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Part I - Genomics as a Tool for Precision Medicine 

Acute Lymphoblastic Leukemia 

Pediatric Acute Lymphoblastic Leukemia 

Acute lymphoblastic leukaemia (ALL) is a malignancy characterised 

by the proliferation of lymphoid cells blocked at an early stage of 

differentiation that can invade the bone marrow, blood, and 

extramedullary sites. Approximately 60% of ALL patients are 

diagnosed before 20 years of age; indeed, ALL is an age-specific 

malignancy that has the highest incidence in children aged 1–4 years, 

and then drops sharply through childhood (5–14 years), adolescence, 

and young adulthood (15–39 years). In the last decades, the 5-year 

overall survival rate increased from 31% in 1975 to nearly 70% in 2009. 

This increase can be attributed to the development of fine-tuned clinical 

protocols and better patient risk stratifications. The introduction of 

minimal residual disease assessment as part of the clinical diagnostics 

allowed the evaluation of the effectiveness of the chemotherapy 

treatment by the quantification of leukaemic cells in the peripheral 

blood. The degree of the minimal residual disease and genomic 

biomarkers define the patient’s risk group and the specific clinical 

treatment that should be used. However, the survival rate is still poor 

for patients who relapse. Analysis of paired diagnosis/relapse ALL 

samples has shown that the accumulation of new deletions and 

mutations over time produces new leukaemic clone types (Malard and 

Mohty, 2020). 
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The introduction of NGS provided a revolutionary tool for the 

application of genomics in clinical practice. The application of NGS in 

clinical diagnostics unveiled new genomic biomarkers, such as the 

characterisation of new fusion genes and their involvement in the 

patient’s relapse, which can be used to identify new patient subgroups 

and estimate their survival (Lopes et al., 2019; Mullighan, 2014; 

Stanulla et al., 2018; Zaliova et al., 2019). Currently, NGS allows 

precision medicine, leading to the implementation of personalised 

treatment for each patient based on their genomic profile (Carrasco-

Ramiro et al., 2017; Gulilat et al., 2019; Luh and Yen, 2018; Suwinski 

et al., 2019). 

Minima Residual Disease 

The introduction of targeted therapies, alongside advances in diagnostic 

procedures, have improved outcomes for patients with B-ALL (Bassan 

and Hoelzer, 2011; Hoelzer, 2015). However, despite the substantial 

proportion (74% to 91%) of patients achieving complete remission 

(CR), one-third or more will eventually relapse because of the presence 

of submicroscopic levels of leukaemic cells in the bone marrow 

(Annino et al., 2002, 2002; Larson et al., 1995). The presence of these 

remaining cancer cells is known as a minimal residual disease (MRD; 

alternatively, termed ‘measurable residual disease’). 

MRD is increasingly being used in clinical practice as an independent 

prognostic marker of the duration of CR and the long-term outcomes of 

patients with ALL, and also for informing treatment decisions (Bassan 

et al., 2017; Chen et al., 2015; Gökbuget et al., 2012; Scheuring et al., 

2003). In drug development, MRD response has been considered as an 
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early marker of efficacy in clinical studies, with potential use as a 

surrogate endpoint in registration studies for accelerated drug Approval 

(Research, 2020).  

Chromosomal Rearrangements 

Fusion genes arise from chromosomal translocations and 

intrachromosomal rearrangements that mainly disrupt genetic 

regulators of normal haematopoiesis as well as lymphoid development 

(e.g., those involving RUNX1 and ETV6) and constitutively activate 

tyrosine kinases (e.g., ABL1 chimeras) (Hunger and Mullighan, 2015; 

Inaba et al., 2013).  

Fusion genes are hallmarks of ALL that play a pivotal role in 

leukaemogenesis, and their identification is crucial for patient risk 

stratification. Common fusion genes in B-lineage ALL include: 

t(12;21)(p13;q22), encoding ETV6-RUNX1 (TEL-AML); 

t(1;19)(q23;p13), encoding TCF3-PBX1 (E2A-PBX1); 

t(9;22)(q34;q11.2), resulting in the formation of the “Philadelphia” 

chromosome, encoding BCR-ABL1; rearrangements of KMT2A(MLL) 

at 11q23 to a range of fusion partners; and rearrangements of the 

cytokine receptor gene CRLF2 at the pseudoautosomal region 1 (PAR1) 

at Xp22.3/Yp11.3. Fusion genes correlate with clinical outcome, and 

are used as biomarkers for patient risk stratification: for example, 

patients positive for t(12;21)/ETV6-RUNX1 have the most favourable 

prognosis, whereas t(9;22)/BCR-ABL1, t(1;19)/TCF3-PBX1, and 

KMT2A-AFF1 correlate with a brief disease latency and have a poor 

prognosis. Specific drug inhibitors antagonising these fusion proteins 

provide a more efficient and less toxic tool for disease eradication: for 
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example, the imatinib tyrosine kinase inhibitor inhibits the oncogenic 

deregulation caused by the (9;22)/BCR-ABL1 fusion protein.  

Next-Generation Sequencing 

General Workflow 

Applications described in this thesis were developed based on the 

sequencing data generated through the Sequencing by Synthesis (SBS) 

technique used by the Illumina Sequencing Platforms (see 

https://bit.ly/358vk6X). The Illumina Sequencing workflow is 

described here: 

The sequencing library is prepared by random fragmentation of the 

DNA or cDNA sample, followed by 5′ and 3′ adapter ligation. 

Alternatively, “tagmentation” combines the fragmentation and ligation 

reactions into a single step that greatly increases the efficiency of the 

library preparation process. Adapter-ligated fragments are then PCR 

amplified and gel purified. 

Cluster Amplification - For cluster generation, the library is loaded into 

a flow cell where fragments are captured on a lawn of surface-bound 

oligos complementary to the library adapters. Each fragment is then 

amplified into distinct, clonal clusters through bridge amplification. 

When cluster generation is complete, the templates are ready for 

sequencing (Figure 1.A). 

Sequencing - Illumina sequencing uses four fluorescently labelled 

nucleotides to sequence the tens of millions of clusters on the flow cell 

surface in parallel. During each sequencing cycle, a single labelled 
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dNTP is added to the nucleic acid chain. The nucleotide label serves as 

a “reversible terminator” for polymerisation: after dNTP incorporation, 

the fluorescent dye is identified through laser excitation and imaging, 

which is then enzymatically cleaved to allow the next round of 

incorporation. Base calls are made directly from signal intensity 

measurements during each cycle (Figure 1.B). 

Pair-End Sequencing 

 A Major advance in NGS technology occurred with the development 

of paired-end (PE) sequencing (Figure 2). PE sequencing involves the 

sequencing of both ends of the DNA fragments in a library and the 

alignment of the forward and reverse sequences as read pairs. In 

addition to producing twice the number of reads in the same time and 

with the same effort in library preparation, sequences aligned as read 

A B
Figure 1. A) Fragments are amplified to generate clusters. B) Sequencing by Synthesis strategy.
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pairs enable more accurate read alignment and the ability to detect 

indels, which is not possible with single read data.  

Multiplexing 

Multiplexing allows large numbers of libraries to be pooled and 

sequenced simultaneously during a single sequencing run. With 

multiplexed libraries, unique index sequences are added to each DNA 

fragment during library preparation such that each read can be 

identified and sorted before final data analysis. With PE sequencing and 

multiplexing, NGS has dramatically reduced the sequencing time for 

multi-sample studies and enabled researchers to go from analysis to 

data quickly and easily. Multiplexing involves an added layer of 

complexity, as sequencing reads from pooled libraries need to be 

identified and sorted computationally in a process called 

demultiplexing, before final data analysis. 

Library Preparation 

In this study, two main next-generation sequencing strategies were used 

to obtain genomics datasets: amplicon sequencing and target-capture 

sequencing. Both methodologies have the advantage of restricting the 

sequencing to pre-selected regions of the genome, thus reducing both 

Read 1 Read 2 

Figure 2. Pair-end sequencing. Information about DNA template nucleotide sequence are 

provided from sides.
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computational analysis time as well as the cost of sequencing while 

increasing the sequencing depth. 

Amplicon Sequencing - Amplicon sequencing is a highly targeted 

approach that enables the analysis of genetic variation in specific 

genomic regions. This method uses oligonucleotide primers designed 

to target and amplify pre-selected regions of interest. After 

amplification, the PCR product is sequenced. This method ensures deep 

sequencing allowing the identification of rare genomic variants with 

low abundance. 

Target Capture Sequencing - Targeted Capture (TC) next-generation 

sequencing is a type of NGS that focuses on specific areas of the 

genome. TC relies on the design of biotinylated oligos (baits or probes) 

whose nucleotide sequence is complementary to the genomic region of 

interest. Probes bind to the complementary DNA region after DNA 

fragmentation. Hybrid probes are captured and pooled down by the use 

of streptavidin beads and magnets, and then sequenced. 

Bioinformatics 

FASTQ file format 

Next-generation sequencing output is a set of files containing millions 

of nucleotide sequences represented by four-letter strings, also known 

as FASTQ files. By definition, the FASTQ file stores a biological 

sequence (usually nucleotide sequence) and its corresponding quality 

scores. Both the sequence letter and quality score are encoded with a 

single ASCII character for brevity. A FASTQ file containing a single 

sequence is shown below: 
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where: 

Line1 corresponds to the unique identifier of the read. 

Line2 corresponds to the nucleotide sequence of the read. 

Line3 corresponds to an empty line that can be used to store read’s 

information. 

Line4 corresponds to the base quality of the nucleotide in the same 

position. 

Preprocessing 

FASTQ data preprocessing is a first step in the bioinformatics analysis, 

which involves the removal of low-quality sequencing data from the 

original FASTQ file. Low quality sequencing data are represented by: 

unwanted sequences (e.g. poly-A in RNA sequencing), artificial 

sequences (e.g. vectors, adapters, primers), join short-overlapping pair-

end reads (similar to primer-dimers), low quality reads, PCR duplicates, 

and contaminations. 

The type of FASTQ file preprocessing used is commonly referred to as 

trimming when it removes low-quality nucleotides at the end of each 

read or filtering when the entire reads are removed. Preprocessing is a 

well-established field of research and several open-source software are 

available online. In this study, preprocessing was performed by the use 

@SEQ_ID 

TTGGGGTTCAAAGCAGTATCGATCAAATAGTAACATTTGTTCAACTCACAGTTT

+

*((((***+))%%%++)(%%%%).1***-+*''*55CCF>>>>>>CCCCCCC65
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of Cutadapt and subsequent quality control was done by FASTQC; the 

final quality report was built with the software MultiQC (Ewels et al., 

2016; Martin, 2011). 

Genome Alignment 

Once high-quality data are obtained from preprocessing, the next step 

is to map the reads to the genome or transcriptome reference of the 

sequenced organism. In this study, I referred to human and mouse 

reference genomes, which are freely available on UCSC and 

ENSEMBL web services. Several algorithms can be used to align reads 

to a reference genome. The main feature affecting the choice of the 

aligner is the biological material used for the generation of the FASTQ 

files, thus RNA or DNA. In the first case, splicing-aware aligners, such 

as STAR and HISAT2 (Dobin et al., 2013; Kim et al., 2019), are more 

suitable than non-splicing-aware aligners. On the contrary, non-

splicing-aware aligners such as BWA or Minimap2 will perform better 

for DNA datasets (Li, 2018, p. 2; Li and Durbin, 2009). 

Somatic Single Nucleotide Variant Calling 

Next-generation sequencing is by far the most promising technology for 

de novo mutation detections. Theoretically, all mutations, regardless of 

the variant allele frequency (VAF) or genomic region, can be observed 

given enough read depth (coverage). However, due to the non-marginal 

amount of background noise, the bioinformatics process of 

identification and calling of somatic single nucleotide variants (SNV) 

is a non-trivial complex task. As described above, preprocessing of 

FASTQ files highly improves the final results since it helps to partially 
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reduce the background noise; however, it needs to be paired with proper 

algorithms for SNV calling. Modern variant calling algorithms such as 

Mutect2 or strelka2 use multiple methods to differentiate real variants 

from background noise, such as read local assembly and realignment. 

The subsequent hitch in somatic SNV detection is to separate germline 

and somatic variants. Two main strategies exist: matching normal-

tumour samples and single-sample variant calling. The first and far 

superior strategy relies on a pair-wise comparison between variants 

identified from the analysis of normal and tumour tissues derived from 

the same patient. This type of analysis depends on the availability of 

sequenced normal tissue data. This is the case of solid tumours analysis, 

where it is possible to isolate both tumour and normal tissues from the 

patient. However, pairwise tissue comparison is not always possible due 

to the limited availability of patient’s samples or the technical 

difficulties involved in the isolation of tumour tissue. In this scenario, 

the analysis can be performed by comparing the patient’s sample to the 

human reference genome. The identified variants can be compared with 

known variants in publicly available databases, such as ClinVar or 

SNPdb (Landrum et al., 2014; Sherry et al., 2001), filtered based on 

VAF or common variants in multi-sample studies to identify low 

frequency variants (<1%) potentially associated with the tumour or 

disease. 

As described in the methods section, we used the best practice of 

Genome Analysis Toolkit (GATK) for the identification of single-

sample variants (McKenna et al., 2010).  
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Structural Variants 

Genomic structural variations (SVs) are generally defined as deletions 

(DELs), insertions (INSs), duplications (DUPs), inversions (INVs), and 

translocations (TRAs) of at least 50 bp in size. SVs are often considered 

separately from small variants, including single nucleotide variants 

(SNVs) and short insertions, and deletions (indels), as they are often 

formed by distinct mechanisms. This dissertation describes the 

implementation of an analysis pipeline for the identification of 

chromosomal rearrangements from NGS short-reads pair-end 

sequencing. Two main strategies exist for the identification of 

chromosomal rearrangements from whole-genome or RNA sequencing. 

The first strategy relies on the identification of reads spanning the 

breakpoint of the chromosomal translocation. The breakpoint can be 

identified by the detection of soft-clip reads, meaning reads partially 

aligned to the genome. The second method relies on the identification 

of discordant pair-end reads. A pair-end read is called discordant when 

the distance and/or location between the two mates do not match the 

expected distance based on the insert-size distribution. This is also the 

case when the mates are aligned on different chromosomes (Kumar et 

al., 2016). 

Informatics 

Programming Languages for Bioinformatics 

Bioinformatics is a wide research field ranging from protein structure 

prediction to DNA sequence analysis. In the field of genomics and 

transcriptomics, the most popular programming languages are R and 
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Python. During this study, I developed high-level expertise in both the 

programming languages R and Python. R was designed by statisticians 

and was specialised for statistical computing, and thus is known as the 

lingua franca of statistics. As technology improves, the data collected 

by companies or research institutions have become increasingly 

complex, and R has been adopted by many as the language of choice. 

R has been used to generate graphs and visualisations with the use of 

the Tidyverse package. Moreover, the R-Shiny package is used to build 

interactive web-applications that allow biologists and medical doctors 

to run and visualise bioinformatics pipelines. 

Python is a high-level and versatile language because of its clear syntax 

and simple text manipulation. The clear syntax of Python has earned it 

the name executable pseudo-code. The default installation of Python 

already consists of high-level data types such as tuple, list, sets, and 

dictionaries. In addition, many machine learning frameworks have 

recently been developed in Python. Python is also highly popular. Many 

libraries are available for the analysis and extraction of information 

from NGS datasets, as well as for the development of DL models with 

the use of Tensorflow and Keras API.  

Bioinformatics pipelines have been written and controlled through 

Unix-Shell and the programming language Bash. Therefore, during the 

study, I gained advanced experience as a Linux Server administrator 

and manager, web-developer, and database maintainer.    
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Part II - Deep Learning for Genomics 

MicroRNA 

MicroRNAs are short non-coding RNA molecules approximately 22 

nucleotides in length that play important regulatory roles in animals and 

plants by regulating gene expression. MicroRNAs interact with 

Argonaute (AGO) proteins and guide them to target sites located in the 

3ʹ untranslated region (UTR) of messenger RNAs. The miRNA-loaded 

AGO forms the miRNA-induced silencing complex (miRISC), which 

promotes translational repression and degradation of targeted mRNAs 

(O’Brien et al., 2018). 

MicroRNAs function in post-transcriptional regulation of target gene 

expression. One miRNA can simultaneously target several genes. 

Recent studies have shifted our understanding on how miRNAs interact 

with their targets, which include not only mRNAs but also long 

noncoding RNAs (lncRNAs), pseudogenes, and circular RNAs 

(circRNAs). With the ability to interact with multiple target genes, 

miRNAs have been shown to influence many important biological 

processes such as cell growth, tissue differentiation, cell proliferation, 

embryonic development, and apoptosis. Since the discovery of the first 

miRNA lin-4 in 1993, 48,885 mature miRNAs in 271 species have been 

identified and deposited into the miRBase gold standard central 

repository (Chen et al., 2019). 

MicroRNAs are involved in almost every cellular process from 

development and cell differentiation to homeostasis; deletions of the 

fundamental miRNA biogenesis factors Dicer and Drosha are lethal in 
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mouse embryos. Deregulation of miRNA functions is associated with 

numerous diseases, particularly cancer: miRNAs can be both oncogenes 

and tumour suppressors, although overall downregulation of miRNA 

expression is a hallmark of cancer (Bhaskaran and Mohan, 2014). 

  The introduction of NGS allowed a broader identification and 

study of microRNAs. Several purpose-built assays have been developed 

for the characterisation of microRNAs and for the identification of their 

target messenger RNA, such as high-throughput sequencing of RNA 

isolated by crosslinking immunoprecipitation (HITS-CLIP) and Cross-

linking, ligation, and sequencing of hybrids (CLASH) (Helwak et al., 

2013; Kudla et al., 2011; Licatalosi et al., 2008; Ule et al., 2003). 

Information collected through experimental biology has been used to 

implement curated databases, for example, mirBase, TarBase, and 

TargetScan (Agarwal et al., n.d.; Griffiths-Jones et al., 2006; 

Karagkouni et al., 2018). Since then, bioinformatics tools have been 

developed for the analysis and interpretation of these vast amounts of 

data. In the last decade, the bioinformatics community released 

dedicated software and pipelines for the study of microRNA biogenesis, 

functions, target predictions, and microRNA editing. This software can 

be a set of rules hard-coded through conditional statements or more 

recently statistical models developed by the application of machine 

learning approaches, such as linear regression or supported vector 

machines. 

Machine Learning 

Machine learning is actively used today, for example in 

recommendation systems in e-commerce, in the detection of bank 
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frauds or spam emails. Machine learning uses statistics to implement 

computer algorithms (models) that improve performances 

automatically through experience. In classification problems, the model 

predicts in which class specific data should fall into. Another task in 

machine learning is regression. Regression is the prediction of a 

numeric value. Classification and regression are examples of supervised 

learning. This set of problems is known as supervised because we are 

instructing the algorithm what to predict. 

The opposite of supervised learning is a set of tasks known as 

unsupervised learning. In unsupervised learning, there is no label or 

target value given for the data. A task of unsupervised learning is 

clustering where group similar items together. In unsupervised learning, 

we may also want to find statistical values that describe the data. This 

is known as density estimation. Another task of unsupervised learning 

is the reduction of the many features of the data to a small number of 

Machine 

Learning

Supervised learning 

Learning

Unsupervised 

learning

Classification

Regression 

Clustering 

Figure 3. Machine learning can be organised in supervised and unsupervised methods. 

Supervised requires labelled data and it is used to solve classification and regression problems. 

Unsupervised learning is used to cluster unlabelled data.
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them data from many features to a small number in order to properly 

visualise them in two or three dimensions. 

Machine Learning in Genomics 

Genomics data are too large and complex to be mined solely by visual 

investigation of pairwise correlations. Instead, analytical tools are 

required to support the discovery of hidden relationships between data 

and observations. Traditional bioinformatics rely on hard-coded 

algorithms that require time and a great deal of effort to be developed. 

Unlike some algorithms, machine learning algorithms are designed to 

automatically detect patterns in data. Hence, machine learning 

algorithms are suited to data-driven researches, and in particular, 

genomics (Eraslan et al., 2019). In theory, it would be possible to model 

any biological system by the use of proper machine learning techniques. 

However, the ability of a machine-learning algorithm to model a 

biological system strongly depends on the quality of the input data and 

their representation. This preprocessing of the input data consists of 

manual extraction of features that characterise the biological system to 

be modelled. For example, the development of a machine learning 

model to predict pre-micro RNA by genome scanning will require the 

selection of hand-picked features, such as percentage of GC content, 

RNA secondary structure, entropy, etc. This process may require the 

manual selection of hundreds of features for thousands of examples, 

which is not always feasible. Another example is the classification of a 

tumour as malignant or benign based on a fluorescent microscopy 

image; first, a preprocessing algorithm could detect cells, identify the 

cell type and generate a list of cell counts for each cell type. A machine 
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learning model would then take these estimated cell counts as input 

features to classify the tumour. A central issue of these machine 

learning algorithms is that the classification performance is heavily 

dependent on the quality and the relevance of the human-selected 

features. Deep learning, a subdiscipline of machine learning, addresses 

this issue by embedding the computation of features into the machine 

learning model itself to yield end-to-end models. 

Deep Learning 

Deep learning is a generic name that refers to the recent advances in 

artificial neural networks (LeCun et al., 2015; McCulloch and Pitts, 

1943). The building block of an artificial neural network is an artificial 

neuron. 

Artificial Neuron 

 An artificial neuron is a mathematical model that takes as input a vector 

of real values (V1, Vn-1) and computes the weighted average of these 

values followed by an activation function. The weights (W1, Wn-1) are 

the parameters of the model that are learned during the training process. 

A schematic representation of an artificial neuron is shown below: 
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In this representation, v indicates input values, and w the corresponding 

weight for each input. Each input v is multiplied with the corresponding 

weight, and then the sum of these values is provided as input to an 

activation function. If the value is greater than an established threshold 

the neuron generates an output (the neuron fires). The bias is an 

arbitrary value (generally equal to 1) that is subtracted after the 

summing function and is used to ‘silence’ the neuron. This model is 

known as perceptron and was proposed by Rosenblatt in 1958 

(Rosenblatt, 1958). 

Train an Artificial Neuron 

Training an artificial neuron such as the perceptron is all about 

finding a set of weights through which the classification task is 

successful (Figure 5). The weights are known as parameters. To find 

input 
weight

Summing 
function 

bias
s

Activation 
function 

y 

Figure 4. A schematic representation of an artificial neuron. Each input V in multiplied to its 

corresponding weight, then the neuron computes the weighted average. The weighted average 

is input to an activation function.

25

https://www.zotero.org/google-docs/?EUoARg


the best set of parameters, we iterate the classification task over all 

samples from the training dataset. Since the training dataset is provided 

with the correct label for each sample, we can then define a loss function 

(or cost function) that calculates how distant the model prediction is 

from the real label (true value). Based on the loss function, we can 

update the parameters to improve the prediction. 

Artificial Neural Networks 

 The output of an artificial neuron can be the input for another. Since 

artificial neurons are extremely versatile, they can be stacked together 

into layers, also called artificial neural networks (ANN). A simple ANN 

is represented in the figure below, where a circle defines a single 

artificial neuron (Figure 6). 

Train 

dataset 

Model 

Loss Function 

U
p
d
a

ti
n

g
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a
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m
e
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rs

 

sample 

label 

p
re

d
. 

Figure 5. Training scheme: the model evaluates each input sample to generate a prediction. 

This prediction is compared to the true sample label.  A loss function calculates the 'distance' 

between the real value and the prediction.
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This simple - vanilla - ANN is defined by: 

• The input layer is the first layer of an ANN that receives the

input information in the form of various texts, numbers, audio

files, image pixels, etc.

• In the middle of the ANN model are the hidden layers. There

can be a single hidden layer, as in the case of a perceptron, or

multiple hidden layers. These hidden layers perform various

types of mathematical computation on the input data and

recognise the patterns that are part of.

• In the output layer, we received the probability of the prediction.
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Figure 6. Vanilla Neural Network: the input of the network is the first layer, followed by a 

hidden layer of 4 neurons, and a final output layer of 2 neurons.
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A neural network layer can have an infinite number of neurons per layer 

as well as an infinite number of hidden layers. This architecture is also 

known as a dense layer or fully connected layers. The ANN performs 

two main actions: 

• Feed-forward means that the flow of information occurs only in 

one direction. That is, feed-forward connections represent 

information flow from one neuron to another where the data 

being transferred is the computed neuronal activation at the 

current time step. There are no feedback loops present in this 

neural network. 

• Backpropagation, short for "backward propagation of errors," is 

an algorithm for supervised learning of artificial neural 

networks using gradient descent. Gradient descent is an 

optimisation algorithm used to minimise a function by 

iteratively moving in the direction of steepest descent as defined 

by the negative of the gradient. Given an artificial neural 

network and an error function, the backpropagation method 

calculates the gradient of the error function with respect to the 

neural network's weights. The "backward" part of the name 

stems from the fact that calculation of the gradient proceeds 

backward through the network, with the gradient of the final 

layer of weights being calculated first and the gradient of the 

first layer of weights being calculated last. Partial computations 

of the gradient from one layer are reused in the computation of 

the gradient for the previous layer. This backward flow of the 

error information allows for efficient computation of the 
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gradient at each layer versus the naive approach of calculating 

the gradient of each layer separately. 

Gradient Descent 

Machine learning requires the finding of the correct parameters 

(weights, w) to minimise the loss function (Loss). We can represent the 

loss and parameters in a cartesian system, where on the y-axis we define 

the loss and on the x-axis the parameters w (Figure 7).  

A neural network model is first initialised by randomising the value of 

parameters. Then, the first iteration of predictions is performed, and a 

corresponding loss function is calculated. On the cartesian system, our 

model is now the blue ball on the top-left corner, and we want to reach 

the bottom of the graph to minimise the loss function (red ball). For this 

reason, the parameters are updated following the direction opposite to 

the gradient (negative gradient) and using backpropagation. Next, we 

recalculate the negative gradient (passing in the coordinates of our new 

point) and take another step in the direction it specifies. We continue 

Figure 7. Schematic representation of 

gradient descent.
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this process iteratively until we reach the bottom of our graph, or to a 

point where we can no longer move downhill - a local minimum. 

Neural Networks Architectures 

The input of a neural network is typically a matrix of real values. In 

genomics, the input might be a DNA sequence, in which the nucleotides 

A, C, G, and T are encoded as [1,0,0,0], [0,1,0,0], [0,0,1,0], and 

[0,0,0,1]. Neurons that directly read the data input are called the input 

layer. The following neurons are referred to as hidden layers. The 

output of a neural network is the prediction of interest, e.g. whether the 

input DNA is a microRNA. There are three common families of 

architectures for connecting neurons into a network: feed-forward, 

convolutional, and recurrent. Feed-forward is the simplest architecture. 

Every neuron of layer i is connected only to neurons of layer i + 1, and 

all the connection edges can have different weights. In a convolutional 

neural network (CNN), a neuron is scanned across the input matrix, and 

at each position of the input, the CNN computes the locally weighted 

sum and produces an output value. This procedure is highly similar to 

taking the position weight matrix of a motif and scanning it across the 

DNA sequence. CNNs are useful in settings in which some spatially 

invariant patterns in the input are expected. Recurrent neural networks 

(RNN) are designed for sequential or time-series data. At each point in 

the sequence, a neural network, which could be feed-forward or 

convolutional, is applied to generate an internal signal, which is also 

fed to the next step of the RNN. Hidden layers of the RNN can be 

viewed as memory states that retain information from the sequence 

previously observed and are updated at each time step (Zou et al., 2019). 
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Convolutional Neural Networks 

Convolution is a neural network architecture that takes inspiration from 

the study of human vision. 

Human Vision 

Inspired by how human vision functions, layers of a convolutional 

network have neurons arranged in three dimensions, so layers have a 

width, height, and depth. The neurons in a convolutional layer are only 

connected to a small, local region of the preceding layer. A 

convolutional layer’s function can be expressed simply: it processes a 

three-dimensional volume of information to produce a new three-

dimensional volume of information. 
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An intuition about human vision came from David Hubel and Torsten 

Wiesel, who discovered that parts of the visual cortex that are 

responsible for detecting edges. In 1959, they inserted electrodes into 

the brain of a cat and projected black-and-white patterns on the screen. 

They found that some neurons fired only when there were vertical lines, 

others when there were horizontal lines, and still others when the lines 

were at angles. Further study determined that the visual cortex was 

organised in layers (Figure 8). Each layer is responsible for building on 

the features detected in the previous layers from lines to contours, to 

shapes, to entire objects.  

Figure 8. Schematic representation of how consecutive layers of biological neurons represent 

visual information in the brain. Cells of the primary cortex detect simple features, such as 

vertical and horizontal lines. Simple features are assembled into more complex representation 

by cells in the deeper layers (complex cells).
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Furthermore, within a layer of the visual cortex, the same feature 

detectors are replicated over the whole area to detect features in all parts 

of an image. These ideas significantly impacted the design of 

convolutional neural networks (“Deep Learning Illustrated: A Visual, 

Interactive Guide to Artificial Intelligence (Addison-Wesley Data & 

Analytics Series) 1, Krohn, Jon, Beyleveld, Grant, Bassens, Aglaé, 

eBook - Amazon.com,” n.d.; Fundamentals of Deep Learning, 2017). 

Filters and Feature Maps 

The first concept was that of a filter. A filter is essentially a feature 

detector, whose output is called an activation map or feature map. 

Considering that in the image below, we want to detect vertical lines 

(Figure 9). An image (left figure) is an array of values (right figure), 

each of them corresponding to the pixel intensity. 
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Figure 9. left: real image, right: the same image can be represent as an array of values. 
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To detect vertical lines, we need to define a filter that maximises its 

value when overlapping a vertical line (Figure 10). 

 

We scan the filter along the image to obtain a feature map, or activation 

map, for the filter (Figure 11). The activation map is generated by the 

dot product of the image array and the filter. Images are arrays of 

numbers, in our case black is equal to 1 and white to 0. At the end of 

the scanning process, a feature map is generated for the corresponding 

filter. 
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Figure 10. A filter that can detect vertical lines. 
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This operation is a convolution. We take a filter and we multiply it over 

the entire area of an input image. We can stack several convolution 

layers one after the other to then provide the convolution net output to 

a dense layer. The dense layer is known as a fully connected layer, and 

it is made of neurons that are used for the final classification task. 

 

 

Application of Deep Learning in Genomics 

Deep learning has been successfully implemented in areas such as 

image recognition or robotics (e.g., self-driving cars) and is most useful 

when large amounts of data are available. In this respect, using DL as a 

tool in the field of genomics is entirely apt. Although it is still in 

somewhat early stages, DL in genomics has the potential to inform 
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Figure 12. The convolution of the filter along the whole image generates a feature map. 
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fields such as cancer diagnosis and treatment, clinical genetics, crop 

improvement, epidemiology and public health, population genetics, 

evolutionary or phylogenetic analyses, and functional genomics (Ching 

et al., 2018; Eraslan et al., 2019; Esteva et al., 2019; Jones, 2019). 

Functional genomics is a field of molecular biology that attempts to 

describe gene functions and interactions. The application of DL to 

functional genomics has made the most inroads to date (“Deep learning 

for genomics,” 2019). The availability of vast troves of data of various 

types (DNA, RNA, methylation, chromatin accessibility, histone 

modifications, chromosome interactions, and so forth) ensures that 

there are enough training datasets to build accurate prediction models 

related to gene expression, genomic regulation, or variant 

interpretation. This dissertation is meant to present the development of 

strategies for the application of DL and convolutional neural network 

architectures for the identification of small non-coding RNA elements 

from genome scanning. For this purpose, we used several available 

database information such as genome sequences, conservation tracks, 

RNA secondary structure predictors as well as new techniques for the 

training of neural network models. 
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Scope of the thesis 

This study first required the development of bioinformatics strategies 

and pipelines for the identification of genomic biomarkers. Those 

pipelines were implemented as an informatics infrastructure for the 

clinical diagnosis of acute lymphoblastic leukaemia. This study was 

coordinated through regular meetings and visits between the two 

institutions, Fondazione Tettamanti at the University of Milan-Bicocca, 

and CEITEC at Masaryk University. 

The continuous increase of genomic information led me to search for 

new technologies for the analysis of big-data. Therefore, the second part 

of the thesis was focused on the acquisition of expertise in Machine 

Learning, and more specifically DL. For this purpose, I have been 

involved in the development of a DL model for the identification of 

small non-coding RNA genomic loci from whole genome scanning. 

This project allowed me to expand my domain knowledge to the 

research field of non-coding genomes. 

Chapter 2: this section summarizes the application developed for the 

clinical diagnostics of Leukemia and implemented at Fondazione 

Tettamanti. It also describes the application of Deep Learning for the 

study of small RNA molecules.  

Chapter 3: In this paper we presented a modern application of Deep 

Neural Network for the identification of small coding RNA throughout 

genome scanning. 
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Chapter 4: In this paper we presented the wet lab and in silico approach 

for the identification of biomarkers from next-generation sequencing. 

Chapter 5: In this paper we compared the quality control and 

quantification of IG/TR with next generation sequencing and the 

bioinformatics tool. 

Chapter 6: In this case report we identified a novel EP300 mutation 

potentially causative of Rubinstein-Taybi syndrome type II. 

Chapter 7: In this paper we presented a genetic analysis of a patient 

affected by both acute lymphoblastic leukemia and Cornelia de Lange 

syndrome. 

Chapter 8: In this paper we presented the in-silico and web laboratory 

application for the identification of fusion genes from target-capture 

next-generation sequencing 

Chapter 9: In this paper we presented a novel tool for the 

immunoprofiling of IG/TR from next-generation amplicon sequencing 

as well as IMGT. 

Chapter 10: In this paper we analysed the evolution of the 

immunoreportoire throughout the human life stages. 
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Chapter 2 

Informatics infrastructure for clinical diagnostics 

The application of Next-Generation Sequencing into clinical 

diagnostics required the automation of bioinformatics processes to 

provide a fast and autonomous system of analysis to the final user. 

Under these settings, clinical biologists and medical doctors can 

overcome the gap between NGS data analysis and clinical reports. The 

informatics infrastructure supporting the daily clinical diagnostics of 

acute lymphoblastic leukaemia at the Fondazione Tettamanti - 

University of Milan - was designed and implemented in collaboration 

with the Bioinformatics Core Facility of the Central European Institute 

of Technology (Dr. Vojtech Bystry, Ph.D.). 

The infrastructure is used to analyse NGS experiments required for the 

clinical diagnosis of acute lymphoblastic leukaemia. Users access an 

interactive web-interface to select the NGS experiment and 

subsequently the pipeline of analysis (Figure 13).  

Illumina 

Platform

Data 

Storage

Server/Data 

Analysis

Webserver 

User 1 User 2 DNA/cDNA 

Figure 13. Schematic representation of the informatics infrastructure of Fondazione 

Tettamanti.
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The main bioinformatics analysis pipelines used in ALL clinical 

diagnostics are the identification of immunoglobulins and T-cell 

receptor biomarkers for minimal residual disease (Immunoprofile) and 

the identification of chromosomal rearrangements (capture and 

capture_NuGen) (Figure 14). The Immunoprofile pipeline generates the 

input files for the online platform of analysis ARResT/Interrogate, 

which is available at the following url: 

http://bat.infspire.org/arrest/interrogate/. Both ARResT/Interrogate and 

the corresponding NGS strategy have been developed within the 

European Consortium EuroClonality-NGS ( 

https://euroclonalityngs.org/usr/pub/pub.php). I had the opportunity to 

actively participate in the development of both bioinformatics and wet-

laboratory strategies as a member of Dr. Giovanni Cazzaniga’s research 

group (Fondazione Tettamanti - Monza). This collaborative study is 

described in three main papers (Brüggemann et al., 2019; Bystry et al., 

2017; Knecht et al., 2019). 

Figure 14. Screenshot of the web-based application. The interface allows users to select a 

specific NGS experiment and run standard pipelines for clinical diagnostics.  
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The identification of chromosomal rearrangements is addressed by the 

use of the Target Capture Sequencing. The “capture_NuGen'' pipeline 

embedded a preprocessing step to remove specific nucleotide sequences 

(linkers) used to perform the experiment. Otherwise, both pipelines, 

“capture” and “capture_NuGen”, run a purpose-build bioinformatics 

pipeline that I have developed for the identification of fusion genes 

from the specific target capture datasets. The strategy for the 

identification of fusion genes was published as an article in the 

HemaSphere journal, which is the official journal of the European 

Hematology Association (Grioni et al., 2019) 

Deep Learning for Small RNA analysis 

MicroRNA regulates transcription by association with AGOs proteins 

and binding to target messenger RNA. As a personal project, I 

developed a neural network model with convolutional architecture to 

predict microRNA target binding sites by scanning of a genomic 

nucleotide sequence. The model takes as input a dot matrix (Figure 16), 

which is a two-dimensional matrix representing the microRNA and 

target binding site interaction. One dimension is the microRNA 

nucleotide sequence (20 nt) and the second dimension is the nucleotide 

sequence of the binding site (50 nt). Watson-Crick interactions between 
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the two sequences are represented by a positive value of 1, other values 

are set to 0. 

The model output is a prediction score corresponding to the probability 

of a real interaction between the microRNA and the target binding site. 

The score is a continuous number between 0 and 1, where 1 indicates a 

high probability of a positive interaction. The model facilitates 

classification of the interaction between a miRNA and a target binding 

site as positive or negative. However, the model does not localise the 

nucleotides involved in the binding. For this purpose, I implemented 

and used the Gradient-weighted Class Activation Mapping (Grad-

CAM) method described by Selvaraju et al. (Selvaraju et al., 2020). 

The application of Grad-CAM allowed the spatial identification of the 

regions causing the activation of the neurons in the model. This region 

Figure 15. Example of dot-matrix. Y-axes correspond to the nucleotide sequence of the 

miRNA (20nt). X-axes correspond to the nucleotide sequence of the genomic binding site. 

Watson-crick interactions are highlighted in dark blue, while non-Watson-Crick interaction 

are highlighted in light blue. The dot-matrix is the input of the neural network. 
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corresponds to the nucleotides involved in the binding of the microRNA 

with the target binding site. Therefore, through this approach it is 

possible not only to have qualitative results as positive or negative 

interaction, but also to identify which nucleotides are responsible for 

the binding of the microRNA to the target messenger RNA. 

Figure 17 shows the activation map of an input dot-matrix. The x and y 

axes correspond to the miRNA and binding site, respectively. The 

activation map is represented as a heat-map mirroring the input dot-

matrix. Light colours correspond to high values of activation, while 

dark colours approximate activation values close to 0. The interaction 

between the miRNA and the candidate binding site involved the first ~8 

nucleotides of the miRNA and the nucleotides in position ~35 to ~42 of 

the binding site. 

 

Figure 16. Visualization of the activated neurons. The bottom-left corner 

highlights neurons that recognised the miRNA-Binding site interaction.  
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As a comparison, the Figure 18 shows a negative interaction. In this 

case the model was not able to detect strong and localised features that 

would indicate a miRNA-binding site interaction. As you can see, the 

activation is nonspecific and occurred simultaneously in all neurons but 

with a low intensity. 

  

Figure 17. Visualization of the negative activation. In this case, all neurons 

are lightly activated, and it is not possible to distinguish a clear signal. 

Therefore, the sample is predicted as negative interaction. 
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Chapter 3 

Multi-branch Convolutional Neural Network for 

Identification of Small Non-coding RNA genomic loci. 

Paper has been accepted by Nature – Scientific Report and it still needs 

to be provided with DOI. 

Georgios K Georgakilas, Andrea Grioni, Konstantinos G Liakos, 

Eliska Chalupová, Fotis C Plessas and Panagiotis Alexiou. Multi-

branch Convolutional Neural Network for Identification of Small Non-

coding RNA genomic loci. Scientific Reports – Nature 
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Multi-branch convolutional neural 
Network for Identification of Small 
Non-coding RNA genomic loci
Georgios K. Georgakilas1, Andrea Grioni1, Konstantinos G. Liakos3, eliska chalupová2, 
fotis c. plessas3 & panagiotis Alexiou1 ✉

Genomic regions that encode small RNA genes exhibit characteristic patterns in their sequence, 
secondary structure, and evolutionary conservation. Convolutional Neural Networks are a family of 
algorithms that can classify data based on learned patterns. Here we present MuStARD an application 
of Convolutional Neural Networks that can learn patterns associated with user-defined sets of 
genomic regions, and scan large genomic areas for novel regions exhibiting similar characteristics. We 
demonstrate that MuStARD is a generic method that can be trained on different classes of human small 
RNA genomic loci, without need for domain specific knowledge, due to the automated feature and 
background selection processes built into the model. We also demonstrate the ability of MuStARD for 
inter-species identification of functional elements by predicting mouse small RNAs (pre-miRNAs and 
snoRNAs) using models trained on the human genome. MuStARD can be used to filter small RNA-Seq 
datasets for identification of novel small RNA loci, intra- and inter- species, as demonstrated in three 
use cases of human, mouse, and fly pre-miRNA prediction. MuStARD is easy to deploy and extend to a 
variety of genomic classification questions. Code and trained models are freely available at gitlab.com/
RBP_Bioinformatics/mustard.

Since the human genome was first sequenced about two decades ago1, our understanding of regulatory and 
non-coding elements in humans, and other organisms, has been steadily increasing with the identification 
and cataloguing of a variety of encoded molecule and regulatory region classes2. Several small non-coding 
RNA molecule families such as microRNA (miRNA), small nucleolar RNA (snoRNA), small nuclear RNA 
(snRNA), piwi-interacting RNA (piRNA), short hairpin RNA (shRNA), small interfering RNA (siRNA), 
promoter-associated short RNAs (PASRs), termini-associated short RNAs (TASRs)3,4, transcription initiation 
RNAs (tiRNAs)5, and others, now populate the functional expression map of known genomes. The plethora of 
functional small non-coding RNA classes supports the idea of a highly interconnected transcriptomic landscape 
and highlights the necessity of computational approaches that can effectively identify them against the enor-
mous background variability of eukaryotic genomes. Along with our deeper understanding of well-established 
organisms, the total number of sequenced genomes has been increasing hand in hand with fast pace. NCBI 
currently lists just over 7,000 eukaryotic sequenced genomes, of which almost 50 have fully assembled genomes, 
and approximately 1,000 have some assembled chromosomes. The experimental annotation of newly sequenced 
genomes is a much slower and piecemeal process that benefits greatly from the availability of computational tech-
niques that can guide and assist the annotation.

















Computational methods for genomic annotation have a history at least as long as full genome sequencing, 
with computational identification of exons and protein coding genes6 starting in parallel with the sequencing of 
the first human genome. Small non-coding RNAs, with their shorter length, lack of coding three nucleotide peri-
odicity pattern, and often small number of known examples per class, offer a tougher challenge for computational 
methods. A common approach for in silico identification of putative small non-coding RNA genomic loci has 
been the use of sequence homology between molecules from well annotated species, such as humans, and the new 
species in question. These methods, while efficient when homology is high, are bound to preferentially annotate 
a subset of loci, biased towards extra-conserved molecules. However, a large number of small non-coding RNAs 
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are more evolutionary constrained. For example, an estimated 40% of human miRNAs have developed recently in 
evolutionary history and can only be found in other primates7.

To avoid the constraints and biases of homology based identification of small non-coding RNA loci, there has 
been a steady development of algorithms that aim at modelling characteristics of a specific class or subclass, and 
then evaluating proposed regions of a genome for their potential to encode a small non-coding RNA of this class. 
For example, over thirty computational methods aiming at pre-microRNA identification have been developed 
to date, with no tool significantly outperforming all others on benchmarked datasets8. A large drawback of such 
methods is their dependence on expert-defined features and background sets, which tend to produce methods 
that perform well in evaluations closely matching their training biases, but fail to produce robust classification 
in more realistic conditions, such as when ‘scanning’ a large genomic region. The second large drawback of these 
methods is that they are, by design, focused on one specific class or subclass of small non-coding RNA molecules. 
For example, a method tailored for pre-miRNA prediction is not suitable for snoRNA prediction and vice versa. 
This issue leads to an unbalanced development of methods towards specific families and ignores others that may 
not be populous or well-researched enough to warrant the attention of in silico method developers. For example, 
as mentioned above, pre-microRNA prediction is a well-researched field with over thirty computational methods 
published in the past decade or so, while in contrast snoRNA prediction displays a distinct paucity of options, 
with methods becoming obsolete and unusable after more than a decade9,10 and the rate of identification severely 
slowing down in new species11.

Taking into account the limitations and drawbacks of in silico methods to date, we have decided to approach 
the problem of small non-coding RNA identification from a different angle. Here we introduce MuStARD 
(Machine-learning System for Automated RNA Discovery), a flexible Deep Learning framework that utilizes 
raw sequence, conservation, and folding data to identify genomic loci with similar characteristics of a given set of 
regions (Fig. 1a). Instead of hundreds of expertly curated features, we employ a Convolutional Neural Network 
(CNN) Deep Learning (DL) architecture that can identify important characteristics from raw data directly12. 
Rather than biased background training sets, we opted for a novel iterative background selection process that 
allows the method itself to identify the background ‘hard cases’ for a specific classification task, and preferentially 
learn how to avoid them. While other tools focus on one class of small non-coding RNAs, we have developed a 
framework that can be applied, directly out of the box, on any class of genomic loci. We show the power of this 
methodology by training models that outperform the state of the art for pre-miRNAs and snoRNAs by scanning 
large genomic regions. We demonstrate the practical use of our method by performing a cross-species predic-
tion using models trained on human data to accurately identify mouse pre-miRNAs and snoRNAs in numbers 
well above homology searches. Additionally, we applied MuStARD on small RNA-Seq enriched regions and 
pre-miRNAs that have been removed from miRBase since version 14, to further highlight the usability spectrum 
of our algorithm. The source code is available at https://gitlab.com/RBP_Bioinformatics/mustard and trained 
models at https://gitlab.com/RBP_Bioinformatics/mustard_paper.

Methods
Network architecture and training scheme. MuStARD is able to handle any combination of either 
raw DNA sequences, basewise evolutionary conservation and folding data (Fig. 1a). Each feature category is for-
warded to a separate ‘branch’ that consists of three convolutional layers and the computations from all branches 
are concatenated prior to being forwarded to the fully connected part of the network. The training scheme con-
sists of two steps (Fig. 1b). First 50 models are trained in parallel with random background selection. The 50 
trained models are used to scan a large region of the genome. From these 50 scans, the ‘hard cases’ where the 
majority of models detect a false positive are isolated and a new negative set created. The best performing of the 
50 models is then used as the starting point to train the final model on the ‘hard cases’ while keeping the same 
positive set. This final trained model is then evaluated on targets located in chromosomes completely left out of 
the whole previous process, thus ensuring no cross-contamination.

This process was repeated 6 times to train pre-miRNA detection models composed of different input com-
binations; raw sequence with secondary structure and conservation (MuStARD-mirSFC model), raw sequence 
and conservation (MuStARD-mirSC), raw sequence and secondary structure (MuStARD-mirSF), secondary 
structure and conservation (MuStARD-mirFC), secondary structure only (MuStARD-mirF) and sequence only 
(MuStARD-mirS). For the combination of raw sequence, secondary structure and conservation, we have trained 
an additional model after disabling the class weights option in Keras (MuStARD-mirSFC-U model).

The same pipeline was used to create three snoRNA detection models, one for detecting the C/D box snoRNA 
subspecies (MuStARD-snoSFC-U-CDbox), one for H/ACA box (MuStARD-snoSFC-U-HACAbox) and one for 
detecting all types of snoRNAs (MuStARD-snoSFC-U).

Detailed information related to the network architecture and training scheme can be found in Supplementary 
Methods.

training sets. Human (GRCh38) and mouse (GRCm38) genomes and corresponding gene and snoRNA 
annotations were downloaded from Ensembl v93 repository13. Fly genome (version 5.32) was downloaded from 
FlyBase14. Pre-miRNA sequences were downloaded from miRBase v22.115. Basewise conservation scores, based 
on phyloP algorithm, of 99 and 59 vertebrate genomes with human and mouse respectively were downloaded 
from the UCSC genome repository16. For genome scanning tests, targets were extended by + /− 5,000 bp and 
the resulting regions were merged in the case of strand specific overlaps. The regions were assessed by a moving 
window of width 100 and step 5. Any prediction overlapping the target by at least 50% was considered a posi-
tive. A full explanation of the production of Training Sets, and the Methodology of comparisons can be found 
in Supplementary Methods. Results of the comparison between MuStARD models using distinct combinations 
of raw sequence, secondary structure and evolutionary conservation as input, are presented in Supplementary 
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Table 1. The evaluation of the final MuStARD models and comparisons to other state of the art programs can be 
found in Supplementary Tables 2–7. The performance of MuStARD-mir models in the first training iteration can 
be found in Supplementary Table 8.

Software and hardware requirements. MuStARD is developed in python utilizing tensorflow and Keras 
for the Deep Learning aspect, R for visualizing the performance and Perl for file processing, reformatting and 
module connectivity. Full list of dependencies can be found on MuStARD’s gitlab page.

MuStARD is able to execute either on CPU or GPU depending on the underlying hardware configuration 
by taking into advantage tensorflow’s flexibility. The framework has been designed to maintain a minimal 
memory footprint thus allowing the execution even on personal computers. Running time heavily depends on 
input dimensionality, number of instances in the training set, learning rate and GPU availability. On a GPU 

Figure 1. Overview of MuStARD modular architecture and iterative training pipeline. (a) MuStARD is able 
to handle any combination of either raw DNA sequences, RNAfold derived secondary structure and basewise 
evolutionary conservation from PhyloP. DNA sequences and RNAfold output are one-hot encoded while 
PhyloP score is not pre-processed. Each feature category is forwarded to a separate ‘branch’ that consists of three 
convolutional layers. The computations from all branches are concatenated prior to being forwarded to the 
fully connected part of the network. (b) The training pipeline of MuStARD consists of two steps. Initially, pre-
miRNA sequences are randomly shuffled to exonic and intronic (protein-coding and lincRNA genes) regions of 
the genome to extract equal sized negative sequences with 1:4 positive to negative ratio. This process is repeated 
50 times to facilitate the training of equal number of models. The performance of each model is assessed based 
on the test set and all false positives that are supported by at least 25 models are extracted. This set of false 
positives is added to the negative pool of the best performing model to create an enhanced training set. The 
enhanced set is used to train the final MuStARD model.
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(NVIDIA GeForce GTX 1050Ti) it took approximately 5 minutes to train a model on 30,000 positive and negative 
sequences.

MuStARD operates directly on genomic intervals in BED format, in the cases of both the training and predic-
tion modules. For example, regarding small RNA-Seq datasets, MuStARD does not directly process aligned reads. 
Instead, users need to provide a bed file with small RNA-Seq enriched regions to be scanned with MuStARD. 
Essentially, sequencing depth is not crucial as our algorithm works after a ‘peak calling’ step that can be as simple 
as a bedtools merge command followed by a bedtools coverage filtering.

For the mouse liver small RNA-Seq dataset, we scanned 14,552 intervals (both strands derived from 
7,276 peaks) with a total size of 3.9mbp, mean interval size of 268 bp and standard deviation of 50.3 bp. The 
MuStARD-mirSFC-U model was used with a sliding window step of 10 bp and the total running time was 36 min-
utes (CPU usage only).

In the case of the fly embryo dataset, we scanned 1,638 intervals (819 peaks) with 526 kb total size, 321 bp 
mean size with standard deviation of 172 bp. We used MuStARD-mirSF model with a sliding window step of 
10 bp and total running time of 3.8 minutes.

The average running time of MuStARD per peak, based on the mir-SFC-U model, was 0.17 seconds, while 
based on the mir-SF model was 0.13 seconds. Running times were normalized on 321 bp average interval size.

Results
Training of convolutional neural network model. We compared the performance of MuStARD on all 
combinations of input data for the pre-miRNA prediction dataset (Supplementary Table 1). As expected, scan-
ning test sequences with various models shows that models including a higher number of meaningful input data 
branches perform better in retrieval of pre-miRNAs. The model trained on secondary structure and conservation 
was the best performing two-input model. This result aligns with the identification of pre-miRNA hairpins by 
the Microprocessor complex during miRNA biogenesis primarily by characteristics of their secondary struc-
ture rather than sequence17 and the fact that pre-miRNAs have highly conserved regions corresponding to the 
mature miRNA sequences. Surprisingly, the non-balanced model (MuStARD-mirSFC-U) performs best out of 
all model combinations including the balanced three input model. Since MuStARD-mirSFC-U outperforms all 
other models, we will only report results for this model in the following evaluations. For snoRNAs, the equiva-
lent best performing model is MuStARD-snoSFC-U. Detailed explanation of the training scheme can be found 
in Supplementary Methods.

identification of homo sapiens pre-miRNA genomic loci. While training MuStARD models, we 
left-out the entirety of randomly selected chromosome 14 as a final evaluation set that could be fairly used to 
benchmark MuStARD’s performance against the current state of the art in pre-miRNA prediction. The question 
of accurate pre-miRNA prediction has been thoroughly researched since there are currently over 30 published 
pre-miRNA prediction algorithms indexed in the OMICtools18 repository. The majority of these studies could not 
be coerced to run on our benchmarking dataset (see Supplementary Methods for details). We managed to run 
and evaluate five state of the art programs: HuntMi19, microPred20, MiPred21, miRBoost22 and triplet-SVM23. A 
list of algorithms we attempted, but failed, to evaluate can be found along with our code repository. Of these five, 
only triplet-SVM, MiPred and miRBoost provide probabilities as output scores allowing assessment of their per-
formance on multiple score thresholds. HuntMi and microPred provide fixed output score/labels limiting their 
performance comparison on a fixed threshold (Supplementary Figure 1, Supplementary Tables 2 and 3). After 
evaluating all five algorithms on the chromosome 14 evaluation set, we identified MiPred as the overall optimally 
performing state-of-the-art algorithm, thus for the sake of brevity we will only report direct in depth comparison 
to MiPred. Table 1 summarizes the performance results from the pre-labelled and scanning chromosome 14 
benchmarks.

Both MuStARD and MiPred report predictions with probability scores, and both programs would as default 
be used at a score threshold of 0.5. However, at that threshold, MiPred produces an inordinate amount of false 
positives (Supplementary Tables 2 and 3). For fairness of comparison of program precision, we have set a 
threshold on prediction sensitivity at the point where each program predicts 50% of real pre-miRNAs (Fig. 2a). 
MuStARD exhibits consistently higher precision for any level of sensitivity (Fig. 2b,c) and at a strict threshold 
where 33% of real pre-miRNAs can be annotated it produces on average one false positive prediction per 800,000 

Algorithms

Homo Sapiens - chr14 pre-labelled 
dataset

Homo Sapiens - chr14 scanning 
dataset

Precision Sensitivity F1 Precision Sensitivity F1

MuStARD-mirSFC-U 0.958 0.522 0.675 0.953 0.424 0.587

MiPred 0.128 0.977 0.226 0.069 1 0.130

miRBoost 0.063 0.840 0.118 0.080 0.898 0.146

HuntMi 0.147 1 0.256 0.070 0.979 0.131

microPred 0.114 0.977 0.205 0.197 1 0.330

triplet-SVM 0.194 0.931 0.321 0.061 0.898 0.115

Random 0.051 0.545 0.094 N/A N/A N/A

Table 1. Performance results based on the human chromosome 14 pre-labelled and scanning datasets.
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scanned nucleotides (Fig. 2d) outperforming MiPred by an order of magnitude. Detailed information related to 
the scanning and static types of evaluation can be found in Supplementary Information.

Identification of pre-miRNAs from small RNA-Seq data. Our method can scan large genomic regions 
with unprecedented precision, but would still produce a large number of false positives in a full genome scan of 
several billion bases. A more realistic experimental and computational approach would be the identification of 
molecules from small RNA-Seq data. In this type of commonly performed experiment, RNA is isolated and fil-
tered for sizes below a certain threshold, thus removing most mRNAs and long non-coding RNAs. However, there 
still remain fragments and other artifacts, and the bona fide small RNAs still need to be classified into different 
classes.

We used the human pre-miRNA trained model of our method to retrieve pre-miRNA predictions from three 
small RNA-Seq datasets in varying degrees of evolutionary distance from humans. The first dataset consists of 
human H1 cells, in which we only evaluated 502 small RNA-Seq enriched regions from the left-out chromosome 
14. The second dataset comes from mouse liver and we evaluated on 7,276 enriched regions genome-wide. The
last datasets is of higher difficulty as it was derived from drosophila melanogaster, an evolutionary distant organ-
ism for which conservation information was not readily available. We evaluated our method without the conser-
vation branch (MuStARD-mirSF) on drosophila using the top 819 small RNA-Seq enriched regions (Table 2).

We have evaluated MuStARD and MiPred using precision/recall curves (Supplementary Figure 2) as well as 
the F1 measure at multiple score thresholds to gain a spherical view of the algorithms’ performance (Fig. 3). For 
the precision/recall curves specifically, we have added the ‘naive’ strategy of picking multiple top percentiles of 
small RNA-Seq enriched loci ranked by decreasing expression level. The ‘naive’ strategy serves as the baseline 
performance that any Machine Learning algorithm should outperform.

MuStARD outperforms MiPred at every benchmark dataset while keeping a relatively balanced ratio between 
precision and sensitivity across multiple score thresholds. For example, in order for MiPred to reach high levels 
of precision (85.7%) in human, it needs to increase the score threshold at a level that reduces the sensitivity below 
16% (Supplementary Table 4). MuStARD, on the other hand, is able to maintain sensitivity above 40%, even with 
a score threshold as high as 0.89 that translates to 82% of precision.

As expected, we notice a decreasing level of MuStARD’s prediction performance with increasing evolutionary 
distance from our training organism with human (F1 = 0.66, Fig. 3a), mouse (F1 = 0.57, Fig. 3b) and drosophila 
(F1 = 0.39, Fig. 3c) at 0.5 score threshold (Supplementary Table 4). Our method can narrow down the peaks iden-
tified from small RNA-Seq and better prioritize ones that could harbor small RNAs of a specific class. Detailed 
information related to the small RNA-Seq based strategy can be found in Supplementary Methods.

Cross-species identification of pre-miRNA genomic loci. Having established a substantial increase in 
precision for intra-species pre-miRNA prediction we evaluated our model on an inter-species prediction. Briefly, 
we used the best performing pre-miRNA identification model trained on human data, to scan swathes of the 
mouse genome (in total ~9.8Mbps) containing 1,227 annotated mouse pre-miRNAs. The inter-species prediction 

Figure 2. Evaluation of MuStARD human predictions against MiPred, the best performing of state-of-the-art 
pre-miRNA prediction algorithms. (a) Genome browser visualization of each algorithm’s performance on the 
scanning windows in a 15 kb locus hosting three pre-miRNAs on the left-out chromosome 14. Both evaluated 
programs have been benchmarked at scores that give sensitivity of 0.5 over the left-out chromosome. MuStARD 
correctly predicts 2/3 of the annotated pre-miRNAs (in this particular locus), same as MiPred. MuStARD 
produces no false positive predictions, compared to 11 for MiPred (marked with red x). (b) precision-sensitivity 
curve of MuStARD and MiPred over scanned areas of the left-out chromosome 14. (c) Precision of MuStARD 
and MiPred at loose (sensitivity 0.5) and strict (sensitivity 0.33) thresholds. (d) Average length in thousands of 
base pairs for finding each false positive prediction on the left-out chromosome. Showing MuStARD at strict 
and loose thresholds, and MiPred at strict, loose, and full (score 0.5 - sensitivity ~1) thresholds, and random 
prediction (threshold sensitivity 0.5) denoting the worst performing levels an algorithm could achieve.
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correctly identified pre-miRNAs with a small number of false positives, at a rate of 1/260kbp. Figure 4a shows a 
browser snapshot of a mouse pre-miRNA cluster locus. As expected, the precision of the inter-species prediction 
was lower than the intra-species evaluation set (Fig. 4b), and even lower for pre-miRNAs that do not have a 
human homologue as they have lower levels of conservation which is one of our model’s input branches (Fig. 4c). 
MuStARD exhibits exceptional levels of generalisation capacity (Supplementary Table 5) identifying correctly a 
large majority (94/129) of homologous pre-miRNAs and more than double (212) non-homologous pre-miRNAs. 
Detailed information can be found in Supplementary Methods.

Evaluation of miRBase retracted pre-miRNAs. In order to evaluate our method on another difficult 
and realistic task, we mined all pre-miRNAs that were annotated in previous versions of miRBase (version 14 to 
22.1) but have since been retracted from it. Extensive details can be found in Supplementary Methods. These are 
loci that show a close similarity to bona fide microRNAs, enough to be suggested by some experimental method. 
We evaluated 57 human and 64 mouse pre-miRNAs with our pre-miRNA prediction model trained on the latest 
human miRBase. Since these retracted pre-miRNAs do not exist in this latest version, our training model has 
never seen them before. At the 0.5 score threshold (loose) used for the evaluation, MuStARD correctly identified 
as negative 54/57 (95%) which increased to 56/57 (98%) at 0.85 threshold (strict) for human pre-miRNAs. For 
mouse pre-miRNAs, still using the human trained model, we correctly retrieved as negative 64/64 (100%) of the 
targets even at the most loose threshold (Supplementary Table 6).

Identification of homo sapiens sno-RnA loci. Despite its high accuracy on pre-miRNA classification, 
MuStARD was not specifically developed for pre-miRNA detection. To demonstrate its flexibility we trained 
models on a completely different class of small non-coding RNAs, small nucleolar RNAs (snoRNAs). SnoRNAs 
are a class of small RNAs with widely varying structure, sequence, and conservation patterns. We experimentally 
trained a model on all snoRNAs as well as two additional models for the most populous snoRNAs sub-families, 
the H/ACA and C/D box. H/ACA box snoRNAs have a secondary structure consisting of hairpins and single 
stranded regions. In contrast, C/D box snoRNAs have a stem-box structure that is much more variable than H/
ACA box. In addition, our ‘all snoRNA’ dataset includes snoRNAs beyond these two sub-families. For the two 
sub-families we were also able to benchmark against snoReport24 a state-of-the-art snoRNA prediction soft-
ware developed specifically to identify each of these two categories against background (Table 3, Supplementary 
Table 7). We observe that MuStARD matches snoReport on the Homo Sapiens C/D box training set (Score 0.8, 
F1: 0.759 vs 0.769), but completely outperforms snoReport in Mus Musculus prediction for both C/D box (Score 
0.8, F1: 0.704 vs 0.570) and H/ACA box (Score 0.8, F1: 0.810 vs 0.033). MuStARD also outperforms snoReport 
at the Homo Sapiens H/ACA box model (Score 0.8, F1: 0.755 vs 0.094). Furthermore, we tested the inter-species 
capabilities of the MuStARD model, by applying the human-trained snoRNA model to the mouse genome 
(Supplementary Table 7). These results demonstrate that the MuStARD method is capable of producing well 
trained models beyond the state of the art without domain knowledge, and even with relatively heterogeneous 
positive samples (“all snoRNAs”).

Discussion
We present here a flexible Deep Learning framework that can be used to identify small RNA genomic loci based 
on the sequence, conservation, and secondary structure characteristics of the class. A model can be easily trained, 
without any changes on the code, to identify any class of small RNA loci provided enough examples of the class 
exist. Training of the model does not require expertly curated features specific to the RNA class. In contrast to 
highly specific methods that rely on extraction of hundreds of features, our method operates directly on raw 
sequence, conservation scores, and a simple linear folding representation. Despite the simplicity of the inputs, and 
the generality of the method, it manages to convincingly outperform all state of the art methods that have been 
each developed and trained on one single class of RNAs specifically.

An important aspect of our method is the ability, for the first time, to scan large genomic regions, or even 
several thousand sequencing peaks, at an acceptably low false discovery rate. Machine learning methods can only 
learn variation that is presented to them. When looking for extremely rare events, such as small RNA genomic 

MuStARD-
mirSFC-U MiPred Expression

Homo Sapiens 
- small RNA-
Seq in H1 cells

Precision 0.750 0.857 1

Sensitivity 0.500 0.157 0.027

F1 0.600 0.266 0.054

Mus Musculus 
- small RNA-
Seq in Liver

Precision 0.747 0.512 0.964

Sensitivity 0.581 0.097 0.065

F1 0.653 0.163 0.122

Drosophila 
Melanogaster - 
small RNA-Seq 
in Embryo

Precision 0.526 1 0.500

Sensitivity 0.500 0.023 0.052

F1 0.512 0.046 0.095

Table 2. Performance summary based on the small RNA-Seq datasets from Homo Sapiens, Mus Musculus and 
Drosophila Melanogaster, at 0.84 score threshold.
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loci, it becomes evident that large genomic regions will need to be scanned, and the background variation will 
be enormous. However, most negative loci have extremely low potential of being confused for small RNA loci. 
A static classification between real loci and randomly selected background is prone to overestimate the pre-
dictive power of evaluated methods. Some methods have attempted to create ‘harder’ negative sets by includ-
ing sequences that have characteristics similar to the predicted class. This approach implies that the researcher 
already knows the major characteristics of the predicted class, and that these characteristics will remain stable for 
each training model. In our case neither of these prerequisites were true.

We initially prototyped our method with a small set of negatives, four for each real training example, randomly 
selected from regions within the coding and intronic regions of mRNAs, and long non-coding RNAs. We quickly 
realized that while our method could separate between these categories easily, it still produced a large amount 
of false positives in the more realistic large region scanning evaluation. Training several models using different, 
but equal, background sets showed us variability in the number and range of identified false positives. However, 
we noticed that a number of false positives appeared consistently in several of the trained models. These ‘hard 
cases’ of background variation are the ones that have sequence, conservation, and folding characteristics closest 

Figure 3. Evaluation of filtering for small RNA-Seq datasets for pre-miRNAs. F1 score per score threshold of 
the prediction method. MiPred default score threshold is 0.5. We evaluated three datasets: (a) human H1 cells, 
left out chromosome 14. (b) mouse liver, whole genome. (c) drosophila melanogaster embryo, whole genome. 
For the drosophila evaluation, vertebrate evolutionary conservation track was not available so the MuStARD-
mirSF (sequence, folding) model was used instead.

Figure 4. Prediction of mouse pre-miRNAs by the model trained on human. (a) Genome browser visualization 
of MuStARD performance on the scanning of a 35 kb locus hosting 36 pre-miRNAs. MuStARD correctly 
identifies 20/36 pre-miRNAs with 2 false positives, out of which one falls on the first “exon” of a long non 
coding RNA Mirg annotated as “miRNA containing lincRNA”. (b) Precision-Sensitivity curve of human 
trained MuStARD predictions on mouse pre-miRNAs. Orange line shows the model prediction on human 
for reference. Solid blue line shows the prediction on all mouse pre-miRNAs, and dashed blue line shows the 
prediction on mouse pre-miRNAs without a direct human homologue. (c) A visualization of the mouse pre-
miRNA evaluation set denoting the number of predicted and non-predicted, orthologous and non-orthologous 
pre-miRNAs.
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to the real training examples and are thus harder to differentiate. We decided to attempt an iterative enrichment 
technique for the training background in which ‘hard cases’ that confuse our models consistently are added into 
the training set for a second round of training. This method achieved a great leap in performance when evaluated 
in completely independent data. Importantly, this automatic iterative method does not rely on an expert user to 
select the characteristics of importance. The ‘hard cases’ are identified by the training model itself and will fit to 
whatever positive set it is training on. The enriched background for pre-miRNA and sno-RNA models is radically 
different, representing the differences of these classes between them, and allowing the models to be easily and 
accurately trained on any positive set of small RNA loci.

Using a number of pre-miRNA prediction algorithms for region scanning was time consuming and arduous 
labor. To calculate hundreds of features on regions spanning less than one percent of the human genome, all other 
algorithms (with miRBoost being the sole exception) required to group the scanning region into smaller batches 
of 2000 sequences in order to parallelize the analysis into a computer cluster (MetaCentrum-CERIT). Even so, the 
computing time for each single batch was approximately 4 days. In contrast, our algorithm was able to scan the 
mouse benchmark dataset that includes several million base pairs in a few hours on a single CPU.

We have demonstrated that our method can be used for cross-species prediction of small RNAs. As a proof 
of concept we trained models on human pre-miRNAs and snoRNAs and then identified their counterparts in 
mouse, a pair of well annotated species that have considerable evolutionary distance. The pre-miRNAs we cor-
rectly identified on the mouse genome were enriched in evolutionary conserved pre-miRNAs in human (approx-
imately 30% of our true positive predictions vs 10% of all mouse miRNAs). That said, the majority (70%) of our 
predicted pre-miRNAs are not homologous to human pre-miRNAs and would not be easily identified by a simple 
homology search.

The method presented here can be generalized for any class of small RNAs on any species. We chose to high-
light two examples (pre-miRNAs and sno-RNAs) that differ radically. Where pre-miRNAs have high levels of con-
servation and fold into characteristic hairpin structures, sno-RNAs show a much wider size distribution (118.8 
mean / 59.1 sd vs 81.9 mean / 16.9 sd) and have a variety of subclasses with variable secondary structure and 
evolutionary patterns, making their identification harder. Thousands of known pre-miRNA sequences against a 
few hundred sno-RNAs reduce the size of the training set, adding a level of difficulty to the task. It follows that 
several methods for pre-miRNA identification have been developed to date, while sno-RNA identification meth-
ods have not been developed in the past decade. The need for modern, easy to use, easy to train, methods becomes 
self-evident, especially for RNA classes with fewer members, for which no new development is performed. It is 
beyond the scope of this paper to develop models for each class of small RNAs, but using our openly available 
method researchers can easily produce such models for their own RNAs of interest. MuStARD has been specifi-
cally designed to automate this process and facilitate ease-of-use by simplifying the input requirements. Regions 
of the targeted small RNA class can be loaded as a bed file, and MuStARD handles all pre-processing steps such 
as sequence and evolutionary conservation extraction as well as secondary structure calculation. Additionally, 
the iterative training module provides an interface for the automatic selection of background genomic loci that 
optimally represent the negative set, specifically tailored for the specific small RNA class. MuStARD can be easily 
applied on any small RNA identification problem that would not be easily identifiable by using older methods. 
Extensive documentation and tutorials on using MuStARD for novel RNA class predictions are available along 
with the MuStARD code repository at gitlab.com/RBP_Bioinformatics/mustard.

conclusion
To conclude, we have developed a method that is easy to train and deploy for any class of small RNA genomic loci. 
Using the novel iterative background selection our method can choose the background ‘hard cases’ specific for 
each training, boosting performance. We show that our method outperforms class specific methods, both in accu-
racy, and computational performance. We achieved cross species identification of small RNAs beyond homology, 
and also highlighted a realistic use case in the identification of pre-miRNAs out of small RNA-Seq peaks.

All snoRNAs C/D box H/ACA box

MuStARD MuStARD snoReport MuStARD snoReport

Score 
Threshold 0.5

Homo Sapiens

Precision 0.545 0.476 0.512 0.705 0.100

Sensitivity 0.791 0.954 0.954 0.764 0.058

F1 0.645 0.635 0.666 0.733 0.073

Mus Musculus

Precision 0.549 0.494 0.332 0.730 0.103

Sensitivity 0.928 0.969 0.897 0.951 0.146

F1 0.689 0.654 0.484 0.825 0.120

Score 
Threshold 0.8

Homo Sapiens

Precision 0.820 0.645 0.666 0.909 0.250

Sensitivity 0.708 0.954 0.954 0.647 0.058

F1 0.759 0.769 0.784 0.755 0.094

Mus Musculus

Precision 0.656 0.580 0.420 0.772 0.055

Sensitivity 0.769 0.897 0.887 0.853 0.024

F1 0.708 0.704 0.570 0.810 0.033

Table 3. Evaluation of prediction for all snoRNA, and CD-box orH/ACA-box subfamilies separately.
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Abstract
Amplicon-based next-generation sequencing (NGS) of immunoglobulin (IG) and T-cell receptor (TR) gene rearrangements
for clonality assessment, marker identification and quantification of minimal residual disease (MRD) in lymphoid neoplasms
has been the focus of intense research, development and application. However, standardization and validation in a
scientifically controlled multicentre setting is still lacking. Therefore, IG/TR assay development and design, including
bioinformatics, was performed within the EuroClonality-NGS working group and validated for MRD marker identification
in acute lymphoblastic leukaemia (ALL). Five EuroMRD ALL reference laboratories performed IG/TR NGS in 50
diagnostic ALL samples, and compared results with those generated through routine IG/TR Sanger sequencing. A central
polytarget quality control (cPT-QC) was used to monitor primer performance, and a central in-tube quality control (cIT-QC)
was spiked into each sample as a library-specific quality control and calibrator. NGS identified 259 (average 5.2/sample,
range 0–14) clonal sequences vs. Sanger-sequencing 248 (average 5.0/sample, range 0–14). NGS primers covered possible
IG/TR rearrangement types more completely compared with local multiplex PCR sets and enabled sequencing of bi-allelic
rearrangements and weak PCR products. The cPT-QC showed high reproducibility across all laboratories. These
validated and reproducible quality-controlled EuroClonality-NGS assays can be used for standardized NGS-based
identification of IG/TR markers in lymphoid malignancies.

Introduction

Specific antigen recognition by cells of the adaptive
immune system (B cells, T cells) is mediated through
receptors (immunoglobulin, IG, and T-cell receptor, TR)
that are uniquely formed during immune development in
bone marrow and thymus, respectively. Through recombi-
nation of IG/TR loci a diverse (polyclonal) repertoire of
unique IG/TR receptors is created. In certain autoimmune
diseases this repertoire is skewed (oligoclonal), whereas in
lymphoid malignancies receptors are largely identical
(monoclonal) [1–7]. IG/TR rearrangements thus form
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unique genetic biomarkers (molecular signatures) for
studying immune cells for clinical, diagnostic and research
applications [8–11]. Classically, methods for immunoge-
netic analysis mostly concern fragment analysis and Sanger-
based sequencing. The introduction of NGS makes deeper
analysis of IG/TR rearrangements possible, with impact on
the main immunogenetic applications: clonality assessment,
MRD detection, repertoire analysis [12–29].

The EuroClonality-NGS working group (euro-
clonalityngs.org; Supplementary Figure 1) has ample
expertise in development, standardization and validation of
IG/TR assays, to address the challenges in the translational
research towards clinical application.

Here we report on the development and standardization
(see also accompanying manuscript by Knecht et al. [30]) of
novel amplicon-based IG/TR NGS assays between Sep-
tember 2012 and October 2017, via a total of 14 interna-
tional coordination and evaluation meetings (Supplementary
Table 1). This study focuses on IG/TR marker identification
in lymphoid malignancies for subsequent MRD analysis,
and their multicentre validation in acute lymphoblastic leu-
kaemia (ALL). Assay optimizations and modifications for
other applications of IG/TR NGS are partly still ongoing and
will be reported in separate publications.

Materials and methods

General concept of assay design

With the objective of developing a universal amplicon-
based NGS approach for IG/TR sequence analysis at the
DNA level, applicable in all lymphoid malignancies, assays
for multiple IG/TR loci were designed: IG heavy (IGH), IG
kappa (IGK), TR beta (TRB), TR gamma (TRG) and TR
delta (TRD), including complete and incomplete rearran-
gements whenever applicable. IG lambda (IGL) was
excluded due to its limited complementarity to other IG loci
and its reduced diversity. TR alpha (TRA) was excluded
due to its high complexity, severely hampering a reasonable
multiplex PCR approach at the DNA level.

The IGH locus is rearranged in two steps. After initial
coupling of a single IGHD gene to an IGHJ gene, an IGHV
gene is joined to the incomplete IGHD–IGHJ rearrange-
ment, resulting in a complete IGHV–IGHJ rearrangement.
For amplification of complete IGH rearrangements, primers
located in the FR1, FR2 and FR3 regions were designed,
but here we only discuss the FR1 assay for marker identi-
fication in ALL (for application of IGH-VJ-FR3 assay in
clonality testing see accompanying manuscript by Scheijen
et al. [31]). IGHD–IGHJ rearrangements were amplified in a
separate multiplex PCR reaction. The IGK light chain locus
is composed of functional IGKV and IGKJ genes, as well as

the so-called kappa deleting element (Kde) that can rear-
range to IGKV genes, or to a recombination signal sequence
(RSS) in the IGKJ–IGKC intron, leading to functional
inactivation of the IGK allele. The IGKV forward primers
were designed to be used in combination with IGKJ and
Kde reverse primers in one multiplex reaction, whereas a
second PCR was developed for the forward intron RSS and
reverse Kde primers.

The TRB locus also features a two-step process with
initial formation of incomplete TRBD–TRBJ rearrange-
ments followed by complete TRBV–TRBJ rearrangements.
Incomplete and complete TRB rearrangements are detected
in two separate multiplex PCR reactions. As TRG locus
rearrangements are one-step VJ recombinations involving a
limited number of TRGV and TRGJ genes, a single mul-
tiplex assay could be developed. Finally, in the TRD locus,
complete VJ rearrangements are preceded by DD, VD and
DJ rearrangements. In addition, certain TRAV genes can
rearrange to both TRDJ and TRAJ, whereas TRDV–TRAJ
rearrangements, usually involving TRAJ29, can also occur.
All of these rearrangements were designed to be amplified
in one multiplex PCR assay.

Both the design and further testing were coordinated by
the respective ‘Target’ network leaders: IGH-VJ by C. Pott,
Kiel and R. Garcia Sanz, Salamanca; IGH-DJ by F. Davi,
Paris and K. Stamatopoulos, Thessaloniki; IGK-V/intron-
IGKJ/Kde by P.J.T.A. Groenen, Nijmegen and A.W. Lan-
gerak, Rotterdam; TRB by M. Brüggemann, Kiel and M.
Hummel, Berlin; TRG by G. Cazzaniga, Monza and J.J.M.
van Dongen, Leiden; and TRD by E. Macintyre, Paris.
Initial testing of each assay was performed by 2–3 experi-
enced laboratories per target and final assays were validated
for IG/TR marker identification in ALL in a multicentre
setting. In addition, central quality control procedures were
developed to monitor assay performance.

The bioinformatic platform ARResT/Interrogate [32],
developed from the ground-up within the EuroClonality-
NGS to assist with its multi-faceted activities, was further
adapted for this study as described below.

Primer design and technical validation of primer
performance

Primers were designed to be gene-specific, but in case of
allelic variants, degenerate primers were designed to avoid
differential annealing in individuals with different allelic
variants. For the same reason, single mismatches in the
middle or at the 5′-end of the primer were accepted.

Primer3 [33], Primer Digital (PrimerDigital Ltd,
Helsinki, Finland) MFEprimer-2.0 [34] and Oligo
(Molecular Biology Insights, Inc., Colorado, USA) were
used for checking primer specificity and multiplexing.
Common primer design criteria were followed for all loci:
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primer melting temperature 57–63 °C; comparable size of
final amplicon; primer length 20–24 nt; avoidance of primer
dimers; minimal distance of 3′ primer end to the junctional
region of, preferably, >10–15 bp to avoid false-negativity
for rearrangements with larger nucleotide deletions from the
germline sequence; avoidance of regions with known single
nucleotide polymorphisms to allow identical primer
annealing for all alleles of the respective V, D or J genes;
targeting of, preferably, all V, D and J genes known to be
rearranged plus the intronRSS and Kde regions for IGK.

Following in silico design, primers were first tested in
monoplex and multiplex reactions using primary patient
samples or cell lines with defined rearrangements. In
occasional cases where no such samples were available,
healthy tonsil or mononuclear DNA samples were
employed. Oligoclonal template pools were then created
from mixtures of rearranged cell lines and diagnostic sam-
ples with defined rearrangements covering many different
V, D and/or J genes. Alternatively, for some loci, plasmid
pools were produced, covering as many different rearran-
gements as possible. These multi-target pools allowed fine-
tuning of reaction conditions and/or primer concentrations
to assess comparable amplification efficiencies. This itera-
tive process of testing also led to a reduction of primers if
these appeared redundant. Further multicentre testing was
performed with a limited number of monoclonal and poly/
oligoclonal samples on different sequencing platforms,
which allowed assessment of robustness of the primer mixes
and protocols.

As assays were designed with the aim to be platform-
independent, a two-step PCR was employed, that enabled
switching of sequencing adaptors and to reduce the total
number of primers even if many barcodes are necessary.
Also, maximal amplicon lengths were defined with respect
to the possible maximal sequencing read lengths of current
sequencers. PCR conditions were optimized with the aim to
find optimal conditions common for all reactions, thus
allowing for parallel library preparation. Various numbers
of PCR cycles in 1st and 2nd PCR, different polymerases
and several library purification methods were tested and
compared.

Multicentre validation of assays for MRD marker
identification in ALL

Five experienced laboratories tested the robustness and
applicability of the optimized assays for NGS-based IG/TR
marker identification in ALL in comparison to standard
techniques. All laboratories (Bristol/London, Paris, Monza,
Prague and Kiel) are members of the EuroMRD consortium
and reference laboratories for ALL MRD analysis. Each of
them performed NGS-based IG/TR MRD marker identifi-
cation in 10 patients with B- or T-lineage ALL. A central

standard operating procedure was strictly followed. The
study was executed using the Illumina MiSeq (2 × 250 bp
v2 kit). NGS analyses were performed fully in parallel to
conventional PCR plus Sanger sequencing of clonal pro-
ducts following standard guidelines [11]. For a part of the
cases with unexplained discrepant results between the two
methods, allele-specific PCR assays (either for digital dro-
plet PCR or real-time quantitative PCR) were designed to
clarify if the respective clonal rearrangement represented
the leukaemic bulk. EuroMRD guidelines were used to
design and interpret allele-specific PCR assays [35, 36].

Results

Primer design and technical validation of primer
performance

Based on the results of the testing and validation phases
(Supplementary Table 2), the final IG/TR primer mixes
consisted of eight tubes with 92 forward and 30 reverse
primers, 15 of the latter being used in pairs of different
tubes (Supplementary Table 3). Primer positions and
sequences are presented in Fig. 1.

Implementation of quality control procedures

Quality control of robust amplification, library preparation
and sequencing are of utmost importance for these complex
assays. Different primers need to work under the same
reaction conditions, while additional variability can be
introduced by sample characteristics and sequencing. Pri-
mer performance must be monitored longitudinally, and for
the exact estimation of clonal abundance it is important to
correct for the number of sequencing reads per input
molecule.

To address these issues, we established and validated two
types of quality control procedures: (i) a ‘central in-tube
quality control’ (cIT-QC) spiked to each tube as library
control and calibrator, and (ii) a ‘central poly-target quality
control’ (cPT-QC), or run control, to monitor general primer
performance and sequencing.

To compose the cIT-QC, IG/TR rearrangements of many
human lymphoid cell lines were comprehensively char-
acterized by amplicon- and capture-based NGS and Sanger
sequencing. Nine cell lines were selected to form the cIT-
QC with at least three different clonal rearrangements for
each of the eight PCR tubes, totalling 24 rearrangements.
The current design requires an equal number of cell line
DNA copies to be spiked into each tube, as
described below.

For the cPT-QC a mixture of different lymphoid speci-
mens was considered to cover the whole IG/TR repertoire
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more comprehensively. To this end we produced material
consisting of equal ratios of DNA from peripheral blood
mononuclear cells (MNCs), thymus and tonsil. For more
details see accompanying manuscript by Knecht et al. [30].

Laboratory protocol

Primers were tailed with universal and T7-linker sequences,
and divided over eight tubes (IGH-VJ, IGH-DJ, IGK-VJ-
Kde, intron-Kde, TRB-VJ, TRB-DJ, TRG, TRD). The PCR

protocol is summarized in Table 1. Sequencing libraries
were prepared via a two-step PCR, each using a final
reaction volume of 50 µl with 100 ng diagnostic DNA and
10 ng of polyclonal DNA. For the cIT-QC, 40 cell
equivalents of the nine different cell lines were spiked into
all samples (see accompanying manuscript by Knecht et al.
[30]). MgCl2 was intended to be used at a final concentra-
tion of 1.5 mM, but needed optimization for some tubes.
Therefore, master-mixes for the 1st PCR were tube-specific,
but the temperature profile was uniform for all tubes.

Fig. 1 Schematic diagrams of rearrangements and primer sets. a
Schematic diagrams of IGHV-IGHJ and IGHD-IGHJ rearrangements.
The relative position of the VH family primers, DH family primers and
consensus JH primers is given according to their most 5′ nucleotide
upstream (−) or downstream (+) of the involved RSS. b Schematic
diagrams of IGKV-IGKJ rearrangement and the two types of Kde
rearrangements (V-Kde and intronRSS–Kde). The relative position of
the IGKV, IGKJ, Kde, and intronRSS (INTR) primers is given
according to their most 5′ nucleotide upstream (−) or downstream (+)
of the involved RSS. c Schematic diagrams of TRBV-TRBJ rearran-
gement and TRBD-TRBJ rearrangement. The relative position of the
TRBV family primers, TRBD primers and the TRBJ primers is given

according to their most 5′nucleotide upstream (−) or downstream (+)
of the involved RSS. d Schematic diagrams of TRGV–TRGJ rear-
rangement and the relative position of the TRGV and TRGJ primers.
The relative position of the TRGV primers and the TRGJ primers is
given according to their most 5′ nucleotide upstream (−) or down-
stream (+) of the involved RSS. e Schematic diagram of TRDV–
TRDJ,TRDD–TRDJ, TRDD–TRDD, and TRDV–TRDD, TRDV-
TRAJ29 rearrangements, showing the positioning of TRDV, TRDJ,
TRDD, and TRAJ29 primers, all combined in a single tube. The
relative position of the TRDV, TRDD, and TRDJ primers is indicated
according to their most 50 nucleotides upstream (−) or downstream
(+) of the involved RSS
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Concentrations of all primers are shown in Supplementary
Table 3. After 1st PCR, gel electrophoresis was performed
to check for successful amplification of all targets. For TRB,
gel extraction of the specific PCR products was performed
prior to the 2nd PCR.

All 1st round PCR products, except TRB PCR products,
were diluted 1:50 unless amplicons were very weak. TRB
PCR products and PCR products with weak amplicons were
used undiluted. Master-mixes for the 2nd PCR and the
temperature profiles were identical for all tubes (Table 1).
Primers for the 2nd PCR contained sequencing adaptors and
sequencing indexes (barcodes). Unique combination of
forward and reverse indexes was used for each library.
Three microlitres of undiluted TRB PCR products and 1 µl
of 1:50-diluted IGH, IGK, TRG and TRD PCR products
were amplified in the 2nd PCR.

Following 2nd PCR, products from all samples of a run
were pooled in equimolar ratios into eight tube-wise sub-
pools and purified by gel extraction (see Table 2 for the
amplicon lengths). Finally, the subpools were pooled
equimolarly into one final pool. Sequencing was performed
on Illumina MiSeq sequencers, using 2 × 250 bp v2 chem-
istry with a final concentration of 7 pM for the amplicon
library and 10% PhiX control added to avoid low-
complexity library issues. The detailed standard operating
procedure is provided as supplementary information.

Bioinformatic protocol

ARResT/Interrogate [32] was the main bioinformatics
platform used in this study. Both Vidjil [37] and IMGT [38]
resources are available through ARResT/Interrogate as
built-in tools and were employed for specific aspects of this
work, mainly analysis of rearrangements with unclear
annotation. Data are deposited at EMBL/EBI European
Nucleotide Archive (ENA), accession code PRJEB32668.

Demultiplexing was performed accepting no mis-
matches. Reads were annotated with EuroClonality-NGS
primer sequences (to trim non-amplicon sequences, and for

the cPT-QC-based quality control), paired-end joined,
dereplicated, immunogenetically annotated [39], and even-
tually classified into rearrangement types (complete and
incomplete, and other special types like intron-Kde rear-
rangements), or ‘junction classes’. Reads without rearran-
gement were excluded from the total read count used for
relative abundances.

cIT-QC sequences described above and elsewhere (see
accompanying manuscript by Knecht et al. [30]), were
identified in the data through their immunogenetic annota-
tion. Their counts served both as ‘in-tube’ control and for
normalization per primer set: total cIT-QC cells are divided
by cIT-QC total reads, the resulting factor used to convert
rearrangement reads to cells, and those cells then further
divided by total input cells (15,000 in this study). Identified
IG/TR sequences were defined as index sequences if their
abundance after cIT-QC normalisation exceeded 5%.

ARResT/Interrogate can track the DNJ 3′ stem of a
junction, the sequence remaining stable during IGH or TRB
clonal evolution in case of V replacement or ongoing V to
DJ rearrangements. The stem consists of the last ≤ 3nt of D
(or of the NDN if no D is identifiable), any and all of N2
nucleotides, and the J nucleotides of the junction. This stem
is available as a separate immunogenetic feature across all
samples and thus can be linked to other features, e.g.
clonotypes.

Multicentre validation of assays for MRD marker
identification in ALL

Next, 50 ALL diagnostic samples (29 BCP-ALL and 21 T-
ALL; Supplementary Table 4) were analysed for the mul-
ticentre validation study. Each of the five participating
laboratories received preconfigured 96-well plates contain-
ing the different multiplexed NGS primer combinations per
target (Fig. 2).

In total, 96 libraries were generated per lab (total of 480
libraries), and sequenced with a collective output of 47M
reads (⌀ 9.2 M/lab). Centralised analysis was performed
with ARResT/Interrogate [32] using IMGT germline
sequences [39]—further analyses and verifications were
performed with Vidjil [37] and IMGT/V-QUEST [38].

Overall, 311 clonal IG/TR rearrangements (clonotypes)
were identified, with a mean of 5.2 (0–14)/sample by NGS (a
5% threshold was applied for NGS after cIT-QC-based nor-
malization) vs. 5.0 (0–14)/sample by Sanger, while 217
(45%) libraries demonstrated no clonotypes above threshold
by either method. A total of 196/311 (63%) clonotypes were
fully concordant between NGS and Sanger (Fig. 3). NGS
exclusively identified 63/311 (20%) index sequences, whereas
52/311 (17%) IG/TR Sanger sequences were not assigned as
NGS index sequence by ARResT/Interrogate. 26/63 NGS
positive/Sanger negative cases showed a clonal PCR product

Table 2 Mean size of PCR products after the 2nd PCR (containing the
Illumina sequencing adaptors and barcodes)

Gene Amplicon length (bp)

TRB-VJ 309–407

TRB-DJ 300–408

TRG 256–360

TRD 309–450

IGH-VJ 484–681

IGH-DJ 266–358

IGK-VJ-Kde 296–384

intron-Kde 309–382
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also in the respective low-throughput approach but sub-
sequent Sanger sequencing failed due to polyclonal back-
ground, mixed sequences or weak PCR products. In an
additional 6/63 NGS positive/Sanger negative cases the
respective primer was missing in the low-throughput
approach. For the remaining 31/63 discrepancies no

technical explanation for Sanger failure could be found. In 16/
19 q/ddPCR evaluated cases the rearrangement was con-
firmed by ASO-PCR, in three of these on a subclonal level.

Conversely, 52/311 clonal IG/TR rearrangements were
detected by Sanger sequencing only, when applying the 5%
NGS threshold: for 5/52 sequences (1 TRG, 2 TRB-VJ and

Fig. 2 Schematic overview of the workflow for multicentre validation
of IG/TR NGS assays for MRD marker identification in ALL. The IG
and TR gene rearrangements are amplified in a two-step approach
using multiplex PCR assays. Each of the participating laboratories
performed NGS-based IG/TR MRD marker identification in 10

patients with ALL. A central polytarget control (cPT-QC) was used to
monitor primer performance, and central in-tube controls (cIT-QC)
were spiked to each sample as library-specific quality control and
calibrator. Pipetting was performed in a 96-well format. The data
analysis was performed using ARResT/Interrogate
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2 IGH-DJ) the relevant primer was not present in the NGS
primer set, in 12/52 cases no explanation was found for the
discrepancy. However, in most discordant cases (35/52) the
Sanger identified sequences (7 TRD, 8 TRB-VJ, 6 TRG, 4
TRB-DJ, 2 IGK-VJ-Kde, 5 IGH-VJ and 3 IGH-DJ) that
were also detectable by NGS, but with an abundance below
5%. In 36/39 q/ddPCR evaluated cases the rearrangement
was confirmed by ASO-PCR (including all low NGS
positive sequences), in 14 of these on a subclonal level. The
overall concordance between Sanger and NGS, including
negative libraries, was 78%.

Interestingly, in 12/29 B-lineage ALL samples the evo-
lution of the dominant clonal IGH sequence was identified
employing a special tool in ARResT/Interrogate. The
evolved clonotypes shared the DNJ stem with the dominant
one, but the VND part of the rearrangement differed
(example in Fig. 4).

Assay performance was also analysed by standardized
evaluation of QC samples (cIT-QC and cPT-QC, see

accompanying manuscript by Knecht et al. [30]) and
showed high intra- and inter-lab consistency without sta-
tistically significant differences between the five labs.

Modifications of the central SOP

During the process of multicentre validation, modifications
of the SOP were tested in particular laboratories as parallel
projects.

One-step versus two-step PCR

It was decided to use two-step PCR to enable switching of
sequencing adaptors and to limit the total number of required
primer batches even if a large number of barcodes is required.
As first round PCR products are not barcoded, identification
of contamination phenomena is hampered in this approach.
Therefore, a one-step PCR was tested in a single centre
(Paris). The one-step approach reduces the risk of

Fig. 3 Results of multicentre validation of assays for MRD marker
identification in ALL. Blue: Index sequences identified by Sanger
sequencing. Red: Index sequences identified by NGS. Darkest blue/red
are clonal sequences identified by both methods; lightest blue/red are

sequences identified only by the respective method. Median blue/red
are clonal sequences identified by both methods, but by NGS with an
abundance of <5% after normalization

Fig. 4 Clonal evolution in a BCP-ALL patient. The dominant
incomplete IGH rearrangement (IGHD6-13 - IGHJ4) was identified
with an abundance of 89.4% together with three additional complete

IGH rearrangements with lower abundance (1.21–1.55%) and the
same DNJ sequence. Only the CDR3 region is shown for each
sequence
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contamination and thus favours use of NGS not only for
marker identification, but also for MRD assessment. The
standard operating procedure is shown in Supplementary
information.

Use of Ion Torrent platform

Ion Torrent platform was tested in a single-centre setting
(Prague) and showed a very good concordance (R2= 0.89)
with the standard approach. The standard operating proce-
dure is shown in Supplementary information.

Removal of polyclonal DNA from reaction mix

Polyclonal DNA was added to each reaction in order to
prevent excessive primer dimer formation in samples lack-
ing particular rearrangements. The addition of polyclonal
DNA, however, alters the composition of polyclonal back-
ground of the samples and hampers the analysis of the
immune repertoire. We therefore performed testing on four
samples with B- and four samples with T-cell aplasia and
showed that addition of cIT-QC is sufficient to prevent the
excessive formation of unspecific PCR products (see Sup-
plementary information).

Bead extraction

During the single target evaluation and validation phase, gel
extraction of the specific TRB amplicons turned out to lead to
more specific libraries compared with bead extraction. How-
ever, gel extraction is not used in all laboratories, therefore, in
a later phase of the study bead purification of all libraries was
also tested. Optimization of the purification processes led to
comparable ratios of specific reads irrespective of the type of
library purification (Supplementary Table 5).

Discussion

Amplicon-based IG/TR NGS provides an elegant method to
detect clonality, identify MRD markers and monitor MRD
in lymphoid malignancies. However, comprehensive SOPs
for all relevant IG/TR targets, applicable QC procedures,
suitable bioinformatic tools, and validation of the technol-
ogy in a scientifically controlled, multicentre setting are still
lacking [19].

Here we describe an in vitro and in silico protocol for the
diagnostic identification of IG/TR MRD markers in ALL,
and demonstrate its robustness and applicability across five
European laboratories. EuroClonality-NGS primer sets were
successfully used with high reproducibility and good con-
cordance to Sanger sequencing, identifying on average 4%
more markers per patient than classical low-throughput

methods. NGS was particularly successful in correctly
identifying bi-allelic rearrangements, which are technically
challenging for Sanger sequencing because this requires
prior separation of the respective clonal PCR products. NGS
also performs better in the presence of a background of
polyclonal rearrangements. Besides, it allows a more com-
prehensive coverage of rearrangement types. The
EuroClonality-NGS TRD assay for example not only
detects all types of complete and incomplete TRD gene
rearrangements but also VD-JA29 recombinations [40],
present in about 20% of all B-cell precursor (BCP) ALLs. In
our current series, these TRDV2-JA29 rearrangements were
detected in 7/29 BCP-ALL patients (24%), providing an
attractive target for MRD monitoring. Notably, rearrange-
ment coverage is not complete. The IGH-DJ tube lacks an
IGHD7 primer because that would predominantly amplify
the germline-configured IGH-IGHD7-IGHJ1.

Low-throughput sequencing of clonal IG/TR gene rear-
rangements is often cumbersome. This particularly holds
true for TRB, where Sanger sequencing of clonal TRB
BIOMED-2 amplicons requires a multistep approach: first
with the complete set of primers to identify the rearranged
genes, and second, a repetition of the sequencing reaction
with gene-specific primers. In contrast, the EuroClonality-
NGS assays do not require specific workflows for particular
targets, thus enormously streamlining the process of MRD
marker identification. This becomes increasingly important
in times of MRD-based treatment requiring early patient
assignment to the respective MRD risk group.

Critically, our assays provide ways to evaluate primer
performance and overall quality of the whole NGS run
(primers in the cPT-QC) and of each tube (spike-ins in the
cIT-QC, see accompanying manuscript by Knecht et al.
[30]). Such functionalities are embedded in the ARResT/
Interrogate pipeline, further standardizing the whole work-
flow. A challenge for correct MRD marker identification in
NGS data is the phenomenon of accompanying lymphoid
clones that might be mixed up with the leukaemia-specific
ones. Therefore, information regarding blast infiltration of
the analysed sample must be related to the combined
abundance information of the clonal rearrangement, the
polyclonal background and the cIT-QC sequences. The
integration of all this information allows for a more specific
assignment compared with published approaches that define
an index sequence simply as sequence with an abundance of
>5% [16]. This is particularly necessary for tubes that
exclusively cover rearrangements being present only in a
minority of lymphoid cells (especially the TRD and intron-
Kde tubes). TRD genes are not rearranged in normal B cells
and are deleted in most TRγδ cells [41]. Therefore, oligo-
clonal TCRγδ T cells might give rise to dominant clono-
types in TRD NGS assay, in particular as the normal TCRγδ
T-cell repertoire is strikingly skewed during childhood.
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Here the cIT-QC-based abundance correction is of utmost
importance to avoid miss-assignment of (minor) clonal
TRD rearrangements from minor TCRγδ cell populations as
leukaemic rearrangements. Also, knowledge on rearrange-
ment patterns in ALL is important. BCP-ALL features
neither complete TRD, nor TRBJ1 gene rearrangements, T-
ALL in contrast generally does not harbour complete IGH
or IGK gene rearrangements [42]. Hence, identification of
such rearrangements would actually reflect more the pre-
sence of accompanying T- and B-cell clones, respectively.
This immunogenetic knowledge is of particular importance
if marker identification is performed, e.g. at relapse after
stem cell transplantation, when patients often harbour a
restricted B- and T-cell repertoire. The EuroClonality-NGS
approach allows for the bioinformatic identification and
correction of this phenomenon, whereas conventional low-
throughput approaches do not harbour correction mechan-
isms. Nevertheless, we urge caution in assignment of minor
clones to the ALL. Although smaller subclones might be
missed based on an abundance threshold (which largely
explains discrepancies between Sanger sequencing and
NGS in our study), decreasing the threshold would be at the
expense of specificity.

Oligoclonality is a well-known phenomenon in ALL that
hampers conventional IG/TR MRD [43] assessment, but
this can be better identified by NGS. Multiple IG/TR gene
rearrangements in ALL result from both continuing rear-
rangement processes (e.g. continuing IGHV to DJ joining)
and from secondary rearrangements (e.g. IGH-DJ replace-
ments, V replacement in a complete IGH rearrangement)
[23, 44–49]. In 12 of 29 (41.4%) patients with B-lineage
ALL, a dominant clonal IGH rearrangement was subjected
to clonal evolution, resulting in the presence of smaller
subclones with the same D-J stem, but different V-genes. D-
J replacements are also an evolutionary possibility but
cannot be unambiguously discriminated from unrelated
lymphoid clones even with sophisticated bioinformatic
tools.

Modifications to the here described EuroClonality-NGS
assays would be possible, and have actually been tested and
approved to be suitable within the working group. In par-
ticular, a one-step instead of the two-step PCR presented
here might be a reasonable alternative for sites that would
apply NGS not only for marker identification but also for
MRD assessment. Finally, the Ion Torrent platform was
successfully tested as a replacement for the Illumina MiSeq
used in this study, and has subsequently also been applied
more extensively for clonality assessment in formalin-fixed
paraffin-embedded tissue (see accompanying manuscript by
Scheijen et al. [31]).

In summary, the EuroClonality-NGS developed an IG/
TR marker identification protocol, which was validated
across many expert European laboratories. It covers in vitro

and in silico requirements and allows for quality-controlled,
streamlined, comprehensive detection of clonal IG/TR
rearrangements in ALL. Compared with low-throughput
methods, more MRD markers are identified, sensitivity is
increased, processing time is reduced and labour-intensive
conventional methods to resolve mixed sequences in case of
bi-allelic rearrangements or background are avoided. In
parallel, the ARResT/Interrogate bioinformatic platform has
been developed with specific functionalities addressing
potential pitfalls of IG/TR marker identification in ALL,
thus enabling a standardized workflow. In addition, the
presented approach forms the basis for future applications in
clonality assessment, repertoire analysis and MRD quanti-
fication in a quality-controlled and accreditable assay with
the potential to meet the upcoming European criteria (EU
Regulation 2017/746) for in vitro diagnostics.
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Abstract
Assessment of clonality, marker identification and measurement of minimal residual disease (MRD) of immunoglobulin (IG)
and T cell receptor (TR) gene rearrangements in lymphoid neoplasms using next-generation sequencing (NGS) is currently
under intensive development for use in clinical diagnostics. So far, however, there is a lack of suitable quality control (QC)
options with regard to standardisation and quality metrics to ensure robust clinical application of such approaches. The
EuroClonality-NGS Working Group has therefore established two types of QCs to accompany the NGS-based IG/TR assays.
First, a central polytarget QC (cPT-QC) is used to monitor the primer performance of each of the EuroClonality multiplex
NGS assays; second, a standardised human cell line-based DNA control is spiked into each patient DNA sample to work as a
central in-tube QC and calibrator for MRD quantification (cIT-QC). Having integrated those two reference standards in the
ARResT/Interrogate bioinformatic platform, EuroClonality-NGS provides a complete protocol for standardised IG/TR gene
rearrangement analysis by NGS with high reproducibility, accuracy and precision for valid marker identification and
quantification in diagnostics of lymphoid malignancies.

Introduction

Identification and assessment of clonal immunoglobulin
(IG) and T cell receptor (TR) gene rearrangements is a
widely used tool for the diagnosis of lymphoid malig-
nancies, and is also essential for monitoring minimal resi-
dual disease (MRD) [1–6].

Next-generation sequencing (NGS) of IG/TR gene rear-
rangements is gaining popularity in clinical laboratories, as
it avoids laborious design of patient-specific real-time

quantitative (RQ)-PCR assays and provides the capability to
sequence multiple rearrangements and rearrangement types
within a single sequencing run. It also allows detection of
MRD with a more specific readout than RQ-PCR [7].
Hence, several methods have already been described for
high-throughput profiling of IG/TR rearrangements at
diagnosis and follow-up in acute lymphoblastic leukaemia
(ALL), chronic lymphocytic leukaemia (CLL) and other
lymphoid malignancies [8–13].

NGS assays, especially those based on amplicons, pose
major challenges, as multiple primers need to anneal under
the same reaction conditions, while many technical vari-
ables may be introduced by library preparation, sequencing
and bioinformatics, potentially leading to inaccurate results
[14]. Particularly in a clinical context, strategies for stan-
dardisation of laboratory protocols and quality control (QC)
of each component of an NGS assay are highly desirable, if
not required.

* Anton W. Langerak
a.langerak@erasmusmc.nl

Extended author information available on the last page of the article.
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Reference standards are essential for the evaluation of
wet-lab and in silico NGS processes to ensure the analytical
validity of test results prior to implementation of an NGS
technology into clinical practice [15–17]. Reference DNA
materials should be stable sources of rearrangements that
can be sequenced and used for measuring qualitative and
quantitative properties. However, previously published
standards have a limited scope and utility, since they (1) do
not cover all relevant IG/TR loci, (2) do not report on the
quality of the sequencing run or the performance of samples
and primers and/or (3) are synthetic constructs that may not
reflect the complexity of native genomic DNA [9, 18, 19].

The EuroClonality-NGS Working Group was initiated to
develop, standardise and validate protocols for IG/TR NGS
applications, as introduced in Langerak et al. [20] and
described in the accompanying manuscripts by Brügge-
mann et al. [21] and Scheijen et al. [22]. Innovatively, the
EuroClonality-NGS assays include two types of QCs, both
based on basic assay components, and both fully integrated
in ARResT/Interrogate [23], the interactive bioinformatics
platform developed within the Working Group:

1. A central polytarget QC (cPT-QC) consisting of a
standardised mixture of lymphoid specimens, repre-
senting a full repertoire of IG/TR genes. It serves to
assess performance biases or unusual amplification
shifts in a sequencing run by tracking primer usage
and comparison with stored reference profiles.

2. A central in-tube quality/quantification control (cIT-
QC) consisting of human B and T cell lines with well-
defined IG/TR rearrangements. The cIT-QC is directly
added to a sample to undergo concurrent library
preparation and sequencing, acting as in-tube quali-
tative and quantitative standard that is subjected to the
same technical downstream variables.

Here we describe, evaluate and showcase these concepts
and functionalities. We tested the developed protocol on a
dataset of polyclonal samples, B-ALL and T-ALL diag-
nostic materials and follow-ups of patients with substantial
treatment-induced shifts in IG/TR repertoires. We show its
successful application and robustness for clinical labora-
tories that want to implement the EuroClonality-NGS
assays for marker identification and quantification.
Figure 1 provides an overview of the study.

Materials and methods

EuroClonality-NGS assay

The EuroClonality-NGS assay for marker identification
used herein is the two-step PCR protocol with eight primer

sets (IGH-VJ, IGH-DJ, IGK-VJ-Kde, intron-Kde, TRB-VJ,
TRB-DJ, TRG, TRD)—hereafter termed ‘tubes’—per
sample, as described in the accompanying manuscript by
Brüggemann et al. [21].

ARResT/Interrogate

ARResT/Interrogate uses a web browser-based interface to
(1) run an analytical pipeline to identify different types of
rearrangements—‘junction classes’—across all IG/TR loci
(Supplementary Table S1), (2) store, retrieve and report on
runs, (3) allow highly varied analyses and visualisations and
(4) enable purpose-built meta-analyses and applications.
Bioinformatic analyses were performed with ARResT/
Interrogate and purpose-built tools unless otherwise stated.
Further implementation details are provided below and as
Supplementary Information. The platform is currently freely
available at arrest.tools/interrogate, hosted at the Meta-
Centrum and CERIT-SC centres in the Czech Republic.

Implementation of the cPT-QC

Sources and methods

The cPT-QC consists of genomic DNA isolated from
healthy human thymus, tonsil and peripheral blood mono-
nuclear cells (MNCs) in a 1:1:1 ratio (see Supplementary
Information). The cPT-QC undergoes library preparation
alongside the investigated samples (Figs. 1 and 2).

Implementation

Primers are bioinformatically identified in the reads of each
of the eight cPT-QC tubes of the run and their abundances
compared to stored cPT-QC reference results using the test
of proportions.

Stored reference results are the output of ARResT/
Interrogate from the analysis of a cPT-QC sample. These
results should be confirmed through replicate runs over time
in each lab to accommodate for technical variability (see
Discussion). The results (and not the raw NGS data) are
stored to ensure that the bioinformatic analysis is not
compromised inadvertently by the user; this means that the
results are updated with every major release of ARResT/
Interrogate to ensure compatibility with new runs.

Issues with abundances of primers of a specific primer
set are used to tag the corresponding cPT-QC samples and
all user samples of the same primer set as ‘QC-failed’.

Replicates

As reproducibility is important for a QC of this type, we
performed replicate runs of cPT-QC and also of MNC (four

Quality control and quantification in IG/TR next-generation sequencing marker identification: protocols. . .

85



libraries in total); MNCs are regularly used and could serve
as an alternative. Relative abundances of 5′ primers were
compared employing the test of proportions.

Primer perturbations

To investigate whether and how the cPT-QC can be used to
detect issues with primer performance, artificial perturba-
tions of primer concentrations were created to simulate
missing pipetting a primer or pipetting the wrong primer
concentration.

First, 5′ primer usage was analysed in a cPT-QC sample.
Two primers of differing abundances were selected from each
primer set, skipping intron-Kde that only has two primers:
IGH-VJ-FR1-M-1, IGHV-FR1-O-1; IGHD-B-1, IGHD-E-1;
IGK-V-G-1, IGK-V-I-1; TRB-V-AD-1, TRB-V-G-1; TRB-
D-A-1, TRB-D-B-1; TRG-V-F-1, TRG-V-E-1; TRD-D-A-1,
TRD-V-B-1. Second, these primers were perturbed by fully
excluding them from the primer pool (0%) and by changing
their concentration by reduction to 10% and by increase to
200%. Replicate runs of these three primer-perturbed cPT-QC
libraries (six in total) were performed; however, since the
replicates were consistent (data not shown), only the first

replicate of each is shown in Results. Finally, relative abun-
dances of 5′ primers were compared between normal repli-
cates and between normal replicates and the perturbed
libraries using the test of proportions.

Design and validation of the cIT-QC

Sources and methods

In total, 59 human B (n= 30) and T (n= 29) lymphoid cell
lines were obtained from the American Type Culture Col-
lection (ATCC, Manassas, VA, USA; www.lgcpromochem-a
tcc.com) and the German Collection of Microorganisms and
Cell Cultures GmbH (DSMZ, Braunschweig, Germany;
www.dsmz.de), or were derived from internal cell line banks.
Supplementary Table S2 gives an overview of the cell lines.
DNA from cultured cell lines was isolated using a
phenol–chloroform extraction protocol, followed by ethanol
precipitation and elution in Tris ethylenediaminetetra-acetic
acid buffer. Alternatively, DNA was isolated with the
GenElute Mammalian Genomic DNA Miniprep Kit
(Sigma-Aldrich, St. Louis, MO, USA) according to the
manufacturer’s protocol.
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of cell line-specific clonal IG/TR gene rearrangements

central in-tube quality/quantification control –cIT-QC

selection of cell lines & of cIT-QC reference sequences

addition of cIT-QC to all 8 primer set tubes of all samples

cIT-QC identification & marker quantification

central polytarget quality control -cPT-QC

1:1:1  of  healthy human thymus : tonsil : MNC

perturbation of over/under-performing primers
test of primer proportions: replicates vs. perturbed

EuroClonality NGS assay & ARResT/Interrogate
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selection of thresholds

single cPT-QC sample per run, in 8 primer set tubes

mixture preparation, batch verification (replicates/comparisons), creation & storage of cPT-QC reference results

59 human B/T lymphoid cell lines
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Fig. 1 Study design:
components and steps of
development (in blue),
application (in green) and testing
for the central polytarget quality
control (cPT-QC) and central in-
tube quality/quantification
control (cIT-QC), including a
schematic overview of the test
dataset based on a 96-well plate.
Text boxes are either shared
across cPT-QC and cIT-QC or
describing equivalent steps if on
same row. MNC=mononuclear
cells, QC= quality control, ref.
= reference, w/o=without
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Identification of cell line-specific clonal IG/TR gene
rearrangements

Each of the 59 cell lines was screened for clonal IG/TR
gene rearrangements using the EuroClonality-NGS assay
with 100 ng of DNA (quantified with Qubit 3.0, Thermo
Fisher Scientific) from each cell line, without the addition
of MNC. Paired-end sequencing (2 × 250 bp) was per-
formed on Illumina MiSeq (Illumina, San Diego, CA,
USA) with a final concentration of 7 pM per library
aiming for at least 2000 reads per sample. To avoid low-
complexity issues, 10% PhiX control was added to each
sequencing run.

Verification of cell line-specific clonal IG/TR gene
rearrangements

Additional methods were used to verify the NGS amplicon-
identified cell line rearrangements:

1. A capture-based protocol, established within
EuroClonality-NGS Working Group and covering
the coding V, D and J genes of IG/TR loci [13]: in
short, cell line DNA was fragmented and processed
with the KAPA Hyperplus Kit with Library Ampli-
fication (Roche Sequencing Solutions, Pleasanton,
CA, USA); hybridisation of libraries was performed

12 * 8 primer sets = 96-well plate:
1   x  cPT-QC (w/o cIT-QC)
10 x  (patient) samples with cIT-QC
1   x  negative control

library preparation & NGS

bioinformatics | ARResT/Interrogate
arrest.tools/interrogate   contact@arrest.tools

primers

NGS data

− primer analysis (tagging, trimming)
− paired-end joining, if applicable
− junction & clonotype identification

− sample-equivalent real-time
processing of cIT-QC sequences

− cIT-QC identification in samples
− quantification factor calculation
− sample clonotypes: conversion

of read counts to cells

cIT-QC

cPT-QC − loading of reference cPT-QC results
− test of proportions: cPT-QC

reference vs. run results

− application of QC thresholds & rules
− creation of run and sample reports

results, via interactive browser

3. analysis: samples only

2. analysis: cPT-QC only

4. QC & reporting: all tubes

1.

2.

3.

4.

1. analysis: all tubes

‘marker screening’ user mode for browser 
with locked presets & special functionalities

0. preparation: samplesheet − sample metadata, incl. input cells0.
stored data:

Fig. 2 EuroClonality-NGS (next-generation sequencing) protocol for
quality control and quantification in marker identification: 96-well
plate set-up, including central polytarget quality control (cPT-QC) and
central in-tube quality/quantification control (cIT-QC), library pre-
paration and NGS, bioinformatics with ARResT/Interrogate. The

bioinformatics are additionally organised per sample type to showcase
distinct steps and functionalities listed on the right: all tubes (1 and 4,
in black), cPT-QC (2, in grey), (patient) samples (3, in red)—these
colours are shared with the well plate. ref.= reference, QC= quality
control, w/o=without
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with customised SeqCap EZ Choice Probes (Roche
Sequencing Solutions, Pleasanton, CA, USA), devel-
oped based on Wren et al. [13] 2 × 150 bp paired-end
sequencing was performed on Illumina NextSeq.

2. Multiplex amplification and Sanger sequencing
according to the BIOMED-2 protocol: PCR products
were checked for fragment sizes and clonality in the
QIAXCEL Advanced System [24, 25]. Clonal PCR
products were subjected to heteroduplex analysis and
sequenced on either an ABI 3130 or ABI 3500
platform (Applied Biosystems, Foster City,
CA, USA).

IG/TR rearrangement profiles of all cell lines were
compared between the different methods.

For cases with discrepant results between the three
methods, IG/TR allele-specific PCR assays were designed
for digital droplet PCR (ddPCR) (QX200TM Droplet
DigitalTM PCR System, Bio-Rad) to verify the respective
rearrangement. Absolute quantification of IG/TR gene
rearrangements by ddPCR was performed using two dif-
ferent genomic DNA amounts (50 ng, 100 ng) (Supple-
mentary Information). Each experiment included a
polyclonal MNC control and a no-template control.

Cell line selection criteria

For establishment of the cIT-QC from the spectrum of IG/
TR gene rearrangements of the 59 cell lines, the following
selection criteria were defined:

1. The final set should consist of as few cell lines as
possible, while covering each primer set by at least
three different rearrangements, hence aiming for ALL
cell lines harbouring not only lineage characteristic
but also cross-lineage rearrangements.

2. The rearrangements should be unambiguously detect-
able with Sanger sequencing and amplicon-
based NGS.

3. The variable region of IGHV-(IGHD)-IGHJ gene
rearrangements should preferably be unmutated in
order to avoid issues with primer annealing.

Implementation

For cIT-QC mixture preparation see Supplementary
Information.

Bioinformatically, cIT-QC reads are identified using an
immunogenetic annotation-based approach that is extremely
fast while allowing for variations in sequence, avoiding
compute-intensive and potentially inaccurate alignment.

For QC, we expect identification of at least one read per
cIT-QC rearrangement and of at least as many total cIT-QC
reads as total cIT-QC cells, otherwise the tube is tagged as
‘QC-failed’ (see below for how this is used in ARResT/
Interrogate).

Quantification applies the quantification factor—calcu-
lated per primer set by dividing total cIT-QC cells by total
cIT-QC reads—to convert read counts of a clonotype to cell
counts, and then calculate its relative abundance against the
total sample input cells.

Creation of a test dataset

To evaluate and showcase the aforementioned concepts and
functionalities, we compiled a test dataset with:

1. Four diagnostic bone marrow B-/T-ALL samples with
high leukaemic infiltration (assessed by routine
cytomorphology to be 60–80%).

2. Four samples of patients with B/T cell aplasia after
antibody treatment. The two samples with B cell
aplasia were CLL samples after Rituximab (anti-
CD20) treatment and the two samples with T cell
aplasia were T cell prolymphocytic leukaemia sam-
ples after Alemtuzumab (anti-CD52) treatment. In all
these samples lineage-specific aplasia was confirmed
by flow cytometry.

3. cPT-QC for all primer sets, but with the TRB-VJ
primer set results swapped with perturbed results from
experiments outlined above. To showcase generic QC
functionalities, one diagnostic sample was sub-
sampled to <1000 random reads.

The diagnostic samples and the cPT-QC were run with
all primer sets as described in the accompanying manu-
script by Brüggemann et al. [21], while the aplastic
follow-up samples only with the corresponding primer
sets, that is, the IG sets for samples with B cell aplasia,
and the TR sets for samples with T cell aplasia. Figure 1
includes a schematic of the test dataset. Finally, the
follow-up samples were run without the addition of MNC
to test that the addition of cIT-QC is sufficient to stabilise
the samples for sequencing without compromising their
immunogenetic profile.

Results

The resulting protocol and functionalities for QC and
quantification in IG/TR NGS marker identification are
depicted in Fig. 2. We present and further discuss the
underlying results below.
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cPT-QC allows to assess primer performance

We compared normal cPT-QC and MNC replicate libraries
and primer-perturbed cPT-QC replicate libraries (10 librar-
ies in total) to investigate the use of cPT-QC in assessing
primer performance. We applied the test of proportions on
5′ primer relative abundances in those libraries, which
showed that there is a clear difference in p values between
un-perturbed (high p values indicating insignificant chan-
ges) and perturbed (low p values) primers. In other words, p
values of the differences in abundance of the perturbed
primers are noticeably lower, an observation we can use to
highlight such cases.

Table 1 presents a simplified view of the results, focusing
on perturbed primers plus at least one other un-perturbed
primer per primer set, either to show their normal behaviour
or discuss their abnormal behaviour. At a p value threshold
of 1e−200 none of the primers are flagged in the cPT-QC
(white cells), which highlights the reproducibility of the
assay, while all the perturbed primers are flagged in the
perturbed libraries (light/dark grey cells). Significant chan-
ges in abundance are also visible in other cells, with the
most likely explanation that those primers were indirectly

affected by perturbations of other primers. That is, a primer
‘taking over’ when an initially abundant primer was
excluded, such as IGHV-FR1-D-1 when IGH-VJ-FR1-M-1
is perturbed either way, especially since these primers
amplify partially overlapping lists of genes. Supplementary
Table S3 presents the full set of results, including the actual
p values and results from the replicate MNC libraries.

Composing the cIT-QC sample from human B and T
cell lines

Following the criteria outlined above, we selected six B cell
lines: ALL/MIK (ALL), Raji (Burkitt lymphoma), REH (B
cell precursor ALL), TMM (CML-BC/EBV+ B-LCL),
TOM-1 (ALL) and WSU-NHL (B cell lymphoma, histio-
cytic lymphoma); and three T cell lines: JB6 (ALCL),
Karpas299 (ALCL) and MOLT-13 (ALL). The nine cell
lines featured a total of 46 rearrangements, all of which are
used as part of the cIT-QC. All but two rearrangements that
were not detected by capture NGS were detected by all
three sequencing methods. Also, another two were of very
low abundance and/or trimmed in the capture NGS data, but
since the junction segmentation was clearly the same, they

Table 1 cPT-QC: replicates and primer perturbations. Relative abundances (%) of selected 5′ primers across all primer sets. Top group of primers
were perturbed as described in Materials and methods; bottom group is a selection of primers that were left un-perturbed: one per primer set
selected alphabetically, plus two examples where the primer behaviour is of interest to the discussion (see text). Results are shown from two cPT-
QC replicates (blue column) and from replicate 1 of the blue column (“rep1”) vs. cPT-QC libraries where primers were excluded (0%, orange
column), reduced to 10% (yellow column) and increased to 200% (green column). Changes in abundance compared to cPT-QC rep1 are shown
separately (column “% or rep1”, in italics) and coloured from red (0%) to white (100%, i.e. no change) to green (200%). Actual primer abundances
are coloured based on the p value from the test of proportions, with grey indicating a noticeable change according to our threshold of 1e−200 (p
value <1e−199 highlighted in dark grey, and <1e−99 in light grey, otherwise in white)

primer set primer name rep1 % of rep1 rep2 % of rep1 % of rep1 % of rep1
IGH-VJ-FR1 IGH-V-FR1-M-1 27.44 81.05 22.24 2.66 0.73 7.35 2.02 128.13 35.16
IGH-VJ-FR1 IGH-V-FR1-O-1 1.18 92.48 1.10 5.33 0.06 5.74 0.07 241.98 2.87
IGH-DJ IGH-D-B-1:#1:14C 7.32 101.64 7.44 0.00 0.00 0.65 0.05 197.73 14.47
IGH-DJ IGH-D-B-1:#2:14T 11.74 104.09 12.22 0.01 0.00 0.74 0.09 197.79 23.22
IGH-DJ IGH-D-E-1:#4:14G22G 1.86 94.69 1.77 0.29 0.01 0.59 0.01 89.27 1.66
IGK-VJ-Kde IGK-V-G-1 6.08 102.78 6.25 2.07 0.13 2.78 0.17 223.52 13.59
IGK-VJ-Kde IGK-V-I-1 8.85 100.64 8.91 0.66 0.06 3.99 0.35 234.06 20.71
TRB-VJ TRB-V-AD-1 31.76 105.92 33.64 1.11 0.35 15.44 4.91 112.37 35.69
TRB-VJ TRB-V-G-1 10.09 94.90 9.58 0.27 0.03 1.99 0.20 117.44 11.85
TRB-DJ TRB-D-A-1 63.20 101.50 64.15 0.02 0.01 22.64 14.31 110.33 69.73
TRB-DJ TRB-D-B-1 36.14 96.24 34.78 0.22 0.08 8.08 2.92 135.17 48.85
TRD TRD-V-B-1 12.55 118.57 14.88 0.49 0.06 3.27 0.41 344.94 43.29
TRD TRD-D-A-1 64.60 109.85 70.96 0.14 0.09 3.35 2.16 88.53 57.19
TRG TRG-V-E-1 3.52 96.79 3.40 0.09 0.00 1.70 0.06 257.81 9.06
TRG TRG-V-F-1 14.48 99.45 14.40 0.75 0.11 0.20 0.03 162.50 23.53
IGH-VJ-FR1 IGH-V-FR1-A-1 15.34 111.08 17.04 94.20 14.45 76.21 11.69 148.31 22.75
IGH-VJ-FR1 IGH-V-FR1-D-1 16.41 90.13 14.79 259.54 42.59 237.96 39.05 39.07 6.41
IGH-DJ IGH-D-A-1:#1:6C 8.29 118.24 9.80 121.46 10.07 115.17 9.55 93.87 7.78
IGK-VJ-Kde IGK-V-A-1 9.79 100.82 9.87 139.47 13.65 134.77 13.19 101.50 9.93
TRB-VJ TRB-V-AB-1 1.42 103.79 1.48 204.01 2.90 136.33 1.94 95.15 1.35
TRD TRD-V-A-1 14.37 50.49 7.26 165.69 23.81 156.51 22.49 68.63 9.86
TRG TRG-V-A-1 18.71 109.09 20.41 116.35 21.77 110.15 20.61 85.94 16.08
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all numbers are percentages (%)  ;  rep:replicate  ;  test of proportions vs cPT-QC rep1, dark grey:<1e-199,  light grey:<1e-99
CQ-TPcsremirp vs.  0% vs.  10% vs.  200%
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were still tagged as confirmed. Table 2 presents the full list
of the 46 rearrangements, with the NGS amplicon-based
reference nucleotide sequences in Supplementary Table S4.

QC aspects can be evaluated in ARResT/Interrogate

Information on the in silico QC based on both the cPT-QC
and cIT-QC is available in ARResT/Interrogate (Supple-
mentary Figure S1). Generic QC is also performed on
samples, specifically to check for low number of raw reads
and low percentage of reads with an identified junction.
Such samples are tagged as ‘QC-failed’ and excluded by
default to prevent the user from their unintended use.
However, the user is notified and has the option to include
them back in the analysis.

Marker identification and quantification

Abundances of lymphocyte subpopulations are frequently
not available for samples of patients with lymphoid
malignancies. Furthermore, as IG/TR NGS only reflects
relative representation of the rearrangements, it was
important to establish a calibrator that would allow us to
normalise sequencing reads to input DNA cells.

Analysis of our test dataset showed the utility of the cIT-
QC in marker identification and quantification. Excluding
cIT-QC reads, both diagnostic and aplastic samples seem to
harbour few highly abundant clones if simply based on the
number of reads (Fig. 3, Supplementary Table S5). How-
ever, the very high number of reads from only a very lim-
ited number of cIT-QC cells (120–440, dependent on the
number of cIT-QC rearrangements per primer set), in all
aplastic and a few of the diagnostic samples, are an indirect
yet clear indication of the restricted numbers of patient cells
harbouring rearrangements in those samples. From another
perspective, the total percentage of reads of cIT-QC is much
greater than that of patient rearrangements in those samples,
suggesting that also cIT-QC cells are more numerous than
patient cells with rearrangements. Consequently, after
quantification with the cIT-QC, marker abundances fall well
below the threshold indicating clonality. On the other hand,
and as expected, in most diagnostic samples cIT-QC reads
constitute a minority, indicating the true abundant presence
of patient cells with clonal rearrangements. Hence, using the
cIT-QC, a marker can be more accurately quantified and
identified.

ARResT/Interrogate user mode for marker
identification

A critical aspect of bioinformatic-based protocols is their
standardisation and usability, as evident from our experi-
ences within EuroClonality-NGS and EuroMRD. We have

thus designed ARResT/Interrogate to be flexible but also
‘lockable’. Flexibility comes from a deep parameterisation
of many aspects of the pipeline and the browser. At the
same time, we can lock down important parameters so that
users cannot inadvertently compromise the analysis. This
concept is called ‘user mode’ in ARResT/Interrogate, and as
a result of this study we have created a marker identification
user mode.

In this user mode, EuroClonality-NGS primer sets and
cIT-QC sequences are pre-selected and locked, as are other
pipeline options. A special samplesheet is available to
annotate samples with metadata, including providing num-
bers of sample input cells for quantification. The user
interface is simplified, with many non-essential functional-
ities (including many of the visualisations normally avail-
able) hidden from view, and with less user actions required
to load results. The minimum read-based percentage abun-
dance for a clonotype is pre-set to 5% for marker
identification.

Discussion

In this study, we introduce protocols developed within the
EuroClonality-NGS Working Group for QC and quantifi-
cation in NGS-based IG/TR marker identification. Both
laboratory and bioinformatic protocols are presented and
showcased on clinically relevant data.

The cPT-QC is used to monitor the primer performance
of each of the EuroClonality multiplex NGS assays; the
cIT-QC is spiked into each patient DNA sample for QC and
quantification. The use of ‘central’ highlights that these
controls should be as stable as possible and thus centrally
available at an applicable level (minimum at an intra-
laboratory level)—this is further discussed below in the
context of the cPT-QC.

Our experiments show that the cPT-QC is a valuable tool
to monitor reproducibility of results and to identify primer
perturbations and other deviations in the wet-lab protocol,
as they introduce detectable changes to the sequencing
profile. The addition of cPT-QC to each analysis allows to
check the primer and assay performance after sequencing.
Accidental deviations in the concentrations of single
primers within the multiplexed IG/TR primer sets can
be detected, performance failures of single primers can be
traced and consequences for the IG/TR analysis can
be estimated by analysis of cPT-QC data.

In our study, replicates of cPT-QC demonstrated high
reproducibility. Nevertheless, we are aware that reproduci-
bility across labs may be affected by a large number of other
variables, from consumables and equipment to users. Only
centralised access to consumables, for example, in the form
of a kit, and a comprehensive protocol, including the
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Table 2 cIT-QC: full list of gene rearrangements per primer set and human B/T cell line, with notes on their verification and clonotype annotation

Primer set Cell line Notes Clonotype (see Supplementary Information—Materials and
methods)

TRB-VJ JB6 VJ:Vb-(Db)-Jb V12–3=V12–4 6/14/4 J2–3
CASRLAGGPDTQYF pro

TRB-DJ JB6 DJ:Db-Jb D1 7/6/4 J2–2 VGTEITGELFF pop

TRG JB6 VJ:Vg-Jg V10 7/12/12 J1= J2 CAAWS*GW#KLF unp

TRG JB6 VJ:Vg-Jg V2 5/13/ J1= J2 CATWGSI*VNYYKKLF unp

TRB-VJ Karpas299 VJ:Vb-(Db)-Jb V20–1 1/22/6 J2–7
CSARAQIGSSPLEQYF pro

TRB-DJ Karpas299 DJ:Db-Jb D1 /2/6 J1–6 VGTGGLNSPLHF pop

TRG Karpas299 VJ:Vg-Jg V2 /13/4 JP2 CATWDGG*VP#SDWIKTF unp

TRG Karpas299 VJ:Vg-Jg V8 /2/5 J1= J2 CATWDR##YKKLF unp

IGH-VJ-FR1 ALL/MIK VJ:Vh-(Dh)-Jh V3–72 16/24/ J4 SPCPPRKN#YFDYW unp

IGH-VJ-FR1 ALL/MIK VJ:Vh-(Dh)-Jh V7–4–1 11/40/27 J4
TPYYYDSSGY*VP unp

IGK-VJ-Kde ALL/MIK Vk-Kde V2–24=V2D-24 26/6/20 Kde LGGR unk

IGK-VJ-Kde ALL/MIK VJ:Vk-Jk V1–39=V1D-39 6/7/5 J3 CQQSYSTGA#F unp

intron-Kde ALL/MIK Intron-Kde intron 4/2/ Kde
PCVCPIDAAVASFP##SPSGSPGR unk

Intron-Kde ALL/MIK Capture: low% Intron-Kde intron 4/6/1 Kde
PCVCPIDAAVASFPSL#SPSGSPGR unk

TRD ALL/MIK VJ:Vd-(Dd)-Ja V2 5/21/4 J29
CACAQGGPRS#SGNTPLVF unp

TRG ALL/MIK VJ:Vg-Jg V2 /5/8 JP1 CATWDGP#GWFKIF unp

TRG ALL/MIK VJ:Vg-Jg V5 2/3/ JP1 CATWDTYTTGWFKIF pro

TRB-VJ MOLT-13 VJ:Vb-(Db)-Jb V10–1 6/18/1 J1–1
CASRRVRRDRNTEAFF unp

TRB-DJ MOLT-13 DJ:Db-Jb D1 //6 J1–5 VGTGG#QPQHF pop

TRB-DJ MOLT-13 DJ:Db-Jb D2 /4/3 J2–3 VGTSGRA#TDTQYF pop

TRD MOLT-13 VJ:Vd-(Dd)-Jd V1 1/9/ J1 CALGEPGGYTDKLIF pro

TRG MOLT-13 VJ:Vg-Jg V3 /8/9 J1= J2 CATWDRPRLKKLF pro

TRG MOLT-13 VJ:Vg-Jg V8 3//3 JP1 CATWD#TGWFKIF unp

IGH-VJ-FR1 Raji Capture: low% VJ:Vh-(Dh)-Jh V3–11=V3–21=V3–48 2/40/3 J4
CARQRNDFSDNNSYYSNFDFW pro

IGH-DJ Raji DJ:Dh-Jh D6–13 8/12/6 J1 VGYSSIPPP#YFQHW pop

IGK-VJ-Kde Raji Vk-Kde V1–8 2/2/4 Kde CQQYYSYSVPSGSPGR unk

IGH-VJ-FR1 REH VJ:Vh-(Dh)-Jh V3–15 1/21/5 J6
CTTGMVRGVI#YYYYGMDVW unp

IGK-VJ-Kde REH VJ:Vk-Jk V2–29 5/4/ J4 *MQGIHLS#LTF unp

IGK-VJ-Kde REH Vk-Kde V3–20=V3D-20 4/1/ Kde
CQQYGSS##SPSGSPGR unk

Intron-Kde REH Intron-Kde intron 5// Kde
PCVCPINAAVASF##SPSGSPGR unk

TRB-VJ REH VJ:Vb-(Db)-Jb V20–1 1/2/26 J2–7 CSARG unp

TRD REH VD:Vd-Dd3 V2 7/3/ D3 CACLLGDTH unk

TRD REH VJ:Vd-(Dd)-Ja V2 3/22/5 J29
CACDPYGGGSP#SGNTPLVF unp

TRG REH VJ:Vg-Jg V9 1/2/3 J1= J2 CALWEV#YYKKLF unp

TRG REH VJ:Vg-Jg V4 10/14/3 J1= J2 CATLF*R#YYKKLF unp

IGH-VJ-FR1 TMM VJ:Vh-(Dh)-Jh V1–24 /28/8 J5
CATDQAISGVVKSFDPW pro
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equipment used, will further improve inter-laboratory
comparability of results. Besides, activities such as the
QC rounds organised bi-annually by ESLHO (eslho.org) are
an opportunity to gather data and experience, compare assay
performance and identify relevant factors introducing var-
iations. Until full inter-laboratory standardisation is

guaranteed, the implementation of the cPT-QC will require
that the reference samples are analysed in each laboratory
separately, and updated with every new batch of reagents,
while keeping track of equipment and users. These refer-
ence data can then be stored in ARResT/Interrogate, which
has the ability to store as many different such sets of

Table 2 (continued)

Primer set Cell line Notes Clonotype (see Supplementary Information—Materials and
methods)

IGH-DJ TMM DJ:Dh-Jh D2–2 3/13/ J3
VRIL**YQLLLNSANDAFDIW pop

IGK-VJ-Kde TMM Vk-Kde V2–30=V2D-30 /7/3 Kde
CMQGTHWRPGR#PSGSPGR unk

IGH-VJ-FR1 TOM-1 VJ:Vh-(Dh)-Jh V4–55 1/17/10 J6
CARWAGTTG#YYGMDVW unp

TRD TOM-1 VD:Vd-Dd3 V2 3/3/2 D3 CACDL#GDTH unk

TRD TOM-1 VD:Vd-Dd3 V2 8/4/ D3 CAFLLGDTH unk

TRG TOM-1 VJ:Vg-Jg V5 8//18 J1= J2 CAT#F unp

IGH-VJ-FR1 WSU-NHL VJ:Vh-(Dh)-Jh V6–1 1/22/19 J6
CARGTYAAKASMDVW pro

IGH-DJ WSU-NHL DJ:Dh-Jh D2–2 1/1/8 J4 VRIL**YQLLY#DYW pop

IGK-VJ-Kde WSU-NHL Not in capture VJ:Vk-Jk V1–17=V1D-17 1//4 J4 CLQHNSYP#TF unp

Intron-Kde WSU-NHL Not in capture Intron-Kde intron 2//3 Kde
PCVCPIDAAVASFP##PSGSPGR unk

See Supplementary Table S4 for NGS amplicon-based full nucleotide reference sequences. cIT-QC central in-tube quality/quantification control
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Fig. 3 Abundances of central in-tube quality/quantification control
(cIT-QC) and of markers before and after quantification, in the test
dataset. The line of marker abundances before quantification (in
orange) is shared in both plots for reference. The 5% threshold used for
marker identification is shown in both plots. a Abundance in percen-
tage of reads (“%reads”) of cIT-QC (in blue) and of markers before
quantification (in orange), in diagnostic (left half) and follow-up
aplastic (right half) samples. As expected because of the nature of the
samples, the cIT-QC is generally most abundant where patient cells
with clonal rearrangements are not, and vice versa. Note: For cIT-QC
(in blue), the denominator is all reads with junction; for markers (in

orange), it is what we term ‘usable’ reads with junction, which
excludes cIT-QC reads; this may lead to sums of those two numbers
that exceed 100% per sample. b Abundance of markers before (in
orange) and after (in green) cIT-QC-based quantification to percentage
of patient input cells (“%cells”). Quantification of markers in the
aplastic samples places their abundances below the 5% threshold
routinely used in marker identification and in the EuroClonality-NGS
protocols. Note: When cIT-QC read counts are very low, indicating
clonality, quantification factors may lead %cells to exceed 100%; three
such cases in the test dataset are indicated by an asterisk (“ * ”)
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reference data as needed, for example, linking a specific set
to a specific user if necessary.

In this study we also highlighted a number of unique and
advantageous properties of the cIT-QC. In contrast to
plasmids or synthetic reference templates, cIT-QC cell lines
are particularly well suited to be used as control because
they are sources of large quantities of genomic DNA.
Second, the nine cell lines with a total of 46 rearrangements
represent as few cell lines as possible while covering each
primer set by at least three different rearrangements, taking
advantage of ALL cell lines harbouring not only lineage-
associated but also cross-lineage rearrangements. Third, the
rearrangements are unambiguously detectable with
amplicon-based NGS. Fourth, the variable region of IGHV-
(IGHD)-IGHJ gene rearrangements are not/lowly mutated
and therefore minimise issues with primer annealing. Fifth,
cIT-QC rearrangements represent 2/3 of the amplifiable
junction classes (in italics in Supplementary Table S1) over
all eight primer sets, and thus offer an opportunity to
highlight a number of issues, most obviously over-/under-
amplification, but also bioinformatic misidentification.
Additionally, cIT-QC rearrangements can replace MNC for
PCR stability without influencing the patient immune
repertoire (since cIT-QC rearrangements are identified and
by default excluded from the results).

Our cIT-QC enables the conversion from reads to cells,
which is of utmost importance for clinical use. Diagnostic
material being analysed for MRD marker identification can
show abundances of particular clonotypes that do not reflect
the clonal composition of the sample. For example, if the
diagnostic sample is highly infiltrated by a lymphoid
malignancy that does not harbour a targetable rearrange-
ment, the (few) residual lymphoid cells would generate the
whole spectrum of detectable rearrangements; in such
situations minor accompanying physiological B or T cell
clones could be misassigned as clones with leukaemic
markers. In the accompanying study by Brüggemann et al.
[21], where 134 clonal signals with abundance >5% were
detected by NGS but not by Sanger sequencing, cIT-QC
quantification reduced the abundances of 71 (53%) of them
below the 5% threshold.

In addition to its use in marker identification, and as
exemplarily shown for B and T cell depletion in aplastic
follow-up samples, the cIT-QC is of utmost relevance for
MRD quantification in samples on or after treatment, in
particular if B or T cell-directed therapy was applied, which
minimises the background of polyclonal gene rearrange-
ments. If the relative tumour burden is calculated by the
ratio of leukaemia-specific reads to all annotated reads
without any quantification, the quotient reflects the marker
frequency only among cells carrying a particular type of
rearrangement (e.g. IG rearrangements in B cells) and might
thus heavily overestimate the tumour load [26].

Quantification values over 100% (examples in Fig. 3b
and Supplementary Table S5) show that using the cIT-QC is
still a semi-quantitative approach, potentially affected by
amplification biases. However, there is to date no other
scientific or commercial solution available that exceeds our
methodology in its broad applicability (universal IG/TR
approach) and/or allows precise absolute quantification
[12, 27–29].

Finally, the QC protocols are embedded in ARResT/
Interrogate, which informs users with reports and messages
and allows them, for example, to include the QC-failed
samples back into the analysis. The logic behind this is that
the ‘fail’ flag simply indicates that our pre-defined QC
criteria were not met, and not that the data are corrupt
beyond use. Nevertheless, flagged data should always be
used with caution, and dependent on the application or
question.

In summary, our study showcases the applicability of
two reference standards, developed by the EuroClonality-
NGS Working Group, which allow standardised analysis of
IG/TR NGS data (using the EuroClonality-NGS primer
sets) with high reproducibility, accuracy and precision
in marker identification. With ARResT/Interrogate, a com-
plete in silico solution accompanying the in vitro assays
was built, enabling an analysis of IG/TR sequences
including all quality criteria and quantification concepts
necessary for valid marker identification in lymphoid
malignancies.
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To the editor: 

 The Rubinstein-Taybi syndrome (RSTS; OMIM #180849, #613684) is a rare developmental 

disorder characterized by craniofacial dysmorphisms, broad thumbs and toes, and mental and 

growth deficiency. It affects equally males and females, with prevalence of 1:100.000 to 1:125.000 

liveborn infants. Mutations in the cyclic adenosine monophosphate response element-binding 

protein (CREB)-binding protein (CREBBP) or in the E1A-associated protein p300 (EP300) have been 

demonstrated in 55% (RSTS1) and up to 8% of the patients (RSTS2), respectively. 

Hypogammaglobulinemia has been described in RSTS1 patients, while no immunological defect was 

reported in patients with RSTS2 (1-4).  

Herein, we describe a 15-year-old male patient with novel heterozygous mutation of EP300 

gene associated with lymphopenia and hypogammaglobulinemia. His manifestations were initially 

characterized by elevated CD3+TCRαβ+CD4−CD8− double negative T-cells (DNT), Fisher-Evans’ 

syndrome, and hypogammaglobulinemia suggesting Autoimmune Lymphoproliferative Syndrome 

(ALPS) evolving into Common Variable Immunodeficiency (CVID). But, later on, he developed 

lymphopenia suggesting a combined immunodeficiency (CID). 

The patient was born to unrelated healthy Italian parents at 34 weeks’ gestation with adequate 

weight for gestational age. Shortly after birth, he underwent several surgical procedures due to 

interventricular defect, aortic coarctation, double outlet right ventricle, open Botalli’s duct, and 

gastroesophageal reflux. At the age of four, he came to our attention due to stomatitis. Clinical 

examination revealed dysmorphism (microcephaly, wide forehead, sparse eyebrows, high nasal root, 
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low-hanging columella, thick lips, micrognathia), splenomegaly (spleen diameter 11.6 cm at 

abdominal ultrasound), and severe developmental delay. In the course of the infectious episode, 

blood tests showed leukopenia associated with neutropenia (white blood cells 2.210/mm3; 

neutrophils 20/mm3) and thrombocytopenia (platelets 1.000/mm3). Analysis of bone marrow 

aspirate revealed normal differentiation of both myeloid and erythroid lineages and no significant 

abnormalities in megakaryocites numbers and morphology were detected. Treatment with high 

doses of intravenous immunoglobulin (IVIG) resulted in increase of platelet counts (up to 

44000/mm3 after 1 month), while neutrophil counts spontaneously recovered after the infectious 

episode. Thrombocytopenia relapsed after 2 months (2000/mm3) but intravenous high-doses of 

corticosteroids were not effective to restore normal platelet count. When the child was six, oral 

corticosteroid treatment was started, but this therapy could not prevent autoimmune hemolytic 

anemia episodes. From six to twelve years of age, low dose steroids have been administered and the 

patient presented several infections (stomatitis, upper respiratory tract infections, and skin 

abscesses), none requiring hospitalization but one episode of hypovolemic shock due to severe 

diarrhea. Because of the history of infections, the patient was started to IVIG replacement at the age 

of fourteen. Despite this treatment, he had relapsing bilateral pneumonia requiring assisted 

ventilation and/or admission to pediatric intensive care unit due to acute respiratory failure with 

evidence of Mycoplasma pneumoniae and Rhinovirus infections.  

Immunological evaluation during his follow-up (Figure 1A and 1B, Table 1, Table S1, and Table S2) 

showed severely progressive lymphopenia (lymphocyte counts ranging from 350/mmc3 to 

2100/mm3), hypogammaglobulinemia, intermittent thrombocytopenia, undetectable anti-diphtheria 

and anti-tetanus toxoid antibodies, and splenomegaly. Interestingly, analysis of isohemoagglutinins 

while he was off corticosteroid treatment revealed low titers of anti-A (1:8) at 4 years of age, but 

normal immunoglobulins. Immunological re-evaluation when the child was seven, showed reduced 

lymphocyte proliferation to mitogens, hypogammaglobulinemia, increased DNT cells and impaired 

FAS-mediated apoptosis in two separate occasions (Table S3). Evaluation of B-cells when he was 

fourteen showed other abnormalities of B lymphocyte subsets, including reduction of switched 

memory B-cells and increased CD21loCD38lo B-cells (Figure 1C). Analysis of T-cell compartment 

unveiled a decreased proportion of CD4+CD31+CCR7+CD45RA+ recent thymic emigrants (RTE) cells 

and of naïve T-cells (CD4+CCR7+CD45RA+ and CD8+CCR7+CD45RA+), with prevalence of effector 

memory T-cells (CD8+CCR7-CD45RA-) (Table S1). DNT cells were persistently elevated.  
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Proband and parents whole-exome sequencing (trio-WES) revealed a novel de novo heterozygous 

missense mutation (NM_001429.3:c.4763T>C, p.Met1588Thr) in the exon 29 of the gene EP300 

encoding the Histone Acetyltransferase (HAT) protein p300. This protein is a transcription factor 

that, like CREBBP, is recruited with NF-kB to bind promoter sites and is preloaded in most of the 

promoters and enhancers of NF-kB regulated genes(5). We herein report on a novel EP300 missense 

mutation causing the substitution of the non-polar amino acid Met1588 with the polar amino acid 

threonine (Thr). This substitution most probably disrupts the C/H3 domain folding causing the loss of 

protein function (Figure 1D and 1E) and is considered probably damaging by software analysis, 

suggesting as probably causative of the disease. P300 HAT domain is a highly-conserved zinc finger 

domain affecting acetyltransferase activity, promoting histone acetylation, and DNA access for gene 

transcription. The HAT region spanning amino acid position 1587-1817 contains the C/H3 domain 

necessary for the interaction with different proteins (e.g. GATA4)(6). 

Immunological features have been analyzed in a limited number of RSTS1 patients [1-4], but never 

reported in patients with RSTS2 (Table S4). However, there are striking similarities between the 

immunological features of the patient with RTSS2 we describe in this report and what observed in 

previous studies performed in RSTS1 patients (1,3,4). Our patient presented with autoimmune 

cytopenia, splenomegaly, and defective lymphocyte apoptosis with increased DNT cell count, leading 

to diagnosis of ALPS. But, the appearance of hypogammaglobulinemia, poor antibody response but 

progressive B- and T-cell lymphopenia  could also suggest CVID. In fact, when the patient was 7, flow 

cytometry revealed expansion of CD19hiCD21loCD38lo B-cells, that is frequently associated with 

splenomegaly in CVID patients(7), and reduced number of switched memory B-cells, similarly to 

what previously reported in a RSTS patient with CREBBP mutation (4). These changes of B cell 

subsets are in keeping with the expansion of CD21loCD38lo B-cells that was reported in a patient with 

NF-kB1 haploinsufficiency(8), suggesting that alterations in the NF-kB pathway due to EP300 

mutations might also affect B-cell differentiation.   

Immunological studies when the patient was 14 years old showed low IgG (321 mg/dl), markedly 

elevated IgM levels and decrease of T-cells including CD3+, CD4+, CD8+, and naïve CD4+ cells  (Figure 1 

and Table S2). According to analysis of B-cell subsets, high IgM levels are probably related to high 

proportion of terminal differentiated IgM+ B-cells. These immunological features, associated with 

the history of invasive infections and immune dysregulation (lymphoproliferation and Fisher-Evans’ 

syndrome), suggest that RSTS2 can manifest as CID(10,11).  
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This case of RSTS2 underlines the value of WES in patients with complex clinical phenotype. Because 

no RSTS typical trait (i.e. broad halluces and thumbs) was identified in this patient (Table S5), several 

syndromes and primary immunodeficiencies were considered before performing WES (Table S6). In 

addition, this report expands the clinical spectrum of RSTS2, suggesting that EP300 mutations should 

be suspected in patients with clinical and immunological features resembling distinct immunological 

defects which share common manifestations such as CVID, ALPS, and CID. At disease onset, the 

immunological and clinical features of this case were reminiscent of ALPS, and because of the 

appearance of hypogammaglobulinemia of CVID, but in the following years the clinical picture 

evolved as CID. Furthermore, this study suggests that immunological work-up should be taken into 

consideration in RSTS patients to identify those immunological abnormalities that may lead to 

development of severe immune-hematological complications. 

Figure 1. A. Immunoglobulin serum levels (black arrow indicates starting of Ig replacement) and E. 

lymphocyte subsets during follow-up. B. Flow cytometric analysis of the B cell compartment. 

Identification and quantification of total B cells (first column) and B cell subsets according to the 

gating strategy used in fig.1C of Lougaris et al. [4] for a RSTS1 patient: second column transitional 

and terminally differentiated cells (CD38hiCD21lo/dim) (green gate), mature cells 

(CD38lo/dimCD21hi) (orange gate) and CD21loCD38lo cells (yellow gate); third column naïve 

(IgD+CD27-), switched memory (IgD-CD27+) and unswitched memory cells (IgD+CD27+); fourth 

column transitional (CD20+CD27-) and terminally differentiated cells (CD20-CD27hi). C. 3D structure 

representation of region spanning amino acid 1587 to 1817 of EP300 and containing the C/H3 

region. Red arrow points to non-polar Met1588. D. Red arrow indicating the point mutation with the 

polar amino acid Treonine.  
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Table 1. Immunological and haematological features of the index patient. 

4 years of age 7 years of age 14 years of age 

Steroid treatment - 0.35 mg/kg/die 0.16 mg/kg/die 

WBC 1970/mmc (5200-11000) 5040/mmc (4400-9500) 4820/mmc (4400-8100) 

Lymphocytes 1370/mmc (2300-5400) 1220/mmc (1900-3700) 820/mmc (1400-3300) 

Neutrophils 200/mmc 3330/mmc 3480/mmc 

Platelets 33000/mmc 139000/mmc 70000/mmc 

CD3+ 79.4% (56-78.9) 74.6% (59.1-80.9) 85.2% (58.1-80.1) 

1088/mmc (1300-4500) 910/mmc (900-3200) 699/mmc (750-2700) 

CD4+ 37.0% (29.4-55.7) 31.5% (24.9-51.1) 32.5% (27.9-53.4) 

507/mmc (600-2760) 384/mmc (500-2100) 267/mmc (380-1730) 

HLA-DR+ 6.5% (1.3-12.1) 19.2% (1.4-11.5) 

33/mmc (17-225) 51/mmc (17-244) 

Naïve CD45RA+CCR7+ 50.3% (49.2-85.8) 10.7% (35.1-82.2) 

255/mmc (440-2050) 29/mmc (205-1140) 

RTE CD45RA+CCR7+CD31+ 1.4% (26.2-67.1) 

4/mmc (180-750) 

Central memory CD45RA-CCR7+ 40.5% (9.6-31.9) 63.1% (10.7-44.3) 

205/mmc (210-540) 168/mmc (130-490) 

Effector Memory CD45RA-CCR7- 7.3% (2.8-16.9) 24.7% (5.4-25.3) 

37/mmc (40-240) 66/mmc (60-275) 

Terminal differentiated 

CD45RA+CCR7- 

1.8% (0.7-4.8) 1.7% (0.6-6.5) 

9/mmc (8-110) 5/mmc (3-31) 

CD8+ 24.6% (11.6-32.4) 40% (13.8-31.2) 46.9% (12.3-31.9) 

337/mmc (410-1360) 488/mmc (400-1150) 385/mmc (270-800) 

HLA-DR+ 11.0% (0.9-33.2) 44.8% (1.8-31.4) 

37/mmc (20-500) 172/mmc (12-320) 

Naïve CD45RA+CCR7+ 47.2% (22.8-79.9) 9.5% (15.1-76.7) 

159/mmc (160-760) 37/mmc (60-530) 

Central memory 

CD45RA-CCR7+ 

7.1% (0.9-11.3) 4.4% (1.3-15.4) 

24/mmc (7-115) 17/mmc (15-80) 
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Effector Memory 

CD45RA-CCR7- 

33.4% (4.7-31.3) 62.7% (6.1-40.1) 

113/mmc (30-380) 241/mmc (60-280) 

Terminal differentiated 

CD45RA+CCR7- 

12.3% (6.8-52.7) 23.5% (6.8-46.7) 

41/mmc (80-620) 90/mmc (30-300) 

CD19+ 10.0% (10.7-34.9) 10.7% (8.6-26.3) 2.8% (6.3-25.4) 

137/mmc (260-1750) 131/mmc (215-1000) 23/mmc (106-1200) 

RBE CD38hiCD10+ 13.3% (10.6-42.6) 7.7% (4.2-28.5) 

18/mmc (40-540) 2/mmc (20-175) 

Naïve IgD+CD21hiCD10-CD27- 46.3% (34.2-65.5) 40.3% (39.9-74.1) 

63/mmc (125-800) 9/mmc (60-360) 

CD19hiCD21lo 25.6% (1.5-9.8) 31% (1.0-15.8) 

35/mmc (8-70) 7/mmc (4-87) 

Switched memory IgD-

CD27+CD21hi 

1.3% (1.5-14.2) 1.3% (2.7-16.5) 

2/mmc (18-140) 0/mmc (6-90) 

IgM Memory IgD+CD27+CD21hi 9.9% (2.9-15.3) 11.1% (3.4-18.0) 

14/mmc (22-135) 3/mmc (5-108) 

Terminal differentiated 

CD38hiCD27hiCD20- 

2.9% (0.4-15.3) 4.7% (0.2-7.1) 

4/mmc (4-130) 1/mmc (1-32) 

PC CD38hiCD27hiCD20-CD138+ n.a. 0.7% (0.1-2.4) 

0/mmc (0-8) 

CD56+CD16+ 9.9% (3.0-21.3) 13% (3.3-22.8) 10.7% (3.8-24.6) 

136/mmc (90-850) 159/mmc (120-900) 87/mmc (80-830) 

CD3+CD4+CD8- a/b (total/CD3+ 

lymphocytes) 

n.a. 2.66%/3.57% (1.5-2.5) 4.6%/5.7% (1.5-2.5) 

TCR γ/δ 13.6% 1.3% 

Isohemoagglutinin Anti-B absent, Anti-A 1:8 

Mitogen proliferation Normal Reduced to PHA and ConA 

TRECs 33147 (3521+-17922) 

IgG / A / M 685 / 73 / 83 mg/dl 274 / 17 / 185 mg/dl 321 / 7 / 59 mg/dl 

Anti-tetanus /  Anti-diphtheria Ab Absent / Absent Absent / Absent Absent / Absent 

Spleen diameter 11.6 cm 14 cm 17 cm 
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Between brackets reference values for absolute and percentages are shown according to age. ConA = 

concavalin A. Ig = immunoglobulin. PC = plasmacells. PHA = phytohemoagglutinin. RTE = recent thymic 

emigrants. RBE = recent B emigrants. TCR = T cell receptor. TRECs = T-cell receptor excision circles. WBC = 

white blood cells.  
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First evidence of a paediatric patient with Cornelia de Lange 

syndrome with acute lymphoblastic leukaemia. 
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AbSTrACT
Cornelia de Lange syndrome (CdLS) is a rare autosomal-
dominant genetic disorder characterised by prenatal 
and postnatal growth and mental retardation, facial 
dysmorphism and upper limb abnormalities. Germline 
mutations of cohesin complex genes SMC1A, SMC3, 
RAD21 or their regulators NIPBL and HDAC8 have 
been identified in CdLS as well as somatic mutations 
in myeloid disorders. We describe the first case of a 
paediatric patient with CdLS with B-cell precursor Acute 
Lymphoblastic Leukaemia (ALL). The patient did not 
show any unusual cytogenetic abnormality, and he was 
enrolled into the high risk arm of AIEOP-BFM ALL2009 
protocol because of slow early response, but 3 years 
after discontinuation, he experienced an ALL relapse. 
We identified a heterozygous mutation in exon 46 of 
NIPBL, causing frameshift and a premature stop codon 
(RNA-Targeted Next generation Sequencing Analysis). 
The analysis of the family indicated a de novo origin of 
this previously not reported deleterious variant. As for 
somatic cohesin mutations in acute myeloid leukaemia, 
also this ALL case was not affected by aneuploidy, thus 
suggesting a major impact of the non-canonical role of 
NIPBL in gene regulation. A potential biological role of 
NIPBL in leukaemia has still to be dissected.

InTroduCTIon
The multimeric cohesin complex is highly evolu-
tionary conserved and consists of core proteins 
(SMC1A, SMC3, RAD21 and either SA1 or SA2 in 
vertebrate) and associated proteins (PDS5A, WAPL 
and Sororin). The cohesin complex has been shown 
to play a pivotal role in sister chromatid cohesion 
to spindle apparatus preceding chromosome segre-
gation and in fundamental cellular events such as 
postreplicative DNA repair, checkpoint activation 
and transcription regulation.1 Indeed, transcription 
factors clusters are formed around cohesins that 
warrant both DNA accessibility and binding. Germ-
line mutations in cohesin genes cause autosomal 
dominant genetic disorders termed cohesinopa-
thies, among which Cornelia de Lange syndrome 
(CdLS, OMIM 122470, 300590, 610759, 614701, 
300882) and Roberts syndrome (RBS, OMIM 
268300) are the best described.2 Patients with 
CdLS present developmental delay, specific facial 
features, behavioural abnormalities and major 
malformations. CdLS is caused by heterozygous 
variant in NIPBL, RAD21 or SMC3 or hemizygous 
variant in HDAC8 or SMC1A.3

Somatic mutations in cohesins have been rarely 
reported in cancer.4 However, in 6%–13% of 
acute myeloid leukaemia (AML) and other myeloid 
neoplasms, their mutations involving multiple 
components of the cohesin-complex, including 
STAG1/SA1, STAG2, RAD21, SMC1A and SMC3 
have been reported.5–7 Interestingly, recently, 
a single CdLS/AMKL (acute megakaryoblastic 
leukaemia) case has been reported with a constitu-
tional NIPBL mutation.8

Herein, we describe the first patient with CdLS 
with acute lymphoblastic leukaemia (ALL) carrying 
a novel NIBPL pathogenetic variant.

MeThodS
The index patient was enrolled in the AIEOP-BFM 
ALL2009 study and written informed consent was 
obtained from parents within the protocol. DNA 
samples from buccal smears have been collected 
under Informed Consent for research purposes, 
in accordance with the Declaration of Helsinki. 
Details of molecular biology, bioinformatics and 
statistics analyses are described in online supple-
mentary file 1. Briefly, conventional cytogenetic, 
RT-PCR, PCR-based MRD molecular approaches 
have been applied, in addition to RNA targeted 
Next Generation Sequencing (NGS) panel (TruSight 
Pan-Cancer, Illumina, San Diego, California, USA; 
FASTQ files available on ENA database, acces-
sion PRJEB29923). Diagnostic and remission 
DNA samples were genotyped by CytoScan HD 
Array (Affymetrix, Santa Clara, California, USA; 
submitted to GEO GSE122859), in addition to 
buccal DNA, used for PCR variants analyses.

reSulTS And dISCuSSIon
The index patient (PT1) was a male diagnosed at 
the age of 3 years as CdLS based on clinical features, 
such as short stature, typical facial dysmorphism, 
small hands, bilateral clinodactyly of the fifth finger, 
gastro-oesophageal reflux, back hirsutism, micro-
cephaly and intellectual disabilities. Moreover, 
CdLS diagnosis was supported by the use of the 
recently published scoring system which turned to 
be positive (12 points with three cardinal features).9 
At the age of 18 months, he had a surgical interven-
tion of anti-inflammatory plastic to cardiac oedema 
and bilateral biinguinal hernia. When 8 years old, 
he was diagnosed with B-cell precursor ALL. He 
had no central nervous system involvement and 
he was allocated in the high risk treatment group 
arm of the AIEOP-BFM ALL 2009 study protocol 
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Table 1 Cohesins variants by targeted RNA NGS analysis

Gene Chr Start end ref Alt VF Func.refGene

exonic
Func.
refGene

AAChange.
refGene dbSnP clinvar

NIPBL 5 37 063 905 37 063 905 – T 0.60 Exonic Frameshift insertion NIPBL:NM_015384:exon46:c.7977
dupT:p.P2659fs,NIPBL:NM_133433:
exon46:c.7977dupT:p.P2659fs

NOVEL n.a.

SMC3 10 110 596 573 110 596 573 G A 1 Intronic None n.a. rs7075340 CLINSIG=benign

110 602 112 110 602 112 A G 1 Exonic Synonymous SNV/ silent SMC3:NM_005445:exon25:
c.A3039G:p.S1013S

rs2419565 CLINSIG=non-pathogenic

SMC1A X 53 422 619 53 422 619 G A 1 5'UTR 5_prime_UTR_variant NM_006306:c.-19C>T,
NM_001281463:c.-682C>T

rs1264011 CLINSIG=non-pathogenic

VF=variant frequency = N°Alt Reads/ (N°Alt Reads+N°Ref Reads).
NGS, Next Generation Sequencing; n.a., not applicable.

because of slow early response pattern as assessed by Minimal 
Residual Disease monitoring. The patient did not experience 
major complications during treatment, but 3 years after discon-
tinuation, he experienced an ALL relapse. The investigations on 
bone marrow (BM) at diagnosis did not reveal any prognosti-
cally relevant fusion transcript (ETV6/RUNX1, BCR/ABL1, MLL/
AF4, TCF3/PBX1). Further, we applied RNA targeted TruSight 
Pan-Cancer panel, which contains probes for 1385 genes 
involved in cancer, B-cell leukaemia included (such as ABL1, 
JAK2, EBF1, IKZF1), to assess the presence of other alternative 
fusion transcript and to identify causative CdLS mutation. Bioin-
formatics analysis excluded the presence of fusions, while two 
known germline variants of JAK3 and one of TP53 have been 
detected (online supplementary table S1), confirmed by PCR 
(online supplementary table S2) on diagnostic/remission/buccal 
samples in PT1 and family (online supplementary table S3). 
The JAK3 rs7254346 variant (shared between PT1 and father) 
is frequent (MAF=0.2815 in 1000Genomes, dbSNP database) 
and annotated as benign in ClinVar repository. However, JAK3 
rs3213409 has been assessed as heterozygous in all family 
members, although rare (MAF=0.0036 in 1000Genomes, 
dbSNP). Importantly, this variant has been described as somatic 
but not germinal mutation both in AML and ALL.10

Also, the TP53 rs1042522, shared between PT1 and mother is 
a common variant as well as the identified homozygous genotype 
G/G, whose biological significance is reported as benign, with a 
potential involvement in drug response.

Moreover, FISH analysis identified IGH/CRLF2 translocation 
(online supplementary figure S1), while whole genome SNParray 
analysis identified recurrent somatic copy number variations, 
including IKZF1 deletion (online supplementary table S4).

Among cohesin genes included in PanCancer panel, variant 
analysis identified four variants in PT1 (table 1, online supple-
mentary data), which includes also the cohesin complex gene, 
such as SMC1A, SMC3, NIPBL, STAG2, RAD21.

Importantly, a novel c.7977dupT:p.P2659fs insertion variant 
was identified in exon 46 of NIPBL (table 1 and figure 1A). We 
further validated this mutation on BM diagnosis and remission 
DNA samples as well as on DNA from buccal smear collected 
after stop therapy (Sanger analyses are shown in figure 1B and 
PCR in online supplementary figure S2A). The analyses of this 
variant in buccal swabs from parents and the unaffected brother 
were negative as expected (figure 1B, online supplementary 
figure S2B), demonstrating its germline de novo origin in PT1. 
The predicted analysis of the Open Reading Frame indicated 
that the frameshift variant caused a premature stop codon and 
a truncated protein of 2659 AAs, instead of the expected 2804 
AAs full length wild type NIPBL (online supplementary figure 
S3 and table S5). Additionally, this variant occurs within a highly 

conserved region among species (online supplementary figure 
S4).

Furthermore, the intronic rs7075340 in SMC3 and the exonic 
synonymous rs2419565 were annotated as non-pathogenic 
(dbSNP).

The fourth identified variant was the rs1264011 (dbSNP) 
hemizygous mutation (table 1), located in 5’UTR region of 
SMC1A gene (chromosome X) and annotated as benign (ClinVar, 
last Update: 8 September 2018).11 It has been validated in PT1 
diagnosis, remission and buccal swab DNA (online supplemen-
tary figure S5). We also confirmed its obvious maternal origin 
and the presence in the not affected brother (online supplemen-
tary figure S6).

Comprehensively, figure 1C shows the pedigree of family, 
with indicated the distribution of relevant variants.

According to the multiple hit hypothesis on cancer origin, 
there is growing evidence that lesions associated to genetic 
syndromes can predispose to cancer.12 Some cancer predisposing 
syndromes have been associated either with ALL, that is, Down, 
Noonan, Li-Fraumeni and Williams syndromes,12 or correlated 
to AML/MDS,13 for example, Baraitser–Winter Cerebrofronto-
facial Syndrome.14

Although mutations in cohesins have been found in many 
tumours myeloid neoplasms,5–7 only few cases have been 
reported in patients with CdLS, also as accidental autoptic find-
ings.15 Very recently, a patients with CdLS was reported with 
AMKL,8 harbouring somatic aberrations characteristics of Down 
syndrome associated AMKL (ie, transient myeloid disorder, 
somatic trisomy 21 and GATA1 mutation), a condition in which 
cohesin mutations have been found in more than 50% of cases,16 
thus suggesting their biological relevant role.

In the present study, we report the first case of a paediatric 
patient with CdLS with concomitant ALL, carrying a germinal 
novel frameshift mutation in NIPBL, which is most likely respon-
sible for the CdL autosomal dominant syndrome.

Those observations, although based on single cases, lead to 
hypothesise that unique mutational combinations of cohesins 
(either constitutive or somatic) with somatic leukemic variants 
can be related to specific myeloid or lymphoid leukaemias.

The expected result of the involvement of germline and 
somatic variants of cohesin genes in leukaemia would consist 
in aneuploidy, as a consequence of their canonical role in the 
assembly of the mitotic spindle.1 Alternatively, the non-canon-
ical role of cohesins in gene regulation might be determining a 
higher susceptibility to DNA damage or can potentially affect 
B-cell differentiation, because of immunoglobulin class switch
recombination impairment, as previously shown in CdLS B-lym-
phoblastoid cell lines.17 As hypothesis and schematically repre-
sented in online supplementary figure S7, these mechanisms still
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Figure 1 NIPBL mutation in PT1 affected by CdLS and BCP-ALL. (A) Genomic region sequence on Chromosome 5, with details of NIPBL exon 46 and 
25 bp of flanking introns. The underlined sequence showed the novel mutation, highlighted in red, NIPBL: NM_015384:exon46:c.7977dupT:p.P2659fs. 
(B) Chromatograms showed the correspondent underlined sequence of exon 46, obtained by PCR and Sanger analyses. From top to the bottom, 
the three upper panels represented PT1 diagnostic bone marrow (DX BM), remission bone marrow and germinal DNA isolated from buccal swab, 
respectively. The three lower panels showed the same NIPBL gene region in family buccal swab DNA. (C) Cohesin genes variants pattern in patient 1
and his family. BCP-ALL, B-cell precursor acute lymphoblastic leukaemia; CdLS, Cornelia de Lange syndrome.

need to be established and further explored in larger popula-
tions to comprehend the functional link between cohesin and 
leukaemia.

handling editor Mary Frances McMullin.
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Abstract
Acute lymphoblastic leukemia (ALL) is the most frequent pediatric cancer. Fusion genes are hallmarks of ALL, and they are used as
biomarkers for risk stratification as well as targets for precision medicine. Hence, clinical diagnostics pursues broad and
comprehensive strategies for accurate discovery of fusion genes. Currently, the gold standard methodologies for fusion gene
detection are fluorescence in situ hybridization and polymerase chain reaction; these, however, lack sensitivity for the identification of
new fusion genes and breakpoints. In this study, we implemented a simple operating procedure (OP) for detecting fusion genes. The
OP employs RNA CaptureSeq, a versatile and effortless next-generation sequencing assay, and an in-house as well as a purpose-
built bioinformatics pipeline for the subsequent data analysis. The OP was evaluated on a cohort of 89 B-cell precursor ALL (BCP-
ALL) pediatric samples annotated as negative for fusion genes by the standard techniques. TheOP confirmed 51 samples as negative
for fusion genes, and, more importantly, it identified known (KMT2A rearrangements) as well as new fusion events (JAK2
rearrangements) in the remaining 38 investigated samples, of which 16 fusion genes had prognostic significance. Herein, we describe
the OP and its deployment into routine ALL diagnostics, which will allow substantial improvements in both patient risk stratification
and precision medicine.

Introduction

Acute lymphoblastic leukemia (ALL) is the most common
pediatric cancer.1 The 5-year survival rate exceeds 85% in
children, but the survival following relapse is poor.2 Analysis of
paired diagnosis/relapse ALL samples shows clonal diversity that

arises from the accumulation of new deletions and mutations
over time. Despite that, the founding fusion genes are usually
conserved from diagnosis to relapse, indicating that the
predominant clones observed at diagnosis and relapse are clones
derived from a common ‘preleukemic’ clone.3 Fusion genes
arise from chromosomal translocations and intrachromosomal
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rearrangements that mainly disrupt genetic regulators of normal
hematopoiesis as well as lymphoid development (e.g., those
involving RUNX1 and ETV6) and constitutively activate
tyrosine kinases4 (e.g., ABL1 chimeras). Thus, fusion genes are
hallmarks of ALL that play a pivotal role in leukemogenesis, and
their identification is crucial for patient risk stratification.5

Common fusion genes in B-lineage ALL are: t(12;21)(p13;q22),
encoding ETV6-RUNX1 (TEL-AML); t(1;19)(q23;p13), encoding
TCF3-PBX1 (E2A-PBX1)6; t(9;22)(q34;q11.2), resulting in forma-
tion of the “Philadelphia” chromosome, encoding BCR-ABL1;
rearrangements of KMT2A (MLL) at 11q23 to a range of fusion
partners7; and rearrangementsof the cytokine receptorgeneCRLF2
at the pseudo autosomal region 1 (PAR1) at Xp22.3/Yp11.3.8,9

Fusion genes correlate with the clinical outcome, and they are used
as biomarkers for patient risk stratification10: for example, patients
positive for t(12;21)/ETV6-RUNX1 have the most favorable
prognosis, whereas t(9;22)/BCR-ABL1, t(1;19)/TCF3-PBX1, and
KMT2A-AFF1 correlate with a brief disease latency and have a
poor prognosis.10,11 Moreover, specific drug inhibitors antagoniz-
ing the fusionproteins provide amore efficient and less toxic tool for
disease eradication (precision medicine): for example, the imatinib
tyrosine kinase inhibitor inhibits the oncogenic deregulation caused
by the (9;22)/BCR-ABL1 fusion protein.12

Before the next generation sequencing (NGS) era, elaborate
and extensive cytogenetic studies lead to the description of few
recurrent and highly expressed fusion genes,13 such as BCR-
ABL1 and ETV6-RUNX1. The characterization of their break-
point coordinates enabled the design of diagnostic screening by
both quantitative multiplex polymerase chain reaction (qPCR)
and fluorescence in situ hybridization (FISH).14 The recent
introduction of NGS allowed a fast and accurate screening of the
patient’s genome at the nucleotide level, which lead to the
discovery of a broad array of previously unknown fusion genes.15

This reflects the increased capability of NGS to recognize subtle
chromosomal rearrangements. On the contrary, FISH may only
detect exchanges of considerably larger chromosome segments,
without nucleotide precision, while qPCR screenings can identify
already known fusion gene breakpoints only.16

Whole transcriptome sequencing (RNAseq), together with open-
source bioinformatics tools, has already been applied to identifying
fusion genes.17 Whole RNAseq performs well in the detection and
quantification of highly and medium abundant transcripts, but it
may fail in cases of low abundance transcripts.18 The RNA capture
sequencing (RNACaptureSeq) is a probe-based assay for capturing,
amplifying, and sequencing genomic regions of interest only
(targets). The RNA CaptureSeq generates libraries of small
fragments (250–300 bp) in a short time (2.5 days) compared to
wholeRNAseq, and it is compatiblewith thewell-knownMiSeqand
NextSeq Illumina NGS platforms. RNA CaptureSeq is sensitive to
low abundance transcript variants of targeted genes19; however, the
detection of fusion transcriptsmay be compromisedwhen the fusion
partner gene isnot part of the captureprocedure (unknownpartner).
This scenario reduces discoverability of fusion transcripts to only
those fragments that span the target gene breakpoint.
We have developed and herein present a simple, efficient, and

ready-to-use operating procedure (OP) for the clinical identifica-
tion of fusion genes in B-cell ALL. The OP is based on RNA
CaptureSeq, and it is supported by an in-house bioinformatics
pipeline that is purpose-built to detect and extend fragments
spanning the fusion gene breakpoint. We applied the OP to a
cohort of 89 B-cell ALL pediatric patients enrolled in the AIEOP-
BFM ALL clinical protocol20 that were annotated as negative to
fusion genes by the standard screening methods. This paper

summarizes the results of the OP applied to clinical diagnostics
and discusses its implications for patient risk stratification.

Results

Comparison of available bioinformatics pipelines

We developed a bioinformatic method for fusion gene assessment
from RNA CaptureSeq datasets and evaluated it on a training
dataset composed of 23 samples evaluated as positive to 6 different
fusion genes, namely t(9;22)/BCR-ABL1, t(12;21)/ETV6-RUNX1,
t(4;11)/KMT2A-AFF1, del(X)/P2RY8-CRLF2, t(1;19)/TCF3-
PBX, and t(9;11)/KMT2A-MLLT3, by standard methods. Our
method distinguished all 6 sample-specific fusion genes within the
dataset. In addition,we analyzed the same training dataset through
Illumina BaseSpace, STAR-Fusion,21 and the customized pipeline
described by Jennifer L.Winters et al.22 The STAR-Fusion tool did
not detected 1 out of 6 fusion genes (del(X)/P2RY8-CRLF2), while
the Illumina BaseSpace did not detect 2 out of 6 fusion genes (t
(9;11)/KMT2A-MLLT3 and t(4;11)/ KMT2A- AFF1). The
method described by Jennifer L. Winters et al. did not detect 3
out of 6 fusion genes (t(1;19)/TCF3-PBX, t(9;11)/KMT2A-
MLLT3, and del(X)/P2RY8-CRLF2) (Table 1).
The ability of our procedure to detect all fusion transcripts

derives from the fine-tuning of the bioinformatics pipeline to
cover the specific RNA target–capture scenario, where both genes
involved in the fusion are not always captured (see Material and
Methods and Fig. 1). For these reasons, we applied only our
method in the subsequent analyses.

Evaluation of the OP in clinical diagnosis

RNA material obtained from patient bone marrow mononuclear
cells at the onset or relapse of the disease was sequenced using the
RNA PanCancer (Illumina, San Diego, CA). Raw FASTQ files
underwent quality control and were afterwards analyzed through
our system. A detailed description of the OP strategy is available in
the Materials and Methods section. The time required for the
procedure fromlibrarypreparationtoobtainingresultswas2.5days.
We screened a cohort of 89 samples of B-cell ALL leukemia (test

set) for positivity to fusion genes. All samples were negative for the
fusion genes t(12;21)/ETV6-RUNX1, t(9;22)/BCR-ABL1, t(4;11)/
KMT2A-AFF1, and t(1;19)/TCF3-PBX1 by the standard screening
methods. The test set was divided into 3 groups: frontline high-risk
(HR), relapse (RL), and patients with a high value of minimal
residual disease (MRD) at day 33 of chemotherapy induction (TP1
+). Overall, the OP identified 26 different fusion genes in 38 out of
the 89 investigated samples, with the transcripts of 16 of them being
of prognostic value (Table 2 and Suppl. Table 1, Supplemental
DigitalContent, http://links.lww.com/HS/A34).Newfusiongenes in
B-cell ALL and not recorded in public databases were validated
through reverse transcription PCR (RT-PCR) or FISH to discern
between false and true positives (Supplementary Table 2, Supple-
mental Digital Content, http://links.lww.com/HS/A34).

OP applied to the frontline HR group

Seven out of 16 samples (43%) resulted as positive for fusion genes
(Fig. 2a). Four samples carried fusion genes recurrently associated
to B-cell ALL: t(5;5)/EBF1-PDGFRB (n=2), t(9;9)/PAX5-JAK2
(n=1), and t(12;19)/ZNF384-TCF3 (n=1) and 3 samples were
positive for t(19;19)/TCF3-OAZ1 (n=1), t(7;7)/IKZF1-DDC (n=
1), t(2;9)/ZEB2-JAK2 (n=1), and t(9;17)/MPRIP-JAK2 (n=1)
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fusion genes. All fusion transcripts were confirmed by RT-PCR,
while the novel fusion genes t(2;9)/ZEB2-JAK2 (n=1) and t(9;17)/
MPRIP-JAK2 were validated through FISH (Suppl. Fig. 1,
Supplemental Digital Content, http://links.lww.com/HS/A34).

OP applied to the TP1+ group

The OP identified fusion genes in 19 out of 49 samples (38.8%)
(Fig. 2b). Nine samples were evaluated as positive for fusion

genes that are frequent in B-cell ALL: t(17;19)/TCF3-HLF (n=
2), del(X)/P2RY8-CRLF2 (n=3), t(5;5)/EBF1-PDGFRB (N=
2), t(12;19)/ETV6-JAK3 (n=1), t(12;22)/ZNF384-EP300 (n=
1). We also identified a novel inter-chromosomal rearrange-
ment, t(9;20)/PAX5-C20orf112 (n=1), and a variety of intra-
chromosomal fusion genes (n=9) that were already annotated
in public databases, and we validated them by RT-PCR (Suppl.
Table 1, Supplemental Digital Content, http://links.lww.com/
HS/A34).

Table 1

Comparison of available bioinformatics pipelines.

Metadata Bioinformatics Pipeline
Sample Blast% Fusion gene Raw-reads FASTQC Probes Internal BaseSpace TopHat Star-Fusion

KN1 90 t(9;22) BCR-ABL1 3.22E+06 + t/p + + + +
KN2 90 t(12;21) ETV6-RUNX1 5.19E+06 + t/p + + ND +
KN3 92 t(4;11) KMT2A-AFF1 5.60E+06 + t/p + + ND +
KN4 90 t(9;22) BCR-ABL1 4.76E+06 + t/p + + ND +
KN5 93 t(9;22) BCR-ABL1 6.06E+06 + t/p + + ND +
KN5 93 t(12;21) ETV6-RUNX1 6.06E+06 + t/p + + ND +
KN6 98 del(X) P2RY8-CRLF2 3.81E+06 + t/p + + ND ND
KN7 NA t(9;22) BCR-ABL1 2.41E+06 + t/p + + ND +
KN8 NA t(4;11) KMT2A-AFF1 2.57E+06 + t/p + + ND +
KN9 91 t(1;19) TCF3-PBX 2.46E+06 + t/p + + ND +
KN10 64 t(12;21) ETV6-RUNX1 2.30E+06 + t/p + + ND +
KN11 NA t(9;11) KMT2A-MLLT3 2.50E+06 + t/p + + ND +
KN12 NA t(9;22) BCR-ABL1 1.62E+06 + t/p + + + +
KN13 NA t(4;11) KMT2A-AFF1 2.40E+06 + t/p + + + +
KN14 91 t(1;19) TCF3-PBX 6.53E+05 + t/p + + ND +
KN15 64 t(12;21) ETV6-RUNX1 2.47E+06 + t/p + + ND +
KN16 NA t(9;11) KMT2A-MLLT3 6.21E+06 + t/p + ND ND +
KN17 NA t(9;22) BCR-ABL1 5.29E+06 + t/p + + ND +
KN18 93 t(4;11) KMT2A-AFF1 3.17E+06 + t/p + ND ND +
KN19 90 t(4;11) KMT2A-AFF1 6.56E+06 + t/p + + + +
KN20 93 t(1;19) TCF3-PBX 6.73E+06 + t/p + + ND +
KN21 94 t(4;11) KMT2A-AFF1 4.50E+06 + t/p + + ND +
KN22 70 t(12;21) ETV6-RUNX1 4.66E+06 + t/p + + + +
KN23 97 t(9;22) BCR-ABL1 5.44E+06 + t/p + + + +

FIGURE 1. The standard operating procedure: (A) RNA CaptureSeq protocol allows the isolation of specific genomic regions (targets) through complementary
probes; then, the captured fragments are sequenced, and the FASTQ file quality is evaluated. (B) The bioinformatics pipeline includes four sequential steps, which
allows the identification of fusion genes through the identification of putative break-points on the genomic sequences of targeted genes.
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Table 2

RNAseq Fusion transcripts identified by our OP.
fz Fusion gene Probes Progn. PCR FusionHub

6 t(8;8) NDRG1-ST3GAL1 t � + [’CHIMERSEQ’, ’Tumor_Fusion_GDP’,’HPA’,’Banned_dataset’,’Known_Fusions’]
5 t(5;5) CAMK2A-CD74 t/p � + [’Known_Fusions’]
5 del(X) P2RY8-CRLF2 t/p + + [’CHIMERPUB’, ’FARE-CAFE’, ’TICDB’]
4 t(5;5) PDGFRB-EBF1 t/p + + [’CHIMERSEQ’, ’CHITARS’, ’Known_Fusions’]
3 t(13;13) PSPC1-ZMYM2 p � + [’Banned_Dataset’,’GTEx’]
3 t(19;19) DOT1L-OAZ1 t � + [’HPA’, ’Banned_Dataset’]
2 t(10;10) PTEN-RNLS t � + [’Tumor_Fusion_GDP’]
2 5(13;13) RB1-RCBTB2 t � + [’GTEx’]
2 t(17;19) TCF3-HLF t/p + + [’CHIMERKB’, ’CHIMERPUB’, ’FARE-CAFE’,’TICDB’]
2 t(19;19) TCF3-OAZ1 t � + NOVEL
2 t(5;5) ARHGAP26-NR3C1 t/p � + [’HPA’, ’Banned_Dataset’,’GTEx’]
1 t(10;11) MLLT10-KMT2A t/p + + [’CHIMERKB’, ’CHIMERPUB’]
1 5(11;11) KMT2A-USP2 t/p + + [’Known_Fusions’]
1 t(12;12) BCL7A-NCOR2 t/p � + [’Known_Fusions’]
1 t(12;19) ETV6-JAK3 t/p + + NOVEL
1 t(12;19) ZNF384-TCF3 t/p + + [’CHIMERSEQ’, ’CHITARS’, ’FARE-CAFE’, ’TICDB’, ’Known_Fusions’]
1 t(12;22) ZNF384-EP300 t/p + + [’CHIMERPUB’]
1 t(17;17) SUZ12P1-CRLF3 t � + [’18_Cancers’]
1 t(9;17) MPRIP-JAK2 p + + NOVEL
1 t(21;21) RUNX1-DYRK1A t + + [’GTEx’]
1 t(2;9) ZEB2-JAK2 p + + NOVEL
1 t(3;9) MBNL1-PAX5 t/p + + [’Known_Fusions’]
1 t(7;7) IKZF1-DDC t � + NOVEL
1 t(9;20) PAX5-C20orf112 t + + [’CHIMERSEQ’, ’CHITARS’, ’FARE-CAFE’, ’TICDB’]
1 t(9;9) NUP214-ABL1 t/p + + [’COSMIC’,’CHIMERAKB’,’CHIMERPUB’,’CHIMERSEQ’, ’FARE-CAFE’, ’

TICDB’,’TUMOR_Fusion_GDP’,’Oesophagus_Dataset]
1 t(9;9) PAX5-JAK2 t/p + + [’COSMIC’, ’CHIMERKB’, ’FARE-CAFE’, ’TICDB’]

FIGURE 2. (A), (B), and (C) Heatmaps of detected fusion genes among different risk groups. The axes correspond to the detected fusion genes (X) and sample
names (Y). The color code represents the coverage on the fusion gene breakpoint as reported by the scale on the right. The ‘X’ tag highlights fusion genes of
prognostics relevance. (D) Fusion genes distribution in terms of intrachromosomal (green dots) or interchromosomal translocations (red triangles) in relations to the
breakpoint read coverage and percentage of blast cells.
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OP applied to the RL group

The OP identified fusion genes in 12 out of 24 samples of the RL
group (∼50%) (Fig. 2c): t(9;9)/NUP214-ABL1 (n=1), del(X)/
P2RY8-CRLF2 (n=2), t(10;11)/MLLT10-KMT2A (n=1), t
(21;21)/RUNX1-DYRK1A (n=1), and t(3;9)/PAX5-MBLN1
(n=1) fusion genes were associated with ALL and of clinical
relevance for the patients and were hence immediately validated
by RT-PCR. On the other hand, the OP identified additional
fusion genes derived from intra-chromosomal rearrangements,
such as t(8;8)/NDRG1-ST3GAL1 (n=3), t(13;13)/RB1-RCBTB2
(n=2), t(19;19)/DOT1L-OAZ1 (n=1), t(19;19)/TCF3-OAZ1
(n=1), t(5;5)/ARHGAP26-NR3C1 (n=1), and t(5;5)/CAMK2A-
CD74 (n=2), which were already annotated in public databases.

Enrichment of intra-chromosomal fusion genes

TheOP identified 26 fusion genes in 38 investigated patients (HR,
RL, and TP1+ groups). Among them, 17 (65%) fusion genes
derived from intra-chromosomal rearrangements and were

supported by a low read coverage (∼20� to∼50�) in coexistence
with high levels of blast cells in the BM (∼70% to ∼96%)
(Fig. 2d). We did not observe a correlation between intra-
chromosomal fusion genes associated with recurrent chromo-
somal translocations in B-cell ALL (Table 3). RT-PCR confirmed
frequent B-cell ALL intra-chromosomal fusion genes, such as
PDGFRB-EBF1, NUP214-ABL1, and PAX5-JAK2 (Suppl. Ta-
ble 2, Supplemental Digital Content, http://links.lww.com/HS/
A34). P2RY8-CRLF2 fusions were not confirmed by RT-PCR
since those samples correlated with del(X)(p22p22) detected by
multiplex ligation-dependent probe amplification and highly
expressed CRLF2 detected by gene expression profile (data not
presented). We further investigated gene expression levels in
healthy whole-blood samples for genes involved in intra-
chromosomic fusions as well as those not known in B-cell
ALL (n=21, gene set) through the GTEx portal.23 Sixteen genes
had transcript per million (TPM) expression levels from medium
to high (TPM greater than 5.4), while 5 of them had low levels
(TPM between 1 and 5.4) (Fig. 3). Also, some intra-chromosome
fusion transcripts involved genes spatially close, within a range of

Table 3

Sample-specific fusion transcripts.

Sample Fusion gene Chromosome % Leukemic cell in BM Sex Karyotype

HR2 TCF3-OAZ1 t(19;19) 98 F
HR3 PDGFRB-EBF1 t(5;5) 60 M
HR4 ZEB2-JAK2jIKZF1-DDC t(2;9)jt(7;7) NA M
HR6 MPRIP-JAK2 t(9;17) NA M
HR7 PDGFRB-EBF1 t(5;5) 53 M 46,XY,der(1)inv(1)(q21q31)dup

(1)(q31q32)[8]/46,XY[14]
HR8 PAX5-JAK2 t(9;9) NA M
HR12 ZNF384-TCF3 t(12;19) 90 F
PT1 P2RY8-CRLF2 del(X) 91 M 46,XY, der(9)T(9;?)(p13;?), -13, add

(13)(q34), +21 [10]/47,XY,+21[4]
PT3 P2RY8-CRLF2 del(X) 95 M
PT6 KMT2A-USP2 t(11;11) NA M
PT7 PAX5-C20orf112 t(9;20) NA M
PT10 TCF3-HLFjCAMK2A-CD74jPTEN-RNLS t(17;19)jt(5;5)jt(10;10) NA F
PT11 CAMK2A-CD74 t(5;5) 90 M
PT15 ETV6-JAK3jSUZ12P1-CRLF3 t(12;19)jt(17;17) 90 F
PT18 ZNF384-EP300 chr12-chr22 85 M
PT19 CAMK2A-CD74jDOT1L-OAZ1 t(5;5)jt(19;19) NA M
PT20 PDGFRB-EBF1 t(5;5) 80 F
PT25 NDRG1-ST3GAL1 t(8;8) NA F
PT28 TCF3-HLF t(17;19) 95 F
PT29 PDGFRB-EBF1jARHGAP26-NR3C1 t(5;5)jt(5;5) 98 F
PT33 PTEN-RNLS t(10;10) NA M
PT34 PSPC1-ZMYM2 t(13;13) NA F
PT37 PSPC1-ZMYM2 t(13;13) 80 M
PT38 BCL7A-NCOR2jPSPC1-ZMYM2 t(12;12)jt(13;13) NA F
PT41 DOT1L-OAZ1jNDRG1-ST3GAL1 t(19;19)jt(8;8) NA M
PT46 P2RY8-CRLF2jNDRG1-ST3GAL1 del(X)jt(8;8) NA F
RL1 MLLT10-KMT2A t(10;11) 90 M
RL6 P2RY8-CRLF2 del(X) 76 M
RL7 CAMK2A-CD74jNDRG1-ST3GAL1 t(5;5)jt(8;8) 70 M
RL8 MBNL1-PAX5 t(3;9) NA M
RL10 CAMK2A-CD74jNDRG1-ST3GAL1 t(5;5)jt(8;8) NA M
RL12 NDRG1-ST3GAL1jTCF3-OAZ1jDOT1L-OAZ1 t(8;8)jt(19;19)jt(19;19) 97 M
RL13 P2RY8-CRLF2 del(X) 98 F 47,XX,+21c[14]
RL15 NUP214-ABL1 t(9;9) 92 F
RL17 RB1-RCBTB2 t(13;13) 40 M
RL20 RB1-RCBTB2 t(13;13) NA M
RL22 RUNX1-DYRK1A t(21;21) NA M
RL25 ARHGAP26-NR3C1 t(5;5) 99 F
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150 to 250kb, and annotated as conjoined genes. Indeed, we
validated those fusion gene events by RT-PCR and confirmed
their nucleotide sequences by Sanger sequencing (Suppl. Table 2,
Supplemental Digital Content, http://links.lww.com/HS/A34).

Discussion

Fusion genes are hallmarks of ALL both in pediatric and adult
patients; their identification is crucial to design a risk-reducing-
driven chemotherapy treatment (precision medicine). Precision
medicine allows either very low-risk patients to proceed with
standard therapy or very high-risk patients to be candidates for
experimental and/or targeted therapies. For this purpose,
sensitive, specific, and comprehensive screening of selected
genomic regions prone to chromosomic breaks are needed in
routine diagnostics to identify the increasing variety of fusion
genes.
We built a versatile and straightforwardOP to recognize fusion

genes at nucleotide resolution without any a priori knowledge,
which overcomes the limitations of qPCR and FISH. The OP
employs an RNA CaptureSeq panel that allows targeted
transcriptome sequencing through a simple library preparation
protocol. For the subsequent data analysis, we fine-tuned a
bioinformatics pipeline that deploys robust and stable tools,
which can be easily set up on any operative system through the
Anaconda Platform. Our bioinformatics pipeline recognized all
fusion genes harbored by samples within the training dataset,
while the Star-Fusion, Illumina BaseSpace, and the strategy
proposed byWinter et al reached 83%, 66%, and 50% success in
fusion transcripts identification, respectively. Prognostically
significant and frequent B-cell precursor ALL fusion genes such

as KMT2A rearrangements and P2RY8-CRLF2 were not fully
detected by the external tools. Patients harboring KMT2A
rearrangements have a particularly unfavorable progno-
sis.10,24,25KMT2A is prone to breaks in various genomic location
with several partners, thus making the detection of its resulting
fusion genes challenging. On the other hand, the repetitive nature
of the chromosome X may compromise read alignment and the
identification of the P2RY8-CRLF2 fusion gene. Our results
indicated that our purpose-built, disease- and NGS-strategy
specific bioinformatics pipeline is required for covering many
possible scenarios causing fusion genes. The evaluation of the OP
through the analysis of 89 pediatric B-cell precursor ALL samples
identified 26 different fusion genes among 38 samples that were
undetectable by the standard routine diagnostics. Sixteen of those
fusion transcripts have prognostic value since they involved
rearrangements in genes driving leukemogenesis (KMT2A, JAK2,
and PAX5). Moreover, the newly identified fusion genes t(2;9)/
ZEB2-JAK2 and t(9;17)/MPRIP-JAK2, which are possibly
targetable by JAK/STAT inhibitors, highlight the potential of
our OP for precision medicine and biomarker discovery.
Additionally, we detected a case of NUP214/ABL1 fusion genes
in B-cell ALL, which only 2 cases were previously reported.26 We
confirmed the increased capability provided by RNA CaptureSeq
to detect small local structural variants through the identification
of a variety of intra-chromosomal fusion genes (n=17). Multiple
intra-chromosomal fusion genes were the only detected in the
sample within our set of genes (n=1385); hence, it is not possible
to state any functional correlation between those rearrangements
and the recurrent fusion genes (such as BCR-ABL1, ETV6-
RUNX1, and KMT2A rearrangements). Some intra-chromo-
somal fusion transcripts, namely PSPC1-ZMYM2, DOT1L-
OAZ1, RB1-RCBTB2, ARHGAP26-NR3C1, were also observed
in NGS studies27,28,29 of healthy populations (e.g., GTEx,
Banned_dataset, andHPA), or annotated as conjoined genes.30,31

We also detected intra-chromosomal fusion transcripts involving
recurrent leukemogenic genes (IKZF1-DDC, P2RY8-CRLF2,
KMT2A-UPS2, MLLT10-KMT2A) that are prone to deletions
and with a prognostic value (such as IKZF1,32 and KMT2A33).
Despite RNA CaptureSeq cannot discerns between inter- and
intra- chromosome fusion genes when the same chromosomes are
involved, these previous studies suggested an intra-chromosome
origin.
In conclusion, herein we have described an NGS-based

approach suitable for the detection of fusion genes, regardless
of their expression levels, that may be incorporated into routine
ALL diagnostics, with the advantage of a substantial improve-
ment of precision medicine. Despite the OP lacks ISO certifica-
tion, our finding highlights its potential and the need to develop
bioinformatics tools addressing fusion genes detections from the
RNA CaptureSeq scenario with precision. For this purpose, our
OP may offer an idea for their implementation. Nonetheless,
further studies are required to understand the biological
significance and the potential therapeutic implication of the
additional discoveries allowed by this tool.

Materials and methods

Patient cohort

A cohort of 89 B-cell precursor (BCP) ALL patients enrolled in the
AIEOP-BFM ALL2009 protocol in Italy was sequenced by
Illumina RNA CaptureSeq PanCancer to discern prognostic
fusion genes. The cohort was composed of: 16 patients from the

FIGURE 3. Gene expression profile of genes involved in intra-chromosomal
fusion genes but not associated to ALL.
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frontline HR group, with a level of MRD above 5�10–4 at day
+78 (TP2), who were shown as fusion gene-negative during the
screening; 49 patients TP1+, that is, with a high level of PCR-
MRD (>5�10–4 compared to diagnostic value) at day +33 from
the start of the induction therapy; and 24 patients from the RL
(defined as having at least 5�10–2 blast cells after complete
remission, CR). See Suppl. Table 3 (Supplemental Digital
Content, http://links.lww.com/HS/A34).

Training dataset

A subgroup of 23 pediatric ALL patients enrolled in the AIEOP-
BFM ALL2009 protocol, who were positive for fusion genes by
standard clinical diagnosis, were selected. We used this subgroup
as a training dataset for the development and evaluation of our
bioinformatics pipeline of analysis for the assessment of fusion
genes.

FISH analysis for validating the identified fusion
genes

The experiments were performed on BM metaphases from
archival methanol:acetic acid-fixed chromosome suspensions, as
previously described.17 Bacterial Artificial Chromosome (BAC)
clones were opportunely selected according to the NGS data from
the University of California Santa Cruz (UCSC) database (release
of December 2013, GRCh38/hg38) and previously tested on
normal human metaphases. Briefly, chromosome preparations
from BM cells were hybridized in situ with 1 mg of each BAC
probe labeled by nick translation. Hybridization was performed
at 37°C in 2� saline–sodium citrate (SSC), 50% (vol/vol)
formamide, 10% (w/vol) dextran sulfate, 5 mg Cot-1 DNA
(Bethesda Research Laboratories, Gaithersburg, MD, USA), and
3 mg sonicated salmon sperm DNA in a volume of 10 mL. Post-
hybridization washings were performed at 60°C in 0.1� SSC (3
times). In co-hybridization experiments, the probes were directly
labeled with fluorescein, Cy3, and Cy5 or indirectly with biotin–
dUTP and subsequently detected by 7-(diethylamino)coumarin-
3-carboxylic acid N-succinimidyl ester-conjugated streptavidin.
Chromosomes were identified by DAPI staining. Digital images
were obtained using a Leica DMRXA epifluorescence microscope
equipped with a cooled CCD camera (Princeton Instruments,
Boston, MA). All fluorescence signals that were detected using
specific filters were recorded separately as gray-scale images.
Pseudo-coloring and merging of images were performed with
Adobe Photoshop software.

Enrichment analysis

Ensembl gene IDs were extracted through the BioMart API
(https://www.ensembl.org/biomart). Gene expression profile
data from non-diseased samples were obtained from the GTEx
portal through submission of the corresponding ENSEMBL gene
ID (https://gtexportal.org/home/).

External tools for fusion gene assessment

The Illumina BaseSpace pipeline for the identification of fusion
genes first aligns filtered FASTQ files to the reference human
genome through the TopHat34 (v. 2.1.0) or STAR35 aligner (v.
2.5.0a). Then, the STAR aligner supports Manta-fusion and the
TopHat aligner supports the TopHat-fusion36 to identify

candidate fusion genes. For the purpose of our analysis, we
required the Illumina BaseSpace to recognize the sample-specific
fusion gene by at least one application. The STAR-Fusion tool, v.
1.5.0, was utilized with standard parameters on the GRCh38.p12
genome reference and the corresponding Gencode37 annotation
set.We simulated the customized pipeline described by Jennifer L.
Winters et al by deploying TopHat v. 2.1.1, which included
TopHat-Fusion, and running the TopHat-Fusion pipeline with
the Bowtie138 flag activated.

Operating procedure

TheOP consists of a laboratory and a bioinformatics module that
has been built to both maximize the efficiency and minimize the
time of ALL clinical diagnostics. Each element of the laboratory
module is fully customizable and commercially available,
whereas each tool deployed for the bioinformatics module is
freely available through the Anaconda Platform (https://www.
anaconda.com/).

Laboratory module
RNA extraction protocol. Total RNA was extracted during
diagnosis from bone marrow mononuclear cells by the
guanidinium thiocyanate–phenol–chloroform method. Guani-
dine methods were used for total RNA preparation, as described
by Sacchi et al.39

RNA CaptureSeq and sample sequencing. The RNA CaptureSeq
‘TruSight RNA PanCancer’ (Illumina), which includes 57,010
probes complementary to 21,043 coding regions for a total of
1385 cancer-related RNA transcripts, was applied (Fig. 1a). The
protocol required 2.5 days, from library preparation to NGS
sequencing. The sample libraries were prepared per the
manufacturer’s protocol using 10 ng of total RNA. Batches of
8 samples per run were sequenced through cartridge V3 on the
Illumina MiSeq platform in a 75 bp paired-end setting for a total
of 25 million paired-end reads (PE reads). The cost per sample
was about 250 USD. A detailed list of targeted regions can be
obtained from Illumina (https://support.illumina.com/sequenc
ing/sequencing_kits/trusight-rna-pan-cancer-panel/downloads.
html).

Bioinformatics module
FASTQ file quality control. The raw FASTQ quality control was
performed using the FASTQC tool (https://www.bioinformatics.
babraham.ac.uk/), which provided information on reads in terms
of sequence duplication levels, per base and per sequence average
quality score, sequence length distribution, and adapter content.

Fusion gene assessment. A purpose-built bioinformatics pipeline
was developed to detect fusion genes from RNA CaptureSeq
datasets. The pipeline deploys stable and open-source bioinfor-
matics tools in a sequential mode (Fig. 1b):

– Alignment to targets. BWA-MEM40 v. 0.7.15-r1140 aligned
PE reads to the genomic sequences of the targeted genes. The PE
reads that did not map entirely on the reference genome
through SAMTOOLS41 v. 1.8 were isolated; these PE reads
(informative) may derive from fragments of the fusion gene
breakpoint.

– Assembly. The informative reads are assembled into longer
sequences (contigs) through the SPAdes42 v. 3.12.0 tool.
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SPAdes was run with 3 different settings of k-mer size (25, 31,
and 51) to cover any possible contig scenarios, thusmaximizing
the sensitivity of our strategy. This step is critical since more
extended sequences have a higher chance of correctly aligning
on the fusion gene partner at the genomic level.

– Alignment to the complete genome. BWA-MEM aligned contig
sequences to the complete human genome (GRCh38.p12).
SAMTOOLS then retrieved contig sequences that showed
chimeric features, thus mapping the 50- and 30-sides of different
genomic locations.

– Gene annotation and fusion gene assessment. The chimeric
sequences were annotated with BEDTOOLS43 v. 2.27.0 and
GENCODE37 release 29 (GRCh38.p12) annotation. Any
chimeric sequence with different gene annotation between
the 50- and 30-side were termed fusion genes. These were
queried to the web-application FusionHub44 to highlight fusion
genes already described in other studies.

– Description of public databases is provided by the FusionHub’s
authors (https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5929557/table/pone.0196588.t001/?report=objectonly).
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Abstract

Motivation: The study of immunoglobulins and T cell receptors using next-generation sequencing

has finally allowed exploring immune repertoires and responses in their immense variability and

complexity. Unsurprisingly, their analysis and interpretation is a highly convoluted task.

Results: We thus implemented ARResT/Interrogate, a web-based, interactive application. It can or-

ganize and filter large amounts of immunogenetic data by numerous criteria, calculate several rele-

vant statistics, and present results in the form of multiple interconnected visualizations.

Availability and Implementation: ARResT/Interrogate is implemented primarily in R, and is freely

available at http://bat.infspire.org/arrest/interrogate/

Contact: nikos.darzentas@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Immunoglobulins (IG) and T cell receptors (TR) are highly adaptive

molecular receptors responsible for antigen recognition in immunolo-

gical responses. Fundamental to their adaptiveness is their enormous in-

herent variability, achieved through stochastic processes during B and T

cell maturation. The advent of high-throughput profiling of IG and TR

repertoires (Benichou et al., 2012) has been instrumental for under-

standing normal and pathologic immune responses, which include a

wide range of diseases with an underlying immune cause. This unprece-

dented capability has also brought along novel and unique challenges.

The first task of immunoprofiling is sequence annotation, such as

which variable (V), diversity (D) and joining (J) genes have been rear-

ranged, or what is the sequence of the hypervariable complementarity-

determining region 3 (CDR3). IMGTVR (Lefranc et al., 2015) is the

global reference in the field of antigen receptor sequence analysis and

immunogenetic annotation.
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Mining these inherently complex immunogenetic annotations of

usually millions of reads and tens to hundreds of samples for bio-

logically relevant information is a non-trivial task. There is an

increasing number of published software applications to tackle this

challenge, all with their unique features and advantages, but also

limitations like limited interactivity (Alamyar et al., 2012; Shugay,

2015) or scope restricted to repertoire studies (Moorhouse et al.,

2014) or minimal residual disease (MRD) monitoring (Giraud et al.,

2014).

In this work, we put together in one application features and

functionalities we believe are needed for wide-ranging in silico

immunoprofiling. These insights are a result of collaborative efforts

within the EuroClonality-NGS consortium, which strives to develop,

standardize and validate in vitro assays and bioinformatics for IG/

TR NGS analysis.

2 Methods

ARResT/Interrogate is primarily based on R and Shiny, a frame-

work for user interactivity and web-based accessibility. The analyt-

ical core relies on the ‘data.table’ R package for efficient data

handling based on advanced indexing techniques. Therefore,

ARResT/Interrogate is able to maintain sufficient responsiveness

even with datasets of tens of thousands of clonotypes from millions

of reads and dozens of samples.

ARResT/Interrogate has four step-wise functions: input process-

ing, data selection and filtering, comparative calculations and

visualization.

2.1 Input processing
An integrated parser processes multiple IMGT/HighV-QUEST runs

and their major immunogenetic annotations. Of these, the V, D and J

genes and alleles are combined with the amino acid sequence of the

junction (which encompasses the CDR3) to construct IMGT-like clo-

notypes (Li et al., 2013). These annotations are referred to as ‘feature

types’ and their corresponding individual values as ‘features’; for ex-

ample, feature type ‘V gene’ contains feature ‘TRBV20-1’ (Fig. 1).

2.2 Data selection and filtering
Users can annotate samples with arbitrary metadata (e.g. patient

data, sampling dates) and use these to select and group sam-

ples of interest. The next necessary step is to select feature

types to focus on. This creates a table of abundance per feature

per sample, with abundance expressed as relative or absolute

count of reads or clonotypes. Individual features can be filtered

in or out using a combination of four filters: abundance, vari-

ation across samples, correlation of abundance profiles across

samples, and text regular expression (see Supplementary Section

S2.1).

2.3 Comparative calculations
ARResT/Interrogate can calculate and visualize differences between

samples and features. Samples are compared on the basis of the

abundance of a single feature (e.g. TRBV20-1), or an entire feature

type (e.g. V gene). Features are compared on the basis of their abun-

dance distributions across samples. Groups of samples can also be

statistically compared, for example, to assess immunogenetic differ-

ences before and after therapy (S2.3). ARResT/Interrogate can also

perform principal component analyses (PCA) of samples and

features.

2.4 Visualization
Interactive views include tables; line charts, suitable for time-series

analyses of clonal kinetics including MRD monitoring; bar charts,

popular in clonality testing for lymphoma diagnostics; bubble

charts; heatmaps, for sample-sample distance and sample-feature

distributions; PCA scatterplots; statistical plots; and multiple se-

quence alignments. Customizing the visualizations (Fig. 1a, #op-

tions) includes changing axis properties like values, labels, scales,

orientation; and using extra virtual features such as sums of abun-

dances. Interactivity includes zooming, feature highlighting or hid-

ing, and tooltips with detailed information on any data point.

Finally, visualizations are interconnected, with features selected in

one automatically highlighted in others.

Fig. 1. The controls panel (a) with the table view (b). (a) The controls panel is divided into 3 parts: select, filter and options. The former two are common for all the

visualizations, while options change depending on which visualization view is currently selected. The table (‘#clicked’) above the filters shows features and sam-

ples currently highlighted in the visualizations and it is updated on the fly as the user clicks in the visualizations. (b) In the table, for each feature in a row, abun-

dance values are shown in columns of samples. Cells with features are colored in groups (in this case by receptor and chain i.e. ‘TRB’), cells with abundance

values are colored in a heatmap-like fashion (Color version of this figure is available at Bioinformatics online.)
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3 Results

Results from the validation and the expert evaluation of ARResT/

Interrogate based on actual research data, as well as a running ex-

ample, are available in the Supplementary Material.

4 Conclusions

We presented ARResT/Interrogate, an interactive data manipulation

and visualization application for NGS-based immunoprofiling. It

offers a wide variety of options and aims to serve as a user-friendly

platform with flexible and powerful analytical capabilities.
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The ontogeny of the natural, public IgM repertoire remains incompletely explored. Here, high-resolution immu-
nogenetic analysis of B cells from (unrelated) fetal, child, and adult samples, shows that although fetal liver (FL)
and bone marrow (FBM) IgM repertoires are equally diversified, FL is the main source of IgM natural immunity
during the 2nd trimester. Strikingly, 0.25% of all prenatal clonotypes, comprising 18.7% of the expressed reper-
toire, are shared with the postnatal samples, consistent with persisting fetal IgM+ B cells being a source of nat-
ural IgM repertoire in adult life. Further, the origins of specific stereotypic IgM+ B cell receptors associated with
chronic lymphocytic leukemia, can be traced back to fetal B cell lymphopoiesis, suggesting that persisting fetal B
cells can be subject tomalignant transformation late in life. Overall, these novel data provide unique insights into
the ontogeny of physiological and malignant B lymphopoiesis that spans the human lifetime.
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1. Introduction

Mature B-cell development in humans starts in the fetal liver (FL) in
early fetal life, and becomes well established at this site by the start of
the second trimester [1,2]. Subsequently, during the second trimester,
bone marrow (BM) becomes the main site of B lymphopoiesis [3] and
remains so throughout post-natal life.

Development of mature B-cells depends upon, and proceeds com-
mensurately with expression of a functional B-cell receptor (BCR) and
of its constituent immunoglobulin (Ig) heavy(H) and light(L) chains.
The molecular hallmark of B-cell development, somatic recombination
of the genes that encode the IGH(V, D and J) and IGL(V and J) chains,
takes place in early B-cell progenitors in primary B lymphopoiesis
sites (i.e. FL, FBM and adult BM). This ensures the first wave of Ig
, Imperial College
ampus, Du Cane

iversity of Oxford,

,

en access article under

12
repertoire diversification, with antigen specificity primarily encoded
by the complementarity determining region 3 (CDR3). This process is
a pre-requisite for efficient humoral immunity, even early in fetal life
[4]. The firstmature B-cells that emerge fromFL and FBM are transition-
al B-cells that co-express IgM, IgD and CD10 [5,6]. Transitional B-cells
mature into CD10neg naïve B-cells that express less IgM. In postnatal
life, but not fetal life, naïve B-cells enter a germinal centre reaction in
secondary lymphoid organs, undergoing isotype class switch to IgG/
IgA and somatic hypermutation, a process that ensures the second
wave of Ig repertoire diversification and the production of high affinity
soluble antibodies. By contrast, the majority of the fetal life IgM reper-
toire comprises antibodies that are self- and poly-reactive [7]. This so
called ‘natural’ IgM antibody repertoire is public, i.e., shared by different
individuals at birth and is present in adult life as part of the normal, non-
pathogenic innate Ig repertoire, albeit at lower frequencies than in the
newborn [8,9]. Self-reactive and poly-reactive IgM antibodies, and in
particular those using the IGHV6-1 gene, are dominant in FL B-cells
[10]. In adult life, self-reactive IgM antibodies may play a role in protec-
tion from pathogens and autoimmunity [11]. In mice, the natural IgM
repertoire is largely linked to B-1a cells which once developed and se-
lected in FL, persist for the animal's lifespan through their ability for
self-renewal rather than iterative development and selection [12].
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Recent evidence suggests that B-1a-like cells also exist in humans and
may contribute to the development of the natural IgM repertoire [13].

Profiling of the expressed IgH gene repertoire at mRNA level has
helped to understand the dynamics of humoral immunity develop-
ment. However, the relationship of the fetal B-cell IgM repertoire
to post-natal child and adult B-cells is incompletely understood
and has mostly been approached by low-throughput analyses [14,
15]. A recent high-throughput study of the IgH repertoire of circulat-
ing fetal blood B-cells provided some insights into Ig repertoire on-
togeny [16]. However, the spatiotemporal relationship between the
IgH repertoire in FL with that in FBM, and the impact of the fetal Ig
repertoire on the long-term repertoire present in post-natal life, as
well as the link between this and the development of disease, are
unknown.

Here, to address these issues and to gain insights into the ontogeny
of the human innate B-cell repertoire, we take advantage of a high-
resolution analysis of the IgH-Cmu repertoire of normal human FL,
FBM and post-natal B-cells from healthy infants, young children
and adults.

2. Materials and methods

2.1. Samples

Human FL and BM cells (Table S1) were provided by the Human
Developmental Biology Resource (www.hdbr.org). Surplus blood
from samples collected from healthy children was obtained under
national ethics committee approval (MREC12/LO/0425). For each
sample, CD34-CD19+ mature B-cells (Table S1) were FACS sorted
on BD FACSAriaII (Becton Dickinson, Oxford, UK) for BCR repertoire
analysis by 454 sequencing.

2.2. Bioinformatics

To reduce repertoire sampling biases, we included in the analysis
only samples with a comparable number of B-cells when possible
(Table S1). The raw NGS data were processed, annotated with
germline sequences from IMGT® and/or using IMGT/V-QUEST and
IMGT/HighV-QUEST (http://www.imgt.org), and analysed through
ARResT/Interrogate [17]. As part of ARResT/Interrogate, and with
the use of the R language for statistical computing [www.R-project.
org]: the Jensen-Shannon divergence was used to compute reper-
toire similarity between pairs of samples; the inverse Simpson con-
centration [18], which favors abundant clonotypes over rare ones,
was used on vectors of clonotype abundances to calculate clonotypic
diversity. Sequences were assigned to the 19major subsets of stereo-
typed B-cell receptors in chronic lymphocytic leukemia (CLL) using
ARResT/AssignSubsets [19].

Further methodological details are provided in Supplementary
methods.

3. Results

3.1. High-resolution analysis of fetal and postnatal IgHmu repertoires

For initial assessment of the IgM repertoire ontogeny in FL and FBM
B-cells, we analysed flow-sorted CD34-CD19+ B-cells. These express
cytoplasmic IgM(mu) and/or surface (s)IgM and comprise pre-B-cells,
immature, transitional and naïve B-cells [5,20]. Spectratyping of IGVH-
Cmu mRNA IGHV1-IGHV6 amplicons from a 2nd trimester FL sample
(gestational age [GA], 15+3 weeks), a 2nd trimester FBM sample of
the same GA(15+3 weeks) and B-cells from healthy children and adults
revealed a polyclonal repertoire in both FL and FBM that was compara-
ble to the postnatal samples (Fig. 1a)

To gain further insights into the ontogeny of IgH diversification, we
sequenced the IGVH-Cmu mRNA IGHV1-IGHV7 family amplicons from

12
FL, FBM and postnatal samples using next-generation sequencing
(NGS) and the 454 technology. In total, 20 libraries generated from
17 individual, flow-sorted CD34-CD19+ B-cell samples were se-
quenced: 5 FL (4 performed in independent duplicate libraries; GA
14–18 weeks), 3 FBM (GA 13–17 weeks; different fetuses from the
FL samples), 3 child peripheral blood (cPB) and 5 adult PB (aPB) B-
cell samples. We obtained 117,757 unique clonotypes of which
76%(90,238) were productive, with the remainder representing un-
productive rearrangements (Table S1).

Reproducibilitywas tested by comparing theduplicate libraries from
the 4 FL B-cell samples generated and sequenced in 2 independent ex-
periments. Principal component analysis of different combinations of
immunogenetic features demonstrated clear demarcation and tight
clustering of duplicate pairs (Fig. S1), showing the high degree of accu-
racy and reproducibility of the assay.

3.2. Diversification of the fetal IGHV, IGHD and IGHJ repertoires

Further dissection of the complexity of IgM repertoire development
showed that all 52 member genes of the IGHV1-IGHV7 families were
used at varying and often significantly different frequencies in all 4
developmental stages (Fig. 1b and Table S2). In line with previous
reports [14–16], the most notable difference in IGHD genes usage
frequency was the N10 fold higher IGHD7-27 frequency in fetal com-
pared to postnatal samples (Fig. 1c). The pattern of IGHJ repertoire
usage was nearly identical between FL and FBM, and between cPB
and aPB B-cells. IGHJ4 was the most frequently used J gene in all de-
velopmental stages (Fig. 1d) and, consistent with previous reports
[15,16], there was reciprocal presence of 4 IGHJ genes: IGHJ6 and
IGHJ2 were significantly over-represented in postnatal B-cells (p b

0.001), while IGHJ3 and IGHJ5 were significantly over-represented
in fetal B-cells (p b 0.001; Fig. 1d). Finally, as previously described
[15,16], average CDR3 length was significantly shorter in fetal than
postnatal B-cells, 14.8 amino acids (aa) vs. 17.3aa (p = 0.001; Fig. 1e)

These data show the molecular mechanisms responsible for VDJ re-
combination-dependent repertoire diversification are active and effi-
cient early in B-cell development in both FL and FBM and that on a
qualitative level, comparably diversified B-cell lymphopoiesis exists
contemporaneously in FL and FBM.

3.3. Evidence of antigen-driven clonotypic expansions in FL B-cells

Antibodies produced by the fetus are mostly IgM and are self-
and poly-reactive; however, the source of fetal IgM in FL or FBM
B-cells is not known. Hypothesising that B-cells producing IgM
would have undergone clonotypic expansion in response to self-an-
tigenic stimulus, we sought to identify such expansions by studying
the 100 most abundant clonotypes in each stage. Mean clonotype
abundance of the top 100 most abundant clonotypes in each of the
4 stages, was 10-fold lower in FBM B-cells (0.12%) than in FL B-
cells (1.2%, p b 0.0001), while corresponding abundances in postna-
tal PB B-cells were intermediate (cPB: 0.54%; aPB: 0.41%; Fig. 2a).
Reflecting the paucity of expanded clonotypes amongst FBM B-
cells, analysis of the 100 most abundant clonotypes from across all
4 stages (i.e., 100 of 90,238 clonotypes, Table S1) showed that
none were present in FBM, compared to 65 in FL, 23 in cPB, and 12
in aPB B-cells (Fig. 2b)

To assess clonotypic expansion and diversity in individual stages, we
estimated the inverse Simpson concentration of the clonotypic reper-
toires [18]. We found that FL clonotypes are the least diverse, followed
by cPB and aPB, while FBM showed significantly higher clonotypic di-
versity compared to the other groups (p b 0.001; Fig. 2c).

Together these results are consistent with robust IgM B-cell
clonotypic expansions being prominent in FL and nearly absent in
FBM of the same GA, and support the notion that the FL B-cells are the
main source of fetal IgM production during the 2nd trimester.

http://www.hdbr.org
http://www.imgt.org
http://www.R-project.org
http://www.R-project.org
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Fig. 1.Diversification features of fetal B cell repertoire. a. Spectratyping analysis of IGHV1-6 families in fetal liver (FL) GA15+3weeks, fetal bonemarrow (FBM)GA15+3weeks, cord blood
(CB) and adult peripheral blood (aPB) B-cells. b. IGHV gene (the top 25 out of 52 VHgenes are shown) c. IGHDgene (the top 15 out of total 25 JH genes are shown)d. IGHJ gene and e. CDR3
aa length repertoires counted in unique clonotypes in the 4 different fetal andpostnatal developmental stages (cPB: child peripheral blood). b–e:mean valueswith SDare shown, except in
d & e where error bars are omitted for simplicity. (***p b 0.001, ****p b 0.0001).
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3.4. Convergent recombination in fetal B-cells

We sought further evidence of antigen-driven responses amongst
fetal B-cells by studying their clonotypes in detail, focusing first on
clonotypes shared between the duplicate FL libraries to mitigate
against possible PCR/sequencing artefacts. All 4 duplicate FL librar-
ies showed evidence of distinct VDJ rearrangements encoding iden-
tical CDR3 peptide regions, involving 95–185 clonotypes (1.9–9.3%
of all unique clonotypes per library; Table S3). Notably, these
CDR3 regions were identical both at the aa and nucleotide level
using either different IGHV or IGHD genes, but always the same
IGHJ gene (Tables S4 & S5). This strikingly precise selection of
CDR3 regions, previously termed convergent recombination, has
been described for T-cell receptor repertoire [21,22] and recently
in murine B-1a cells [23]. We investigated this further by systemat-
ically searching for multiple IGHV genes recombined to an identical
CDR3 aa sequence in all samples. Across all stages we found
evidence of hundreds of CDR3 sequences recombined with 2–4 dif-
ferent IGHV genes, with up to 9 different IGHV genes identified
(Fig. 2d); in nearly all cases this involved genes of the same IGHV
family. Detailed sequence analysis (Table S5) highlights the unam-
biguous assignment of respective germline sequences with no
signs of PCR hybrids. Importantly, CDR3 sequences involved in con-
vergent recombinations were most abundant in FL and cPB (Fig. 2d)
in line with their increased incidence of prominent clonotypic ex-
pansions (Fig. 2a–c)
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Fig. 2. Clonotypic abundance and diversity in fetal and post-natal B-cells. a. Frequency (abundance counted in reads) of the 100 most abundant clonotypes in each developmental stage
(horizontal lines indicate mean values, ****p b 0.0001). b. Distribution of the 100 most abundant clonotypes across the 4 developmental stages. c. Clonotypic diversity in each
developmental stage as assessed by the inverse Simpson concentration (see Methods). ***p b 0.001 for FBM as the most diverse. d. Frequency of CDR3 peptides generated by
convergent recombination of 2–9 different IGHV genes in each developmental stage. ** and *** for p b 0.01 and p b 0.001 respectively for FL and cPB vs. FBM and aPB. e. IGHV gene
repertoire counted in reads in fetal and postnatal B-cells. Mean values are shown (error bars omitted for simplicity). f. Correlation of the relative clonotype abundances of the 20 most
popular IGHV genes across developmental stages with their corresponding relative read counts. Lower slopes (as indicated by ‘y’ values in respective colors) of the regression lines for
FL and cPB indicate the predominance of high abundance clonotypes in these developmental stages. ‘5’ and ‘6’: outlying and highly expressed IGHV5-51 and IGHV6-1 respectively. g &
h. IGHV6-1 usage in the 100 most abundant clonotypes across developmental stages (g), and in the 100 most abundant clonotypes in each developmental stage (h); these “Top100”
frequencies are compared to those of IGHV6-1 usage in all clonotypes (“ALL”).
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Therefore, convergent recombination, a process that ensures gener-
ation of a high abundance public immune repertoire in T-cells [21,24],
also appears to shape the early fetal B-cell repertoire.

3.5. Abundant IGHV6-1 repertoire across developmental stages

To investigate whether repertoire complexity is influenced by biases
in specific IGHV family member usage, we compared the rankings of
IGHV genes by their frequency of unique clonotypes (i.e. counting in
unique clonotypes; Fig. 1b) and abundance (i.e. counting in sequence
reads; Fig. 2e). IGHV6-1 and IGHV5-51 were the 1st and 2nd most
expressed genes across all 4 developmental stages; however, both
genes ranked lower when counted in unique clonotypes, especially in
postnatal samples. Fig. 2f correlates relative clonotype abundances of
the 20 most popular IGHV genes across developmental stages with
their corresponding relative read counts. Expecting these twomeasures
to be linearly correlated, outliers should highlight IGHV genes with
highly/lowly-expressed clonotypes. We found that in all 4 develop-
ments stages, IGHV6-1 and IGHV5-51 are placed the furthest from
their projected linear distribution and strongly biased towards high ex-
pression. Therefore, although IGHV6-1 and IGHV5-51 genes did not
have the most associated clonotypes, they are the most likely to partic-
ipate in high abundance, expanded clonotypes. At a global level, the
lower slopes of the regression lines for FL and cPB are also consistent
with the higher frequency of high abundance clonotypes in those
samples

We then focused on IGHV6-1 as this has previously been shown to
be over-represented in fetal B-cells beyond its expected frequency of
~1.9% (i.e., 1/52) [25–27]. Fetal IGHV6-1 IgM BCRs have been reported
to react against ssDNA and cardiolipin autoantigens, and are thus im-
portant sources of natural IgM [10].We confirmed that although the rel-
ative frequency of IGHV6-1 in unique clonotypes was not higher than
the expected 1.9% in FL and FBM (Fig. 1b), its abundance was indeed
significantly higher (18% and 14% respectively; p = 0.002; Fig. 2e)
with similar trends in cPB and aPB. Supporting this, IGHV6-1 was
identified in 17/65(26.2%) FL, 11/23(50%) cPB and 6/12(50%) aPB of
the 100 most expanded clonotypes across all 4 stages (Fig. 2g). Sim-
ilarly, within each developmental stage, IGHV6-1 comprised 17, 33,
39 and 29 of the 100 most abundant clonotypes respectively (Fig. 2h),
significantly higher frequencies (p b 0.01) than their respective average
unique clonotype frequencies (6.4, 8.7, 2.5 and 4.4%). Thus, IGHV6-1
clonotypic expansions are dominant in all developmental stages,
highlighting an important role of IGHV6-1 IgM in innate humoral im-
munity throughout life.

3.6. Presence of antigen response-competent mature B-cells in FL but not
FBM

The high frequency of expanded clonotypes in FL but not FBM sug-
gests that in fetal life it is the FL rather than FBM B-cells that mount
(auto-)antigen-driven responses, despite being equally diversified by
VDJ recombination. To investigate this further, we compared the fre-
quencies of B-cell sub-populations within the CD34-CD19+ compart-
ment in FL and FBM using previously described markers especially
those defining fetal B cell subsets where available [5,6,20,28,29] (see
Supplementarymethods).While pre-B-cells lack (s)IgMexpression, im-
mature B-cells, transitional and naïve B-cells express (s)IgM (Fig. 3a, b).
Compared to FL, the FBM CD34-CD19+ compartment had a higher fre-
quency of pre-B-cells (FL: 52.7 ± 5.4% vs. FBM: 69.2 ± 1.5%, p b 0.01)
but a similar frequency of immature B-cells (30.7 ± 4.6% vs. 21.0 ±
1.6%), while transitional and naïve B-cells were significantly decreased
in FBM (FL: 4.2 ± 0.8% vs. FBM: 1.5 ± 0.4%, p b 0.01; and FL: 2.8 ±
0.9% vs. FBM: 0.7±0.2%, p b 0.05; Fig. 3c). This lack of developedmature
B-cells explains, at least in part, the paucity of clonotypic expansions in
2nd trimester FBM. Of the three sIgM+ B-cell populations (immature,
transitional and naïve) we used for IgHmu repertoire profiling, only
the transitional B-cell subset was previously shown to expand in re-
sponse to antigen in a T-cell-independent fashion. Indeed, transitional
B-cells are enriched in autoreactive B-cells in normal individuals and
more so in patients with systemic lupus erythematosus [30]. Thus, we
speculate that transitional B-cells are likely to be the main source of
the FL IgM clonotypic expansions and, in contrast to previous reports
[4,31], we found a very low frequency of CD34-CD19+CD27+ B-cells
in 2nd trimester FL and FBM (range 0–1.9% of total CD34-CD19+ B-
cells, median 0.06%). (Fig. 3b & c).

3.7. High abundance FL clonotypes shared across developmental stages

To explore continuity in IgM B-cell immunity between fetal and
adult life, we searched for clonotypes sharedwithin and between de-
velopmental stages. Overall 0.13% (122/90,238) of productive
clonotypes were shared, with none shared by N2 developmental
stages (Fig. 4a); 15 were shared between FL and FBM (expressed as
0.37% and 0.22% of reads respectively) (Fig. 4b and Table S6), sug-
gesting selection of B-cells by the same antigen can occur indepen-
dently in FL or FBM, or possibly migration of B-cells between sites; 2
clonotypes were shared between cPB and aPB B-cells (not shown); 22
of the total FL IgH expressed repertoire (Table S7)were shared between
FL (16.3% of reads) and postnatal B-cells (0.92% of reads; Fig. 4c); and 83
were shared between FBM (2.3% of reads) and either cPB (59; 0.85% of
reads) or aPB (24; 1.13% of reads; Fig. 4d, Table S8).

Reflecting the high abundance clonotypes in FL, the mean abun-
dance of clonotypes shared between FL and postnatal B-cells was
38-fold higher than FBM (0.77% vs. 0.02%, p = 0.001; Fig. 4e),
highlighting sharing of only high abundance clonotypes between FL
and postnatal B-cells (Fig. 4e). Indeed, 10/22 clonotypes shared be-
tween FL and postnatal B-cells were also amongst the 100 most
abundant clonotypes across all developmental stages (Fig. 2b, Table
S7) and 16/22 shared clonotypes were 41-fold more abundant in FL
B-cells than in postnatal B-cells (median 0.36% vs. 0.005%, p b

0.0001; Fig. 4f). Notably, 5/22 FL-postnatal shared clonotypes, corre-
sponding to 2 individual CDR3 sequences, had evidence of convergent
recombination (Table S7), supporting the notion that clonotypic expan-
sions shared between fetal and post-natal IgM B-cell repertoires are an-
tigen-driven.

Together, these observations are consistentwith a fully functional FL
IgM repertoire in which B-cell clonotypic expansions are robust and
likely to be antigen-driven. The presence of identical clonotypes in
fetal and postnatal B-cells might be the result of independent selection
at different developmental stages in different individuals or,more likely,
selection during fetal life and subsequent persistence in postnatal life.
Further, the higher abundance of some shared clonotypes in postnatal
compared to FL B-cells indicates that IgM-producing B-cells of FL origin
remain functional in postnatal life and retain their ability to expand in
response to recurrent antigenic stimulation. Finally, the unexpected
degree of clonotype sharing (0.25% of the entire fetal IgM repertoire)
between fetal and postnatal B-cells derived from samples that are
HLA-disparate suggests that the selection of these shared (public)
clonotypes occurs in an HLA- and thus T-cell-independent manner con-
sistent with IgM innate humoral immune responses.

3.8. Fetal BCR repertoire and malignancy-associated stereotypic receptors

Our results so far suggest that fetal IgM-producing B-cells may per-
sist into adult life and remain under antigenic stimulation throughout
life, potentially increasing their risk of neoplastic transformation.
Stereotypic (or quasi-identical) IgM BCR are known to be part of the
normal adult B-cell repertoire (enriched in IgM+CD5+ B-cells in par-
ticular [32]) and, importantly, they have also been demonstrated in
~30% of patients with chronic lymphocytic leukemia (CLL), one of the
most common IgM+ mature B cell malignancies in humans [33–36].
Nevertheless, their developmental origins and ontogeny have not
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Fig. 3. B cell development in FL and FBM. a. Schematic representation of proposed fetal B cell maturation according to immunophenotypicmarkers and stages of VDJ recombination (using
human fetal B cell development data where available) [5,6,29] that was studied in 2nd trimester FL and FBM. b. Representative flow-cytometric analysis of FL and FBM of the same fetus
(GA 17weeks) showing the gating strategy used to identify the various stages of B cellmaturation as described in (a). Data are from viable CD34 negative cells for the FL sample and viable
mononuclear cells for the FBM sample. c. Frequencies of the B cell stages, expressed as % of CD34-CD19+ cells, are shown in the bar graph with data represented as mean ± SEM
from FL (n = 13) and FBM (n = 12) samples. (Imm: immature, Trans: transitional, Mem: memory B-cells; *p b 0.05, **p b 0.01).
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been defined.We therefore searched for evidence in our fetal and post-
natal IgM-producing B-cell samples, for the 19 major stereotypic CLL
IgH receptors, or major CLL subsets, previously reported in a large
study of N7500 CLL patients [33]. Overall, we found evidence of stereo-
typic IgH receptors corresponding to one or more of the 16major CLL
subsets in 3/5 FL B-cell samples and in all FBM and postnatal samples
(Fig. 4g and not shown): 14/16 subsets were found in postnatal sam-
ples, with CLL#1, CLL#5, and CLL#28A the most prevalent but strik-
ingly, 11/16 stereotypical subsets were also present in fetal B-cells,
with 2 subsets in fetal B-cells only (Fig. 4g, Table S9). CLL#1, CLL#5
and CLL#28A subsets were again the most prevalent in FL and FBM
B-cells (Fig. 4g). Importantly CLL#1, CLL#5 and CLL#28A are
amongst the 10 most common CLL subsets, and CLL#1 and #5 are as-
sociated with aggressive disease [36]. These findings may provide
clues into the ontogenesis of CLL and indicate that for a substantial
proportion of stereotypy-associated CLL, the IgM+ B-cell that un-
dergoes malignant transformation in adult life may originally be se-
lected during fetal life and persist throughout adulthood.
2

4. Discussion

Here we present a comparative, high-resolution dissection of the
human IgHmu repertoire from early fetal to adult life. This is the first
such analysis to include FBM and FL, the primary sites of fetal B-cell
development thus allowing ontogenic and anatomical mapping of
the human natural IgM repertoire.

13
The IgHmu repertoire in prenatal life is responsible for development
of the so-called natural antibody immunity. Work in mice has shown
that development of B-cells secreting natural IgM is instructed by
non-protein, lipid, phospholipid and glycan antigens often from cells
undergoing apoptosis [37–39]. In this respect natural IgM are low affin-
ity auto-reactive antibodies perhaps triggered by inadequately cleared
apoptotic cells during fetal development [40]. In postnatal life, the nat-
ural IgM repertoire is further enriched with specificities against com-
mensal flora or pathogen-derived non-protein antigens [40]. In mice,
the main cellular source of natural IgM are B-1a cells that develop in
FL but not FBM. After their selection and clonal expansion by auto-anti-
gens, they persist throughout life by self-renewal.

Our analysis of the ontogeny of the corresponding human IgHmu
repertoire, not previously characterised, reveals many features anal-
ogous to mice. We find that while comparably diversified B-cell
lymphopoiesis exists contemporaneously in FL and FBM, the robust
IgM-producing B-cell clonotypic expansions prominent in FL are vir-
tually absent in FBM of the same GA, thus identifying human FL as the
likely main source of the natural IgM repertoire in fetal life. The lack
of clonotypic expansions in FBM reflects the paucity of latemature B-
cells; these probably develop in late 3rd trimester to become the
main source of adaptive B-cells in postnatal life. Given that the cord
blood and early neonatal IgM repertoires are functionally autoreactive,
these clonotypic expansions are likely to be auto-antigen-driven.
Indeed, IGHV6-1 clonotypic expansions were dominant in FL, and
human IGHV6-1+ fetal B-cells have previously been shown to be
reactive against self-phospholipids such as cardiolipin [10]. The
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Fig. 4. Sharing of clonotypes across developmental stages. a. Venn diagram showing the distribution of the 120 shared clonotypes between FL, FBMand post-natal PB cells. b, c & d. Sharing
of clonotypes between FL and FBM, FL and post-natal, and FBM and post-natal B-cells, respectively. None of the clonotypes was shared by N2 developmental stages. Details of the
clonotypes shown in b, c & d are shown in Tables S6, S7 & S8 respectively. e. Abundance of clonotypes shared between FL and FBM, FL and post-natal, and FBM and postnatal B-cells. f.
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subsets shared between FL and FBM, 13 subsets shared between child and adult PB B-cells and 3 subsets shared across all 4 stages (see Table S9; *p b 0.05, ****p b 0.0001).
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corresponding orthologous VH7183.1 is also dominant in murine FL
[41] revealing remarkable and refined evolutionary conservation.

As inmice, thehumannatural IgMrepertoire is also public, comprising
identical/near-identical clonotypes shared by different individuals. Our
data provide the first evidence of considerable sharing of IgM clonotypes
that originate in human FL amongst different fetuses. For some FL
clonotypes, we documented stringent (even at the nucleotide level) con-
vergent recombination underpinning public IgM repertoire generation.
While convergent recombination occurring at the aa level has been de-
scribed in the adult Ig repertoire [42–44], nucleotide-level convergent re-
combination was recently described in murine B1 cells [23], providing
further parallels between human and murine natural IgM ontogeny.
Another distinct contribution of our work to the delineation of the
ontogeny of the postnatal ‘public’ IgM repertoire is the finding that FL
expanded clonotypes, including those with IGHV6-1, are also found
clonally expanded in postnatal life. This most likely reflects auto-reac-
tive IgM-producing B-cells, clonotypically expanded in FL, persisting
throughout life perhaps bypassing FBM.Whether their postnatal persis-
tence and expansion is the result of continuous antigenic stimulation
(e.g., by apoptotic cells) or of their ability to self-new (analogous tomu-
rine B-1a cells) remains to be determined.

Recent IgH repertoire analysis of fetal B cell progenitors at a single
cell level, demonstrated that the distinct immunogenetic features of
fetal IgH repertoire are determined, at least in part, by a fetal-specific
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pattern of VDJ recombination process which may be driven by differ-
ences in Tdt expression in fetal life [29].

While analysis of the human fetal IgM repertoire has revealed
high concordance with the corresponding murine repertoire, our
analysis of the cellular correlate of the pre-immune repertoire, i.e.,
of B-1a cells, has not. The existence of human counterparts of mu-
rine B-1a cells has been contentious. Recent work identified a rare
IgM+CD20+CD27+CD43+ B-cell population in human cord
blood and PB with several functional features akin to murine B-1a
cells [13,31]. However, despite strict gating and use of two different
anti-CD27 mAb clones (data not shown), the frequency of
CD19+CD27+ cells in the FL and FBM samples we analysed was
consistently b1% with most samples having no CD19+CD27+ cells
(Fig. 3). Instead, we found FL but not FBM enriched in
immunophenotypically-defined transitional B-cells, a population that
in humans has also been linked with production of autoreactive IgM,
autoimmune disease and a CD27-CD5+ phenotype [30,45]. This raises
the possibility that in humans the B-cell subset responsible for FL IgM
clonotypic expansions has features that at least in part overlap with
transitional B-cells. In future work, functional characterization and
high resolution analysis of the IgHmu repertoire in purified FL and
FBM B-cell subsets (Fig. 3) would be required to address this question.

Another novel insight from our work is the demonstration that ste-
reotypic, autoreactive BCR with innate function that are associated
with CLL, a malignancy of older adults, may be selected during fetal
life. We find that the frequencies of these stereotypic receptors in both
FL and FBM are overall very low (b0.01%; Fig. 4g) and nowhere near
the frequencies of expanded clonotypes in FL (up to 8%; Fig. 2b) imply-
ing that auto-antigens driving their expansion in late adult life may not
present in fetal life.

Notwithstanding the very low frequency of CD27+ mature B-cells
we observed in FL and FBM, this would support the notion that CD5+
B-cell CLL with unmutated BCR might have its origin in FL B-1a-like B-
cells, which also express CD5 and although they are selected once dur-
ing fetal life they persist long-term in postnatal life [46,47]. Alternative-
ly, and more consistent with our immunophenotyping findings (Fig. 3),
unmutated CLL has been mooted to originate from autoreactive transi-
tional IgM+CD5+ B-cells [48]. Previous gene expression profiling of
PB human B-cells identified CD27-CD5+ cells as the likely physiologic
counterpart of the unmutated CLL B-cells [32]. We speculate that ongo-
ing and life-long antigenic stimulation of these innate B-cells with ste-
reotypic BCR originating in FL renders them susceptible to malignant
transformation resulting in CLL.

In conclusion, comparative analysis of IgM repertoire develop-
ment from fetal to adult IgM B-cells reveals that B-cell repertoire di-
versification during the 2nd trimester takes place in parallel in FL and
FBM. However, since we have shown that mature B-cells capable of
antigenic responses are present in FL but not in FBM, this suggests
that the liver is the dominant site of likely self-antigen-driven B-
cell clonotypic expansions during the 2nd trimester of fetal life.
Such FL-derived expanded IgM+ B-cells, including those of the
IGHV6-1 gene, may persist into adult life and contribute to the
auto- and poly-reactive public IgM repertoire and even become tar-
gets of malignant transformation.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.clim.2017.06.005.
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Conclusion 

This dissertation provided an overview on the application of next-

generation sequencing and bioinformatics as a tool for clinical 

diagnostics. We herein presented two core strategies for the 

identification and assessment of genetic markers in acute lymphoblastic 

leukaemia: the assessment of immunoglobulin and T-cell receptors for 

minimal residual disease and the identification of fusion genes. The 

assessment of MRD is a strategy that was developed as part of the 

EuroClonality-NGS consortium, and I was mainly involved in the 

development of the bioinformatics pipeline of analysis. My personal 

project mainly covered the identification of fusion genes from target 

capture NGS. In this case, I implemented the bioinformatics method 

used for the sensitive identification of known and new fusion genes in 

the clinical diagnostics of ALL in Fondazione Tettamanti. These two 

first projects allowed me to enhance my expertise in bioinformatics as 

well as programming languages. The gained expertise was then used for 

the implementation and automatisation of an end-to-end informatics 

infrastructure allowing clinical biologists to run these pipelines of 

analysis on-demand. Additionally, I expanded my set of bioinformatics 

tools to cover other areas of NGS application, such as variant calling. 

These resulted in the analysis of single patient’s samples leading to the 

identification of novel mutations in genes coding for the cohesin 

complex as well as the identification and characterisation of a novel 

mutation in the EP300 gene.  

136



The recent application of DL in several scientific fields of research 

captured my interest owing to its potential application in genomics. In 

addition, the increased application of NGS in genomics highlighted the 

role of non-coding elements in the regulation of molecular mechanisms. 

Subsequently, the second part of my Ph.D. study was dedicated to 

acquiring DL expertise through the study of small non-coding RNA 

elements. This collaborative project led to the development of 

MuStARD, a DL model for the identification of small non-coding RNA 

loci from the scanning of genomic areas. Acquiring domain knowledge 

in both DL and non-coding RNA allowed me to start an independent 

project focused on the development of a model for the identification 

and localisation of miRNA-target sequence binding site interactions. 

In summary, the introduction of next-generation sequencing required a 

simplified method for the massive analysis of genomes. NGS is scalable 

into a clinical diagnostic setting for the development of personalised 

therapies for patients. However, the potential application of NGS in 

clinical diagnosis is inevitably bound to the analysis and interpretation 

of these amazing datasets. The analysis of raw NGS datasets requires 

domain knowledge in bioinformatics and informatic technologies. This 

limitation can be partially overcome by the development and 

implementation of end-to-end informatics infrastructure allowing on-

demand and standardised bioinformatics analysis. These informatics 

infrastructures can be provided through interactive and simplified web-

services. Nevertheless, web-services need continuous maintenance and 

implementation to keep-up with the continuous advances of back-end 

and front-end software as well as NGS assays (e.g. web-frameworks 
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and operative systems, or assays for single cell analysis and third 

generation sequencing technologies).  

Before NGS, we were already able to identify, with a certain grade of 

confidence, relevant genomic aberrations, such as chromosomal 

rearrangements or small deletions. NGS technologies provided the 

capability of sequencing genomes in large scale and on-site. Today, 

NGS and bioinformatics are used to discover new recurrent genomic 

aberrations to help the stratification of patients into new risk groups. 

However, effective personalised medicine requires the understanding 

of causative effects and interaction between several genetic aberrations 

carried by each patient. In addition, the non-coding part of the human 

genome still needs to be characterised. Non-coding genome elements, 

such as small and long non-coding RNAs, act as transcriptional 

regulators and they have been studied for decades, but their clear role 

in diseases and cancers is still partially unknown. 

Machine learning has been largely used in bioinformatics and 

genomics. However, the drawback of machine learning is the 

requirement of user-selected features and the design of a clean dataset 

for the development of the model. Deep learning overcomes this 

limitation by embedding the feature selection within the model itself. 

Deep learning has been recently used in several fields of research, from 

physics to genomics, leading to remarkable results. The herein thesis 

demonstrated the application of deep learning for the study of small-

non coding RNA and interactions from a massive amount of genomic 

data. Deep learning models showed the capability of extracting 

important features that unambiguously characterise miRNA bindings 

rules. The genomics era is leading to an exponential growth of NGS 
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public datasets and clinical information. Today, DL technology is 

already deployed in clinical imaging (e.g. radiology) for the 

identification and classification of solid cancers (such as lung cancer). 

The next challenge of genomics is the integration of DL models as a 

standard tool for both biological research and precision medicine. 
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