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Chapter 11
Endowing Artificial Systems with Anticipatory
Capabilities: Success Cases

Giovanni Pezzulo, Martin V. Butz, Cristiano Castelfranchi, Rino Falcone,
Gianluca Baldassarre, Christian Balkenius, Alexander Förster, Maurice Grinberg,
Oliver Herbort, Kiril Kiryazov, Boicho Kokinov, Birger Johansson, Emilian Lalev,
Emiliano Lorini, Carlos Martinho, Maria Miceli, Dimitri Ognibene, Ana Paiva,
Georgi Petkov, Michele Piunti, and Vin Thorsteinsdottir

11.1 Introduction

This book has provided various theoretical perspectives on anticipatory processes
in natural and artificial cognitive systems. Advantages have been proposed and con-
firmed in various detailed case studies, which may have given the reader detailed
insights into anticipatory processes and their importance in various cognitive sys-
tems tasks. To wrap up these advantages and give a concluding overview of various
current anticipatory process advantages, this final chapter highlights a concise col-
lection of precise success stories of anticipations in artificial cognitive systems. We
survey fourteen case studies, which were developed during the EU project Min-
dRACES1. In these studies, simulated or real robots were tested in different en-
vironmental tasks, which required advanced sensorimotor and cognitive abilities.
These abilities included the initiation and control of goal-directed actions, the ori-
entation of attention, finding and reaching goal locations, and performing mental
experiments for action selection. All the studies have shown advantages of antici-
patory mechanisms compared to reactive mechanisms in terms of increased robot
autonomy and adaptivity. In some cases, anticipations even caused the development
of new cognitive abilities, which were simply impossible without anticipatory mech-
anisms. For each case study, we indicate relevant associated publications, in which
the interested reader may find further details on the relevant computational archi-
tectures, the involved anticipatory mechanisms, as well as on the analytical and
quantitative results.

While the book as a whole has laid out the theoretical principles and design
methodology for such advancements, this final chapter thus provides various pos-
sible starting points for further developments in both the surveyed system architec-
tures and the presented solutions to the cognitive tasks addressed.

1 MindRACES: From Reactive to Anticipatory Cognitive Embodied Systems; funded under grant
FP6-511931 under the “Cognitive Systems” initiative from the EC.

G. Pezzulo et al. (Eds.): The Challenge of Anticipation, LNAI 5225, pp. 237–254, 2008.
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11.2 Flexible Goal-Directed Arm Control:
The SURE REACH Architecture

SURE REACH (a loose acronym for Sensorimotor, Unsupervised, REdundancy-
REsolving control ArCHchitecture) is a hierarchically structured, self-supervised
learning control architecture (Butz et al., 2007a; Herbort and Butz, 2007). Initially,
SURE REACH explores the interactions of its associated body with the environ-
ment by means of random motor babbling. During these explorations, it forms as-
sociative models of motor-dependent sensory correlations, which is referred to as a
sensorimotor model, and of bodily inverse kinematics. The developing knowledge
of SURE REACH about its body and environment is represented by population-
encoded spatial body representations, and associative structures that correlate the
body representations with each other.

SURE REACH has been applied to the control of a three-degree of freedom arm
in a two-dimensional environment. Due to this setup, each potential target position
can be reached with various arm goal postures and on various paths from the cur-
rent posture to these postures. Given a goal location, SURE REACH consequently
determines not only the most suitable target posture but also the currently optimal
path to that posture online. Due to the population encoding, the associative correla-
tions, and the goal-directed, anticipatory behavior approach, it has been shown that
SURE REACH is able to represent multiple problem solutions implicitly in paral-
lel and thus is able to adjust its behavioral policy highly flexibly to current task
constraints and changing environmental circumstances.

In the original setup (Butz et al., 2007a; Herbort and Butz, 2007), SURE REACH
represents an extrinsic hand space, which encodes hand locations (x-y coordinates)
with a uniformly distributed, partially overlapping 2-D array of neurons. Addition-
ally, an intrinsic posture space similarly encodes arm postures with an uniformly
distributed, partially overlapping 3-D array of neurons (shoulder, elbow, and wrist
angles). SURE REACH learns to correlate these two spaces with each other in a
posture memory, which associates hand with posture space neurons—effectively en-
coding an inverse kinematics model—and a sensorimotor bodyspace model, which
associates postures with each other action dependently. The resulting system is able
to predict which posture is reached given a current posture and chosen motor com-
mand. More importantly, though, it is also able to deduce the posture that preceded
a given posture given some action was executed. This latter capability enables the
system to choose motor commands when given a current posture and a goal posture.
If the goal posture(s) are not in the immediate vicinity, then dynamic programming
can be used to generate potential fields in the representation that are able to guide
the arm to the goal posture by means of closed-loop control.

The representation together with the goal-directed behavior control processes
enable highly flexible and adaptive anticipatory behavior control. Essentially, due to
the anticipatory, redundant encoding of behavior alternatives, the system is able to
initiate goal-directed actions highly effectively and context-dependently (Butz
et al., 2007a). Essentially, the anticipatory architecture learns to reach goal postures
as well as hand goal locations highly reliably. Moreover, the system can flexibly
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adjust its behavior to various task constraints: it can avoid obstacles that block the
shortest path to the goal; it can compensate for broken joints and prefer particular
joint movements over others; it can combine multiple goal constraints—such as a
hand goal location with a particular position of a joint (as long as the hand goal is
still reachable). These capabilities were achieved by simple multiplicative influences
on the architecture.

Moreover, the system can also account for future goal priorities while executing
reaches to current goal locations, essentially preparing for a faster and smoother
reach to a subsequent goal (Herbort and Butz, 2007). Additionally, in collabora-
tion with other MindRACES partners, the architecture was coupled with goal state
selection mechanisms. These selection mechanisms were based on reinforcement
learning and particular the actor-critic method. In the examples investigated, the
goal selection mechanisms chose to reach goals inside a goal region that were the
further away from a punishment region the closer the punishment region and the
stronger the punishment. Essentially, these experiments showed improved decision
making due to the anticipatory representations and the implicitly anticipatory goal
location choice, which emerged from the reinforcement learning architecture. Be-
sides the general effectiveness of the action choice, the data also closely reproduced
data from psychological experiments (Herbort et al., 2007).

In conclusion, SURE REACH is a control architecture that effectively stores al-
ternative (redundant) behavior means and goals. When a particular goal is desired, it
effectively constrains the representation and issues control commands that yield the
behavior that is maximally suitable given the current goal and (optionally) further
current constraints. The achieved behavioral flexibility is only possible due to the ef-
fectively encoded sensorimotor model and the anticipatory, goal-dependent control
structure.

11.3 Learning Cognitive Maps for Anticipatory
Control: Time Growing Neural Gas

The time-growing neural gas (TGNG) approach builds spatial representations link-
ing sensory codes time- and motor-dependently (Butz et al., 2008b). Essentially,
TGNG learns sensorimotor spaces from scratch via random motor babbling. It forms
a neural network representation of the experienced space and the connectivity within
that space. Distances in the space are represented by the motor activity necessary to
reach one spatial location from the other. Sensory proximity between close spatial
representations is not required. The exploration essentially leads to the generation
of a ‘cognitive’ map of an environment, which is represented by the growing neu-
ral network. The representation is related to place-cell and head-direction cell en-
codings found in the hippocampus in rats (Wiener et al., 2002). Each node in the
growing network essentially encodes a place cell, which is activated by appropriate
sensory input. Each edge, which connects two place cell nodes, associates the av-
erage motor command that was executed to move from one node to the next one.
TGNG is complementary to SURE REACH: it may replace the currently uniformly
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distributed bodyspace encodings in SURE REACH by the flexibly developing spa-
tial encodings.

TGNG was used to control a robot vehicle in a maze environment, which the
robot initially explores by random movements. The developing map enables the in-
vocation of goal-directed control commands that move the vehicle to currently acti-
vated goal locations. This behavior is initiated by the activation of the network nodes
that correspond to the goal locations, the subsequent propagation of that activity via
dynamic programming principles, and the final closed-loop movement to the goal.
Behavior is controlled by activating those motor commands that are associated with
the edge that leads to the next higher activated node from the node best representing
the current robot location. The spatial anticipatory encoding showed to yield highly
effective and context-based action initiation and fast and smooth behavior exe-
cution. Particularly, the system reached goal locations reliably and effectively and
it was able to flexibly adapt its behavior given additional task constraints, such as
preferred movement directions (Butz et al., 2008b).

In sum, TGNG showed that cognitive maps can be learned by simply associating
growing perceptual nodes motor-dependently. As long as the problem is Markov—
so that each perceptual node maps to a unique state in the environment—the result-
ing representation is very suitable to generate flexible, anticipatory, goal directed
control commands. The advantage of connecting states in time is that states can be
connected that may strongly differ in how they are perceived as long as they are
easily reached from each other. As a consequence, the cognitive map is rather in-
dependent of sensory proximity. It represents proximity directly motor dependently,
that is, which motor effort is necessary to reach a location in space from another
one. The consequence is that direct anticipatory, highly flexible behavioral control
is possible.

11.4 Learning Effective Directional Arm Control:
The Evolutionary System XCSF

The XCSF classifier system is well-known in the evolutionary computation com-
munity for its robust capability of iteratively learning function approximations ac-
curately and reliably (Wilson, 2002). The system has been applied to approximation
tasks of up-to seven dimensions and it has shown to be machine-learning competi-
tive in several respects (Butz et al., 2008a). In behavioral tasks, the system has also
been applied to the problem of learning generalized Q-value functions in real-valued
domains (Lanzi et al., 2006).

Recently, during the MindRACES project, XCSF was further developed to yield
directional, anticipatory control structures. In a first application of the resulting ar-
chitecture, a directional control structure was learned for an arm with three degrees
of freedom in a two-dimensional environment. The architecture mapped the arm
posture space by evolving a population of overlapping, piece-wise (linear) classi-
fier approximations. Each classifier encoded the control commands necessary for
a directional movement in a particular arm posture subspace of the environment.
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During learning, XCSF partitioned the posture space of the simulated arm to ac-
curately predict how motor actions affect hand movements. The inversion of the
predictions enabled goal-directed, closed-loop control of reaching movements. The
system reached remote hand locations accurately, reliably, and effectively. More-
over, it was shown that the learning approach did not rely on the particular sensory
inputs nor on a linear mapping. In fact, the evolving control map in XCSF is in-
herently non-linear. Due to the predictive learning approach and the consequent,
inverse, piece-wise linear control approach, the system yields fast and smooth be-
havior execution patterns (Butz and Herbort, 2008).

In sum, an evolutionary approach was used to learn a forward-inverse piece-wise
linear mapping of an arm control space, which was represented by a population of
neural classifiers. Only the employed forward-inverse anticipatory representations
of the classifiers coupled with goal-based, directional closed-loop control enabled
the effective invocation of fast and smooth behavioral control.

11.5 Anticipatory Target Motion Prediction

To solve the task of predicting the movement of a visual target, a learning linear
associator with memory, embedded within a Kalman filter was developed. While the
Kalman filter takes care of the prediction of the target location the linear associator
learns the model of the target motion (Balkenius and Johansson, 2007; Balkenius
and Gardenfors, 2008). The memory component stores previous observations and
allows the associator to train on a large number of observation in each iteration. This
technique effectively emulated some of the advantages of batch-training methods
within an on-line learning system.

The learning system has been applied to a number of task in which a tracking
component is necessary, including the tracking of moving balls in partially occluded
situations and the modeling of pursuit eye-movements. By combining the learning
predictor with an inverse model of a robotic arm with three degrees of freedom,
it became possible to catch a plastic toy fish that moved along a regular circular
path. The system learned to predict the location of the target using color tracking
in combination with the associator described above. The implemented system had a
delay of approximately 500 ms from camera image to motor control. The prediction
mechanism was essential for successful tracking as well as for the manipulation
of moving objects. It also allowed for faster and smoother behavior execution
since actions can be directed toward the future location of the target.

Prediction is an important ability that is useful as a component in many different
applications. The results showed that motion prediction can be effectively included
in many different tasks. Furthermore, it was investigated how different learning sys-
tems can be adapted for prediction by delaying inputs, outputs, and training data in
different ways. A general conclusion is that any learning system can be adapted for
prediction tasks in the way outlined and that predictive learning can be vary fast in
simple situations.
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11.6 Anticipatory Spatial Attention with Saliency Maps

A new approach of learning saliency maps was formulated that allows standard re-
inforcement learning techniques to be used in a number of attention tasks (see chap-
ter 4). The approach is based on a novel and compact formulation of a saliency map,
which allows many types of visual information to be combined in a coherent way.
In a current implementation, feature-based and spatial attention was combined in a
seamless way. The central idea is that the saliency map can be seen as an approxima-
tion of a value function for reinforcement learning. Unlike the standard action-value
function in reinforcement learning, there is no state in this formulation. Instead,
each location in the image corresponds to an individual action that directs attention
to that location. Since all different sources of attentional signals eventually lead to
attention that is spatially focused, the approach provides a common language for all
such processes.

The mechanism has been applied to selective attention as well as priming in
sensory processing. The mechanism is general enough to be used in any system that
includes any form of sensory selection. In particular, the mechanism was used to
select targets for visual tracking. It can also be used to improve top-down attention
by tuning it to external reinforcement. Moreover, it improves information seeking
by allocating larger processing resources to input data that resembles previously
rewarded stimuli.

The new mechanism shows how it is possible to add reinforcement learning also
to systems that are not use to control actions directly and suggests a general strategy
for the marriage between reinforcement learning and perceptual processing (Balke-
nius and Winberg, 2008). Moreover, the proposed mechanism can be used as an
important part of a complete reinforcement learning architecture to select stimuli
as well as actions. To the best of our knowledge, this is the first computationally
efficient implementation of a mechanism first suggested in (Balkenius, 2000).

11.7 Behavior Prediction in a Group of Robots

A combination of several techniques was used to anticipate the future behavior of a
group of robots (Johansson and Balkenius, 2007). Kalman filters were used for short
term prediction and correction of tracking data. Associative anticipatory attention
mechanisms were used to learn where robot will reappear after they disappeared
behind obstacles and to produce epistemic actions in the form of directed attention
to gain optimal information about the behavior of other robots. The system also used
internal simulation based on internal models of the other robots to anticipate how
they will behave, in order to select appropriate actions in relation to the other robots.
The robots also used a form of primitive joint attention through communication
about their observations.

The combined mechanisms were used to investigate how a robot can control
its own behavior depending on the anticipated behavior of another robot. A hiding
scenario was implemented using a multi-robot set-up. There were four robot thieves
and two guards that patrolled the environment in a regular fashion. The task of
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the thieves was to hide from the robot guards while navigating to certain places
in the environment. The implemented system showed improved decision making
by simulating the other robots’ behavior. Faster and smoother behavior execution
was achieved by employing anticipatory mechanisms at three levels: at a low level of
motor control, at an intermediate level for avoiding collision with other robots, and
at a higher level for reaching desired goals without interference with other robots.

The implementation shows how anticipation at a number of levels can be made to
work together within a unified agent architecture and addresses many of the difficul-
ties that arise as complex anticipatory systems are built. It is believed that this is the
first architecture that combines this many aspects of anticipation in a coherent sys-
tem and successfully controls the individual anticipatory behavior of a robot as well
as the emergent interactions between a group of robots with similar or conflicting
goals.

11.8 Enhanced Adaptivity in a Predator-Prey Scenario

Another study investigated how anticipations can enhance the adaptivity in a preda-
tor-prey scenario, in which a predator (usually the dog like Sony AIBOTMrobot)
is supposed to catch a prey (such as a simpler robot with a reactive behavior, or
in more sophisticated scenarios, a second AIBOTM). First of all, the magnitude of
the benefits by implementing anticipatory behavior for the predator depends on its
physical abilities like velocity and agility, but seen with respect to the analogue
capabilities of the prey. If, for instance, a predator can navigate much faster than the
prey, then the simple behavior of heading towards the prey and then approaching it
will usually be a sufficient strategy once the prey has been detected. This strategy
can still be filed under reactive behavior, as the necessary anticipatory capabilities
of learning the effects of necessary movements can be achieved quite easily.

A certain form of anticipation is necessary, if prey and predator possess com-
parable navigation abilities and both operate in the open field. The predator has
obviously some advantages if it is able to predict the trajectory of the other robot. If
additionally obstacles are present, which might occlude the opponent, then anticipa-
tory capabilities deliver substantial advantages and it is easy to construct scenarios
in which pure reactive behavior rarely succeeds, for example, if the prey is only
visible for a short amount of time, which is not sufficient for a successful access.

Two approaches have been developed, one is based on Markov models (Lewan-
dowski, 2007) and the second uses artificial immune systems (De Castro and Tim-
mis, 2003). Both approaches operate in the space of observed sensor values and do
not try to estimate robot locations within a world map. For the Markov approach,
the current camera image is transformed into one of a final number of possible
views. The elementary building blocks are the estimated probabilities of transitions
between the current and the following state, given the current action, which are up-
dated continuously while maneuvering. The ability to construct 1-step predictions
could be used now to form chains of actions and to predict possible future outcomes,
or to be more exact, to predict probability distributions over possible states for a
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given time point. The system knows in its representation every so far encountered
state.

Actually, the algorithm implements goal-oriented behavior in a different way.
A desired state is one already experienced view, for which the prey has been seen
from the nearest so far observed distance. Multiple desired states are allowed to
exist. A plausibility check for a necessary condition ensures that the desired goal
states are probably achievable from the current state with the acquired knowledge
of transitions. A backward induction algorithm (Puterman, 1994) is then applied
in a recursive manner that finally a current action can be chosen that, based on
the history of transitions, one of the goal states will be reached as fast as possible.
The algorithm allows that the prey is temporarily hidden, and therefore it is not
mandatory that each step reduces the distance to the prey.

The building blocks and systemic operations of the AIS approach are elements
and procedures that are in line with the immune system metaphor. Simple atomic
elements that code for a condition, an action and an expectation, in terms of the
possible outcome of an action, correspond to the antibody that reacts to a certain
degree matching environmental stimulus, the antigen. Sensor inputs and therefore
the epitopes of the antigens are coded as strings and are compared to the condition
parts of the artificial immune systems elements. The best corresponding element is
chosen and its action is executed. The expected outcome of this single action can be
predicted and this in consequence allows the anticipation of the outcome of future
action sequences in relation to the current situation and therefore the prediction of
the outcome after multiple time steps.

After each successful run, the population of elements is dynamically updated
according to certain interdependency patterns that closely follow Niels Jerne’s im-
mune network theory (Jerne, 1974), with the consequence that the concentration of
elements belonging to successful runs will grow higher and their elements will be
chosen more likely to produce genetically varying offspring than less effective an-
tibodies, which are subsequentially suppressed. Within AIS, the goal to catch the
prey is therefore not explicitly given, but is implicitly coded in the distribution and
concentration of the elements of the network’s population. A main goal of the ex-
periments with artificial immune systems was the evaluation of their capabilities in
controlling a successful predator (and in some cases prey) in match to other control
strategies. Among these were genetically evolved static strategies like differently
complex subsumption architectures, as well as other evolutionary computation al-
gorithms, including classifier systems (XCS) and even anticipatory classifier sys-
tems (Sigaud and Wilson, 2007). In all scenarios, from the simplest without any
obstacles, to the most complex, where both players are controlled by anticipatory
control mechanisms and a hiding place was introduced, the artificial immune sys-
tem approach was able to solve the task of catching the prey (or escaping) very well.
Additionally the behavior exhibited to the human observer in many cases appeared
like a reasonable anticipatory strategy that one would observe also in biological
hunter and prey scenarios.

In conclusion both approaches can be successfully applied, if the behavior of the
prey under similar circumstances remains stable. When the presence of obstacles is
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allowed, they provide substantial advantages over purely reactive models. The
behavior of the prey does not need to be deterministic, but it should not change
abruptly. Thus, the algorithms in their current form are best applicable, if the prey’s
behavior is stationary.

11.9 Adaptive Navigation and Control with
Anticipation

In a real robot task an omnidirectional robot learns to correct inaccuracies while
driving, or even learns to use corrective motor commands when a motor fails, both
partially or completely, to optimize the driving accuracy for soccer competitions
(Rojas and Frster, 2006). The robot anticipates how its actions influence the envi-
ronment. It uses this knowledge to choose the best action fulfilling its intention in
the future. The robot also observes itself to detect drifting effects of its actions and
adapts its own world-model accordingly.

A feed forward neural network with historic and current information of the
robot’s poses is used for learning the robot’s response to the commands. The learned
model can be used to predict deviations from the desired path and takes corrective
actions in advance, thus improving the driving accuracy of the robot. The model
can also be used to monitor the robot and assess if it is performing according to its
learned response function. It was demonstrated that even if a robot loses some mo-
tor’s power, the system can relearn to drive the robot in a straight path, even if the
robot is a black box and we are not aware of how the commands are applied inter-
nally. The robot controller framework integrates action control by choosing actions
based on its own self-model. It integrates attention and monitoring by observing its
own hardware quality to change its behavior and monitoring. Without these three
anticipatory mechanisms, the robot would still fulfill its task to some extent, but not
sufficiently (in the sense of robustness and accuracy) to win an international multi
robot contest.

11.10 Mental Experiments for Selecting Actions

A robotic task consisting in finding and moving to a randomly placed unique col-
ored cup in the room illustrates that anticipatory mechanisms are essential to fulfill
the assignment (Bakker et al., 2006; Zhumatiy et al., 2006). The key idea to solve
the task is to use a forward model to translate sensor inputs to robot movement
commands. This module anticipates a probabilistic world-model to estimate future
rewards by mental experiments. The results of the mental experiments are then used
to select the most promising actions for the motor controller.

The robot is equipped with a color camera and placed in a room, which contains
the colored cup. The camera is mounted in front of the robot and looks a bit down-
wards. It has a very limited field of view in relation to the room. Therefore, the robot
has to find the cup before it can move to the target position.
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The controller of the robot translates sensor input data to robot movement com-
mands. It is trained by various reinforcement learning methods. In (Zhumatiy et al.,
2006) the mean position of all camera pixels in a specific color range of the target
object is used as input for the reinforcement learner. To reduce the huge amount
of memory for the policy, a Piecewise Continuous Nearest-Sequence Memory (PC-
NSM) algorithm is used for general metrics over state-action trajectories. In (Bakker
et al., 2006), the visual information from the camera is preprocessed into a 5x4 bi-
nary grid, which represents the position of the cup in the camera image, if the cup
is visible. To reduce the long training time for reinforcement learning algorithms
for real robots, a probabilistic anticipatory world-model is learned from compara-
tively few real robot experiments. This world-model is then used to conduct mental
experiments to train the controller with Prioritized Sweeping, a modification of the
standard Q-Learning algorithm. The policy is applied with a high repetition rate
during the learning process of the mental model and with a real time repetition rate
in the physical world.

The robot controller framework combines action control, active vision, attention,
goal directed behavior, and monitoring. Removing one of these anticipatory mod-
ules makes it impossible to learn the whole task on a real robot within a reasonable
time frame.

11.11 Anticipations for Believable Behavior

The emotivector (Martinho and Paiva, 2005) is an affective anticipatory mechanism
situated at the agent sensory interface. Each emotivector is coupled with a sensor
and generates affective signals resulting from the mismatch between sensed and
predicted values. Inspired by the psychology of emotion and attention, our imple-
mentation of the mechanism showed how attention grabbing potential as well as
elementary sensations can be automatically generated from the observation of the
values flowing through the agent sensors, and be used to generate believable behav-
ior for the agent.

Two tasks were performed to evaluate the effectiveness of the emotivector mech-
anism: one taking place in the virtual world, where Aini, a synthetic flower, helped
users to perform a word-puzzle task; and another, taking place in the real world,
where the iCat social robot played a game of chess against the user. In both tasks,
the affective signals generated by the emotivector were used to directly control the
affective expression of the synthetic character interacting with the human user. The
results showed that behavior autonomously generated by the emotivector is per-
ceived as believable and understandable by the users.

Anticipation (and the associated uncertainty) plays an important part in the gen-
eration of affective signals. In the emotivector mechanism, anticipatory mechanisms
are used for: deciding whether a percept is salient; defining the quality of the elicited
affective states; allowing the mechanism to be context-free, without any require-
ments related to the manual tuning of parameters. As such, besides being a crucial
factor in the autonomous generation of attentive and affective signals, anticipations
allow parsimonious design.
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The research issue resulting from the gap between the scope of psychological
theory and the engineering needs of the believable character community has only
started to be addressed in a principled manner. The emotivector mechanism is lo-
cated in this area of relevance and addresses the specific question of creating au-
tonomous believable behavior to support the engineering of believable synthetic
characters. The emotivector achieves this goal by fusing the fields of anticipatory
computing and affective computing. By design, this approach is broadly applicable
and provides practical means to significantly improve the capabilities of believable
characters driven by such architectures.

11.12 Anticipatory Behavior in a
Searching-for-an-Object Task

In section 9, the use of analogy making as a prediction mechanism was investi-
gated. Analogy allows prediction making about the current situation based on one
episode in LTM, which could be from a different domain. The analogy involved
can be very superficial or very deep. The AMBR model of analogy making (Koki-
nov, 1994b; Kokinov and Petrov, 2000, 2001) was further developed and augmented
with a transfer and evaluation mechanism, which allowed the implementation of a
real robot scenario involving perception and action execution. These mechanisms
allowed the usage of analogy as a selective attention mechanism and top-down per-
ception mechanism, which directed attention of the robot to anticipated objects or
properties. The scene representation was build gradually including only relevant ob-
jects and relations. The use of analogy as a basis for anticipatory mechanism is novel
and proposed for the first time.

The task in which the model was tested was a ‘searching for an object task’.
The AIBO robot had to find its hidden bone under an object in a room. The objects
differed in shape and color. The robot analyzes the scene, makes a decision where
the object could be, and goes to find it.

In such a task, using a non-anticipatory approach will lead to full search for the
objects below all shapes. Although it cannot be guaranteed that the episode retrieved
by analogy will lead to the correct solution, in many cases it does and the way the
solution is found is unique and was only possible due to analogy making. The ad-
vantage of the analogy based prediction compared to other prediction methods is the
ability to use just one positive trial in order to generate the prediction. The proposed
methods for top-down perception and selective attention based on anticipation deal
with the hard problem of processing visual input. The huge space of objects and
relations is filtered, which allows the mind to handle only small but relevant aspects
of the available information.

The analogy based anticipatory mechanisms seem very promising for finding so-
lutions in some situations. They have to be further tested in richer environments
in order to explorer their full potential and scalability. A promising further devel-
opment seems to be the use of analogy based predictions as a basis for models of
perception and action and work along this line is in progress.
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11.13 The Role of Anticipation in Cooperation and
Coordination

In section 10, the problem of cooperation as a basic principle underlying was investi-
gated in the framework of Iterated Prisoner’s Dilemma Game (IPDG). Results from
simulations with a connectionist architecture of an anticipatory PD player allow the
conclusion that anticipation is of high importance for cooperation to be present in
2x2 interactions as well as in simulated PD play in a society of agents. The archi-
tecture combines a simple recurrent neural network with an auto-associator and a
forward looking evaluation mechanism (Lalev and Grinberg, 2007), implementing
an anticipation-based decision making mechanism. In IPDG, the recurrent network
processes the flow of available information: the structure of the PD matrix, the play-
ers’ moves, and the payoffs obtained from the game. Due to the learning mechanism,
the network correlates this information in time, whenever appropriate (for example,
how players’ moves correspond to gains from the game), and tries to infer informa-
tion that is not available yet—such as the move of the opponent. In the case of a
single couple of IPDG players, the model managed to reproduce results from exper-
iments with human subjects by (Hristova and Grinberg, 2004). Anticipation, rather
than backward-looking reactive behavior, was responsible for the cooperation of the
model against the simple-strategy computer opponent also used in the experiment
with human subjects. Manipulation of anticipation forward-looking parameters also
revealed that the anticipatory properties of the model’s decision making contribute
most to the observed dependence of cooperation on the structure of the payoff ma-
trix (the so-called cooperation index).

With instances of the validated model architecture, simulations of IPDG playing
in small societies were conducted. The aim of the simulations was to investigate the
role of anticipation in a society of payoff-maximizing agents on cooperation and
coordination among them. For this purpose, small groups of agents with different
parameterization of the model played IPDG in simulated social environments. The
parameters were chosen to have five groups of players with increasing anticipatory
capabilities. The analysis of the processes in each society was based on the overall
level of cooperation, mean payoffs, as well as cooperative coordination. It turned out
that the level of cooperation in the simulated IPDG societies grew with anticipation,
starting from 5% in the first society and reaching up to 30% in the fifth society. Cor-
responding to their anticipation, the intermediate types reached intermediate levels
of cooperative interactions.

A tendency of increased mean number of mutual cooperation cases per simu-
lation was observed with increased anticipatory properties of the agents in the so-
cieties. The opposite was valid for the mean number of double non-cooperative
choices (mutual defection) per simulation, as this number increased with dimin-
ishing anticipations in the societies. Higher mutual cooperation is considered an
advantage as long as this is the most profitable outcome for the society in the long
run. The summary payoffs, which were gained in each society, were also positively
correlated with forward-looking capabilities: the higher the anticipation within a so-
ciety, the higher the payoffs obtained by the members of the corresponding society.
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As a first measure for the level of coordination between the agents, the mean num-
ber of mutual cooperation games played in a series per IPDG session was used. The
longest mutual cooperation coordination was observed in the societies with highest
anticipation. Although the sequences are not very long, the influence of anticipation
is considerable.

Cooperation and coordination play a positive role in a society and represent a
decisive advantage. In IPDG, for example, bilateral coordinated cooperation would
result in higher gains for both players. On the level of a society, cooperation and
coordinated actions will lead to high overall productivity and benefits. These simu-
lations showed that anticipation is decisive for high levels of cooperation and higher
coordination. According to the results, the higher the anticipatory capabilities are,
the higher the cooperation rate and the coordination in cooperation between agents.
As human cooperation in IPDG is close in rates to the cooperation of our anticipa-
tory agents, the prediction is that coordination series among human subjects may be
in close ranges to those observed in the simulations.

11.14 Anticipatory Effects of Expectations and
Emotions

Recent computational models in the context of cognitive systems are providing sim-
ple affective states in terms of their functional effects on agent’s behavior. Their
roles are argued to enable adaptive and situated cognition and span from reactive
methods of control (similar to those employed in primitive biological organisms) to
the control of computational resources, attention, and decision making processes.
Systems based on appraisal theory stressed different relations between emotions
and cognition, arguing emotions as a causal precursor for the mechanisms to detect,
classify, and adaptively cope with significant events and environmental changes.
Typically, emotions are modeled as cognitive mechanisms to monitor goal pursuit
in terms of functional appraisal of action achievement and failure. Besides, emo-
tion signals may rule intelligent resource allocation, improve situated cognition, and
generate goals, which are translated into purposive behavior.

Moreover, an approach was investigated that promotes the anticipatory effect of
emotions as a main breakthrough. In so doing, we envisage to address either the
route from emotion to anticipation, or the reverse one, from anticipation to emotion.

Emotions and Anticipation in Goal Directed Agents Our theoretical model of
emotions have been developed by using mathematical and logical tools which have
been developed in the field of decision theory and applied modal logic (Castel-
franchi, 2005; Lorini and Castelfranchi, 2007). This level of specification has been
a first foundational step towards the design of computational architectures for affec-
tive and anticipatory agents.

In realizing a computational model for emotions and anticipations, a multifaceted
approach was adopted by distinguishing different processes behind goal oriented be-
havior. In so doing, practical reasoning, epistemic reasoning, and situated reasoning
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were distinguished and basic principles at the basis of emotions in terms of their
cognitive ingredients were investigated. This promoted a clear disambiguation be-
tween slow, decisional processes, processed devoted to deal with knowledge and
processes related to cope with situated events.

Whereas typical approaches in modeling cognitive agents are oriented at includ-
ing graded primitives and temporal dimensions (i.e. belief on the future), a cog-
nitive approach was adopted, which introduced expectations as emerging attitudes
coming from epistemic and motivational states. A particular use of expectations en-
hancing problem solving and learning abilities has been modeled in the deliberation
and goal selection phases. In addition, by pointing out the subjective character and
the functional role of expectations, as intrinsic cognitive ingredients of many basic
emotions (i.e. surprise, hope, relief, disappointment), a further kind of interaction
between emotion and anticipatory activities was considered that consisted not only
in predicting future events, but also in anticipating future emotions.

In (Piunti et al., 2007c,b,d), the quantitative influence of expectations upon the
terms of a rational decision was investigated. In so doing, expectation driven de-
cision making was introduced(Piunti et al., 2007c), which enabled agents to proac-
tively take decisions either on the basis of anticipated events (i.e. trends of monitored
signals) or on the basis of ongoing needs and desires.

As in appraisal-inspired models, emotions and mental states were provided to
coordinate different computational and physical components required to effectively
interact in complex environment. A clear methodological separation of concerns
allowing the modeler by breaking down the work into two separate and indepen-
dent activities was promoted: while the former was defined referring to the goal
overview in the problem domain and clearly involves decisional processes (i.e. de-
liberation of alternative courses of actions), the latter can be defined through control
frames to improve situated behavior. The following step was made to reinstate the
two approaches by taking into account the correlations and the relative interactions
occurring in system execution model. This allowed to integrate the low-level, situ-
ated reasoning to be used to inform higher decisional processes.

The emergent nature of affective states enables agent to adopt a mental frame
while both expectations and emotions are conveyed to inform reasoning for redi-
recting resources and adopt long term strategies once a disturbing event is detected.
To this end the contribute of Mental States is twofold: from the one side they can re-
lieve the deliberative and the attentive processes from the burdens to process weakly
relevant information in decision processes, excluding action alternatives that are
likely to be less promising or have vanishing likelihood to be achieved. On the other
side, Mental States provide ready to use action selection and resource allocation
strategies that may relieve agent’s need for resource-demanding and meta decision
processes. An additional effect of modeling emotions through mental states is for
agent’s intention reconsideration. Traditional reconsideration strategies indicate an
agent to abandon an intention when a related goal is achieved, when a goal become
infeasible or when the agent relieve some inconsistencies between the world state
and the external conditions necessary for goal achievement. Our model allows basic
emotions to elicit an interruption on normal cognitive processes when unexpected
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events require servicing. Once based on expectations of future states, intention re-
consideration becomes anticipatory and can be used to coordinate behavior with
prediction of future states.

A further ability based on expectation processing is to allow agents to modify
their courses of action in order to anticipatorily coordinate with the other agents
behavior. At this stage, agents were investigated that are able to thwart some ex-
pected events if the expectation is threatful or to promote them if the expectation is
promising (with respect of the ongoing goals) (Piunti et al., 2007a).

Surprise Signals as Filters for the Update of Relevant Beliefs Taking into ac-
count the above mentioned model, a novel approach in epistemic reasoning and
active perception was proposed. A surprise driven belief update processes introduc-
ing a notion of information relevance based on goal processing was presented by
(Lorini and Piunti, 2007). By considering a proactive and an anticipatory perceptive
process, the proposed model implements a novel strategy for epistemic reasoning
according to which agents search and filter information from their environment not
by monitoring nor perceiving all the retrievable data, but according their ongoing
needs, desires, concerns, thus filtering and assessing only what is expected to be
relevant for pursuing their goals.

The surprise based filter mechanism allows agents to consider useful for their be-
lief updates only those information related with their goals and expectations. Raised
from a mismatch between agent’s knowledge and his perceived facts, a surprise sig-
nal is sent back to the control system in order to trigger a belief update process. The
filter mechanisms is then responsible for (1) signaling the inconsistency between
beliefs and an incoming input which is relevant with respect to the current task and
(2) the revision of Beliefs and Expectations on the basis of the incoming relevant
information.

The proposed filter allow agents to realize as useless and unnecessary those ad-
ditional costs spent for data processing. Hence, surprise governed attention enable
agents to process and filter the perceived data according to the ongoing expecta-
tions, modeled on the basis of a knowledge model (the belief base) coupled with
subjective goals importance (related to subjective desires, purposes and concerns).
In so doing they acquire the capability to divide the overall set of perceivable data
in a relevant and irrelevant subsets.

Our experimental analysis measures the costs for perception and belief updates
in agents engaged in dynamic environments. The results show that to higher en-
vironment dynamism, the greater costs sustained for epistemic activities are not
compensated by an enhancement of achieved tasks. This elicit an important, general
strategy exploitable by all those agent engaged in information rich worlds, with big
sized information sources to be reported in their belief base. In these conditions,
only the relevant information was filtered from the environments that was guessed
to be a critical issue for forthcoming cognitive systems (consider for example agents
engaged in an information retrieval task in the context of open system applications).
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11.15 On-Line and Off-Line Anticipation for
Action Control

In a series of studies, the effectiveness of reactive and anticipatory control architec-
tures in predator-prey scenarios were studied. In these scenarios, it was necessary
to satisfy competing drives, such as hunger and the avoidance of predators (Pezzulo
and Calvi, 2006a; Pezzulo, 2008b).

An important aspect of the undertaken investigations focused on the trade-off
between accurate control of action and time spent to form predictions. Anticipatory
mechanisms used on-line with action make it more accurate and permit forecasting
possible dangers arising from it. At the same time, prediction is a costly opera-
tion that requires time, and in principle it can make situated agents less effective or
less responsible to dynamics in their environment such as dangers. This trade-off is
further complicated when anticipatory mechanisms are used off-line with action to
predict multiple and/or distal events (for example, the long-term outcome of several
alternative potential courses of actions). Here the (computational) costs for engag-
ing in ‘imagination’ and ‘planning’ are higher and can prevent effective situated
action. Due to the failure of the earlier AI systems to deal with this trade-offs, it
is believed by several researchers that belong to the ‘novel AI’ (Brooks, 1991) that
situated agents should better act than reason.

Advantages of Anticipatory Mechanisms used On-Line with Action In a first
study (Pezzulo and Calvi, 2006a), the performance of two schema-based agent ar-
chitectures were compared in a predator-prey scenario involving multiple entities
(predators and preys), obstacles, and moving objects. The first agent architecture
included multiple perceptual and motor schemas (for detecting and escaping preda-
tors, detecting and catching preys, etc.), having one inverse and one forward model
(Wolpert and Kawato, 1998) each. These two (coupled) internal models were used
for determining the motor action and for predicting its sensory effects respectively.
Prediction errors (of the forward models) were used for action control and schema
selection: schemas generating reliable predictions (and related to the current active
drives) were selected for controlling action. The second agent instead lacked the
internal forward models.

The results indicated that the first agent architecture demonstrates a better adap-
tivity, since it was better able to satisfy its multiple drives (Pezzulo and Calvi,
2006a). This shows that in such dynamical and demanding environments it is advan-
tageous to use on-line anticipation for action control and schemas selection, despite
the costs of running forward models in real time.

Overall, contrary to the view that situated agents need to be reactive (Brooks,
1991), this experiment indicates that internal modeling is highly advantageous for
situated agents if it is done on-line with action and produces representations whose
format is compatible with the agent’s sensorimotor loop (as in the case of internal
forward models).
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Further Advantages of Off-Line Simulations In a second study (Pezzulo, 2008b),
it was investigated how the same anticipatory mechanisms exploited in the first study
can be exploited off-line to anticipate several steps in the future (an internal, ‘men-
tal’ simulation of behavior) for the sake of (1) preventing dangers and (2) planning
goal-directed action (that is, mentally generating and selecting sequences of actions
to realize further). In this case, the possible advantages or disadvantages of engaging
in ‘imagination’ during situated actions were tested.

Again, two agent architectures were compared, with and without the capability to
re-enact schemas in simulation. In the first agent architecture, the same sensorimo-
tor schemas adopted in the first study where used, but now they were allowed to run
off-line in simulation mode, to predict the long-term sensory consequences of their
motor commands. In simulation mode, motor commands were inhibited (not sent to
the actuators), but fed as sensory inputs to the forward models, which then produced
new sensory predictions that were used by the inverse models for generating new
motor commands ‘as if’ the agents actually sensed the predicted future. The loop
between forward and inverse models allowed generating long-term predictions for
an arbitrary number of future steps. Two additional mechanisms were responsible
for (1) stopping the current action if its predicted outcomes are evaluated as dan-
gerous (a kind of ‘somatic marker’ mechanism, Damasio, 1994), and (2) evaluating,
selecting, and activating the better ‘plans’ (that is, sequences of ‘simulated’ actions).
The second agent architecture used forward models in the on-line control of action,
but lacked the ability to run in generation mode.

The two agent architectures were tested in a tasks consisting in exploring a simu-
lated house for finding a ‘treasure’ without being captured by guards (as in the first
study, each agent architecture had concurrent drives to satisfy). Our results have
shown that the first agent architecture, using anticipation both on-line and off-line
(that is, in generation mode), outperformed the second one in terms of adaptivity
thanks to its capability to predict possible future dangers and to plan from time to
time (Pezzulo, 2008b). This happened despite the costs of simulating and planning.

Consistently with recent simulative theories of cognition (Damasio, 1994; Grush,
2004; Hesslow, 2002), the results of our experiments indicate that mental simula-
tion is an effective strategy for avoiding dangers and planning in dynamic environ-
ments despite the fact that ‘imagination’ can in principle make an agent less effi-
cacious in its current sensorimotor interaction. As argued in (Grush, 2004; Pezzulo
and Castelfranchi, 2007), it is believed that off-line mental simulation is a suitable,
embodied alternative to ‘reasoning by symbol-crunching’ of traditional AI systems,
since it permits internal manipulation of (anticipatory) representations without los-
ing grounding and situatedness. Thanks to anticipation, artificial systems can engage
in mental operations that when performed by ‘ungrounded’ AI systems typically de-
termine a poor performance in situated activities.

Overall, these studies have the potential to shed light on the role of mental simu-
lations, how they enable increasingly complex cognitive capabilities, and how they
open the passage from present-directed to goal-directed, purposive actions (Pezzulo,
2008a; Pezzulo and Castelfranchi, 2007). See also (Pezzulo et al., 2005; Pezzulo and
Calvi, 2005, 2007a) for related studies.
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11.16 Conclusion

We have surveyed fourteen case studies, which were developed during the EU
project MindRACES. In each study, anticipatory mechanisms of (simulated or real)
robots determined an advantage in terms of behavioral flexibility, adaptability, relia-
bility, or social interaction. The presented case studies, however, are only few among
a growing number of examples of how anticipatory mechanisms can enhance the
cognitive and behavioral capabilities of artificial systems or can even develop novel
capabilities that may be impossible without anticipatory mechanisms. Overall, these
studies illustrate that our design methodology, based on a systematic endowment of
artificial systems with anticipatory capabilities, determine huge advantages in terms
of increased autonomy and adaptivity.

We hope that the design methodology we have illustrated throughout the book—
and exemplified in this chapter with success cases—can inspire future research and
real-world product development of cognitive system architectures. Taking the pas-
sage ‘from Reactive to Anticipatory Cognitive Embodied Systems’, this book may
serve as the guideline to successfully design and develop further truly flexible, adap-
tive, effective, and interactive cognitive agents.
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