ σ(AK) (see for example

[15, Theorem 6.16]).
(ii) Again by [15, Theorems 6.16], σ(AK) \ {0} consists of isolated eigenvalues having finite mul-
tiplicity. Being q(·) a norm over H1

0,K(Ω), we have that µ 6= 0 is an eigenvalue of AK if and only

if there exists u ∈ H1
0,K(Ω), u 6≡ 0, such that

q(AK(u), v) = µq(u, v) for every v ∈ H1
0,K(Ω),

so that 1/µ = λn(Ω;K) for some n ∈ N∗.
(ii) This is a consequence of the Spectral Theorem (see for example [15, Theorem 6.21 and Propo-
sition 8.20]). �

We have now all the ingredients to give the proof of Theorem 2.5. It is inspired by [1, Theorem
1.4] (see also [3, Theorem 1.5]).



EIGENVALUES WITH MOVING MIXED BOUNDARY CONDITIONS 15

Proof of Theorem 2.5. Let us recall that, by assumption, λ0 = λn0 = λn0(Ω; ∅) is simple and
that ϕ0 is an associated L2(Ω)-normalized eigenfunction. Recall also that λε = λn0

(Ω;Kε). For
simplicity of notation we write Vε := VKε,ϕ0

and Cε := CapΩ̄,c(Kε, ϕ0) = q(Vε). Moreover we let

ψε := ϕ0−Vε, that is ψε is the orthogonal projection of ϕ0 on H1
0,Kε

(Ω) with respect to q. Indeed
there holds

q(ψε − ϕ0, ϕ) = 0 for all ϕ ∈ H1
0,Kε(Ω).

We split the proof into three steps.

Step 1. We claim that

(5.3) |λε − λ0| = o(C1/2
ε ) as ε→ 0.

For any ϕ ∈ H1
0,Kε

(Ω), being λ0 an eigenvalue of q, we have

(5.4) q(ψε, ϕ)− λ0(ψε, ϕ)L2(Ω) = q(ϕ0, ϕ)− λ0(ψε, ϕ)L2(Ω) = λ0(Vε, ϕ)L2(Ω).

According to the notation introduced in Lemma 5.1, we can rewrite (5.4) as

(5.5) (ψε, ϕ)L2(Ω) = µ0q(ψε, ϕ)− (Vε, ϕ)L2(Ω),

where µ0 = µn0
(Ω; ∅) = µn0

(Ω;K) = 1/λ0. By (5.2) we have

(5.6)
(

dist(µ0, σ(AKε))
)2 ≤ q(AKε(ψε)− µ0ψε)

q(ψε)
.

From Proposition 3.8 it follows that

|q(ϕ0, Vε)| ≤
√
q(ϕ0)

√
q(Vε) =

√
λ0

√
Cε = o(1)

as ε → 0, so that, using the definition of ψε, the denominator in the right hand side of (5.6) can
be estimated as follows

(5.7) q(ψε) = q(ϕ0) + Cε − 2q(ϕ0, Vε) = λ0 + o(1)

as ε → 0. Concerning the numerator in the right hand side of (5.6), the definition of AKε and
relation (5.5) provide

q(AKε(ψε), ϕ) = (ψε, ϕ)L2(Ω) = µ0q(ψε, ϕ)− (Vε, ϕ)L2(Ω),

for every ϕ ∈ H1
0,Kε

, so that, choosing ϕ = AKε(ψε)− µ0ψε in the previous identity, we arrive at

q(AKε(ψε)− µ0ψε) = −(Vε, AKε(ψε)− µ0ψε)L2(Ω).

The Cauchy-Schwartz inequality, assumption (1.1) and Lemma 3.9, together with the previous
equality, provide (

q(AKε(ψε)− µ0ψε)
)1/2 ≤ 1

√
c0
‖Vε‖L2(Ω) = o(C1/2

ε )

as ε→ 0. By combining the last inequality with (5.6) and (5.7) we see that

(5.8) dist(µ0, σ(AKε)) = o(C1/2
ε ) as ε→ 0.

We know from Theorem 2.2 that λn(Ω;Kε) → λn as ε → 0 and so, since λ0 is assumed to be
simple, also λε is simple for ε > 0 sufficiently small. Hence, denoting µε = µn0

(Ω;Kε) = 1/λε, we
have

dist(µ0, σ(AKε)) = |µ0 − µε|
for ε > 0 small enough. Then, using (5.8),

|λ0 − λε| = λ0λε|µ0 − µε| = o(C1/2
ε )

as ε→ 0, so that claim (5.3) is proved.

Let now Πε : L2(Ω)→ L2(Ω) be the orthogonal projection onto the one-dimensional eigenspace
corresponding to λε, that is to say

Πεψ = (ψ,ϕε)L2(Ω)ϕε for every ψ ∈ L2(Ω),

where we denoted by ϕε a L2(Ω)-normalized eigenfunction associated to λε.
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Step 2. We claim that

(5.9) q(ψε −Πεψε) = o(Cε) as ε→ 0.

Let

Φε := ψε −Πεψε and ξε := AKε(Φε)− µεΦε.
Using the fact that Πεψε belongs to the eigenspace associated to λε and relation (5.4), we have,
for every ϕ ∈ H1

0,Kε
,

q(Φε, ϕ)− λε(Φε, ϕ)L2(Ω) = q(ψε, ϕ)− λ0(ψε, ϕ)L2(Ω) + (λ0 − λε)(ψε, ϕ)L2(Ω)

= λ0(Vε, ϕ)L2(Ω) + (λ0 − λε)(ψε, ϕ)L2(Ω).

Thanks to the previous relation, with ϕ = ξε, and the definition of AKε , we obtain

(5.10)

q(ξε) = q(AKε(Φε), ξε)− µεq(Φε, ξε) = −µε
[
q(Φε, ξε)− λε(Φε, ξε)L2(Ω)

]
= −λ0

λε
(Vε, ξε)L2(Ω) −

λ0 − λε
λε

(ψε, ξε)L2(Ω).

Combining (5.5) and (5.7) we obtain that ‖ψε‖L2(Ω) = 1 + o(1) as ε→ 0. Therefore, from (5.10),

taking into account (5.7), we deduce the existence of a constant C independent from ε such that√
q(ξε) ≤ C

(
‖Vε‖L2(Ω) + |λ0 − λε|

)
.

Thus, using the definition of ξε, Lemma 3.9 and (5.3), we obtain that

(5.11) q(AKε(Φε)− µεΦε) = o(Cε) as ε→ 0.

Let

Nε =
{
w ∈ H1

0,Kε : (w,ϕε)L2(Ω) = 0
}
.

Note that, by definition, Φε ∈ Nε. Moreover, being ϕε an eigenfunction associated to λε, from the
definition of AKε in (5.1) it follows that

AKε(w) ∈ Nε for every w ∈ Nε.

In particular, the following operator

Ãε = AKε |Nε : Nε → Nε

is well defined. One can easily check that Ãε satisfies properties (i)-(iii) in Lemma 5.1; moreover

σ(Ãε) = σ(AKε) \ {µε}. In particular, letting δ > 0 be such that (dist(µε, σ(Ãε)))
2 ≥ δ for every

ε small enough, estimate (5.11), combined with (5.2), provides

q(ψε −Πεψε) = q(Φε) ≤
1

δ
(dist(µε, σ(Ãε)))

2 q(Φε) ≤
1

δ
q(Ãε(Φε)− µεΦε) = o(Cε)

as ε→ 0, thus proving claim (5.9).

Step 3. We claim that

(5.12) λε − λ0 = Cε + o(Cε) as ε→ 0.

From the definition of ψε, Lemma 3.9, and the previous step we deduce that

‖ϕ0 −Πεψε‖L2(Ω) ≤ ‖Vε‖L2(Ω) + ‖ψε −Πεψε‖L2(Ω) = o(C1/2
ε ) as ε→ 0,

which yields both

(5.13) ‖Πεψε‖L2(Ω) = 1 + o(C1/2
ε ) as ε→ 0

and, consequently,

(5.14) ‖ϕ0 − ϕ̂ε‖L2(Ω) = o(C1/2
ε ) as ε→ 0,

where ϕ̂ε = Πεψε/‖Πεψε‖L2(Ω). Using the fact that ϕ̂ε is an eigenfunction associated to λε and
(5.5) with ϕ = ϕ̂ε, we obtain

(5.15) (λε − λ0)(ψε, ϕ̂ε)L2(Ω) = λ0(Vε, ϕ̂ε)L2(Ω).



EIGENVALUES WITH MOVING MIXED BOUNDARY CONDITIONS 17

But actually

(5.16) λ0(Vε, ϕ̂ε) = Cε + o(Cε) as ε→ 0.

Indeed, since ψε and Vε are orthogonal with respect to q and ϕ0 is an eigenfunction corresponding
to λ0, we have that

Cε = q(Vε) = q(Vε, ϕ0 − ψε) = q(Vε, ϕ0) = λ0(Vε, ϕ0)L2(Ω)

= λ0(Vε, ϕ̂ε)L2(Ω) + λ0(Vε, ϕ0 − ϕ̂ε)L2(Ω),

so that Lemma 3.9 and relation (5.14) allow us to prove (5.16). Concerning the left hand side of
(5.15) we have, exploiting (5.13) and (5.9),

(ψε, ϕ̂ε)L2(Ω) =
(ψε −Πεψε,Πεψε)L2(Ω) + ‖Πεψε‖2L2(Ω)

‖Πεψε‖L2(Ω)
= 1 + o(C1/2

ε ) as ε→ 0.

By combining the last estimate with (5.15) and (5.16), we complete the proof. �

6. Set scaling to a boundary point

Hereafter we assume N ≥ 3. The purpose of this section is to find, in some particular cases,
the explicit behaviour of the function ε 7→ CapΩ̄,c(Kε, ϕ0) and therefore to give a more concrete
connotation to the asymptotic expansion proved in Theorem 2.5. We consider a particular class of
families of concentrating sets, that includes the case in which Kε is obtained by rescaling a fixed
compact set K by a factor ε > 0.

First, we prove Proposition 2.8.

Proof of Proposition 2.8. The proof is organized as follows: we first derive (2.9) for a certain
diffeomorsphism in the class C and then we prove that it holds true for any diffeomorphism in C.
Hence we start by taking into consideration a particular diffeomorphism ΦAE ∈ C, first introduced
in [4]. Let g ∈ C1,1(B′r0) be, as in (2.5), the function that describes ∂Ω locally near the origin and

let ρ ∈ C∞c (RN−1) be such that supp ρ ⊆ B′1, ρ ≥ 0 in RN−1, ρ 6≡ 0 and −∇ρ(y′) · y′ ≥ 0 in RN−1.
Then, for any δ > 0, let

ρδ(y
′) = c−1

ρ δ−N+1ρ

(
y′

δ

)
with cρ =

∫
RN−1

ρ(y′) dy′,

be a family of mollifiers. Now, for j = 1, . . . , N − 1 and yN > 0, we let

uj(y
′, yN ) := yj − yN

(
ρyN ?

∂g

∂yj

)
(y′),

where ? denotes the convolution product. Moreover, we define

ψj(y
′, yN ) :=

{
uj(y

′, yN ), for yN > 0,

4uj(y
′,−yN2 )− 3uj(y

′,−yN ), for yN < 0.

One can prove that ψj ∈ C1,1(Br0/2). Finally, we let F : Br0/2 → RN be defined as follows

F (y′, yN ) := (ψ1(y′, yN ), . . . , ψN−1(y′, yN ), yN + g(y′)).

Computations show that the Jacobian matrix of F on the hyperplane {yN = 0} is as follows

JF (y′, 0) =



1 0 · · · 0 − ∂g
∂y1

(y′)

0 1 · · · 0 − ∂g
∂y2

(y′)
...

...
. . .

...
...

0 0 · · · 1 − ∂g
∂yN−1

(y′)
∂g
∂y1

(y′) ∂g
∂y2

(y′) · · · ∂g
∂yN−1

(y′) 1

 ,

and so |det JF (0)| = 1 + |∇g(0)|2 = 1. Hence, by the inverse function theorem, F is invertible in a
neighbourhood of the origin: namely there exists r1 ∈ (0, r0/2) such that F is a diffeomorphism of
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class C1,1 from Br1 to U = F (Br1) for some U open neighbourhood of 0. Moreover, it is possible
to choose r1 sufficiently small so that

F−1(U ∩ Ω) = RN+ ∩Br1 = B+
r1 ,

F−1(U ∩ ∂Ω) = ∂RN+ ∩Br1 = B′r1 ,

which means that, near the origin, the image of Ω through F−1 has flat boundary (coinciding with
∂RN+ ). In particular we have that the diffeomorphism

ΦAE : U → Br1 , ΦAE := F−1

belongs to the class C defined in (2.6).
For y ∈ ΦAE(U ∩ Ω) = B+

r1 , we let ϕ̂0(y) := ϕ0(Φ−1
AE(y)); from the equation satisfied by ϕ0 in

Ω, we deduce that

(6.1)

∫
B+
r1

(A(y)∇ϕ̂0(y) · ∇ϕ(y) + ĉ(y)ϕ̂0(y)ϕ(y)) dy = λ0

∫
B+
r1

p(y)ϕ̂0(y)ϕ(y) dy

for all ϕ ∈ H1
0,S+

r1

(B+
r1), where S+

r1 := ∂Br1 ∩ RN+ and

(6.2)

A(y) = JΦAE(Φ−1
AE(y))JΦAE(Φ−1

AE(y))T
∣∣det JΦAE(Φ−1

AE(y))
∣∣−1

,

ĉ(y) = c(Φ−1
AE(y))

∣∣det JΦAE
(Φ−1

AE(y))
∣∣−1

,

p(y) =
∣∣det JΦAE

(Φ−1
AE(y))

∣∣−1
.

We point out that equation (6.1) is the weak formulation of the problem{
−div(A(y)∇ϕ̂0(y)) + ĉ(y)ϕ̂0(y) = λ0 p(y)ϕ̂0(y), in B+

r1 ,

∇ϕ̂0(y)A(y) · ν(y) = 0, on B′r1 .

One can prove that A is symmetric and uniformly elliptic in B+
r1 (if r1 is choosen sufficiently

small); moreover, if we denote A(y) = (ai,j(y))i,j=1,...,N , then ai,j ∈ C0,1(B+
r1 ∪B

′
r1) and

(6.3)

ai,i(y
′, 0) = 1 + |∇g(y′)|2 −

(
∂g

∂yi
(y′)

)2

, for all i = 1, . . . , N − 1,

ai,j(y
′, 0) = − ∂g

∂yi
(y′)

∂g

∂yj
(y′), for all i, j = 1, . . . , N − 1, i 6= j,

ai,N (y′, 0) = 0, for all i = 1, . . . , N − 1,

aN,N = 1.

Therefore, if we consider an even reflection of ϕ̂0 (which we still denote as ϕ̂0) through the
hyperplane {xN = 0} in Br1 , then it satisfies, in this ball, an elliptic equation in divergence form
with Lipschitz continuous second order coefficients. More in particular ϕ̂0 weakly satisfies

(6.4) − div(Ā(y)∇ϕ̂0(y)) = h(y)ϕ̂0(y) in Br1

where

Ā(y) :=

{
A(y1, . . . , yN−1, yN ), if yN > 0,

QA(y1, . . . , yN−1,−yN )Q, if yN < 0,

with

Q :=


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 −1


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and h ∈ L∞(Br1). We point out that Lipschitz continuity of the coefficients of the matrix Ā comes
from the fact that ai,j ∈ C0,1(B+

r1 ∪B
′
r1) and that ai,N (y′, 0) = 0 for all i < N . Hence we deduce,

from [20], that there exists a homogeneous harmonic polynomial ψγ of degree γ ∈ N such that

ϕ̂0(y) = ψγ(y) +Rγ(y)

where ‖Rγ‖H1(Br) = O(rγ+N
2 +1−δ) for some δ ∈ (0, 1) as r → 0. In particular (2.9) holds.

Now let Φ ∈ C. We can rewrite

ϕ0(Φ−1(εx)) = ϕ0

(
Φ−1

AE (εGε(x))
)
, with Gε(x) :=

(ΦAE ◦ Φ−1)(εx)

ε
.

Thanks to regularity properties of ΦAE and Φ, we have that

Gε(x) = x+ |x|2O(ε), as ε→ 0.

As a consequence, one can prove that

ε−γϕ0

(
Φ−1

AE (εGε(x))
)
→ ψγ(x), in H1(B+

R) as ε→ 0,

for all R > 0, thus concluding the proof of (2.9).
The proofs of (2.10) and (2.11) follow from (2.9) by making a change of variable in the integral

and taking into account that, for all R > 0,

χε−1Φ(Ω∩BRε) → χB+
R

a.e. in RN ,

with χA denoting as usual the characteristic function of a set A ⊂ RN , as one can easily deduce
from the fact that Φ−1(y) = y +O(|y|2) as y → 0. �

In this section we consider a particular class of families of compact sets concentrating to the
origin (which is assumed to belong to ∂Ω), as described in Section 2.1. Let us fix Φ ∈ C with

(6.5) Φ : U0 → BR0

being U0 an open neighbourhood of 0 andR0 > 0 such that Φ(U0∩Ω) = B+
R0

and Φ(U0∩∂Ω) = B′R0
.

In the rest of this section, we will use the same notation as in the proof of Proposition 2.8 defining
A and ĉ as in (6.2) (with Φ instead of ΦAE).

Since A ∈ C0,1(B+
R0
,MN×N ) (with MN×N denoting the space of N × N real matrices) and

A(0) = IN , it is possibile to choose R0 > 0 small enough in order to have

‖A(x)− IN‖MN×N ≤
1

2
and ĉ(x) ≥ c0

2
for a.e. x ∈ B+

R0

(with ‖ · ‖MN×N denoting the operator norm on MN×N ). With this choice of R0, we have that∫
B+
R0/ε

A(εx)∇u(x) · ∇u(x) dx =

∫
B+
R0/ε

(A(εx)− IN )∇u(x) · ∇u(x) dx+

∫
B+
R0/ε

|∇u(x)|2 dx(6.6)

≥ 1

2

∫
B+
R0/ε

|∇u(x)|2 dx

and

(6.7)

∫
B+
R0/ε

ĉ(εx)u2(x) dx ≥ c0
2

∫
B+
R0/ε

u2(x) dx

for all u ∈ H1(B+
R0/ε

).

Let Kε ⊆ Ω ∩ U0 be a compact set for any ε ∈ (0, 1) such that (2.7) and (2.8) hold. In the
following we denote

K̃ε := Φ(Kε)/ε.

For any compact set H ⊆ RN we define the radius of H as follows

(6.8) r(H) := max
x∈H
|x| .
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Remark 6.1. Concerning hypothesis (2.8), one can prove that the convergence of RN \ K̃ε to
RN\K in the sense of Mosco, as ε→ 0, introduced in Definition 2.6, is equivalent to the convergence
of the space H1

0,K̃ε
(B+

R) to the space H1
0,K(B+

R) in the sense of Mosco for all R > r(M). We recall

that H1
0,K̃ε

(B+
R) is said to converge to H1

0,K(B+
R) in the sense of Mosco if the following holds:

(1) the weak limit points (as ε→ 0) in H1(B+
R) of every family of functions {uε}ε ⊆ H1(B+

R),

such that uε ∈ H1
0,K̃ε

(B+
R) for every ε, belong to H1

0,K(B+
R);

(2) for every u ∈ H1
0,K(B+

R) there exists a family {uε}ε ⊆ H1(B+
R) such that uε ∈ H1

0,K̃ε
(B+

R)

for every ε and uε → u in H1(B+
R), as ε→ 0.

The proof of this equivalence is essentially based on the continuity of the extension operator for
functions in H1(B+

R) and of the restriction operator on B+
R for functions in H1(RN ). Analogously,

one can also prove that they are both also equivalent to the convergence of H1
0,K̃ε∪S+

R

(B+
R) to

H1
0,K∪S+

R

(B+
R) in the sense of Mosco, as ε→ 0. These equivalent hypotheses turn out to be more

adequate for our needs in this final part of the section.

In view of Proposition 2.8 it is natural to consider the following rescalings of the limit eigen-
function ϕ0 and of the ϕ0-capacitary potential of Kε

(6.9) ϕ̃ε(y) :=
ϕ0(Φ−1(εy))

εγ
=
ϕ̂0(εy)

εγ
, Ṽε(y) :=

VKε,ϕ0(Φ−1(εy))

εγ
, y ∈ B+

R0/ε
,

where ϕ̂0(z) = ϕ0(Φ−1(z)) ∈ H1(B+
R0

). We have that ϕ̃ε ∈ H1(B+
R0/ε

), Ṽε − ϕ̃ε ∈ H1
0,K̃ε

(B+
R0/ε

),

and they satisfy

(6.10)

∫
B+
R0/ε

(A(εy)∇ϕ̃ε(y) · ∇ϕ(y) + ε2ĉ(εy)ϕ̃ε(y)ϕ(y)) dy = λ0ε
2

∫
B+
R0/ε

p(εy)ϕ̃ε(y)ϕ(y) dy,

for all ϕ ∈ H1
0,S+

R0/ε

(B+
R0/ε

) and

(6.11)

∫
B+
R0/ε

(A(εy)∇Ṽε(y) · ∇ϕ(y) + ε2ĉ(εy)Ṽε(y)ϕ(y)) dy = 0,

for all ϕ ∈ H1
0,K̃ε∪S+

R0/ε

(B+
R0/ε

).

The following Lemma provides a first, rough estimate of the boundary Sobolev capacity ap-
pearing in the asymptotic expansion in Theorem 2.5.

Lemma 6.2. We have that

CapΩ̄,c(Kε, ϕ0) = O(εN+2γ−2), as ε→ 0.

Proof. Recall the definition of M in (2.7) and that of r(M) in (6.8). Since Kε ⊆ Φ−1(εBr(M)) and

Φ−1(y) = y + O(|y|2) as |y| → 0, there exists R > 0 such that Kε ⊂ BRε for ε sufficiently small.
Now let ηε ∈ C∞c (RN ) be such that

0 ≤ ηε(y) ≤ 1,

|∇ηε| ≤
2

εR
,

ηε(y) =

{
0, for y ∈ RN \B2εR,

1, for y ∈ BεR.

Since ηεϕ0 ∈ H1
0,Kε

(Ω), from (2.2) we have that

CapΩ̄,c(Kε, ϕ0) ≤ q(ηεϕ0)

≤ 2

∫
Ω∩B2Rε

|∇ηε(x)|2ϕ0(x) dx

+ 2

∫
Ω∩B2Rε

|ηε(x)|2|∇ϕ0(x)|2 dx+ ‖c‖L∞(Ω)

∫
Ω∩B2Rε

ϕ2
0(x) dx

≤
(

8

ε2R2
+ ‖c‖L∞(Ω)

)∫
Ω∩B2Rε

ϕ2
0(x) dx+ 2

∫
Ω∩B2Rε

|∇ϕ0(x)|2 dx

The conclusion then follows from (2.10) and (2.11). �
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The following lemma, whose proof is classical, is useful in order to pass from a global scale

(functions in D1,2(RN+ )) to a local one (meaning functions in H1(B+
R)) and vice versa.

Lemma 6.3. Let K ⊆ RN+ be compact. If f ∈ D1,2(RN+ ) is such that f |B+
R

∈ H1
0,K(B+

R) for some

R > r(K), then f ∈ D1,2(RN+ \K). Conversely, if f ∈ D1,2(RN+ \K), then f |B+
R

∈ H1
0,K(B+

R) for

all R > r(K).

In the lemma below we compare the two notions of capacity arising in our work, namely
Definition 2.1 and Definition 2.10.

Lemma 6.4 (Comparison of capacities). Let K ⊆ RN+ be a compact set and let R > r(K). Then
there exists a constant α = α(R) > 0 such that

α−1 capRN+
(K) ≤ Cap

B+
R

(K) ≤ α capRN+
(K).

Proof. Let ηK ∈ C∞c (RN ) be such that ηK = 1 in a neighbourhood of K.
In order to prove the left hand inequality, let WR ∈ H1(B+

R) be the potential achieving

Cap
B+
R

(K) and let ŴR ∈ H1(RN+ ) be its extension to RN+ . Obviously ŴR ∈ D1,2(RN+ ) and,

by Lemma 6.3, we have that ŴR− ηK ∈ D1,2(RN+ \K). Therefore ŴR is admissible for capRN+
(K)

and hence

capRN+
(K) ≤

∫
RN+
|∇ŴR|2 dx ≤

∫
RN+

(|∇ŴR|2 + Ŵ 2
R) dx

≤ C1(R)

∫
B+
R

(|∇WR|2 +W 2
R) dx = C1(R) Cap

B+
R

(K),

where C1(R) is the constant related to the extension operator for Sobolev functions. In order

to prove the other inequality, let WK ∈ D1,2(RN+ ) be the potential achieving capRN+
(K). Since

WK − ηK ∈ D1,2(RN+ \K), then WK ∈ H1(B+
R) and, in view of Lemma 6.3, WK − 1 ∈ H1

0,K(B+
R).

Hence WK is admissible for Cap
B+
R

(K). Moreover, by Hölder and Sobolev inequalities, we have

that

‖WK‖2L2(B+
R) ≤ ‖WK‖2L2∗ (B+

R)
|B+
R |

2/N ≤ C2(R) ‖∇WK‖2L2(RN+ ) ,

for some C2(R) > 0 depending only on N and R. Then the following estimates hold

Cap
B+
R

(K) ≤
∫
B+
R

(|∇WK |2 +W 2
K) dx ≤ (1 + C2(R)) capRN+

(K),

thus concluding the proof. �

In order to prove Theorem 2.12 the following Poincaré type inequality is needed.

Lemma 6.5 (Poincaré Inequality). Let M,K ⊆ RN+ and {Kε}ε∈(0,1) satisfy (2.7)–(2.8) for some

Φ ∈ C and let K̃ε := Φ(Kε)/ε. Let us assume that capRN+
(K) > 0. For any R > r(M) there exist

ε0 ∈ (0, 1) and C > 0 (both depending on R and K) such that∫
B+
R

u2 dx ≤ C
∫
B+
R

|∇u|2 dx

for all u ∈ H1
0,K̃ε

(B+
R) and for all ε < ε0.

Proof. By way of contradiction, suppose that, for a certain R > r(M), there exist a sequence of
real numbers εn → 0+ and a sequence of functions un ∈ H1

0,K̃εn
(B+

R) such that∫
B+
R

u2
n dx > n

∫
B+
R

|∇un|2 dx.
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Now let us consider the sequence

vn :=
un

‖un‖L2(B+
R)

,

so that

‖vn‖L2(B+
R) = 1 and

∫
B+
R

|∇vn|2 dx <
1

n
.

Therefore, since ‖vn‖H1(B+
R) is uniformly bounded with respect to n, there exists v ∈ H1(B+

R)

such that, up to a subsequence, vn ⇀ v weakly in H1(B+
R). By compactness vn → v strongly in

L2(B+
R); this implies that ‖v‖L2(B+

R) = 1 and hence that v 6≡ 0. On the other hand, by weak lower

semicontinuity, ∫
B+
R

|∇v|2 dx ≤ lim inf
n→∞

∫
B+
R

|∇vn|2 dx = 0,

hence there exists a constant κ 6= 0 such that v = κ a.e. in B+
R . Finally, since RN \ K̃εn is

converging to RN \ K in the sense of Mosco, v ∈ H1
0,K(B+

R) (see Remark 6.1) and this implies

the existence of a sequence {wn}n ⊂ C∞c (B+
R \K) such that ‖wn − κ‖H1(B+

R) → 0 as n → +∞.

Letting zn = (κ− wn)/κ, we have that

zn − 1 ∈ H1
0,K(B+

R) and ‖zn‖H1(B+
R) → 0

as n → +∞, thus implying Cap
B+
R

(K) = 0 and hence contradicting, in view of Lemma 6.4, the

fact that capRN+
(K) > 0. �

In the same spirit of Proposition 3.1, we have that the relative ψγ-capacity of the set K, denoted
by capRN+

(K,ψγ) (see Definition 2.10), is uniquely achieved, as asserted in the following lemma.

Lemma 6.6. Let η ∈ C∞c (RN+ ) be a cut-off function such that η = 1 in a neighbourhood of K.

There exists a unique Ṽ ∈ D1,2(RN+ ) such that Ṽ − ηψγ ∈ D1,2(RN+ \K) and∫
RN+
∇Ṽ · ∇ϕdx = 0 for all ϕ ∈ D1,2(RN+ \K),

i.e. weakly solving 
−∆Ṽ = 0, in RN+ \K,

Ṽ = ψγ , on K,

∂Ṽ

∂ν
= 0, on ∂RN+ \K.

Moreover

capRN+
(K,ψγ) =

∫
RN+
|∇Ṽ |2 dx

and Ṽ does not depend on the choice of the cut-off function η.

Since we are in the case N ≥ 3, the following Hardy-type inequality on half balls holds.

Lemma 6.7 (Hardy-type inequality). For all R > 0 and u ∈ H1(B+
R)

N − 2

2

∫
B+
R

u2

|x|2
dx ≤ N + 1

R2

∫
B+
R

u2 dx+
N

N − 2

∫
B+
R

|∇u|2 dx.

Proof. By integrating over B+
R the identity

div

(
u2 x

|x|2

)
= (N − 2)

u2

|x|2
+ 2u∇u · x

|x|2
,
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we obtain that, for any u ∈ C∞(B+
R),

(N − 2)

∫
B+
R

u2

|x|2
dx =

∫
∂B+

R

u2x · ν
|x|2

dS − 2

∫
B+
R

u∇u · x

|x|2
dx

≤ 1

R

∫
S+
R

u2 dS +
N − 2

2

∫
B+
R

u2

|x|2
dx+

2

N − 2

∫
B+
R

|∇u|2 dx,

thanks to the fact that x · ν = 0 on {x1 = 0} ∩ ∂B+
R and x = R ν on S+

R .

On the other hand, integrating over B+
R the identity

div(u2x) = 2u∇u · x+Nu2

and arguing in a similar way, we deduce that∫
S+
R

u2 dS ≤ N + 1

R

∫
B+
R

u2 dx+R

∫
B+
R

|∇u|2 dx.

Combining those two relations the lemma is proved. �

The following proposition provides a blow-up analysis for scaled capacitary potentials, which
will be the core of the proof of Theorem 2.12.

Proposition 6.8. Let {Kε}ε>0 ⊆ Ω be a family of compact sets concentrating at {0} ⊆ ∂Ω as

ε → 0 and satisfying (2.7)-(2.8) for some Φ ∈ C and for some compact sets M,K ⊆ RN+ with

capRN+
(K) > 0. Let ϕ0 be as in (2.4) and let γ, ψγ be as in (2.9)-(2.12). Let Ṽε be as in (6.9) and

Ṽ as in Lemma 6.6. Then

Ṽε ⇀ Ṽ weakly in H1(B+
R),

A(εx)∇Ṽε(x) ⇀ ∇Ṽ (x) weakly in L2(B+
R),

ε2ĉ(εx)Ṽε(x) ⇀ 0 weakly in L2(B+
R),

as ε→ 0 for all R > r(M), where A and ĉ are as in (6.2) (with Φ instead of ΦAE).

Proof. From Lemma 3.9 and Lemma 6.2 we have that∫
Ω

|∇VKε,ϕ0
|2 dx = CapΩ̄,c(Kε, ϕ0)(1 + o(1)) = O(εN+2γ−2),

as ε → 0. On the other hand, letting U0 and R0 be as in (6.5), by a change of variables we have
that ∫

Ω

|∇VKε,ϕ0 |
2

dx ≥
∫

Ω∩U0
|∇VKε,ϕ0 |

2
dx = εN+2γ−2

∫
B+
R0/ε

A(εx)∇Ṽε(x) · ∇Ṽε(x) dx

and so

(6.12)

∫
B+
R0/ε

A(εx)∇Ṽε(x) · ∇Ṽε(x) dx = O(1)

as ε→ 0. From (6.12) and (6.6) it follows that

(6.13)

∫
B+
R0/ε

|∇Ṽε(x)|2 dx ≤ 2

∫
B+
R0/ε

A(εx)∇Ṽε(x) · ∇Ṽε(x) dx = O(1) as ε→ 0.

On the other hand, in view of (6.7),

CapΩ̄,c(Kε, ϕ0) ≥
∫

Ω∩U0
c(x)|VKε,ϕ0

|2 dx

= εN+2γ

∫
B+
R0/ε

ĉ(εx)|Ṽε(x)|2 dx ≥ c0
2
εN+2γ

∫
B+
R0/ε

|Ṽε(x)|2 dx
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so that from Lemma 6.2 we deduce that

(6.14) ε2
∫
B+
R0/ε

|Ṽε(x)|2 dx = O(1) as ε→ 0.

From (6.13) we deduce that there exists C1 > 0 (not depending on R) such that, for every R > 0,

(6.15)

∫
B+
R

|∇Ṽε|2 dx ≤ C1 for all ε ∈ (0, R0/R).

From the Poincaré inequality proved in Lemma 6.5, we deduce that, for every R > r(M), there
exist C2 = C2(R) > 0 and ε1,R > 0 (both depending on R) such that, if ε ∈ (0, ε1,R),∫

B+
R

|Ṽε|2 dx ≤ 2

∫
B+
R

|Ṽε − ϕ̃ε|2 dx+ 2

∫
B+
R

|ϕ̃ε|2 dx

≤ 2C2

∫
B+
R

|∇(Ṽε − ϕ̃ε)|2 dx+ 2

∫
B+
R

|ϕ̃ε|2 dx

≤ 4C2

∫
B+
R

(|∇Ṽε|2 + |∇ϕ̃ε|2) dx+ 2

∫
B+
R

|ϕ̃ε|2 dx.

Hence, from (2.9) and (6.15) we have that, for every R > r(M), there exist C3 = C3(R) > 0 and
ε2,R > 0 (both depending on R) such that, if ε ∈ (0, ε2,R),

(6.16)

∫
B+
R

|Ṽε|2 dx ≤ C3.

Combining (6.15) and (6.16) with a diagonal process, we deduce that there exists W ∈ H1
loc(RN+ )

(not depending on R) such that, along a subsequence ε = εn → 0+,

Ṽε ⇀W weakly in H1(B+
R),

Ṽε →W strongly in L2(B+
R),

Ṽε →W a.e. in RN+ ,

(6.17)

for all R > r(M). Since c is bounded and ‖A(εx)− IN‖MN×N ≤ C R ε for all x ∈ B+
R , from (6.17)

it follows easily that

A(εx)∇Ṽε(x) ⇀ ∇W (x) weakly in L2(B+
R),(6.18)

ε2ĉ(εx)Ṽε(x) ⇀ 0 weakly in L2(B+
R),(6.19)

as ε = εn → 0, for all R > r(M).

Now let ϕ ∈ C∞c (RN+ \K). Then there exists R > 0 such that

ϕ ∈ C∞c (B+
R ∪ (B′R \K)) ⊆ H1

0,K∪S+
R

(B+
R).

Since H1
0,K̃ε∪S+

R

(B+
R) is converging to H1

0,K∪S+
R

(B+
R) in the sense of Mosco (see hypothesis (2.8)

and Remark 6.1), there exists a sequence ψε ∈ H1
0,K̃ε∪S+

R

(B+
R) such that

(6.20) ψε → ϕ strongly in H1(B+
R), as ε→ 0.

From the equation (6.11) satisfied by Ṽε we know that, for all ε ∈ (0, R0/R) (so that B+
R ⊂ B

+
R0/ε

)∫
B+
R

(A(εx)∇Ṽε(x) · ∇ψε(x) + ε2ĉ(εx)Ṽε(x)ψε(x)) dx = 0.

Therefore, combining (6.18),(6.19) and (6.20) we obtain that∫
B+
R

∇W · ∇ϕdx = 0.
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Summing up we have that

(6.21)

∫
RN+
∇W · ∇ϕdx = 0 for all ϕ ∈ C∞c (RN+ \K).

By weak lower semicontinuity and (6.15) we have that

(6.22)

∫
RN+
|∇W |2 dx <∞.

Now let R > r(M) and ε < R0/R. Thanks to Lemma 6.7 and estimates (6.13) and (6.14) we have
that ∫

B+
R

|Ṽε|2

|x|2
dx ≤

∫
B+
R0/ε

|Ṽε|2

|x|2
dx

≤ 2(N + 1)

(N − 2)R2
0

ε2
∫
B+
R0/ε

Ṽ 2
ε dx+

2N

(N − 2)2

∫
B+
R0/ε

|∇Ṽε|2 dx ≤ C4,

for a certain C4 > 0 not depending on ε and R. By weak lower semicontinuity we deduce that∫
B+
R

|W |2

|x|2 dx ≤ C4 for all R > r(M), hence∫
RN+

|W |2

|x|2
dx <∞.

Thanks to this and to (6.22), we have that W ∈ D1,2(RN+ ); moreover, by density of C∞c (RN+ \K)

in D1,2(RN+ \K) we have that (6.21) holds for any ϕ ∈ D1,2(RN+ \K).

Let η ∈ C∞c (RN+ ) be such that η = 1 in a neighbourhood of M : since, for every R > r(M),

Ṽε−ηϕ̃ε ∈ H1
0,K̃ε

(B+
R) and since H1

0,K̃ε
(B+

R) is converging to H1
0,K(B+

R) in the sense of Mosco, then,

passing to the weak limit, there holds W −ηψγ ∈ H1
0,K(B+

R) (see (2.9)). Hence, in view of Lemma

6.3, we have that W−ηψγ ∈ D1,2(RN+ \K). Combining this fact with (6.21), by uniqueness (stated

in Lemma 6.6) we have that W = Ṽ and, by Urysohn’s Subsequence Principle, we conclude that
the convergences (6.17),(6.18), and(6.19) hold as ε→ 0 (not only along a sequence εn → 0+). �

Now we are ready for the proof of our second main result.

Proof of Theorem 2.12. Let R > r(M) and let η ∈ C∞c (RN ) be such that η = 1 in BR. Also let

R̃ > 0 be such that supp η ⊆ BR̃. For ε > 0 small we define

ηε(x) =

{
η
(

1
εΦ(x)

)
, if x ∈ U0,

0, if x ∈ RN \ U0,

and observe that, if ε is sufficiently small, ηε ∈ C1
c (RN ) and ηε ≡ 1 in a neighbourhood of Kε.

Testing equation (3.1) with VKε,ϕ0 − ϕ0ηε leads to

CapΩ̄,c(Kε, ϕ0) =

∫
Ω

(
|∇VKε,ϕ0 |2 + c|VKε,ϕ0 |2

)
dx

=

∫
Ω

(∇VKε,ϕ0
· ∇(ϕ0ηε) + cVKε,ϕ0

ϕ0ηε) dx

=

∫
Ω∩U0

(∇VKε,ϕ0
· ∇(ϕ0ηε) + cVKε,ϕ0

ϕ0ηε) dx.

Then, by the change of variable x = Φ−1(εy), we obtain

(6.23) CapΩ̄,c(Kε, ϕ0) = ε2γ+N−2

∫
B+

R̃

(
A(εy)∇Ṽε(y) · ∇(ηϕ̃ε)(y) + ε2ĉ(εy)Ṽε(y)η(y)ϕ̃ε(y)

)
dy
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where Ṽε and ϕ̃ε are defined in (6.9). From Proposition 6.8 and Proposition 2.8 it follows that

(6.24) lim
ε→0

∫
B+

R̃

(
A(εy)∇Ṽε(y) · ∇(ηϕ̃ε)(y) + ε2ĉ(εy)Ṽε(y)η(y)ϕ̃ε(y)

)
dy =

∫
RN+
∇Ṽ · ∇(ηψγ) dy.

Finally, testing the equation satisfied by Ṽ (see Lemma 6.6) with Ṽ − ηψγ ∈ D1,2(RN+ \ K) we
have that

capRN+
(K,ψγ) =

∫
RN+
|∇Ṽ |2 dx =

∫
RN+
∇Ṽ · ∇(ηψγ) dx.

This, combined with (6.23) and (6.24), concludes the proof. �

7. Set scaling to an interior point

In this last section we consider the case in which the perturbing sets Kε are concentrating to
an interior point in a way that resembles (and comprehends) the scaling of a fixed compact set
and we sketch the steps that lead to the proof of Theorem 2.14 (counterpart of Theorem 2.12).
Always in the case N ≥ 3, we assume that 0 ∈ Ω and that the family of compact sets Kε ⊆ Ω
satisfy (2.13) and (2.14). Heuristically speaking, in the previous section the rescaled domain Ω/ε
was “approaching” the half space RN+ , due to the fact that 0 ∈ ∂Ω and that ∂Ω was smooth in a
neighbourhood of the origin. In this section, since 0 ∈ Ω the “limit” domain of Ω/ε turns out to
be the whole space RN . For the same reason the role of half balls B+

R is played, in this section,
by balls BR.

Let κ and ζκ be as in (2.15). As in Lemma 6.2, by testing CapΩ̄,c(Kε, ϕ0) with ϕ0 suitably
cutted off, it is possible to prove that

CapΩ̄,c(Kε, ϕ0) = O(εN+2κ−2), as ε→ 0.

Also in this framework, a Poincaré type inequality holds and the proof follows the same steps as
Lemma 6.5.

Lemma 7.1 (Poincaré Inequality). Let M,K ⊆ RN and {Kε}ε∈(0,1) satisfy (2.13) and (2.14) and

let K̃ε := Kε/ε. Let us assume that capRN (K) > 0. For any R > r(M) there exist ε0 ∈ (0, 1) and
C > 0 (both depending on R and K) such that∫

BR

u2 dx ≤ C
∫
BR

|∇u|2 dx

for all u ∈ H1
0,K̃ε

(BR) and for all ε < ε0.

Furthermore, the capacity capRN (K, ζκ), whose definition is recalled in Definition 3.10, is at-

tained by a potential V̂ ∈ D1,2(RN ), analogously to what is stated in Lemma 6.6. Also in this
context it is possible to prove an Hardy type inequality, which reads as follows.

Lemma 7.2 (Hardy-type inequality). We have that

N − 2

2

∫
BR

u2

|x|2
dx ≤ N + 1

R2

∫
BR

u2 dx+
N

N − 2

∫
BR

|∇u|2 dx

for all u ∈ H1(BR) and for all R > 0.

Following the same steps as in the proof of Proposition 6.8 and Theorem 2.12 and adapting the
ideas and the computations to the current framework, it is possible to prove Theorem 2.14.
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67, 4 (1988), 339–357.

[21] Stampacchia, G. Contributi alla regolarizzazione delle soluzioni dei problemi al contorno per equazioni del
secondo ordine ellitiche. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 12 (1958), 223–245.

[22] Wolff, T. H. A property of measures in RN and an application to unique continuation. Geom. Funct. Anal.

2, 2 (1992), 225–284.

Veronica Felli
Dipartimento di Matematica e Applicazioni, Università di Milano–Bicocca
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